WO2018038021A1 - 電動モータ装置 - Google Patents
電動モータ装置 Download PDFInfo
- Publication number
- WO2018038021A1 WO2018038021A1 PCT/JP2017/029681 JP2017029681W WO2018038021A1 WO 2018038021 A1 WO2018038021 A1 WO 2018038021A1 JP 2017029681 W JP2017029681 W JP 2017029681W WO 2018038021 A1 WO2018038021 A1 WO 2018038021A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- angle
- electric motor
- angle estimation
- estimation
- abnormality
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/02—Providing protection against overload without automatic interruption of supply
- H02P29/032—Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/022—Synchronous motors
- H02P25/024—Synchronous motors controlled by supply frequency
Definitions
- the present invention relates to an electric motor device including an electric motor used for various devices and a control device thereof, and particularly relates to a technique for improving redundancy.
- Patent Document 1 an electric brake device using an electric motor, a linear motion mechanism, and a speed reducer is proposed.
- Patent Document 2 proposes an electric motor in which coils connected to different systems are arranged side by side in the circumferential direction.
- an electric motor may be required to have extremely high redundancy. For example, even when an abnormality occurs in a motor coil or sensor, it may be necessary to continue the operation. However, no technique has been proposed for continuing the operation even when a sensor abnormality occurs.
- An object of the present invention is to provide a highly redundant electric motor device that can identify a system in which an abnormality has occurred when an abnormality occurs in angle estimation and can continue operation even after the abnormality has occurred.
- An electric motor device includes an electric motor 1 having a stator 5 and a rotor 6, and a control device 2 that controls the electric motor 6.
- the control device 2 includes: Angle estimation means 23, 24, 25 of at least three systems configured to estimate the relative angles of the stator 5 and the rotor 6 of the electric motor 1; Abnormality of at least one detection system among the detection systems of each of the angle estimation means 23, 24, 25 is detected based on a comparison of at least three estimation angles by each of the at least three angle estimation means 23, 24, 25.
- Angle estimation abnormality detection means 26 for performing, If the angle estimation abnormality detection means 26 detects an abnormality in any of the detection systems, the angle estimated by at least one of the angle estimation means 23, 24, 25 of the detection system in which the abnormality does not occur Angle estimation result output means 27 for outputting an angle estimation result based on And a motor control unit 16 that controls the electric motor 1 using the angle estimation result output by the angle estimation result output means 27.
- the angle estimation means 23, 24, 25 of three or more systems are provided, and the angle estimation abnormality detection means 26 detects abnormality of the detection system by the angle estimation means 23, 24, 25 based on comparison of the estimated angles. For detection, even if an abnormality occurs in the detection system of one angle estimation means 23, 24, 25, the detection system in which the abnormality has occurred is identified and estimated by the remaining angle estimation means 23, 24, 25. The operation of the electric motor can be correctly continued using the angle.
- the “detection system of the angle estimation means” referred to in this specification includes an angle sensor used for direct estimation by the angle estimation means, sensors such as current and voltage sensors used for indirect estimation, and these sensors. The detection target portion of the electric motor to be detected, wiring, and the like are included.
- the “detection system” may be simply referred to as “system”.
- the angle estimation abnormality detection unit 26 The detected system of the estimated angle estimation means 23, 24, 25 may be determined to be abnormal.
- the detection system of the angle estimation means 23, 24, 25 of the most deviated estimation result is determined to be abnormal.
- the abnormality of the angle estimating means 23, 24, 25 can be detected easily and accurately.
- the “predetermined value” is a value that is appropriately determined based on an analytical value or an actual measurement value of an estimation error that may occur under various driving conditions acquired in advance.
- the angle estimation abnormality detection means 26 compares the maximum value and the minimum value among the estimation results of the angle estimation means 23, 24, and 25 of the at least three systems, and an intermediate value excluding these maximum value and minimum value. Each of the comparisons is performed, and if the deviation amount of the estimation result of the maximum value and the minimum value that is largely deviated from the intermediate value is larger than a predetermined value, the angle estimation means of the estimation result of the largely deviating result is detected.
- the system may be determined to be abnormal.
- the angle estimator 23 of the estimation result of the larger divergence is Since the detection systems 24 and 25 are determined to be abnormal, it is possible to easily and accurately detect the abnormality of the detection systems of the angle estimation means 23, 24 and 25.
- the “predetermined value” is a value that is appropriately determined based on an analytical value or an actual measurement value of an estimation error that may occur under various driving conditions acquired in advance.
- the stator 5 has a plurality of excitation mechanisms 7 1 and 7 2 connected to a plurality of power systems, respectively.
- the angle estimation means 23, 24, 25 estimates the relative angle between the stator 5 and the rotor 6 based on the output of the angle sensor 28, and the stator 5 and the rotation
- the indirect angle estimation means 24 and 25 estimate the angle from the terminal voltages and electrical characteristics of the excitation mechanisms 7 1 and 7 2 . That is, the angle sensorless estimation is performed for each of the excitation mechanisms 7 1 and 7 2 such as the multiplexed excitation coils, and by providing one system of angle sensors 28, the abnormality occurs when an abnormality occurs in the angle estimation. Identify the system. For this reason, the operation can be continued even after the occurrence of abnormality while using only one angle sensor 28. In addition, since the excitation mechanisms 7 (7 1 , 7 2 ) are multiplexed, even if an abnormality such as disconnection occurs in one of the excitation mechanisms 7 1 , 7 2 , the remaining excitation mechanisms 7 1 , 7 2 operate. Can be maintained. Since the angle estimation from the angle sensor 28 is made into one system, a high-speed and high-precision positioning control system that is difficult only by sensorless, such as braking force control of an electric brake device, can be realized.
- the angle estimation result output means 27 may output the angle estimated by the direct angle estimation means 23 as the angle estimation result when the detection system of the direct angle estimation means 23 is not determined to be abnormal. .
- the direct angle estimation means 23 it is possible to perform highly accurate control that is difficult to perform with the indirect angle estimation means 24 and 25.
- the motor control unit 16 determines the detection system determined to be abnormal.
- indirect angle estimating unit 24, 25 is the relative angle excitation mechanism was the basis of the estimated 7 1, 7 2, has an excitation mechanism separate blocking means 29 for blocking the power supply to the exciting mechanism 7 1, 7 2 May be.
- the electric motor device includes an electric motor 1 and a control device 2.
- the electric motor 1 constitutes an electric actuator 4 together with the linear motion mechanism 3 driven by the rotation output.
- the linear motion mechanism 3 is a mechanism that converts forward and reverse rotational inputs into linear reciprocating motion, and includes a ball screw mechanism or a rack and pinion mechanism.
- the electric actuator 4 is used, for example, for driving an electric brake device or an injection molding machine, or driving other devices.
- the electric motor 1 includes a stator 5 as a stator and a rotor 6 as a rotor.
- the electric motor 1 is, for example, a permanent magnet type three-phase synchronous motor.
- the electric motor 1 may be either a radial gap motor (for example, FIG. 3 or FIG. 4) whose magnetic poles are parallel to the rotational axis radial direction and an axial gap motor (for example, FIG. 5) parallel to the rotational axis direction.
