WO2016204147A1 - 電池及び電池パック - Google Patents

電池及び電池パック Download PDF

Info

Publication number
WO2016204147A1
WO2016204147A1 PCT/JP2016/067686 JP2016067686W WO2016204147A1 WO 2016204147 A1 WO2016204147 A1 WO 2016204147A1 JP 2016067686 W JP2016067686 W JP 2016067686W WO 2016204147 A1 WO2016204147 A1 WO 2016204147A1
Authority
WO
WIPO (PCT)
Prior art keywords
exterior
battery
negative electrode
lead
terminal
Prior art date
Application number
PCT/JP2016/067686
Other languages
English (en)
French (fr)
Inventor
信保 根岸
橋本 達也
川村 公一
達也 篠田
直樹 岩村
竹下 功一
博清 間明田
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN201680034193.XA priority Critical patent/CN107710459B/zh
Priority to JP2017525241A priority patent/JP6851968B2/ja
Priority to EP16811621.8A priority patent/EP3309869A4/en
Publication of WO2016204147A1 publication Critical patent/WO2016204147A1/ja
Priority to US15/842,296 priority patent/US10461369B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • H01M10/286Cells or batteries with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Embodiments of the present invention relate to a battery and a battery pack.
  • Batteries such as a primary battery and a secondary battery generally include an electrode group including a positive electrode and a negative electrode, and an exterior member that houses the electrode group.
  • a metal can is obtained by deep drawing from a metal plate such as aluminum.
  • the metal plate needs to have a certain thickness, which prevents a reduction in the thickness of the exterior member and leads to a loss in volume capacity.
  • the ratio of the total thickness of the outer can to the battery thickness is approximately 7.7%.
  • the outer can since the outer can has high rigidity and poor flexibility, a gap is easily generated between the inner wall of the outer can and the electrode group.
  • a gap may be generated between the positive electrode and the negative electrode of the electrode group, and the charge / discharge cycle performance may be deteriorated. Furthermore, a highly rigid outer can tends to cause defects such as cracking when an excessive force is applied in the vicinity of the weld.
  • the reliability of the laminated film container is not sufficient because the sealed part by heat sealing may melt at a high temperature.
  • the problem to be solved by the present invention is to provide a battery and a battery pack that can be reduced in thickness and flexibility, have an exterior member with excellent reliability, and can reduce manufacturing costs.
  • a battery including a flat electrode group, an exterior member, and a terminal portion.
  • the electrode group includes a positive electrode, a positive electrode current collecting tab electrically connected to the positive electrode, a negative electrode, and a negative electrode current collecting tab electrically connected to the negative electrode.
  • the positive electrode current collection tab wound by the flat shape is located in the 1st end surface of an electrode group.
  • the negative electrode current collection tab wound by the flat shape is located in the 2nd end surface of an electrode group.
  • An exterior member contains the 1st exterior part made from stainless steel which has a flange part in an opening part, and the 2nd exterior part made from stainless steel.
  • the electrode group is housed in a space formed by welding the flange portion of the first exterior portion and the second exterior portion.
  • the terminal portion includes a through-hole opened in the first exterior portion, an annular rising portion extending from the edge of the through-hole toward the exterior member, and a ring-shaped member disposed on the outer peripheral surface of the rising portion And an insulating gasket having a cylindrical portion inserted into the rising portion.
  • the terminal portion includes an external terminal including a head portion and a shaft portion extending from the head portion.
  • the external terminal is electrically connected to the positive electrode or the negative electrode, and the head portion is caulked and fixed to the first exterior portion with the head portion protruding to the outside of the first exterior portion and the shaft portion inserted into the cylindrical portion of the insulating gasket.
  • FIG. 1 is a schematic perspective view of the battery according to the first embodiment.
  • FIG. 2 is an exploded perspective view of the battery shown in FIG.
  • FIG. 3 is a perspective view of the electrode group of the battery shown in FIG.
  • FIG. 4 is a perspective view showing a state in which the electrode group is partially expanded.
  • FIG. 5A is a cross-sectional view obtained when section A of FIG. 1 is cut along the battery long side direction.
  • FIG. 5B is an exploded view of the terminal portion of A portion in FIG. 1.
  • 6 is a schematic perspective view of an external terminal of the battery shown in FIG.
  • FIG. 7 is a perspective view showing a state where the portion A of FIG. 1 is cut along the battery long side direction.
  • FIG. 8 is a perspective view of the battery shown in FIG.
  • FIG. 9A is a plan view of the second exterior portion.
  • FIG. 9B is a plan view of the first exterior portion.
  • FIG. 10A is a three-side view illustrating the manufacturing process of the battery according to the first embodiment.
  • FIG. 10B is a three-side view illustrating the manufacturing process of the battery according to the first embodiment.
  • FIG. 10C is a three-side view illustrating the manufacturing process of the battery according to the first embodiment.
  • FIG. 10D is a three-side view illustrating the manufacturing process of the battery according to the first embodiment.
  • FIG. 11A is a schematic diagram illustrating a process of electrically connecting current collecting tabs of a plurality of electrode groups.
  • FIG. 11B is a schematic diagram illustrating a process of electrically connecting current collecting tabs of a plurality of electrode groups.
  • FIG. 11C is a cross-sectional view in which the vicinity of the terminal portion of the first exterior portion is cut along the battery long side direction.
  • FIG. 12A is a schematic diagram illustrating an assembly process of the battery of the first embodiment including a plurality of electrode groups.
  • FIG. 12B is a schematic diagram illustrating an assembly process of the battery according to the first embodiment including a plurality of electrode groups.
  • FIG. 13 is a schematic diagram illustrating a first example of the battery pack according to the second embodiment.
  • FIG. 14 is a schematic diagram illustrating a second example of the battery pack according to the second embodiment.
  • the battery 100 includes an exterior member 1, an electrode group 2, a positive electrode terminal portion 3, a negative electrode terminal portion 4, and a nonaqueous electrolyte (not shown).
  • the exterior member 1 includes a first exterior part 5 and a second exterior part 6.
  • the 1st exterior part 5 is a square tube container with a bottom made from stainless steel, and has the flange part 5b in the opening part 5a.
  • a concave portion projecting inward is provided near the center of the corner connecting the short side wall and the bottom portion of the first exterior portion 5, and the bottom portion of the concave portion is an inclined surface. It is 5d.
  • the 1st exterior part 5 has the depth below the magnitude
  • the more preferable first exterior portion 5 has a depth equal to or less than the short side of the portion that becomes the opening area (for example, the one shown in FIG. 2).
  • the 1st exterior part 5 is produced by shallow drawing from a stainless steel plate, for example.
  • the second exterior part 6 is a rectangular plate made of stainless steel.
  • the electrode group 2 is housed in a space formed by welding the flange portion 5 b of the first exterior portion 5 to the four sides of the second exterior portion 6.
  • resistance seam welding is used for welding. Resistance seam welding can achieve high hermeticity and heat resistance at a lower cost than laser welding.
  • the electrode group 2 has a flat shape, and includes a positive electrode 7, a negative electrode 8, and a separator 9 disposed between the positive electrode 7 and the negative electrode 8.
  • the positive electrode 7 includes a strip-shaped positive electrode collector made of, for example, a foil, a positive electrode current collector tab 7a having one end parallel to the long side of the positive electrode current collector, and at least the positive electrode current collector tab 7a. And a positive electrode material layer (positive electrode active material-containing layer) 7b formed on the electric body.
  • the negative electrode 8 is formed by removing, for example, a strip-shaped negative electrode current collector made of foil, a negative electrode current collector tab 8a formed of one end parallel to the long side of the negative electrode current collector, and at least a portion of the negative electrode current collector tab 8a. And a negative electrode material layer (negative electrode active material-containing layer) 8b formed on the negative electrode current collector.
  • the positive electrode material layer 7 b of the positive electrode 7 and the negative electrode material layer 8 b of the negative electrode 8 are opposed to each other through the separator 9, and the positive electrode current collecting tab 7 a is disposed on one side of the winding shaft more than the negative electrode 8 and the separator 9.
  • the positive electrode 7, the separator 9, and the negative electrode 8 are wound in a flat shape so that the negative electrode current collecting tab 8a protrudes from the positive electrode 7 and the separator 9 on the other side. Therefore, in the electrode group 2, the positive electrode current collecting tab 7a wound in a flat spiral shape is located on the first end surface perpendicular to the winding axis. Moreover, the negative electrode current collection tab 8a wound by the flat spiral shape is located in the 2nd end surface perpendicular
  • the insulating sheet 10 covers a portion of the outermost periphery of the electrode group 2 excluding the positive electrode current collecting tab 7a and the negative electrode current collecting tab 8a.
  • the electrode group 2 holds a nonaqueous electrolyte (not shown).
  • the backup positive electrode lead 11 (third positive electrode lead) is a conductive plate bent in a U shape, and the positive electrode current collector 11 is sandwiched between the portions (near the center) excluding the curved portions at both ends of the positive electrode current collecting tab 7a. The layers of the electric tab 7a are brought into close contact with each other.
  • the electrode group side positive lead 12 (second positive lead) is a conductive plate having a larger area than the backup positive lead 11. As shown in FIG. 5A, the electrode group side positive lead 12 is connected to the surface of the backup positive lead 11 on the first exterior portion 5 opening side.
  • the positive electrode current collecting tab 7a, the backup positive electrode lead 11 and the electrode group side positive electrode lead 12 are integrated by welding, whereby the positive electrode 7 is connected to the electrode group side positive electrode lead 12 via the positive electrode current collecting tab 7a and the backup positive electrode lead 11. Electrically connected.
  • the welding is performed by, for example, ultrasonic welding.
  • the backup negative electrode lead 13 (third negative electrode lead) is formed by bending a conductive plate into a U shape.
  • the negative electrode current collector tab 8a has a negative electrode current collector tab 8a except for curved portions at both ends (near the center). The layers of the electric tab 8a are brought into close contact with each other.
  • the electrode group side negative electrode lead 14 (second negative electrode lead) is a conductive plate having a larger area than the backup negative electrode lead 13.
  • the electrode group side negative electrode lead 14 is connected to the surface of the backup negative electrode lead 13 on the first exterior portion 5 opening side.
  • the negative electrode current collecting tab 8a, the backup negative electrode lead 13 and the electrode group side negative electrode lead 14 are integrated by welding, whereby the negative electrode 8 is connected to the electrode group side negative electrode lead 14 via the negative electrode current collecting tab 8a and the backup negative electrode lead 13. Electrically connected.
  • the welding is performed by, for example, ultrasonic welding.
  • the positive terminal portion 3 includes a through hole (first through hole) 15 opened in the inclined surface 5d of the first exterior portion 5, and a burring portion.
  • First burring portion 16
  • positive electrode external terminal 17 ring-shaped member (first ring-shaped member) 18
  • insulating gasket first insulating gasket
  • positive electrode terminal insulating member third Positive electrode insulating member
  • the burring portion (annular rising portion) 16 extends from the peripheral portion of the through-hole 15 into the exterior member 1 and is formed by burring.
  • the positive external terminal 17 includes a truncated pyramidal head 21 and a cylindrical shaft 22 as shown in FIG.
  • the head 21 has two cone surfaces 21a and 21b (first and second inclined surfaces) and a rectangular top surface 21c connecting the two cone surfaces 21a and 21b.
  • the columnar shaft portion 22 extends from a plane parallel to the top surface 21 c of the head portion 21.
  • the positive external terminal 17 is made of a conductive material such as aluminum or aluminum alloy, for example.
  • the ring-shaped member 18 is made of, for example, a circular ring made of a material having higher rigidity than the gasket.
  • materials with higher rigidity than gaskets include stainless steel, iron plated (eg, Ni, NiCr, etc.), ceramics, resins with higher rigidity than gaskets (eg, polyphenylene sulfide (PPS), poly Butylene terephthalate (PBT)) and the like.
  • PPS polyphenylene sulfide
  • PBT poly Butylene terephthalate
  • the ring-shaped member 18 is disposed on the outer peripheral surface of the burring portion 16 and is in contact with the burring portion 16. Further, when the ring-shaped member 18 is formed of an insulating material such as resin or ceramics, it can be integrated with the terminal insulating reinforcing member 24.
  • the insulating gasket 19 is a cylindrical body (tubular portion) having a flange portion 19a at one open end. As shown in FIGS. 5A and 7, the insulating gasket 19 has a cylindrical portion inserted into the through-hole 15 and the burring portion 16, and a flange portion 19 a of the through-hole 15 on the outer surface of the first exterior portion 5. It is arranged on the outer periphery.
  • the insulating gasket 19 is, for example, a resin such as fluororesin, fluororubber, polyphenylene sulfide resin (PPS resin), polyether ether ketone resin (PEEK resin), polypropylene resin (PP resin), and polybutylene terephthalate resin (PBT resin). Formed from.
  • a resin such as fluororesin, fluororubber, polyphenylene sulfide resin (PPS resin), polyether ether ketone resin (PEEK resin), polypropylene resin (PP resin), and polybutylene terephthalate resin (PBT resin).
  • the positive electrode terminal insulating member (third positive electrode insulating member) 20 is a rectangular tube with a bottom, and has a through hole 20a at the bottom.
  • the positive terminal insulating member 20 is disposed on the outer surface of the first exterior part 5.
  • the flange portion 19 a of the insulating gasket 19 is inserted into the through hole 20 a of the positive terminal insulating member 20.
  • the positive terminal portion 3 can further include a positive terminal lead 23 (first positive lead).
  • the positive terminal lead 23 is a conductive plate having a through hole 23a.
  • the positive terminal portion 3 can further include a positive terminal insulating reinforcing member 24 (first positive insulating member).
  • the positive terminal insulating reinforcement member 24 includes a main body portion 24a having a structure in which a bottomed rectangular tube is divided in the long side direction, a circular groove 24b formed in the main body portion 24a, and a circular groove 24b. And a through hole 24c opened in the center.
  • the positive terminal insulating reinforcement member 24 includes a corner portion where the main body portion 24a is connected to the bottom surface from the short side wall of the first exterior portion 5 and a corner where the short side wall of the first exterior portion 5 is connected to the long side surface. Cover the part.
  • the 1st exterior part 5, especially the corner vicinity where a short side wall, a long side wall, and a bottom part can be reinforced.
  • the ring-shaped member 18 disposed on the outer peripheral surface of the burring portion 16 is disposed in the circular groove 24b.
  • the through hole 24 c communicates with the opening of the burring portion 16 and the through hole 15 of the first exterior portion 5.
  • a positive terminal lead 23 is disposed on the positive terminal insulation reinforcing member 24.
  • the through hole 23 a of the positive terminal lead 23 communicates with the through hole 24 c of the positive terminal insulation reinforcing member 24, the opening of the burring portion 16, and the through hole 15 of the first exterior portion 5.
  • the shaft portion 22 of the positive external terminal 17 includes an insulating gasket 19, a through hole 20 a in the positive terminal insulating member 20, a through hole 15 in the first exterior portion 5, a burring portion 16, a ring-shaped member 18, and a positive terminal insulating reinforcing member 24.
  • plastic deformation occurs by caulking.
  • the positive external terminal 17 is electrically connected to the positive terminal lead 23. Therefore, the positive external terminal 17 also serves as a rivet.
  • the boundary between the end face of the shaft portion 22 of the positive electrode external terminal 17 and the through hole 23a of the positive electrode terminal lead 23 may be welded with a laser or the like to provide stronger connection and improved electrical conductivity.
