WO2016206135A1 - 一种液晶显示面板及其阵列基板 - Google Patents

一种液晶显示面板及其阵列基板 Download PDF

Info

Publication number
WO2016206135A1
WO2016206135A1 PCT/CN2015/083730 CN2015083730W WO2016206135A1 WO 2016206135 A1 WO2016206135 A1 WO 2016206135A1 CN 2015083730 W CN2015083730 W CN 2015083730W WO 2016206135 A1 WO2016206135 A1 WO 2016206135A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
black matrix
disposed
array substrate
forming
Prior art date
Application number
PCT/CN2015/083730
Other languages
English (en)
French (fr)
Inventor
郝思坤
Original Assignee
深圳市华星光电技术有限公司
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司, 武汉华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/767,652 priority Critical patent/US9810960B2/en
Publication of WO2016206135A1 publication Critical patent/WO2016206135A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/40Arrangements for improving the aperture ratio

Definitions

  • the present invention relates to the field of liquid crystal display technologies, and in particular, to a liquid crystal display panel and an array substrate thereof.
  • Liquid crystal display is one of the most widely used flat panel displays, and has gradually become a widely used electronic device such as mobile phones, personal digital assistants (PDAs), digital cameras, computer screens or laptop screens with high-resolution color screens. monitor.
  • PDAs personal digital assistants
  • LCDs liquid crystal display
  • monitor computer screens or laptop screens with high-resolution color screens. monitor.
  • liquid crystal displays usually have an upper and lower substrate and an intermediate liquid crystal layer, and the substrate is composed of glass and electrodes. If the upper and lower substrates have electrodes, a vertical electric field mode display such as TN (Twist) can be formed. Nematic, twisted nematic mode, VA (Vertical Alignment) mode, and MVA (Multi-domain) developed to solve narrow viewing angles Vertical Alignment, multi-domain vertical alignment).
  • TN Transmission
  • VA Vertical Alignment
  • MVA Multi-domain
  • the embodiment of the invention provides a liquid crystal display panel and an array substrate thereof, which can reduce the process and reduce the cost.
  • the invention provides an array substrate comprising:
  • a first metal layer disposed on the first glass substrate for forming a scan line and a gate region of the thin film field effect transistor
  • a semiconductor layer disposed on the first insulating layer for forming a channel of the thin film field effect transistor
  • a second metal layer disposed on the semiconductor layer for forming a source region, a drain region, and a data line of the thin film field effect transistor
  • a color resist layer disposed on the second metal layer and the first insulating layer for forming a color filter
  • a pixel electrode layer disposed on the color resist layer and connected to the drain region of the thin film field effect transistor through a through hole on the color resist layer for forming a pixel electrode;
  • a passivation layer disposed on the pixel electrode layer
  • a black matrix layer disposed on the passivation layer for forming a black matrix
  • a common electrode layer disposed on the passivation layer and the black matrix layer for forming a common electrode
  • a photo-sensitive spacer disposed on the common electrode corresponding to the black matrix for supporting the molecular gap
  • the black matrix is disposed corresponding to the color filter and the pixel electrode.
  • the common electrode covers the black matrix layer.
  • the material of the black matrix layer comprises a low reflection metal or alloy.
  • the invention also provides an array substrate comprising:
  • a first metal layer disposed on the first glass substrate for forming a scan line and a gate region of the thin film field effect transistor
  • a semiconductor layer disposed on the first insulating layer for forming a channel of the thin film field effect transistor
  • a second metal layer disposed on the semiconductor layer for forming a source region, a drain region, and a data line of the thin film field effect transistor
  • a color resist layer disposed on the second metal layer and the first insulating layer for forming a color filter
  • a pixel electrode layer disposed on the color resist layer and connected to the drain region of the thin film field effect transistor through a through hole on the color resist layer for forming a pixel electrode;
  • a passivation layer disposed on the pixel electrode layer
  • the black matrix is disposed corresponding to the color filter and the pixel electrode.
  • the array substrate further includes a common electrode layer disposed on the passivation layer and the black matrix layer for forming a common electrode.
