WO2019186850A1 - 電池、電池パック、蓄電装置、車両及び飛翔体 - Google Patents

電池、電池パック、蓄電装置、車両及び飛翔体 Download PDF

Info

Publication number
WO2019186850A1
WO2019186850A1 PCT/JP2018/013046 JP2018013046W WO2019186850A1 WO 2019186850 A1 WO2019186850 A1 WO 2019186850A1 JP 2018013046 W JP2018013046 W JP 2018013046W WO 2019186850 A1 WO2019186850 A1 WO 2019186850A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
exterior
reinforcing member
positive
Prior art date
Application number
PCT/JP2018/013046
Other languages
English (en)
French (fr)
Inventor
直樹 岩村
橋本 達也
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to JP2020508679A priority Critical patent/JP7011044B2/ja
Priority to PCT/JP2018/013046 priority patent/WO2019186850A1/ja
Priority to CN201880090782.9A priority patent/CN111886716A/zh
Publication of WO2019186850A1 publication Critical patent/WO2019186850A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to a battery, a battery pack, a power storage device, a vehicle, and a flying object.
  • Batteries such as a primary battery and a secondary battery generally include an electrode group including a positive electrode and a negative electrode, and an exterior member that houses the electrode group.
  • a metal can is obtained by deep drawing from a metal plate such as aluminum.
  • the metal plate needs to have a certain thickness, which prevents a reduction in the thickness of the exterior member and leads to a loss in volume capacity.
  • the ratio of the total thickness of the outer can to the battery thickness is approximately 7.7%. Since it is a thin battery, the leads in the battery are required to be accommodated in a compact manner by bending it in a complicated manner.
  • the battery element and the electrode terminal are joined by a lead. Bending after joining is difficult to accommodate because the work space and the accommodation space are narrow. Also, if the thickness is such that it can be bent after joining, the leads will be thin and not suitable for large currents. Further, if the welded portion is bent after the lead is welded, the joined portion is easily peeled off, and a battery that is not bent after joining is desired from the viewpoint of quality.
  • the problem to be solved by the present invention is to provide a battery, a battery pack, a power storage device, a vehicle, and a flying body that are excellent in insulation between an exterior material and an electrode group, leads, and electrode terminals in a thin battery.
  • the battery according to the embodiment includes a positive electrode, a positive electrode current collecting tab electrically connected to the positive electrode, a negative electrode, and a negative electrode current collecting tab electrically connected to the negative electrode, and the positive electrode current collector wound in a flat shape
  • a flat electrode group having a tab positioned on the first end surface and a negative electrode current collecting tab wound in a flat shape positioned on the second end surface, an insulating film winding the electrode group, and a positive electrode current collecting tab
  • An electrode group side positive electrode lead electrically connected to the negative electrode current collector tab, an electrode group side negative electrode lead electrically connected to the negative electrode current collecting tab, a metal first exterior portion having a flange portion in the opening, and a metal
  • a positive electrode external terminal having a through hole on the current collecting tab side and including a head portion and a shaft portion extending from the head portion, and a through hole
  • the head portion protrudes outside the first exterior portion
  • the shaft portion is inserted into the through hole of the positive terminal lead, and the shaft portion is caulked and fixed to the first exterior portion and the positive terminal lead.
  • the positive electrode terminal portion and the first exterior portion have a through hole on the negative electrode current collecting tab side, a negative electrode external terminal including a head portion and a shaft portion extending from the head portion, and a negative electrode terminal lead having a through hole A negative electrode terminal portion whose head portion protrudes outside the first exterior portion, the shaft portion is inserted into the through hole of the negative electrode terminal lead, and the shaft portion is caulked and fixed to the first exterior portion and the negative electrode terminal lead And a first positive electrode insulation reinforcement member, a second positive electrode insulation reinforcement member, a first negative electrode insulation reinforcement member, and a second negative electrode insulation reinforcement member.
  • the first positive electrode insulation reinforcing member is disposed on the inner surface side of the first exterior portion and between the positive terminal lead and the first exterior portion.
  • the second positive electrode insulation reinforcing member is disposed on the inner surface side of the first exterior portion and the inner surface side of the second exterior portion.
  • the first negative electrode insulation reinforcing member is disposed on the inner surface side of the first exterior part and between the negative terminal lead and the first exterior part.
  • the second negative electrode insulation reinforcing member is disposed on the inner surface side of the first exterior portion and the inner surface side of the second exterior portion.
  • the insulating film is between the electrode group and the first exterior part, between the electrode group and the second exterior member, between the positive electrode current collecting tab and the first positive electrode insulation reinforcing member, and between the positive electrode current collecting tab and the second outer member.
  • FIG. 1 is a schematic perspective view of the battery according to the first embodiment.
  • 2A is an exploded perspective view of the battery shown in FIG. 1 as viewed from the positive electrode side.
  • 2B is an exploded perspective view seen from the negative electrode side of the battery shown in FIG.
  • FIG. 3 is a perspective view of the electrode group of the battery shown in FIG.
  • FIG. 4 is a perspective view showing a state in which the electrode group is partially expanded.
  • FIG. 5 is a cross-sectional view obtained when the positive electrode portion of FIG. 1 is cut along the battery long side direction.
  • 6 is a cross-sectional view obtained when the positive electrode portion of FIG. 1 is cut along the battery long side direction.
  • FIG. 7 is a cross-sectional view obtained when the negative electrode portion of FIG. 1 is cut along the battery long side direction.
  • FIG. 8 is a cross-sectional view obtained when the negative electrode portion of FIG. 1 is cut along the battery long side direction.
  • FIG. 9 is a perspective view of the battery shown in FIG. 1 with the terminal portion fixed to the first exterior portion.
  • FIG. 10A is a plan view of the second exterior portion
  • FIG. 10B is a plan view of the first exterior portion.
  • FIGS. 11A, 11B, 11C, and 11D are three-side views showing the manufacturing process of the battery of the first embodiment.
  • FIG. 12A is a process diagram showing an assembly process of a battery containing a plurality of electrode groups.
  • FIG. 12B is a process diagram showing an assembling process of a battery containing a plurality of electrode groups.
  • FIG. 12A is a process diagram showing an assembly process of a battery containing a plurality of electrode groups.
  • FIG. 12C is a process diagram illustrating an assembly process of a battery that accommodates a plurality of electrode groups.
  • FIG. 12D is a process diagram illustrating an assembly process of a battery that accommodates a plurality of electrode groups.
  • FIG. 13 is a cross-sectional view obtained when the positive electrode portion of FIG. 1 in the modification is cut along the battery long side direction.
  • FIG. 14 is a cross-sectional view obtained when the negative electrode portion of FIG. 1 in the modification is cut along the battery long side direction.
  • FIG. 15 is a schematic diagram illustrating a first example of the battery pack according to the second embodiment.
  • FIG. 16 is a schematic diagram illustrating a second example of the battery pack according to the second embodiment.
  • FIG. 17 is a schematic diagram of the power storage device of the third embodiment.
  • FIG. 18 is a schematic view of a vehicle according to the fourth embodiment.
  • FIG. 19 is a schematic view of the flying object of the fifth embodiment.
  • a battery 100 shown in FIG. 1 includes an exterior member 1, an electrode group 2, a positive electrode terminal portion 3, a negative electrode terminal portion 4, and an electrolyte (not shown).
  • a battery 100 shown in FIG. 1 is, for example, a secondary battery.
  • the battery 100 of the embodiment is thin.
  • the thickness of the thin battery 100 is 5 mm or more and 30 mm or less.
  • the exterior member 1 includes a first exterior portion 5 and a second exterior portion 6.
  • the 1st exterior part 5 is a square tube container with a bottom, and has the flange part 5b in the opening part 5a.
  • the electrode group 2 is accommodated in a space formed by welding the flange portion of the first exterior portion 5 and the second exterior portion 6.
  • 2A is an exploded perspective view seen from the positive electrode side of the battery shown in FIG. 2B is an exploded perspective view seen from the negative electrode side of the battery shown in FIG.
  • the second exterior portion 5 has a depth equal to or smaller than the size of the opening 5a (the maximum length of the portion serving as the opening area).
  • the more preferable second exterior portion 5 has a depth equal to or less than the short side of the portion that becomes the opening area (for example, the one shown in FIG. 2).
  • the first exterior portion 5 is, for example, a stainless steel cup-type container having an opening made from a stainless steel plate by shallow drawing.
  • the second exterior portion 6 is a stainless steel lid.
  • the second exterior part 6 covers the opening of the second exterior part 5.
  • the second exterior part 6 may be a stainless steel cup-shaped container or plate-like shape made by shallow drawing.
  • the electrode group 2 is housed in a space formed by welding the flange portion 5 b of the first exterior portion 5 to the four sides of the second exterior portion 6.
  • resistance seam welding is used. Resistance seam welding can achieve high hermeticity and heat resistance at a lower cost than laser welding.
  • a burring portion 16 is provided toward the inside of the exterior member 1 in the periphery of the through hole on the positive electrode current collecting tab 7 a side of the first exterior portion 5.
  • a burring portion 31 is provided toward the inner side of the exterior member 1 in the periphery of the through hole on the negative electrode current collecting tab 8 a side of the first exterior portion 5.
  • the space in which the electrode group 2 is accommodated is a low height space.
  • the height of the space in which one electrode group 2 is accommodated is the number of electrode groups 2 accommodated in the exterior member 1 and arranged in the height direction, from the bottom of the first exterior part 5 to the second exterior part. The value obtained by dividing the distance up to 6. Since the battery is thin, the height of the space in which each electrode group 2 is accommodated is 5 mm or more and 30 mm or less. Since the space in which the electrode group 2 is accommodated is a space with a low height, the lead shape is limited.
  • the exterior member 1 is made of metal, not a laminate film.
  • the laminate film is used as the exterior member 1, it is not necessary to insulate the exterior member from the electrode group and the terminal portion.
  • the metal exterior member 1 needs to be insulated so that the positive electrode and the negative electrode do not short-circuit with the exterior member 1. Therefore, the exterior member 1 uses an insulating film 26 that insulates the electrode terminals, leads, and electrode group 2.
  • the insulating film 26 is illustrated in FIG.
  • the electrode group 2 has a flat shape, and includes a positive electrode 7, a negative electrode 8, and a separator 9 disposed between the positive electrode 7 and the negative electrode 8.
  • the flat electrode group 2 includes a positive electrode 7, a positive electrode current collecting tab 7 a electrically connected to the positive electrode 7, a negative electrode 8, and a negative electrode current collecting tab 8 a electrically connected to the negative electrode 8.
  • the positive electrode current collecting tab 7a wound on the first end surface is located on the first end surface
  • the negative electrode current collecting tab 8a wound on the flat shape is located on the second end surface.
  • One of the two flat surfaces of the electrode group 2 faces the bottom surface of the first exterior part 5, and the other of the two flat surfaces of the electrode group 2 faces the surface of the second exterior part 6. To do.
  • the positive electrode 7 includes a strip-shaped positive electrode collector made of, for example, a foil, a positive electrode current collector tab 7a having one end parallel to the long side of the positive electrode current collector, and at least the positive electrode current collector tab 7a. And a positive electrode material layer (positive electrode active material-containing layer) 7b formed on the electric body.
  • the negative electrode 8 is formed by removing, for example, a strip-shaped negative electrode current collector made of foil, a negative electrode current collector tab 8a formed of one end parallel to the long side of the negative electrode current collector, and at least a portion of the negative electrode current collector tab 8a. And a negative electrode material layer (negative electrode active material-containing layer) 8b formed on the negative electrode current collector.
  • the positive electrode material layer 7 b of the positive electrode 7 and the negative electrode material layer 8 b of the negative electrode 8 are opposed to each other through the separator 9, and the positive electrode current collecting tab 7 a is disposed on one side of the winding shaft more than the negative electrode 8 and the separator 9.
  • the positive electrode 7, the separator 9, and the negative electrode 8 are wound in a flat shape so that the negative electrode current collecting tab 8a protrudes from the positive electrode 7 and the separator 9 on the other side. Therefore, in the electrode group 2, the positive electrode current collecting tab 7a wound in a flat spiral shape is located on the first end surface perpendicular to the winding axis.
  • the negative electrode current collecting tab 8a wound in a flat spiral shape is located on the second end surface perpendicular to the winding axis.
  • the electrode group 2 holds an electrolyte (not shown).
  • the backup positive electrode lead 11 is formed by bending a conductive plate into a U shape.
  • the layers of the positive electrode current collecting tabs 7a are sandwiched between portions (near the center) excluding the curved portions at both ends of the positive electrode current collecting tab 7a. It is in close contact.
  • the electrode group side positive lead 12 is a conductive plate having a larger area than the backup positive lead 11. As shown in FIG. 5, the electrode group-side positive lead 12 has a first extension 12a on the side opposite to the electrode group 2 side.
  • the electrode group side positive lead 12 is connected to the surface of the backup positive lead 11.
  • the backup positive electrode lead 11 is electrically connected to the positive electrode current collecting tab 7 a and the electrode group side positive electrode lead 12. Further, the positive electrode current collecting tab 7 a is electrically connected to the electrode group side positive electrode lead 12.
  • the positive electrode current collecting tab 7a, the backup positive electrode lead 11 and the electrode group side positive electrode lead 12 are integrated by welding, whereby the positive electrode 7 is connected to the electrode group side positive electrode lead 12 via the positive electrode current collecting tab 7a and the backup positive electrode lead 11. Electrically connected.
  • the positive electrode current collecting tab 7a and the backup positive electrode lead 11 are welded by, for example, laser welding or ultrasonic welding.
  • the backup positive electrode lead 11 and the electrode group side positive electrode lead 12 are welded by, for example, laser welding or ultrasonic welding.
  • the backup positive electrode lead 11 can be omitted. When the backup positive electrode lead 11 is omitted, the positive electrode current collecting tab 7a and the electrode side positive electrode lead 12 are preferably welded.
  • the backup negative electrode lead 13 is formed by bending a conductive plate into a U shape, and the layers of the negative electrode current collecting tabs 8a are sandwiched between portions (near the center) excluding the curved portions at both ends of the negative electrode current collecting tab 8a. It is in close contact.
  • the electrode group side negative electrode lead 14 is a conductive plate having a larger area than the backup negative electrode lead 13. As shown in FIG. 7, the electrode group-side negative electrode lead 14 has a first extending portion 14a on the side opposite to the electrode group 2 side. The first extending portion 14 a of the electrode group side negative electrode lead 14 is connected to the surface of the backup negative electrode lead 13.
  • the backup negative electrode lead 13 is electrically connected to the negative electrode current collecting tab 8 a and the electrode group side negative electrode lead 14. Further, the negative electrode current collecting tab 8 a is electrically connected to the electrode group side negative electrode lead 14.
  • the negative electrode current collecting tab 8a, the backup negative electrode lead 13 and the electrode group side negative electrode lead 14 are integrated by welding, whereby the negative electrode 8 is connected to the electrode group side negative electrode lead 14 via the positive electrode current collecting tab 8a and the backup negative electrode lead 13. Electrically connected.
  • the welding of the negative electrode current collecting tab 8a and the backup negative electrode lead 13 is performed by, for example, laser welding or ultrasonic welding.
  • the backup negative electrode lead 13 and the electrode group side negative electrode lead 14 are welded by, for example, laser welding or ultrasonic welding.
  • the positive electrode terminal portion 3 includes a through hole 15 opened in the inclined surface 5 d of the first exterior portion 5, a positive electrode external terminal 17, a positive electrode insulating member 18 a, a positive electrode reinforcing member ( Ring-shaped member) 18b, insulating gasket 19, and positive electrode terminal insulating member 20.
  • the first exterior portion 5 has a through hole 15 on the positive electrode current collecting tab side.
  • the positive electrode external terminal 17 of the positive electrode terminal portion 3 includes a head portion 21 and a shaft portion extending from the head portion 21.
  • the positive terminal portion 3 includes a positive terminal lead 23 having a through hole 23a.
  • the head portion 21 protrudes outside the first exterior portion 5, the shaft portion is inserted into the through hole 23 a of the positive electrode terminal lead 23, and the shaft portion is the first exterior portion 5 and the positive electrode terminal lead. 23 is fixed by caulking.
  • the burring portion (annular rising portion) 16 extends from the peripheral portion of the through hole 15 toward the inside of the exterior member 1 and is formed by burring.
  • the positive electrode external terminal 17 includes a truncated pyramid-shaped head portion 21 and a columnar shaft portion that penetrates the through hole 15 of the second exterior portion 5.
  • the columnar shaft portion extends from a plane parallel to the top surface of the head 21.
  • the positive external terminal 17 is made of a conductive material such as aluminum or aluminum alloy, for example.
  • the positive electrode insulating member 18 a has a through hole and a convex portion, and insulates the first exterior portion 5 from the positive electrode external terminal 17 and the positive electrode terminal lead 23.
  • the positive electrode insulating member 18a is a ring-shaped member having a convex portion.
  • the convex portion of the positive electrode insulating member 18a extends in a direction opposite to the direction in which the positive electrode terminal lead 23 exists.
  • the positive electrode insulating member 18a is an insulating member.
  • the positive electrode insulating member 18a having a convex portion includes, for example, fluororesin, fluororubber, polyphenylene sulfide resin (PPS resin), polyether ether ketone resin (PEEK resin), polypropylene resin (PP resin), and polybutylene terephthalate resin (PBT).
  • PPS resin polyphenylene sulfide resin
  • PEEK resin polyether ether ketone resin
  • PBT polybutylene terephthalate resin
  • it is composed of one or more resin materials selected from the group consisting of (resin) and the like.
  • the positive electrode reinforcing member 18b is made of, for example, a circular ring having a through hole made of a material having rigidity higher than that of the gasket.