  • the negative electrode terminal portion 4 includes a through hole (second through hole) 30 opened in the inclined surface 5 d of the first exterior portion 5, a burring portion (second burring portion) 31, and , Negative electrode external terminal 32, ring-shaped member 33 (second ring-shaped member), insulating gasket (second insulating gasket) 34, and negative-electrode terminal insulating member (third negative electrode insulating member) 35.
  • These members have the same structure as that described in the positive electrode terminal portion 3.
  • the burring part (annular rising part) 31 extends from the peripheral part of the through-hole 30 into the exterior member 1 and is formed by burring.
  • the negative external terminal 32 includes a truncated pyramid shaped head 32a shown in FIG. 11C and a cylindrical shaft portion.
  • the head portion 32a has two cone surfaces (first and second inclined surfaces) 32b and 32c, and a rectangular top surface 32d connecting the two cone surfaces 32b and 32c.
  • the columnar shaft portion extends from a plane parallel to the top surface of the head portion 32a.
  • the negative electrode external terminal 32 is made of a conductive material such as aluminum or an aluminum alloy, for example.
  • the ring-shaped member 33 is made of, for example, a circular ring made of a material having higher rigidity than the gasket.
  • materials with higher rigidity than gaskets include stainless steel, iron plated (eg, Ni, NiCr, etc.), ceramics, resins with higher rigidity than gaskets (eg, polyphenylene sulfide (PPS), poly Butylene terephthalate (PBT)) and the like.
  • the ring-shaped member 33 is disposed on the outer peripheral surface of the burring portion 31. Further, when the ring-shaped member 33 is formed of an insulating material such as resin or ceramic, it can be integrated with the terminal insulating reinforcing member 37.
  • the insulating gasket 34 is a cylindrical body having a flange portion at one open end.
  • the insulating gasket 34 has a cylindrical portion inserted into the through hole 30 and the burring portion 31, and a flange portion disposed on the outer periphery of the through hole 30 on the outer surface of the first exterior portion 5.
  • Examples of the material of the insulating gasket 34 include the same materials as described in the positive electrode terminal portion 3.
  • the negative electrode terminal insulating member (third negative electrode insulating member) 35 is a rectangular tube with a bottom, and has a through hole 35a at the bottom as shown in FIG.
  • the negative terminal insulating member 35 is disposed on the outer surface of the first exterior portion 5.
  • the flange portion of the insulating gasket 34 is inserted into the through hole 35 a of the negative electrode terminal insulating member 35.
  • the negative electrode terminal portion 4 can further include a negative electrode terminal lead 36 (first negative electrode lead).
  • the negative terminal lead 36 is a conductive plate having a through hole 36a.
  • the negative electrode terminal portion 4 can further include a negative electrode terminal insulating reinforcing member 37 (first negative electrode insulating member).
  • the negative electrode terminal insulation reinforcing member 37 includes a main body portion 37a having a structure in which a bottomed rectangular tube is divided in the long side direction, a circular groove 37b formed in the main body portion 37a, and a circular groove 37b. And a through hole 37c opened in the center.
  • the negative electrode terminal insulation reinforcing member 37 includes a corner portion where the main body portion 37a is connected to the bottom surface from the short side wall of the first exterior portion 5, and a corner where the short side wall of the first exterior portion 5 is connected to the long side wall.
  • the 1st exterior part 5, especially the corner vicinity where a short side wall, a long side wall, and a bottom part can be reinforced.
  • the ring-shaped member 33 disposed on the outer peripheral surface of the burring portion 31 is disposed in the circular groove 37b.
  • the through hole 37 c communicates with the opening of the burring portion 31 and the through hole 30 of the first exterior portion 5.
  • a negative terminal lead 36 is disposed on the negative terminal insulating reinforcing member 37.
  • the through hole 36 a of the negative electrode terminal lead 36 communicates with the through hole 37 c of the negative electrode terminal insulating reinforcing member 37, the opening of the burring portion 31, and the through hole 30 of the first exterior portion 5.
  • the shaft portion of the negative electrode external terminal 32 includes an insulating gasket 34, a through hole 35 a of the negative electrode terminal insulating member 35, a through hole 30 of the first exterior portion 5, a burring portion 31, a ring-shaped member 33, and a negative electrode terminal insulating reinforcing member 37.
  • plastic deformation is caused by caulking.
  • these members are integrated and the negative external terminal 32 is electrically connected to the negative terminal lead 36. Therefore, the negative external terminal 36 also serves as a rivet.
  • a boundary portion between the end face of the shaft portion of the negative electrode external terminal 32 and the through hole 36a of the negative electrode terminal lead 36 may be welded with a laser or the like to provide stronger connection and improved electrical conductivity.
  • the pair of second insulation reinforcing members 38 each have a structure in which a bottomed rectangular cylinder is divided in half in the long side direction, as shown in FIG.
  • One second insulating reinforcing member 38 covers about half of the positive electrode current collecting tab 7a from the winding center to the second exterior portion 6 side.
  • the other second insulation reinforcing member 38 covers about half of the negative electrode current collecting tab 8a from the winding center to the second exterior portion 6 side.
  • the first to third positive electrode leads and negative electrode leads can be formed from, for example, aluminum or an aluminum alloy material.
  • the material of the lead is preferably the same as the material of the positive electrode current collector or the negative electrode current collector that can be electrically connected to the lead.
  • the first to third positive electrode insulating members, negative electrode insulating members, and insulation reinforcing members are, for example, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), polypropylene (PP), polyethylene (PE), nylon, polybutylene. It is formed from a thermoplastic resin such as terephthalate (PBT), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyphenylene sulfide (PPS), and polyetheretherketone (PEEK).
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • PP polypropylene
  • PE polyethylene
  • nylon polybutylene
  • PBT terephthalate
  • PET polyethylene terephthalate
  • PTFE polytetrafluoroethylene
  • PPS polyphenylene sulfide
  • PEEK polyetheretherketone
  • the electrode group 2 is housed in the first exterior part 5 so that the first end face 7 a faces the positive terminal part 3 and the second end face 8 a faces the negative terminal part 4. Therefore, the plane intersecting the first end surface 7a and the second end surface 8a of the electrode group 2 faces the bottom surface 5c in the first exterior portion 5, and the curved surface intersecting the first end surface 7a and the second end surface 8a is the first. It faces the long side surface in the exterior part 5.
  • the corner portion connecting the short side wall and the bottom of the first exterior portion 5 there are gaps between the first end surface 7a of the electrode group 2 and the second end surface 8a.
  • the dead space in the first exterior portion 5 is reduced. Therefore, the volume energy density of the battery can be increased.
  • the terminal portions are installed rather than the case where the positive electrode terminal portion 3 and the negative electrode terminal portion 4 are provided on the short side surface having no inclined surface. The area can be increased. Therefore, the diameter of the shaft portion 22 of the positive electrode external terminal 17 and the diameter of the shaft portion of the negative electrode external terminal 32 can be increased, so that a large current (high rate current) can flow with low resistance.
  • the positive electrode current collecting tab 7a is coated.
  • the negative electrode current collecting tab 8 a is covered with a bottomed rectangular cylindrical cover formed by contacting the lower end of the second insulating reinforcing member 38 with the upper end of the first negative electrode insulating member 37.
  • the second exterior part 6 functions as a lid for the first exterior part 5.
  • the electrode group 2 is sealed in the exterior member 1 by welding the four sides of the flange portion 5 b of the first exterior portion 5 and the second exterior portion 6.
  • the non-aqueous electrolyte battery shown in FIGS. 1 to 8 described above is a space formed by welding a stainless steel first exterior part having a flange part at an opening and a stainless steel second exterior part.
  • An exterior member in which the electrode group is housed is included. Since the first and second exterior parts are made of stainless steel, high strength can be maintained even when the plate thickness of the first and second exterior parts is reduced. As a result, since the flexibility of the exterior member can be increased, the electrode group can be easily restrained by applying a load from the outside of the reduced pressure seal or the exterior member. Thereby, the distance between the electrodes of the electrode group can be stabilized and the resistance can be lowered, and the battery pack having vibration resistance and impact resistance can be easily realized. Furthermore, if the flexibility of the first and second exterior parts is high, it becomes easy to reduce the distance from the inner surfaces of the first and second exterior parts to the electrode group, and thus the heat dissipation of the battery can be improved. .
  • Stainless steel first and second exterior parts are easy to weld and can be sealed by inexpensive resistance seam welding. Therefore, it is possible to realize an exterior member having a higher gas sealing property than a laminate film container at a low cost. Moreover, the heat resistance of the exterior member can be improved.
  • SUS304 has a melting point of 1400 ° C.
  • Al has a melting point of 650 ° C.
  • the shaft portion of the external terminal is plastically deformed as a result of being caulked and fixed to the through hole.
  • a force is applied in the radial direction of the insulating gasket, but the rising portion is reinforced by a ring-shaped member arranged on the outside thereof, so that a compressive stress is generated in the insulating gasket and the external terminal is placed on the first exterior portion. It can be connected with high strength.
  • the plate thickness of the first exterior portion that is, the plate thickness of the rise portion is reduced, the rise portion can be reinforced with the ring-shaped member, so that the external terminal can be connected regardless of the plate thickness of the first exterior portion. It can connect with high intensity
  • the rising portion extends from the edge of the through hole into the exterior member, liquid leakage when the internal pressure of the exterior member rises due to gas generation or the like can be suppressed by the action of the external pressure. . Therefore, high reliability can be realized even when the plate thickness of the first and second exterior parts is reduced.
  • the battery of the first embodiment it is possible to obtain high strength and reliability even when the plate thickness of the first and second exterior parts is reduced, and thus excellent in flexibility and heat dissipation, In addition, a battery with high strength and reliability can be provided.
  • the opening area of the first exterior part is increased.
  • the second exterior part is welded to the four sides of the first exterior part, but as the opening area increases, the length of one side to be welded increases, so the three sides are welded first and the remaining one side It becomes easy to inject the electrolyte from the gap.
  • the exterior member can be temporarily sealed by providing a location where the welding strength is lower than the others, a temporary sealing component (for example, a rubber plug) can be made unnecessary.
  • the exterior member has a flat shape, the heat dissipation of the battery can be improved.
  • the first exterior portion includes a concave portion having an inclined surface, and the dead space in the first exterior portion can be reduced by arranging the terminal portion on the inclined surface, and the external terminal having a thick shaft portion diameter Therefore, it is possible to flow a large current (high rate current) with a low resistance.
  • the inclined portion is not limited to the one provided near the center of the short side of the exterior member, and may extend over the entire short side of the exterior member.
  • the terminal portion further includes a first lead electrically connected to the external terminal, and the first lead is electrically connected to the positive current collecting tab or the negative current collecting tab.
  • the first lead facilitates positioning as compared with the case where the positive electrode current collecting tab or the negative electrode current collecting tab is directly connected to the external terminal. Therefore, productivity can be improved. Further, by connecting the first lead to the external terminal by caulking, the resistance between the first lead and the external terminal can be lowered.
  • An insulating member that reinforces the first exterior portion is disposed between the first lead and the inner surface of the first exterior portion, thereby insulating the first lead and the first exterior portion while The exterior part of 1 can be reinforced. Such an insulating member is useful for further reducing the thickness of the exterior member.
  • the first end surface of the external terminal has a quadrangular top surface and first and second inclined surfaces connected to two opposite sides of the top surface, so that any one of the three surfaces is welded.
  • the welding direction can be changed by selecting the surface.
  • the plate thickness of the first exterior part and the second exterior part is preferably in the range of 0.02 mm to 0.3 mm. By setting it within this range, the conflicting properties of mechanical strength and flexibility can be achieved.
  • a more preferable range of the plate thickness is 0.05 mm or more and 0.15 mm or less.
  • the difference (thickness) between the outer and inner diameters of the positive electrode terminal portion, the negative electrode terminal portion, or both of the ring-shaped members is preferably equal to or greater than the plate thickness of the first exterior portion.
  • the shortest wall thickness can be 0.1 mm or more.
  • the outer shape of the ring-shaped member is not necessarily the same shape as the burring cross-sectional shape, and may be a polyhedron such as a rectangle or a hexagon, or may be a composite shape of a single or a plurality of curves and a single or a plurality of straight lines.
  • a flat plate as illustrated in FIGS. 5A and 5B can be used, but instead of the flat plate, one having a flange portion at the opening may be used.
  • An example of such a structure can be the same as that of the first exterior part.
  • the backup positive electrode lead 11 (third positive electrode lead) and the backup negative electrode lead 13 (third negative electrode lead) are not limited to U-shaped conductive plates, and conductive flat plates may be used. It is also possible to employ a configuration in which the backup positive electrode lead 11 and / or the backup negative electrode lead 13 are not used.
  • the exterior member can further include a safety valve or the like that can release the pressure inside the battery when the internal pressure of the battery rises above a specified value.
  • the battery according to the first embodiment may be a primary battery or a secondary battery.
  • An example of the battery according to the first embodiment is a lithium ion secondary battery.
  • the positive electrode, negative electrode, separator, and nonaqueous electrolyte of the battery according to the first embodiment will be described below.
  • the positive electrode can include, for example, a positive electrode current collector, a positive electrode material layer held on the positive electrode current collector, and a positive electrode current collector tab.
  • the positive electrode material layer can include, for example, a positive electrode active material, a conductive agent, and a binder.
  • an oxide or a sulfide can be used as the positive electrode active material.
  • oxides and sulfides include manganese dioxide (MnO 2 ) that occludes lithium, iron oxide, copper oxide, nickel oxide, lithium manganese composite oxide (eg, Li x Mn 2 O 4 or Li x MnO 2 ), Lithium nickel composite oxide (for example, Li x NiO 2 ), lithium cobalt composite oxide (for example, Li x CoO 2 ), lithium nickel cobalt composite oxide (for example, LiNi 1-y Co y O 2 ), lithium manganese cobalt composite oxide (e.g.
  • Li x Mn y Co 1-y O 2 lithium manganese nickel complex oxide having a spinel structure (e.g., Li x Mn 2-y Ni y O 4), lithium phosphates having an olivine structure (e.g., Li x FePO 4, Li x Fe 1- y Mn y PO 4, Li x CoPO 4), iron sulfate (Fe 2 (SO 4) 3 ), vanadium oxide (e.g. Examples thereof include V 2 O 5 ) and lithium nickel cobalt manganese composite oxide.
  • these compounds may be used alone, or a plurality of compounds may be used in combination.
  • the binder is blended to bind the active material and the current collector.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and fluorine-based rubber.
  • the conductive agent is blended as necessary in order to enhance the current collecting performance and suppress the contact resistance between the active material and the current collector.
  • Examples of the conductive agent include carbonaceous materials such as acetylene black, carbon black, and graphite.
