WO2016204109A1 - エンジンスタータシステム - Google Patents

エンジンスタータシステム Download PDF

Info

Publication number
WO2016204109A1
WO2016204109A1 PCT/JP2016/067497 JP2016067497W WO2016204109A1 WO 2016204109 A1 WO2016204109 A1 WO 2016204109A1 JP 2016067497 W JP2016067497 W JP 2016067497W WO 2016204109 A1 WO2016204109 A1 WO 2016204109A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
starter system
rotor
coil
phase
Prior art date
Application number
PCT/JP2016/067497
Other languages
English (en)
French (fr)
Inventor
大助 仙波
典之 荒巻
建 野口
大久保 雅通
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Priority to CN201680034493.8A priority Critical patent/CN107683370B/zh
Priority to EP16811583.0A priority patent/EP3312411A4/en
Priority to US15/735,317 priority patent/US10138857B2/en
Publication of WO2016204109A1 publication Critical patent/WO2016204109A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0859Circuits or control means specially adapted for starting of engines specially adapted to the type of the starter motor or integrated into it
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/103Motors having windings on the stator and a variable reluctance soft-iron rotor without windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1815Rotary generators structurally associated with reciprocating piston engines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • F02N2019/008Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation the engine being stopped in a particular position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/10Control related aspects of engine starting characterised by the control output, i.e. means or parameters used as a control output or target
    • F02N2300/104Control of the starter motor torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine starter system using an electric motor.
  • Patent Document 1 describes an engine starter / generator using an SR motor (Switched Reluctance Motor).
  • SR motors Switchched Reluctance Motor
  • the rotation shaft of the motor is connected to the crankshaft of the engine via a clutch, a speed reducer, etc., and is used as a starter (power machine) when the engine is stopped. Machine).
  • the engine has rotational friction, and the rotational friction further has periodic fluctuation (ripple). For this reason, when the engine is started, there is a difference in torque (cranking torque) for rotating the crankshaft depending on the piston position in the cylinder.
  • cranking torque cranking torque
  • the motor output torque is used to cope with ripples in engine friction torque.
  • the SR motor tends to have a larger torque ripple than the magnet motor.
  • the torque ripple on the engine side corresponds to the output surplus power, and the torque ripple of the motor itself is not considered much. For this reason, if the torque ripples of the motor and the engine conflict, the motor torque may be lower than the cranking torque, and the engine may not be started.
  • the motor torque may fall below the cranking torque depending on the remaining output power. That is, when the motor torque passes the top dead center of the first compression process (compression process for a four-cycle engine and suction / compression process for a two-cycle engine) at the time of starting the engine, the carry-over torque (maximum carry-over torque) ) May not be exceeded, and malfunction may occur. In this case, if the motor torque valley is set to exceed the engine friction torque peak, there is no such concern. However, in order to increase the motor torque, there is a problem that the motor is inevitably enlarged.
  • the engine starter system of the present invention is an engine starter system that starts an engine by an electric motor, and the electric motor includes a stator having a plurality of poles and coils wound around the poles, A rotor disposed coaxially with the stator, and the rotor is coupled to the crankshaft of the engine and rotates in synchronization with the crankshaft.
  • the rotor and the crankshaft are connected to a piston of the engine.
  • the positional relationship between the piston and the rotor is such that the predetermined pole faces the predetermined position of the rotor. Is set automatically.
  • the friction torque at the start of the engine is maximized. Therefore, the maximum friction torque can be overcome at the maximum output, and the engine can be started with the motor with the minimum output.
  • the electric motor may be driven by energizing the coil different from the coil energized when the engine is stopped.
  • the pole protrudes radially inward of the stator, and a plurality of salient poles protrude radially outward of the rotor, and the piston of the engine has a top dead center or a top dead center.
  • the predetermined salient pole may be opposed to the predetermined pole when the position is slightly beyond.
  • the coil is constituted by a plurality of phase coils to which currents having different phases are supplied and supplied, and when the engine is stopped, the one-phase coil is energized, thereby causing the predetermined collision.
  • the pole may be opposed to the predetermined pole and stopped, and the piston may be stopped at a top dead center or a position slightly beyond the top dead center.
