WO2017002593A1 - 電動パワーステアリング装置の制御装置及び電動パワーステアリング装置 - Google Patents
電動パワーステアリング装置の制御装置及び電動パワーステアリング装置 Download PDFInfo
- Publication number
- WO2017002593A1 WO2017002593A1 PCT/JP2016/067499 JP2016067499W WO2017002593A1 WO 2017002593 A1 WO2017002593 A1 WO 2017002593A1 JP 2016067499 W JP2016067499 W JP 2016067499W WO 2017002593 A1 WO2017002593 A1 WO 2017002593A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electric power
- synchronous motor
- power steering
- phase synchronous
- control device
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0457—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
- B62D5/0481—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
- B62D5/049—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting sensor failures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
- H02P6/16—Circuit arrangements for detecting position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D15/00—Steering not otherwise provided for
- B62D15/02—Steering position indicators ; Steering position determination; Steering aids
- B62D15/021—Determination of steering angle
- B62D15/0235—Determination of steering angle by measuring or deriving directly at the electric power steering motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0457—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
- B62D5/046—Controlling the motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0457—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
- B62D5/046—Controlling the motor
- B62D5/0463—Controlling the motor calculating assisting torque from the motor based on driver input
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
- B62D6/08—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
- B62D6/10—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque characterised by means for sensing or determining torque
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/10—Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/12—Monitoring commutation; Providing indication of commutation failure
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
- H02P6/16—Circuit arrangements for detecting position
- H02P6/18—Circuit arrangements for detecting position without separate position detecting elements
- H02P6/182—Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2209/00—Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
- H02P2209/01—Motors with neutral point connected to the power supply
Definitions
- the present invention relates to a control device for an electric power steering device and an electric power steering device.
- a small and highly efficient three-phase synchronous motor is used.
- a three-phase synchronous motor in general, the rotational position of a rotor provided with a magnet is detected by a magnetic detection element such as a Hall IC, and the armature coil on the stator side is sequentially excited based on the detection result. Is rotating.
- a resolver, encoder, GMR sensor, etc. which are precise rotational position detectors, driving with a sine wave current can be realized, and vibration such as torque ripple and noise are reduced.
- rotational position estimation means based on an induced voltage whose rotational position cannot be estimated at zero speed and low speed
- the number of rotational position detectors is increased to two or more so that the rotational position detector at zero speed and low speed Can be detected with the same accuracy as before the failure.
- electric power steering it is difficult to increase the number of hardware rotational position detectors due to mounting space and cost constraints.
- Patent Document 2 Japanese Patent Application Laid-Open No. 2009-189176
- Patent Document 3 a rotational position estimating means for estimating a rotational position from a neutral point potential of a three-phase winding has been proposed, and a low speed with a small induced voltage is proposed.
- the synchronous motor can be driven with a sine wave even in the region.
- Patent Document 1 can realize continuous driving required for electric power steering by using a soft rotational position estimation means instead of a hardware rotational position detector in the event of a malfunction of the rotational position detector.
- a soft rotational position estimation means instead of a hardware rotational position detector in the event of a malfunction of the rotational position detector.
- the position cannot be estimated in the operation region of a three-phase synchronous motor frequently used in electric power steering.
- Patent Documents 2 and 3 describe the operation region of a three-phase synchronous motor frequently used in electric power steering by estimating the position of the rotor based on a virtual neutral point potential or a neutral point potential.
- the position can be estimated by using the position detector that was originally used in the electric power steering, but the countermeasure for the failure of the position detector is not shown.
- An object of the present invention is to provide an electric power steering device that improves the reliability of a three-phase synchronous motor drive device without increasing the cost of the drive device.
- a control device for an electric power steering device is a control device for controlling an electric power steering device in which a three-phase synchronous motor is used as a steering assist force, and the neutral point potential or virtual
- a rotational position estimator that estimates the position of the rotor of the three-phase synchronous motor based on a neutral point potential
- a command signal for the three-phase synchronous motor based on the position of the rotor estimated by the rotational position estimator.
- a command signal calculation unit for calculating.
- a neutral point potential or a virtual neutral point potential in a zero speed or low speed operation region where a three-phase synchronous motor is frequently used in electric power steering can be continued by estimating the position of the rotor based on one of the signals and driving the three-phase synchronous motor.
- FIG. 16 is a flowchart showing a processing configuration of a rotational position comparison means 19A of FIG. It is a figure which shows the structural example of an electric power steering apparatus.
- FIG. 17 is a diagram showing a configuration of the electric power steering device 4.
- the torque sensor 42 detects the rotational torque of the steering wheel 41.
- the torque detected by the torque sensor 42 is input to the driving device 3.