  • the positive electrode reinforcing member 18b is disposed between the first exterior portion 5 and the positive electrode insulating member 18a.
  • materials with higher rigidity than gaskets include stainless steel, iron plated (eg, Ni, NiCr, etc.), ceramics, resins with higher rigidity than gaskets (eg, polyphenylene sulfide (PPS), poly Butylene terephthalate (PBT)) and the like. As shown in FIG.
  • the positive electrode reinforcing member 18 b is disposed on the outer peripheral surface of the burring portion 16 and is in contact with the burring portion 16 and the positive electrode insulating member 18 a. Since the exterior member 1 is a thin member, it is preferable that the first exterior portion 5 and the burring portion 16 are reinforced by the positive electrode reinforcing member 18b.
  • the positive electrode external terminal 17 is inserted into the through hole of the positive electrode insulating member 18a and the through hole of the positive electrode reinforcing member 18b.
  • the positive electrode reinforcing member 18 b is sandwiched between the convex portion of the positive electrode insulating member 18 a and the burring portion 16 of the first exterior portion 5. Even if the positive electrode terminal lead 23 part moves, it is preferable in that the positive electrode terminal lead 23 is more reliably prevented from being short-circuited with the first exterior part 5 by the positive electrode insulating member 18a. Moreover, it is preferable that the certainty of insulation between the positive terminal lead 23 and the first exterior portion 5 is improved by the convex portion of the positive electrode insulating member 18a.
  • the insulating gasket 19 is a cylindrical body (tubular portion) having a flange portion 19a at one open end. As shown in FIGS. 2 and 5, the insulating gasket 19 has a cylindrical portion inserted into the through hole 15 and the burring portion 16, and a flange portion 19 a of the through hole 15 on the outer surface of the first exterior portion 5. It is arranged on the outer periphery.
  • the insulating gasket 19 is, for example, a resin such as fluororesin, fluororubber, polyphenylene sulfide resin (PPS resin), polyether ether ketone resin (PEEK resin), polypropylene resin (PP resin), and polybutylene terephthalate resin (PBT resin). Formed from.
  • a resin such as fluororesin, fluororubber, polyphenylene sulfide resin (PPS resin), polyether ether ketone resin (PEEK resin), polypropylene resin (PP resin), and polybutylene terephthalate resin (PBT resin).
  • the positive electrode terminal insulating member 20 is a plate-like member bent at an obtuse angle and has a through hole 20a at the bottom.
  • the positive terminal insulating member 20 is disposed on the outer surface of the first exterior part 5.
  • the flange portion 19 a of the insulating gasket 19 is inserted into the through hole 20 a of the positive terminal insulating member 20.
  • the positive terminal portion 3 further includes a positive terminal lead 23.
  • the positive terminal lead 23 is a conductive plate having a through hole 23a and a first extension 23b extending to the opening side of the first exterior part 5, that is, the second exterior part 6 side.
  • the positive electrode terminal lead 23 has a first extending portion 23 a extending to the electrode group 2 side.
  • the first extension 23b of the positive terminal lead 23 is integrated with the first extension 12a of the electrode group side positive lead 12 by welding.
  • the opposing surfaces of the first extending portion 23b and the first extending portion 12a are welded, and the end surface of the first extending portion 23b on the distal end side and the end surface of the first extending portion 12a are also formed. Welded.
  • At least the tip portion of the first extension 23b of the positive terminal lead 23 and the first extension 12a of the electrode group side positive lead 12 is perpendicular or substantially perpendicular to the surface of the second exterior part 6 (80 ° to 100 °). At least the tip portion of the first extension portion 23 b of the positive electrode terminal lead 23 and the first extension portion 12 a of the electrode group side positive electrode lead 12 is perpendicular or substantially perpendicular to the surface of the second exterior portion 6. Indicates that the lead was not bent after welding of the first extension 23 b of the positive terminal lead 23 and the first extension 12 a of the electrode group side positive lead 12.
  • the wiring of the terminal portion of the electrode can be made compact by bending the lead after welding, it is required to reduce the thickness of the lead in order to bend accurately after welding. However, reducing the thickness of the lead is not preferable in that it is difficult to flow a large current.
  • the bent shape of the lead is not limited to the shape shown in FIG.
  • the thickness of the positive electrode terminal lead 23 can be 0.5 mm or more and 3.0 mm or less, and the thickness of the electrode group side positive electrode lead 12 is 0.5 mm or more and 3.0 mm. It can be as follows. Further, considering the lead bending process and the large current characteristics before welding the leads, the sum of the thickness of the positive terminal lead 23 and the thickness of the electrode group side positive lead 12 is 1.0 mm or more and 1.2 mm or less. It is preferable. These thicknesses are preferably at least filled at the welded portion.
  • the battery 100 further includes a first positive electrode insulation reinforcing member 24.
  • the first positive electrode insulation reinforcing member 24 is disposed on the inner surface side of the first exterior portion 5. More specifically, the first positive electrode insulation reinforcing member 24 is disposed on the inner surface side of the first exterior portion 5 and between the positive terminal lead 23 and the first exterior portion 5.
  • the first positive electrode insulation reinforcing member 24 includes a main body portion 24a having a structure in which a bottomed rectangular tube is divided in the long side direction, and a circular groove 24b formed in the main body portion 24a. And a through hole 24c opened in the center of the circular groove 24b.
  • the positive electrode insulating member 18a, the positive electrode reinforcing member 18b, and the positive electrode external terminal 17 are disposed in the through hole 24c.
  • the first positive terminal insulation reinforcement member 24 includes a corner portion where the main body portion 24 a is connected to the bottom surface from the short side wall of the first exterior portion 5, and a long side surface from the short side wall of the first exterior portion 5. Cover the corners that lead to Thereby, the 1st exterior part 5, especially the corner vicinity where a short side wall, a long side wall, and a bottom part can be reinforced.
  • a positive electrode insulating member 18a disposed on the outer peripheral surface of the burring portion 16 is disposed in the circular groove 24b.
  • the through hole 24 c communicates with the opening of the burring portion 16 and the through hole 15 of the first exterior portion 5.
  • the positive terminal lead 23 is disposed on the first positive terminal insulation reinforcing member 24.
  • the through hole 23 a of the positive terminal lead 23 communicates with the through hole 24 c of the first positive terminal insulation reinforcing member 24, the opening of the burring portion 16, and the through hole 15 of the first exterior portion 5.
  • the first positive electrode insulation reinforcing member 24 and the pair of second positive electrode insulation reinforcing members 25 are disposed on the inner surface side of the first exterior portion 5 and the inner surface side of the second exterior portion 6.
  • the second positive electrode insulation reinforcing member 25 has a structure in which a bottomed rectangular tube is divided in half in the long side direction.
  • One first positive electrode insulation reinforcing member 24 covers about half of the positive electrode current collecting tab 7a from the winding center to the first exterior portion 5 side.
  • the other second positive electrode insulation reinforcing member 25 covers about half of the positive electrode current collecting tab 7a from the winding center to the second exterior portion 6 side.
  • the shaft portion of the positive external terminal 17 includes an insulating gasket 19, a through hole 20 a in the positive terminal insulating member 20, a through hole 15 in the first exterior portion 5, a through hole 24 c in the positive terminal insulating reinforcing member 24, and the positive terminal lead 23.
  • plastic deformation is caused by caulking.
  • these members are integrated, and the positive external terminal 17 is electrically connected to the positive terminal lead 23. Therefore, the positive external terminal 17 also serves as a rivet.
  • a boundary portion between the end face of the shaft portion of the positive electrode external terminal 17 and the through hole 23a of the positive electrode terminal lead 23 may be welded with a laser or the like, so that stronger connection and improvement in electrical conductivity may be performed.
  • the negative electrode terminal portion 4 includes a through hole 30 opened in the inclined surface 5d of the first exterior portion 5, a negative electrode external terminal 32, a negative electrode insulating member 33a, a negative electrode reinforcing member ( Ring-shaped member) 33 b, insulating gasket 34, and negative electrode terminal insulating member 35.
  • the first exterior portion 5 has a through hole 30 on the negative electrode current collecting tab 8a side.
  • the negative electrode external terminal 32 of the negative electrode terminal portion 4 includes a head portion 21 and a shaft portion extending from the head portion 21.
  • the negative terminal portion 4 includes a negative terminal lead 36 having a through hole 36a.
  • the head portion 21 protrudes outside the first exterior portion 5
  • the shaft portion is inserted into the through hole 36 a of the negative electrode terminal lead 36
  • the shaft portion is the first exterior portion 5 and the negative electrode terminal lead. 36 is fixed by caulking.
  • the burring portion (annular rising portion) 31 extends from the peripheral edge portion of the through hole 31 toward the inside of the exterior member 1 and is formed by burring.
  • the negative electrode external terminal 32 includes a truncated pyramid-shaped head portion 21 and a columnar shaft portion that penetrates the through hole 30 of the second exterior portion 5.
  • the columnar shaft portion extends from a plane parallel to the top surface of the head 21.
  • the negative electrode external terminal 32 is made of a conductive material such as aluminum or an aluminum alloy, for example.
  • the negative electrode insulating member 33 a has a through hole and a convex portion, and insulates the first exterior portion 5 from the negative electrode external terminal 32 and the negative electrode terminal lead 36.
  • the negative electrode insulating member 33a is a ring-shaped member having a convex portion on the outer periphery.
  • the convex portion of the negative electrode insulating member 33a extends in a direction opposite to the direction in which the negative electrode terminal lead 36 exists.
  • the negative electrode insulating member 33a is an insulating member.
  • the negative electrode insulating member 33a having a convex portion includes, for example, fluororesin, fluororubber, polyphenylene sulfide resin (PPS resin), polyether ether ketone resin (PEEK resin), polypropylene resin (PP resin), and polybutylene terephthalate resin (PBT).
  • PPS resin polyphenylene sulfide resin
  • PEEK resin polyether ether ketone resin
  • PBT polybutylene terephthalate resin
  • it is composed of one or more resin materials selected from the group consisting of (resin) and the like.
  • the negative electrode reinforcing member 33b is made of, for example, a circular ring having a through hole made of a material having rigidity higher than that of the gasket.
  • the negative electrode reinforcing member 33b is disposed between the first exterior portion 5 and the negative electrode insulating member 33a.
  • materials with higher rigidity than gaskets include stainless steel, iron plated (eg, Ni, NiCr, etc.), ceramics, resins with higher rigidity than gaskets (eg, polyphenylene sulfide (PPS), poly Butylene terephthalate (PBT)) and the like. As shown in FIG.
  • the negative electrode reinforcing member 33 b is disposed on the outer peripheral surface of the burring portion 31 and is in contact with the burring portion 31 and the negative electrode insulating member 33 a. Since the exterior member 1 is a thin member, it is preferable that the first exterior portion 5 and the burring portion 31 are reinforced by the negative electrode reinforcing member 33b.
  • the negative external terminal 32 is inserted into the through hole of the negative electrode insulating member 33a and the through hole of the negative electrode reinforcing member 33b.
  • the negative electrode reinforcing member 33 b is sandwiched between the convex portion of the negative electrode insulating member 33 a and the burring portion 16 of the first exterior portion 5. Even if the negative electrode terminal lead 36 part moves, it is preferable in that the negative electrode terminal lead 36 is more reliably prevented from being short-circuited to the first exterior part 5 by the negative electrode insulating member 33a. Moreover, it is preferable that the certainty of insulation between the negative electrode terminal lead 36 and the first exterior portion 5 is improved by providing the negative electrode insulating member 33a with a convex portion.
  • the insulating gasket 34 is a cylindrical body (tubular portion) having a flange portion 34a at one open end. As shown in FIGS. 2 and 7, the insulating gasket 34 has a cylindrical portion inserted into the through hole 30 and the burring portion 31, and a flange portion 34 a of the through hole 30 on the outer surface of the first exterior portion 5. It is arranged on the outer periphery.
  • the insulating gasket 34 is, for example, a resin such as fluororesin, fluororubber, polyphenylene sulfide resin (PPS resin), polyetheretherketone resin (PEEK resin), polypropylene resin (PP resin), and polybutylene terephthalate resin (PBT resin). Formed from.
  • the negative electrode terminal insulating member 35 is a plate-like member bent at an obtuse angle, and has a through hole 35a at the bottom.
  • the negative terminal insulating member 35 is disposed on the outer surface of the first exterior portion 5.
  • the flange portion 34 a of the insulating gasket 34 is inserted into the through hole 35 a of the negative electrode terminal insulating member 35.
  • the negative terminal portion 4 further includes a negative terminal lead 36.
  • the negative electrode terminal lead 36 is a conductive plate having a through hole 36 a and a first extending portion 36 b extending to the opening side of the first exterior portion 5, that is, the second exterior portion 6 side.
  • the negative terminal lead 36 has a first extending portion 36 b extending to the electrode group 2 side.
  • the first extension 36b of the negative terminal lead 36 is integrated with the first extension 14a of the electrode group side negative lead 14 by welding.
  • the opposing surfaces of the first extending portion 36b and the first extending portion 14a are welded, and the end surface of the first extending portion 36b on the distal end side and the end surface of the first extending portion 14a are also formed. Welded.
  • At least the tip portion of the first extension portion 36b of the negative electrode terminal lead 36 and the first extension portion 14a of the electrode group side negative electrode lead 14 is perpendicular or substantially perpendicular to the surface of the second exterior portion 6 (80 ° to 100 °). At least the tip portion of the first extension part 36 b of the negative electrode terminal lead 36 and the first extension part 14 a of the electrode group side negative electrode lead 14 is perpendicular or substantially perpendicular to the surface of the second exterior part 6. Indicates that the lead was not bent after welding of the first extension 36 b of the negative terminal lead 36 and the first extension 14 a of the electrode group-side negative lead 14.
  • the wiring of the terminal portion of the electrode can be made compact by bending the lead after welding, it is required to reduce the thickness of the lead in order to bend accurately after welding. However, reducing the thickness of the lead is not preferable in that it is difficult to flow a large current.
  • the bent shape of the lead is not limited to the shape shown in FIG.
  • the thickness of the negative electrode terminal lead 36 can be 0.5 mm or more and 3.0 mm or less, and the thickness of the electrode group side negative electrode lead 14 is 0.5 mm or more and 3.0 mm. It can be as follows. Furthermore, considering the lead bending process and the large current characteristics before welding the leads, the sum of the thickness of the negative electrode terminal lead 36 and the thickness of the electrode group side negative electrode lead 14 is 1.0 mm or more and 1.2 mm or less. It is preferable.
  • the battery 100 further includes a first negative terminal insulation reinforcement member 37.
  • the first negative electrode insulation reinforcing member 37 is disposed on the inner surface side of the first exterior portion 5. More specifically, the first negative electrode insulation reinforcing member 37 is disposed on the inner surface side of the first exterior portion 5 and between the negative electrode terminal lead 36 and the first exterior portion 5.
  • the first negative terminal insulation reinforcing member 37 includes a main body portion 37a having a structure in which a bottomed rectangular tube is divided in the long side direction, and a circular groove 37b formed in the main body portion 37a. And a through hole 37c opened in the center of the circular groove 37b.
  • the negative electrode insulating member 33a, the negative electrode reinforcing member 33b, and the negative electrode external terminal 32 are disposed in the through hole 37c.
  • the first negative electrode terminal insulation reinforcing member 37 includes a corner portion where the main body portion 37 a is connected to the bottom surface from the short side wall of the first exterior portion 5, and the long side surface from the short side wall of the first exterior portion 5. Cover the corners that lead to Thereby, the 1st exterior part 5, especially the corner vicinity where a short side wall, a long side wall, and a bottom part can be reinforced.
  • a negative electrode insulating member 33b having a burring portion disposed on the outer peripheral surface of the burring portion 31 is disposed in the circular groove 37b.
  • the through hole 37 c communicates with the opening of the burring portion 31 and the through hole 30 of the first exterior portion 5.
  • a negative terminal lead 36 is disposed on the first negative terminal insulation reinforcing member 37.
  • the through hole 36 a of the negative electrode terminal lead 36 communicates with the through hole 37 c of the first negative electrode terminal insulating reinforcing member 37, the opening of the burring portion 31 and the through hole 30 of the first exterior portion 5.
  • the first negative electrode insulation reinforcing member 37 and the pair of second negative electrode insulation reinforcement members 38 are disposed on the inner surface side of the first exterior portion 5 and the inner surface side of the second exterior portion 6.
  • the second negative electrode insulation reinforcing member 38 has a structure in which a bottomed rectangular tube is divided in half in the long side direction.
  • One first negative electrode insulation reinforcing member 37 covers about half of the negative electrode current collecting tab 8a from the winding center to the first exterior portion 5 side.
  • the other second insulation reinforcing member 38 covers about half of the negative electrode current collecting tab 8a from the winding center to the second exterior portion 6 side.
  • the shaft portion of the negative electrode external terminal 32 includes an insulating gasket 34, a through hole 35a in the negative electrode terminal insulating member 35, a through hole 30 in the first exterior portion 5, a through hole 37c in the first negative electrode insulating reinforcing member 37, and a negative terminal lead.
  • plastic deformation is caused by caulking.
  • the negative external terminal 32 is electrically connected to the negative terminal lead 36. Therefore, the negative external terminal 36 also serves as a rivet.
  • a boundary portion between the end face of the shaft portion of the negative electrode external terminal 32 and the through hole 36a of the negative electrode terminal lead 36 may be welded with a laser or the like, so that stronger connection and electrical conductivity can be improved.
  • the backup positive electrode lead 11, the electrode group side positive electrode lead 12, the positive electrode terminal lead 23, the backup negative electrode lead 13, the electrode group side negative electrode lead 14 and the negative electrode terminal lead 36 can be made of, for example, aluminum or an aluminum alloy material.