  • the electric motor may be driven by energizing the other phase coil adjacent to the phase coil energized when the engine is stopped.
  • another engine starter system of the present invention is an engine starter system that starts an engine by an electric motor, and the electric motor includes a plurality of poles and a coil wound around each of the poles.
  • the positional relationship between the piston and the rotor is mechanically set so that the motor output is also maximized when the friction torque at engine start is maximized. Therefore, the maximum friction torque can be overcome at the maximum output, and the engine can be started with the motor with the minimum output.
  • the rotor when the engine is stopped, the rotor may be stopped at a position corresponding to the maximum passing torque position of the engine by energizing a predetermined coil.
  • the electric motor When the engine is started, the electric motor may be driven by energizing the coil different from the coil energized when the engine is stopped.
  • the coil is composed of a plurality of phase coils to which currents having different phases are supplied, and when the engine is stopped, by energizing the phase coil of one phase, the maximum transit of the engine
  • the rotor may be stopped at a position corresponding to the torque position. Then, when the engine is started, the electric motor may be driven by energizing the phase coil of a phase different from the phase energized when the engine is stopped so that the output torque of the electric motor is maximized. .
  • the positional relationship between the piston and the rotor is set so that the predetermined pole faces the predetermined position of the rotor. Set.
  • the positional relationship between the piston and the rotor is set so that the output torque of the electric motor is maximized at the maximum passing torque position when the engine is started.
  • FIG. 1 is an explanatory diagram showing a configuration of an engine starter system according to an embodiment of the present invention.
  • the engine starter system shown in FIG. 1 includes a starter 1 using an SR motor, which is a kind of brushless motor, and an engine 2 started by the starter 1.
  • SR motor which is a kind of brushless motor
  • the engine in order to show the system configuration in an easy-to-understand manner, the engine has a single-cylinder structure, and FIG. 1 also omits peripheral members such as a cylinder block and a motor case.
  • the starter 1 is an inner rotor type electric motor.
  • the starter 1 includes a stator 11 that is fixed in a motor case (not shown), and a rotor 21 that is rotatably disposed in the stator 11.
  • the stator 11 is formed by laminating a number of thin electromagnetic steel plates.
  • the stator 11 has a ring-shaped yoke 12 and a pole 13.
  • the poles 13 project radially from the yoke 12 toward the radially inner side (center direction).
  • a slot 14 is formed between adjacent poles 13.
  • the pole 13 and the slot 14 are formed with the same size (same central angle).
  • the poles 13 are provided in six equal parts along the circumferential direction.
  • a coil 15 is wound around the outer periphery of the pole 13.
  • the coil 15 is supplied with current from the battery under the control of the engine controller.
  • the coil 15 is composed of a plurality of phase coils (here, three sets of a U-phase coil 15U, a V-phase coil 15V, and a W-phase coil 15W) to which currents having different phases are supplied.
  • a pair of opposing faces are in phase.
  • a rotor 21 is inserted inside the stator 11 coaxially with the stator 11 so as to be rotatable relative to the stator 11.
  • the rotor 21 is directly connected to the crankshaft 31 of the engine 2 and rotates together with the crankshaft 31.
  • the rotor 21 has a rotor core 22 and a rotor body 23 fixed to the inside of the rotor core 22.
  • the rotor core 22 is formed by laminating a number of thin electromagnetic steel plates.
  • the rotor body 23 is fixed to a crank journal 24 formed at the end of the crankshaft 31 by mounting bolts 25.
  • the crank journal 24 is rotatably supported on the cylinder block by a main bearing (not shown).
  • a salient pole 26 projects from the outer periphery of the rotor core 22 toward the radially outer side.
  • the salient poles 26 are equally divided into four along the circumferential direction.
  • the salient pole 26 is formed in the same size (same central angle) as the pole 13 and the slot 14.
  • the rotation angle of the rotor 21 is detected by a resolver (not shown).
  • the engine controller sequentially excites each phase coil 15U, 15V, 15W according to the angular position of the rotor 21.
  • the pole 13 around which the coil 15 is wound sequentially becomes a magnetic pole, and a rotating magnetic field is formed in the starter 1.
  • the salient poles 26 of the rotor 21 are attracted by the magnetized pole 13, thereby rotating the rotor 21 within the stator 11.