- the driving device 3 includes a three-phase synchronous motor 2 and a printed circuit board 1 that drives the three-phase synchronous motor 2.
- the printed circuit board 1 drives the three-phase synchronous motor 2 according to the torque detected by the torque sensor 42.
- the three-phase synchronous motor 2 outputs a torque for assisting steering based on a command corresponding to the torque.
- the output torque of the three-phase synchronous motor 2 assists the steering force via the steering assist mechanism 43 and is output to the steering mechanism 44. Then, the tire 45 is steered by the steering mechanism 44.
- a control device that controls the electric power steering device
- a drive device 3 that outputs torque for assisting steering based on the torque detected by the torque sensor 42
- a printed circuit board that constitutes the drive device 3 1 and the control of the three-phase synchronous motor 2
- the present invention described in a plurality of embodiments described below is based on a virtual neutral point potential or a position estimation means based on a neutral point potential.
- Electric power steering in which a zero speed and a low speed of 10% or less are frequently used. It is characterized in that it is applied to the device.
- the steering assist can be continued by driving the three-phase synchronous motor even in the zero-speed or low-speed operation region.
- FIG. 1 is a diagram illustrating a configuration of a driving device 3 according to the first embodiment.
- a configuration of the printed circuit board 1 which is a characteristic configuration of the control device according to the present embodiment will be described with reference to FIG.
- the printed circuit board 1 of the present embodiment includes an inverter 12, a pulse width modulation signal output means 13, a virtual neutral point circuit 14, a current and voltage detection unit 15, a rotation position estimation unit 16A, and a command signal calculation unit 17.
- the inverter 12 converts the direct current input from the direct current power supply 11 into a three-phase alternating current and outputs it to the three-phase synchronous motor 2.
- the switching elements Sup to Swn constituting the inverter 12 are controlled based on the pulse width modulation signal calculated by the pulse width modulation signal output means 13.
- the rotational position estimating unit 16A estimates rotational position information of the three-phase synchronous motor 2. The operation of the rotational position estimation unit 16A will be described later with reference to FIG.
- the output signal of the rotational position estimation unit 16A is represented by the symbol ⁇ 1.
- the command signal calculator 17 calculates and outputs a pulse width modulation signal. The outputted pulse width modulation signal is outputted to the inverter 12 via the pulse width modulation signal output means 13.
- FIG. 2 is a block diagram showing the configuration of the rotational position estimation unit 16A.
- the rotational position estimation unit 16A estimates the rotational position estimation ⁇ 1 based on the virtual neutral point potential Vn0.
- the position is estimated based on the virtual neutral point potential, but position estimation based on the neutral point potential may be used.
- the rotational position estimation unit 16A includes a non-energized phase potential selector 161, a reference level switch 162, a comparator 163, and an energization mode determiner 164.
- the non-energized phase potential selector 161 receives the mode command output from the energization mode determiner 164 and samples and holds the virtual neutral point potential.
- the reference level switch 162 sets a positive reference voltage and a negative reference voltage according to the mode command, compares the non-conduction phase potential selector 161 with the reference level switch 162, and inputs the comparison to the energization mode determiner 164. .
- the necessary potential of the non-conduction phase can be obtained.
- torque is driven without a position detector at zero speed and a low speed of 10% or less, which are frequently used in the electric power steering apparatus, and torque is reduced. Can be output.
- the rotational position estimation unit 16A introduced a method of calculating a mode command from a virtual neutral point potential and setting it as a position. However, since this method is based on 120-degree conduction, the current waveform is distorted. Therefore, as shown in FIG. 3, it is good also as the rotation position estimation part 16B which is a position estimation means based on the neutral point potential which pulled out the neutral point of the three-phase winding.
- FIG. 4 is a block diagram illustrating a configuration of the driving device 3 according to the second embodiment.
- the drive device 3 of the present embodiment is characterized in that it includes a hardware position detector 21 and a position detection determination unit 18.
- a position detector for detecting the position of the rotor of the three-phase synchronous motor 2 is provided from the viewpoint of reliability of position detection.
- the output ⁇ 3 of the position detector 21 is used, and the position detected by the position detector 21 is an abnormal signal.
- the output ⁇ 1 of the rotational position estimation unit 18 is used.
- the position signal detected by the position detector 21 changes from a normal signal to an abnormal signal, if the output ⁇ 3 of the position detector 21 is suddenly changed from the output ⁇ 1 of the rotational position estimation unit 18, motor step-out or vibration , Noise will occur. Therefore, when a difference occurs between the output ⁇ 3 of the position detector 21 and the output ⁇ 1 of the rotational position estimating unit 18, and it is determined that the position detector is out of order, the detected position determining unit 18 is as shown in FIG.