  • the positive electrode active material and the binder are preferably blended at a ratio of 80% by mass to 98% by mass and 2% by mass to 20% by mass, respectively.
  • a sufficient electrode strength can be obtained by setting the binder to an amount of 2% by mass or more. Moreover, the content of the insulating material of an electrode can be reduced by setting it as 20 mass% or less, and internal resistance can be reduced.
  • the positive electrode active material, the binder, and the conductive agent are 77% by mass or more and 95% by mass or less, 2% by mass or more and 20% by mass or less, and 3% by mass or more and 15% by mass or less, respectively. It is preferable to mix
  • the conductive agent can exhibit the above-described effects by adjusting the amount to 3% by mass or more. Moreover, by setting it as 15 mass% or less, decomposition
  • the positive electrode current collector is preferably an aluminum foil or an aluminum alloy foil containing at least one element selected from Mg, Ti, Zn, Ni, Cr, Mn, Fe, Cu and Si.
  • the positive electrode current collector is preferably integral with the positive electrode current collecting tab.
  • the positive electrode current collector may be a separate body from the positive electrode current collector tab.
  • Negative electrode A negative electrode can contain the negative electrode collector, the negative electrode material layer hold
  • the negative electrode material layer can include, for example, a negative electrode active material, a conductive agent, and a binder.
  • the negative electrode active material for example, a metal oxide, metal nitride, alloy, carbon, or the like that can occlude and release lithium ions can be used. It is preferable to use as the negative electrode active material a material capable of inserting and extracting lithium ions at a potential of 0.4 V or higher (vs. Li / Li + ).
  • the conductive agent is blended in order to enhance the current collecting performance and suppress the contact resistance between the negative electrode active material and the current collector.
  • Examples of the conductive agent include carbonaceous materials such as acetylene black, carbon black, and graphite.
  • the binder is blended to fill a gap between the dispersed negative electrode active materials and to bind the negative electrode active material and the current collector.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, and styrene butadiene rubber.
  • the active material, the conductive agent, and the binder in the negative electrode material layer are blended at a ratio of 68% by mass to 96% by mass, 2% by mass to 30% by mass, and 2% by mass to 30% by mass, respectively. It is preferable.
  • the amount of the conductive agent By setting the amount of the conductive agent to 2% by mass or more, the current collecting performance of the negative electrode layer can be improved. Further, by setting the amount of the binder to 2% by mass or more, the binding property between the negative electrode material layer and the current collector can be sufficiently exhibited, and excellent cycle characteristics can be expected.
  • the conductive agent and the binder are each preferably 28% by mass or less in order to increase the capacity.
  • the current collector a material that is electrochemically stable at the lithium insertion / release potential of the negative electrode active material is used.
  • the current collector is preferably made of copper, nickel, stainless steel or aluminum or an aluminum alloy containing at least one element selected from Mg, Ti, Zn, Mn, Fe, Cu and Si.
  • the thickness of the current collector is preferably in the range of 5 to 20 ⁇ m. A current collector having such a thickness can balance the strength and weight reduction of the negative electrode.
  • the negative electrode current collector is preferably integral with the negative electrode current collecting tab.
  • the negative electrode current collector may be a separate body from the negative electrode current collection tab.
  • the negative electrode is prepared by suspending a negative electrode active material, a binder and a conductive agent in a commonly used solvent to prepare a slurry, and applying this slurry to a current collector and drying to form a negative electrode material layer It is produced by applying a press.
  • the negative electrode may also be produced by forming a negative electrode active material, a binder, and a conductive agent in the form of a pellet to form a negative electrode material layer, which is disposed on a current collector.
  • the separator may be formed of, for example, a porous film containing polyethylene, polypropylene, cellulose, or polyvinylidene fluoride (PVdF), or a synthetic resin nonwoven fabric.
  • a porous film formed from polyethylene or a polypropylene can melt
  • security can be improved.
  • Electrolytic Solution for example, a nonaqueous electrolyte can be used.
  • the non-aqueous electrolyte may be, for example, a liquid non-aqueous electrolyte prepared by dissolving an electrolyte in an organic solvent, or a gel non-aqueous electrolyte in which a liquid electrolyte and a polymer material are combined.
  • the liquid non-aqueous electrolyte is preferably obtained by dissolving the electrolyte in an organic solvent at a concentration of 0.5 mol / L or more and 2.5 mol / L or less.
  • Examples of the electrolyte dissolved in the organic solvent include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), and lithium arsenic hexafluoride (LiAsF 6). ), Lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), and lithium salts such as lithium bistrifluoromethylsulfonylimide [LiN (CF 3 SO 2 ) 2 ], and mixtures thereof.
  • the electrolyte is preferably one that is difficult to oxidize even at a high potential, and LiPF 6 is most preferred.
  • organic solvents examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), and vinylene carbonate; such as diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC).
  • Chain carbonates cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF), and dioxolane (DOX); chain ethers such as dimethoxyethane (DME), and diethoxyethane (DEE); ⁇ -butyrolactone (GBL), acetonitrile (AN), and sulfolane (SL) are included.
  • cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), and vinylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • MEC methyl ethyl carbonate
  • Chain carbonates examples include cyclic ethers
  • polymer material examples include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), and polyethylene oxide (PEO).
  • PVdF polyvinylidene fluoride
  • PAN polyacrylonitrile
  • PEO polyethylene oxide
  • a room temperature molten salt (ionic melt) containing lithium ions a polymer solid electrolyte, an inorganic solid electrolyte, or the like may be used as the non-aqueous electrolyte.
  • Room temperature molten salt refers to a compound that can exist as a liquid at room temperature (15 to 25 ° C.) among organic salts composed of a combination of an organic cation and an anion.
  • the room temperature molten salt includes a room temperature molten salt that exists alone as a liquid, a room temperature molten salt that becomes liquid when mixed with an electrolyte, and a room temperature molten salt that becomes liquid when dissolved in an organic solvent.
  • the melting point of a room temperature molten salt used for a nonaqueous electrolyte battery is 25 ° C. or less.
  • the organic cation generally has a quaternary ammonium skeleton.
  • FIG. 9A shows an example in which positioning guide holes 39 are opened at the four corners of the second exterior portion 6.
  • FIG. 9B shows an example in which positioning guide holes 39 are opened at the four corners of the first exterior portion 5.
  • the electrode group 2 is housed in the first exterior portion 5, the electrode group side positive lead 12 is welded to the positive terminal lead 23, and the electrode group side negative lead 14 is welded to the negative terminal lead 36.
  • welding for example, laser welding can be used.
  • the pair of second insulation reinforcing members 38 is placed on the positive electrode current collecting tab 7a and the negative electrode current collecting tab 8a of the electrode group 2.
  • the second exterior part 6 is arranged on the first exterior part 5. Since the guide holes 39 are opened at the four corners of each of the first exterior part 5 and the second exterior part 6, it is easy to determine the position of the second exterior part 6 with respect to the first exterior part 5.
  • first exterior part 5 and the second exterior part 6 are welded.
  • welding for example, resistance seam welding is used.
  • the weld location is indicated by reference numeral 40. It is desirable that the welding location 40 be located inside the outer edges of the first exterior part 5 and the second exterior part 6.
  • this side is welded by, for example, resistance seam welding as shown in FIG. 10B. It is desirable that the welding location 41 be an outer edge portion of the first exterior portion 5 and the second exterior portion 6.
  • a part 42 of the welded portion 41 is cut off, and the gas in the exterior member is released.
  • the inner side of the welded portion 41 is welded by resistance seam welding or the like. This welding is desirably performed in a reduced pressure atmosphere.
  • the guide hole 39 can be removed by cutting the vicinity of the outer edges of the first exterior part 5 and the second exterior part 6.
  • the guide hole 39 may be left.
  • the battery of the first embodiment can be manufactured with high productivity.
  • the battery according to the first embodiment can include a plurality of electrode groups in one exterior member.
  • the second exterior part it is desirable to use the one having a flange part at the opening, similarly to the first exterior part.
  • the plurality of electrode groups can be connected in series or in parallel.
  • 11A to 11C show examples in which a plurality of electrode groups are connected in parallel.
  • the first electrode group 50 is stacked on the second electrode group 51, and the negative electrode current collecting tab 8 a of the first electrode group 50 and the negative electrode current collector of the second electrode group 51 are stacked.
  • the tab 8a is electrically connected by the fourth negative electrode lead 52, and the positive electrode current collecting tab 7a of the first electrode group 50 and the positive electrode current collecting tab 7a of the second electrode group 51 are connected to the fourth positive electrode lead (illustrated). Do not connect).
  • FIG. 11A the first electrode group 50 is stacked on the second electrode group 51, and the negative electrode current collecting tab 8 a of the first electrode group 50 and the negative electrode current collector of the second electrode group 51 are stacked.
  • the tab 8a is electrically connected by the fourth negative electrode lead 52, and the positive electrode current collecting tab 7a of the first electrode group 50 and the positive electrode current collecting tab 7a of the second electrode group 51 are
  • the negative electrode current collecting tabs 8a of the first and second electrode groups 50 and 51 are bent inward as necessary. The same bending is performed for the positive electrode current collecting tab 7a.
  • the 1st, 2nd electrode groups 50 and 51 are accommodated in the 1st exterior part 5 to which the positive electrode terminal part 3 and the negative electrode terminal part 4 were fixed.
  • the fourth negative electrode lead 52 is welded to the negative electrode terminal lead 36. Further, the fourth positive electrode lead is welded to the positive electrode terminal lead 23.
  • the battery shown in FIG. 12B is completed through the steps described above.
  • the fourth positive electrode lead and the fourth negative electrode lead can be formed of the same materials as those mentioned for the first to third positive electrode leads and the negative electrode lead.
  • the battery according to the first embodiment described above has an electrode group in a space formed by welding a stainless steel first exterior part having a flange part at the opening and a stainless steel second exterior part. Including an exterior member.
  • the battery includes a through-hole opened in the first exterior portion, an annular rising portion extending from the edge of the through-hole toward the exterior member, and a ring shape disposed on the outer peripheral surface of the rising portion.
  • a first exterior portion in a state in which the member, an insulating gasket having a cylindrical portion inserted into the rising portion, a head portion projects outside the first exterior portion, and a shaft portion is inserted into the tubular portion of the insulating gasket
  • a terminal portion including an external terminal fixed by caulking Therefore, it is possible to provide a battery that is excellent in flexibility and heat dissipation and has high strength and reliability.
  • the battery pack according to the second embodiment includes at least one battery according to the first embodiment. Examples of the assembled battery of the battery according to the first embodiment are shown in FIGS.
  • the battery pack 101 includes an assembled battery 102 using the battery 100 of the first embodiment as a unit cell.
  • a triangular prism-shaped conductive connecting member 62 is disposed between the top surface 21 b of the positive external terminal 17 of the first unit cell 60 and the top surface 21 b of the positive external terminal 17 of the second unit cell 61. Yes.
  • the two top surfaces and the conductive connecting member 62 are electrically connected to each other by welding.
  • an assembled battery unit 63 in which the first unit cell 60 and the second unit cell 61 are connected in parallel is obtained.
  • the assembled battery 102 is obtained by connecting the assembled battery units 63 in series by the bus bar 64.
  • a battery pack 101 shown in FIG. 14 includes an assembled battery 102 using the battery 100 of the first embodiment as a unit cell.
  • a battery unit 100 in which a first unit cell 60 and a second unit cell 61 are connected in series using a conductive connecting member 62 is used as an assembled battery unit 65, and the assembled battery units 65 are connected in series by a bus bar 64.
  • the assembled battery 102 is configured by connecting to.
  • the method of electrically connecting the first unit cell 60 and the second unit cell 61 using the conductive connecting member 62 is the same as described with reference to FIG.
  • the adjacent first unit cell 60 and second unit cell 61 are stacked in a state where the main surfaces of the exterior members 1 face each other.
  • the main surface of the first exterior portion 5 of the first unit cell 60 faces the main surface of the first exterior portion 5 of the second unit cell 61. ing. Further, in the adjacent assembled battery unit 63, the main surface of the second exterior portion 6 of the second unit cell 61 of one assembled battery unit 63 and the second unit cell of the other assembled battery unit 63. The main surface of the 61st 2nd exterior part 6 faces.
  • the volume energy density of an assembled battery can be made high by laminating
  • an insulating space between the unit cell 60 and the unit cell 61, or between the unit cells 60 and 60 and the unit cells 61 and 61, and 0.03 mm or more.
  • a gap may be provided, or an insulating member (for example, resin such as polypropylene, polyphenylene sulfide, epoxy, or fine ceramics such as alumina or zirconia) may be sandwiched therebetween.
  • the positive electrode external terminal 17 and the negative electrode external terminal 32 have a truncated pyramid-shaped head, a unit is provided at one of the two heads (for example, the first and second inclined surfaces) (first inclined surface).
  • a bus bar can be connected to the external terminal of the cell and the other (second inclined surface). That is, two directions can be connected with one head. As a result, the path for electrically connecting the batteries can be shortened, so that it is easy to flow a large current through the battery pack with low resistance.
  • the battery pack of the second embodiment includes at least one battery of the first embodiment, the battery pack can be thinned and improved in flexibility, excellent in reliability, and capable of reducing manufacturing costs.
  • the battery pack is used, for example, as a power source for electronic devices and vehicles (railway vehicles, automobiles, motorbikes, light vehicles, trolley buses, etc.).
  • the assembled battery may include a plurality of batteries electrically connected in series, parallel, or a combination of series and parallel.
  • the battery pack can include a circuit such as a battery control unit (Battery Control Unit, BMU), but the battery control unit includes a circuit (for example, a vehicle) on which the assembled battery is mounted.
  • BMU Battery Control Unit
  • the battery control unit has a function of preventing overcharge and overdischarge by monitoring the voltage and / or current of the cell and the assembled battery.
  • the battery according to at least one embodiment described above has an electrode in a space formed by welding a stainless steel first exterior part having a flange part in the opening and a stainless steel second exterior part.
  • An exterior member in which the group is stored is included.
  • the battery includes an annular rising portion extending from the edge of the through hole opened in the first exterior portion into the exterior member, a ring-shaped member disposed on the outer peripheral surface of the rising portion, and an external A terminal portion including a terminal. Therefore, it is possible to provide a battery that is excellent in flexibility and heat dissipation and has high strength and reliability.
  • insulating gasket 20 ... positive electrode terminal insulating member, 21 ... head, 21a, 21b: First and second inclined surfaces, 21c: Top surface, 22: Shaft portion, 23: First positive electrode lead, 24: First positive electrode insulation reinforcing member, 32: Negative electrode external terminal, 35: Negative electrode terminal insulation Member, 36 ... first negative electrode lead, 37 ... first negative electrode insulation reinforcing member, 38 ... second insulation reinforcement Wood, 39 ... guide hole, 40, 41 ... seam weld, 100 ... battery, 101 ... battery pack 102 ... battery assembly.