  • the common electrode covers the black matrix layer.
  • the material of the black matrix layer comprises a low reflection metal or alloy.
  • the array substrate further includes a photosensitive spacer disposed on the common electrode corresponding to the black matrix for supporting the molecular gap.
  • the present invention further provides a liquid crystal display panel comprising a liquid crystal display panel comprising an array substrate, a second glass substrate, and a liquid crystal layer disposed between the array substrate and the second glass substrate, wherein the array substrate comprises:
  • a first metal layer disposed on the first glass substrate for forming a scan line and a gate region of the thin film field effect transistor
  • a semiconductor layer disposed on the first insulating layer for forming a channel of the thin film field effect transistor
  • a second metal layer disposed on the semiconductor layer for forming a source region, a drain region, and a data line of the thin film field effect transistor
  • a color resist layer disposed on the second metal layer and the first insulating layer for forming a color filter
  • a pixel electrode layer disposed on the color resist layer and connected to the drain region of the thin film field effect transistor through a through hole on the color resist layer for forming a pixel electrode;
  • a passivation layer disposed on the pixel electrode layer
  • the black matrix is disposed corresponding to the color filter and the pixel electrode.
  • the array substrate further includes a common electrode layer disposed on the passivation layer and the black matrix layer for forming a common electrode.
  • the common electrode covers the black matrix layer.
  • the material of the black matrix layer comprises a low reflection metal or alloy.
  • the array substrate further includes a photosensitive spacer disposed on the common electrode corresponding to the black matrix for supporting the molecular gap.
  • the present invention has the beneficial effects that the first metal layer, the first insulating layer, the semiconductor layer, the second metal layer, the color resist layer, the pixel electrode layer, and the passivation are sequentially disposed on the first glass substrate.
  • the layer and the black matrix layer can improve the alignment accuracy between the color resist layer, the black matrix layer, and the pixel electrode layer, thereby reducing the process steps and reducing the cost.
  • FIG. 1 is a schematic structural view of an array substrate according to a first embodiment of the present invention
  • Figure 2 is a schematic structural view of the thin film field effect transistor of Figure 1;
  • FIG. 3 is a flow chart showing a process of the array substrate of FIG. 1;
  • FIG. 4 is a schematic structural view of a liquid crystal display panel according to a second embodiment of the present invention.
  • FIG. 1 is a schematic structural view of an array substrate according to a first embodiment of the present invention.
  • the array substrate 10 disclosed in this embodiment includes: a first glass substrate 11 , a thin film field effect transistor (TFT) 12 , and a color resist layer (R/G/B).
  • Layer) 13 pixel electrode layer (Pixel ITO) 14, a passivation (PV) layer 15, a black matrix layer (BM) 16, a common electrode layer (TITO) 17, and a photo spacer (PS) 18.
  • the thin film field effect transistor 12 is disposed on the first glass substrate 11, as shown in FIG.
  • the thin film field effect transistor 12 includes a first metal layer 121, a first insulating layer 122, a semiconductor layer 123, and a second metal layer 124, wherein the first metal layer 121 is disposed on the first glass substrate 11 for forming scan lines and films
  • the gate region of the field effect transistor 12, the material of the first metal layer 121 is preferably chromium, molybdenum, aluminum or copper.
  • the first insulating layer 122 is disposed on the first metal layer 121, and the first insulating layer 122 is preferably a silicon nitride layer or the like.
  • the semiconductor layer 123 is disposed on the first insulating layer 122 for forming a channel of the thin film field effect transistor 12, and the semiconductor layer 123 is preferably an amorphous silicon layer.
  • the second metal layer 124 is disposed on the semiconductor layer 123 for forming the source region, the drain region and the data line of the thin film field effect transistor 12.
  • the material of the second metal layer 124 is preferably chromium, molybdenum, aluminum or copper.