- the position signal is switched when the position ⁇ 3 of the position detector 21 and the position ⁇ 1 of the rotational position estimating unit 16 substantially coincide with each other.
- the detection position determination unit 18 compares the output ⁇ 1 of the rotation position estimation unit 16 with the output ⁇ 3 of the position detector 21 and matches the signal of the position detector 21 to rotate. Individual differences in magnetic saturation characteristics for each of the three-phase synchronous motors used in the position estimation unit 16 can be adjusted. As a result, adjustment of individual differences among a plurality of three-phase synchronous motors can be realized at low cost.
- the rotational position estimation unit 16 is described using the position estimation unit 16A based on the virtual neutral point potential, but using the position estimation unit 16B based on the neutral point potential. Also good.
- FIG. 6 is a block diagram illustrating the configuration of the driving device 3 according to the third embodiment.
- the drive device 3 of the present embodiment is characterized in that it includes a position detector 22 in addition to the position detector 21, and the position detection system has a redundant configuration.
- two or more position detectors that detect the position of the rotor of the three-phase synchronous motor 2 are often provided.
- the case where there are two position detectors will be described as a representative example.
- the electric power steering apparatus can be driven using a normal position detector.
- FIG. 7 is a flowchart showing the processing configuration of the detection position determination unit 18.
- the output signals of the position detectors 21 and 22 are compared, and if they match, the signal of the position detector 21 is used.
- the output signal ⁇ 3 of the position detector 21 and the output signal ⁇ 4 of 22 do not match, the output signal ⁇ 1 of the rotational position estimation unit 16A is compared.
- the position detector 21 determines that it is normal and uses the output signal ⁇ 3 of the position detector 21.
- the position detector 22 determines that it is normal, and uses the output signal ⁇ 4 of the position detector 22.
- the output signal ⁇ 3 of the position detector 21 and the output signal ⁇ 4 of the position detector 22 do not coincide with the output signal ⁇ 1 of the rotational position estimation unit 16A, the output signal ⁇ 1 of the rotational position estimation unit 16A is used.
- FIG. 8 is a block diagram illustrating the configuration of the drive device 3 according to the fourth embodiment.
- a method based on the virtual neutral point potential 14 will be described particularly as the rotational position estimation unit.
- the rotational position estimation unit 16A is driven based on the virtual neutral point potential 14.
- the virtual neutral circuit 14 is installed on the printed circuit board 1 on which the microcomputer is mounted. With such a configuration, the lead wire for the neutral point potential of the three-phase winding becomes unnecessary, and the connection between the printed circuit board 1 and the three-phase synchronous motor 2 becomes easy. Further, by installing the virtual neutral point circuit 14 on the printed circuit board 1, it is possible to prevent malfunction due to wiring noise and increase in the detection voltage ripple. In addition, the length of the wiring is shortened, and the cost can be reduced.
- the resistance of the virtual neutral point circuit 14 is configured with a resistance value that is 100 times or more the winding resistance of the three-phase synchronous motor 2. In this way, the difference between the winding resistance and the resistance of the virtual neutral circuit can be separated from the impedance of the three-phase winding, so the fluctuation of the virtual neutral point potential due to magnetic saturation can be detected accurately. And the position accuracy in the detection position estimation part 16 can be improved.
- the rotational position estimation unit 16A driven based on the virtual neutral point potential 14 is driven by 120-degree energization control. For this reason, the accuracy of the electrical angle is only ⁇ 30 degrees, and a position error within the control cycle is large at high speed rotation, and reverse torque is generated or stepped out. Therefore, when the rotation speed of the three-phase synchronous motor 2 becomes larger than a predetermined rotation speed, for example, 3000 rpm, the current is set to 0 and the assist is stopped. Thereby, stable driving of the power steering device can be realized.
- a predetermined rotation speed for example, 3000 rpm
- FIG. 10 is a block diagram illustrating a configuration of the driving device 3 according to the fifth embodiment.
- the rotational position estimating unit 16 is configured to use the neutral point potential of the three-phase winding of the three-phase synchronous motor 2 in particular.
- FIG. 11 is a block diagram illustrating a configuration of the driving device 3 according to the sixth embodiment.
- the present embodiment is characterized in that two signals of a neutral point potential and a virtual neutral point potential of the three-phase winding of the three-phase synchronous motor 2 are used.
- FIG. 12 shows the configuration of the rotational position estimation comparison unit 18.
