WO2020032084A1 - モータ駆動装置、電動オイルポンプおよびモータ駆動装置の故障検知方法 - Google Patents

モータ駆動装置、電動オイルポンプおよびモータ駆動装置の故障検知方法 Download PDF

Info

Publication number
WO2020032084A1
WO2020032084A1 PCT/JP2019/031058 JP2019031058W WO2020032084A1 WO 2020032084 A1 WO2020032084 A1 WO 2020032084A1 JP 2019031058 W JP2019031058 W JP 2019031058W WO 2020032084 A1 WO2020032084 A1 WO 2020032084A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance
motor
failure
drive device
motor drive
Prior art date
Application number
PCT/JP2019/031058
Other languages
English (en)
French (fr)
Inventor
宏紀 横内
遠藤 修司
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201980052134.9A priority Critical patent/CN112534710A/zh
Priority to US17/266,555 priority patent/US11381186B2/en
Priority to JP2020535825A priority patent/JP7396283B2/ja
Publication of WO2020032084A1 publication Critical patent/WO2020032084A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/16Estimation of constants, e.g. the rotor time constant
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load

Definitions

  • the present invention relates to a motor drive device, an electric oil pump, and a failure detection method for a motor drive device.
  • Patent registered in Japan Japanese Patent No. 4042050
  • the electric pump is mounted on a vehicle such as an automobile, and is used, for example, to circulate a refrigerant used for cooling an engine, a driving motor, and the like.
  • a refrigerant used for cooling an engine, a driving motor, and the like.
  • An electric pump or the like may be required to have a redundant function to enable the vehicle to run even if it breaks down for some reason. When a failure occurs, it is conceivable that the failure is detected, the relevant part is separated, and another element replaces the function of the defective part.
  • a motor driving device comprising: a motor having a rotor and a stator; an inverter electrically connected to the motor; and a control device for controlling the inverter,
  • a controller configured to estimate at least a change in impedance of the motor based on a voltage command value, a current command value, and an actual current flowing between the inverter and the motor; Value, a comparator that calculates a difference between the actual current flowing between the inverter and the motor, and a case where a change in the impedance exceeds or falls below a predetermined threshold, or A failure detection unit that outputs a failure flag when the calculated difference exceeds or falls below a predetermined threshold.
  • a failure detection method for a motor drive device wherein the impedance observer is based on a voltage command value, a current command value, and an actual current flowing between the inverter and the motor. Estimating at least a change in impedance of the motor; a comparator calculating a difference between the current command value and the actual current flowing between the inverter and the motor; Outputting a failure flag when the change in the impedance exceeds or falls below a predetermined threshold, or when the difference calculated by the comparator exceeds or falls below a predetermined threshold. And.
  • occurrence of a failure in a motor can be easily detected at a low cost with a simple structure.
  • FIG. 1 is a block diagram illustrating a configuration of a control device according to the present embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of a failure detection system using a current difference according to the present embodiment.
  • FIG. 3 is a diagram illustrating a block of a failure detection system using a difference in impedance according to the present embodiment.
  • FIG. 4 is a block diagram illustrating a configuration of a control system according to a modification of the present embodiment.
  • FIG. 1 is an example of a block diagram illustrating a configuration of the control device 1.
  • the control device 1 according to the embodiment of the present invention shown in FIG. 1 includes an inverter 10, a torque current command converter 20, a three-phase current / voltage command converter 30, an impedance observer 40, a differentiator 50, a failure detection A part 60.
  • the torque current command converter 20, the three-phase current / voltage command converter 30, the impedance observer 40, the differentiator 50, and the failure detection unit 60 are a microcomputer 100 (hereinafter, referred to as "microcomputer") as a motor control device. ). Further, the microcomputer 100 outputs a signal for controlling the inverter 10 and controls the driving of the motor 200 based on the signal.
  • microcomputer outputs a signal for controlling the inverter 10 and controls the driving of the motor 200 based on the signal.
  • the motor driving device includes the motor 200 and the control device 1.
  • Motor 200 has a stator and a rotor rotatable relative to the stator.
  • the motor drive device of the present embodiment is used, for example, in an electric oil pump.
  • the motor drive device may be used for applications other than the electric oil pump.
  • the angle sensor 210 is attached to the motor 200.
  • the angle sensor 210 detects the rotation angle of the rotor.
  • the angle sensor 210 may be, for example, a combination of a magnetoresistive element and a sensor magnet, or may be a Hall element (including a Hall IC). Note that the angle sensor may detect the rotation speed of the rotor instead of the rotation angle of the rotor.
  • Inverter 10 has a plurality of switching elements. Inverter 10 is electrically connected to the stator.
  • In the inverter 10 according to the present embodiment for example, a MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor), IGBT (Insulated Gate Bipolar Transistor), or the like is used as a switching element (FET, Field Effect Transistor).
  • FET Field Effect Transistor
  • the motor 200 is a three-phase motor. Therefore, the inverter 10 in the present embodiment has six FETs.
  • the current sensor 220 is further connected to the inverter 10.
  • one or more shunt resistors are used as the current sensor 220.
  • a current is detected from one shunt resistor. Note that a so-called three-shunt resistor may be used as the current sensor 220, or a sensor other than the shunt resistor may be used.