  • the color resist layer 13 is disposed on the second metal layer 124 and the first insulating layer 122 for forming a color filter.
  • the color resist layer 13 preferably includes R color resistance, G color resistance, and B color resistance.
  • a through hole 131 is formed between the adjacent two color resists of the color resist layer 13.
  • the color resist layer 13 includes R color resistance, G color resistance, B color resistance, and W color resistance.
  • the pixel electrode layer 14 is disposed on the color resist layer 13 and is connected to the drain region of the thin film field effect transistor 12 through the through hole 131 of the color resist layer 13 for forming a pixel electrode.
  • the material of the pixel electrode layer 14 is preferably indium tin oxide or indium zinc oxide or the like. Since the color resist layer 13 functions as an insulating layer, it is used to reduce capacitive coupling between the pixel electrode layer 14 and the thin film field effect transistor 12.
  • the passivation layer 15 is disposed on the pixel electrode layer 14, and the black matrix layer 16 is disposed on the passivation layer 15 for forming a black matrix, that is, the black matrix is disposed directly above the via hole 131.
  • the aperture ratio and the light transmittance and contrast can be increased.
  • the black matrix is disposed corresponding to the color filter and the pixel electrode, and the alignment precision between the color resist layer 13, the black matrix layer 16 and the pixel electrode layer 14 can be improved, and the black matrix layer 16 and the pixel electrode layer 14 are greatly reduced.
  • the overlapping area is such that the aperture ratio of the pixel is greatly increased.
  • a common electrode layer 17 is provided on the passivation layer 15 and the black matrix layer 16 for forming a common electrode.
  • the common electrode layer 17, the passivation layer 15, and the pixel electrode layer 14 form an FFS pixel electrode structure.
  • the common electrode covers the black matrix layer 16, and the material of the black matrix layer 16 is preferably a low-reflective metal or alloy, which enables the function of a black matrix.
  • the black matrix layer 16 is used for the external connection line of the touch sensing during the touch drive scanning; when the liquid crystal is driven, the black matrix layer 16 is connected to the common electrode.
  • the photo spacers 18 are disposed on the common electrode corresponding to the black matrix for supporting the molecular gap (cell Gap). That is, the photosensitive spacers 18 are disposed on the common electrode layer 17 covering the black matrix layer 16.
  • the process of the array substrate 10 will be described below, as shown in FIG.
  • the process of the array substrate 10 is sequentially: thin film field effect transistor (TFT) 12-color resist layer (R/G/B) Layer) 13-pixel electrode layer (Pixel ITO) 14- Passivation layer (PV) 15 - black matrix layer (BM) 16 - common electrode layer (TITO) 17 - photosensitive spacer (PS) 18.
  • TFT thin film field effect transistor
  • R/G/B Pixel electrode layer
  • Pixel ITO Passivation layer
  • BM black matrix layer
  • TITO common electrode layer
  • PS photosensitive spacer
  • the first metal layer 121, the first insulating layer 122, the semiconductor layer 123, the second metal layer 124, the color resist layer 13, the pixel electrode layer 14, the passivation layer 15, and the like are sequentially disposed on the first glass substrate 11.
  • the black matrix layer 16 can improve the alignment accuracy between the color resist layer 13, the black matrix layer 16, and the pixel electrode layer 14, reduce the number of manufacturing processes, and reduce the cost.
  • the present invention also provides a liquid crystal display panel.
  • the liquid crystal display panel 30 disclosed in this embodiment includes an array substrate 31, a second glass substrate 32, and a liquid crystal layer 33 disposed between the array substrate 31 and the second glass substrate 32, such as Figure 4 shows.
  • the array substrate 31 is the same as the array substrate 10 disclosed in the above embodiments, and details are not described herein again.
  • the present invention provides a first metal layer, a first insulating layer, a semiconductor layer, a second metal layer, a color resist layer, a pixel electrode layer, a passivation layer, and a black matrix layer in this order on the first glass substrate.
  • the alignment accuracy between the color resist layer, the black matrix layer, and the pixel electrode layer can be improved, the process steps can be reduced, and the cost can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Geometry (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)