- the rotational position estimation comparison unit 18 includes a rotational position estimation unit 16A that performs position estimation based on a virtual neutral point potential, a rotational position estimation unit 16B that performs position estimation based on a neutral point potential, a failure of a virtual neutral point potential circuit, The rotation position estimation / comparison unit 18 detects a disconnection of a neutral point potential lead wire.
- the rotational position estimation comparing unit 18 compares the virtual neutral point potential with the neutral point potential, so that the open failure of the resistance installed in the virtual neutral point potential circuit or the open failure of the lead wire of the neutral point potential can be detected. Detect disconnection.
- FIG. 13 shows waveforms of the voltage applied to the upper arm of each phase of the inverter 2 and the neutral point potential Vn and the virtual neutral point potential Vn0.
- the neutral point potential Vn is indicated by a broken line
- the virtual neutral point potential Vn0 is indicated by a solid line.
- the neutral point potential lead line when the neutral point potential lead line is not disconnected, the virtual neutral point potential Vn0 and the neutral point potential Vn coincide with each other while the upper arm of the inverter 2 is all on. To do. However, when the neutral point potential lead line is disconnected due to an open failure, the virtual neutral point potential and the neutral point potential do not match as shown in the lower part of FIG. Thus, the disconnection is detected by comparing the neutral point potential with the virtual neutral point potential.
- the steering assist can be continued.
- a virtual neutral point potential and a neutral point potential are provided. By comparing two potentials, disconnection of the neutral point potential and the virtual neutral point potential lead line can be detected without providing a separate circuit. Can do.
- FIG. 14 is a block diagram illustrating a configuration of the driving device 3 according to the seventh embodiment.
- the drive device of this embodiment is characterized in that the signal of the rotational position detector 21 is used in addition to the two signals of the neutral point potential and the virtual neutral point potential.
- FIG. 15 shows a configuration of the rotational position comparison unit 19.
- the rotational position comparison unit 19 includes a rotational position estimation unit 16A that performs position estimation based on the virtual neutral point potential, a rotational position estimation unit 16B that performs position estimation based on the neutral point potential, and outputs 16A and 16B of the rotational position estimation unit.
- the rotation position comparison means 19 compares the output ⁇ 3 of the rotation position detector.
- FIG. 16 is a flowchart showing the processing configuration of the rotational position comparison means 19.
- the rotational position comparison means 19 compares the output of the position detector 21 with the output of the rotational position estimation unit 16B, and determines which of these two outputs is faulty based on the output of the rotational position estimation unit 16A.
- the position detector 21 and the output signal ⁇ 2 of the rotational position estimation unit 16B are compared, and if they match, the signal of the position detector 21 is used.
- the output signal ⁇ 3 of the position detector 21 and the output signal ⁇ 2 of the rotational position estimating unit 16B do not match, the output signal ⁇ 1 of the rotational position estimating unit 16A is compared.
- the position detector 21 determines that it is normal and uses the output signal ⁇ 3 of the position detector 21.
- the output signal ⁇ 2 of the rotational position estimation unit 16B matches the output signal ⁇ 1 of the rotational position estimation unit 16A
- the output signal ⁇ 2 of the rotational position estimation unit 16B is used.
- both the output signal ⁇ 3 of the position detector 21 and the output signal ⁇ 2 of the rotational position estimation unit 16B do not coincide with the output signal ⁇ 1 of the rotational position estimation unit 16A, the output signal ⁇ 1 of the rotational position estimation unit 16A is used.