  • the control device 1 is provided with a torque command value T * as an input.
  • the torque command value T * is obtained by inputting the value of the torque detected by the torque sensor 230 as an assist torque after processing by a filter (not shown).
  • the input torque command value T * is input to torque current command converter 20.
  • Torque current command converter 20 to the torque command value T *, performs a process of integrating the torque constant as a gain, a current command value of three-phase I a *, I b *, is converted into I c *.
  • the current command value I * is output from the torque current command converter 20 and input to the three-phase current / voltage command converter 30 as a signal.
  • the three-phase current / voltage command converter 30 converts the current command value I * into a predetermined voltage command value V * by inverse conversion of the voltage equation.
  • the voltage command value V * is output from the three-phase current / voltage command converter 30, converted into a duty, and then input to the inverter 10 as a control signal.
  • the voltage command value V * is output from the three-phase current / voltage command converter 30 and is also input to the impedance observer 40 as a signal.
  • Inverter 10 generates an ON / OFF control signal (PWM control) for each switching element in a predetermined switching pattern based on voltage command value V * , and supplies a predetermined voltage and current to motor 200.
  • PWM control ON / OFF control signal
  • the actual current I supplied from the inverter 10 to the motor 200 is detected by the above-described current sensor 220 for each of the three phases (U phase, V phase, and W phase).
  • the detected three-phase real currents I a , I b , and I c are input to the impedance observer 40 as signals.
  • the impedance observer 40 can estimate a change ⁇ R in impedance in the motor driving device for each phase based on the actual current I and the voltage command value V * .
  • the impedance observer 40 is, for example, a disturbance observer based on an inverse model of the motor control model in the present embodiment.
  • the impedance observer 40 may be an observer other than the disturbance observer.
  • the impedance observer 40 can calculate the actual voltage V (actual three-phase voltage) based on the actual current I by the following equation 1.
  • Equation 1 R th impedance of the motor, [Delta] R th impedance error of the motor, L is the inductance. EMF is a back electromotive force.
  • Variation [Delta] R th of the impedance of each phase is to three-phase current voltage command converter 30, is fed back. 3 phase current voltage command converter 30, a variation [Delta] R th of the impedance of each fed-back phase, the current command value I *, any one of the based on the actual voltage V, the voltage command for each phase by Equation 2 below the value V a *, V b *, and outputs the V c *.
  • the [Delta] R tha, [Delta] R thb shown in Equation 2, the [Delta] R thc, include changes caused by temperature variation and fault impedance.
  • electric oil pumps often measure the temperature of oil as a refrigerant.
  • the measured oil temperature, the motor coil temperature, and the temperature of the drive circuit are the same because they are in a temperature equilibrium state. Therefore, the value obtained by subtracting the impedance change due to temperature by using the measured oil temperature [Delta] R tha, [Delta] R thb, it is desirable that the [Delta] R thc.
  • the real current I detected from the current sensor 220 and the current command value I * output from the torque current command converter 20 are input to the differentiator 50.
  • the differentiator 50 calculates a difference ⁇ I between the actual current I and the current command value I * .
  • the difference ⁇ I between the actual current I and the current command value I * and the change ⁇ R in impedance are input to the failure detection unit 60 as a signal.
  • the failure detection unit 60 determines each failure (duty failure, shunt resistance failure, inverter FET failure, angle sensor failure) based on the difference ⁇ I between the actual current I and the current command value I * and the change ⁇ R in impedance. , Failure of the structure of the motor, etc.).
  • a duty failure, a shunt resistance failure, and an inverter FET failure can be determined using the change ⁇ R in impedance and the difference ⁇ I between the actual current I and the current command value I * .
  • the failure is determined by cumulatively adding the difference ⁇ I between the actual current I and the current command value I * .
  • the failure of the angle sensor can be determined based on the difference ⁇ I between the actual current I and the current command value I * .
  • a failure due to a change in impedance in the motor drive device can be determined based on the change ⁇ R in impedance.
  • [Delta] R further generated by the failure, since the failure itself occurs independently for each electrical and electronic components, [Delta] R tha, [Delta] R thb, of [Delta] R thc, change only one phase appears. Therefore, by performing a majority decision and extracting one phase showing a change larger than a predetermined value, the accuracy of failure detection can be improved.
  • the failure detection unit 60 may determine the above-described failure using not only the difference ⁇ I between the actual current I and the current command value I * and the change ⁇ R in impedance but also the output value of the angle sensor 210. Good.
  • the output of the torque current command converter 20 and the output of the three-phase current / voltage command converter 30 are feed-forwarded to the impedance observer 40, the difference device 50, and the like, respectively. That is, a feedforward control system is configured by the torque current command converter 20 and the three-phase current / voltage command converter 30.
  • FIG. 2 is a block diagram showing a configuration of the failure detection system using the difference ⁇ I between the actual current I and the current command value I * .
  • three-phase two-axis conversion is performed on the actual current I and the current command value I * based on the rotation angle (electrical angle) of the rotor detected by the angle sensor 210.