Abstract

実施形態によれば、扁平形状の電極群と、外装部材と、端子部とを含む電池が提供される。外装部材は、開口部にフランジ部を有するステンレス鋼製の第1の外装部と、ステンレス鋼製の第2の外装部とを含む。外装部材では、第1の外装部のフランジ部と第2の外装部が溶接されて形成された空間内に電極群が収納される。端子部は、第1の外装部に開口された貫通孔と、貫通孔の縁部から外装部材内に向けて延びた環状の立ち上がり部と、立ち上がり部の外周面に配置されたリング状部材と、絶縁ガスケットとを含む。また、端子部は、頭部及び軸部を含む外部端子を含む。外部端子は、頭部が第1の外装部の外側に突出し、かつ軸部が絶縁ガスケットの筒部に挿入された状態で第1の外装部にかしめ固定される。

Description

電池及び電池パック
 本発明の実施形態は、電池及び電池パックに関する。
 一次電池及び二次電池などの電池は、一般に、正極及び負極を備えた電極群と、この電極群を収納する外装部材とを具備する。
 外装部材として、現在、金属缶、ラミネートフィルム製容器が実用化されている。金属缶は、アルミニウム等の金属板から深絞り加工により得られる。深絞り加工で缶を作製するには、金属板にある程度の厚さが必要で、それが外装部材の薄型化を妨げ、体積容量ロスに繋がっている。例えば、板厚0.5mmの外装缶を厚さ13mmの電池に適用すると、電池厚さに占める外装缶のトータル板厚の割合はおよそ7.7%となる。また、外装缶は、剛性が高く、柔軟性に劣るため、外装缶の内壁と電極群との間に隙間を生じやすい。そのため、電極群の正極と負極の間に隙間が生じて充放電サイクル性能が劣化する可能性がある。さらに、剛性の高い外装缶は、溶接部付近に過度な力が加わった際に割れ等の不具合を生じやすい。
 一方、ラミネートフィルム製容器については、ヒートシールによる封止部が高温で溶融する可能性があるため、信頼性が十分ではない。
 また、外装缶、ラミネートフィルム製容器のいずれも、製造コストが高い。
 従って、薄型化及び柔軟性の向上が可能で、かつ信頼性に優れる外装部材を低い製造コストで提供することが要望されている。
特開2012-227026号公報 特開2012-226836号公報
 本発明が解決しようとする課題は、薄型化及び柔軟性の改善が可能で、かつ信頼性に優れる外装部材を備え、製造コストの削減が可能な電池及び電池パックを提供することにある。
 第1の実施形態によると、扁平形状の電極群と、外装部材と、端子部とを含む電池が提供される。電極群は、正極、正極と電気的に接続された正極集電タブ、負極、及び、負極と電気的に接続された負極集電タブを含む。扁平形状に捲回された正極集電タブが電極群の第一端面に位置する。扁平形状に捲回された負極集電タブが電極群の第二端面に位置する。外装部材は、開口部にフランジ部を有するステンレス鋼製の第1の外装部と、ステンレス鋼製の第2の外装部とを含む。外装部材では、第1の外装部のフランジ部と第2の外装部が溶接されて形成された空間内に電極群が収納される。端子部は、第1の外装部に開口された貫通孔と、貫通孔の縁部から外装部材内に向けて延びた環状の立ち上がり部と、立ち上がり部の外周面に配置されたリング状部材と、立ち上がり部内に挿入される筒部を有する絶縁ガスケットとを含む。また、端子部は、頭部及び頭部から延び出た軸部を含む外部端子を含む。外部端子は正極または負極と電気的に接続され、頭部が第1の外装部の外側に突出し、かつ軸部が絶縁ガスケットの筒部に挿入された状態で第1の外装部にかしめ固定される。
図1は、第1の実施形態の電池の概略斜視図である。 図2は、図1に示す電池の分解斜視図である。 図3は、図1に示す電池の電極群の斜視図である。 図4は、電極群を部分的に展開した状態を示す斜視図である。 図5Aは、図1のA部を電池長辺方向に沿って切断した際に得られる断面図である。 図5Bは図1のA部の端子部の分解図である。 図6は、図1に示す電池の外部端子の概略斜視図である。 図7は、図1のA部を電池長辺方向に沿って切断した状態を示す斜視図である。 図8は、図1に示す電池の第1の外装部に端子部が固定されたものを示す斜視図である。 図9Aは第2の外装部の平面図である。 図9Bは第1の外装部の平面図である。 図10Aは、第1の実施形態の電池の製造工程を示す三面図である。 図10Bは、第1の実施形態の電池の製造工程を示す三面図である。 図10Cは、第1の実施形態の電池の製造工程を示す三面図である。 図10Dは、第1の実施形態の電池の製造工程を示す三面図である。 図11Aは複数の電極群の集電タブ間を電気的に接続する工程を示す概略図である。 図11Bは複数の電極群の集電タブ間を電気的に接続する工程を示す概略図である。 図11Cは第1の外装部の端子部付近を電池長辺方向に沿って切断した断面図である。 図12Aは、複数の電極群を含む第1の実施形態の電池の組立工程を示す概略図である。 図12Bは、複数の電極群を含む第1の実施形態の電池の組立工程を示す概略図である。 図13は、第2の実施形態に係る電池パックの第一例を示す概略図である。 図14は、第2の実施形態に係る電池パックの第二例を示す概略図である。
 以下に、実施の形態について図面を参照しながら説明する。なお、実施の形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施の形態の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術とを参酌して、適宜設計変更することができる。
 [第1の実施形態]
 第1の実施形態の電池を図1~図12を参照して説明する。
 図1に示す電池100は、非水電解質電池である。電池100は、外装部材1と、電極群2と、正極端子部3と、負極端子部4と、非水電解質(図示しない)とを含む。
 図1及び図2に示すように、外装部材1は、第1の外装部5と、第2の外装部6とを含む。第1の外装部5は、ステンレス鋼製の底付き角筒容器であり、開口部5aにフランジ部5bを有する。図1、図2及び図5Aに示すように、第1の外装部5の短辺側壁と底部とを繋ぐコーナの中央付近に内側に張り出した凹部が設けられており、凹部の底部が傾斜面5dになっている。第1の外装部5は、開口部5aの大きさ(開口面積となる部分の最大長)以下の深さを有するものである。より好ましい第1の外装部5は、開口面積となる部分の短辺以下の深さを有するものである(例えば図2に示すもの)。第1の外装部5は、例えば、ステンレス鋼板から浅絞り加工によって作製される。一方、第2の外装部6は、ステンレス鋼製の矩形板である。第1の外装部5のフランジ部5bが第2の外装部6の四辺に溶接されて形成された空間内に電極群2が収納される。溶接には、例えば、抵抗シーム溶接が用いられる。抵抗シーム溶接は、レーザ溶接に比して低いコストで高い気密性と耐熱性を実現することができる。
 電極群2は、図4に示すように、扁平形状で、正極7と、負極8と、正極7と負極8の間に配置されたセパレータ9とを含む。正極7は、例えば箔からなる帯状の正極集電体と、正極集電体の長辺に平行な一端部からなる正極集電タブ7aと、少なくとも正極集電タブ7aの部分を除いて正極集電体に形成された正極材料層(正極活物質含有層)7bとを含む。一方、負極8は、例えば箔からなる帯状の負極集電体と、負極集電体の長辺に平行な一端部からなる負極集電タブ8aと、少なくとも負極集電タブ8aの部分を除いて負極集電体に形成された負極材料層(負極活物質含有層)8bとを含む。電極群2は、正極7の正極材料層7bと負極8の負極材料層8bがセパレータ9を介して対向すると共に、捲回軸の一方側に正極集電タブ7aが負極8及びセパレータ9よりも突出し、かつ他方側に負極集電タブ8aが正極7及びセパレータ9よりも突出するように、正極7、セパレータ9及び負極8が扁平形状に捲回されたものである。よって、電極群2において、捲回軸と垂直な第一端面に、扁平の渦巻き状に捲回された正極集電タブ7aが位置する。また、捲回軸と垂直な第二端面に、扁平の渦巻き状に捲回された負極集電タブ8aが位置する。絶縁シート10は、電極群2の最外周のうち、正極集電タブ7a及び負極集電タブ8aを除いた部分を被覆している。なお、電極群2は、非水電解質(図示しない)を保持している。
 バックアップ正極リード11(第3の正極リード)は、導電性の板をU字形状に折り曲げたもので、正極集電タブ7aの両端の湾曲部を除いた部分(中央付近)を挟んで正極集電タブ7aの層同士を密着させている。電極群側正極リード12(第2の正極リード)は、バックアップ正極リード11よりも大きな面積の導電性の板である。図5Aに示すように、電極群側正極リード12は、バックアップ正極リード11の第1外装部5開口部側の面に接続されている。正極集電タブ7a、バックアップ正極リード11及び電極群側正極リード12は、溶接により一体化され、これにより正極7が正極集電タブ7a及びバックアップ正極リード11を介して電極群側正極リード12と電気的に接続されている。溶接は、例えば超音波溶接により行われる。
 バックアップ負極リード13(第3の負極リード)は、導電性の板をU字形状に折り曲げたもので、負極集電タブ8aの両端の湾曲部を除いた部分(中央付近)を挟んで負極集電タブ8aの層同士を密着させている。電極群側負極リード14(第2の負極リード)は、バックアップ負極リード13よりも大きな面積の導電性の板である。電極群側負極リード14は、バックアップ負極リード13の第1外装部5開口部側の面に接続されている。負極集電タブ8a、バックアップ負極リード13及び電極群側負極リード14は、溶接により一体化され、これにより負極8が負極集電タブ8a及びバックアップ負極リード13を介して電極群側負極リード14と電気的に接続されている。溶接は、例えば超音波溶接により行われる。
 正極端子部3は、図2、図5A、図5B及び図7に示すように、第1の外装部5の傾斜面5dに開口された貫通孔(第1の貫通孔)15と、バーリング部(第1のバーリング部)16と、正極外部端子17と、リング状部材(第1のリング状部材)18と、絶縁ガスケット(第1の絶縁ガスケット)19と、正極端子絶縁部材(第3の正極絶縁部材)20とを含む。
 バーリング部(環状の立ち上がり部)16は、図5A及び図7に示すように、貫通孔15の周縁部から外装部材1内に向けて延びており、バーリング加工によって形成されたものである。
 正極外部端子17は、図6に示すように、角錐台形状の頭部21と、円柱状の軸部22とを含む。頭部21は、二つの錐体面21a、21b(第1、第2の傾斜面)と、二つの錐体面21a、21bを連結する矩形の頂面21cとを有する。円柱状の軸部22は、頭部21の頂面21cと平行な平面から伸び出ている。正極外部端子17は、例えば、アルミニウム、アルミニウム合金等の導電性材料から形成される。
 リング状部材18は、例えば、ガスケットよりも剛性の高い材質で形成された円形リングからなる。ガスケットよりも剛性の高い材質の例には、ステンレス鋼、鉄にメッキ(例えばNi、NiCr等)を施したもの、セラミックス、ガスケットよりも高い剛性を持ち得る樹脂(例えばポリフェニレンサルファイド(PPS)、ポリブチレンテレフタレート(PBT))などが含まれる。リング状部材18は、図5A及び図7に示すように、バーリング部16の外周面上に配置されてバーリング部16と接している。
 また、リング状部材18を樹脂やセラミックス等絶縁材料で形成した場合は、端子絶縁補強部材24と一体化することも出来る。
 絶縁ガスケット19は、図7に示すように、一方の開口端にフランジ部19aを有する円筒体(筒部)である。絶縁ガスケット19は、図5A及び図7に示すように、円筒体の部分が貫通孔15及びバーリング部16内に挿入され、フランジ部19aが第1の外装部5の外面上の貫通孔15の外周に配置されている。絶縁ガスケット19は、例えば、フッ素樹脂、フッ素ゴム、ポリフェニレンサルファイド樹脂(PPS樹脂)、ポリエーテルエーテルケトン樹脂(PEEK樹脂)、ポリプロピレン樹脂(PP樹脂)、及びポリブチレンテレフタレート樹脂(PBT樹脂)などの樹脂から形成されている。
 正極端子絶縁部材(第3の正極絶縁部材)20は、図5Bに示すように、底付きの角筒体であり、底部に貫通孔20aを有する。正極端子絶縁部材20は、第1の外装部5の外面上に配置されている。正極端子絶縁部材20の貫通孔20aには、図7に示すように、絶縁ガスケット19のフランジ部19aが挿入されている。
 正極端子部3は、正極端子リード23(第1の正極リード)をさらに備えることができる。正極端子リード23は、貫通孔23aを有する導電性の板である。
 正極端子部3が正極端子リード23を含む場合、正極端子部3が正極端子絶縁補強部材24(第1の正極絶縁部材)をさらに備えることができる。図2に示すように、正極端子絶縁補強部材24は、有底矩形筒を長辺方向に半割した構造の本体部分24aと、本体部分24aに形成された円形溝24bと、円形溝24bの中央に開口された貫通孔24cとを有する。正極端子絶縁補強部材24は、本体部分24aが第1の外装部5の短辺側側壁から底面に繋がるコーナ部と、第1の外装部5の短辺側側壁から長辺側側面に繋がるコーナ部を被覆する。これにより、第1の外装部5、特に短辺側側壁と長辺側側壁と底部とが交わるコーナ付近を補強することができる。円形溝24bには、バーリング部16の外周面上に配置されたリング状部材18が配置される。貫通孔24cは、バーリング部16の開口及び第1の外装部5の貫通孔15と連通する。正極端子絶縁補強部材24上に、正極端子リード23が配置される。正極端子リード23の貫通孔23aは、正極端子絶縁補強部材24の貫通孔24c、バーリング部16の開口及び第1の外装部5の貫通孔15と連通する。
 正極外部端子17の軸部22は、絶縁ガスケット19、正極端子絶縁部材20の貫通孔20a、第1の外装部5の貫通孔15、バーリング部16、リング状部材18、正極端子絶縁補強部材24の貫通孔24c及び正極端子リード23の貫通孔23aに挿入された後、かしめ加工によって塑性変形を生じる。その結果、これらの部材が一体化されると共に、正極外部端子17が正極端子リード23と電気的に接続される。よって、正極外部端子17は、リベットの役割も担う。なお、正極外部端子17の軸部22の端面と正極端子リード23の貫通孔23aとの境界部をレーザー等により溶接し、より強固な接続と電気導通性の向上を施しても良い。
 負極端子部4は、図2に示すように、第1の外装部5の傾斜面5dに開口された貫通孔(第2の貫通孔)30と、バーリング部(第2のバーリング部)31と、負極外部端子32と、リング状部材33(第2のリング状部材)と、絶縁ガスケット(第2の絶縁ガスケット)34と、負極端子絶縁部材(第3の負極絶縁部材)35とを含む。これら部材は、正極端子部3で説明したのと同様な構造を有する。
 バーリング部(環状の立ち上がり部)31は、貫通孔30の周縁部から外装部材1内に向けて延びており、バーリング加工によって形成されたものである。
 負極外部端子32は、図11Cに示す角錐台形状の頭部32aと、円柱状の軸部とを含む。頭部32aは、二つの錐体面(第1、第2の傾斜面)32b,32cと、二つの錐体面32b,32cを連結する矩形の頂面32dとを有する。円柱状の軸部は、頭部32aの頂面と平行な平面から伸び出ている。負極外部端子32は、例えば、アルミニウム、アルミニウム合金等の導電性材料から形成される。