- the stator 5 includes first and second stator coils 7 1 and 7 2 (collectively, the stator coil 7) and a stator core 8 (see FIGS. 3 to 5).
- the stator coil 7 is multiplexed as two systems of a first system and a second system.
- the first and second systems include first and second stator coils 7 1 and 7 2 , respectively.
- the form of winding of the stator coil 7 and the form of multiplexing may be any form illustrated in FIGS. 3 to 5, for example.
- FIG. 3 shows an example in which the first and second stator coils 7 1 and 7 2 connected to a plurality of systems (first and second systems in this embodiment) are arranged in the same slot 8b of the stator core 8, respectively.
- FIG. 3 for the sake of simplicity, it is illustrated as being divided into two in the inner and outer diameter directions. However, for example, the inner circumference side and the outer circumference side of the portion wound around each magnetic pole 8 a are connected to different systems.
- the stator coils 7 1 and 7 2 may be arranged respectively.
- a structure may be adopted in which two magnet wires (not shown) are wound while being held side by side, and magnet wires forming the stator coils 7 1 and 7 2 of different systems are alternately adjacent to each other.
- FIG. 4 shows an example in which the first and second stator coils 7 1 , 7 2 are provided by dividing the first and second systems for each slot 8 b of the stator core 8.
- the arrangement order of the three-phase AC phases U, V, W is U1, V1, W1, U2, V2, and W2, but U1, U2, V1, V2, W1, and W2 are arranged. You may arrange as follows.
- FIG. 5 shows an example in which a plurality of stators 5 and 5 (in the example shown, the first and second stators 5 and 5) are connected to different systems in a double stator type axial gap motor.
- the rotor 6 includes a rotor body 6a made of a magnetic material and a permanent magnet 6b.
- the electric motor 1 may be multiplexed by the wiring structure shown in FIG. 3 and FIG. 4 in an axial gap motor, for example.
- Each example shown in the figure shows an example of concentrated winding as a winding method, but distributed winding may be used.
- a control system and a power supply system will be described with reference to FIG.
- First and second first system each and a second stator coil 7 of the electric motor 1 1, 7 2, separate power supply 9 1, 9 2 (first and second power supply device 9 1, 9 2 ) are connected via first and second motor drivers 11 1 , 11 2 of the control device 2, respectively.
- the control device power source 12 in the control device 2 is a power source that appropriately supplies power necessary for the control system 2 and the sensor system such as the angle sensor 28.
- the controller power supply 12, the power supply device 9 1, 9 2 are connected via an OR coupling portion 13, and is capable of feeding from any of a plurality of power supply 9 1, 9 2.
- the control device power supply 12 may be provided independently of the power supply devices 9 1 and 9 2 .
- a battery, a capacitor, an AC / DC converter, or the like can be used for the power supply devices 9 1 and 9 2 and the control device power supply 12.
- the number of the power supply suitably determined in accordance with the requirements of redundancy regardless of the figure Just do it.
- the control device 2 includes a microcomputer, a circuit board on which various electronic components are mounted, and the like, and includes an actuator controller 15, a motor controller 16, an angle estimator 17, a current estimator 21 (first and second current estimators 21). 1 , 21 2 ), a voltage estimator 22 (first and second voltage estimators 22 1 , 22 2 ), and the like.
- an actuator controller 15 includes an actuator controller 15, a motor controller 16, an angle estimator 17, a current estimator 21 (first and second current estimators 21). 1 , 21 2 ), a voltage estimator 22 (first and second voltage estimators 22 1 , 22 2 ), and the like.
- other elements necessary for the system configuration such as feedback to the actuator controller 15 and thermistor installation of the electric motor 1, are provided as appropriate.
- the control command value for the control amount of the electric actuator 4 is input to the control device 2, the input is subjected to control calculation by the actuator controller 15, and the motor torque command value is output.
- the control command value input to the control device 2 may be an axial load command value or the like if the electric actuator 4 is an axial load control actuator such as an electric brake device, and the electric actuator 4 is an electric shift device or the like.
- the position command value or the like may be used for any position control actuator. Further, a control amount corresponding to the control command value may be appropriately fed back to the actuator controller 15.
- the motor control unit 16 includes a current converter 18, a current controller 19 (first and second current controllers 19 1 and 19 2 ), and the motor drivers 11 1 and 11 2 .
- the motor control unit 16 may further include excitation mechanism individual blocking means 29. The excitation mechanism individual cutoff means 29 will be described later.
- the current converter 18 includes a d-axis determining unit 18a and a q-axis determining unit 18b. In these determining units 18a and 18b, it is preferable that a simple control system can be configured by converting the motor torque command value into the d-axis and q-axis current command values. However, the current converter 18 may be configured to output, for example, the amplitude and phase of a three-phase alternating current.
- Each current controller 19 (19 1 , 19 2 ) may perform control so that the motor current follows the current command value by using, for example, current feedback control or feedforward control such as a non-interference device. .
- Each motor driver 11 (11 1 , 11 2 ) configures a half bridge circuit or the like using, for example, a switching element such as an FET, and performs PWM control for adjusting the ratio of applying the power supply voltage to the motor coil terminal of the electric motor 1.
- a switching element such as an FET
- PWM control for adjusting the ratio of applying the power supply voltage to the motor coil terminal of the electric motor 1.
- Each current estimator 21 is means for estimating a current applied to the electric motor 1 from the motor driver 11 (11 1 , 11 2 ).
- Each current estimator 21 is preferably a sensor element in terms of reliability and performance.
- the sensor element for example, a magnetic sensor that detects the magnetic field of the power transmission line may be used, but an amplifier that detects the voltage across the shunt resistor or the FET may be used. An inexpensive sensor element is sufficient.
- each current estimator 21 may be configured to estimate a current from an applied voltage and electrical characteristics such as resistance and inductance of the electric motor 1.
- the angle estimator 17 includes at least three systems (three systems in this embodiment) of angle estimation means 23, 24, and 25 configured to estimate the relative angles of the stator 5 and the rotor 6 of the electric motor 1, respectively. Based on the comparison of the three estimated angles by these three systems of angle estimation means 23, 24, 25, at least one abnormality (preferably, one detection) of the detection systems in each of these angle estimation means 23, 24, 25. If the angle estimation abnormality detection unit 26 detects an abnormality in any one of the three systems, the angle estimation of the detection system in which the abnormality has not occurred is detected. Angle estimation result output means 27 for outputting the angle estimated by the means 23 to 25 as the angle estimation result of the angle estimator 17.
- the motor control unit 16 uses the angle estimation result output from the angle estimation result output means 27 when the current converter 18 performs feedback control such as phase control using the relative angle.
- One of the three angle estimators 23, 24, and 25 is a direct angle estimator that estimates an angle from the output signal of the angle sensor 28.
- the angle sensor 28 is, for example, a sensor that is provided in the electric motor 1 and outputs a relative angle between the stator 5 and the rotor 6 as an angle signal of a predetermined format.
- the angle sensor 28 is, for example, a resolver or a magnetic or optical encoder.