Abstract

一种液晶显示面板及其阵列基板(10)。该阵列基板(10)包括:第一玻璃基板(11);第一金属层(121),设置在第一玻璃基板(11)上,用于形成扫描线以及薄膜场效应管(12)的栅极区;第一绝缘层(122),设置在第一金属层(121)上;半导体层(123),设置在第一绝缘层(122)上,用于形成薄膜场效应管(12)的沟道;第二金属层(124),设置在半导体层(123)上,用于形成薄膜场效应管(12)的源极区、漏极区以及数据线;色阻层(13),设置在第二金属层(124)和第一绝缘层(122)上,用于形成彩色滤光片;像素电极层(14),设置在色阻层(13)上,通过色阻层(13)上的通孔与薄膜场效应管(12)的漏极区连接,用于形成像素电极;钝化层(15),设置在像素电极层(14)上;以及黑色矩阵层(16),设置在钝化层(15)上,用于形成黑色矩阵。通过以上方式,能够减少制程工序,降低成本。

Description

一种液晶显示面板及其阵列基板
【技术领域】
本发明涉及液晶显示技术领域,特别是涉及一种液晶显示面板及其阵列基板。
【背景技术】
液晶显示器是目前使用最广泛的一种平板显示器,已经逐渐成为各种电子设备如移动电话、个人数字助理(PDA)、数字相机、计算机屏幕或笔记本电脑屏幕所广泛应用具有高分辨率彩色屏幕的显示器。随着液晶显示器技术的发展进步,人们对液晶显示器的显示品质、外观设计、人机界面等提出了更高的要求,触控技术因具有操作方便,高度集成等特点成为技术发展的热点。
目前普遍采用的液晶显示器,通常有上下衬底和中间液晶层组成,衬底有玻璃和电极等组成。若上下衬底都有电极,可以形成纵向电场模式的显示器,如TN(Twist Nematic,扭曲向列)模式,VA(Vertical Alignment,垂直对准)模式,以及为了解决视角过窄开发的MVA(Multi-domain Vertical Alignment,多畴垂直配向)。另外一类与上述显示器不同,电极只位于衬底的一侧,形成横向电场模式的显示器,如IPS(In-plane switching,平面转换)模式、FFS(Fringe Field Switching,边缘场开关)模式等。但是,现有技术的液晶显示器的制程工序复杂,导致成本高。
【发明内容】
本发明实施例提供了一种液晶显示面板及其阵列基板,能够减少制程工序,降低成本。
本发明提供一种阵列基板,其包括:
第一玻璃基板;
第一金属层,设置在第一玻璃基板上,用于形成扫描线以及薄膜场效应管的栅极区;
第一绝缘层,设置在第一金属层上;
半导体层,设置在第一绝缘层上,用于形成薄膜场效应管的沟道;
第二金属层,设置在半导体层上,用于形成薄膜场效应管的源极区、漏极区以及数据线;
色阻层,设置在第二金属层和第一绝缘层上,用于形成彩色滤光片;
像素电极层,设置在色阻层上,通过色阻层上的通孔与薄膜场效应管的漏极区连接,用于形成像素电极;
钝化层,设置在像素电极层上;
黑色矩阵层,设置在钝化层上,用于形成黑色矩阵;
公共电极层,设置在钝化层和黑色矩阵层上,用于形成公共电极;
以及感光间隙子,设置在黑色矩阵所对应的公共电极上,用于支撑分子间隙;
其中,黑色矩阵与彩色滤光片和像素电极对应设置。
其中,公共电极覆盖黑色矩阵层。
其中,黑色矩阵层的材料包括低反射的金属或合金。本发明还提供一种阵列基板,其包括:
第一玻璃基板;
第一金属层,设置在第一玻璃基板上,用于形成扫描线以及薄膜场效应管的栅极区;