 リング状部材33は、例えば、ガスケットよりも剛性の高い材質で形成された円形リングからなる。ガスケットよりも剛性の高い材質の例には、ステンレス鋼、鉄にメッキ(例えばNi、NiCr等)を施したもの、セラミックス、ガスケットよりも高い剛性を持ち得る樹脂(例えばポリフェニレンサルファイド(PPS)、ポリブチレンテレフタレート(PBT))などが含まれる。リング状部材33は、バーリング部31の外周面上に配置される。
 また、リング状部材33を樹脂やセラミックス等絶縁材料で形成した場合は、端子絶縁補強部材37と一体化することも出来る。
 絶縁ガスケット34は、一方の開口端にフランジ部を有する円筒体である。絶縁ガスケット34は、円筒体の部分が貫通孔30及びバーリング部31内に挿入され、フランジ部が第1の外装部5の外面上の貫通孔30の外周に配置されている。絶縁ガスケット34の材質の例には、正極端子部3で説明したのと同様なものが挙げられる。
 負極端子絶縁部材(第3の負極絶縁部材)35は、底付きの角筒体であり、図2に示すように底部に貫通孔35aを有する。負極端子絶縁部材35は、第1の外装部5の外面上に配置されている。負極端子絶縁部材35の貫通孔35aには、絶縁ガスケット34のフランジ部が挿入されている。
 また、負極端子部4は、負極端子リード36(第1の負極リード)をさらに備えることができる。負極端子リード36は、貫通孔36aを有する導電性の板である。
 負極端子部4が負極端子リード36を含む場合、負極端子部4は負極端子絶縁補強部材37(第1の負極絶縁部材)をさらに備えることができる。図2に示すように、負極端子絶縁補強部材37は、有底矩形筒を長辺方向に半割した構造の本体部分37aと、本体部分37aに形成された円形溝37bと、円形溝37bの中央に開口された貫通孔37cとを有する。負極端子絶縁補強部材37は、本体部分37aが第1の外装部5の短辺側側壁から底面に繋がるコーナ部と、第1の外装部5の短辺側側壁から長辺側側壁に繋がるコーナ部を被覆する。これにより、第1の外装部5、特に短辺側側壁と長辺側側壁と底部とが交わるコーナ付近を補強することができる。円形溝37bには、バーリング部31の外周面上に配置されたリング状部材33が配置される。貫通孔37cは、バーリング部31の開口及び第1の外装部5の貫通孔30と連通する。負極端子絶縁補強部材37上に、負極端子リード36が配置される。負極端子リード36の貫通孔36aは、負極端子絶縁補強部材37の貫通孔37c、バーリング部31の開口及び第1の外装部5の貫通孔30と連通する。
 負極外部端子32の軸部は、絶縁ガスケット34、負極端子絶縁部材35の貫通孔35a、第1の外装部5の貫通孔30、バーリング部31、リング状部材33、負極端子絶縁補強部材37の貫通孔37c及び負極端子リード36の貫通孔36aに挿入された後、かしめ加工によって塑性変形を生じる。その結果、図8に示すように、これらの部材が一体化されると共に、負極外部端子32が負極端子リード36と電気的に接続される。よって、負極外部端子36は、リベットの役割も担う。なお、負極外部端子32の軸部の端面と負極端子リード36の貫通孔36aとの境界部をレーザー等により溶接し、より強固な接続と電気導通性の向上を施しても良い。
 一対の第2の絶縁補強部材38は、図2に示すように、有底矩形筒を長辺方向に半割した構造をそれぞれ有する。一方の第2の絶縁補強部材38は、正極集電タブ7aのうち、捲回中心から第2の外装部6側までの半分程度を被覆する。他方の第2の絶縁補強部材38は、負極集電タブ8aのうち、捲回中心から第2の外装部6側までの半分程度を被覆する。これにより、第2の外装部6、特に短辺付近を補強することができる。
 第1~第3の正極リード及び負極リードは、例えば、アルミニウム、アルミニウム合金材から形成することができる。接触抵抗を低減するために、リードの材料は、リードに電気的に接続し得る正極集電体又は負極集電体の材料と同じであることが好ましい。
 第1~第3の正極絶縁部材及び負極絶縁部材、絶縁補強部材は、例えば、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、ポリブチレンテレフタラート(PBT)、ポリエチレンテレフタラート(PET)、ポリテトラフロロエチレン(PTFE)、ポリフェニレンサルファイド(PPS)、及びポリエーテルエーテルケトン(PEEK)等の熱可塑性樹脂から形成される。
 電極群2は、第1の外装部5内に、第一端面7aが正極端子部3と対向し、かつ第二端面8aが負極端子部4と対向するように収納される。そのため、電極群2の第一端面7a及び第二端面8aと交わる平面が第1の外装部5内の底面5cと対向し、第一端面7a及び第二端面8aと交わる湾曲面が第1の外装部5内の長辺側側面と対向する。
 第1の外装部5の短辺側壁と底部とを繋ぐコーナ部においては、電極群2の第一端面7aとの間、第二端面8aとの間、それぞれに隙間が存在する。第1の外装部5の短辺側壁と底部とを繋ぐコーナ部に内側に張り出した凹部を設け、凹部の底部を傾斜面5dとすることにより、第1の外装部5内のデッドスペースが少なくなるため、電池の体積エネルギー密度を高くすることが可能となる。また、傾斜面5dそれぞれに正極端子部3、負極端子部4を配置することにより、傾斜面を持たない短辺側面に正極端子部3及び負極端子部4を設ける場合よりも、端子部の設置面積を増やすことができる。そのため、正極外部端子17の軸部22及び負極外部端子32の軸部の径を太くすることが可能になるため、低抵抗で大きな電流(ハイレート電流)を流すことが可能となる。
 電極群2が第1の外装部5内に収納された結果、第2の絶縁補強部材38の下端が第1の正極絶縁部材24の上端と接することにより形成された有底矩形筒状のカバーで正極集電タブ7aが被覆される。また、第2の絶縁補強部材38の下端が第1の負極絶縁部材37の上端と接することにより形成された有底矩形筒状のカバーで負極集電タブ8aが被覆される。
 第2の外装部6は、第1の外装部5の蓋として機能する。第1の外装部5のフランジ部5bと第2の外装部6の四辺が溶接されることにより、電極群2が外装部材1内に封止される。
 以上説明した図1~図8に示す非水電解質電池は、開口部にフランジ部を有するステンレス鋼製の第1の外装部とステンレス鋼製の第2の外装部が溶接されて形成された空間内に電極群が収納される外装部材を含む。第1,第2の外装部がステンレス鋼製であるため、第1,第2の外装部の板厚を薄くした際にも高い強度を保つことができる。その結果、外装部材の柔軟性を高めることができるため、減圧封止又は外装部材の外側から荷重を加える等により電極群を拘束しやすくなる。これにより、電極群の極間距離が安定して抵抗を低くすることができると共に、耐振動性と耐衝撃性を有する電池パックの実現が容易になる。さらに、第1,第2の外装部の柔軟性が高いと、第1,第2の外装部の内面から電極群までの距離を縮めることが容易となるため、電池の放熱性を改善し得る。
 ステンレス鋼製の第1,第2の外装部は、溶接がし易く、安価な抵抗シーム溶接により封止が可能である。よって、ラミネートフィルム製容器よりも気体シール性の高い外装部材を低コストで実現することができる。また、外装部材の耐熱性を向上することができる。例えば、SUS304の融点が1400℃であるのに対し、Alの融点は650℃である。
 また、外部端子の軸部は、貫通孔にかしめ固定された結果、塑性変形を生じる。その結果、絶縁ガスケットの径方向に力が加わるが、立ち上がり部がその外側に配置されたリング状部材で補強されているため、絶縁ガスケットに圧縮応力が生じて外部端子を第1の外装部に高い強度で接続することができる。第1の外装部の板厚、すなわち、立ち上がり部の板厚を薄くしてもリング状部材で立ち上がり部を補強することができるため、第1の外装部の板厚に拘らず、外部端子を第1の外装部に高い強度で接続することができる。さらに、立ち上がり部が、貫通孔の縁部から外装部材内に向けて延びているため、ガス発生等により外装部材の内圧が上昇した際の液漏れを、外圧の作用によって抑えることが可能となる。よって、第1,第2の外装部の板厚を薄くした際にも高い信頼性を実現することができる。
 よって、第1の実施形態の電池によれば、第1,第2の外装部の板厚を薄くした際にも高い強度と信頼性を得ることができるため、柔軟性と放熱性に優れ、かつ強度と信頼性の高い電池を提供することができる。
 第1の外装部を、開口部の最大長以下の深さを有するものにすると、第1の外装部の開口部面積が広くなる。第1の外装部の四辺に第2の外装部が溶接されるが、開口部面積が大きくなると、溶接される一辺の長さが長くなるため、三辺を先に溶接して残りの一辺の隙間から電解液を注液するのが容易となる。また、溶接強度が他よりも低い箇所を設ける等により外装部材を仮封止することができるため、仮封止用の部品(例えばゴム栓)を不要にすることができる。さらに、外装部材が扁平形状になるため、電池の放熱性を向上することができる。
 第1の外装部が傾斜面を有する凹部を含み、傾斜面に端子部を配置することにより、第1の外装部内のデッドスペースを削減することができ、また、軸部の径が太い外部端子を使用することが可能になるため、低抵抗で大きな電流(ハイレート電流)を流すことが可能となる。
 なお、傾斜部は、外装部材の短辺の中央部付近に設けるものに限定されず、外装部材の短辺全体に亘るものでも良い。
 端子部が、外部端子と電気的に接続された第1のリードをさらに含み、第1のリードを正極集電タブまたは負極集電タブと電気的に接続することが望ましい。第1のリードを使用することにより、正極集電タブまたは負極集電タブを外部端子に直接接続する場合に比して位置決めが容易になる。そのため、生産性を向上することができる。また、第1のリードを外部端子にかしめ加工で接続することにより、第1のリードと外部端子間の抵抗を低くすることができる。
 第1の外装部を補強する絶縁部材を、第1のリードと第1の外装部の内面との間に配置することにより、第1のリードと第1の外装部とを絶縁しつつ、第1の外装部を補強することができる。このような絶縁部材は、外装部材の薄型化を進める上で有用である。
 正極集電タブまたは負極集電タブと電気的に接続された第2のリードをさらに含み、第2のリードを第1のリードと電気的に接続することが望ましい。これにより、溶接の際の位置決めが容易となる。また、正極集電タブ及び負極集電タブに対する第1のリードの位置が多少ずれても、十分な接続面積を確保することができるため、低抵抗な電池を実現することができる。
 外部端子の第1の端面が、四辺形の頂面と、頂面の互いに対向する二辺に連結された第1、第2の傾斜面とを有することにより、三つの面のいずれかを溶接面に選択することで溶接方向を変更することができる。
 第1の外装部及び第2の外装部の板厚は、0.02mm以上0.3mm以下の範囲にすることが望ましい。この範囲にすることにより、機械的強度と柔軟性という相反する性質を両立させることができる。板厚のより好ましい範囲は、0.05mm以上0.15mm以下である。
 正極端子部、負極端子部又は両方のリング状部材の外郭と内径の差(肉厚)は、第1の外装部の板厚と同じ又はそれ以上であることが望ましい。これにより、第1の外装部の板厚に拘らず、外部端子を第1の外装部に高い強度で接続することができる。具体的には、最短肉厚は0.1mm以上にすることができる。
 また、リング状部材の外郭形状は必ずしもバーリング断面形状と同様形状である必要は無く、長方形や六角形などの多面体でも良く、単数又は複数の曲線と単数又は複数の直線の複合形状でも良い。
 第2の外装部には、図5A及び図5Bに例示されるような平板を使用することができるが、平板の代わりに、開口部にフランジ部を有するものを使用しても良い。このような構造の例には、第1の外装部と同様なものを挙げることができる。
 バックアップ正極リード11(第3の正極リード)及びバックアップ負極リード13(第3の負極リード)は、U字形状の導電板に限定されず、導電性の平板を使用しても良い。また、バックアップ正極リード11またはバックアップ負極リード13あるいは両方を用いない構成にすることも可能である。
 外装部材は、電池内圧が規定値以上に上昇した際に電池内部の圧力を開放することができる安全弁などを更に備えることもできる。
 第1の実施形態に係る電池は、一次電池であってもよいし、又は二次電池であってもよい。第1の実施形態に係る電池の一例としては、リチウムイオン二次電池が挙げられる。
 第1の実施形態の電池の正極、負極、セパレータ及び非水電解質について、以下に説明する。
 1)正極
 正極は、例えば、正極集電体と、正極集電体に保持された正極材料層と、正極集電タブとを含むことができる。正極材料層は、例えば、正極活物質、導電剤、及び結着剤を含むことができる。
 正極活物質としては、例えば、酸化物又は硫化物を用いることができる。酸化物及び硫化物の例には、リチウムを吸蔵する二酸化マンガン(MnO2)、酸化鉄、酸化銅、酸化ニッケル、リチウムマンガン複合酸化物(例えばLixMn24またはLixMnO2)、リチウムニッケル複合酸化物(例えばLixNiO2)、リチウムコバルト複合酸化物(例えばLixCoO2)、リチウムニッケルコバルト複合酸化物(例えばLiNi1-yCoy2)、リチウムマンガンコバルト複合酸化物(例えばLixMnyCo1-y2)、スピネル構造を有するリチウムマンガンニッケル複合酸化物(例えばLixMn2-yNiy4)、オリビン構造を有するリチウムリン酸化物(例えばLixFePO4、LixFe1-yMnyPO4、LixCoPO4)、硫酸鉄(Fe2(SO43)、バナジウム酸化物(例えばV25)及び、リチウムニッケルコバルトマンガン複合酸化物が挙げられる。上記の式において、0<x≦1であり、0<y≦1である。活物質として、これらの化合物を単独で用いてもよく、或いは、複数の化合物を組合せて用いてもよい。
 結着剤は、活物質と集電体とを結着させるために配合される。結着剤の例としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴムが挙げられる。
 導電剤は、集電性能を高め、且つ、活物質と集電体との接触抵抗を抑えるために必要に応じて配合される。導電剤の例としては、アセチレンブラック、カーボンブラック及び黒鉛のような炭素質物が挙げられる。
 正極材料層において、正極活物質及び結着剤は、それぞれ、80質量%以上98質量%以下及び2質量%以上20質量%以下の割合で配合することが好ましい。
 結着剤は、2質量%以上の量にすることにより十分な電極強度を得ることができる。また、20質量%以下にすることにより電極の絶縁材の配合量を減少させ、内部抵抗を減少できる。
 導電剤を加える場合には、正極活物質、結着剤及び導電剤は、それぞれ、77質量%以上95質量%以下、2質量%以上20質量%以下、及び3質量%以上15質量%以下の割合で配合することが好ましい。導電剤は、3質量%以上の量にすることにより上述した効果を発揮することができる。また、15質量%以下にすることにより、高温保存下での正極導電剤表面での非水電解質の分解を低減することができる。
 正極集電体は、アルミニウム箔、又は、Mg、Ti、Zn、Ni、Cr、Mn、Fe、Cu及びSiから選択される少なくとも1種類の元素を含むアルミニウム合金箔であることが好ましい。
 正極集電体は、正極集電タブと一体であることが好ましい。或いは、正極集電体は、正極集電タブと別体でもよい。
 2)負極
 負極は、例えば、負極集電体と、負極集電体に保持された負極材料層と、負極集電タブとを含むことができる。負極材料層は、例えば、負極活物質、導電剤、及び結着剤を含むことができる。