- the remaining two angle estimating unit 24, 25, first a first and a second sensorless estimation means for estimating a voltage or current or the angle from both applied to the stator coil 7 1, 7 2 of each of the two systems First and second indirect angle estimation means.
- the current is obtained by the current estimator 21 (21 1 , 21 2 ), and the voltage is obtained by the voltage estimator 22 (22 1 , 22 2 ).
- a method of estimating the flux linkage phase of the motor driver 11 (11 1 , 11 2 ) or a motor angle is estimated by detecting an open coil terminal voltage when the switch element is OFF.
- a method of estimating the motor angle by detecting the magnetic saturation characteristics and the saliency of the inductance can be used.
- Other methods may be used as the sensorless estimation method, and a plurality of methods including these methods may be used in combination.
- the angle estimation abnormality detection unit 26 The abnormality is detected by determining that the detection system in the angle estimation means 23, 24, 25 of the estimated result is abnormal.
- the detection system in the angle estimation means 23, 24, 25 of the most deviated estimation result is determined to be abnormal.
- the abnormality of the angle estimating means 23, 24, 25 can be detected easily and accurately.
- the “predetermined value” is a value that is appropriately determined based on an analytical value or an actual measurement value of an estimation error that may occur under various driving conditions acquired in advance.
- the angle estimation abnormality detection unit 26 calculates the maximum value and the minimum value obtained by comparing the estimation results of the plurality of angle estimation units 26 and the maximum value and the minimum value. Each of the maximum value and the minimum value, and if the deviation amount of the estimation result that is greatly deviated from the intermediate value is larger than a predetermined value, the angle of the estimation result that is largely deviated The abnormality may be detected by determining that the detection system of the estimation means is abnormal.
- the “predetermined value” is a value that is appropriately determined based on an analytical value or an actual measurement value of an estimation error that may occur under various driving conditions that are acquired in advance.
- the angle estimation result output means 27 may output the angle estimated by the direct angle estimation means 23 as the angle estimation result when the detection system of the direct angle estimation means 23 is not determined to be abnormal. .
- the power supply to the excitation mechanisms 7 1 and 7 2 is cut off.
- the situation where the sensorless estimation by the system of the indirect angle estimation means 24, 25 becomes abnormal is that the electric motor 1 performing the sensorless estimation, for example, disconnection or burnout of the motor coil, breakage of the motor driver, etc. There is a possibility that the motor coil itself cannot be driven.
- shutting off the power supply by the excitation mechanism individual shutoff means 29 may be, for example, a form of shutting off the power supply to the motor drivers 11 1 and 11 2 by a switching means (not shown) or the like, or a current converter
- the current command output from 18 may be in the form of zero or in other forms.
- FIG. 2 is a flowchart showing a processing example of abnormality determination and angle estimation value output by the angle estimator 17.
- steps S1 to S6 are processing performed by the angle estimation abnormality detecting unit 26 in FIG. 1, and other steps are processing performed by the angle estimation result output unit 27.
- step S1 it is determined whether or not there has been no abnormality so far (step S1). Usually there is no abnormality.
- the angle estimation abnormality detection unit 26 directly obtains the rotation angle estimation result ⁇ 1 from the output of the angle sensor 28 from the angle estimation unit 23, and obtains from the motor voltage / current in each of the stator coils 7 1 and 7 2 .
- the estimated values ⁇ 2 and ⁇ 3 of the rotation angle are acquired from the first and second indirect angle estimating means 24 and 25 (steps S2 and S3).
- the direct angle estimation means 23 and the first and second indirect angle estimation means 24 and 25 always perform an angle estimation process.
- an average value ⁇ ave is calculated by the following equation (step S4).
- ⁇ ave ( ⁇ 1 + ⁇ 2 + ⁇ 3 ) / 3
- the deviation threshold is a value that is appropriately determined by design or the like.
- the angle estimation result output unit 27 performs direct angle estimation that is an estimation result from the angle sensor 28.
- the angle sensor output of a resolver or the like is often more accurate than the angle sensorless estimation result.
- the output of the angle sensor 28 is used. High-precision angle detection is possible.
- step S7 the process returns to step 1.
- step S6 most if the deviation amount of the offset to that estimation result ⁇ x is greater than deviation threshold value is greater estimation result ⁇ x than divergence threshold whether estimation result theta 1 from the angle sensor 28 It determines (step S8), and if not the estimation result theta 1 is the same as the estimated result theta 1, and outputs as the angle estimation result theta from the angle estimator 17 (step S7).
- the estimation results of two systems that are not determined to be abnormal are acquired (step S10). . It is determined whether the determination results of the two systems are substantially equal (step S11). Whether or not they are substantially equal is determined, for example, by whether or not the difference between the determination results of the two systems is within a suitably determined difference threshold. If they are not approximately equal, that is, if the difference between the determination results of the two systems is larger than the difference threshold, the angle cannot be estimated (step S15). In this case, the angle estimation result output means 27 cannot estimate the angle as the angle estimation result.
- the signal is output. For example, in the current converter 18, the motor control unit 16 performs a process determined according to the signal that the angle cannot be estimated, such as a motor stop or a low torque rotation. After step S15, the process ends.
- step S11 whether or not the system that is abnormal in the first step S1 is the system of the angle sensor 28 (that is, the detection system of the direct angle estimation means 23). Is determined (step S12). If line of an angle sensor 28 is normal, it outputs the estimate theta 1 strains of the angle sensor 28 as an angle estimation result theta angle estimator 17 (step S13). When the system of the angle sensor 28 is abnormal, the average value of the estimation results ⁇ 2 and ⁇ 3 of the remaining two systems is output as the angle estimation result ⁇ of the angle estimator 17 (step S14). After step S13 and after step S14, the process returns to step 1.
- the abnormality estimation of the angle estimation system in steps S4 to S5 is compared with the average value, but in addition to this, the estimation results ⁇ 1 and ⁇ of all systems 2, among the theta 3, the maximum and minimum values as well as to determine the intermediate value is other than these, of the maximum value and the minimum value, the result of the deviation larger from the intermediate value may be a processing for obtaining the deviation amount.
- the angle estimator 17 can estimate the current rotation angle of the electric motor 1 by appropriately referring to the plurality of angle estimation results. Is normal, the value of the angle sensor 28 is preferentially used. For example, when an angle estimation result of one certain system deviates from another angle estimation result, the angle estimation abnormality detection unit 26 determines that the detection system of the angle estimation units 23 to 24 of the deviated estimation result is abnormal. At this time, even if it is determined that one certain system is abnormal, the control of the electric motor 1 can be continued if the remaining two systems are normal.
- angle sensorless estimation is performed for each of the multiplexed first and second stator coils 7 1 and 7 2 in two systems, and angle estimation from the angle sensor 28 is performed in one system.