- a triple redundant system can be secured at a low cost while having a single hardware position detector.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Power Steering Mechanism (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
Description
図1は、第1の実施形態に係る駆動装置3の構成を示す図である。本実施形態に係る制御装置として特徴的な構成であるプリント回路板1の構成を、図1を用いて説明する。
図4は、第2の実施形態に係る駆動装置3の構成を表すブロック図である。本実施形態の駆動装置3は、ハード系の位置検出器21と位置検出判定器18とを有する点を特徴とする。
図6は、第3の実施形態に係る駆動装置3の構成を表すブロック図である。本実施形態の駆動装置3は、第2の実施形態と比較し、位置検出器21に加えて位置検出器22を備え、位置検出システムを冗長構成とする点が特徴である。
図8は、第4の実施形態に係る駆動装置3の構成を表すブロック図である。本実施形態では回転位置推定部として特に、仮想中性点電位14に基づく方法について説明する。
図10は、第5の実施形態に係る駆動装置3の構成を表すブロック図である。本実施形態では、回転位置推定部16として特に、三相同期電動機2の三相巻線の中性点電位を用いる構成となっている。
図11は、第6の実施形態に係る駆動装置3の構成を表すブロック図である。本実施形態は、三相同期電動機2の三相巻線の中性点電位と仮想中性点電位の2つの信号を使用する点が特徴である。
図14は、第7の実施形態に係る駆動装置3の構成を表すブロック図である。本実施形態の駆動装置は、中性点電位と仮想中性点電位の2つの信号に加え、回転位置検出部21の信号を使用する点が特徴である。
Claims (20)
- 操舵の補助力として三相同期電動機が用いられる電動パワーステアリング装置を制御する制御装置であって、
前記三相同期電動機の中性点電位または仮想中性点電位に基づき前記三相同期電動機の回転子の位置を推定する回転位置推定部と、
前記回転位置推定部によって推定された前記回転子の位置に基づき前記三相同期電動機の指令信号を演算する指令信号演算部と、を備える電動パワーステアリング装置の制御装置。 - 請求項1に記載の電動パワーステアリング装置の制御装置において、
前記制御装置には、前記三相同期電動機の回転子の位置を検出する回転位置検出器によって検出された位置信号が入力され、
前記指令信号演算部は、前記回転位置検出器によって検出された前記回転子の位置または前記回転位置推定部によって推定された前記回転子の位置のいずれかに基づき前記三相同期電動機の指令信号を演算し、
前記指令信号演算部は、前記位置信号が異常である場合に、前記回転位置推定部によって推定された前記回転子の位置に基づき前記三相同期電動機の指令信号を演算する電動パワーステアリング装置の制御装置。 - 請求項2に記載の電動パワーステアリング装置の制御装置において、
前記制御装置には、前記三相同期電動機の回転子の位置を検出する第1の回転位置検出器によって検出された第1の位置信号と、前記三相同期電動機の回転子の位置を検出する第2の回転位置検出器によって検出された第2の位置信号と、が前記位置信号として入力される電動パワーステアリング装置の制御装置。 - 請求項2に記載の電動パワーステアリング装置の制御装置において、
前記制御装置は、前記回転位置検出器によって検出された前記回転子の位置に基づいて、前記回転位置推定部が推定する前記回転子の位置を補正する電動パワーステアリング装置の制御装置。 - 請求項2に記載の電動パワーステアリング装置の制御装置において、
前記回転位置検出器によって検出された前記回転子の位置と、前記回転位置推定部によって推定された前記回転子の位置とが略一致するときに、前記回転位置検出器によって検出された前記回転子の位置に基づく前記三相同期電動機の指令信号の演算と、前記回転位置推定部によって推定された前記回転子の位置に基づく前記三相同期電動機の指令信号の演算とを切り替える電動パワーステアリング装置の制御装置。 - 請求項2に記載の電動パワーステアリング装置の制御装置において、
前記制御装置は、前記位置信号が異常であると判定された場合に、前記異常を検出する前に前記回転位置検出器によって検出された前記回転子の位置を保持したまま、前記回転位置推定部によって推定された前記回転子の位置に基づく前記三相同期電動機の指令信号の演算に切り替える電動パワーステアリング装置の制御装置。 - 請求項2に記載の電動パワーステアリング装置の制御装置において、
前記指令信号演算部は、前記位置信号が正常である場合に、前記回転位置検出器によって検出された前記回転子の位置に基づき前記三相同期電動機の指令信号を演算する電動パワーステアリング装置の制御装置。 - 請求項1に記載の電動パワーステアリング装置の制御装置において、
前記三相同期電動機の仮想中性点電位を出力する仮想中性点回路を備え、
前記回転位置推定部は、前記仮想中性点回路が出力する前記仮想中性点電位に基づき前記三相同期電動機の回転子の位置を推定する電動パワーステアリング装置の制御装置。 - 請求項8に記載の電動パワーステアリング装置の制御装置において、
前記仮想中性点回路は、前記制御装置を駆動するマイコンが搭載されるプリント回路板に搭載される電動パワーステアリング装置の制御装置。 - 請求項8に記載の電動パワーステアリング装置の制御装置において、
前記三相同期電動機の回転数が所定の回転数を超えたときに、前記三相同期電動機による操舵補助を停止する電動パワーステアリング装置の制御装置。 - 請求項8に記載の電動パワーステアリング装置の制御装置において、
前記仮想中性点回路の各抵抗値は、前記三相同期電動機の巻線抵抗の百倍以上とする電動パワーステアリング装置の制御装置。 - 請求項1に記載の電動パワーステアリング装置の制御装置において、
前記三相同期電動機の中性点電位を前記指令信号演算部に出力する中性点電位引き出し線を備え、
前記回転位置推定部は、前記三相同期電動機の中性点電位に基づき前記三相同期電動機の回転子の位置を推定する電動パワーステアリング装置の制御装置。 - 請求項1に記載の電動パワーステアリング装置の制御装置において、
前記三相同期電動機の仮想中性点電位を出力する仮想中性点回路と、
前記三相同期電動機の中性点電位を前記指令信号演算部に出力する中性点電位引き出し線と、を備え、
前記三相同期電動機の前記中性点電位と前記三相同期電動機の前記仮想中性点電位とを比較することによって前記中性点電位引き出し線の断線を検知する電動パワーステアリング装置の制御装置。 - 請求項1に記載の電動パワーステアリング装置の制御装置において、