  • the material of the lead is preferably the same as the material of the positive electrode current collector or the negative electrode current collector that can be electrically connected to the lead.
  • the first positive electrode insulating reinforcing member 24, the second positive electrode insulating reinforcing member 25, the first negative electrode insulating reinforcing member 37, and the second negative electrode insulating reinforcing member 38 are, for example, a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer.
  • PFA polypropylene
  • PE polyethylene
  • PET polyethylene
  • PTFE polytetrafluoroethylene
  • PPS polyphenylene sulfide
  • PES polyetheretherketone It is formed from a thermoplastic resin such as (PEEK).
  • the electrode group 2 is housed in the first exterior part 5 so that the first end face 7 a faces the positive terminal part 3 and the second end face 8 a faces the negative terminal part 4. Therefore, the plane intersecting the first end surface 7a and the second end surface 8a of the electrode group 2 faces the bottom surface 5c in the first exterior portion 5, and the curved surface intersecting the first end surface 7a and the second end surface 8a is the first. It faces the long side surface in the exterior part 5.
  • the corner portion connecting the short side wall and the bottom of the first exterior portion 5 there are gaps between the first end surface 7a of the electrode group 2 and the second end surface 8a.
  • the dead space in the first exterior portion 5 is reduced. Therefore, the volume energy density of the battery can be increased.
  • the terminal portions are installed rather than the case where the positive electrode terminal portion 3 and the negative electrode terminal portion 4 are provided on the short side surface having no inclined surface. The area can be increased. Therefore, the diameter of the shaft portion of the positive electrode external terminal 17 and the shaft portion of the negative electrode external terminal 32 can be increased, so that a large current (high rate current) can flow with low resistance.
  • the electrode group 2 is further wound with an insulating film 26.
  • the winding direction of the insulating film 26 and the winding direction of the electrode group 2 are the same or opposite.
  • the insulating film 26 is disposed between the electrode group 2 and the first exterior part 5 and between the electrode group 2 and the second exterior part 6.
  • the insulating film 26 winds the electrode group 2 so as to straddle the positive electrode current collecting tab 7a and the negative electrode current collecting tab 8a.
  • the end portion of the insulating film 26 on the positive electrode side extends to the lead side of the positive electrode terminal portion 3, and the end portion on the negative electrode side extends to the lead side of the negative electrode terminal portion 4. It is preferable that the insulating film 26 is further fixed with a tape (not shown).
  • Examples of the insulating film 26 include one selected from the group consisting of a nonwoven fabric, a film, and paper.
  • Examples of the insulating film 26 include a nonwoven fabric containing cellulose fibers, polyolefins containing polyethylene and polypropylene, cellulose, polyester, polyvinyl alcohol, polyimide, polyamide, polyamideimide, polytetrafluoroethylene vinylon, polytetrafluoroethylene, and paper containing cellulose fibers.
  • the thickness of the insulating film 26 is not particularly limited, but if it is too thin, the insulation will be insufficient, and if it is too thick, the battery capacity will be reduced. Therefore, the thickness of the insulating film 26 is typically 4 ⁇ m to 50 ⁇ m.
  • FIG. 5 shows a cross-sectional view obtained when the positive electrode terminal portion is cut along the battery long side direction.
  • FIG. 6 shows a cross-sectional view obtained when cutting along the battery long side direction on the positive electrode side not including the positive electrode terminal portion. 5 and 6, the first positive electrode insulation reinforcing member 24 is sandwiched between the insulating film 26 and the first exterior portion 5, and the second positive electrode insulation reinforcing member 25 is composed of the insulating film 26 and the second exterior portion. It is sandwiched between the parts 6.
  • the insulating film 26 is provided on the positive electrode side so as to cover at least a part of the positive electrode current collecting tab 7a of the electrode group 2, and between the positive electrode current collecting tab 7a and the first positive electrode insulating reinforcing member 24 and the positive electrode current collecting tab. It arrange
  • FIG. 7 shows a cross-sectional view obtained when the negative electrode terminal portion is cut along the battery long side direction.
  • FIG. 8 shows a cross-sectional view obtained when cutting along the battery long side direction on the negative electrode side not including the negative electrode terminal portion.
  • the first negative electrode insulation reinforcing member 37 is sandwiched between the insulating film 26 and the first exterior part 5
  • the second negative electrode insulation reinforcing member 38 is composed of the insulating film 26 and the second exterior member. It is sandwiched between the parts 6.
  • the insulating film 26 is provided on the negative electrode side so as to cover at least part of the negative electrode current collecting tab 8a of the electrode group 2, and between the negative electrode current collecting tab 8a and the first negative electrode insulating reinforcing member 37 and the negative electrode current collecting tab 37a. It arrange
  • the positive electrode current collecting tab 7a is covered with a cover.
  • the negative electrode current collecting tab 8 a is covered with a bottomed rectangular cylindrical cover formed by contacting the lower end of the second negative electrode insulating reinforcing member 38 with the upper end of the first negative electrode insulating reinforcing member 37.
  • the second exterior part 6 functions as a lid for the first exterior part 5.
  • the electrode group 2 is sealed in the exterior member 1 by welding the four sides of the flange portion 5 b of the first exterior portion 5 and the second exterior portion 6.
  • the battery shown in FIGS. 1 to 9 described above has an electrode in a space formed by welding a stainless steel first exterior portion having a flange portion in an opening and a stainless steel second exterior portion. It is preferable that the exterior member in which a group is accommodated is included. Since the second exterior part 5 and the second exterior part 6 are made of stainless steel, high strength can be maintained even when the plate thickness of the first and second exterior parts is reduced. As a result, since the flexibility of the exterior member can be increased, the electrode group 2 can be easily restrained by applying a load from the outside of the reduced pressure seal or the exterior member 1. Thereby, the distance between the electrodes of the electrode group 2 can be stabilized and the resistance can be lowered, and the battery pack having vibration resistance and impact resistance can be easily realized. Furthermore, if the flexibility of the first exterior part 5 and the second exterior part 6 is high, it is easy to reduce the distance from the inner surfaces of the first and second exterior parts to the electrode group. Can improve sex.
  • Stainless steel first exterior part 5 and second exterior part 6 are easy to weld and can be sealed by inexpensive resistance seam welding. Therefore, it is possible to realize an exterior member having a higher gas sealing property than a laminate film container at a low cost. Moreover, the heat resistance of the exterior member can be improved.
  • SUS304 has a melting point of 1400 ° C.
  • Al has a melting point of 650 ° C.
  • the shaft portion of the external terminal is plastically deformed as a result of being caulked and fixed in the through hole. As a result, a force is applied in the radial direction of the insulating gasket.
  • the burring portion is reinforced by the ring-shaped member disposed on the outer side, a compressive stress is generated in the insulating gasket, and the external terminal is connected to the first exterior portion 5. Can be connected with high strength. Even if the plate thickness of the first exterior portion 5, that is, the plate thickness of the burring portion is reduced, the ring-shaped member can reinforce the burring portion. Can be connected to the first exterior portion 5 with high strength.
  • the burring portion extends from the edge of the through hole toward the inside of the exterior member 1, it is possible to suppress liquid leakage when the internal pressure of the exterior member 1 increases due to gas generation or the like by the action of the external pressure. It becomes. Therefore, high reliability can be achieved even when the plate thickness of the first exterior portion 5 and the second exterior portion 6 is reduced.
  • the battery of the first embodiment high strength and reliability can be obtained even when the plate thickness of the first exterior portion 5 and the second exterior portion 6 is reduced.
  • a battery having excellent heat dissipation and high strength and reliability can be provided.
  • the opening area of the first exterior part 5 is widened.
  • the second exterior part is welded to the four sides of the first exterior part, but as the opening area increases, the length of one side to be welded increases, so the three sides are welded first and the remaining one side It becomes easy to inject the electrolyte from the gap.
  • the exterior member 1 can be temporarily sealed by providing a location where the welding strength is lower than the others, a temporary sealing component (for example, a rubber plug) can be made unnecessary.
  • the exterior member 1 has a flat shape, the heat dissipation of the battery can be improved.
  • the dead space in the 1st exterior part 5 can be reduced by the 1st exterior part 5 including the recessed part which has the inclined surface 5d, and arrange
  • the inclined surface 5d is not limited to the one provided near the center of the short side of the exterior member 1, and may extend over the entire short side of the exterior member.
  • the first end surface of the external terminal has a quadrangular top surface and first and second inclined surfaces connected to two opposite sides of the top surface, so that any one of the three surfaces is welded.
  • the welding direction can be changed by selecting the surface.
  • the difference (wall thickness) between the outer and inner diameters of the positive electrode terminal portion 3, the negative electrode terminal portion 4, or both of the ring-shaped members is preferably equal to or greater than the plate thickness of the first exterior portion 5.
  • the shortest thickness can be 0.1 mm or more.
  • the outer shape of the ring-shaped member is not necessarily the same shape as the burring cross-sectional shape, and may be a polyhedron such as a rectangle or a hexagon, or may be a composite shape of a single or a plurality of curves and a single or a plurality of straight lines.
  • a flat plate as illustrated in FIGS. 5 to 8 can be used, but a member having a flange portion at the opening may be used instead of the flat plate.
  • a member having a flange portion at the opening may be used instead of the flat plate.
  • the backup positive electrode lead 11 and the backup negative electrode lead 13 are not limited to U-shaped conductive plates, and conductive flat plates may be used. It is also possible to employ a configuration in which the backup positive electrode lead 11 and / or the backup negative electrode lead 13 are not used.
  • the exterior member can further include a safety valve or the like that can release the pressure inside the battery when the internal pressure of the battery rises above a specified value.
  • the battery according to the first embodiment may be a primary battery or a secondary battery.
  • An example of the battery according to the first embodiment is a lithium ion secondary battery.
  • the positive electrode, negative electrode, separator, and nonaqueous electrolyte of the battery according to the first embodiment will be described below.
  • the positive electrode can include, for example, a positive electrode current collector, a positive electrode material layer held on the positive electrode current collector, and a positive electrode current collector tab.
  • the positive electrode material layer can include, for example, a positive electrode active material, a conductive agent, and a binder.
  • an oxide or a sulfide can be used as the positive electrode active material.
  • oxides and sulfides include manganese dioxide (MnO 2 ) that occludes lithium, iron oxide, copper oxide, nickel oxide, lithium manganese composite oxide (eg, Li x Mn 2 O 4 or Li x MnO 2 ), Lithium nickel composite oxide (for example, Li x NiO 2 ), lithium cobalt composite oxide (for example, Li x CoO 2 ), lithium nickel cobalt composite oxide (for example, LiNi 1-y Co y O 2 ), lithium manganese cobalt composite oxide (e.g.
  • Li x Mn y Co 1-y O 2 lithium manganese nickel complex oxide having a spinel structure (e.g., Li x Mn 2-y Ni y O 4), lithium phosphates having an olivine structure (e.g., Li x FePO 4, Li x Fe 1- y Mn y PO 4, Li x CoPO 4), iron sulfate (Fe 2 (SO 4) 3 ), vanadium oxide (e.g. Examples thereof include V 2 O 5 ) and lithium nickel cobalt manganese composite oxide.
  • these compounds may be used alone, or a plurality of compounds may be used in combination.
  • the binder is blended to bind the active material and the current collector.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and fluorine-based rubber.
  • the conductive agent is blended as necessary in order to enhance the current collecting performance and suppress the contact resistance between the active material and the current collector.
  • Examples of the conductive agent include carbonaceous materials such as acetylene black, carbon black, and graphite.
  • the positive electrode active material and the binder are preferably blended at a ratio of 80% by mass to 98% by mass and 2% by mass to 20% by mass, respectively.
  • a sufficient electrode strength can be obtained by setting the binder to an amount of 2% by mass or more. Moreover, the content of the insulating material of an electrode can be reduced by setting it as 20 mass% or less, and internal resistance can be reduced.
  • the positive electrode active material, the binder, and the conductive agent are 77% by mass or more and 95% by mass or less, 2% by mass or more and 20% by mass or less, and 3% by mass or more and 15% by mass or less, respectively. It is preferable to mix
  • the conductive agent can exhibit the above-described effects by adjusting the amount to 3% by mass or more. Moreover, by setting it as 15 mass% or less, decomposition
  • the positive electrode current collector is preferably an aluminum foil or an aluminum alloy foil containing at least one element selected from Mg, Ti, Zn, Ni, Cr, Mn, Fe, Cu and Si.
  • the positive electrode current collector is preferably integral with the positive electrode current collecting tab.
  • the positive electrode current collector may be a separate body from the positive electrode current collector tab.
  • Negative electrode A negative electrode can contain the negative electrode collector, the negative electrode material layer hold
  • the negative electrode material layer can include, for example, a negative electrode active material, a conductive agent, and a binder.
  • the negative electrode active material for example, a metal oxide, metal nitride, alloy, carbon, or the like that can occlude and release lithium ions can be used. It is preferable to use as the negative electrode active material a material capable of inserting and extracting lithium ions at a potential of 0.4 V or higher (vs. Li / Li + ).
  • the negative electrode active material examples include graphite materials or carbonaceous materials (for example, graphite, coke, carbon fiber, spherical carbon, pyrolytic vapor phase carbonaceous material, resin fired body, etc.), chalcogen compounds (for example, titanium disulfide, Molybdenum disulfide, niobium selenide, etc.), light metal (eg, aluminum, aluminum alloy, magnesium alloy, lithium, lithium alloy, etc.), Li 4 + x Ti 5 O 12 (x is in the range of ⁇ 1 ⁇ x ⁇ 3 due to charge / discharge reaction) Spinel type lithium titanate, ramsteride type Li 2 + x Ti 3 O 7 (x varies in the range of ⁇ 1 ⁇ x ⁇ 3 by charge / discharge reaction), Ti and P, V, Sn Metal composite oxides and niobium titanium composite oxides containing at least one element selected from the group consisting of Cu, Ni and Fe And the like.
  • graphite materials or carbonaceous materials for example,
  • Examples of the metal composite oxide containing at least one element selected from the group consisting of Ti and P, V, Sn, Cu, Ni and Fe include TiO 2 -P 2 O 5 and TiO 2 -V 2.
  • M is at least one element selected from the group consisting of Cu, Ni and Fe).
  • These metal composite oxides change to lithium titanium composite oxides when lithium is inserted by charging. It is preferable to include one or more substances selected from the group consisting of lithium titanium oxide (for example, spinel type lithium titanate), silicon and tin.
  • the binder for the negative electrode active material layer is the same as the binder for the positive electrode active material layer.
  • the conductive agent of the negative electrode active material layer is the same as the conductive agent of the positive electrode active material layer.
  • Examples of the composite oxide containing niobium titanium include, for example, the general formula Li a TiM b Nb 2 ⁇ ⁇ O 7 ⁇ ⁇ (where each subscript value is 0 ⁇ a ⁇ 5, 0 ⁇ b ⁇ 0.3, 0 ⁇ ⁇ ⁇ 0.3, 0 ⁇ ⁇ ⁇ 0.3, and M is at least one selected from the group consisting of Fe, V, Mo, and Ta (one or more).
  • the conductive agent is blended in order to enhance the current collecting performance and suppress the contact resistance between the negative electrode active material and the current collector.
  • Examples of the conductive agent include carbonaceous materials such as acetylene black, carbon black, and graphite.
  • the binder is blended to fill a gap between the dispersed negative electrode active materials and to bind the negative electrode active material and the current collector.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, and styrene butadiene rubber.
  • the active material, the conductive agent, and the binder in the negative electrode material layer are blended at a ratio of 68% by mass to 96% by mass, 2% by mass to 30% by mass, and 2% by mass to 30% by mass, respectively. It is preferable.
  • the amount of the conductive agent By setting the amount of the conductive agent to 2% by mass or more, the current collecting performance of the negative electrode layer can be improved. Further, by setting the amount of the binder to 2% by mass or more, the binding property between the negative electrode material layer and the current collector can be sufficiently exhibited, and excellent cycle characteristics can be expected.
  • the conductive agent and the binder are each preferably 28% by mass or less in order to increase the capacity.
  • the current collector a material that is electrochemically stable at the lithium insertion / release potential of the negative electrode active material is used.
  • the current collector is preferably made of copper, nickel, stainless steel or aluminum or an aluminum alloy containing at least one element selected from Mg, Ti, Zn, Mn, Fe, Cu and Si.
  • the thickness of the current collector is preferably in the range of 5 to 20 ⁇ m. A current collector having such a thickness can balance the strength and weight reduction of the negative electrode.
  • the negative electrode current collector is preferably integral with the negative electrode current collecting tab.
  • the negative electrode current collector may be a separate body from the negative electrode current collection tab.
  • the negative electrode is prepared by suspending a negative electrode active material, a binder and a conductive agent in a commonly used solvent to prepare a slurry, and applying this slurry to a current collector and drying to form a negative electrode material layer It is produced by applying a press.
  • the negative electrode may also be produced by forming a negative electrode active material, a binder, and a conductive agent in the form of a pellet to form a negative electrode material layer, which is disposed on a current collector.
  • Separator A porous and thin insulating thin film.
  • a separator a nonwoven fabric, a film, paper, an inorganic particle layer, etc. are contained.
  • the constituent material of the separator include polyolefins such as polyethylene and polypropylene, cellulose, polyester, polyvinyl alcohol, polyimide, polyamide, polyamideimide, polytetrafluoroethylene, and vinylon.
  • Non-woven fabrics containing cellulose fibers can be cited as examples of preferred separators from the viewpoint of thinness and mechanical strength.
  • the inorganic particle layer includes oxide particles, a thickener, and a binder.
  • Metal oxides such as aluminum oxide, titanium oxide, magnesium oxide, zinc oxide, and barium sulfate can be used for the oxide particles.
  • Carboxymethylcellulose can be used as the thickener.
  • methyl acrylate, an acrylic copolymer containing the same, styrene butadiene rubber (SBR), or the like can be used as the binder.