第一绝缘层,设置在第一金属层上;
半导体层,设置在第一绝缘层上,用于形成薄膜场效应管的沟道;
第二金属层,设置在半导体层上,用于形成薄膜场效应管的源极区、漏极区以及数据线;
色阻层,设置在第二金属层和第一绝缘层上,用于形成彩色滤光片;
像素电极层,设置在色阻层上,通过色阻层上的通孔与薄膜场效应管的漏极区连接,用于形成像素电极;
钝化层,设置在像素电极层上;
以及黑色矩阵层,设置在钝化层上,用于形成黑色矩阵;
其中,黑色矩阵与彩色滤光片和像素电极对应设置。
其中,阵列基板还包括公共电极层,设置在钝化层和黑色矩阵层上,用于形成公共电极。
其中,公共电极覆盖黑色矩阵层。
其中,黑色矩阵层的材料包括低反射的金属或合金。
其中,阵列基板还包括感光间隙子,设置在黑色矩阵所对应的公共电极上,用于支撑分子间隙。
本发明还提供一种液晶显示面板,其包括液晶显示面板包括阵列基板、第二玻璃基板以及设置在阵列基板和第二玻璃基板之间的液晶层,其中阵列基板包括:
第一玻璃基板;
第一金属层,设置在第一玻璃基板上,用于形成扫描线以及薄膜场效应管的栅极区;
第一绝缘层,设置在第一金属层上;
半导体层,设置在第一绝缘层上,用于形成薄膜场效应管的沟道;
第二金属层,设置在半导体层上,用于形成薄膜场效应管的源极区、漏极区以及数据线;
色阻层,设置在第二金属层和第一绝缘层上,用于形成彩色滤光片;
像素电极层,设置在色阻层上,通过色阻层上的通孔与薄膜场效应管的漏极区连接,用于形成像素电极;
钝化层,设置在像素电极层上;
以及黑色矩阵层,设置在钝化层上,用于形成黑色矩阵;
其中,黑色矩阵与彩色滤光片和像素电极对应设置。
其中,阵列基板还包括公共电极层,设置在钝化层和黑色矩阵层上,用于形成公共电极。
其中,公共电极覆盖黑色矩阵层。
其中,黑色矩阵层的材料包括低反射的金属或合金。
其中,阵列基板还包括感光间隙子,设置在黑色矩阵所对应的公共电极上,用于支撑分子间隙。
通过上述方案,本发明的有益效果是:本发明通过在第一玻璃基板上依次设置第一金属层、第一绝缘层、半导体层、第二金属层、色阻层、像素电极层、钝化层以及黑色矩阵层,能够提高色阻层、黑色矩阵层以及像素电极层之间的对位精度,减少制程工序,降低成本。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本发明第一实施例的阵列基板的结构示意图;
图2是图1中的薄膜场效应管的结构示意图;
图3是图1中的阵列基板的制程工艺的流程图;
图4是本发明第二实施例的液晶显示面板的结构示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参见图1所示,图1是本发明第一实施例的阵列基板的结构示意图。如图1所示,本实施例所揭示的阵列基板10包括:第一玻璃基板(glass)11、薄膜场效应管(TFT)12、色阻层(R/G/B layer)13、像素电极层(Pixel ITO)14、钝化(PV)层15、黑色矩阵层(BM)16、公共电极层(TITO)17以及感光间隙子(PS)18。