 負極活物質としては、例えば、リチウムイオンを吸蔵及び放出することができる、金属酸化物、金属窒化物、合金、炭素等を用いることができる。0.4V以上(対Li/Li+)貴な電位でリチウムイオンの吸蔵及び放出が可能な物質を負極活物質として用いることが好ましい。
 導電剤は、集電性能を高め、且つ、負極活物質と集電体との接触抵抗を抑えるために配合される。導電剤の例としては、アセチレンブラック、カーボンブラック及び黒鉛のような炭素質物が挙げられる。
 結着剤は、分散された負極活物質の間隙を埋め、また、負極活物質と集電体とを結着させるために配合される。結着剤の例としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、及びスチレンブタジェンゴムが挙げられる。
 負極材料層中の活物質、導電剤及び結着剤は、それぞれ、68質量%以上96質量%以下、2質量%以上30質量%以下、及び2質量%以上30質量%以下の割合で配合することが好ましい。導電剤の量を2質量%以上とすることにより、負極層の集電性能を向上させることができる。また、結着剤の量を2質量%以上とすることにより、負極材料層と集電体との結着性を十分に発現することができ、優れたサイクル特性を期待できる。一方、導電剤及び結着剤はそれぞれ28質量%以下にすることが高容量化を図る上で好ましい。
 集電体としては、負極活物質のリチウムの吸蔵電位及び放出電位において電気化学的に安定である材料が用いられる。集電体は、銅、ニッケル、ステンレス又はアルミニウム、或いは、Mg、Ti、Zn、Mn、Fe、Cu、及びSiから選択される少なくとも1種類の元素を含むアルミニウム合金から作られることが好ましい。集電体の厚さは5~20μmの範囲内にあることが好ましい。このような厚さを有する集電体は、負極の強度と軽量化とのバランスをとることができる。
 負極集電体は、負極集電タブと一体であることが好ましい。或いは、負極集電体は、負極集電タブと別体でもよい。
 負極は、例えば負極活物質、結着剤および導電剤を汎用されている溶媒に懸濁してスラリーを調製し、このスラリーを集電体に塗布し、乾燥させて、負極材料層を形成した後、プレスを施すことにより作製される。負極はまた、負極活物質、結着剤及び導電剤をペレット状に形成して負極材料層とし、これを集電体上に配置することにより作製されてもよい。
 3)セパレータ
 セパレータは、例えば、ポリエチレン、ポリプロピレン、セルロース、またはポリフッ化ビニリデン(PVdF)を含む多孔質フィルム、または、合成樹脂製不織布から形成されてよい。中でも、ポリエチレン又はポリプロピレンから形成された多孔質フィルムは、一定温度において溶融し、電流を遮断することが可能であるため、安全性を向上できる。
 4)電解液
 電解液としては、例えば、非水電解質を用いることができる。
 非水電解質は、例えば、電解質を有機溶媒に溶解することにより調製される液状非水電解質、又は、液状電解質と高分子材料を複合化したゲル状非水電解質であってよい。
 液状非水電解質は、電解質を0.5モル/L以上2.5モル/L以下の濃度で有機溶媒に溶解したものであることが好ましい。
 有機溶媒に溶解させる電解質の例には、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、及びビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO22]のようなリチウム塩、及び、これらの混合物が含まれる。電解質は高電位でも酸化し難いものであることが好ましく、LiPF6が最も好ましい。
 有機溶媒の例には、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、及びビニレンカーボネートのような環状カーボネート;ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、及びメチルエチルカーボネート(MEC)のような鎖状カーボネート;テトラヒドロフラン(THF)、2メチルテトラヒドロフラン(2MeTHF)、及びジオキソラン(DOX)のような環状エーテル;ジメトキシエタン(DME)、及びジエトキシエタン(DEE)のような鎖状エーテル;γ-ブチロラクトン(GBL)、アセトニトリル(AN)、及びスルホラン(SL)が含まれる。これらの有機溶媒は、単独で、又は混合溶媒として用いることができる。
 高分子材料の例には、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)、及びポリエチレンオキサイド(PEO)が含まれる。
 或いは、非水電解質として、リチウムイオンを含有した常温溶融塩(イオン性融体)、高分子固体電解質、無機固体電解質等を用いてもよい。
 常温溶融塩(イオン性融体)は、有機物カチオンとアニオンとの組合せからなる有機塩のうち、常温(15~25℃)で液体として存在し得る化合物を指す。常温溶融塩には、単体で液体として存在する常温溶融塩、電解質と混合させることで液体となる常温溶融塩、及び有機溶媒に溶解させることで液体となる常温溶融塩が含まれる。一般に、非水電解質電池に用いられる常温溶融塩の融点は、25℃以下である。また、有機物カチオンは、一般に4級アンモニウム骨格を有する。
 第1の実施形態の電池の製造方法を以下に説明する。
 図3に例示されるような、絶縁シート10付の電極群2を作製する。また、図8に例示されるような、正極端子部3及び負極端子部4が固定された第1の外装部5を作製する。なお、第1の外装部5及び第2の外装部6それぞれに、位置決め用の案内穴を少なくとも1つ開口する。その一例を図9A及び図9Bに示す。図9Aには、第2の外装部6の四隅に位置決め用の案内穴39が開口された例が示されている。図9Bには、第1の外装部5の四隅に位置決め用の案内穴39が開口された例が示されている。
 電極群2を第1の外装部5内に収納し、電極群側正極リード12を正極端子リード23に溶接し、また、電極群側負極リード14を負極端子リード36に溶接する。溶接には、例えばレーザ溶接を用いることができる。
 次いで、一対の第2の絶縁補強部材38を、電極群2の正極集電タブ7a及び負極集電タブ8aに被せる。ひきつづき、第2の外装部6を第1の外装部5上に配置する。第1の外装部5及び第2の外装部6それぞれの四隅に案内穴39が開口されているため、第1の外装部5に対する第2の外装部6の位置を定めることが容易である。
 次いで、図10Aに示すように、第1の外装部5及び第2の外装部6の三辺(例えば、長辺と短辺二辺)を溶接する。溶接には、例えば、抵抗シーム溶接が用いられる。溶接箇所を符号40で示す。溶接箇所40は、第1の外装部5及び第2の外装部6の外縁よりも内側に位置することが望ましい。
 未溶接の一辺の開口から電解液を注液した後、図10Bに示すように、この一辺を例えば抵抗シーム溶接で溶接する。溶接箇所41は、第1の外装部5及び第2の外装部6の外縁部にすることが望ましい。
 次いで、エージング、初回充放電を施した後、図10Cに示すように、溶接箇所41の一部42を切り取り、外装部材内のガスを放出させる。その後、図10Dに示すように、溶接箇所41よりもさらに内側を抵抗シーム溶接等で溶接する。この溶接は、減圧雰囲気で行うことが望ましい。
 その後、必要に応じ、第1の外装部5及び第2の外装部6の外縁付近を裁断することにより、案内穴39を取り除くことができる。なお、案内穴39を残したままでも良い。
 以上説明した方法により、第1の実施形態の電池を高い生産性で製造することが可能である。
 第1の実施形態の電池は、1つの外装部材内に複数の電極群を備えることができる。この場合、第2の外装部として、第1の外装部と同様に、開口部にフランジ部を有するものを用いることが望ましい。
 1つの外装部材内に複数の電極群を収納する場合、複数の電極群同士を直列接続又は並列接続することができる。図11A~図11Cに、複数の電極群同士を並列接続させる例を示す。図11Aに例示されるように、第1の電極群50を第2の電極群51上に積層し、第1の電極群50の負極集電タブ8aと第2の電極群51の負極集電タブ8aを第4の負極リード52によって電気的に接続すると共に、第1の電極群50の正極集電タブ7aと第2の電極群51の正極集電タブ7aを第4の正極リード(図示しない)によって電気的に接続する。次いで、図11Bに示す通り、必要に応じ、第1,第2の電極群50,51の負極集電タブ8aを内側に折り曲げる。正極集電タブ7aについても、同様な折り曲げを行う。その後、図11Cに示す通り、正極端子部3及び負極端子部4が固定された第1の外装部5内に第1,第2の電極群50,51を収納する。次いで、図12Aに示すように、第4の負極リード52を負極端子リード36に溶接する。また、第4の正極リードを正極端子リード23に溶接する。その後、前述した工程を経て、図12Bに示す電池を完成させる。第4の正極リード及び第4の負極リードは、第1~第3の正極リード及び負極リードで挙げたのと同様な材料から形成することができる。
 以上説明した第1の実施形態の電池は、開口部にフランジ部を有するステンレス鋼製の第1の外装部とステンレス鋼製の第2の外装部が溶接されて形成された空間内に電極群が収納される外装部材を含む。また、この電池は、第1の外装部に開口された貫通孔と、貫通孔の縁部から外装部材内に向けて延びた環状の立ち上がり部と、立ち上がり部の外周面に配置されたリング状部材と、立ち上がり部内に挿入される筒部を有する絶縁ガスケットと、頭部が第1の外装部の外側に突出し、かつ軸部が絶縁ガスケットの筒部に挿入された状態で第1の外装部にかしめ固定された外部端子とを含む端子部を含む。そのため、柔軟性と放熱性に優れ、かつ強度と信頼性の高い電池を提供することができる。
 なお、端子部は、正極端子部及び負極端子部双方に適用しても良いが、正極端子部又は負極端子部のいずれか片方に適用することも可能である。
(第2の実施形態)
 第2の実施形態の電池パックは、第1の実施形態の電池を少なくとも一つ備える。第1の実施形態の電池の組電池の例を図13及び図14に示す。
 図13に示すように、電池パック101は、単位セルとして第1の実施形態の電池100を用いた組電池102を含む。電池100としての第1の単位セル60の負極外部端子32の頂面32bと、第2の単位セル61の負極外部端子32bの頂面の間に、三角柱状の導電性連結部材62が配置されている。また、第1の単位セル60の正極外部端子17の頂面21bと、第2の単位セル61の正極外部端子17の頂面21bの間に、三角柱状の導電性連結部材62が配置されている。二つの頂面と導電性連結部材62は、それぞれ、溶接により電気的に接続されている。溶接には、例えばレーザー溶接、アーク溶接、抵抗溶接が用いられる。これにより、第1の単位セル60と第2の単位セル61が並列接続された組電池のユニット63が得られる。組電池のユニット63同士をバスバー64により直列に接続することにより、組電池102が得られる。
 図14に示す電池パック101は、単位セルとして第1の実施形態の電池100を用いた組電池102を含む。電池100としての第1の単位セル60と第2の単位セル61を導電性連結部材62を用いて直列に接続したものを組電池のユニット65とし、組電池のユニット65同士をバスバー64により直列に接続することで組電池102を構成する。第1の単位セル60と第2の単位セル61間を導電性連結部材62を用いて電気的接続する方法は、図13で説明したのと同様である。
 図13及び図14に示す組電池では、隣り合う第1の単位セル60と第2の単位セル61が、互いの外装部材1の主面同士が面した状態で積層されている。例えば図13に示す組電池のユニット63では、第1の単位セル60の第1の外装部5の主面と、第2の単位セル61の第1の外装部5の主面とが面している。また、隣り合う組電池のユニット63において、一方の組電池のユニット63の第2の単位セル61の第2の外装部6の主面と、他方の組電池のユニット63の第2の単位セル61の第2の外装部6の主面とが面している。このように外装部材の主面同士を対面させて電池を積層することにより、組電池の体積エネルギー密度を高くすることができる。
 また、図13及び図14に図示されているように単位セル60と単位セル61、又は単位セル60、60や単位セル61、61のセル間には絶縁空間があるほうが望ましく、0.03mm以上の隙間を設けるか、絶縁部材(例えば、樹脂であるポリプロピレンやポリフェニレンサルファイドやエポキシ、ファインセラミックスであるアルミナやジルコニアなど)等を間に挟むことが出来る。
 正極外部端子17及び負極外部端子32が角錐台形状の頭部を持つことにより、1つの頭部の二ヶ所(例えば第1、第2の傾斜面)の一方(第1の傾斜面)に単位セルの外部端子を、他方(第2の傾斜面)にバスバーを接続することができる。つまり、1つの頭部で二方向の接続が可能となる。その結果、電池間を電気的に接続する経路を短縮することができるので、電池パックに低抵抗で大電流を流すことが容易となる。
 第2の実施形態の電池パックは、第1の実施形態の電池を少なくとも一つ含むため、薄型化及び柔軟性の向上が可能で、信頼性に優れ、製造コストの削減が可能な電池パックを提供することができる。
 電池パックは、例えば、電子機器、車両(鉄道車両、自動車、原動機付自転車、軽車両、トロリーバス等)の電源として使用される。
 上述の通り、組電池は、複数の電池を直列、並列、あるいは直列及び並列を組み合わせて電気的に接続したものを含み得る。また、電池パックは、組電池に加え、電池制御ユニット(Battery Control Unit, BMU)等の回路を備えることができるが、組電池が搭載されるもの(例えば車両など)が有する回路を電池制御ユニットとして使用することができる。電池制御ユニットは、単電池及び組電池の電圧または電流あるいは両方を監視して過充電及び過放電を防止する機能等を有する。
 以上説明した少なくとも1つの実施形態に係る電池は、開口部にフランジ部を有するステンレス鋼製の第1の外装部とステンレス鋼製の第2の外装部が溶接されて形成された空間内に電極群が収納される外装部材を含む。また、当該電池は、第1の外装部に開口された貫通孔の縁部から外装部材内に向けて延びた環状の立ち上がり部と、立ち上がり部の外周面に配置されたリング状部材と、外部端子とを含む端子部を備える。そのため、柔軟性と放熱性に優れ、かつ強度と信頼性の高い電池を提供することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1…外装部材、2…電極群、3…正極端子部、4…負極端子部、5…第1の外装部、5a…開口部、5b…フランジ部、5c…底面、5d…傾斜面、6…第2の外装部、7…正極、7a…正極集電タブ、8…負極、8a…負極集電タブ、12…第2の正極リード、14…第2の負極リード、15,30…第1の外装部の貫通孔、16,31…バーリング部、17…正極外部端子、18,33…リング状部材、19,34…絶縁ガスケット、20…正極端子絶縁部材、21…頭部、21a,21b…第1、第2の傾斜面、21c…頂面、22…軸部、23…第1の正極リード、24…第1の正極絶縁補強部材、32…負極外部端子、35…負極端子絶縁部材、36…第1の負極リード、37…第1の負極絶縁補強部材、38…第2の絶縁補強部材、39…案内穴、40,41…シーム溶接部、100…電池、101…電池パック、102…組電池。