- the angle estimation system in which the abnormality has occurred can be specified, and the electric motor apparatus with high redundancy can continue operation even after the abnormality has occurred.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Electric Motors In General (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
角度推定に異常が発生した際にその異常が発生した系統が特定できて、異常発生後も動作を継続することができる冗長性の高い電動モータ装置を提供する。この電動モータ装置は、電動モータ(1)と制御装置(2)とを有する。制御装置(2)は、電動モータ(1)の固定子(5)と回転子(6)との相対角度をそれぞれ推定する少なくとも3系統の角度推定手段(23,24,25)と、これら少なくとも3系統の推定角度の比較に基づいて角度推定手段(23,24,25)それぞれにおける検出系統のうちの少なくとも1つの検出系統の異常を検出する角度推定異常検出手段(26)とを有する。角度推定異常検出手段(26)が検出系統のうちのいずれかにおける異常を検出した場合、異常が発生していない検出系統の角度推定手段(23,24,25)によって推定される角度が角度推定結果として出力され、その出力される角度推定結果が電動モータ(1)の制御に用いられる。
Description
本出願は、2016年8月24日出願の特願2016-163593の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
この発明は、各種の機器に用いられる電動モータとその制御装置とでなる電動モータ装置に関し、特に冗長性向上の技術に係る。
電動モータ装置および電動モータを使用した電動アクチュエータとして、以下の発明が提案されている。特許文献1では、電動モータ、直動機構および減速機を使用した電動ブレーキ装置が提案されている。特許文献2では、違う系統に接続されるコイルが周方向に並んで配置された電動モータが提案されている。
特許文献1のような、電動アクチュエータを使用した電動ブレーキ装置において、電動モータには極めて高い冗長性が求められる場合がある。例えば、モータコイルやセンサ等に異常が発生した場合においても、動作を継続する必要が生じる場合がある。しかし、センサ異常が発生した場合においても動作を継続する技術は提案されるに至っていない。
なお、特許文献2のような、モータコイルを多重化した電動モータの場合、コイル断線等の異常に関しては、異常発生後も電動モータは動作を継続することができるが、角度センサ等の異常発生後も動作を継続する必要がある場合、角度センサを複数搭載しなければならず、コストやスペースが問題となる場合がある。
この発明の目的は、角度推定に異常が発生した際にその異常が発生した系統が特定できて、異常発生後も動作を継続することができる冗長性の高い電動モータ装置を提供することである。
以下、便宜上理解を容易にするために、実施形態の符号を参照して説明する。
この発明の一構成に係る電動モータ装置は、固定子5と回転子6とを有する電動モータ1と、この電動モータ6を制御する制御装置2とを備え、前記制御装置2が、
前記電動モータ1の前記固定子5と前記回転子6との相対角度をそれぞれ推定するように構成された少なくとも3系統の角度推定手段23,24,25と、
前記少なくとも3系統の角度推定手段23,24,25それぞれによる少なくとも3つの推定角度の比較に基づいて前記角度推定手段23,24,25それぞれの検出系統のうちの少なくとも1つの検出系統の異常を検出する角度推定異常検出手段26と、
この角度推定異常検出手段26が前記検出系統のうちのいずれかにおける異常を検出した場合、前記異常が発生していない検出系統の角度推定手段23,24,25の少なくとも1つによって推定される角度に基づいた角度推定結果を出力する角度推定結果出力手段27と、
この角度推定結果出力手段27が出力する前記角度推定結果を用いて前記電動モータ1を制御するモータ制御部16とを有する。
前記電動モータ1の前記固定子5と前記回転子6との相対角度をそれぞれ推定するように構成された少なくとも3系統の角度推定手段23,24,25と、
前記少なくとも3系統の角度推定手段23,24,25それぞれによる少なくとも3つの推定角度の比較に基づいて前記角度推定手段23,24,25それぞれの検出系統のうちの少なくとも1つの検出系統の異常を検出する角度推定異常検出手段26と、
この角度推定異常検出手段26が前記検出系統のうちのいずれかにおける異常を検出した場合、前記異常が発生していない検出系統の角度推定手段23,24,25の少なくとも1つによって推定される角度に基づいた角度推定結果を出力する角度推定結果出力手段27と、
この角度推定結果出力手段27が出力する前記角度推定結果を用いて前記電動モータ1を制御するモータ制御部16とを有する。
この構成によると、3系統以上の角度推定手段23,24,25を備え、それらの推定角度の比較に基づいて角度推定手段23,24,25による検出系統の異常を角度推定異常検出手段26で検出するため、一つの角度推定手段23,24,25の検出系統に異常が発生しても、その異常が発生した検出系統を特定し、残りの角度推定手段23,24,25によって推定される角度を用いて電動モータの動作を正しく継続することができる。なお、この明細書で言う「角度推定手段の検出系統」は、その角度推定手段による直接推定に用いられる角度センサや、間接推定に用いられる電流,電圧センサ等のセンサ類、並びにこのセンサ類で検出される電動モータの検出対象部分、配線等を含む。以下、「検出系統」を単に「系統」と称する場合がある。
前記角度推定異常検出手段26が、前記少なくとも3系統の角度推定手段23,24,25の推定結果の平均値から最も乖離した推定結果のその乖離の量が所定値よりも大きければ、前記最も乖離した推定結果の角度推定手段23,24,25の検出系統を異常と判定してもよい。
この構成の場合、平均値から最も乖離した推定結果のその乖離の量が所定値よりも大きければ、その最も乖離した推定結果の角度推定手段23,24,25の検出系統を異常と判定するため、角度推定手段23,24,25の異常を簡単にかつ正確に検出することができる。なお、前記「所定値」は、予め取得しておいた様々な駆動条件において発生し得る推定誤差の解析値や実測値に基づいて、適宜に定められる値である。
前記角度推定異常検出手段26が、前記少なくとも3系統の角度推定手段23,24,25の推定結果を比較した中での最大値および最小値と、これら最大値および最小値を除く中間値との比較をそれぞれ行い、前記最大値および最小値のうち前記中間値からより大きく乖離した方の推定結果の乖離量が所定値よりも大きければ、前記大きく乖離した方の推定結果の角度推定手段の検出系統を異常と判定してもよい。
この構成の場合、最大値と最小値のうち、中間値からより大きく乖離した方の推定結果の乖離量が所定値よりも大きければ、そのより大きく乖離した方の推定結果の角度推定手段23,24,25の検出系統を異常と判定するため、角度推定手段23,24,25の検出系統の異常を簡単にかつ正確に検出することができる。なお、前記「所定値」は、予め取得しておいた様々な駆動条件において発生し得る推定誤差の解析値や実測値に基づいて、適宜に定められる値である。
前記固定子5が複数の電力系統にそれぞれ接続される複数の励磁機構71,72を有し、
前記角度推定手段23,24,25が、前記固定子5と前記回転子6との相対角度を、角度センサ28の出力に基づいて推定する直接角度推定手段23と、前記固定子5と前記回転子6との前記相対角度を、前記複数の励磁機構71,72それぞれの端子電圧、電流、および電気的特性のいずれか一つまたは複数からそれぞれ推定する複数の間接角度推定手段24,25とを有してもよい。