  • the electrolyte is a solution containing an electrolyte salt and a non-aqueous solvent, a non-aqueous gel electrolyte obtained by combining a polymer material in a solution containing an electrolyte salt and a non-aqueous solvent, a solution containing an electrolyte salt and water, or an electrolyte salt. It is preferable to use a water-based gel electrolyte obtained by combining a polymer material with a solution containing water.
  • the electrolyte salt contained in the non-aqueous solution is, for example, LiPF 6 , LiBF 4 , Li (CF 3 SO 2 ) 2 N (bistrifluoromethanesulfonylamide lithium; commonly known as LiTFSI), LiCF 3 SO 3 (commonly known as LiTFS), Li (C 2 F 5 SO 2) 2 N ( bis pentafluoroethanesulfonyl amide lithium; called LiBETI), LiClO 4, LiAsF 6 , LiSbF 6, LiB (C 2 O 4) 2 ( bis oxa Lato lithium borate; called LiBOB), difluoro Lithium such as (trifluoro-2-oxide-2-trifluoro-methylpropionate (2-)-0,0), LiBF 2 OCOOC (CF 3 ) 2 (lithium borate; commonly known as LiBF 2 (HHIB)) A salt can be used.
  • LiPF 6 , LiBF 4 , Li (CF 3 SO 2 ) 2 N
  • electrolyte salts may be used alone or in combination of two or more.
  • LiPF 6 and LiBF 4 are preferable.
  • a supporting salt that conducts ions can be used.
  • lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate, an imide-based support salt, and the like can be given.
  • the lithium salt may contain one type or two or more types.
  • the non-aqueous electrolyte salt concentration is preferably in the range of 0.5 mol / L or more and 3.0 mol / L or less, and more preferably in the range of 0.7 mol / L or more and 2.0 mol / L or less. .
  • Such regulation of the electrolyte concentration makes it possible to further improve the performance when a high load current is passed while suppressing the influence of an increase in viscosity due to an increase in the electrolyte salt concentration.
  • the non-aqueous solvent is not particularly limited, and examples thereof include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC).
  • cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC).
  • linear carbonate such as dipropyl carbonate (DPC), 1,2-dimethoxyethane (DME), ⁇ -butyrolactone (GBL), tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeHF), 1,3-dioxolane , Sulfolane, acetonitrile (AN) can be used.
  • DPC dipropyl carbonate
  • DME 1,2-dimethoxyethane
  • GBL
  • a non-aqueous solvent containing a cyclic carbonate and / or a chain carbonate is preferred.
  • the polymer material contained in the non-aqueous gel electrolyte include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyethylene oxide (PEO), and polymethacrylate.
  • the electrolyte salt contained in the aqueous solution is LiCl, LiBr, LiOH, Li 2 SO 4 , LiNO 3 , LiN (SO 2 CF 3 ) 2 (lithium trifluoromethanesulfonylamide; commonly known as LiTFSA), LiN (SO 2 C 2 F 5 ) 2 (lithium bispentafluoroethanesulfonylamide; commonly known as LiBETA), LiN (SO 2 F) 2 (lithium bisfluorosulfonylamide; commonly known as LiFSA), LiB [(OCO) 2 ] 2 and the like.
  • the kind of lithium salt to be used can be one kind or two or more kinds.
  • the polymer material contained in the aqueous gel electrolyte include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyethylene oxide (PEO), and polymethacrylate.
  • the aqueous electrolyte salt concentration is preferably from 1 mol / L to 12 mol / L, more preferably from 112 mol / L to 10 mol / L.
  • LiOH or Li 2 SO 4 can be added to adjust the pH.
  • the pH value is preferably from 3 to 13, more preferably from 4 to 12.
  • non-aqueous electrolyte a room temperature molten salt (ionic melt) containing lithium ions, a polymer solid electrolyte, an inorganic solid electrolyte, or the like may be used.
  • Room temperature molten salt refers to a compound that can exist as a liquid at room temperature (15 to 25 ° C.) among organic salts composed of a combination of an organic cation and an anion.
  • the room temperature molten salt includes a room temperature molten salt that exists alone as a liquid, a room temperature molten salt that becomes liquid when mixed with an electrolyte, and a room temperature molten salt that becomes liquid when dissolved in an organic solvent.
  • the melting point of a room temperature molten salt used for a nonaqueous electrolyte battery is 25 ° C. or less.
  • the organic cation generally has a quaternary ammonium skeleton.
  • FIG. 10A to FIG. 10B and FIG. 11A to FIG. 11D show process diagrams for manufacturing a battery.
  • the electrode group 2 as illustrated in FIG. 3 is prepared and further wound with the insulating film 26. Moreover, the 1st exterior part 5 to which the positive electrode terminal part 3 and the negative electrode terminal part 4 were fixed as illustrated in FIG. 9 is produced. Note that at least one guide hole for positioning is opened in each of the first exterior part 5 and the second exterior part 6. An example is shown in FIGS. 10 (a) and 10 (b).
  • FIG. 10A shows an example in which positioning guide holes 39 are opened at the four corners of the second exterior portion 6.
  • FIG. 10B shows an example in which positioning guide holes 39 are opened at the four corners of the first exterior portion 5.
  • the electrode group 2 wound with the insulating film 26 is accommodated in the first exterior portion 5, the electrode group side positive lead 12 is joined to the positive terminal lead 23 by welding or the like, and the electrode group side negative lead 14 is attached to the positive electrode terminal lead 23.
  • the negative electrode terminal lead 36 is joined by welding or the like.
  • welding for joining, for example, laser welding, TIG welding, or friction stir welding can be used. In the embodiment, any joining is handled as welding.
  • the second positive electrode insulation reinforcing member 25 and the second negative electrode insulation reinforcing member 38 are placed on the positive electrode current collecting tab 7a and the negative electrode current collecting tab 8a of the electrode group 2.
  • the second exterior part 6 is arranged on the first exterior part 5. Since the guide holes 39 are opened at the four corners of each of the first exterior part 5 and the second exterior part 6, it is easy to determine the position of the second exterior part 6 with respect to the first exterior part 5.
  • the three sides (for example, the long side and the two short sides) of the first exterior part 5 and the second exterior part 6 are welded.
  • welding for example, resistance seam welding is used.
  • the weld location is indicated by reference numeral 40. It is desirable that the welding location 40 be located inside the outer edges of the first exterior part 5 and the second exterior part 6.
  • this one side is welded by, for example, resistance seam welding as shown in FIG. It is desirable that the welding location 41 be an outer edge portion of the first exterior portion 5 and the second exterior portion 6.
  • a cut portion 42 is formed by cutting a part of the welded portion 41, and the gas in the exterior member is released.
  • the welding location (long side of the 2nd exterior part 6) 43 further inside than the welding location 41 is welded by resistance seam welding. This welding is desirably performed in a reduced pressure atmosphere.
  • the guide hole 39 can be removed by cutting the vicinity of the outer edges of the first exterior part 5 and the second exterior part 6.
  • the guide hole 39 may be left.
  • the battery of the first embodiment can be manufactured with high productivity.
  • the battery according to the first embodiment can include a plurality of electrode groups in one exterior member.
  • the second exterior part it is desirable to use the one having a flange part at the opening, similarly to the first exterior part.
  • FIG. 12D shows the manufactured battery 101.
  • a plurality of electrode groups 2 wound with an insulating film 26 are prepared, and the central tip of the positive electrode current collecting tab 7 a is bundled with the backup positive electrode lead 11.
  • the backup positive electrode lead 11 and the electrode group side positive electrode lead 12 are welded.
  • the electrode group side positive lead 12 is bent to form the first extension portion 12 as shown in FIG. 12B. Note that a member as shown in FIG. 12B may be obtained by welding the electrode-side positive lead bent in advance with the backup positive lead 11.
  • the member shown in FIG. 12B is inserted from the opening side of the first exterior member 5 in which the positive electrode terminal portion 3 is previously incorporated.
  • the first extended portion 12a of the electrode group side positive lead 12 and the first extended portion of the positive terminal lead 23 are fixed by laser welding so that one electrode group 2 is fixed as shown in FIG. 12C. 1 is fixed in the exterior portion 5.
  • another electrode group 2 is inserted into the first exterior portion 5, laser welding is performed, and the second exterior portion 6 is covered to accommodate the plurality of electrode groups 2 shown in FIG. 12D.
  • Battery 101 can be obtained. By changing the direction of the electrodes of the plurality of electrode groups, series connection can be achieved.
  • FIG. 13 shows a modification of the positive electrode part of the battery 100 of the first embodiment.
  • the negative electrode side is shown in FIG. 14, and is configured symmetrically with the positive electrode portion of FIG.
  • the first positive electrode insulation reinforcing member 24 has a convex portion 24 d
  • the second positive electrode insulation reinforcing member 25 has a concave portion 25 b.
  • the first positive electrode insulation reinforcing member 24 and the second positive electrode insulation reinforcing member 25 are fitted on the side opposite to the positive electrode current collecting tab 7a side by combining the convex portion 24d and the concave portion 25b.
  • the fitting by the concave part and the convex part is an example of the form of fitting, and it is only necessary that the first positive electrode insulation reinforcing member 24 and the second positive electrode insulation reinforcing member 25 are connected.
  • the first positive electrode insulation reinforcing member 24 and the second positive electrode insulation reinforcement member 25 are connected not on the positive electrode current collecting tab 7a side but on the positive electrode terminal side. Since the first positive electrode insulation reinforcing member 24 and the second positive electrode insulation reinforcing member 25 are connected, the first positive electrode insulation reinforcing member 24 and the second positive electrode insulation reinforcing member 24 are connected to each other on the positive electrode terminal side as viewed from the positive electrode current collecting tab 7a side.
  • the exterior member 1 is not exposed by the positive electrode insulation reinforcing member 25.
  • the positive electrode current collecting tab 7a and the positive electrode terminal portion 3 are not easily short-circuited with the exterior member 1, so the electrode group 2, the backup positive electrode lead 11, the electrode group side positive electrode lead 12, and the positive electrode terminal lead It is preferable at the point which the insulation of 23 and the exterior member 1 improves further.
  • the battery 102 of FIG. 14 has a convex portion 37d on the first negative electrode insulating reinforcing member 37 and a concave portion 38b on the second negative electrode insulating reinforcing member 38.
  • the first negative electrode insulation reinforcing member 37 and the second negative electrode insulation reinforcing member 38 are fitted on the side opposite to the negative electrode current collecting tab 8a side by combining the convex portion 37d and the concave portion 38b.
  • the fitting by the concave part and the convex part is an example of the form of fitting, and it is only necessary that the first negative electrode insulating reinforcing member 37 and the second negative electrode insulating reinforcing member 38 are connected.
  • the connection between the first negative electrode insulation reinforcing member 37 and the second negative electrode insulation reinforcement member 38 is made not on the negative electrode current collecting tab 8a side but on the negative electrode terminal side. Since the first negative electrode insulation reinforcing member 37 and the second negative electrode insulation reinforcement member 38 are connected, the first negative electrode insulation reinforcement member 37 and the second negative electrode insulation reinforcement member 37 are connected to each other on the negative electrode terminal side as viewed from the negative electrode current collecting tab 8a side. The exterior member 1 is not exposed by the negative electrode insulation reinforcing member 2 of FIG.
  • the electrode group 2, the backup negative electrode lead 12, the electrode group side negative electrode lead 13, and the negative electrode terminal lead It is preferable at the point which the insulation of 36 and the exterior member 1 improves further.
  • the battery of the first embodiment described above is a thin battery, the insulation between the positive electrode and the negative electrode and the exterior member 1 is highly reliable, and the safety of the battery is high.
  • a terminal part may be applied to both a positive electrode terminal part and a negative electrode terminal part, it is also possible to apply to any one of a positive electrode terminal part or a negative electrode terminal part.
  • the battery pack of the second embodiment includes one or more batteries of the first embodiment. Examples of the assembled battery of the battery of the first embodiment are shown in FIGS. 15 and 16.
  • the battery pack 200 uses the batteries 100 to 102 of the first embodiment as unit cells.
  • the battery pack 200 may be covered with a laminate (not shown).
  • a triangular prismatic conductive connecting member 62 is disposed between the top surface 32 b of the negative electrode external terminal 32 of the first unit cell 60 and the top surface 32 b of the negative electrode external terminal 32 of the second unit cell 61.
  • a triangular prism-shaped conductive connecting member 62 is disposed between the top surface of the positive electrode external terminal 17 of the first unit cell 60 and the top surface of the positive electrode external terminal 17 of the second unit cell 61.
  • the two top surfaces and the conductive connecting member 62 are electrically connected to each other by welding.
  • the battery pack 200 is obtained by connecting the assembled battery units 63 in series by the bus bar 64.
  • a battery pack 201 shown in FIG. 16 uses the battery 100 of the first embodiment as a unit cell.
  • a battery unit 100 in which a first unit cell 60 and a second unit cell 61 are connected in series using a conductive connecting member 62 is used as an assembled battery unit 65, and the assembled battery units 65 are connected in series by a bus bar 64.
  • a battery pack is configured by connecting to the.
  • the method of electrically connecting the first unit cell 60 and the second unit cell 61 using the conductive connecting member 62 is the same as described with reference to FIG.
  • the first unit cell 60 and the second unit cell 61 that are adjacent to each other are stacked with the main surfaces of the exterior members 1 facing each other.
  • the main surface of the first exterior part 5 of the first unit cell 60 faces the main surface of the first exterior part 5 of the second unit cell 61. ing. Further, in the adjacent assembled battery unit 63, the main surface of the second exterior portion 6 of the second unit cell 61 of one assembled battery unit 63 and the second unit cell of the other assembled battery unit 63. The main surface of the 61st 2nd exterior part 6 faces.
  • the volume energy density of an assembled battery can be made high by laminating
  • an insulating space between the unit cell 60 and the unit cell 61, or between the unit cells 60 and 60 and the unit cells 61 and 61, and 0.03 mm or more.
  • an insulating member for example, resin such as polypropylene, polyphenylene sulfide, epoxy, fine ceramic such as alumina or zirconia
  • resin such as polypropylene, polyphenylene sulfide, epoxy, fine ceramic such as alumina or zirconia
  • the positive electrode external terminal 17 and the negative electrode external terminal 32 have a truncated pyramid-shaped head, a unit is provided at one of the two heads (for example, the first and second inclined surfaces) (first inclined surface).
  • a bus bar can be connected to the external terminal of the cell and the other (second inclined surface). That is, two directions can be connected with one head. As a result, the path for electrically connecting the batteries can be shortened, so that it is easy to flow a large current through the battery pack with low resistance.
  • the battery pack of the second embodiment includes at least one battery of the first embodiment, the battery pack can be thinned and improved in flexibility, excellent in reliability, and capable of reducing manufacturing costs.
  • the battery pack is used, for example, as a power source for electronic devices and vehicles (railway vehicles, automobiles, motorbikes, light vehicles, trolley buses, etc.).
  • the assembled battery may include a plurality of batteries electrically connected in series, parallel, or a combination of series and parallel.
  • the battery pack can include a circuit such as a battery control unit (BMU), but the battery control unit includes a circuit (for example, a vehicle) on which the assembled battery is mounted.
  • BMU battery control unit
  • the battery control unit has a function of preventing overcharge and overdischarge by monitoring the voltage and / or current of the cell and the assembled battery.
  • the third embodiment relates to a power storage device.
  • the battery packs 200 and 201 of the second embodiment can be mounted on the power storage device 300.
  • a power storage device 300 illustrated in the conceptual diagram of FIG. 17 includes battery packs 200 and 201, an inverter 302, and a converter 301.
  • External AC power supply 303 is converted into DC by converter 301, battery packs 200 and 201 are charged, AC conversion is performed by inverter 302 of the DC power supply from battery packs 200 and 201, and electricity is supplied to load 304 connected to power storage device 300. It is the composition to do.
  • the electrical storage apparatus 300 of this structure which has the battery packs 200 and 201 of embodiment, the electrical storage apparatus excellent in the battery characteristic is provided.
  • the batteries 100 to 102 can be used.
  • the fourth embodiment relates to a vehicle.
  • the vehicle of the fourth embodiment uses the battery packs 200 and 201 of the second embodiment.
  • the configuration of the vehicle according to the present embodiment will be briefly described with reference to the schematic diagram of the vehicle 400 in FIG.
  • the vehicle 400 includes battery packs 200 and 201, a vehicle body 401, a motor 402, wheels 403, and a control unit 404.
  • the battery packs 200 and 201, the motor 402, the wheels 403, and the control unit 404 are disposed on the vehicle body 401.
  • the control unit 404 converts the power output from the battery packs 200 and 201 and adjusts the output.
  • the motor 402 rotates the wheel 403 using the electric power output from the battery packs 200 and 201.
  • the vehicle 400 includes an electric vehicle such as a train and a hybrid vehicle having another drive source such as an engine.
  • the battery packs 200 and 201 may be charged by regenerative energy from the motor 402. What is driven by the electric energy from the battery packs 200 and 201 is not limited to a motor, and may be used as a power source for operating an electric device included in the vehicle 400. It is preferable to obtain regenerative energy when the vehicle 400 is decelerated and to charge the battery packs 200 and 201 using the obtained regenerative energy.
  • the vehicle 400 having this configuration having the battery packs 200 and 201 of the embodiment a vehicle having excellent battery characteristics is provided.
  • the batteries 100 to 102 can be used.
  • the fifth embodiment relates to a flying object (for example, a multicopter).
  • the flying body of the fifth embodiment uses the battery packs 200 and 201 of the second embodiment.
  • the configuration of the flying object according to the present embodiment will be briefly described with reference to the schematic diagram of the flying object (quad copter) 500 of FIG.
  • the flying object 500 includes battery packs 200 and 201, an aircraft skeleton 501, a motor 502, a rotary blade 503, and a control unit 504.
  • the battery packs 200 and 201, the motor 502, the rotary blade 503, and the control unit 504 are arranged in the body frame 501.
  • the control unit 504 converts the power output from the battery packs 200 and 201 and adjusts the output.
  • the motor 502 rotates the rotary blade 503 using the electric power output from the battery packs 200 and 201.
  • the flying object 500 of this configuration having the battery packs 200 and 201 of the embodiment, a flying object having excellent battery characteristics is provided.
  • the batteries 100 to 102 can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本発明は、扁平形状に捲回された正極集電タブが第一端面に位置する扁平形状の電極群を捲回する絶縁フィルムと、前記正極集電タブと電気的に接続した電極群側正極リードと、第1の外装部の開口部のフランジ部と第2の外装部が溶接されて形成された空間内に前記電極群が収納された外装部材と、前記第1の外装部に設けられた正極外部端子と、前記電極群側正極リードとを電気的に接続する正極端子リードと、前記第1の外装部の内面側であって、前記正極端子リードと前記第1の外装部との間に第1の正極絶縁補強部材が配置され、前記第1の外装部の内面側及び前記第2の外装部の内面側に第2の正極絶縁補強部材が配置され、前記絶縁フィルムは、前記電極群と前記第1の外装部との間、前記電極群と前記第2の外装部との間、前記正極集電タブと前記第1の正極絶縁補強部材の間、前記正極集電タブと前記第2の正極絶縁補強部材の間に配置される電池に関する。