Claims (15)

  1.  正極、前記正極と電気的に接続された正極集電タブ、負極、及び、前記負極と電気的に接続された負極集電タブを含み、扁平形状に捲回された正極集電タブが第一端面に位置し、かつ扁平形状に捲回された負極集電タブが第二端面に位置する、扁平形状の電極群と、
     開口部にフランジ部を有するステンレス鋼製の第1の外装部と、ステンレス鋼製の第2の外装部とを含み、前記第1の外装部の前記フランジ部と前記第2の外装部が溶接されて形成された空間内に前記電極群が収納された外装部材と、
     前記第1の外装部に開口された貫通孔と、前記貫通孔の縁部から前記外装部材内に向けて延びた環状の立ち上がり部と、前記立ち上がり部の外周面に配置されたリング状部材と、前記立ち上がり部内に挿入される筒部を有する絶縁ガスケットと、頭部及び前記頭部から延び出た軸部を含み、前記頭部が前記第1の外装部の外側に突出し、かつ前記軸部が前記絶縁ガスケットの前記筒部に挿入された状態で前記第1の外装部にかしめ固定され、前記正極または前記負極と電気的に接続された外部端子とを含む端子部とを含む、電池。
  2.  前記第1の外装部が、傾斜面を有する凹部を含み、前記貫通孔が前記傾斜面に開口されている、請求項1に記載の電池。
  3.  前記端子部が、貫通孔を有する第1のリードをさらに含み、前記外部端子の前記軸部が前記第1のリードの前記貫通孔に挿入されて前記第1の外装部及び前記第1のリードにかしめ固定されており、前記第1のリードが前記正極集電タブまたは前記負極集電タブと電気的に接続される、請求項2に記載の電池。
  4.  前記第1のリードと前記第1の外装部の内面との間に配置され、前記第1の外装部を補強する第1の絶縁補強部材と、前記第2の外装部の内面の少なくとも一部を被覆して補強する第2の絶縁補強部材をさらに含む、請求項3に記載の電池。
  5.  前記正極集電タブまたは前記負極集電タブと電気的に接続された第2のリードをさらに含み、前記第2のリードが前記第1のリードと電気的に接続される、請求項3に記載の電池。
  6.  前記外部端子の前記頭部が、四辺形の頂面と、前記頂面の互いに対向する二辺に連結された第1、第2の傾斜面とを有する、請求項2に記載の電池。
  7.  前記第1の外装部及び前記第2の外装部の板厚は、0.02mm以上0.3mm以下の範囲である、請求項2に記載の電池。
  8.  前記溶接が抵抗シーム溶接である、請求項2に記載の電池。
  9.  前記第1の外装部における側壁と底部とが交わるコーナ部に傾斜面が設けられ、前記貫通孔が前記傾斜面に開口されている、請求項1に記載の電池。
  10.  前記端子部が、前記正極と電気的に接続された正極外部端子と、前記負極と電気的に接続された負極外部端子とを含む、請求項1または2に記載の電池。
  11.  前記電極群を複数備える、請求項1または2に記載の電池。
  12.  請求項1~11のいずれか1項に記載の電池を含む、電池パック。
  13.  前記電池を複数備え、前記複数の電池が電気的に接続された組電池を含む、請求項12に記載の電池パック。
  14.  前記複数の電池において、前記外部端子の前記頭部が、四辺形の頂面と、前記頂面の互いに対向する二辺に連結された第1、第2の傾斜面とを有し、
     前記複数の電池が積層され、隣り合う一方の前記電池の前記外部端子の前記第1の傾斜面又は前記第2の傾斜面と、他方の前記電池の前記外部端子の前記第1の傾斜面又は前記第2の傾斜面とが電気的に接続されている、請求項13に記載の電池パック。
  15.  前記一方の前記電池の前記外部端子の前記第1の傾斜面又は前記第2の傾斜面と、他方の前記電池の前記外部端子の前記第1の傾斜面又は前記第2の傾斜面との間に配置された連結部材をさらに備える、請求項14に記載の電池パック。
PCT/JP2016/067686 2015-06-15 2016-06-14 電池及び電池パック WO2016204147A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680034193.XA CN107710459B (zh) 2015-06-15 2016-06-14 电池及电池包
JP2017525241A JP6851968B2 (ja) 2015-06-15 2016-06-14 電池及び電池パック
EP16811621.8A EP3309869A4 (en) 2015-06-15 2016-06-14 Battery and battery pack
US15/842,296 US10461369B2 (en) 2015-06-15 2017-12-14 Battery and battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-120466 2015-06-15
JP2015120466 2015-06-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/842,296 Continuation US10461369B2 (en) 2015-06-15 2017-12-14 Battery and battery pack

Publications (1)

Publication Number Publication Date
WO2016204147A1 true WO2016204147A1 (ja) 2016-12-22

Family

ID=57546604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067686 WO2016204147A1 (ja) 2015-06-15 2016-06-14 電池及び電池パック

Country Status (5)

Country Link
US (1) US10461369B2 (ja)
EP (1) EP3309869A4 (ja)
JP (2) JP6851968B2 (ja)
CN (1) CN107710459B (ja)
WO (1) WO2016204147A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018129133A (ja) * 2017-02-06 2018-08-16 トヨタ自動車株式会社 密閉型電池および組電池
WO2019049377A1 (ja) * 2017-09-11 2019-03-14 株式会社 東芝 電池及び電池パック
WO2019123619A1 (ja) * 2017-12-21 2019-06-27 株式会社 東芝 蓄電モジュール及び電池パック
WO2019130501A1 (ja) 2017-12-27 2019-07-04 株式会社 東芝 二次電池及び二次電池の再生方法
WO2019130502A1 (ja) * 2017-12-27 2019-07-04 株式会社 東芝 二次電池の製造方法
WO2019186868A1 (ja) * 2018-03-29 2019-10-03 株式会社 東芝 電池と電池パック
WO2019187024A1 (ja) * 2018-03-30 2019-10-03 株式会社 東芝 電池及び電池パック
WO2019186849A1 (ja) * 2018-03-28 2019-10-03 株式会社 東芝 電池、電池パック、蓄電装置、車両及び飛翔体
WO2019186850A1 (ja) * 2018-03-28 2019-10-03 株式会社 東芝 電池、電池パック、蓄電装置、車両及び飛翔体
WO2019186932A1 (ja) * 2018-03-29 2019-10-03 株式会社 東芝 電池及び電池パック
WO2019234834A1 (ja) * 2018-06-05 2019-12-12 株式会社 東芝 接続構造及び組電池
WO2019234833A1 (ja) 2018-06-05 2019-12-12 株式会社 東芝 二次電池及び電池パック
WO2019234835A1 (ja) 2018-06-05 2019-12-12 株式会社 東芝 接続部材及び電池パック
WO2020059124A1 (ja) * 2018-09-21 2020-03-26 株式会社 東芝 電池、電池パック、電池モジュール、蓄電装置、車両及び飛翔体
WO2020129128A1 (ja) * 2018-12-17 2020-06-25 株式会社 東芝 電池、電池パック、蓄電装置、車両及び飛翔体
JP2020107409A (ja) * 2018-12-26 2020-07-09 株式会社東芝 電池、電池アセンブリ、及び、電池モジュール
WO2020213188A1 (ja) 2019-04-19 2020-10-22 株式会社 東芝 電池モジュール
JPWO2021048894A1 (ja) * 2019-09-09 2021-03-18
WO2022180737A1 (ja) 2021-02-25 2022-09-01 株式会社 東芝 電池及び電池の製造方法
US11489236B2 (en) 2018-01-16 2022-11-01 Contemporary Amperex Technology Co., Limited Rechargeable battery
WO2023063328A1 (ja) * 2021-10-13 2023-04-20 株式会社Gsユアサ 蓄電素子
JP7470801B2 (ja) 2020-01-13 2024-04-18 ビーワイディー カンパニー リミテッド 電池、電池モジュール、電池パック及び自動車