  • the two axes are a so-called dq synchronous coordinate system.
  • the direction of the magnetic flux (N pole) of the permanent magnet of the rotor is defined as the d-axis, and the direction advanced 90 degrees from the d-axis in the positive direction of the angle ⁇ is defined as the q-axis.
  • the angle ⁇ here refers to an angle represented by an electrical angle.
  • the actual current I is detected by the current sensor 220 or the like.
  • the detected actual current I is subjected to three-phase two-axis conversion based on the rotation angle (electrical angle) of the rotor detected by the angle sensor 210.
  • the value of the actual current I CNV subjected to the three-phase two-axis conversion is compared with the current command value I CNV *, and a failure is determined based on the comparison result.
  • the failure detection unit 60 outputs a failure flag 70 (signal). For example, the failure detection unit 60 calculates a difference ⁇ I between the value of the actual current I subjected to the three-phase two-axis conversion and the current command value I * for each of the d-axis and the q-axis.
  • d-axis, the q-axis respectively, determine the actual difference value [Delta] I A difference value [Delta] I T of [Delta] I which is a target value. Then, it adds the difference [Delta] I T and [Delta] I A for each axis. If the value added by the above method exceeds (or falls below) a predetermined threshold value, it is determined that a failure has occurred. Based on the failure flag 70 output from the failure detection unit 60, the control device 1 stops driving of the motor 200, for example.
  • control including the above-described feedforward control is performed based on the rotor position information output from the failed angle sensor 210.
  • the difference in current value is calculated for each of the d-axis and the q-axis based on the actual current I and the current command value I * .
  • the d-axis, the q-axis determine the actual difference value [Delta] I A difference value [Delta] I T of [Delta] I which is a target value, if the value obtained by adding the difference [Delta] I T and [Delta] I A for each axis is greater than a predetermined threshold value ( If the angle sensor falls below the threshold, it is determined that a failure has occurred in the angle sensor, and a failure flag is output.
  • a detection margin m is further added to the current command value I CNV * (instruction current) subjected to the three-phase two-axis conversion, and the three-phase two-axis conversion is performed.
  • the value of the actual current I CNV may be compared with the current command value (I CNV * + m) to which the detection margin m has been added, and the failure of the angle sensor may be determined based on the comparison result.
  • the threshold can be made variable by using the detection margin m.
  • the magnitude of the disturbance factors the actual difference value [Delta] I
  • a difference value [Delta] I T of [Delta] I which is a target value of the current changes.
  • the detection margin is used to fluctuate the failure determination threshold value in order to prevent erroneous detection / non-detection due to a change in a disturbance factor.
  • the disturbance factors include a power supply voltage, a motor rotation speed, a target torque, and a motor winding temperature.
  • Impedance observer 40 the voltage command values of three phases V a *, V b *, V c * and the actual 3-phase voltages V a, V b, calculates the difference between V c. 3-phase voltage command value V a *, V b *, V c * and the actual 3-phase voltages V a, V b, the difference between V c, and the current command values of three phases I a *, I b *, based on the I c *, by dividing the difference ⁇ V of the voltage by the current command value I * in equation 2, determining the variation ⁇ R in impedance.
  • a comparison is made between the calculated change ⁇ R in impedance and a predetermined threshold value, and a failure is determined based on the comparison result.
  • the failure detection unit 60 outputs a failure flag 70 (signal).
  • An impedance failure will be described as an example of failure determination using the change ⁇ R in impedance.
  • the stator has a plurality of coils.
  • the impedance failure there is a disconnection of a winding constituting the coil, a deformation of a bus bar connected to the coil, or the like.
  • the failure detection unit 60 determines that a failure has occurred in the impedance and outputs a failure flag 70.
  • ⁇ Failure Detection Logic Based on ⁇ I and ⁇ R>
  • the failure in the motor drive device may be determined using both the difference ⁇ I of the current I * between the actual current I and the current command value and the change ⁇ R of the impedance.
  • the actual current I when there is an abnormality in the duty which is the control signal of the inverter 10, when a failure occurs in the current sensor, or when a failure occurs in a switching element (such as an FET) of the inverter 10, the actual current I , The actual voltage V and the impedance R will change as compared with the case where there is no failure as described above, and both the difference ⁇ I between the actual current I and the current command value I * and the impedance change ⁇ R Changes.
  • the failure detection unit 60 determines these failures based on both the current difference ⁇ I between the actual current I and the current command value I * and the impedance change ⁇ R and outputs a failure flag. Can be.
  • the failure detection unit 60 determines the abnormality of the duty, the failure of the current sensor, the failure of the current sensor based on at least one of the current difference ⁇ I between the actual current I and the current command value I * and the impedance change ⁇ R. At least one of a switching element failure, an angle sensor failure, and an impedance failure can be determined.
  • the above embodiment relates to the control of the motor.
  • the present invention may be used for an electric power steering, an electric pump, another actuator, or the like using the motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