前記回転位置推定部は、第1の回転位置推定部と第2の回転位置推定部とを有し、
前記指令信号演算部は、前記第1の回転位置推定部または第2の回転位置推定部によって推定された前記回転子の位置に基づき前記三相同期電動機の指令信号を演算する電動パワーステアリング装置の制御装置。 - 請求項14に記載の電動パワーステアリング装置の制御装置において、
前記制御装置には、前記三相同期電動機の回転子の位置を検出する回転位置検出器によって検出された位置信号が入力され、
前記指令信号演算部は、前記回転位置検出器によって検出された前記回転子の位置または前記第1の回転位置推定部もしくは第2の回転位置推定部によって推定された前記回転子の位置に基づき前記三相同期電動機の指令信号を演算する電動パワーステアリング装置の制御装置。 - 請求項1に記載の電動パワーステアリング装置の制御装置において、
前記回転位置推定部は、前記三相同期電動機の中性点電位または仮想中性点電位のいずれかのみに基づき前記三相同期電動機の回転子の位置を推定する電動パワーステアリング装置の制御装置。 - 操舵操作に応じて転舵輪を転舵させる操舵機構と、
前記操舵機構に操舵力を付与する三相同期電動機と、
前記三相同期電動機を駆動制御する制御装置と、
前記三相同期電動機の中性点電位または仮想中性点電位に基づき前記三相同期電動機の回転子の位置を推定する回転位置推定部と、
前記回転位置推定部によって推定された前記回転子の位置に基づき前記三相同期電動機の指令信号を演算する指令信号演算部と、を備える電動パワーステアリング装置。 - 請求項17に記載の電動パワーステアリング装置において、
前記三相同期電動機の回転子の位置を検出する回転位置検出を備え、
前記指令信号演算部は、前記回転位置検出器によって検出された前記回転子の位置または前記回転位置推定部によって推定された前記回転子の位置のいずれかに基づき前記三相同期電動機の指令信号を演算し、
前記指令信号演算部は、前記位置信号が異常である場合に、前記回転位置推定部によって推定された前記回転子の位置に基づき前記三相同期電動機の指令信号を演算する電動パワーステアリング装置。 - 請求項18に記載の電動パワーステアリング装置において、
前記三相同期電動機の仮想中性点電位を出力する仮想中性点回路を備え、
前記回転位置推定部は、前記仮想中性点回路が出力する前記仮想中性点電位に基づき前記三相同期電動機の回転子の位置を推定する電動パワーステアリング装置。 - 請求項19に記載の電動パワーステアリング装置において、
前記仮想中性点回路は、前記制御装置を駆動するマイコンが搭載されるプリント回路板に搭載される電動パワーステアリング装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/741,041 US11325641B2 (en) | 2015-06-29 | 2016-06-13 | Control device for electric power steering apparatus and electric power steering apparatus |
CN201680037719.XA CN107820671B (zh) | 2015-06-29 | 2016-06-13 | 电动助力转向装置的控制装置以及电动助力转向装置 |
KR1020177036979A KR102004080B1 (ko) | 2015-06-29 | 2016-06-13 | 전동 파워 스티어링 장치의 제어 장치 및 전동 파워 스티어링 장치 |
DE112016002342.1T DE112016002342T5 (de) | 2015-06-29 | 2016-06-13 | Steuervorrichtung für elektrische Servolenkeinrichtung und elektrische Servolenkeinrichtung |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015129458A JP6460927B2 (ja) | 2015-06-29 | 2015-06-29 | 電動パワーステアリング装置の制御装置及び電動パワーステアリング装置 |
JP2015-129458 | 2015-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017002593A1 true WO2017002593A1 (ja) | 2017-01-05 |
Family
ID=57608635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/067499 WO2017002593A1 (ja) | 2015-06-29 | 2016-06-13 | 電動パワーステアリング装置の制御装置及び電動パワーステアリング装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11325641B2 (ja) |
JP (1) | JP6460927B2 (ja) |
KR (1) | KR102004080B1 (ja) |
CN (1) | CN107820671B (ja) |
DE (1) | DE112016002342T5 (ja) |
WO (1) | WO2017002593A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6402276B1 (ja) * | 2018-05-28 | 2018-10-10 | 北斗制御株式会社 | 電動機の界磁位置検出方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019050684A (ja) * | 2017-09-11 | 2019-03-28 | 日立オートモティブシステムズ株式会社 | パワーステアリング装置の制御装置 |
JP6967470B2 (ja) * | 2018-02-26 | 2021-11-17 | 日立Astemo株式会社 | 制御装置 |
JP7343269B2 (ja) * | 2018-10-24 | 2023-09-12 | 株式会社Subaru | モータの制御装置および制御方法 |
EP3919356B1 (en) | 2020-04-08 | 2023-01-04 | NSK Ltd. | Rotation angle detection device, electric power steering device, and control method for electric power steering device |