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220399620A1 (en) * 2019-11-26 2022-12-15 Sanyo Electric Co., Ltd. Terminal structure and power storage device
CN113764788B (zh) * 2020-05-18 2023-06-13 比亚迪股份有限公司 一种电芯组件、电池、电池包及汽车
CN115347282A (zh) * 2021-05-14 2022-11-15 中创新航科技股份有限公司 电池、电池组及电池制造方法
CN215266598U (zh) * 2021-07-30 2021-12-21 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置
WO2023082152A1 (zh) * 2021-11-11 2023-05-19 宁德时代新能源科技股份有限公司 电池单体、电池、用电设备以及制备电池单体的方法和装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285884A (ja) * 1999-03-29 2000-10-13 Sanyo Electric Co Ltd 密閉式角形電池
JP2003142043A (ja) * 2001-07-09 2003-05-16 Hitachi Maxell Ltd 電 池
JP2007179803A (ja) * 2005-12-27 2007-07-12 Denso Corp 電池容器用封口板および非水電解液電池
JP2008192595A (ja) * 2007-01-12 2008-08-21 Toyota Motor Corp バッテリ装置
JP2009048969A (ja) * 2007-08-23 2009-03-05 Toyota Motor Corp 電池
JP2009238421A (ja) * 2008-03-26 2009-10-15 Sanyo Electric Co Ltd 電池
JP2010086785A (ja) * 2008-09-30 2010-04-15 Toshiba Corp 二次電池および電池モジュール
JP2012038522A (ja) * 2010-08-05 2012-02-23 Toyota Motor Corp 電池
JP2012174451A (ja) * 2011-02-21 2012-09-10 Sharp Corp 二次電池
JP2012204013A (ja) * 2011-03-23 2012-10-22 Toyota Motor Corp 電池及び電池の製造方法
JP2013041788A (ja) * 2011-08-19 2013-02-28 Nisshin Steel Co Ltd リチウムイオン二次電池
WO2015083758A1 (ja) * 2013-12-04 2015-06-11 日立マクセル株式会社 非水電解質二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9178204B2 (en) * 2009-12-07 2015-11-03 Samsung Sdi Co., Ltd. Rechargeable battery
CN104600234B (zh) * 2010-06-21 2017-12-01 株式会社东芝 电池
CN105304835B (zh) * 2010-07-21 2018-10-12 株式会社东芝 电池以及电池组
JP2012226836A (ja) 2011-04-14 2012-11-15 Toyota Motor Corp 電池の製造方法
JP2012227026A (ja) 2011-04-20 2012-11-15 Toyota Motor Corp 電池及び電池の製造方法
JP2012238510A (ja) * 2011-05-12 2012-12-06 Toyota Motor Corp 電池の製造方法
CN105940522B (zh) * 2014-01-29 2019-03-08 株式会社东芝 电池及封口体单元
WO2016199939A1 (ja) * 2015-06-12 2016-12-15 株式会社 東芝 電池及び組電池

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285884A (ja) * 1999-03-29 2000-10-13 Sanyo Electric Co Ltd 密閉式角形電池
JP2003142043A (ja) * 2001-07-09 2003-05-16 Hitachi Maxell Ltd 電 池
JP2007179803A (ja) * 2005-12-27 2007-07-12 Denso Corp 電池容器用封口板および非水電解液電池
JP2008192595A (ja) * 2007-01-12 2008-08-21 Toyota Motor Corp バッテリ装置
JP2009048969A (ja) * 2007-08-23 2009-03-05 Toyota Motor Corp 電池
JP2009238421A (ja) * 2008-03-26 2009-10-15 Sanyo Electric Co Ltd 電池
JP2010086785A (ja) * 2008-09-30 2010-04-15 Toshiba Corp 二次電池および電池モジュール
JP2012038522A (ja) * 2010-08-05 2012-02-23 Toyota Motor Corp 電池
JP2012174451A (ja) * 2011-02-21 2012-09-10 Sharp Corp 二次電池
JP2012204013A (ja) * 2011-03-23 2012-10-22 Toyota Motor Corp 電池及び電池の製造方法
JP2013041788A (ja) * 2011-08-19 2013-02-28 Nisshin Steel Co Ltd リチウムイオン二次電池
WO2015083758A1 (ja) * 2013-12-04 2015-06-11 日立マクセル株式会社 非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3309869A4 *

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10804508B2 (en) 2017-02-06 2020-10-13 Toyota Jidosha Kabushiki Kaisha Sealed cell and cell pack
JP2018129133A (ja) * 2017-02-06 2018-08-16 トヨタ自動車株式会社 密閉型電池および組電池
WO2019049377A1 (ja) * 2017-09-11 2019-03-14 株式会社 東芝 電池及び電池パック
CN111033804B (zh) * 2017-12-21 2022-06-28 株式会社东芝 蓄电模块以及电池组
WO2019123619A1 (ja) * 2017-12-21 2019-06-27 株式会社 東芝 蓄電モジュール及び電池パック
JPWO2019123619A1 (ja) * 2017-12-21 2020-08-20 株式会社東芝 蓄電モジュール及び電池パック
CN111033804A (zh) * 2017-12-21 2020-04-17 株式会社东芝 蓄电模块以及电池组
WO2019130502A1 (ja) * 2017-12-27 2019-07-04 株式会社 東芝 二次電池の製造方法
CN111052442B (zh) * 2017-12-27 2022-06-28 株式会社东芝 二次电池的制造方法
CN111052431B (zh) * 2017-12-27 2022-09-16 株式会社东芝 二次电池及二次电池的再生方法
US11128003B2 (en) 2017-12-27 2021-09-21 Kabushiki Kaisha Toshiba Secondary battery and method of recycling secondary battery
EP3734684A4 (en) * 2017-12-27 2021-07-21 Kabushiki Kaisha Toshiba SECONDARY BATTERY AND SECONDARY BATTERY RECOVERY METHOD
JPWO2019130502A1 (ja) * 2017-12-27 2020-08-20 株式会社東芝 二次電池の製造方法
JPWO2019130501A1 (ja) * 2017-12-27 2020-07-30 株式会社東芝 二次電池及び二次電池の再生方法
CN111052442A (zh) * 2017-12-27 2020-04-21 株式会社东芝 二次电池的制造方法
CN111052431A (zh) * 2017-12-27 2020-04-21 株式会社东芝 二次电池及二次电池的再生方法
WO2019130501A1 (ja) 2017-12-27 2019-07-04 株式会社 東芝 二次電池及び二次電池の再生方法
US11489236B2 (en) 2018-01-16 2022-11-01 Contemporary Amperex Technology Co., Limited Rechargeable battery
JP7011044B2 (ja) 2018-03-28 2022-02-10 株式会社東芝 電池、電池パック、蓄電装置、車両及び飛翔体
JP7011043B2 (ja) 2018-03-28 2022-02-10 株式会社東芝 電池、電池パック、蓄電装置、車両及び飛翔体
WO2019186849A1 (ja) * 2018-03-28 2019-10-03 株式会社 東芝 電池、電池パック、蓄電装置、車両及び飛翔体
WO2019186850A1 (ja) * 2018-03-28 2019-10-03 株式会社 東芝 電池、電池パック、蓄電装置、車両及び飛翔体
JPWO2019186850A1 (ja) * 2018-03-28 2021-02-12 株式会社東芝 電池、電池パック、蓄電装置、車両及び飛翔体
JPWO2019186849A1 (ja) * 2018-03-28 2021-02-12 株式会社東芝 電池、電池パック、蓄電装置、車両及び飛翔体
WO2019186868A1 (ja) * 2018-03-29 2019-10-03 株式会社 東芝 電池と電池パック
WO2019186932A1 (ja) * 2018-03-29 2019-10-03 株式会社 東芝 電池及び電池パック
WO2019187024A1 (ja) * 2018-03-30 2019-10-03 株式会社 東芝 電池及び電池パック
WO2019234833A1 (ja) 2018-06-05 2019-12-12 株式会社 東芝 二次電池及び電池パック
JPWO2019234835A1 (ja) * 2018-06-05 2021-05-13 株式会社東芝 接続部材及び電池パック
WO2019234835A1 (ja) 2018-06-05 2019-12-12 株式会社 東芝 接続部材及び電池パック
WO2019234834A1 (ja) * 2018-06-05 2019-12-12 株式会社 東芝 接続構造及び組電池
JP7024075B2 (ja) 2018-06-05 2022-02-22 株式会社東芝 二次電池及び電池パック
JP7024076B2 (ja) 2018-06-05 2022-02-22 株式会社東芝 接続部材及び電池パック
JPWO2019234833A1 (ja) * 2018-06-05 2021-05-13 株式会社東芝 二次電池及び電池パック
JP7024109B2 (ja) 2018-09-21 2022-02-22 株式会社東芝 電池、電池パック、電池モジュール、蓄電装置、車両及び飛翔体
JPWO2020059124A1 (ja) * 2018-09-21 2021-05-13 株式会社東芝 電池、電池パック、電池モジュール、蓄電装置、車両及び飛翔体
WO2020059124A1 (ja) * 2018-09-21 2020-03-26 株式会社 東芝 電池、電池パック、電池モジュール、蓄電装置、車両及び飛翔体
CN113169368B (zh) * 2018-12-17 2023-08-04 株式会社东芝 电池、电池包、蓄电装置、车辆以及飞行体
JPWO2020129128A1 (ja) * 2018-12-17 2021-09-27 株式会社東芝 電池、電池パック、蓄電装置、車両及び飛翔体
CN113169368A (zh) * 2018-12-17 2021-07-23 株式会社东芝 电池、电池包、蓄电装置、车辆以及飞行体
JP7155290B2 (ja) 2018-12-17 2022-10-18 株式会社東芝 電池、電池パック、蓄電装置、車両及び飛翔体
WO2020129128A1 (ja) * 2018-12-17 2020-06-25 株式会社 東芝 電池、電池パック、蓄電装置、車両及び飛翔体
JP2020107409A (ja) * 2018-12-26 2020-07-09 株式会社東芝 電池、電池アセンブリ、及び、電池モジュール
JP7224903B2 (ja) 2018-12-26 2023-02-20 株式会社東芝 電池、電池アセンブリ、及び、電池モジュール
WO2020213188A1 (ja) 2019-04-19 2020-10-22 株式会社 東芝 電池モジュール
WO2021048894A1 (ja) * 2019-09-09 2021-03-18 株式会社 東芝 絶縁部材、電池、電池パック、車両及び電池の製造方法
JP7135219B2 (ja) 2019-09-09 2022-09-12 株式会社東芝 絶縁部材、電池、電池パック、車両及び電池の製造方法
JPWO2021048894A1 (ja) * 2019-09-09 2021-03-18
JP7470801B2 (ja) 2020-01-13 2024-04-18 ビーワイディー カンパニー リミテッド 電池、電池モジュール、電池パック及び自動車
WO2022180737A1 (ja) 2021-02-25 2022-09-01 株式会社 東芝 電池及び電池の製造方法
WO2023063328A1 (ja) * 2021-10-13 2023-04-20 株式会社Gsユアサ 蓄電素子

Also Published As

Publication number Publication date
EP3309869A4 (en) 2018-12-05
EP3309869A1 (en) 2018-04-18
CN107710459B (zh) 2020-10-27
JPWO2016204147A1 (ja) 2018-01-11
US10461369B2 (en) 2019-10-29
US20180108949A1 (en) 2018-04-19
CN107710459A (zh) 2018-02-16
JP6851968B2 (ja) 2021-03-31
JP2019192646A (ja) 2019-10-31
JP6794502B2 (ja) 2020-12-02

Similar Documents

Publication Publication Date Title
JP6794502B2 (ja) 電池及び電池パック
US10461304B2 (en) Cylindrical battery
JP6173730B2 (ja) 電池
CN107534101B (zh) 电池及组电池
CN111033804B (zh) 蓄电模块以及电池组
JP6173729B2 (ja) 電池の製造方法
CN111886715B (zh) 电池、电池组、蓄电装置、车辆以及飞翔体
JP2012022955A (ja) 二次電池の製造方法および二次電池
WO2019186932A1 (ja) 電池及び電池パック
JP7011044B2 (ja) 電池、電池パック、蓄電装置、車両及び飛翔体
JP7024109B2 (ja) 電池、電池パック、電池モジュール、蓄電装置、車両及び飛翔体
JP7155290B2 (ja) 電池、電池パック、蓄電装置、車両及び飛翔体
WO2019187024A1 (ja) 電池及び電池パック
WO2019049377A1 (ja) 電池及び電池パック
WO2019186868A1 (ja) 電池と電池パック
JP6289843B2 (ja) 電池及び電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017525241

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016811621

Country of ref document: EP