  • the engine 2 has a piston 32 connected to the crankshaft 31.
  • the piston 32 is disposed in a cylinder bore 34 formed in the cylinder block 33.
  • the position of the piston 32 in the cylinder bore 34 is always detected by a piston position sensor (not shown).
  • the crankshaft 31 is provided with a crank arm 35 and a counterweight 36.
  • a crankpin 37 is attached between the crank arms 35.
  • a connecting rod 38 that connects the piston 32 and the crankshaft 31 is attached to the crankpin 37.
  • the positional relationship between the rotor 21 and the crankshaft 31 is set so that the rotor rotation position at which the torque of the starter 1 is maximized matches the crankshaft rotation position at which the engine friction torque is maximized. ing. That is, the starter 1 and the engine 2 are mechanically set so that the peak positions of the peaks of the respective torque ripple waveforms match.
  • the engine friction torque is maximized when the piston 32 is at the top dead center position, which is the maximum transit torque position.
  • the maximum output torque of the starter 1 is that the pair of salient poles 26 (26a, 26c) are opposed to the pole 13 (for example, the U-phase pole 13U) as shown in FIG. This is a state in which the salient poles 26 (26b, 26d) are just disposed between the adjacent poles 13.
  • the pole 13 of the starter 1 also the W-phase pole 13W
  • the largest attractive force acts on the salient poles 26b and 26d, and the starter 1 rotates at the maximum torque.
  • the starter 1 when the piston 32 is at the top dead center position or a position slightly beyond the top dead center position (hereinafter abbreviated as the top dead center position, etc.), the rotor 21 is in the state shown in FIG. Thus, the rotor 21 is attached to the crankshaft 31.
  • the engine starter system according to the present invention the engine can be started with the maximum torque of the motor, and the engine starting operation without waste and not relying on the remaining output power becomes possible. Therefore, in this system, even if an SR motor having a large torque ripple is used, there is no malfunction that does not exceed the maximum carryover torque. As a result, the engine can be reliably started with a motor with a minimum output, and the starter 1 can be downsized and the reliability of the system can be improved.
  • FIG. 3 is a flowchart showing a control procedure of the engine starter system, where (a) shows a stop time and (b) shows a restart time.
  • engine restart in an idle stop vehicle is assumed.
  • step S1 when an engine stop command is issued from the engine controller as the vehicle stops (step S1), the position of the piston 32 is detected and determined (step S2).
  • the engine controller that has issued the engine stop command energizes only the U-phase coil of the starter 1 when the piston 32 reaches the vicinity of the top dead center position (step S3).
  • the starter 1 stops in a state where the salient poles 26a and 26c face the U-phase pole 13U.
  • the piston 32 is set to the top dead center position (step S4). Accordingly, the rotor 21 is stopped and restrained in a state where the piston 32 exists at the top dead center position or the like (step S5).
  • step S5 when restarting the engine, from the top dead center position restraint state (steps S5 ⁇ S11), the W phase which is the other phase adjacent to the U phase coil (here, adjacent to the opposite side to the rotor rotation direction). Only the coil is energized (step S12). As a result, the salient poles 26b and 26d are attracted to the W-phase pole 13W, and the starter 1 rotates with the maximum torque (the state shown in FIG. 2). That is, the engine at the engine friction torque maximum position (top dead center) is started with the maximum torque of the starter 1. Therefore, the engine can be reliably started by making maximum use of the motor output. Thereafter, the exciting coils are sequentially changed, the rotor 21 is rotated, and the engine is started (step S13).
  • the positional relationship between the piston and the rotor is mechanically set so that the motor output is also maximized when the friction torque at the engine start is maximized.
  • only one predetermined phase is energized so that the rotor is stopped and held at a position where the motor output becomes maximum (the friction torque is also maximum) in preparation for restart. That is, when the engine is stopped, standby control by simple one-phase energization is performed so that the rotor comes to an optimum position for the next start.
  • the motor can be driven with the maximum torque simply by energizing the adjacent next phase, and the maximum friction torque can be overcome with the maximum output. Therefore, unlike a conventional system that relies on output capacity, a motor having an optimum output and physique can be used for the engine, and the engine starter can be downsized and the reliability of the system can be improved.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.