モータ駆動装置であって、ロータおよびステータを有するモータと、前記モータに電気的に接続されるインバータと、前記インバータを制御する制御装置と、を備え、前記制御装置は、電圧指令値と、電流指令値と、前記インバータと前記モータとの間を流れる実電流と、に基づいて、少なくとも前記モータのインピーダンスの変化分を推定するインピーダンスオブザーバと、前記電流指令値と、前記インバータと前記モータとの間を流れる前記実電流との差分を算出する比較器と、前記インピーダンスの変化分が所定の閾値を超えた場合または下回った場合、または、前記比較器が算出した前記差分が所定の閾値を超えた場合または下回った場合に、故障フラグを出力する故障検出部と、を有する。

Description

モータ駆動装置、電動オイルポンプおよびモータ駆動装置の故障検知方法
本発明は、モータ駆動装置、電動オイルポンプおよびモータ駆動装置の故障検知方法に関する。
近年、自動運転機能を有する自動車や電動自動車等の普及が進み始めている。そのような車両では、いわゆる電動化が進み、油圧機構に代えて、モータや電動ポンプ等が用いられている。
日本国登録特許:特許4042050号公報
電動ポンプは、自動車等の車両に搭載され、例えば、エンジンや駆動用モータなどの冷却に使われる冷媒を循環させるのに用いられる。(例えば、日本国登録特許:特許4042050号参照)電動ポンプ等においては、何かしらの要因により故障した場合でも、車両を走行可能にするための冗長機能を持たせることが求められることもある。故障が発生した場合には、故障を検知した上で、当該箇所を切り離し、他の要素にて、その故障箇所の機能を代替させることが考えられる。 
しかしながら、故障の検知は、各種のセンサが必要になり、構造の複雑化やコストの増加を招く虞がある。 
そこで、本発明では、故障の発生を簡素な構造かつ低コストで容易に検知することができるモータ駆動装置を提供することを目的の一つとする。
本発明の例示的な一実施形態のモータ駆動装置であって、ロータおよびステータを有するモータと、前記モータに電気的に接続されるインバータと、前記インバータを制御する制御装置と、を備え、前記制御装置は、電圧指令値と、電流指令値と、前記インバータと前記モータとの間を流れる実電流と、に基づいて、少なくとも前記モータのインピーダンスの変化分を推定するインピーダンスオブザーバと、前記電流指令値と、前記インバータと前記モータとの間を流れる前記実電流との差分を算出する比較器と、前記インピーダンスの変化分が所定の閾値を超えた場合または下回った場合、または、前記比較器が算出した前記差分が所定の閾値を超えた場合または下回った場合に、故障フラグを出力する故障検出部と、を有する。
本発明の例示的な一実施形態のモータ駆動装置の故障検知方法であって、インピーダンスオブザーバが、電圧指令値と、電流指令値と、インバータとモータとの間を流れる実電流と、に基づいて、少なくとも前記モータのインピーダンスの変化分を推定するステップと、比較器が、前記電流指令値と、前記インバータと前記モータとの間を流れる前記実電流との差分を算出するステップと、故障検出部が、前記インピーダンスの変化分が所定の閾値を超えた場合または下回った場合、または、前記比較器が算出した前記差分が所定の閾値を超えた場合または下回った場合に、故障フラグを出力するステップと、を備える。
本発明の一つの態様によれば、モータにおける故障の発生を簡素な構造かつ低コストで容易に検知することができる。
図1は、本実施形態の制御装置の構成を示すブロック図である。 図2は、本実施形態における電流の差分を用いた故障検知システムの構成を示すブロック図である。 図3は、本実施形態におけるインピーダンスの差分を用いた故障検知システムのブロックを示す図である。 図4は、本実施形態の変形例の制御システムの構成を示すブロック図である。
以下、図面を参照しながら、本発明の実施形態に係るモータ制御について説明する。なお、本発明の範囲は、以下の実施形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。
図1は、制御装置1の構成を示すブロック図の一例である。図1に示す本発明の一実施形態における制御装置1は、インバータ10と、トルク電流指令変換器20と、3相電流電圧指令変換器30と、インピーダンスオブザーバ40と、差分器50と、故障検出部60と、を有する。トルク電流指令変換器20と、3相電流電圧指令変換器30と、インピーダンスオブザーバと40、差分器50と、故障検出部60は、モータ制御装置として、マイクロコンピュータ100(以下、「マイコン」と記載)に搭載される。また、このマイコン100はインバータ10を制御する信号を出力し、その信号に基づきモータ200の駆動を制御する。 
本実施形態において、モータ駆動装置は、モータ200と、制御装置1と、を有する。モータ200は、ステータと、ステータに対して相対的に回転可能なロータと、を有する。本実施形態のモータ駆動装置は、例えば、電動オイルポンプに用いられる。なお、モータ駆動装置は、電動オイルポンプ以外の用途に用いられてもよい。 
モータ200には、角度センサ210が取り付けられる。角度センサ210は、ロータの回転角度を検知する。角度センサ210は、例えば、磁気抵抗素子とセンサマグネットとを組み合わせたものであってもよく、ホール素子(ホールICを含む)などであってもよい。なお、角度センサは、ロータの回転角度ではなく、ロータの回転速度を検出するものであってもよい。 
インバータ10は、複数のスイッチング素子を有する。インバータ10は、ステータと、電気的に接続される。本実施形態におけるインバータ10では、スイッチング素子(FET,Field Effect Transistor)として、例えば、MOSFET(Metal-Oxide Semiconductor Field-Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)等が用いられる。本実施形態において、モータ200は3相モータである。そのため、本実施形態におけるインバータ10は、6個のFETを有する。 