Description

電池、電池パック、蓄電装置、車両及び飛翔体
 本発明の実施形態は、電池、電池パック、蓄電装置、車両及び飛翔体に関する。
 一次電池及び二次電池などの電池は、一般に、正極及び負極を備えた電極群と、この電極群を収納する外装部材とを具備する。
 外装部材として、現在、金属缶、ラミネートフィルム製容器が実用化されている。金属缶は、アルミニウム等の金属板から深絞り加工により得られる。深絞り加工で缶を作製するには、金属板にある程度の厚さが必要で、それが外装部材の薄型化を妨げ、体積容量ロスに繋がっている。例えば、板厚0.5mmの外装缶を厚さ13mmの電池に適用すると、電池厚さに占める外装缶のトータル板厚の割合はおよそ7.7%となる。薄型の電池であるため電池内のリードは複雑に折り曲げるなどしてコンパクトに収容することが求められる。
 外装部材内で電池の素子と電極端子は、リードで接合される。接合後の折り曲げをすることは、作業空間及び収容空間が狭く収容が困難である。また、接合後に折曲げができる程度の厚さとするとリードが薄くなり大電流に向かない。また、リードの溶接後に溶接された部分を曲げると接合部分が剥がれやすくなり品質の観点からも接合後には折り曲げていない電池が要望される。
国際公開第2016/204147号
 本発明が解決しようとする課題は、薄型の電池において、外装材と電極群、リード及び電極端子との絶縁性に優れた電池、電池パック、蓄電装置、車両及び飛翔体を提供する。
 実施形態の電池は、正極、正極と電気的に接続された正極集電タブ、負極、及び、負極と電気的に接続された負極集電タブを含み、扁平形状に捲回された正極集電タブが第一端面に位置し、かつ扁平形状に捲回された負極集電タブが第二端面に位置する、扁平形状の電極群と、電極群を捲回する絶縁フィルムと、正極集電タブと電気的に接続した電極群側正極リードと、負極集電タブと電気的に接続した電極群側負極リードと、開口部にフランジ部を有する金属製の第1の外装部と、金属製の第2の外装部とを含み、第1の外装部のフランジ部と第2の外装部が溶接されて形成された空間内に電極群が収納された外装部材と、第1の外装部は正極集電タブ側に貫通孔を有し、頭部及び頭部から延び出た軸部を含む正極外部端子と、貫通孔を有する正極端子リードとを含み、頭部が第1の外装部の外側に突出し、軸部が前記正極端子リードの貫通孔に挿入されて軸部が第1の外装部及び正極端子リードにカシメ固定された正極端子部と、第1の外装部は負極集電タブ側に貫通孔を有し、頭部及び頭部から延び出た軸部を含む負極外部端子と、貫通孔を有する負極端子リードとを含み、頭部が第1の外装部の外側に突出し、軸部が負極端子リードの貫通孔に挿入されて軸部が第1の外装部及び負極端子リードにカシメ固定された負極端子部と、第1の正極絶縁補強部材と、第2の正極絶縁補強部材と、第1の負極絶縁補強部材と、第2の負極絶縁補強部材と、を含む。第1の正極絶縁補強部材は、第1の外装部の内面側であって、正極端子リードと第1の外装部との間に配置される。第2の正極絶縁補強部材は、第1の外装部の内面側及び第2の外装部の内面側に配置される。第1の負極絶縁補強部材は、第1の外装部の内面側であって、負極端子リードと第1の外装部との間に配置される。第2の負極絶縁補強部材は、第1の外装部の内面側及び第2の外装部の内面側に配置される。絶縁フィルムは、電極群と第1の外装部との間、電極群と第2の外装部材との間、正極集電タブと第1の正極絶縁補強部材の間、正極集電タブと第2の正極絶縁補強部材の間、負極集電タブと第1の負極絶縁補強部材の間及び負極集電タブと第2の負極絶縁補強部材の間に配置される。
図1は、第1の実施形態の電池の概略斜視図である。 図2Aは、図1に示す電池の正極側から見た分解斜視図である。 図2Bは、図1に示す電池の負極側から見た分解斜視図である。 図3は、図1に示す電池の電極群の斜視図である。 図4は、電極群を部分的に展開した状態を示す斜視図である。 図5は、図1の正極部分を電池長辺方向に沿って切断した際に得られる断面図である。 図6は、図1の正極部分を電池長辺方向に沿って切断した際に得られる断面図である。 図7は、図1の負極部分を電池長辺方向に沿って切断した際に得られる断面図である。 図8は、図1の負極部分を電池長辺方向に沿って切断した際に得られる断面図である。 図9は、図1に示す電池の第1の外装部に端子部が固定されたものを示す斜視図である。 図10(a)は、第2の外装部の平面図であり、図10(b)は、第1の外装部の平面図である。 図11(a)、(b)、(c)、(d)は、第1の実施形態の電池の製造工程を示す三面図である。 図12Aは、複数の電極群を収容した電池の組み立て工程を示す工程図である。 図12Bは、複数の電極群を収容した電池の組み立て工程を示す工程図である。 図12Cは、複数の電極群を収容した電池の組み立て工程を示す工程図である。 図12Dは、複数の電極群を収容した電池の組み立て工程を示す工程図である。 図13は、変形例における図1の正極部分を電池長辺方向に沿って切断した際に得られる断面図である。 図14は、変形例における図1の負極部分を電池長辺方向に沿って切断した際に得られる断面図である。 図15は、第2の実施形態に係る電池パックの第一例を示す概略図である。 図16は、第2の実施形態に係る電池パックの第二例を示す概略図である。 図17は、第3の実施形態の蓄電装置の概略図である。 図18は、第4の実施形態の車両の概略図である。 図19は、第5の実施形態の飛翔体の概略図である。
 以下に、実施の形態について図面を参照しながら説明する。なお、実施の形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施の形態の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術とを参酌して、適宜設計変更することができる。
 [第1の実施形態]
 第1の実施形態の電池を図1~図14を参照して説明する。図面の一部は斜視図や展開図であり、一部の部材及び部分は図示されていないが、正極及び負極は対称に構成されているため、一方の電極の図示されない部分は、他方の電極の構造から明らかにされる。なお、実施形態は、正極及び負極を非対称に構成することを認める。
 図1に示す電池100は、外装部材1と、電極群2と、正極端子部3と、負極端子部4と、電解質(図示しない)とを含む。図1に示す電池100は、例えば、二次電池である。実施形態の電池100は、薄型である。薄型である電池100の厚さは、5mm以上30mm以下である。
 図1及び図2(図2A、図2B)に示すように、外装部材1は、第1の外装部5と、第2の外装部6とを含む。第1の外装部5は、底付き角筒容器であり、開口部5aにフランジ部5bを有する。外装部材1には、第1の外装部5のフランジ部と第2の外装部6が溶接されて形成された空間内に電極群2が収納されている。なお、図2Aは、図1に示す電池の正極側から見た分解斜視図である。また、図2Bは、図1に示す電池の負極側から見た分解斜視図である。
 図1、図2及び図5に示すように、第2の外装部5の短辺側壁と底部とを繋ぐコーナの中央付近に内側に張り出した凹部が設けられており、凹部の底部が傾斜面5dになっている。第2の外装部5は、開口部5aの大きさ(開口面積となる部分の最大長)以下の深さを有するものである。より好ましい第2の外装部5は、開口面積となる部分の短辺以下の深さを有するものである(例えば図2に示すもの)。第1の外装部5は、例えば、ステンレス鋼板から浅絞り加工によって作製された開口部を有するステンレス鋼のカップ型容器である。一方、第2の外装部6は、ステンレス鋼製の蓋である。第2の外装部6は第2の外装部5の開口部を覆う。第2の外装部6も第2の外装部5と同様に浅絞り加工によって作成されたステンレス鋼のカップ型容器でも板状でもよい。第1の外装部5のフランジ部5bが第2の外装部6の四辺に溶接されて形成された空間内に電極群2が収納される。溶接には、例えば、抵抗シーム溶接が用いられる。抵抗シーム溶接は、レーザ溶接に比して低いコストで高い気密性と耐熱性を実現することができる。
 図5において、第1の外装部5の正極集電タブ7a側の貫通孔の周辺部には、外装部材1の内側に向かってバーリング部16を有する。図7において、第1の外装部5の負極集電タブ8a側の貫通孔の周辺部には、外装部材1の内側に向かってバーリング部31を有する。
 薄型の電池であるため、電極群2が収容される空間は、高さの低い空間である。1個の電極群2が収容される空間の高さは、外装部材1内に収容され、高さ方向に並んだ電極群2の数で第1の外装部5の底部から第2の外装部6までの距離を割った値である。電池が薄型であるため、1個あたりの電極群2が収容される空間の高さは、5mm以上30mm以下である。電極群2が収容される空間は、高さが低い空間であるため、リードの形状に制限が生じる。
 外装部材1はラミネートフィルムではなく金属製である。ラミネートフィルムを外装部材1として用いていると、外装部材を電極群や端子部分と絶縁する必要がない。一方、金属製の外装部材1は、正極及び負極が外装部材1と短絡しないように絶縁する必要がある。そこで、外装部材1が電極端子、リード及び電極群2と絶縁させる絶縁フィルム26を用いる。絶縁フィルム26は、図5以降に図示している。
 電極群2は、図4に示すように、扁平形状で、正極7と、負極8と、正極7と負極8の間に配置されたセパレータ9とを含む。扁平状の電極群2は、正極7、正極7と電気的に接続された正極集電タブ7a、負極8、及び、負極8と電気的に接続された負極集電タブ8aを含み、扁平形状に捲回された正極集電タブ7aが第一端面に位置し、かつ扁平形状に捲回された負極集電タブ8aが第二端面に位置する。電極群2の扁平な2面のうち1つの面が第1の外装部5の底面と対向し、電極群2の扁平な2面のうち他方の面が第2の外装部6の面と対向する。
 正極7は、例えば箔からなる帯状の正極集電体と、正極集電体の長辺に平行な一端部からなる正極集電タブ7aと、少なくとも正極集電タブ7aの部分を除いて正極集電体に形成された正極材料層(正極活物質含有層)7bとを含む。
 一方、負極8は、例えば箔からなる帯状の負極集電体と、負極集電体の長辺に平行な一端部からなる負極集電タブ8aと、少なくとも負極集電タブ8aの部分を除いて負極集電体に形成された負極材料層(負極活物質含有層)8bとを含む。電極群2は、正極7の正極材料層7bと負極8の負極材料層8bがセパレータ9を介して対向すると共に、捲回軸の一方側に正極集電タブ7aが負極8及びセパレータ9よりも突出し、かつ他方側に負極集電タブ8aが正極7及びセパレータ9よりも突出するように、正極7、セパレータ9及び負極8が扁平形状に捲回されたものである。よって、電極群2において、捲回軸と垂直な第一端面に、扁平の渦巻き状に捲回された正極集電タブ7aが位置する。
 また、捲回軸と垂直な第二端面に、扁平の渦巻き状に捲回された負極集電タブ8aが位置する。なお、電極群2は、電解質(図示しない)を保持している。
 バックアップ正極リード11は、導電性の板をU字状に折り曲げたもので、正極集電タブ7aの両端の湾曲部を除いた部分(中央付近)を挟んで正極集電タブ7aの層同士を密着させている。電極群側正極リード12は、バックアップ正極リード11よりも大きな面積の導電性の板である。図5に示すように、電極群側正極リード12は、電極群2側とは反対側に第1の延出部12aを有する。電極群側正極リード12は、バックアップ正極リード11の面に接続されている。バックアップ正極リード11は、正極集電タブ7a及び電極群側正極リード12と電気的に接続している。また、正極集電タブ7aは、電極群側正極リード12と電気的に接続している。
 正極集電タブ7a、バックアップ正極リード11及び電極群側正極リード12は、溶接により一体化され、これにより正極7が正極集電タブ7a及びバックアップ正極リード11を介して電極群側正極リード12と電気的に接続されている。正極集電タブ7aとバックアップ正極リード11との溶接は、例えばレーザ溶接や超音波溶接により行われる。バックアップ正極リード11と電極群側正極リード12との溶接は、例えばレーザ溶接や超音波溶接により行われる。バックアップ正極リード11は省略可能である。バックアップ正極リード11が省略される場合、正極集電タブ7aと電極側正極リード12とが溶接されることが好ましい。
 バックアップ負極リード13は、導電性の板をU字形状に折り曲げたもので、負極集電タブ8aの両端の湾曲部を除いた部分(中央付近)を挟んで負極集電タブ8aの層同士を密着させている。電極群側負極リード14は、バックアップ負極リード13よりも大きな面積の導電性の板である。図7に示すように、電極群側負極リード14は、電極群2側とは反対側に第1の延出部14aを有する。電極群側負極リード14の第1の延出部14aは、バックアップ負極リード13の面に接続されている。バックアップ負極リード13は、負極集電タブ8a及び電極群側負極リード14と電気的に接続している。また負極集電タブ8aは、電極群側負極リード14と電気的に接続している。
 負極集電タブ8a、バックアップ負極リード13及び電極群側負極リード14は、溶接により一体化され、これにより負極8が正極集電タブ8a及びバックアップ負極リード13を介して電極群側負極リード14と電気的に接続されている。負極集電タブ8aとバックアップ負極リード13との溶接は、例えばレーザ溶接や超音波溶接により行われる。バックアップ負極リード13と電極群側負極リード14との溶接は、例えばレーザ溶接や超音波溶接により行われる。
 正極端子部3は、図2及び図5に示すように、第1の外装部5の傾斜面5dに開口された貫通孔15と、正極外部端子17と、正極絶縁部材18a、正極補強部材(リング状部材)18bと、絶縁ガスケット19と、正極端子絶縁部材20とを含む。
 正極端子部3において、第1の外装部5は正極集電タブ側に貫通孔15を有している。正極端子部3の正極外部端子17は、頭部21及び頭部21から延び出た軸部を含む。正極端子部3において、貫通孔23aを有する正極端子リード23を含む。正極端子部3において、頭部21が第1の外装部5の外側に突出し、軸部が正極端子リード23の貫通孔23aに挿入されて、軸部が第1の外装部5及び正極端子リード23にカシメ固定されている。
 バーリング部(環状の立ち上がり部)16は、図5に示すように、貫通孔15の周縁部から外装部材1の内側に向けて延びており、バーリング加工によって形成されたものである。
 正極外部端子17は、図5に示すように、角錐台形状の頭部21と、第2の外装部5の貫通孔15を貫通する円柱状の軸部とを含む。円柱状の軸部は、頭部21の頂面と平行な平面から伸び出ている。正極外部端子17は、例えば、アルミニウム、アルミニウム合金等の導電性材料から形成される。
 正極絶縁部材18aは、貫通孔及び凸部有し、第1の外装部5を正極外部端子17及び正極端子リード23と絶縁する。正極絶縁部材18aは、凸部を有するリング状部材である。正極絶縁部材18aの凸部は、正極端子リード23が存在する方向とは、反対側の方向に延出している。正極絶縁部材18aは、絶縁性の部材である。
 凸部を有する正極絶縁部材18aは、例えば、フッ素樹脂、フッ素ゴム、ポリフェニレンサルファイド樹脂(PPS樹脂)、ポリエーテルエーテルケトン樹脂(PEEK樹脂)、ポリプロピレン樹脂(PP樹脂)、及びポリブチレンテレフタレート樹脂(PBT樹脂)などからなる群より選ばれる1種以上の樹脂材料で構成されることが好ましい。
 正極補強部材18bは、例えば、ガスケットよりも剛性の高い材質で形成された貫通孔を有する円形リングからなる。正極補強部材18bは、第1の外装部5と正極絶縁部材18aとの間に配置されている。ガスケットよりも剛性の高い材質の例には、ステンレス鋼、鉄にメッキ(例えばNi、NiCr等)を施したもの、セラミックス、ガスケットよりも高い剛性を持ち得る樹脂(例えばポリフェニレンサルファイド(PPS)、ポリブチレンテレフタレート(PBT))などが含まれる。正極補強部材18bは、図5に示すように、バーリング部16の外周面上に配置されてバーリング部16及び正極絶縁部材18aと接している。外装部材1が薄い部材であるため、正極補強部材18bによって第1の外装部5及びバーリング部16の補強がなされることが好ましい。
 正極外部端子17は、正極絶縁部材18aの貫通孔と正極補強部材18bの貫通孔に挿入されている。正極絶縁部材18aの凸部と、第1の外装部5のバーリング部16によって、正極補強部材18bが挟まれている。正極端子リード23部分が動いたとしても正極絶縁部材18aよって正極端子リード23が第1の外装部5とショートすることをより確実に妨げる点で好ましい。また、正極絶縁部材18aの凸部によって、正極端子リード23と第1の外装部5との絶縁の確実性が向上することが好ましい。
 絶縁ガスケット19は、図2及び図5に示すように、一方の開口端にフランジ部19aを有する円筒体(筒部)である。絶縁ガスケット19は、図2及び図5に示すように、円筒体の部分が貫通孔15及びバーリング部16内に挿入され、フランジ部19aが第1の外装部5の外面上の貫通孔15の外周に配置されている。絶縁ガスケット19は、例えば、フッ素樹脂、フッ素ゴム、ポリフェニレンサルファイド樹脂(PPS樹脂)、ポリエーテルエーテルケトン樹脂(PEEK樹脂)、ポリプロピレン樹脂(PP樹脂)、及びポリブチレンテレフタレート樹脂(PBT樹脂)などの樹脂から形成されている。
 正極端子絶縁部材20は、図2及び図5に示すように、鈍角に折れ曲がった板状部材であり、底部に貫通孔20aを有する。正極端子絶縁部材20は、第1の外装部5の外面上に配置されている。正極端子絶縁部材20の貫通孔20aには、絶縁ガスケット19のフランジ部19aが挿入されている。
 正極端子部3は、正極端子リード23をさらに備える。正極端子リード23は、貫通孔23aと第1の外装部5の開口部側、すなわち、第2の外装部6側に延出した第1の延出部23bを有する導電性の板である。図5では、正極端子リード23は、電極群2側に延出した第1の延出部23aを有する。正極端子リード23の第1の延出部23bは、電極群側正極リード12の第1の延出部12aと溶接により一体化されている。第1の延出部23bと第1の延出部12aの対向する面が溶接されており、さらに、先端側の第1の延出部23bの端面と第1の延出部12aの端面も溶接されている。正極端子リード23の第1の延出部23b及び電極群側正極リード12の第1の延出部12aの少なくとも先端部分は、第2の外装部6の面に対して垂直又は略垂直(80°以上100°以下)である。正極端子リード23の第1の延出部23b及び電極群側正極リード12の第1の延出部12aの少なくとも先端部分が第2の外装部6の面に対して垂直又は略垂直であることは、正極端子リード23の第1の延出部23bと電極群側正極リード12の第1の延出部12aの溶接後にリードを折り曲げずに作製されたことを表している。溶接後にリードを折り曲げることによって電極の端子部分の配線をコンパクトにできるという利点があるが、溶接後に折曲げを精度良く行うには、リードの厚さを薄くすることが求められる。しかし、リードの厚さを薄くすると大電流を流しにくいという点で好ましくない。溶接された部分が第2の外装部6の面の方向を向くようにすることで、リードの厚さを厚くすることができる。なお、リードの折り曲げ形状は、図5に示す形状に限定されず他の形状であっても良い。
 大電流特性を考慮すると、正極端子リード23の厚さは、0.5mm以上3.0mm以下とすることができ、また、電極群側正極リード12の厚さは、0.5mm以上3.0mm以下とすることができる。さらに、リード同士の溶接前のリードの折り曲げ工程及び大電流特性を考慮すると、正極端子リード23の厚さと電極群側正極リード12の厚さの和は、1.0mm以上1.2mm以下とすることが好ましい。これらの厚さは、溶接されている部分で少なくとも満たすことが好ましい。
 電池100は、第1の正極絶縁補強部材24をさらに備える。第1の正極絶縁補強部材24は、第1の外装部5の内面側に配置される。より具体的には、第1の正極絶縁補強部材24は、第1の外装部5の内面側であって正極端子リード23と第1の外装部5との間に配置される。図2及び図5に示すように、第1の正極絶縁補強部材24は、有底矩形筒を長辺方向に半割した構造の本体部分24aと、本体部分24aに形成された円形溝24bと、円形溝24bの中央に開口された貫通孔24cとを有する。貫通孔24c内に、正極絶縁部材18a、正極補強部材18b及び正極外部端子17が配置される。第1の正極端子絶縁補強部材24は、本体部分24aが第1の外装部5の短辺側側壁から底面に繋がるコーナ部と、第1の外装部5の短辺側側壁から長辺側側面に繋がるコーナ部を被覆する。これにより、第1の外装部5、特に短辺側側壁と長辺側側壁と底部とが交わるコーナ付近を補強することができる。円形溝24bには、バーリング部16の外周面上に配置された正極絶縁部材18aが配置される。貫通孔24cは、バーリング部16の開口及び第1の外装部5の貫通孔15と連通する。第1の正極端子絶縁補強部材24上に、正極端子リード23が配置される。正極端子リード23の貫通孔23aは、第1の正極端子絶縁補強部材24の貫通孔24c、バーリング部16の開口及び第1の外装部5の貫通孔15と連通する。
 第1の正極絶縁補強部材24と一対の第2の正極絶縁補強部材25は、第1の外装部5の内面側及び第2の外装部6の内面側に配置される。第2の正極絶縁補強部材25は、図2に示すように、有底矩形筒を長辺方向に半割した構造を有する。一方の第1の正極絶縁補強部材24は、正極集電タブ7aのうち、捲回中心から第1の外装部5側までの半分程度を被覆する。他方の第2の正極絶縁補強部材25は、正極集電タブ7aのうち、捲回中心から第2の外装部6側までの半分程度を被覆する。これにより、第2の外装部6、特に短辺付近を補強することができる。
 正極外部端子17の軸部は、絶縁ガスケット19、正極端子絶縁部材20の貫通孔20a、第1の外装部5の貫通孔15、正極端子絶縁補強部材24の貫通孔24c及び正極端子リード23の貫通孔23aに挿入された後、カシメ加工によって塑性変形を生じる。その結果、これらの部材が一体化されると共に、正極外部端子17が正極端子リード23と電気的に接続される。よって、正極外部端子17は、リベットの役割も担う。なお、正極外部端子17の軸部の端面と正極端子リード23の貫通孔23aとの境界部をレーザ等により溶接し、より強固な接続と電気導通性の向上を施しても良い。
 負極端子部4は、図2及び図7に示すように、第1の外装部5の傾斜面5dに開口された貫通孔30と、負極外部端子32と、負極絶縁部材33a、負極補強部材(リング状部材)33bと、絶縁ガスケット34と、負極端子絶縁部材35とを含む。
 負極端子部4において、第1の外装部5は負極集電タブ8a側に貫通孔30を有している。負極端子部4の負極外部端子32は、頭部21及び頭部21から延び出た軸部を含む。負極端子部4において、貫通孔36aを有する負極端子リード36を含む。負極端子部4において、頭部21が第1の外装部5の外側に突出し、軸部が負極端子リード36の貫通孔36aに挿入されて、軸部が第1の外装部5及び負極端子リード36にカシメ固定されている。
 バーリング部(環状の立ち上がり部)31は、図6に示すように、貫通孔31の周縁部から外装部材1の内側に向けて延びており、バーリング加工によって形成されたものである。
 負極外部端子32は、図6に示すように、角錐台形状の頭部21と、第2の外装部5の貫通孔30を貫通する円柱状の軸部とを含む。円柱状の軸部は、頭部21の頂面と平行な平面から伸び出ている。負極外部端子32は、例えば、アルミニウム、アルミニウム合金等の導電性材料から形成される。
 負極絶縁部材33aは、貫通孔及び凸部を有し、第1の外装部5を負極外部端子32及び負極端子リード36と絶縁する。負極絶縁部材33aは外周に凸部を有するリング状部材である。負極絶縁部材33aの凸部は、負極端子リード36が存在する方向とは、反対側の方向に延出している。負極絶縁部材33aは、絶縁性の部材である。
 凸部を有する負極絶縁部材33aは、例えば、フッ素樹脂、フッ素ゴム、ポリフェニレンサルファイド樹脂(PPS樹脂)、ポリエーテルエーテルケトン樹脂(PEEK樹脂)、ポリプロピレン樹脂(PP樹脂)、及びポリブチレンテレフタレート樹脂(PBT樹脂)などからなる群より選ばれる1種以上の樹脂材料で構成されることが好ましい。
 負極補強部材33bは、例えば、ガスケットよりも剛性の高い材質で形成された貫通孔を有する円形リングからなる。負極補強部材33bは、第1の外装部5と負極絶縁部材33aとの間に配置されている。ガスケットよりも剛性の高い材質の例には、ステンレス鋼、鉄にメッキ(例えばNi、NiCr等)を施したもの、セラミックス、ガスケットよりも高い剛性を持ち得る樹脂(例えばポリフェニレンサルファイド(PPS)、ポリブチレンテレフタレート(PBT))などが含まれる。負極補強部材33bは、図7に示すように、バーリング部31の外周面上に配置されてバーリング部31及び負極絶縁部材33aと接している。外装部材1が薄い部材であるため、負極補強部材33bによって第1の外装部5及びバーリング部31の補強がなされることが好ましい。
 負極外部端子32は、負極絶縁部材33aの貫通孔と負極補強部材33bの貫通孔に挿入されている。負極絶縁部材33aの凸部と、第1の外装部5のバーリング部16によって、負極補強部材33bが挟まれている。負極端子リード36部分が動いたとしても負極絶縁部材33aによって負極端子リード36が第1の外装部5とショートすることをより確実に妨げる点で好ましい。また、負極絶縁部材33aに凸部があることによって、負極端子リード36と第1の外装部5との絶縁の確実性が向上することが好ましい。
 絶縁ガスケット34は、図2及び図7に示すように、一方の開口端にフランジ部34aを有する円筒体(筒部)である。絶縁ガスケット34は、図2及び図7に示すように、円筒体の部分が貫通孔30及びバーリング部31内に挿入され、フランジ部34aが第1の外装部5の外面上の貫通孔30の外周に配置されている。絶縁ガスケット34は、例えば、フッ素樹脂、フッ素ゴム、ポリフェニレンサルファイド樹脂(PPS樹脂)、ポリエーテルエーテルケトン樹脂(PEEK樹脂)、ポリプロピレン樹脂(PP樹脂)、及びポリブチレンテレフタレート樹脂(PBT樹脂)などの樹脂から形成されている。
 負極端子絶縁部材35は、図2及び図7に示すように、鈍角に折れ曲がった板状部材であり、底部に貫通孔35aを有する。負極端子絶縁部材35は、第1の外装部5の外面上に配置されている。負極端子絶縁部材35の貫通孔35aには、絶縁ガスケット34のフランジ部34aが挿入されている。
 