薄膜场效应管12设置在第一玻璃基板11上,如图2所示。薄膜场效应管12包括第一金属层121、第一绝缘层122、半导体层123以及第二金属层124,其中第一金属层121设置在第一玻璃基板11上,用于形成扫描线以及薄膜场效应管12的栅极区,第一金属层121的材料优选为铬、钼、铝或者铜等。第一绝缘层122设置在第一金属层121上,第一绝缘层122优选为氮化硅层等。半导体层123设置在第一绝缘层122上,用于形成薄膜场效应晶体管12的沟道,半导体层123优选为非晶硅层。第二金属层124设置在半导体层123上,用于形成薄膜场效应管12的源极区、漏极区以及数据线,第二金属层124的材料优选为铬、钼、铝或者铜等。
色阻层13设置在第二金属层124和第一绝缘层122上,用于形成彩色滤光片,色阻层13优选包括R色阻、G色阻以及B色阻。色阻层13的相邻两个色阻之间形成一个通孔131。在其他实施例中,色阻层13包括R色阻、G色阻、B色阻以及W色阻。像素电极层14设置在色阻层13上,并通过色阻层13的通孔131与薄膜场效应管12的漏极区连接,用于形成像素电极。像素电极层14的材料优选为氧化铟锡或者氧化铟锌等。由于色阻层13起到绝缘层的作用,用于减少像素电极层14和薄膜场效应管12之间电容耦合。
钝化层15设置在像素电极层14上,黑色矩阵层16设置在钝化层15上,用于形成黑色矩阵,即黑色矩阵设置在通孔131的正上方。本实施例通过将色阻层13和黑色矩阵层16设置在第一玻璃基板11上,能够增加开口率以及增大光透过率和对比度。其中,黑色矩阵与彩色滤光片和像素电极对应设置,能够提高色阻层13、黑色矩阵层16以及像素电极层14之间的对位精度,并且大幅减少黑色矩阵层16与像素电极层14的交叠区域,以使像素的开口率大幅提升。
公共电极层17设置在钝化层15和黑色矩阵层16上,用于形成公共电极。其中,公共电极层17、钝化层15以及像素电极层14形成FFS像素电极结构。公共电极覆盖黑色矩阵层16,黑色矩阵层16的材料优选为低反射的金属或合金,能够实现黑色矩阵的作用。
当触控功能集成在阵列基板10上,在触摸驱动扫描时黑色矩阵层16用于触控传感的外连接线;在液晶驱动时,黑色矩阵层16连接公共电极。
感光间隙子18设置在黑色矩阵所对应的公共电极上,用于支撑分子间隙(cell gap)。即感光间隙子18设置在覆盖黑色矩阵层16的公共电极层17上。
以下描述阵列基板10的制程工艺,如图3所示。阵列基板10的制程工艺依次为:薄膜场效应管(TFT)12-色阻层(R/G/B layer)13-像素电极层(Pixel ITO)14- 钝化层(PV)15-黑色矩阵层(BM)16-公共电极层(TITO)17-感光间隙子(PS)18。其中,不同的薄膜场效应管12采用不同的制程工艺。
本实施例通过在第一玻璃基板11上依次设置第一金属层121、第一绝缘层122、半导体层123、第二金属层124、色阻层13、像素电极层14、钝化层15以及黑色矩阵层16,能够提高色阻层13、黑色矩阵层16以及像素电极层14之间的对位精度,减少制程工序,降低成本。
本发明还提供一种液晶显示面板,本实施例所揭示的液晶显示面板30包括阵列基板31、第二玻璃基板32以及设置在阵列基板31和第二玻璃基板32之间的液晶层33,如图4所示。其中,阵列基板31与上述实施例所揭示的阵列基板10相同,在此不再赘述。
综上所述,本发明通过在第一玻璃基板上依次设置第一金属层、第一绝缘层、半导体层、第二金属层、色阻层、像素电极层、钝化层以及黑色矩阵层,能够提高色阻层、黑色矩阵层以及像素电极层之间的对位精度,减少制程工序,降低成本。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (13)