  • a multi-cylinder engine such as a 4-cylinder engine or a 6-cylinder engine.
  • the ripple exists in a form in which the torque ripple of each cylinder is synthesized. Therefore, by matching the crankshaft position where the combined ripple is maximized with the maximum torque position of the starter 1 in accordance with the characteristics of each engine, the engine can be reliably started without waste as described above.
  • the piston 32 is set to the top dead center position (the maximum position of the engine friction torque) when facing the U-phase pole 13U.
  • the 13 phases are not limited to the U phase, and may be any of the U phase, the V phase, and the W phase. Also in this case, when starting the engine, the adjacent phases are excited to start the starter 1 with the maximum torque (V phase stop ⁇ U phase start, W phase stop ⁇ V phase start).
  • the number of the poles 13 of the starter 1 is 6 and the number of the salient poles 26 is four, the number of the poles 13 and the salient poles 26 is not limited to this.
  • the starter 1 an example of an inner rotor type electric motor in which a rotor is relatively rotatable inside the stator is shown.
  • an outer rotor type electric motor in which the rotor is relatively rotatable outside the stator is shown. It is also applicable to.
  • the above-mentioned starter 1 can have not only the engine start function but also the function as a generator.
  • the coil 15 of the pole 13 is energized instantaneously.
  • a magnetic flux is generated in the coil 15, but the magnetic flux is cut by the salient pole 26 that continues to rotate due to inertia, and an induced current is generated in the coil 15. Therefore, when the accelerator is off, the above-described operation is performed to generate a power generation action, and braking force (regenerative braking) is applied to the engine.
  • the SR motor since the SR motor does not use a magnet for the rotor, its weight is small, and there is no influence of depletion of rare earth resources.
  • the power generation action does not occur when the engine is accelerated (when the coil is not energized), not the engine load but the fuel efficiency is improved.
  • the apparatus can be configured with only steel materials, it is high in strength and suitable for harsh use conditions.
  • the present invention can be widely applied not only to an engine starter system using an SR motor but also to a starter system using a motor capable of controlling the rotor stop position.
  • a stepper motor or a synchronous reluctance motor in which a slit is provided in the rotor to form a dq axis and driven only by reluctance torque is used.
  • the present invention can also be applied to a starter system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