 負極端子部4は、負極端子リード36をさらに備える。負極端子リード36は、貫通孔36aと第1の外装部5の開口部側、すなわち、第2の外装部6側に延出した第1の延出部36bを有する導電性の板である。図6では、負極端子リード36は、電極群2側に延出した第1の延出部36bを有する。負極端子リード36の第1の延出部36bは、電極群側負極リード14の第1の延出部14aと溶接により一体化されている。第1の延出部36bと第1の延出部14aの対向する面が溶接されており、さらに、先端側の第1の延出部36bの端面と第1の延出部14aの端面も溶接されている。負極端子リード36の第1の延出部36b及び電極群側負極リード14の第1の延出部14aの少なくとも先端部分は、第2の外装部6の面に対して垂直又は略垂直(80°以上100°以下)である。負極端子リード36の第1の延出部36b及び電極群側負極リード14の第1の延出部14aの少なくとも先端部分が第2の外装部6の面に対して垂直又は略垂直であることは、負極端子リード36の第1の延出部36bと電極群側負極リード14の第1の延出部14aの溶接後にリードを折り曲げずに作製されたことを表している。溶接後にリードを折り曲げることによって電極の端子部分の配線をコンパクトにできるという利点があるが、溶接後に折曲げを精度良く行うには、リードの厚さを薄くすることが求められる。しかし、リードの厚さを薄くすると大電流を流しにくいという点で好ましくない。溶接された部分が第2の外装部6の面の方向を向くようにすることで、リードの厚さを厚くすることができる。なお、リードの折り曲げ形状は、図7に示す形状に限定されず他の形状であっても良い。
 大電流特性を考慮すると、負極端子リード36の厚さは、0.5mm以上3.0mm以下とすることができ、また、電極群側負極リード14の厚さは、0.5mm以上3.0mm以下とすることができる。さらに、リード同士の溶接前のリードの折り曲げ工程及び大電流特性を考慮すると、負極端子リード36の厚さと電極群側負極リード14の厚さの和は、1.0mm以上1.2mm以下とすることが好ましい。
 電池100は、第1の負極端子絶縁補強部材37をさらに備える。第1の負極絶縁補強部材37は、第1の外装部5の内面側に配置される。より具体的には、第1の負極絶縁補強部材37は、第1の外装部5の内面側であって負極端子リード36と第1の外装部5との間に配置される。図2及び図7に示すように、第1の負極端子絶縁補強部材37は、有底矩形筒を長辺方向に半割した構造の本体部分37aと、本体部分37aに形成された円形溝37bと、円形溝37bの中央に開口された貫通孔37cとを有する。貫通孔37c内に、負極絶縁部材33a、負極補強部材33b及び負極外部端子32が配置される。第1の負極端子絶縁補強部材37は、本体部分37aが第1の外装部5の短辺側側壁から底面に繋がるコーナ部と、第1の外装部5の短辺側側壁から長辺側側面に繋がるコーナ部を被覆する。これにより、第1の外装部5、特に短辺側側壁と長辺側側壁と底部とが交わるコーナ付近を補強することができる。円形溝37bには、バーリング部31の外周面上に配置されたバーリング部を有する負極絶縁部材33bが配置される。貫通孔37cは、バーリング部31の開口及び第1の外装部5の貫通孔30と連通する。第1の負極端子絶縁補強部材37上に、負極端子リード36が配置される。負極端子リード36の貫通孔36aは、第1の負極端子絶縁補強部材37の貫通孔37c、バーリング部31の開口及び第1の外装部5の貫通孔30と連通する。
 第1の負極絶縁補強部材37と一対の第2の負極絶縁補強部材38は、第1の外装部5の内面側及び第2の外装部6の内面側に配置される。第2の負極絶縁補強部材38は、図2及び図7に示すように、有底矩形筒を長辺方向に半割した構造をそれぞれ有する。一方の第1の負極絶縁補強部材37は、負極集電タブ8aのうち、捲回中心から第1の外装部5側までの半分程度を被覆する。他方の第2の絶縁補強部材38は、負極集電タブ8aのうち、捲回中心から第2の外装部6側までの半分程度を被覆する。これにより、第2の外装部6、特に短辺付近を補強することができる。
 負極外部端子32の軸部は、絶縁ガスケット34、負極端子絶縁部材35の貫通孔35a、第1の外装部5の貫通孔30、第1の負極絶縁補強部材37の貫通孔37c及び負極端子リード36の貫通孔36aに挿入された後、カシメ加工によって塑性変形を生じる。その結果、図2及び図7に示すように、これらの部材が一体化されると共に、負極外部端子32が負極端子リード36と電気的に接続される。よって、負極外部端子36は、リベットの役割も担う。なお、負極外部端子32の軸部の端面と負極端子リード36の貫通孔36aとの境界部をレーザ等により溶接し、より強固な接続と電気導通性の向上を施しても良い。
 バックアップ正極リード11、電極群側正極リード12、正極端子リード23、バックアップ負極リード13、電極群側負極リード14及び負極端子リード36は、例えば、アルミニウム、アルミニウム合金材から形成することができる。接触抵抗を低減するために、リードの材料は、リードに電気的に接続し得る正極集電体又は負極集電体の材料と同じであることが好ましい。
 第1の正極絶縁補強部材24、第2の正極絶縁補強部材25、第1の負極絶縁補強部材37及び第2の負極絶縁補強部材38は、例えば、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、ポリブチレンテレフタラート(PBT)、ポリエチレンテレフタラート(PET)、ポリテトラフロロエチレン(PTFE)、ポリフェニレンサルファイド(PPS)、及びポリエーテルエーテルケトン(PEEK)等の熱可塑性樹脂から形成される。
 電極群2は、第1の外装部5内に、第一端面7aが正極端子部3と対向し、かつ第二端面8aが負極端子部4と対向するように収納される。そのため、電極群2の第一端面7a及び第二端面8aと交わる平面が第1の外装部5内の底面5cと対向し、第一端面7a及び第二端面8aと交わる湾曲面が第1の外装部5内の長辺側側面と対向する。
 第1の外装部5の短辺側壁と底部とを繋ぐコーナ部においては、電極群2の第一端面7aとの間、第二端面8aとの間、それぞれに隙間が存在する。第1の外装部5の短辺側壁と底部とを繋ぐコーナ部に内側に張り出した凹部を設け、凹部の底部を傾斜面5dとすることにより、第1の外装部5内のデッドスペースが少なくなるため、電池の体積エネルギー密度を高くすることが可能となる。また、傾斜面5dそれぞれに正極端子部3、負極端子部4を配置することにより、傾斜面を持たない短辺側面に正極端子部3及び負極端子部4を設ける場合よりも、端子部の設置面積を増やすことができる。そのため、正極外部端子17の軸部及び負極外部端子32の軸部の径を太くすることが可能になるため、低抵抗で大きな電流(ハイレート電流)を流すことが可能となる。
 電極群2はさらに絶縁フィルム26で捲回されている。絶縁フィルム26の捲回方向と電極群2の捲回方向は同一又は逆である。絶縁フィルム26は、電極群2と第1の外装部5の間、電極群2と第2の外装部6との間に配置されている。絶縁フィルム26は、正極集電タブ7a及び負極集電タブ8aを跨ぐように、電極群2を捲回している。絶縁フィルム26の正極側の端部は、正極端子部3のリード側に延出し、負極側の端部は、負極端子部4のリード側に延出している。絶縁フィルム26は、さらに図示しないテープで固定されていることが好ましい。
 絶縁フィルム26としては、不織布、フィルム及び紙からなる群より選ばれる1種が挙げられる。絶縁フィルム26としては、セルロース繊維を含む不織布、ポリエチレン並びにポリプロピレンを含むポリオレフィン、セルロース、ポリエステル、ポリビニルアルコール、ポリイミド、ポリアミド、ポリアミドイミド、ポリテトラフルオロエチレンビニロン、ポリテトラフルオロエチレン及びセルロース繊維を含む紙からなる群より選ばれる1種を含むフィルムが含まれる。絶縁フィルム26の厚さは、特に限定されないが、薄すぎると絶縁性が不十分になり、厚すぎると電池容量が低下してしまう。そこで、絶縁フィルム26の厚さは、典型的には、4μmから50μmである。
 図5に正極端子部分を電池長辺方向に沿って切断した際に得られる断面図を示す。図6に正極端子部分を含まない正極側の電池長辺方向に沿って切断した際に得られる断面図を示す。図5及び図6の両断面において、第1の正極絶縁補強部材24は絶縁フィルム26と第1の外装部5に挟まれ、第2の正極絶縁補強部材25は絶縁フィルム26と第2の外装部6に挟まれる。絶縁フィルム26は、正極側において、電極群2の正極集電タブ7aの少なくとも一部を覆うように設けられており、正極集電タブ7aと第1の正極絶縁補強部材24の間及び正極集電タブ7aと第2の正極絶縁補強部材25の間に配置されている。電極群2の中心部側から連続したフィルムによって、正極集電タブ7aと第1の正極絶縁補強部材24の間及び正極集電タブ7aと第2の正極絶縁補強部材25の間も絶縁することで、正極側の端子のリード部分と外装部材1との絶縁性を高められる点で好ましい。
 負極についても同様である。図7に負極端子部分を電池長辺方向に沿って切断した際に得られる断面図を示す。図8に負極端子部分を含まない負極側の電池長辺方向に沿って切断した際に得られる断面図を示す。図7及び図8の両断面において、第1の負極絶縁補強部材37は絶縁フィルム26と第1の外装部5に挟まれ、第2の負極絶縁補強部材38は絶縁フィルム26と第2の外装部6に挟まれる。絶縁フィルム26は、負極側において、電極群2の負極集電タブ8aの少なくとも一部を覆うように設けられており、負極集電タブ8aと第1の負極絶縁補強部材37の間及び負極集電タブ8aと第2の負極絶縁補強部材38の間に配置されている。電極群2の中心部側から連続したフィルムによって、負極集電タブ8aと第1の負極絶縁補強部材37の間及び負極集電タブ8aと第2の負極絶縁補強部材38の間も絶縁することで、負極側の端子のリード部分と外装部材1との絶縁性を高められる点で好ましい。
 電極群2が第1の外装部5内に収納された結果、第2の正極絶縁補強部材25の下端が第1の正極絶縁補強部材24の上端と接することにより形成された有底矩形筒状のカバーで正極集電タブ7aが被覆される。また、第2の負極絶縁補強部材38の下端が第1の負極絶縁補強部材37の上端と接することにより形成された有底矩形筒状のカバーで負極集電タブ8aが被覆される。
 第2の外装部6は、第1の外装部5の蓋として機能する。第1の外装部5のフランジ部5bと第2の外装部6の四辺が溶接されることにより、電極群2が外装部材1内に封止される。
 以上説明した図1~図9に示す電池は、開口部にフランジ部を有するステンレス鋼製の第1の外装部とステンレス鋼製の第2の外装部が溶接されて形成された空間内に電極群が収納される外装部材を含むことが好ましい。第2の外装部5及び第2の外装部6がステンレス鋼製であることで、第1、第2の外装部の板厚を薄くした際にも高い強度を保つことができる。その結果、外装部材の柔軟性を高めることができるため、減圧封止又は外装部材1の外側から荷重を加える等により電極群2を拘束しやすくなる。これにより、電極群2の極間距離が安定して抵抗を低くすることができると共に、耐振動性と耐衝撃性を有する電池パックの実現が容易になる。さらに、第1の外装部5及び第2の外装部6の柔軟性が高いと、第1、第2の外装部の内面から電極群までの距離を縮めることが容易となるため、電池の放熱性を改善し得る。
 ステンレス鋼製の第1の外装部5及び第2の外装部6は、溶接がし易く、安価な抵抗シーム溶接により封止が可能である。よって、ラミネートフィルム製容器よりも気体シール性の高い外装部材を低コストで実現することができる。また、外装部材の耐熱性を向上することができる。例えば、SUS304の融点が1400℃であるのに対し、Alの融点は650℃である。
 また、外部端子の軸部は、貫通孔にカシメ固定された結果、塑性変形を生じる。その結果、絶縁ガスケットの径方向に力が加わるが、バーリング部がその外側に配置されたリング状部材で補強されているため、絶縁ガスケットに圧縮応力が生じて外部端子を第1の外装部5に高い強度で接続することができる。第1の外装部5の板厚、すなわち、バーリング部の板厚を薄くしてもリング状部材でバーリング部を補強することができるため、第1の外装部の板厚に拘らず、外部端子を第1の外装部5に高い強度で接続することができる。さらに、バーリング部が、貫通孔の縁部から外装部材1内に向けて延びているため、ガス発生等により外装部材1の内圧が上昇した際の液漏れを、外圧の作用によって抑えることが可能となる。よって、第1の外装部5及び第2の外装部6の板厚を薄くした際にも高い信頼性を実現することができる。
 よって、第1の実施形態の電池によれば、第1の外装部5及び第2の外装部6の板厚を薄くした際にも高い強度と信頼性を得ることができるため、柔軟性と放熱性に優れ、かつ強度と信頼性の高い電池を提供することができる。
 第1の外装部5を、開口部の最大長以下の深さを有するものにすると、第1の外装部5の開口部面積が広くなる。第1の外装部の四辺に第2の外装部が溶接されるが、開口部面積が大きくなると、溶接される一辺の長さが長くなるため、三辺を先に溶接して残りの一辺の隙間から電解液を注液するのが容易となる。また、溶接強度が他よりも低い箇所を設ける等により外装部材1を仮封止することができるため、仮封止用の部品(例えばゴム栓)を不要にすることができる。さらに、外装部材1が扁平形状になるため、電池の放熱性を向上することができる。
 第1の外装部5が傾斜面5dを有する凹部を含み、傾斜面5dに端子部を配置することにより、第1の外装部5内のデッドスペースを削減することができる。
 なお、傾斜面5dは、外装部材1の短辺の中央部付近に設けるものに限定されず、外装部材の短辺全体に亘るものでも良い。
 正極集電タブまたは負極集電タブと電気的に接続されたバックアップリードをさらに含み、電極端子リードをバックアップリードと電気的に接続することが望ましい。これにより、溶接の際の位置決めが容易となる。また、正極集電タブ及び負極集電タブに対するバックアップリードの位置が多少ずれても、十分な接続面積を確保することができるため、低抵抗な電池を実現することができる。
 外部端子の第1の端面が、四辺形の頂面と、頂面の互いに対向する二辺に連結された第1、第2の傾斜面とを有することにより、三つの面のいずれかを溶接面に選択することで溶接方向を変更することができる。
 第1の外装部及び第2の外装部の板厚は、0.02mm以上0.3mm以下の範囲にすることが望ましい。この範囲にすることにより、機械的強度と柔軟性という相反する性質を両立させることができる。板厚のより好ましい範囲は、0.05mm以上0.15mm以下である。
 正極端子部3、負極端子部4又は両方のリング状部材の外郭と内径の差(肉厚)は、第1の外装部5の板厚と同じ又はそれ以上であることが望ましい。これにより、第1の外装部の板厚に拘らず、外部端子を第1の外装部に高い強度で接続することができる。具体的には、最短肉厚は0.1mm以上にすることができる。
 また、リング状部材の外郭形状は必ずしもバーリング断面形状と同様形状である必要は無く、長方形や六角形などの多面体でも良く、単数又は複数の曲線と単数又は複数の直線の複合形状でも良い。
 第2の外装部6には、図5ないし図8に例示されるような平板を使用することができるが、平板の代わりに、開口部にフランジ部を有するものを使用しても良い。このような構造の例には、第1の外装部5と同様なものを挙げることができる。
 バックアップ正極リード11及びバックアップ負極リード13は、U字形状の導電板に限定されず、導電性の平板を使用しても良い。また、バックアップ正極リード11またはバックアップ負極リード13あるいは両方を用いない構成にすることも可能である。
 外装部材は、電池内圧が規定値以上に上昇した際に電池内部の圧力を開放することができる安全弁などを更に備えることもできる。
 第1の実施形態に係る電池は、一次電池であってもよいし、又は二次電池であってもよい。第1の実施形態に係る電池の一例としては、リチウムイオン二次電池が挙げられる。
 第1の実施形態の電池の正極、負極、セパレータ及び非水電解質について、以下に説明する。
 1)正極
 正極は、例えば、正極集電体と、正極集電体に保持された正極材料層と、正極集電タブとを含むことができる。正極材料層は、例えば、正極活物質、導電剤、及び結着剤を含むことができる。
 正極活物質としては、例えば、酸化物又は硫化物を用いることができる。酸化物及び硫化物の例には、リチウムを吸蔵する二酸化マンガン(MnO2)、酸化鉄、酸化銅、酸化ニッケル、リチウムマンガン複合酸化物(例えばLixMn24またはLixMnO2)、リチウムニッケル複合酸化物(例えばLixNiO2)、リチウムコバルト複合酸化物(例えばLixCoO2)、リチウムニッケルコバルト複合酸化物(例えばLiNi1-yCoy2)、リチウムマンガンコバルト複合酸化物(例えばLixMnyCo1-y2)、スピネル構造を有するリチウムマンガンニッケル複合酸化物(例えばLixMn2-yNiy4)、オリビン構造を有するリチウムリン酸化物(例えばLixFePO4、LixFe1-yMnyPO4、LixCoPO4)、硫酸鉄(Fe2(SO43)、バナジウム酸化物(例えばV25)及び、リチウムニッケルコバルトマンガン複合酸化物が挙げられる。上記の式において、0<x≦1であり、0<y≦1である。活物質として、これらの化合物を単独で用いてもよく、或いは、複数の化合物を組合せて用いてもよい。
 結着剤は、活物質と集電体とを結着させるために配合される。結着剤の例としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴムが挙げられる。
 導電剤は、集電性能を高め、且つ、活物質と集電体との接触抵抗を抑えるために必要に応じて配合される。導電剤の例としては、アセチレンブラック、カーボンブラック及び黒鉛のような炭素質物が挙げられる。
 正極材料層において、正極活物質及び結着剤は、それぞれ、80質量%以上98質量%以下及び2質量%以上20質量%以下の割合で配合することが好ましい。
 結着剤は、2質量%以上の量にすることにより十分な電極強度を得ることができる。また、20質量%以下にすることにより電極の絶縁材の配合量を減少させ、内部抵抗を減少できる。
 導電剤を加える場合には、正極活物質、結着剤及び導電剤は、それぞれ、77質量%以上95質量%以下、2質量%以上20質量%以下、及び3質量%以上15質量%以下の割合で配合することが好ましい。導電剤は、3質量%以上の量にすることにより上述した効果を発揮することができる。また、15質量%以下にすることにより、高温保存下での正極導電剤表面での非水電解質の分解を低減することができる。
 正極集電体は、アルミニウム箔、又は、Mg、Ti、Zn、Ni、Cr、Mn、Fe、Cu及びSiから選択される少なくとも1種類の元素を含むアルミニウム合金箔であることが好ましい。
 正極集電体は、正極集電タブと一体であることが好ましい。或いは、正極集電体は、正極集電タブと別体でもよい。
 2)負極
 負極は、例えば、負極集電体と、負極集電体に保持された負極材料層と、負極集電タブとを含むことができる。負極材料層は、例えば、負極活物質、導電剤、及び結着剤を含むことができる。
 負極活物質としては、例えば、リチウムイオンを吸蔵及び放出することができる、金属酸化物、金属窒化物、合金、炭素等を用いることができる。0.4V以上(対Li/Li+)貴な電位でリチウムイオンの吸蔵及び放出が可能な物質を負極活物質として用いることが好ましい。
 負極活物質としては、例えば、黒鉛質材料もしくは炭素質材料(例えば、黒鉛、コークス、炭素繊維、球状炭素、熱分解気相炭素質物、樹脂焼成体など)、カルコゲン化合物(例えば、二硫化チタン、二硫化モリブデン、セレン化ニオブなど)、軽金属(例えば、アルミニウム、アルミニウム合金、マグネシウム合金、リチウム、リチウム合金など)、Li4+xTi12(xは充放電反応により-1≦x≦3の範囲で変化する)で表されるスピネル型チタン酸リチウム、ラムステライド型Li2+xTi(xは充放電反応により-1≦x≦3の範囲で変化する)、TiとP、V、Sn、Cu、NiおよびFeからなる群より選択される少なくとも1種類の元素を含有する金属複合酸化物及びニオブチタン複合酸化物などが挙げられる。
 TiとP、V、Sn、Cu、NiおよびFeからなる群より選択される少なくとも1種類の元素を含有する金属複合酸化物としては、例えば、TiO-P、TiO-V、TiO-P-SnO、TiO-P-MO(MはCu、Ni及びFeからなる群より選択される少なくとも1つの元素)を挙げることができる。これらの金属複合酸化物は、充電によりリチウムが挿入されることでリチウムチタン複合酸化物に変化する。リチウムチタン酸化物(例えば、スピネル型のチタン酸リチウム)、ケイ素とスズ等から成る群のうちの1以上の物質を含むことが好ましい。負極活物質層の結着剤は、正極活物質層の結着剤と共通する。負極活物質層の導電剤は、正極活物質層の導電剤と共通する。
 ニオブチタン含有複合酸化物としては、例えば、一般式LiaTiMbNb2±β7±σ(ここで、各添字の値は、0≦a≦5、0≦b≦0.3、0≦β≦0.3の範囲内にあり、0≦σ≦0.3、MはFe、V、Mo及びTaからなる群より選ばれる少なくとも1種(1種でもよいし、又は複数種でもよい)である)で表される単斜晶型の結晶構造を有する複合酸化物、一般式Li2+a1M(I)2-b1Ti6-c1M(II)d114+σ1(ここで、各添字の値は、0≦a1≦6、0<b1<2、0<c1<6、0<d1<6、-0.5≦σ1≦0.5の範囲内にあり、M(I)はSr、Ba、Ca、Mg、Na、Cs及びKからなる群より選ばれる少なくとも1種(1種でもよいし、又は複数種でもよい)であり、M(II)はZr、Sn、V、Nb、Ta、Mo、W、Fe、Co、Mn及びAlからなる群より選ばれる少なくとも1種(1種でもよいし、又は複数種でもよい)であり、且つNbを含む)で表される斜方晶型の結晶構造を有する複合酸化物を用いることができる。上記一般式Li2+a1M(I)2-b1Ti6-c1M(II)d114+σ1において、各添字の値は、0≦a1≦6、0<b1<2、0<c1<6、0<d1<6、-0.5≦σ1≦0.5の範囲内にあり、M(I)はSr、Ba、Ca、Mg、Na、Cs及びKからなる群より選ばれる少なくとも1種(1種でもよいし、又は複数種でもよい)であり、M(II)はNbであるか、又はNbと、Zr、Sn、V、Ta、Mo、W、Fe、Co、Mn及びAlからなる群より選ばれる少なくとも1種(1種でもよいし、又は複数種でもよい)との組み合わせであることが好ましい。特に、単斜晶系ニオブチタン含有複合酸化物は、重量当たりの容量が大きく、電池容量を高めることができるのでより望ましい。
 導電剤は、集電性能を高め、且つ、負極活物質と集電体との接触抵抗を抑えるために配合される。導電剤の例としては、アセチレンブラック、カーボンブラック及び黒鉛のような炭素質物が挙げられる。