インバータ10には、さらに、電流センサ220が接続される。本実施形態では、電流センサ220として、1または複数のシャント抵抗が用いられる。本実施形態では、1つのシャント抵抗から電流を検出する。なお、電流センサ220として、いわゆる3シャント抵抗が用いられてもよく、シャント抵抗以外のセンサが用いられてもよい。 
制御装置1には、トルク指令値T*が入力として与えられる。トルク指令値T*は、トルクセンサ230によって検出されたトルクの値が図示しないフィルタによる処理後、アシストトルクとして入力されることにより得られる。 入力されたトルク指令値T*は、トルク電流指令変換器20に入力される。トルク電流指令変換器20は、トルク指令値T*に対し、ゲインとしてトルク定数を積算する処理を行い、3相の電流指令値I *、I *、I *に変換する。 
電流指令値I*は、トルク電流指令変換器20から出力され、信号として3相電流電圧指令変換器30へ入力される。3相電流電圧指令変換器30は、電流指令値I*を、電圧方程式の逆変換により、所定の電圧指令値Vへと変換する。電圧指令値Vは、3相電流電圧指令変換器30から出力され、デューティに変換後、制御信号としてインバータ10に入力される。また、電圧指令値Vは、3相電流電圧指令変換器30から出力され、信号としてインピーダンスオブザーバ40へも入力される。 
インバータ10は、電圧指令値Vに基づいて、各スイッチング素子を所定のスイッチングパターンにてON/OFF制御信号を生成(PWM制御)を行い、所定の電圧および電流をモータ200に与える。 
インバータ10からモータ200へと与えられる実電流Iは、上述の電流センサ220によって3相の各相(U相、V相、W相)ごとに検出される。検出された3相の実電流I、I、Iは、信号としてインピーダンスオブザーバ40へと入力される。 
インピーダンスオブザーバ40は、実電流Iおよび電圧指令値Vに基づいて、モータ駆動装置におけるインピーダンスの変化分ΔRを各相ごとに推定することができる。ここで、インピーダンスオブザーバ40は、例えば、本実施形態におけるモータの制御モデルの逆モデルに基づいた、外乱オブザーバである。しかしながら、インピーダンスオブザーバ40は、外乱オブザーバ以外のオブザーバであってもよい。また、インピーダンスオブザーバ40は、実電流Iに基づいて、下記の数式1により実電圧V(実3相電圧)を算出することができる。 
Figure JPOXMLDOC01-appb-M000001
数式1において、Rthはモータのインピーダンス、ΔRthはモータのインピーダンス誤差、Lはインダクタンスである。また、EMFは逆起電力である。 
各相ごとのインピーダンスの変化分ΔRthは、3相電流電圧指令変換器30へ、フィードバックされる。3相電流電圧指令変換器30は、フィードバックされた各相ごとのインピーダンスの変化分ΔRthと、電流指令値I*と、実電圧Vに基づいて、下記の数式2により各相ごとの電圧指令値V 、V 、V を出力する。 
Figure JPOXMLDOC01-appb-M000002
数式2に示されるΔRtha, ΔRthb, ΔRthcには、インピーダンスの温度変動分と故障による変化分が含まれる。ところで、電動オイルポンプでは、冷媒である油の温度を測定している場合が多い。この時、測定した油の温度とモータコイル温度や駆動回路の温度は、温度平衡状態になることから同じ温度となる。したがって、測定した油温を用いて温度によるインピーダンス変化分を除いた値をΔRtha, ΔRthb, ΔRthcとすることが望ましい。 
差分器50には、電流センサ220から検出された実電流Iと、トルク電流指令変換器20から出力された電流指令値I*と、が入力される。差分器50は、実電流Iと電流指令値I*との差分ΔIを計算する。 
実電流Iと電流指令値I*との差分ΔIおよびインピーダンスの変化分ΔRは、信号として故障検出部60に入力される。故障検出部60は、実電流Iと電流指令値I*との差分ΔIおよびインピーダンスの変化分ΔRに基づいて、各故障(デューティ故障、シャント抵抗の故障、インバータのFETの故障、角度センサの故障、モータの構造の故障など)を判定することができる。 
例えば、デューティ故障、シャント抵抗の故障、インバータのFETの故障は、インピーダンスの変化分ΔRと実電流Iと電流指令値I*との差分ΔIとを利用して、判定することができる。デューティ故障においては、実電流Iと電流指令値I*との差分ΔIとを累積加算することにより、故障の判定を行う。また、角度センサの故障は、実電流Iと電流指令値I*との差分ΔIに基づいて、判定することができる。モータ駆動装置におけるインピーダンスの変化による故障は、インピーダンスの変化分ΔRに基づいて判定することができる。 
さらに故障によって発生するΔRは、故障自体が電気電子部品ごとに独立して起きることから、ΔRtha, ΔRthb, ΔRthcの内、1つの相についてのみ変化が現れる。したがって、多数決を行い、所定以上の大きさの変化を示す1相を取り出すことで、故障検出の精度を上げることができる。 
なお、故障検出部60は、実電流Iと電流指令値I*との差分ΔIおよびインピーダンスの変化分ΔRだけでなく、角度センサ210の出力値も利用して、上述の故障を判定してもよい。 
また、本実施形態では、トルク電流指令変換器20の出力と3相電流電圧指令変換器30の出力とが、それぞれ、インピーダンスオブザーバ40や差分器50などに、フィードフォワードされている。すなわち、トルク電流指令変換器20と3相電流電圧指令変換器30とにより、フィードフォワード制御系が構成されている。 
<ΔIによる故障検出ロジック> 次に、故障検出部60における実電流Iと電流指令値I*との差分ΔIを用いた故障検出のロジックを説明する。図2は、実電流Iと電流指令値I*との差分ΔIを用いた故障検知システムの構成を示すブロック図である。まず、実電流Iと電流指令値I*に対して、角度センサ210が検出したロータの回転角度(電気角)に基づいて、3相2軸変換が行われる。ここで、2軸とは、いわゆるd-q同期座標系である。ロータが有する永久磁石の磁束(N極)方向をd軸とし、d軸から角度θの正方向に90度進んだ方向をq軸としている。ここでいう角度θは、電気角で表されるものをいう。 