前記角度推定手段23,24,25が、前記固定子5と前記回転子6との相対角度を、角度センサ28の出力に基づいて推定する直接角度推定手段23と、前記固定子5と前記回転子6との前記相対角度を、前記複数の励磁機構71,72それぞれの端子電圧、電流、および電気的特性のいずれか一つまたは複数からそれぞれ推定する複数の間接角度推定手段24,25とを有してもよい。
この構成の場合、間接角度推定手段24,25は励磁機構71,72の端子電圧および電気的特性から角度を推定する。すなわち、多重化された励磁コイル等の励磁機構71,72のそれぞれにつき角度センサレス推定を行い、角度センサ28を1系統設けることで、角度推定に異常が発生した際に前記異常が発生した系統を特定する。そのため、角度センサ28を一つとしながら、異常発生後も動作を継続することができる。また、励磁機構7(71,72)を多重化しているため、片方の励磁機構71,72に断線等の異常が生じても、残りの励磁機構71,72で動作を維持することができる。角度センサ28からの角度推定を1系統とするため、例えば電動ブレーキ装置の制動力制御などのように、センサレスのみでは困難である高速かつ高精度な位置決め制御系を実現できる。
前記角度推定結果出力手段27は、前記直接角度推定手段23の検出系統が異常と判定されていない場合は、前記直接角度推定手段23によって推定される角度を前記角度推定結果として出力してもよい。直接角度推定手段23を用いることで、間接角度推定手段24,25では行うことが困難な精度の高い制御が行える。
前記モータ制御部16は、前記角度推定異常検出手段26が、前記複数の間接角度推定手段24,25のうちのいずれかの検出系統を異常と判定した場合、前記異常と判定された検出系統の間接角度推定手段24,25が前記相対角度の推定の基礎とした励磁機構71,72について、前記励磁機構71,72への電力供給を遮断する励磁機構個別遮断手段29を有してもよい。
この構成の場合、いずれかの励磁機構71,72に断線等の異常が発生しても、残りの正常な励磁機構71,72を用いて電動モータの動作を維持することができる。
請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1の実施形態に係る電動モータ装置の制御系の概念構成を示すブロック図である。
図1の電動モータ装置における角度推定器の処理例の流れ図である。
図1の電動モータ装置におけるステータの第1の例の部分正面図である。
図1の電動モータ装置におけるステータの第2の例の部分正面図である。
図1の電動モータ装置におけるダブルステータ型アキシャルギャップモータの一例を示す概略側面図である。
この発明の第1の実施形態に係る電動モータ装置を図面と共に説明する。この電動モータ装置は、電動モータ1と制御装置2とで構成される。電動モータ1は、図示の例では、その回転出力により駆動される直動機構3と共に電動アクチュエータ4を構成する。直動機構3は、正逆の回転入力を直線往復運動に変換する機構であって、ボールねじ機構またはラックピニオン機構等からなる。電動アクチュエータ4は、例えば、電動ブレーキ装置や射出成形機の駆動、その他の機器の駆動に用いられる。
電動モータ1は、固定子であるステータ5と回転子であるロータ6とでなる。電動モータ1は、例えば永久磁石型の3相の同期モータである。電動モータ1は、磁極が回転軸径方向と平行なラジアルギャップモータ(例えば図3または図4)と、回転軸方向と平行なアキシャルギャップモータ(例えば図5)と、のいずれであってもよい。ステータ5は第1および第2のステータコイル71,72(総称して、ステータコイル7)と、ステータコア8(図3~図5参照)とでなる。ステータコイル7は、この実施形態では、第1の系統と第2の系統との2系統として多重化されている。第1および第2の系統は、それぞれ、第1および第2のステータコイル71,72を含む。
ステータコイル7の巻線の形態および多重化の形態は、例えば図3~図5にそれぞれ例示するいずれの形態であってもよい。
図3は、ステータコア8の同じスロット8bに複数の系統(本実施形態では、第1および第2の系統)にそれぞれ接続された第1および第2のステータコイル71,72を配置する例を示す。なお、図3では簡単のため内外径方向に二分割されているように図示するが、例えば各磁極8aに巻かれている部分の内周側と外周側とに、別々の系統に接続されるステータコイル71,72をそれぞれ配置する構造としてもよい。あるいは、マグネットワイヤ(図示せず)を二本並べて保持したまま巻線し、別々の系統のステータコイル71,72を形成するマグネットワイヤが交互に隣接する構造としてもよい。
図4は、ステータコア8のスロット8bごとに第1および第2の系統を分けて第1および第2のステータコイル71,72を設ける例を示す。なお、図4の例では、3相交流の相U,V,Wの配置順をU1,V1,W1,U2,V2およびW2として配置いるが、U1,U2,V1,V2,W1およびW2のように配置してもよい。
図5は、ダブルステータ型アキシャルギャップモータにおいて、複数のステータ5,5(図示の例では、第1および第2のステータ5,5)がそれぞれ別の系統に接続された例を示す。ロータ6は、磁性体からなるロータ本体6aと永久磁石6bとで構成される。
電動モータ1は、その他、例えばアキシャルギャップモータにおいて、図3や図4に示す配線構造によって多重化されてもよい。また、図示の各例は巻線方式として集中巻の例を示すが、分布巻を用いてもよい。
図1と共に、制御系および電源系を説明する。電動モータ1の第1および第2の系統それぞれの第1および第2のステータコイル71,72は、それぞれ別の電源装置91,92(第1および第2の電源装置91,92)に、制御装置2の第1および第2のモータドライバ111,112をそれぞれ介して接続されている。制御装置2内の制御装置電源12は、制御装置2および角度センサ28等のセンサ系統に必要な電力を適宜供給する電源である。制御装置電源12は、前記電源装置91,92にOR結合部13を介して接続され、複数の電源装置91,92のいずれからでも給電可能とされている。制御装置電源12は、電源装置91,92とは独立して設けられてもよい。前記電源装置91,92および制御装置電源12には、例えばバッテリ、キャパシタ、AC/DCコンバータ等を用いることができる。なお、電動モータ1の電源として、この実施形態では電源装置91,92の2系統を有する例を示すが、前記電源装置の数は同図によらず冗長性の要求に応じて適宜定めればよい。
制御装置2はマイクロコンピュータや各種の電子部品を搭載した回路基板等からなり、アクチュエータ制御器15、モータ制御部16、角度推定器17、電流推定器21(第1および第2の電流推定器211,212)、および電圧推定器22(第1および第2の電圧推定器221,222)等を備えている。制御装置2および/またはその周辺には、その他、例えばアクチュエータ制御器15へのフィードバックや、電動モータ1のサーミスタ設置等、システム構成に必要となる要素が適宜設けられる。
制御装置2には、電動アクチュエータ4の制御量に対する制御指令値が入力され、その入力がアクチュエータ制御器15で制御演算され、モータトルクの指令値が出力される。制御装置2に入力される前記制御指令値は、例えば電動アクチュエータ4が電動ブレーキ装置等の軸荷重制御アクチュエータであれば、軸荷重指令値等であってもよく、電動アクチュエータ4が電動シフト装置等の位置制御アクチュエータであれば位置指令値等であってもよい。また、前記制御指令値に応じた制御量をアクチュエータ制御器15に適宜フィードバックしてもよい。
モータ制御部16は、電流変換器18、電流制御器19(第1および第2の電流制御器191,192)、および前記モータドライバ111,112を有している。モータ制御部16は、さらに励磁機構個別遮断手段29を備えてもよい。励磁機構個別遮断手段29については後に説明する。
電流変換器18は、d軸決定部18aおよびq軸決定部18bを備える。これら決定部18a,18bにおいて、モータトルクの指令値をd軸、q軸の電流指令値に変換する構成とすることで、簡潔な制御系を構成できて好適である。しかしながら、電流変換器18は、例えば三相交流電流の振幅と位相等を出力する構成であってもよい。