US11724737B2 (en) * | 2020-05-08 | 2023-08-15 | Caterpillar Inc. | Hybrid steering system and method implementing virtual and mechanical stops |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004274947A (ja) * | 2003-03-11 | 2004-09-30 | Aisin Seiki Co Ltd | ブラシレスモータ制御装置 |
JP2009189176A (ja) * | 2008-02-07 | 2009-08-20 | Renesas Technology Corp | 同期電動機の駆動システム |
JP2010029028A (ja) * | 2008-07-23 | 2010-02-04 | Jtekt Corp | モータ制御装置 |
WO2013015365A1 (ja) * | 2011-07-27 | 2013-01-31 | 日機装株式会社 | 透析液取出装置 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3169892B2 (ja) * | 1998-04-28 | 2001-05-28 | セイコー精機株式会社 | ターボ分子ポンプ装置 |
JP2001112282A (ja) | 1999-10-01 | 2001-04-20 | Matsushita Electric Ind Co Ltd | モータ制御装置 |
JP2003164187A (ja) * | 2001-11-22 | 2003-06-06 | Tamagawa Seiki Co Ltd | モータ制御におけるセンサシステム |
DE10207549B4 (de) | 2002-02-22 | 2004-05-06 | Aradex Ag | Verfahren und Vorrichtung zum Betrieb eines Synchronmotors |
US6750626B2 (en) | 2002-09-11 | 2004-06-15 | Ford Global Technologies, Llc | Diagnostic strategy for an electric motor using sensorless control and a position sensor |
DE10314696A1 (de) | 2003-03-28 | 2004-10-21 | Robert Bosch Gmbh | Einrichtung und Verfahren zur Rotorlageerkennung einer elektrischen Maschine |
US6906491B2 (en) * | 2003-06-20 | 2005-06-14 | Rockwell Automation Technologies, Inc. | Motor control equipment |
DE102004019284A1 (de) | 2004-04-21 | 2005-11-10 | Aradex Ag | Vorrichtung zum Betrieb eines Synchronmotors |
JP4716118B2 (ja) * | 2006-03-29 | 2011-07-06 | 株式会社ジェイテクト | モータ制御装置 |
JP2008005632A (ja) * | 2006-06-22 | 2008-01-10 | Matsushita Electric Ind Co Ltd | モータ駆動装置及びモータ駆動方法並びにディスク駆動装置 |
JP4404160B2 (ja) | 2008-01-21 | 2010-01-27 | ダイキン工業株式会社 | モータ駆動制御装置 |
JP4968312B2 (ja) | 2008-01-21 | 2012-07-04 | ダイキン工業株式会社 | モータ駆動制御装置 |
JP5435252B2 (ja) * | 2008-01-30 | 2014-03-05 | 株式会社ジェイテクト | 車両用操舵装置 |
JP4623150B2 (ja) | 2008-06-30 | 2011-02-02 | 株式会社デンソー | モータ制御装置 |
KR101431466B1 (ko) * | 2008-07-30 | 2014-08-22 | 삼성디스플레이 주식회사 | 유기 발광 소자의 제조 방법 |
JP5308109B2 (ja) * | 2008-09-17 | 2013-10-09 | ルネサスエレクトロニクス株式会社 | 同期電動機の駆動システム |
US8185342B2 (en) * | 2009-08-14 | 2012-05-22 | GM Global Technology Operations LLC | Estimating rotor angular position and velocity and verifying accuracy of position sensor outputs |
JP5672191B2 (ja) | 2011-01-26 | 2015-02-18 | トヨタ自動車株式会社 | 電動パワーステアリング装置 |
US20120249034A1 (en) * | 2011-03-30 | 2012-10-04 | Pratt & Whitney Canada Corp. | Position sensing circuit for brushless motors |
JP5634963B2 (ja) * | 2011-09-01 | 2014-12-03 | 日立オートモティブシステムズ株式会社 | 同期電動機の駆動システム及び同期電動機 |
DE112012006213T8 (de) * | 2012-04-12 | 2015-01-15 | Hitachi, Ltd. | Ansteuervorrichtung für einen Dreiphasensynchronmotor |
CN104813580B (zh) | 2012-11-20 | 2017-09-22 | 株式会社安川电机 | 电机驱动系统以及电机控制装置 |
JP6079353B2 (ja) * | 2013-03-25 | 2017-02-15 | 株式会社富士通ゼネラル | Dcブラシレスモータの制御装置 |
WO2014162579A1 (ja) | 2013-04-05 | 2014-10-09 | 株式会社 日立製作所 | 交流電動機の駆動システム並びに動力システム |
-
2015
- 2015-06-29 JP JP2015129458A patent/JP6460927B2/ja active Active