 結着剤は、分散された負極活物質の間隙を埋め、また、負極活物質と集電体とを結着させるために配合される。結着剤の例としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、及びスチレンブタジェンゴムが挙げられる。
 負極材料層中の活物質、導電剤及び結着剤は、それぞれ、68質量%以上96質量%以下、2質量%以上30質量%以下、及び2質量%以上30質量%以下の割合で配合することが好ましい。導電剤の量を2質量%以上とすることにより、負極層の集電性能を向上させることができる。また、結着剤の量を2質量%以上とすることにより、負極材料層と集電体との結着性を十分に発現することができ、優れたサイクル特性を期待できる。一方、導電剤及び結着剤はそれぞれ28質量%以下にすることが高容量化を図る上で好ましい。
 集電体としては、負極活物質のリチウムの吸蔵電位及び放出電位において電気化学的に安定である材料が用いられる。集電体は、銅、ニッケル、ステンレス又はアルミニウム、或いは、Mg、Ti、Zn、Mn、Fe、Cu、及びSiから選択される少なくとも1種類の元素を含むアルミニウム合金から作られることが好ましい。集電体の厚さは5~20μmの範囲内にあることが好ましい。このような厚さを有する集電体は、負極の強度と軽量化とのバランスをとることができる。
 負極集電体は、負極集電タブと一体であることが好ましい。或いは、負極集電体は、負極集電タブと別体でもよい。
 負極は、例えば負極活物質、結着剤および導電剤を汎用されている溶媒に懸濁してスラリーを調製し、このスラリーを集電体に塗布し、乾燥させて、負極材料層を形成した後、プレスを施すことにより作製される。負極はまた、負極活物質、結着剤及び導電剤をペレット状に形成して負極材料層とし、これを集電体上に配置することにより作製されてもよい。
 3)セパレータ
 多孔質で薄い絶縁性の薄膜である。セパレータとしては、不織布、フィルム、紙や無機粒子層などが含まれる。セパレータの構成材料の例に、ポリエチレンやポリプロピレンなどのポリオレフィン、セルロース、ポリエステル、ポリビニルアルコール、ポリイミド、ポリアミド、ポリアミドイミド、ポリテトラフルオロエチレン及びビニロンが含まれる。薄さと機械的強度の観点から好ましいセパレータの例に、セルロース繊維を含む不織布を挙げることができる。無機粒子層は、酸化物粒子、増粘剤、結着剤を含む。酸化物粒子には、酸化アルミ、酸化チタン、酸化マグネシウム、酸化亜鉛、硫酸バリウムなどの金属酸化物が使用できる。増粘剤にはカルボキシメチルセルロースが使用できる。結着剤には、アクリル酸メチルやそれを含むアクリル系共重合体、スチレンブタジエンゴム(SBR)などが使用できる。
 4)電解質
 電解質は、電解質塩と非水溶媒を含む溶液、電解質塩と非水溶媒を含む溶液に高分子材料を複合化した非水系ゲル状電解質、電解質塩と水を含む溶液又は電解質塩と水を含む溶液に高分子材料を複合化した水系ゲル状電解質を用いることが好ましい。
 非水系溶液に含まれる電解質塩は、例えばLiPF、LiBF、Li(CFSON(ビストリフルオロメタンスルホニルアミドリチウム;通称LiTFSI)、LiCFSO(通称LiTFS)、Li(CSON(ビスペンタフルオロエタンスルホニルアミドリチウム;通称LiBETI)、LiClO、LiAsF、LiSbF、LiB(C(ビスオキサラトホウ酸リチウム;通称LiBOB)、ジフルオロ(トリフルオロ-2-オキシド-2-トリフルオロ-メチルプロピオナト(2-)-0,0)、LiBFOCOOC(CF(ホウ酸リチウム;通称LiBF(HHIB))のようなリチウム塩を用いることができる。これらの電解質塩は一種類で使用してもよいし二種類以上を混合して用いてもよい。特にLiPF、LiBFが好ましい。リチウム塩には、イオンを導電する支持塩を使用することができる。例えば、六フッ化リン酸リチウム(LiPF)や四フッ化ホウ酸リチウム、イミド系支持塩などが挙げられる。リチウム塩は1種類、または2種類以上を含んでいても良い。
 非水系の電解質塩濃度は、0.5mol/L以上3.0mol/L以下の範囲内にすることが好ましく、0.7mol/L以上2.0mol/L以下の範囲内にすることがより好ましい。このような電解質濃度の規定によって、電解質塩濃度の上昇による粘度増加の影響を抑えつつ、高負荷電流を流した場合の性能をより向上することが可能になる。
 非水溶媒は、特に限定されるものではないが、例えば、プロピレンカーボネート(PC)やエチレンカーボネート(EC)などの環状カーボネート、ジエチルカーボネート(DEC)やジメチルカーボネート(DMC)あるいはメチルエチルカーボネート(MEC)もしくはジプロピルカーボネート(DPC)などの鎖状カーボネート、1,2-ジメトキシエタン(DME)、γ-ブチロラクトン(GBL)、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(2-MeHF)、1,3-ジオキソラン、スルホラン、アセトニトリル(AN)を用いることができる。これらの溶媒は一種類で使用してもよいし二種類以上を混合して用いてもよい。環状カーボネート及び/または鎖状カーボネートを含む非水溶媒が好ましい。非水系ゲル状電解質に含まれる高分子材料としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)、ポリエチレンオキサイド(PEO)やポリメタクリレート等を挙げることができる。
 水系溶液に含まれる電解質塩は、LiCl、LiBr、LiOH、LiSO、LiNO、LiN(SOCF)(リチウムトリフルオロメタンスルホニルアミド;通称LiTFSA)、LiN(SO)(リチウムビスペンタフルオロエタンスルホニルアミド;通称LiBETA)、LiN(SOF)(リチウムビスフルオロスルホニルアミド;通称LiFSA)、LiB[(OCO)]などが挙げられる。使用するリチウム塩の種類は、1種類または2種類以上にすることができる。水系のゲル状電解質に含まれる高分子材料としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)、ポリエチレンオキサイド(PEO)やポリメタクリレート等を挙げることができる。
 水系の電解質塩濃度は、1mol/L以上12mol/Lが好ましく、より好ましく112mol/L以上10mol/L以下である。電解液の電気分解を抑制させるために、LiOHやLiSOを添加し、pHを調整することができる。pH値は3以上13以下が好ましく、さらに好ましくはpH4以上12以下の範囲である。
 或いは、非水系電解質として、リチウムイオンを含有した常温溶融塩(イオン性融体)、高分子固体電解質、無機固体電解質等を用いてもよい。
 常温溶融塩(イオン性融体)は、有機物カチオンとアニオンとの組合せからなる有機塩のうち、常温(15~25℃)で液体として存在し得る化合物を指す。常温溶融塩には、単体で液体として存在する常温溶融塩、電解質と混合させることで液体となる常温溶融塩、及び有機溶媒に溶解させることで液体となる常温溶融塩が含まれる。一般に、非水電解質電池に用いられる常温溶融塩の融点は、25℃以下である。また、有機物カチオンは、一般に4級アンモニウム骨格を有する。
 第1の実施形態の電池の製造方法を以下に説明する。図10Aから図10B及び図11Aから図11Dには、電池の製造する工程図を示す。
 図3に例示されるような、電極群2を作製し、さらに絶縁フィルム26で倦回する。また、図9に例示されるような、正極端子部3及び負極端子部4が固定された第1の外装部5を作製する。なお、第1の外装部5及び第2の外装部6それぞれに、位置決め用の案内穴を少なくとも1つ開口する。その一例を図10(a)及び図10(b)に示す。図10(a)には、第2の外装部6の四隅に位置決め用の案内穴39が開口された例が示されている。図10(b)には、第1の外装部5の四隅に位置決め用の案内穴39が開口された例が示されている。
 絶縁フィルム26で巻かれた電極群2を第1の外装部5内に収納し、電極群側正極リード12を正極端子リード23に溶接等して接合し、また、電極群側負極リード14を負極端子リード36に溶接等して接合する。接合には、例えばレーザ溶接、TIG溶接、摩擦撹拌接合を用いることができる。実施形態では、いずれによる接合も溶接として取り扱う。
 次いで、第2の正極絶縁補強部材25及び第2の負極絶縁補強部材38を、電極群2の正極集電タブ7a及び負極集電タブ8aに被せる。ひきつづき、第2の外装部6を第1の外装部5上に配置する。第1の外装部5及び第2の外装部6それぞれの四隅に案内穴39が開口されているため、第1の外装部5に対する第2の外装部6の位置を定めることが容易である。
 次いで、図11(a)に示すように、第1の外装部5及び第2の外装部6の三辺(例えば、長辺と短辺二辺)を溶接する。溶接には、例えば、抵抗シーム溶接が用いられる。溶接箇所を符号40で示す。溶接箇所40は、第1の外装部5及び第2の外装部6の外縁よりも内側に位置することが望ましい。
 未溶接の一辺の開口から電解液を注液した後、図11(b)に示すように、この一辺を例えば抵抗シーム溶接で溶接する。溶接箇所41は、第1の外装部5及び第2の外装部6の外縁部にすることが望ましい。
 次いで、エージング、初回充放電を施した後、図11(c)に示すように、溶接箇所41の一部を切り取ることで切り取り部分42を形成し、外装部材内のガスを放出させる。その後、図11(d)に示すように、溶接箇所41よりもさらに内側の溶接箇所(第2の外装部6の長辺)43を抵抗シーム溶接等で溶接する。この溶接は、減圧雰囲気で行うことが望ましい。
 その後、必要に応じ、第1の外装部5及び第2の外装部6の外縁付近を裁断することにより、案内穴39を取り除くことができる。なお、案内穴39を残したままでも良い。
 以上説明した方法により、第1の実施形態の電池を高い生産性で製造することが可能である。
 第1の実施形態の電池は、1つの外装部材内に複数の電極群を備えることができる。この場合、第2の外装部として、第1の外装部と同様に、開口部にフランジ部を有するものを用いることが望ましい。
 1つの外装部材内に複数の電極群を収納する場合、複数の電極群同士を直列接続又は並列接続することもできる。図12A~図12Dに、複数(2個)の電極群同士を並列接続させた電池形態を製造する正極側の工程図を示す。図12Dが作製された電池101を表している。絶縁フィルム26で巻かれた複数の電極群2を用意し、バックアップ正極リード11で正極集電タブ7aの中央先端を束ねる。次いで、図12Aのようにバックアップ正極リード11と電極群側正極リード12を溶接する。溶接後、電極群側正極リード12を曲げて、図12Bのように第1の延出部12とする。なお、あらかじめ折り曲げた電極側正極リードをバックアップ正極リード11と溶接して図12Bのような部材を得てもよい。
 そして、正極端子部3をあらかじめ組み込んだ第1の外装材5の開口部側から図12Bの部材を挿入する。挿入後、電極群側正極リード12の第1の延出部12aと正極端子リード23の第1の延出部をレーザ溶接して固定して図12Cのように1個の電極群2が第1の外装部5内に固定される。同様にもう1個の電極群2を第1の外装部5内に挿入し、レーザ溶接を行い、第2の外装部6で蓋をすることで、図12Dに示す複数の電極群2を収容した電池101を得ることができる。複数の電極群の電極の向きを変えることで、直列接続にすることができる。
 図13に第1の実施形態の電池100の正極部分の変形例を示す。負極側は、図14に示し、図13の正極部分と対称に構成されている。図13の電池102は、第1の正極絶縁補強部材24に凸部24dを有し、第2の正極絶縁補強部材25に凹部25bを有する。凸部24dと凹部25bが組み合わさって、正極集電タブ7a側とは反対側で第1の正極絶縁補強部材24と第2の正極絶縁補強部材25は嵌合されている。凹部と凸部による嵌合は、嵌合の形態の一例であり、嵌合されて、第1の正極絶縁補強部材24と第2の正極絶縁補強部材25が連結していればよい。第1の正極絶縁補強部材24と第2の正極絶縁補強部材25の連結は、正極集電タブ7a側ではなく、正極端子側でなされている。第1の正極絶縁補強部材24と第2の正極絶縁補強部材25が連結していることで、正極端子側において、正極集電タブ7a側から見て、第1の正極絶縁補強部材24と第2の正極絶縁補強部材25によって外装部材1が露出していない。外装部材1が露出していないことで、正極集電タブ7aと正極端子部3が外装部材1と短絡しにくいため、電極群2、バックアップ正極リード11、電極群側正極リード12及び正極端子リード23と外装部材1との絶縁性がさらに向上する点で好ましい。
 負極側についても同様であり、図14の電池102は、第1の負極絶縁補強部材37に凸部37dを有し、第2の負極絶縁補強部材38に凹部38bを有する。凸部37dと凹部38bが組み合わさって、負極集電タブ8a側とは反対側で第1の負極絶縁補強部材37と第2の負極絶縁補強部材38は嵌合されている。凹部と凸部による嵌合は、嵌合の形態の一例であり、嵌合されて、第1の負極絶縁補強部材37と第2の負極絶縁補強部材38が連結していればよい。第1の負極絶縁補強部材37と第2の負極絶縁補強部材38の連結は、負極集電タブ8a側ではなく、負極端子側でなされている。第1の負極絶縁補強部材37と第2の負極絶縁補強部材38が連結していることで、負極端子側において、負極集電タブ8a側から見て、第1の負極絶縁補強部材37と第2の負極絶縁補強部材38によって外装部材1が露出していない。外装部材1が露出していないことで、負極集電タブ8aと負極端子部4が外装部材1と短絡しにくいため、電極群2、バックアップ負極リード12、電極群側負極リード13及び負極端子リード36と外装部材1との絶縁性がさらに向上する点で好ましい。
 以上説明した第1の実施形態の電池は、薄型の電池であっても正極及び負極と外装部材1との絶縁性は信頼性の高く、電池の安全性が高い。
 なお、端子部は、正極端子部及び負極端子部双方に適用しても良いが、正極端子部又は負極端子部のいずれか片方に適用することも可能である。
(第2の実施形態)
 第2の実施形態の電池パックは、第1の実施形態の電池を1つ以上含む。第1の実施形態の電池の組電池の例を図15及び図16に示す。
 図15に示すように、電池パック200は、単位セルとして第1の実施形態の電池100~102を用いている。電池パック200は、図示しないラミネートにより被覆されている場合がある。第1の単位セル60の負極外部端子32の頂面32bと、第2の単位セル61の負極外部端子32の頂面32bの間に、三角柱状の導電性連結部材62が配置されている。また、第1の単位セル60の正極外部端子17の頂面と、第2の単位セル61の正極外部端子17の頂面の間に、三角柱状の導電性連結部材62が配置されている。二つの頂面と導電性連結部材62は、それぞれ、溶接により電気的に接続されている。溶接には、例えばレーザ溶接、アーク溶接、抵抗溶接が用いられる。これにより、第1の単位セル60と第2の単位セル61が並列接続された組電池のユニット63が得られる。組電池のユニット63同士をバスバー64により直列に接続することにより、電池パック200が得られる。
 図16に示す電池パック201は、単位セルとして第1の実施形態の電池100を用いている。電池100としての第1の単位セル60と第2の単位セル61を導電性連結部材62を用いて直列に接続したものを組電池のユニット65とし、組電池のユニット65同士をバスバー64により直列に接続することで電池パックを構成する。第1の単位セル60と第2の単位セル61間を導電性連結部材62を用いて電気的接続する方法は、図15で説明したのと同様である。
 図15及び図16に示す組電池では、隣り合う第1の単位セル60と第2の単位セル61が、互いの外装部材1の主面同士が面した状態で積層されている。例えば図15に示す組電池のユニット63では、第1の単位セル60の第1の外装部5の主面と、第2の単位セル61の第1の外装部5の主面とが面している。また、隣り合う組電池のユニット63において、一方の組電池のユニット63の第2の単位セル61の第2の外装部6の主面と、他方の組電池のユニット63の第2の単位セル61の第2の外装部6の主面とが面している。このように外装部材の主面同士を対面させて電池を積層することにより、組電池の体積エネルギー密度を高くすることができる。
 また、図15及び図16に図示されているように単位セル60と単位セル61、又は単位セル60、60や単位セル61、61のセル間には絶縁空間があるほうが望ましく、0.03mm以上の隙間を設けるか、絶縁部材(例えば、樹脂であるポリプロピレンやポリフェニレンサルファイドやエポキシ、ファインセラミックスであるアルミナやジルコニアなど)等を間に挟むことが出来る。
 正極外部端子17及び負極外部端子32が角錐台形状の頭部を持つことにより、1つの頭部の二ヶ所(例えば第1、第2の傾斜面)の一方(第1の傾斜面)に単位セルの外部端子を、他方(第2の傾斜面)にバスバーを接続することができる。つまり、1つの頭部で二方向の接続が可能となる。その結果、電池間を電気的に接続する経路を短縮することができるので、電池パックに低抵抗で大電流を流すことが容易となる。
 第2の実施形態の電池パックは、第1の実施形態の電池を少なくとも一つ含むため、薄型化及び柔軟性の向上が可能で、信頼性に優れ、製造コストの削減が可能な電池パックを提供することができる。
 電池パックは、例えば、電子機器、車両(鉄道車両、自動車、原動機付自転車、軽車両、トロリーバス等)の電源として使用される。
 上述の通り、組電池は、複数の電池を直列、並列、あるいは直列及び並列を組み合わせて電気的に接続したものを含み得る。また、電池パックは、組電池に加え、電池制御ユニット(Battery Control Unit, BMU)等の回路を備えることができるが、組電池が搭載されるもの(例えば車両など)が有する回路を電池制御ユニットとして使用することができる。電池制御ユニットは、単電池及び組電池の電圧または電流あるいは両方を監視して過充電及び過放電を防止する機能等を有する。
(第3の実施形態)
 第3の実施形態は蓄電装置に関する。第2の実施形態の電池パック200、201を蓄電装置300に搭載することができる。図17の概念図に示す蓄電装置300は、電池パック200、201と、インバーター302と、コンバーター301とを備える。外部交流電源303をコンバーター301で直流変換し、電池パック200、201を充電し、電池パック200、201からの直流電源のインバーター302で交流変換し、蓄電装置300に接続した負荷304に電気を供給する構成となっている。実施形態の電池パック200、201を有する本構成の蓄電装置300とすることで、電池特性に優れた蓄電装置が提供される。なお、電池パック200、201の代わりに、電池100~102を使用することもできる。
(第4の実施形態)
 第4の実施形態は車両に関する。第4の実施形態の車両は、第2の実施形態の電池パック200、201を用いている。本実施形態にかかる車両の構成を、図18の車両400の模式図を用いて簡単に説明する。車両400は、電池パック200、201、車体401、モーター402、車輪403と、制御ユニット404を有する。電池パック200、201、モーター402、車輪403と、制御ユニット404は、車体401に配置されている。制御ユニット404は、電池パック200、201から出力した電力を変換したり、出力調整したりする。モーター402は電池パック200、201から出力された電力を用いて、車輪403を回転させる。なお、車両400は、電車などの電動車両やエンジンなどの他の駆動源を有するハイブリッド車も含まれる。モーター402からの回生エネルギーによって、電池パック200、201を充電してもよい。電池パック200、201からの電気エネルギーによって駆動されるものはモーターに限られず、車両400に含まれる電気機器を動作させるための動力源に用いても良い。また車両400の減速時に回生エネルギーを得て、得られた回生エネルギーを用いて電池パック200、201を充電することが好ましい。実施形態の電池パック200、201を有する本構成の車両400とすることで、電池特性に優れた車両が提供される。なお、電池パック200、201の代わりに、電池100~102を使用することもできる。
(第5の実施形態)
 第5の実施形態は飛翔体(例えば、マルチコプター)に関する。第5の実施形態の飛翔体は、第2の実施形態の電池パック200、201を用いている。本実施形態にかかる飛翔体の構成を、図19の飛翔体(クアッドコプター)500の模式図を用いて簡単に説明する。飛翔体500は、電池パック200、201、機体骨格501、モーター502、回転翼503と制御ユニット504を有する。電池パック200、201、モーター502、回転翼503と制御ユニット504は、機体骨格501に配置している。制御ユニット504は、電池パック200、201から出力した電力を変換したり、出力調整したりする。モーター502は電池パック200、201から出力された電力を用いて、回転翼503を回転させる。実施形態の電池パック200、201を有する本構成の飛翔体500とすることで、電池特性に優れた飛翔体が提供される。なお、電池パック200、201の代わりに、電池100~102を使用することもできる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1…外装部材、2…電極群、3…正極端子部、4…負極端子部、5…第1の外装部、5a…開口部、5b…フランジ部、5c…底面、5d…傾斜面、6…第2の外装部、7…正極、7a…正極集電タブ、8…負極、8a…負極集電タブ、12…電極群側正極リード、14…電極群側負極リード、15,30…第1の外装部の貫通孔、16,31…バーリング部、17…正極外部端子、18a…正極絶縁部材、18b…正極補強部材、19,34…絶縁ガスケット、20…正極端子絶縁部材、21…頭部、23…正極端子リード、24…第1の正極絶縁補強部材、25…第2の正極絶縁補強部材、26…絶縁フィルム、32…負極外部端子、33a…負極絶縁部材、33b…負極補強部材、35…負極端子絶縁部材、36…負極端子リード、37…第1の負極絶縁補強部材、38…第2の負極絶縁補強部材、39…案内穴、40,41,43…溶接箇所、42…切り取り部分、60…第1の単位セル、61…第2の単位セル、62…導電性連結部材、63,65…組電池のユニット、64…バスバー、100~104…電池、200,201…電池パック、300…蓄電装置、301…コンバーター、302…インバーター、303…外部交流電源、304…負荷、400…車両、401…車体、402…モーター、403…車輪、404…制御ユニット、500…飛翔体、501…機体骨格、502…モーター、503…回転翼、504…制御ユニット