各電流制御器19(191,192)は、例えば電流フィードバック制御や、非干渉器等のフィードフォワード制御を用いて、電流指令値に対してモータ電流が追従するよう制御を行ってもよい。
各モータドライバ11(111,112)は、例えばFET等のスイッチ素子を用いてハーフブリッジ回路等を構成し、電動モータ1のモータコイル端子に電源電圧を印加する比率を調整するPWM制御を行う構成されていると、安価で好適である。ただし、代わりに、例えば昇圧回路を別途設けてPAM制御等を行う構成であってもよい。
各電流推定器21(211,212)は、モータドライバ11(111,112)から電動モータ1に印加される電流を推定する手段である。各電流推定器21(211,212)は、センサ素子であると信頼性および性能の面から好適である。センサ素子として、例えば送電線の磁界を検出する磁気センサを用いてもよいが、シャント抵抗やFETの両端の電圧を検出するアンプを用いてもよい。センサ素子は安価なもので足りる。各電流推定器21は、この他に、印加した電圧と、電動モータ1の抵抗やインダクタンス等の電気的特性から電流の推定を行う構成であってもよい。
角度推定器17は、電動モータ1のステータ5とロータ6との相対角度をそれぞれ推定するように構成された少なくとも3系統(本実施形態では3系統)の角度推定手段23,24,25と、これら3系統の角度推定手段23,24,25による3つの推定角度の比較に基づいてこれらの角度推定手段23,24,25それぞれにおける検出系統のうちの少なくとも1つの異常(好ましくは、1つの検出系統の異常)を検出する角度推定異常検出手段26と、この角度推定異常検出手段26が前記3系統のうちのいずれかにおける異常を検出した場合、前記異常が発生していない検出系統の角度推定手段23~25によって推定される角度を角度推定器17の角度推定結果として出力する角度推定結果出力手段27とを有する。
前記モータ制御部16は、前記電流変換器18により前記相対角度を用いて位相制御等のフィードバック制御を行うときに、前記角度推定結果出力手段27が出力する角度推定結果を用いる。
前記3つの角度推定手段23,24,25のうちの一つの角度推定手段23は、角度センサ28の出力信号から角度を推定する直接角度推定手段である。角度センサ28は、例えば電動モータ1に設けられてステータ5とロータ6との相対角度を所定の形式の角度信号として出力するセンサである。角度センサ28は、例えば、レゾルバまたは磁気式や光学式のエンコーダ等である。
残り二つの角度推定手段24,25は、それぞれ前記2系統の第1および第2のステータコイル71,72に印加される電圧もしくは電流またはその両方から角度を推定するセンサレス推定手段である第1および第2の間接角度推定手段である。前記電流は前記電流推定器21(211,212)により、前記電圧は前記電圧推定器22(221,222)により求められる。
前記センサレス推定の手法としては、例えば前記モータドライバ11(111,112)の鎖交磁束位相を推定する手法や、スイッチ素子がOFFの状態における開放コイル端子電圧を検出してモータ角度を推定する手法や、磁気飽和特性やインダクタンスの突極性を検出してモータ角度を推定する手法等を用いることができる。前記センサレス推定の手法として、他の手法を用いてもよく、またこれらの手法も含めた複数の手法を併用してもよい。
前記角度推定異常検出手段26は、例えば、前記複数の角度推定手段23,24,25の推定結果の平均値から最も乖離した推定結果のその乖離の量が所定値よりも大きければ、前記最も乖離した推定結果の角度推定手段23,24,25における検出系統を異常と判定することで、異常を検出する。
この構成の場合、平均値から最も乖離した推定結果のその乖離の量が所定値よりも大きければ、その最も乖離した推定結果の角度推定手段23,24,25における検出系統を異常と判定するため、角度推定手段23,24,25の異常を簡単にかつ正確に検出することができる。なお、前記「所定値」は、予め取得しておいた様々な駆動条件において発生し得る推定誤差の解析値や実測値に基づいて、適宜に定められる値である。
代わりに、角度推定異常検出手段26は、前記角度推定異常検出手段26が、前記複数の角度推定手段26の推定結果を比較した中での最大値および最小値と、これら最大値および最小値を除く中間値との比較をそれぞれ行い、前記最大値および最小値のうち前記中間値から大きく乖離した方の推定結果の乖離量が所定値よりも大きければ、前記大きく乖離した方の推定結果の角度推定手段の検出系統を異常と判定することで、異常を検出してもよい。
この構成の場合、最大値および最小値のうち、中間値から大きく乖離した方の推定結果の乖離量が所定値よりも大きければ、その大きく乖離した方の推定結果の角度推定手段23,24,25における検出系統を異常と判定するため、この構成によっても、角度推定手段23,24,25の異常を簡単にかつ正確に検出することができる。前記「所定値」は、予め取得しておいた様々な駆動条件において発生し得る推定誤差の解析値や実測値に基づいて、適宜に定められる値である。
前記角度推定結果出力手段27は、前記直接角度推定手段23の検出系統が異常と判定されていない場合は、前記直接角度推定手段23によって推定される角度を前記角度推定結果として出力してもよい。
前記励磁機構個別遮断手段29は、前記角度推定異常検出手段26が前記複数の間接角度推定手段24,25のうちのいずれかの検出系統を異常と判定した場合、前記異常と判定された検出系統の間接角度推定手段24,25に接続された励磁機構71,72について、その励磁機構71,72への電力供給を遮断する手段である。この実施形態において、前記間接角度推定手段24,25の系統によるセンサレス推定が異常となる状況は、例えばモータコイルの断線や焼損、あるいはモータドライバの破損等、センサレス推定を行っている電動モータ1のモータコイルの駆動自体が不可となっている可能性がある。従って、前記間接推定手段24,25のいずれかの系統が異常と診断された場合は、前記異常が発生したセンサレス推定を行っているモータコイル系統への電力供給が停止される。励磁機構個別遮断手段29による電力供給の遮断の形態は、例えば、モータドライバ111,112への電力供給をスイッチング手段(図示せず)等により遮断する形態であっても、または電流変換器18から出力する電流指令を零と形態であっても、その他の形態であってもよい。
図2は、角度推定器17による異常判定および角度推定値の出力の処理例を示すフロー図である。同図において、ステップS1~S6までは図1の角度推定異常検出手段26が行う処理、他の各ステップは、角度推定結果出力手段27が行う処理である。
まず、これまでに異常がなかったか否かを判定する(ステップS1)。通常は異常無しである。この場合、角度推定異常検出手段26は、角度センサ28の出力からの回転角度の推定結果θ1を直接角度推定手段23から取得し、各ステータコイル71,72におけるモータ電圧/電流からの回転角度の推定値θ2,θ3を第1および第2の間接角度推定手段24,25から取得する(ステップS2,3)。直接角度推定手段23ならびに第1および第2の間接角度推定手段24,25は、常に角度の推定処理を行っている。
取得した回転角度の推定値θ1,θ2,θ3から、平均値θaveを次式によって演算する(ステップS4)。
θave=(θ1+θ2+θ3)/3
θave=(θ1+θ2+θ3)/3
この求められた平均値θaveから最も乖離している推定結果θx(x=1,2または3)を判定する(ステップS5)。この最も乖離している推定結果θxの平均値θaveからの乖離量が乖離閾値よりも大きいか否かを判定する(ステップS6)。前記乖離閾値は、設計等により適宜に定められる値である。