上述のように、実電流Iは、電流センサ220などによって検出される。検出された実電流Iは、角度センサ210が検出したロータの回転角度(電気角)に基づいて、3相2軸変換が行われる。 
3相2軸変換が行われた実電流ICNVの値と、電流指令値ICNV *との比較が行われ、その比較結果に基づいて、故障の判定が行われる。故障があると判定される場合、故障検出部60は、故障フラグ70(信号)を出力する。例えば、故障検出部60は、3相2軸変換が行われた実電流Iの値と、電流指令値I*との差分ΔIをd軸、q軸それぞれについて計算する。続いて、d軸、q軸それぞれについて、目標値となるΔIの差分値ΔIと実際の差分値ΔIを求める。そして、各軸のΔIとΔIの差を加算する。上記方法により加算された値が所定の閾値を上回る場合(または下回る場合)に、故障と判定する。故障検出部60から出力された故障フラグ70に基づいて、制御装置1は、例えば、モータ200の駆動の停止などを行う。 
実電流Iと電流指令値I*との電流の差分ΔIを利用した故障検出の一例として、角度センサ210の故障検出について、説明する。 
角度センサ210が故障した場合、故障した角度センサ210から出力されるロータの位置情報に基づいて、上述のフィードフォワード制御を含む制御が行われることになる。この場合、故障がない場合の実電流Iと故障がある場合の実電流Iとの間には、電流値に差が出てくる。実電流Iと電流指令値I*とに基づいて、差分ΔIがd軸、q軸それぞれについて計算される。d軸、q軸それぞれについて、目標値となるΔIの差分値ΔIと実際の差分値ΔIを求め、各軸のΔIとΔIの差を加算した値が所定の閾値を超える場合(または下回る場合)には、角度センサに故障が発生していると判定され、故障フラグが出力される。 
なお、3相2軸変換が行われた電流指令値ICNV *(指示電流)に対しては、図4に示すように、さらに検出マージンmを加算し、3相2軸変換が行われた実電流ICNVの値と、検出マージンmが加算された電流指令値(ICNV *+m)との比較を行い、その比較結果に基づいて、角度センサの故障の判定を行ってもよい。検出マージンmを使うことで、閾値を可変とすることができる。 
外乱要因の大きさによって、電流の目標値となるΔIの差分値ΔIと実際の差分値ΔIが変化する。検出マージンは外乱要因の変化による誤検出・未検出を防ぐため、故障判定閾値を変動させるために使用する。外乱要因には、電源電圧、モータ回転速度、目標トルク、モータ巻線温度、とが含まれる。 
<ΔRによる故障検出ロジック> 次に、故障検出部60におけるΔRを用いた故障検出のロジックを説明する。 
インピーダンスオブザーバ40は、3相の電圧指令値V 、V 、V と実3相電圧V、V、Vとの差分を計算する。3相の電圧指令値V 、V 、V と実3相電圧V、V、Vとの差分、および、3相の電流指令値I *、I *、I *とに基づいて、数式2において電圧の差分ΔVを電流指令値I*で除することにより、インピーダンスの変化分ΔRを求める。 
算出されたインピーダンスの変化分ΔRと所定の閾値との比較が行われ、その比較結果に基づいて、故障の判定が行われる。故障検出部60は、故障が発生していると判定された場合には、故障フラグ70(信号)を出力する。 
インピーダンスの変化分ΔRを利用した故障判定の一例として、インピーダンス故障について説明する。 
ステータは、複数のコイルを有する。インピーダンス故障の一例として、コイルを構成する巻線の断線や、コイルに接続されるバスバ等の変形などがある。 
このようなインピーダンスの故障が生じた場合には、故障がない場合におけるインピーダンスと故障がある場合におけるインピーダンスとの間に差分、すなわち、インピーダンスの変化分ΔRが出てくることになる。故障検出部60は、インピーダンスの変化分ΔRが、所定の閾値を超える場合(または下回る場合)には、インピーダンスに故障が生じていると判定し、故障フラグ70を出力する。 
<ΔIおよびΔRによる故障検出ロジック> 上述した故障の判定では、実電流Iと電流指令値I*との差分ΔIおよびインピーダンスの変化分ΔRのいずれか一方のみを用いていた。しかしながら、実電流Iと電流指令値との電流I*の差分ΔIおよびインピーダンスの変化分ΔRの両方を用いて、モータ駆動装置における故障の判定が行われてもよい。 
例えば、インバータ10の制御信号であるデューティに異常があった場合、電流センサに故障が発生した場合、または、インバータ10が有するスイッチング素子(FETなど)に故障が発生した場合には、実電流I、実電圧V、インピーダンスRの各値が、上述の故障がない場合と比較して、変化することになり、実電流Iと電流指令値I*との差分ΔIおよびインピーダンスの変化分ΔRの両方の値が変化する。 
したがって、実電流Iと電流指令値I*との差分ΔIが所定の閾値を超えた場合(あるいは下回った場合)、かつ、インピーダンスの変化分ΔRが所定の閾値を超えた場合(あるいは下回った場合)には、インバータ10の制御信号であるデューティに異常があった場合、電流センサ220に故障が発生した場合、および、インバータ10が有するスイッチング素子(FETなど)に故障が発生した場合の少なくともいずれか1つに故障が発生したことになる。すなわち、故障検出部60は、実電流Iと電流指令値I*との電流の差分ΔIおよびインピーダンスの変化分ΔRの両方の値に基づいて、これらの故障を判定し、故障フラグを出力することができる。 
言い換えると、故障検出部60は、実電流Iと電流指令値I*との電流の差分ΔIおよびインピーダンスの変化分ΔRの少なくともいずれか一方の値に基づいて、デューティの異常、電流センサの故障、スイッチング素子の故障、角度センサの故障、インピーダンスの故障の少なくともいずれか1つを判定することができる。 
上述の実施形態では、モータの制御に関するものである。しかしながら、本発明は、当該モータを用いる電動パワーステアリング、電動ポンプや他のアクチュエータなどに用いられてもよい。 
本明細書において説明した各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 
 