Claims (9)

  1.  正極、前記正極と電気的に接続された正極集電タブ、負極、及び、前記負極と電気的に接続された負極集電タブを含み、扁平形状に捲回された前記正極集電タブが第一端面に位置し、かつ扁平形状に捲回された前記負極集電タブが第二端面に位置する、扁平形状の電極群と、
     前記電極群を捲回する絶縁フィルムと、
     前記正極集電タブと電気的に接続した電極群側正極リードと、
     前記負極集電タブと電気的に接続した電極群側負極リードと、
     開口部にフランジ部を有する金属製の第1の外装部と、金属製の第2の外装部とを含み、前記第1の外装部の前記フランジ部と前記第2の外装部が溶接されて形成された空間内に前記電極群が収納された外装部材と、
     前記第1の外装部は前記正極集電タブ側に貫通孔を有し、頭部及び前記頭部から延び出た軸部を含む正極外部端子と、貫通孔を有する正極端子リードとを含み、前記頭部が前記第1の外装部の外側に突出し、前記軸部が前記正極端子リードの貫通孔に挿入されて前記軸部が前記第1の外装部及び前記正極端子リードにカシメ固定された正極端子部と、
     前記第1の外装部は前記負極集電タブ側に貫通孔を有し、頭部及び前記頭部から延び出た軸部を含む負極外部端子と、貫通孔を有する負極端子リードとを含み、前記頭部が前記第1の外装部の外側に突出し、前記軸部が前記負極端子リードの貫通孔に挿入されて前記軸部が前記第1の外装部及び前記負極端子リードにカシメ固定された負極端子部と、
     第1の正極絶縁補強部材と、
     第2の正極絶縁補強部材と、
     第1の負極絶縁補強部材と、
     第2の負極絶縁補強部材と、
    を含み、
     前記第1の正極絶縁補強部材は、前記第1の外装部の内面側であって、前記正極端子リードと前記第1の外装部との間に配置され、
     前記第2の正極絶縁補強部材は、前記第1の外装部の内面側及び前記第2の外装部の内面側に配置され、
     前記第1の負極絶縁補強部材は、前記第1の外装部の内面側であって、前記負極端子リードと前記第1の外装部との間に配置され、
     前記第2の負極絶縁補強部材は、前記第1の外装部の内面側及び前記第2の外装部の内面側に配置され、
     前記絶縁フィルムは、前記電極群と前記第1の外装部との間、前記電極群と前記第2の外装部材との間、前記正極集電タブと前記第1の正極絶縁補強部材の間、前記正極集電タブと前記第2の正極絶縁補強部材の間、前記負極集電タブと前記第1の負極絶縁補強部材の間及び前記負極集電タブと前記第2の負極絶縁補強部材の間に配置される電池。
  2.  前記正極端子部は、貫通孔正極絶縁部材と、貫通孔を有する正極補強部材とをさらに含み、
     前記正極外部端子は、前記正極絶縁部材の貫通孔と前記正極補強部材の貫通孔にさらに挿入され、
     前記第1の外装部の前記正極集電タブ側の貫通孔の周辺部には、前記外装部材の内側に向かってバーリング部を有し、
     前記正極補強部材は、前記第1の外装部と前記正極絶縁部材との間に配置され、
     前記正極補強部材は、前記第1の外装部のバーリング部と前記正極絶縁部材とに挟まれ、
     前記負極端子部は、貫通孔負極絶縁部材と、貫通孔を有する負極補強部材とをさらに含み、
     前記負極外部端子は、前記負極絶縁部材の貫通孔と前記負極補強部材の貫通孔にさらに挿入され、
     前記第1の外装部の前記負極集電タブ側の貫通孔の周辺部には、前記外装部材の内側に向かってバーリング部を有し、
     前記負極補強部材は、前記第1の外装部と前記負極絶縁部材との間に配置され、
     前記負極補強部材は、前記第1の外装部のバーリング部と前記負極絶縁部材とに挟まれる請求項1に記載の電池。
  3.  前記第1の正極絶縁補強部材は貫通孔を有し、
     前記第1の正極絶縁補強部材の貫通孔内に前記正極絶縁部材、前記正極補強部材及び前記正極外部端子が配置され、
     前記第1の負極絶縁補強部材は貫通孔を有し、
     前記第1の負極絶縁補強部材の貫通孔内に前記負極絶縁部材、前記負極補強部材及び前記負極外部端子が配置される請求項2に記載の電池。
  4.  前記第1の正極絶縁補強部材と前記第2の正極絶縁補強部材は、前記正極集電タブ側とは反対側で嵌合して連結しており、
     前記第1の負極絶縁補強部材と前記第2の負極絶縁補強部材は、前記負極集電タブ側とは反対側で嵌合して連結している請求項1ないし3のいずれか1項に記載の電池。
  5.  前記前記第1の正極絶縁補強部材と前記第2の正極絶縁補強部材の嵌合は、凹部と凸部の組み合わせによってなされ、
     前記第1の負極絶縁補強部材と前記第2の負極絶縁補強部材の嵌合は、凹部と凸部の組み合わせによってなされる請求項4に記載の電池。
  6.  請求項1ないし5に記載の電池を1つ以上含む電池パック。
  7.  請求項1ないし5に記載の電池又は請求項6に記載の電池パックを含む蓄電装置。
  8.  請求項1ないし5に記載の電池又は請求項6に記載の電池パックを含む車両。
  9.  請求項1ないし5に記載の電池又は請求項6に記載の電池パックを含む飛翔体。
     

     
PCT/JP2018/013046 2018-03-28 2018-03-28 電池、電池パック、蓄電装置、車両及び飛翔体 WO2019186850A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020508679A JP7011044B2 (ja) 2018-03-28 2018-03-28 電池、電池パック、蓄電装置、車両及び飛翔体
PCT/JP2018/013046 WO2019186850A1 (ja) 2018-03-28 2018-03-28 電池、電池パック、蓄電装置、車両及び飛翔体
CN201880090782.9A CN111886716A (zh) 2018-03-28 2018-03-28 电池、电池组、蓄电装置、车辆以及飞翔体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013046 WO2019186850A1 (ja) 2018-03-28 2018-03-28 電池、電池パック、蓄電装置、車両及び飛翔体

Publications (1)

Publication Number Publication Date
WO2019186850A1 true WO2019186850A1 (ja) 2019-10-03

Family

ID=68059760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013046 WO2019186850A1 (ja) 2018-03-28 2018-03-28 電池、電池パック、蓄電装置、車両及び飛翔体

Country Status (3)

Country Link
JP (1) JP7011044B2 (ja)
CN (1) CN111886716A (ja)
WO (1) WO2019186850A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023092758A1 (zh) * 2021-11-26 2023-06-01 宁德时代新能源科技股份有限公司 电池单体及其制造方法和制造设备、电池以及用电设备
EP4184705A4 (en) * 2021-09-30 2024-05-29 Contemporary Amperex Technology Co Ltd BATTERY CELL, BATTERY, ELECTRICAL APPARATUS, AND MANUFACTURING METHOD AND DEVICE FOR BATTERY CELL

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114583338A (zh) * 2022-03-03 2022-06-03 广汽埃安新能源汽车有限公司 电池单体及电池包

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329493A (ja) * 2001-05-02 2002-11-15 Mitsubishi Cable Ind Ltd シート型電池
JP2010010042A (ja) * 2008-06-30 2010-01-14 Furukawa Battery Co Ltd:The シート状電池
JP2012048989A (ja) * 2010-08-26 2012-03-08 Hitachi Maxell Energy Ltd 積層型電池
JP2013137992A (ja) * 2011-11-29 2013-07-11 Gs Yuasa Corp 蓄電素子
JP2015012255A (ja) * 2013-07-02 2015-01-19 Jmエナジー株式会社 蓄電デバイス
WO2015098517A1 (ja) * 2013-12-26 2015-07-02 株式会社 豊田自動織機 蓄電装置
WO2016204147A1 (ja) * 2015-06-15 2016-12-22 株式会社 東芝 電池及び電池パック
JP2017126531A (ja) * 2016-01-15 2017-07-20 株式会社東芝 組電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5673355B2 (ja) * 2011-05-27 2015-02-18 株式会社Gsユアサ 電池
JP5392368B2 (ja) * 2012-03-27 2014-01-22 株式会社豊田自動織機 蓄電装置
JP5397528B2 (ja) * 2012-04-13 2014-01-22 株式会社豊田自動織機 蓄電装置及び二次電池
CN104221186B (zh) * 2012-04-17 2016-11-16 株式会社丰田自动织机 蓄电装置
DE112013004251B4 (de) * 2012-08-28 2021-01-28 Kabushiki Kaisha Toyota Jidoshokki Elektrizitätsspeichervorrichtung
JP2015115210A (ja) * 2013-12-12 2015-06-22 日立マクセル株式会社 非水電解質二次電池
KR102249895B1 (ko) * 2014-03-31 2021-05-07 삼성에스디아이 주식회사 상부 절연부재를 갖는 이차 전지
CN205376600U (zh) * 2016-01-13 2016-07-06 东莞塔菲尔新能源科技有限公司 带底托板的动力电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329493A (ja) * 2001-05-02 2002-11-15 Mitsubishi Cable Ind Ltd シート型電池
JP2010010042A (ja) * 2008-06-30 2010-01-14 Furukawa Battery Co Ltd:The シート状電池
JP2012048989A (ja) * 2010-08-26 2012-03-08 Hitachi Maxell Energy Ltd 積層型電池
JP2013137992A (ja) * 2011-11-29 2013-07-11 Gs Yuasa Corp 蓄電素子
JP2015012255A (ja) * 2013-07-02 2015-01-19 Jmエナジー株式会社 蓄電デバイス
WO2015098517A1 (ja) * 2013-12-26 2015-07-02 株式会社 豊田自動織機 蓄電装置
WO2016204147A1 (ja) * 2015-06-15 2016-12-22 株式会社 東芝 電池及び電池パック
JP2017126531A (ja) * 2016-01-15 2017-07-20 株式会社東芝 組電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4184705A4 (en) * 2021-09-30 2024-05-29 Contemporary Amperex Technology Co Ltd BATTERY CELL, BATTERY, ELECTRICAL APPARATUS, AND MANUFACTURING METHOD AND DEVICE FOR BATTERY CELL
WO2023092758A1 (zh) * 2021-11-26 2023-06-01 宁德时代新能源科技股份有限公司 电池单体及其制造方法和制造设备、电池以及用电设备

Also Published As

Publication number Publication date
JP7011044B2 (ja) 2022-02-10
JPWO2019186850A1 (ja) 2021-02-12
CN111886716A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
US10461369B2 (en) Battery and battery pack
US10461304B2 (en) Cylindrical battery
US9673440B2 (en) Battery including current collector tabs
WO2019186849A1 (ja) 電池、電池パック、蓄電装置、車両及び飛翔体
JP6972175B2 (ja) 電池パック
WO2019186850A1 (ja) 電池、電池パック、蓄電装置、車両及び飛翔体
US20200194741A1 (en) Battery and battery pack
JP7024109B2 (ja) 電池、電池パック、電池モジュール、蓄電装置、車両及び飛翔体
WO2019186932A1 (ja) 電池及び電池パック
US11646452B2 (en) Secondary battery, battery module, vehicle, and flying object
JP7155290B2 (ja) 電池、電池パック、蓄電装置、車両及び飛翔体
WO2019049377A1 (ja) 電池及び電池パック
WO2019187024A1 (ja) 電池及び電池パック
WO2019186868A1 (ja) 電池と電池パック
JP6289843B2 (ja) 電池及び電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911474

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508679

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911474

Country of ref document: EP

Kind code of ref document: A1