最も乖離している推定結果θxの前記乖離量が乖離閾値以下の場合は、いずれの系統も異常無しと判定され、角度推定結果出力手段27は、角度センサ28からの推定結果である直接角度推定手段23の角度推定値θ1を、角度推定器17からの角度推定結果θとして出力する(ステップS7)。一般にレゾルバ等の角度センサ出力は、角度センサレス推定結果より高精度である場合が多いため、この実施形態では、角度センサ28の系統出力が正常と判断される場合は角度センサ28の出力を用い、高精度な角度検出を可能としている。なお、必ずしも角度センサ28の出力を用いなくてもよく、例えば全推定結果θ1,θ2,θ3の平均を採る等の処理を行ってもよい。後に説明するステップS12,13の処理も、上記と同様な理由で角度センサ28の出力を用いるようにしている。ステップS7の後、ステップ1に戻る。
前記判定ステップS6において、最も乖離している推定結果θxの前記乖離量が乖離閾値よりも大きい場合は、乖離閾値よりも大きい推定結果θxが角度センサ28からの推定結果θ1であるか否かを判定し(ステップS8)、推定結果θ1ではない場合は、前記と同様に推定結果θ1を、角度推定器17からの角度推定結果θとして出力する(ステップS7)。
ステップS8の判定により、乖離閾値よりも大きい推定結果θxが角度センサ28からの推定結果θ1である場合は、残り二つの推定結果θ1,θ2を用い、例えば次式、
θ=(θ1+θ2)/2
から求められるθを、角度推定結果θとして出力する(ステップS9)。ステップS9の後、ステップ1に戻る。
θ=(θ1+θ2)/2
から求められるθを、角度推定結果θとして出力する(ステップS9)。ステップS9の後、ステップ1に戻る。
最初の判断ステップS1において、これまでに異常判定があった場合は、全ての推定値θ1,θ2,θ3のうち、異常判定されていない2系統の推定結果を取得する(ステップS10)。この2系統の判定結果が概ね等しいか否かを判定する(ステップS11)。概ね等しいか否かは、例えば、2系統の判定結果の差が、適宜定められる差閾値以内であるか否かで行う。概ね等しくない場合、つまり2系統の判定結果の差が差閾値よりも大きい場合は角度推定不能であり(ステップS15)、その場合は、角度推定結果出力手段27は、角度推定結果として角度推定不能の信号を出力する。モータ制御部16は、例えば電流変換器18において、前記角度推定不能の信号に応じて定められている処理、例えばモータ停止または低トルク回転等の制御を行う。ステップS15の後、処理を終了する。
前記判断ステップS11で、2系統の推定結果が概ね等しい場合は、最初のステップS1で異常有りとされた系統が角度センサ28の系統(すなわち、直接角度推定手段23の検出系統)であるか否かを判定する(ステップS12)。角度センサ28の系統が正常である場合は、角度センサ28の系統の推定値θ1を角度推定器17の角度推定結果θとして出力する(ステップS13)。角度センサ28の系統が異常である場合は、残り2系統の推定結果θ2,θ3の平均値を、角度推定器17の角度推定結果θとして出力する(ステップS14)。ステップS13の後およびステップS14の後、ステップ1に戻る。
なお、図2のフロー図の例では、ステップS4~S5による角度推定系統の異常判定について、平均値との比較を行うようにしたが、この他に、全ての系統の推定結果θ1,θ2,θ3のうち、最大値および最小値ならびにこれら以外である中間値を決定し、最大値および最小値のうち、中間値からより大きく乖離した結果について、乖離量を求める処理としてもよい。
この構成の電動モータ装置によると、以上のように、角度推定器17は、前記複数の角度推定結果を適宜参照して現在の電動モータ1の回転角度を推定することができ、例えば角度センサ28が正常な場合は角度センサ28の値を優先して使用する。角度推定異常検出手段26は、例えばある1系統の角度推定結果が他の角度推定結果と乖離した場合において、前記乖離した推定結果の角度推定手段23~24の検出系統を異常と判断する。この時、ある1系統が異常と判断された場合においても、残り2系統が正常であると、電動モータ1の制御を継続することができる。
また、励磁コイルであるステータコイル7について、多重化された第1および第2のステータコイル71,72のそれぞれについて角度センサレス推定を2系統で行い、角度センサ28からの角度推定を1系統とすることで、角度推定に異常が発生した際に、その異常が発生した角度推定の系統を特定でき、異常発生後も動作を継続することができる冗長性の高い電動モータ装置となる。
角度センサ28からの角度推定を1系統とすることで、例えば電動ブレーキ装置の制動力制御など、センサレスのみでは困難である高精度位置決め制御系を実現できる。
以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。
1…電動モータ
2…制御装置
5…ステータ(固定子)
6…ロータ(回転子)
23,24,25…角度推定手段
26…角度推定異常検出手段
27…角度推定結果出力手段
2…制御装置
5…ステータ(固定子)
6…ロータ(回転子)
23,24,25…角度推定手段
26…角度推定異常検出手段
27…角度推定結果出力手段
Claims (6)
- 固定子と回転子とを有する電動モータと、
この電動モータを制御する制御装置とを備え、
前記制御装置が、
前記電動モータの前記固定子と前記回転子との相対角度をそれぞれ推定するように構成された少なくとも3系統の角度推定手段と、
前記少なくとも3系統の角度推定手段それぞれによる少なくとも3つの推定角度の比較に基づいて前記角度推定手段それぞれの検出系統のうちの少なくとも1つの検出系統の異常を検出する角度推定異常検出手段と、
この角度推定異常検出手段が前記検出系統のうちのいずれかにおける異常を検出した場合、前記異常が発生していない検出系統の角度推定手段の少なくとも1つによって推定される角度に基づいた角度推定結果を出力する角度推定結果出力手段と、
この角度推定結果出力手段が出力する前記角度推定結果を用いて前記電動モータを制御するモータ制御部とを有する、電動モータ装置。 - 請求項1に記載の電動モータ装置において、前記角度推定異常検出手段が、前記少なくとも3系統の角度推定手段の推定結果の平均値から最も乖離した推定結果のその乖離の量が所定値よりも大きければ、前記最も乖離した推定結果の角度推定手段の検出系統を異常と判定する電動モータ装置。
- 請求項1に記載の電動モータ装置において、前記角度推定異常検出手段が、前記少なくとも3系統の角度推定手段の推定結果を比較した中での最大値および最小値と、これら最大値および最小値を除く中間値との比較をそれぞれ行い、前記最大値および最小値のうち前記中間値からより大きく乖離した方の推定結果の乖離量が所定値よりも大きければ、前記より大きく乖離した方の推定結果の角度推定手段の検出系統を異常と判定する電動モータ装置。
- 請求項1ないし請求項3のいずれか1項に記載の電動モータ装置において、
前記固定子が複数の電力系統にそれぞれ接続される複数の励磁機構を有し、
前記角度推定手段が、
前記固定子と前記回転子との前記相対角度を、角度センサの出力に基づいて推定する直接角度推定手段と、
前記固定子と前記回転子との前記相対角度を、前記複数の励磁機構それぞれの端子電圧、電流、および電気的特性のいずれか一つまたは複数からそれぞれ推定する複数の間接角度推定手段とを有する電動モータ装置。 - 請求項4に記載の電動モータ装置において、前記角度推定結果出力手段は、前記直接角度推定手段の検出系統が異常と判定されていない場合は、前記直接角度推定手段によって推定される角度を前記角度推定結果として出力する電動モータ装置。
- 請求項4に記載の電動モータ装置において、前記モータ制御部は、前記角度推定異常検出手段が、前記複数の間接角度推定手段のうちのいずれかの検出系統を異常と判定した場合、前記異常と判定された検出系統の間接角度推定手段が前記相対角度の推定の基礎とした励磁機構について、その励磁機構への電力供給を遮断する励磁機構個別遮断手段を有する電動モータ装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-163593 | 2016-08-24 | ||