-
2016
- 2016-06-13 US US15/741,041 patent/US11325641B2/en active Active
- 2016-06-13 WO PCT/JP2016/067499 patent/WO2017002593A1/ja active Application Filing
- 2016-06-13 DE DE112016002342.1T patent/DE112016002342T5/de active Pending
- 2016-06-13 KR KR1020177036979A patent/KR102004080B1/ko active IP Right Grant
- 2016-06-13 CN CN201680037719.XA patent/CN107820671B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004274947A (ja) * | 2003-03-11 | 2004-09-30 | Aisin Seiki Co Ltd | ブラシレスモータ制御装置 |
JP2009189176A (ja) * | 2008-02-07 | 2009-08-20 | Renesas Technology Corp | 同期電動機の駆動システム |
JP2010029028A (ja) * | 2008-07-23 | 2010-02-04 | Jtekt Corp | モータ制御装置 |
WO2013015365A1 (ja) * | 2011-07-27 | 2013-01-31 | 日機装株式会社 | 透析液取出装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6402276B1 (ja) * | 2018-05-28 | 2018-10-10 | 北斗制御株式会社 | 電動機の界磁位置検出方法 |
Also Published As
Publication number | Publication date |
---|---|
US20180201303A1 (en) | 2018-07-19 |
JP2017017786A (ja) | 2017-01-19 |
KR20180011798A (ko) | 2018-02-02 |
US11325641B2 (en) | 2022-05-10 |
DE112016002342T5 (de) | 2018-03-01 |
CN107820671A (zh) | 2018-03-20 |
KR102004080B1 (ko) | 2019-07-25 |
CN107820671B (zh) | 2020-06-26 |
JP6460927B2 (ja) | 2019-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017002593A1 (ja) | 電動パワーステアリング装置の制御装置及び電動パワーステアリング装置 | |
US10266198B2 (en) | Motor control device | |
JP6530654B2 (ja) | 電動パワーステアリング装置 | |
US9634587B2 (en) | Motor control apparatus, electric power steering apparatus and vehicle using the same | |
US10097129B2 (en) | Drive controller and drive control method for electric motor | |
JP6624213B2 (ja) | 電動パワーステアリング装置 | |
US10298165B2 (en) | Rotary electric machine system | |
WO2015129271A1 (ja) | モータ制御装置、これを使用した電動パワーステアリング装置および車両 | |
US20170085205A1 (en) | Controller and control method for motor | |
CN110417314B (zh) | 马达控制装置及电动助力转向装置 | |
US9270213B2 (en) | Motor control device | |
JP2013038950A (ja) | 3相回転機の制御装置 | |
US10411574B2 (en) | Motor controller | |
WO2017187601A1 (ja) | 角度検出装置および電動パワーステアリングの制御装置 | |
CN109195859B (zh) | 电子控制装置及其动作控制方法 | |
WO2020032084A1 (ja) | モータ駆動装置、電動オイルポンプおよびモータ駆動装置の故障検知方法 | |
CN108791473B (zh) | 电机驱动动力转向系统的电机控制装置和方法 | |
US10981595B2 (en) | Electric power steering apparatus | |
WO2019054089A1 (ja) | モータ駆動装置、モータ、および電動パワーステアリング装置 | |
JP6655159B2 (ja) | 三相同期電動機の制御装置および制御方法、駆動装置並びに電動パワーステアリング装置 | |
US9227658B2 (en) | Rotary electric machine control apparatus having abnormality detection function | |
JP6730488B2 (ja) | 三相同期電動機の制御装置および駆動装置、並びに電動パワーステアリング装置 | |
JP2006033928A (ja) | ブラシレスモータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16817702 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016002342 Country of ref document: DE |
|
ENP | Entry into the national phase |
Ref document number: 20177036979 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15741041 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16817702 Country of ref document: EP Kind code of ref document: A1 |