  1. 一种阵列基板,其中,所述阵列基板包括:
    第一玻璃基板;
    第一金属层,设置在所述第一玻璃基板上,用于形成扫描线以及薄膜场效应管的栅极区;
    第一绝缘层,设置在所述第一金属层上;
    半导体层,设置在所述第一绝缘层上,用于形成所述薄膜场效应管的沟道;
    第二金属层,设置在所述半导体层上,用于形成所述薄膜场效应管的源极区、漏极区以及数据线;
    色阻层,设置在所述第二金属层和所述第一绝缘层上,用于形成彩色滤光片;
    像素电极层,设置在所述色阻层上,通过所述色阻层上的通孔与所述薄膜场效应管的漏极区连接,用于形成像素电极;
    钝化层,设置在所述像素电极层上;
    黑色矩阵层,设置在所述钝化层上,用于形成黑色矩阵;
    公共电极层,设置在所述钝化层和黑色矩阵层上,用于形成公共电极;
    以及感光间隙子,设置在所述黑色矩阵所对应的公共电极上,用于支撑分子间隙;
    其中,所述黑色矩阵与所述彩色滤光片和所述像素电极对应设置。
  2. 根据权利要求1所述的阵列基板,其中,所述公共电极覆盖所述黑色矩阵层。
  3. 根据权利要求2所述的阵列基板,其中,所述黑色矩阵层的材料包括低反射的金属或合金。
  4. 一种阵列基板,其中,所述阵列基板包括:
    第一玻璃基板;
    第一金属层,设置在所述第一玻璃基板上,用于形成扫描线以及薄膜场效应管的栅极区;
    第一绝缘层,设置在所述第一金属层上;
    半导体层,设置在所述第一绝缘层上,用于形成所述薄膜场效应管的沟道;
    第二金属层,设置在所述半导体层上,用于形成所述薄膜场效应管的源极区、漏极区以及数据线;
    色阻层,设置在所述第二金属层和所述第一绝缘层上,用于形成彩色滤光片;
    像素电极层,设置在所述色阻层上,通过所述色阻层上的通孔与所述薄膜场效应管的漏极区连接,用于形成像素电极;
    钝化层,设置在所述像素电极层上;
    以及黑色矩阵层,设置在所述钝化层上,用于形成黑色矩阵;
    其中,所述黑色矩阵与所述彩色滤光片和所述像素电极对应设置。
  5. 根据权利要求4所述的阵列基板,其中,所述阵列基板还包括公共电极层,设置在所述钝化层和黑色矩阵层上,用于形成公共电极。
  6. 根据权利要求5所述的阵列基板,其中,所述公共电极覆盖所述黑色矩阵层。
  7. 根据权利要求4-6任意一项所述的阵列基板,其中,所述黑色矩阵层的材料包括低反射的金属或合金。
  8. 根据权利要求7所述的阵列基板,其中,所述阵列基板还包括感光间隙子,设置在所述黑色矩阵所对应的公共电极上,用于支撑分子间隙。
  9. 一种液晶显示面板,其中,所述液晶显示面板包括阵列基板、第二玻璃基板以及设置在所述阵列基板和所述第二玻璃基板之间的液晶层,其中所述阵列基板包括:
    第一玻璃基板;
    第一金属层,设置在所述第一玻璃基板上,用于形成扫描线以及薄膜场效应管的栅极区;
    第一绝缘层,设置在所述第一金属层上;
    半导体层,设置在所述第一绝缘层上,用于形成所述薄膜场效应管的沟道;
    第二金属层,设置在所述半导体层上,用于形成所述薄膜场效应管的源极区、漏极区以及数据线;
    色阻层,设置在所述第二金属层和所述第一绝缘层上,用于形成彩色滤光片;
    像素电极层,设置在所述色阻层上,通过所述色阻层上的通孔与所述薄膜场效应管的漏极区连接,用于形成像素电极;
    钝化层,设置在所述像素电极层上;
    以及黑色矩阵层,设置在所述钝化层上,用于形成黑色矩阵;
    其中,所述黑色矩阵与所述彩色滤光片和所述像素电极对应设置。
  10. 根据权利要求9所述的液晶显示面板,其中,所述阵列基板还包括公共电极层,设置在所述钝化层和黑色矩阵层上,用于形成公共电极。
  11. 根据权利要求10所述的液晶显示面板,其中,所述公共电极覆盖所述黑色矩阵层。
  12. 根据权利要求9-12任意一项所述的液晶显示面板,其中,所述黑色矩阵层的材料包括低反射的金属或合金。
  13. 根据权利要求12所述的液晶显示面板,其中,所述阵列基板还包括感光间隙子,设置在所述黑色矩阵所对应的公共电极上,用于支撑分子间隙。
PCT/CN2015/083730 2015-06-24 2015-07-10 一种液晶显示面板及其阵列基板 WO2016206135A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/767,652 US9810960B2 (en) 2015-06-24 2015-07-10 Liquid crystal display panel and array substrate thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510355450.7A CN104914638A (zh) 2015-06-24 2015-06-24 一种液晶显示面板及其阵列基板
CN201510355450.7 2015-06-24