JP2016163593A JP6758998B2 (ja) | 2016-08-24 | 2016-08-24 | 電動モータ装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018038021A1 true WO2018038021A1 (ja) | 2018-03-01 |
Family
ID=61245261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/029681 WO2018038021A1 (ja) | 2016-08-24 | 2017-08-18 | 電動モータ装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6758998B2 (ja) |
WO (1) | WO2018038021A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020066370A (ja) * | 2018-10-25 | 2020-04-30 | 日本化薬株式会社 | 飛行体用安全装置、および、飛行体用安全装置を備えた飛行体 |
WO2022124261A1 (ja) * | 2020-12-10 | 2022-06-16 | 日立Astemo株式会社 | モータ制御装置、モータ制御装置の制御方法およびモータ制御システム |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7056367B2 (ja) | 2018-05-17 | 2022-04-19 | トヨタ自動車株式会社 | 認識エラー検出装置、電動ブレーキ制御装置 |
JP2020028199A (ja) * | 2018-08-15 | 2020-02-20 | 日立オートモティブシステムズ株式会社 | 固定子、回転電機、自動車用電動補機装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006306166A (ja) * | 2005-04-26 | 2006-11-09 | Nissan Motor Co Ltd | 冗長系システム及びその故障診断方法 |
JP2011069815A (ja) * | 2009-08-26 | 2011-04-07 | Jtekt Corp | 回転角検出装置 |
WO2015125235A1 (ja) * | 2014-02-19 | 2015-08-27 | 三菱電機株式会社 | モータ回転角度検出装置及びこれを用いた電動パワーステアリング装置 |
JP2015173554A (ja) * | 2014-03-12 | 2015-10-01 | 日立オートモティブシステムズ株式会社 | モータ制御装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3216491B2 (ja) * | 1995-09-08 | 2001-10-09 | トヨタ自動車株式会社 | レゾルバ異常検出装置及び方法 |
JP5573714B2 (ja) * | 2011-02-09 | 2014-08-20 | 株式会社デンソー | 回転機の制御装置 |
JP5619225B1 (ja) * | 2013-07-04 | 2014-11-05 | 東芝エレベータ株式会社 | 同期電動機の制御装置 |
-
2016
- 2016-08-24 JP JP2016163593A patent/JP6758998B2/ja active Active
-
2017
- 2017-08-18 WO PCT/JP2017/029681 patent/WO2018038021A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006306166A (ja) * | 2005-04-26 | 2006-11-09 | Nissan Motor Co Ltd | 冗長系システム及びその故障診断方法 |
JP2011069815A (ja) * | 2009-08-26 | 2011-04-07 | Jtekt Corp | 回転角検出装置 |
WO2015125235A1 (ja) * | 2014-02-19 | 2015-08-27 | 三菱電機株式会社 | モータ回転角度検出装置及びこれを用いた電動パワーステアリング装置 |
JP2015173554A (ja) * | 2014-03-12 | 2015-10-01 | 日立オートモティブシステムズ株式会社 | モータ制御装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020066370A (ja) * | 2018-10-25 | 2020-04-30 | 日本化薬株式会社 | 飛行体用安全装置、および、飛行体用安全装置を備えた飛行体 |
WO2022124261A1 (ja) * | 2020-12-10 | 2022-06-16 | 日立Astemo株式会社 | モータ制御装置、モータ制御装置の制御方法およびモータ制御システム |
Also Published As
Publication number | Publication date |
---|---|
JP6758998B2 (ja) | 2020-09-23 |
JP2018033228A (ja) | 2018-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10266198B2 (en) | Motor control device | |
JP5760830B2 (ja) | 3相回転機の制御装置 | |
JP6157752B2 (ja) | 多相交流モータ駆動用インバータ装置 | |
WO2018038021A1 (ja) | 電動モータ装置 | |
CN107787549B (zh) | 电动助力转向装置 | |
KR102004080B1 (ko) | 전동 파워 스티어링 장치의 제어 장치 및 전동 파워 스티어링 장치 | |
US10298165B2 (en) | Rotary electric machine system | |
KR20160071479A (ko) | 모터 제어 장치 | |
KR20180090430A (ko) | 모터 및 모터 구동 장치 | |
JP7396283B2 (ja) | モータ駆動装置、電動オイルポンプおよびモータ駆動装置の故障検知方法 | |
WO2015075806A1 (ja) | 電力変換装置および永久磁石同期電動機の制御方法 | |
WO2018056435A1 (ja) | 電動モータ装置および電動ブレーキ装置 | |
KR20170002759A (ko) | 홀센서 고장진단방법 | |
WO2019054089A1 (ja) | モータ駆動装置、モータ、および電動パワーステアリング装置 | |
WO2019054091A1 (ja) | モータ駆動装置、モータ、電動パワーステアリング装置、モータ駆動方法、および記録媒体 | |
KR20160022923A (ko) | 전기 모터의 부정확한 각도 위치를 검출하는 방법 | |
JP6730488B2 (ja) | 三相同期電動機の制御装置および駆動装置、並びに電動パワーステアリング装置 | |
JP6655159B2 (ja) | 三相同期電動機の制御装置および制御方法、駆動装置並びに電動パワーステアリング装置 | |
WO2020075693A1 (ja) | モータ制御システム、モータおよび電動パワーステアリング装置 | |
KR20160149374A (ko) | 모터 제어 장치 | |
JP2007166687A (ja) | モータ装置及びモータ駆動制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17843501 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17843501 Country of ref document: EP Kind code of ref document: A1 |