Claims (12)

  1. モータ駆動装置であって、ロータおよびステータを有するモータと、前記モータに電気的に接続されるインバータと、前記インバータを制御する制御装置と、を備え、前記制御装置は、電圧指令値と、電流指令値と、前記インバータと前記モータとの間を流れる実電流と、に基づいて、少なくとも前記モータのインピーダンスの変化分を推定するインピーダンスオブザーバと、前記電流指令値と、前記インバータと前記モータとの間を流れる前記実電流との差分を算出する比較器と、前記インピーダンスの変化分が所定の閾値を超えた場合または下回った場合、または、前記比較器が算出した前記差分が所定の閾値を超えた場合または下回った場合に、故障フラグを出力する故障検出部と、を有する、モータ駆動装置。
  2. 前記インピーダンスの変化分は、前記ステータに発生した故障に起因し、前記故障検出部は、前記故障フラグを出力する請求項1に記載のモータ駆動装置。
  3. 前記インピーダンスオブザーバは、推定した前記インピーダンスの変化分から、温度による前記インピーダンスの変化分を除く処理を行う、請求項1または2に記載のモータ駆動装置。
  4. 前記インピーダンスオブザーバは、多数決により、故障している相の特定を行う、請求項1から請求項3のいずれか1項に記載のモータ駆動装置。
  5. 前記モータは、前記ロータの回転位置を検出し、前記ロータの位置情報を出力する角度センサを有し、前記比較器は、 前記位置情報に基づいて、前記実電流に対して3相2軸変換を行い、 前記位置情報に基づいて、前記電流指令値に対して3相2軸変換を行う、請求項1に記載のモータ駆動装置。
  6. 前記差分は、前記角度センサの故障に起因する、請求項5に記載のモータ駆動装置。
  7. 前記比較器は、前記実電流に対する前記3相2軸変換において、検出マージンを加算する、請求項5または6に記載のモータ駆動装置。
  8. 前記モータは、さらに、前記モータに流れる前記実電流を検出する電流センサを有し、前記インピーダンスの変化分と前記差分とに基づいて、前記電流センサの故障を判定し、前記故障フラグを出力する、請求項1に記載のモータ駆動装置。
  9. 前記故障検出部は、前記インピーダンスの変化分と前記差分とに基づいて、前記インバータを制御する信号であるデューティの異常を判定し、前記故障フラグを出力する、請求項7または請求項8に記載のモータ駆動装置。
  10. 前記インバータは、複数のスイッチング素子を有し、前記故障検出部は、前記インピーダンスの変化分と前記差分とに基づいて、前記スイッチング素子の故障を判定し、前記故障フラグを出力する、請求項8または請求項9に記載のモータ駆動装置。
  11. 請求項1から請求項10のいずれか一項に記載のモータ駆動装置を有する、電動オイルポンプ。
  12. モータ駆動装置の故障検知方法であって、インピーダンスオブザーバが、電圧指令値と、電流指令値と、インバータとモータとの間を流れる実電流と、に基づいて、少なくとも前記モータのインピーダンスの変化分を推定するステップと、比較器が、前記電流指令値と、前記インバータと前記モータとの間を流れる前記実電流との差分を算出するステップと、故障検出部が、前記インピーダンスの変化分が所定の閾値を超えた場合または下回った場合、または、前記比較器が算出した前記差分が所定の閾値を超えた場合または下回った場合に、故障フラグを出力するステップと、を備える、モータ駆動装置の故障検知方法。 
PCT/JP2019/031058 2018-08-08 2019-08-07 モータ駆動装置、電動オイルポンプおよびモータ駆動装置の故障検知方法 WO2020032084A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980052134.9A CN112534710A (zh) 2018-08-08 2019-08-07 电动机驱动装置、电动油泵和电动机驱动装置的故障检测方法
US17/266,555 US11381186B2 (en) 2018-08-08 2019-08-07 Motor drive device, electric oil pump, and method for detecting failure of motor drive device
JP2020535825A JP7396283B2 (ja) 2018-08-08 2019-08-07 モータ駆動装置、電動オイルポンプおよびモータ駆動装置の故障検知方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018149094 2018-08-08
JP2018-149094 2018-08-08

Publications (1)

Publication Number Publication Date
WO2020032084A1 true WO2020032084A1 (ja) 2020-02-13

Family

ID=69414890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031058 WO2020032084A1 (ja) 2018-08-08 2019-08-07 モータ駆動装置、電動オイルポンプおよびモータ駆動装置の故障検知方法

Country Status (4)

Country Link
US (1) US11381186B2 (ja)
JP (1) JP7396283B2 (ja)
CN (1) CN112534710A (ja)
WO (1) WO2020032084A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023028504A1 (en) * 2021-08-24 2023-03-02 Woodward, Inc. Model based monitoring of faults in electro-hydraulic valves