Publications (1)

Publication Number Publication Date
WO2016206135A1 true WO2016206135A1 (zh) 2016-12-29

Family

ID=54083837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083730 WO2016206135A1 (zh) 2015-06-24 2015-07-10 一种液晶显示面板及其阵列基板

Country Status (3)

Country Link
US (1) US9810960B2 (zh)
CN (1) CN104914638A (zh)
WO (1) WO2016206135A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170184891A1 (en) * 2015-12-25 2017-06-29 Shenzhen China Star Optoelectronics Technology Co., Ltd. Thin film transistor array substrate
CN105652546A (zh) * 2016-04-12 2016-06-08 深圳市华星光电技术有限公司 阵列基板及液晶显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1624545A (zh) * 2003-12-03 2005-06-08 Lg.菲利浦Lcd株式会社 液晶显示器件及其制造方法
CN101063776A (zh) * 2001-01-29 2007-10-31 株式会社日立制作所 液晶显示装置
US20080074586A1 (en) * 1998-08-03 2008-03-27 Michiaki Sakamoto Liquid crystal display device and method of manufacturing the same
CN202735635U (zh) * 2012-08-10 2013-02-13 上海天马微电子有限公司 彩膜基板及具有该彩膜基板的内嵌式触控液晶显示面板
CN103294273A (zh) * 2013-05-31 2013-09-11 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN103294312A (zh) * 2013-05-15 2013-09-11 京东方科技集团股份有限公司 电容式触摸屏、电容式触摸屏制备方法及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9201276B2 (en) * 2012-10-17 2015-12-01 Apple Inc. Process architecture for color filter array in active matrix liquid crystal display
CN103353683B (zh) * 2013-06-26 2016-02-10 京东方科技集团股份有限公司 一种阵列基板以及包括该阵列基板的显示装置
KR101552902B1 (ko) * 2014-06-24 2015-09-15 엘지디스플레이 주식회사 곡면 액정표시장치
JP2016191892A (ja) * 2015-03-31 2016-11-10 株式会社ジャパンディスプレイ 液晶表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080074586A1 (en) * 1998-08-03 2008-03-27 Michiaki Sakamoto Liquid crystal display device and method of manufacturing the same
CN101063776A (zh) * 2001-01-29 2007-10-31 株式会社日立制作所 液晶显示装置
CN1624545A (zh) * 2003-12-03 2005-06-08 Lg.菲利浦Lcd株式会社 液晶显示器件及其制造方法
CN202735635U (zh) * 2012-08-10 2013-02-13 上海天马微电子有限公司 彩膜基板及具有该彩膜基板的内嵌式触控液晶显示面板
CN103294312A (zh) * 2013-05-15 2013-09-11 京东方科技集团股份有限公司 电容式触摸屏、电容式触摸屏制备方法及显示装置
CN103294273A (zh) * 2013-05-31 2013-09-11 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置

Also Published As

Publication number Publication date
US20160377896A1 (en) 2016-12-29
CN104914638A (zh) 2015-09-16
US9810960B2 (en) 2017-11-07

Similar Documents

Publication Publication Date Title
CN105895581B (zh) Tft基板的制作方法
US10120247B2 (en) Manufacturing method for TFT substrate and TFT substrate manufactured by the manufacturing method thereof
WO2018006479A1 (zh) 阵列基板及其制作方法、以及液晶显示面板
WO2014036730A1 (zh) 一种显示面板及液晶显示装置
KR101749146B1 (ko) 터치 스크린이 내장된 액정 표시장치와 이의 제조방법
CN105487315A (zh) Tft阵列基板
US10197870B2 (en) Array substrate and display device
US9947754B1 (en) Manufacturing method of array substrate and LCD panel
KR101608637B1 (ko) 터치 스크린이 내장된 액정 표시장치와 이의 제조방법
CN105590896A (zh) 阵列基板的制作方法及制得的阵列基板
CN104965336A (zh) Coa阵列基板及液晶面板
US20190079626A1 (en) Pressure-Sensitive Display Panel, Manufacturing Method Thereof and Pressure-Sensitive Display Device
CN105742292A (zh) 阵列基板的制作方法及制得的阵列基板
TW201435438A (zh) 液晶顯示面板及包含其之液晶顯示裝置
WO2013091169A1 (zh) 平面显示面板及其形成方法
WO2019015077A1 (zh) 一种阵列基板及其制造方法、液晶显示装置
WO2019015001A1 (zh) 一种触控显示面板和一种显示装置
WO2018218711A1 (zh) Tft基板和液晶显示面板
WO2018192052A1 (zh) 阵列基板结构及阵列基板的制备方法
WO2013029262A1 (zh) 薄膜晶体管阵列基板
WO2016041216A1 (zh) 一种液晶显示面板
WO2017117827A1 (zh) 液晶显示面板、tft基板及其制造方法
WO2013143064A1 (zh) 液晶显示面板以及其制造方法
US11385735B2 (en) In-cell touch-type display panel
WO2016065666A1 (zh) 一种tft基板及其制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14767652

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896030

Country of ref document: EP

Kind code of ref document: A1