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210135796A (ko) * 2020-05-06 2021-11-16 현대자동차주식회사 차량용 obc 제어 장치, 그를 포함한 시스템 및 그 방법
CN113671930B (zh) * 2021-07-15 2022-10-11 浙江零跑科技股份有限公司 一种基于前馈补偿的行车中驱动故障误检复位系统及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240870A (ja) * 1985-04-12 1986-10-27 Fuji Electric Co Ltd 電動機制御システムの故障検出装置
JP2000116176A (ja) * 1998-10-05 2000-04-21 Nissan Motor Co Ltd 3相交流モータの制御装置
JP2000253506A (ja) * 1999-02-25 2000-09-14 Railway Technical Res Inst 速度センサレス制御を用いた電気車制御装置
JP2002022813A (ja) * 2000-07-13 2002-01-23 Yaskawa Electric Corp 誘導電動機の電動機定数測定方法
JP2009089552A (ja) * 2007-10-02 2009-04-23 Nsk Ltd モータ駆動制御装置及びモータ駆動制御装置を使用した電動パワーステアリング装置
JP2012016102A (ja) * 2010-06-30 2012-01-19 Hitachi Automotive Systems Ltd 電力変換システムおよび電力変換装置
WO2013002251A1 (ja) * 2011-06-30 2013-01-03 Ntn株式会社 モータ駆動装置
JP2015097472A (ja) * 2013-08-12 2015-05-21 日本精工株式会社 モータ制御装置、これを使用した電動パワーステアリング装置および車両
JP2017198079A (ja) * 2016-04-25 2017-11-02 株式会社ミクニ 電動オイルポンプの軽負荷異常判定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4042050B2 (ja) 2003-05-28 2008-02-06 アイシン精機株式会社 電動ポンプ
EP1482175B1 (en) 2003-05-28 2009-10-14 Aisin Seiki Kabushiki Kaisha Electric powered pump
KR102286371B1 (ko) * 2014-06-19 2021-08-05 현대모비스 주식회사 모터 온도 변화 제어 장치 및 방법
JP6316449B2 (ja) 2014-11-04 2018-04-25 三菱電機株式会社 モータ制御装置、電動パワーステアリング装置およびインバータ系故障検出方法
JP6039002B2 (ja) 2015-05-12 2016-12-07 株式会社藤商事 遊技機

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240870A (ja) * 1985-04-12 1986-10-27 Fuji Electric Co Ltd 電動機制御システムの故障検出装置
JP2000116176A (ja) * 1998-10-05 2000-04-21 Nissan Motor Co Ltd 3相交流モータの制御装置
JP2000253506A (ja) * 1999-02-25 2000-09-14 Railway Technical Res Inst 速度センサレス制御を用いた電気車制御装置
JP2002022813A (ja) * 2000-07-13 2002-01-23 Yaskawa Electric Corp 誘導電動機の電動機定数測定方法
JP2009089552A (ja) * 2007-10-02 2009-04-23 Nsk Ltd モータ駆動制御装置及びモータ駆動制御装置を使用した電動パワーステアリング装置
JP2012016102A (ja) * 2010-06-30 2012-01-19 Hitachi Automotive Systems Ltd 電力変換システムおよび電力変換装置
WO2013002251A1 (ja) * 2011-06-30 2013-01-03 Ntn株式会社 モータ駆動装置
JP2015097472A (ja) * 2013-08-12 2015-05-21 日本精工株式会社 モータ制御装置、これを使用した電動パワーステアリング装置および車両
JP2017198079A (ja) * 2016-04-25 2017-11-02 株式会社ミクニ 電動オイルポンプの軽負荷異常判定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023028504A1 (en) * 2021-08-24 2023-03-02 Woodward, Inc. Model based monitoring of faults in electro-hydraulic valves
US11796990B2 (en) 2021-08-24 2023-10-24 Woodward, Inc. Model based monitoring of faults in electro-hydraulic valves

Also Published As

Publication number Publication date
JPWO2020032084A1 (ja) 2021-08-10
US20210297026A1 (en) 2021-09-23
JP7396283B2 (ja) 2023-12-12
US11381186B2 (en) 2022-07-05
CN112534710A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
US10177694B2 (en) Current sensor abnormality diagnosis device
US9647599B2 (en) Electronic apparatus
US10097129B2 (en) Drive controller and drive control method for electric motor
CN109565256B (zh) 马达控制方法、马达驱动系统以及电动助力转向系统
US8901863B2 (en) Motor control device
US10088531B2 (en) Failure diagnosis device and failure diagnosis method for inverter
CN102598502B (zh) 检查电机转矩的似然性的方法及调节电机和执行该方法的机器调节器
CN107787549B (zh) 电动助力转向装置
JP7396283B2 (ja) モータ駆動装置、電動オイルポンプおよびモータ駆動装置の故障検知方法
KR102004080B1 (ko) 전동 파워 스티어링 장치의 제어 장치 및 전동 파워 스티어링 장치
US10298165B2 (en) Rotary electric machine system
KR101038668B1 (ko) 3상 bldc 모터의 제어 방법 및 제어 시스템
US10560044B2 (en) Motor control method, motor control system, and electric power steering system
CN111344944B (zh) 控制器、马达控制系统以及电动助力转向系统
JP2005229768A (ja) ブラシレスモータ駆動装置
CN112840557B (zh) 故障诊断方法、电力转换装置、马达模块以及电动助力转向装置
CN108352803A (zh) 直流电流传感器、交流电流传感器及有该传感器的逆变器
CN111656669A (zh) 控制装置
JP7466778B2 (ja) モータ制御装置、電動パワーステアリング装置、及びモータ制御方法
JP6655159B2 (ja) 三相同期電動機の制御装置および制御方法、駆動装置並びに電動パワーステアリング装置
US20200259437A1 (en) Motor control method, motor control system, and electric power steering system
WO2019220781A1 (ja) 故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848098

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535825

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19848098

Country of ref document: EP

Kind code of ref document: A1