SRモータを用いたスタータ1のロータ21は、エンジン2のクランクシャフト31に直結されている。ロータ21とクランクシャフト31は、エンジン2の最大乗越しトルク位置においてスタータ1の出力トルクが最大となるように、ピストン32が上死点等の位置にあるとき、ロータ21の突極26a,26cがU相ポール13Uと対向するよう設定する。エンジン2を停止させる際、U相コイル15Uに通電することにより、突極26a,26cとU相ポール13Uを対向させて停止させ、最大乗越しトルク位置にてピストン32を停止させる。エンジン始動時は、U相コイル15Uに隣接するW相コイル15Wに通電し、最大フリクショントルクを最大出力にて乗り越える。

Description

エンジンスタータシステム
 本発明は、電動モータを用いたエンジンスタータシステムに関する。
 従来より、エンジンの始動には、電動モータを用いたエンジンスタータが使用されている。例えば、特許文献1には、SRモータ(Switched Reluctance Motor)を用いたエンジンのスタータ・ジェネレータが記載されている。近年、エンジン始動用のモータとして、構造が簡単で堅牢なSRモータが着目されている。特に、SRモータは、ロータに永久磁石を使用しないことから、レアアース価格の高騰を背景にその利用が拡大している。特許文献1のスタータ・ジェネレータは、クラッチや減速機などを介して、モータの回転軸がエンジンのクランク軸に連結されており、エンジン停止時はスタータ(動力機)として、エンジン始動後はジェネレータ(発電機)として機能する。
特開2001-28851号公報
 一方、エンジンには回転フリクションがあり、回転フリクションにはさらに周期的な変動(リップル)がある。このためエンジンは、始動の際に、シリンダ内におけるピストン位置により、クランク軸を回転させるトルク(クランキングトルク)に差異が生じる。これに対し、従来のマグネットロータを用いたスタータモータでは、エンジンフリクショントルクのリップルに対し、モータの出力余力にて対応している。
 しかしながら、駆動源である電動モータにもトルクリップルがある。特に、SRモータは、マグネットモータに比してトルクリップルが大きい傾向がある。前述のように、従来のエンジンスタータでは、エンジン側のトルクリップルには出力余力にて対応しており、モータ自身のトルクリップルは余り考慮されていない。このため、モータとエンジンのトルクリップルが相反すると、モータトルクがクランキングトルクを下回り、エンジンを始動できないおそれがある。
 図4のP部のように、エンジンフリクショントルクのリップルの山がモータトルクのリップルの谷に当たると、出力余力頼りでは、モータトルクがクランキングトルクを下回る可能性がある。すなわち、モータトルクが、エンジン始動時における1回目の圧縮工程(4サイクルエンジンにおいては圧縮工程、2サイクルエンジンにおいては吸入・圧縮工程)の上死点を乗り越す時の乗越しトルク(最大乗越しトルク)を超えられず、作動不良が生じてしまう可能性がある。この場合、モータトルクの谷が、エンジンフリクショントルクの山を上回る設定とすればこのような心配はない。しかし、モータトルクを増大させるためには、どうしてもモータが大型化してしまうという問題が生じる。
 本発明のエンジンスタータシステムは、電動モータによりエンジンの始動を行うエンジンスタータシステムであって、前記電動モータは、複数のポールと該ポールのそれぞれに巻装されたコイルとを備えたステータと、該ステータと同軸に配置されたロータと、を有し、前記ロータは、前記エンジンのクランクシャフトに連結され、前記クランクシャフトと同期して回転し、前記ロータと前記クランクシャフトは、前記エンジンのピストンが上死点又は上死点を若干越えた位置にあるとき、所定の前記ポールが前記ロータの所定の位置と対向するように連結されてなることを特徴とする。
 本発明にあっては、エンジンのピストンが上死点又は上死点を若干越えた位置にあるとき、所定の前記ポールが前記ロータの所定位置と対向するようにピストンとロータの位置関係が機械的に設定される。エンジンのピストンが上死点又は上死点を若干越えた位置にあるとき、エンジン始動時におけるフリクショントルクは最大となる。従って、最大フリクショントルクを最大出力にて乗り越えることができ、最小限の出力のモータでエンジンを始動できる。
 前記エンジンスタータシステムにおいて、前記エンジンを停止させる際、所定の前記コイルに通電することにより、前記ロータの所定の位置を前記所定のポールと対向させて停止させ、前記ピストンを上死点又は上死点を若干越えた位置にて停止させるようにしても良い。そして、前記エンジン始動時は、前記エンジン停止の際に通電した前記コイルとは異なる前記コイルに通電して前記電動モータを駆動しても良い。
 また、前記ステータの径方向内側に向かって前記ポールを突設するとともに、前記ロータに、径方向外側に向かって複数の突極を突設し、前記エンジンのピストンが上死点又は上死点を若干越えた位置にあるとき、所定の前記突極が所定の前記ポールと対向するようにしても良い。この場合、前記コイルを、位相を異にする電流が通電供給される複数相の相コイルから構成し、前記エンジンを停止させる際、1相の前記相コイルに通電することにより、前記所定の突極を前記所定のポールと対向させて停止させ、前記ピストンを上死点又は上死点を若干越えた位置にて停止させるようにしても良い。そして、前記エンジン始動時は、前記エンジン停止の際に通電した前記相コイルに隣接する他相の相コイルに通電して前記電動モータを駆動しても良い。
 一方、本発明の他のエンジンスタータシステムは、電動モータによりエンジンの始動を行うエンジンスタータシステムであって、前記電動モータは、複数のポールと該ポールのそれぞれに巻装されたコイルとを備えたステータと、該ステータと同軸に配置されたロータと、を有し、前記ロータは、前記エンジンのクランクシャフトに連結され、前記クランクシャフトと同期して回転し、前記ロータと前記クランクシャフトは、前記エンジンの最大乗越しトルク位置において前記電動モータの出力トルクが最大となるように連結されてなることを特徴とする。
 本発明にあっては、エンジン始動時におけるフリクショントルクが最大となるときモータの出力も最大となるよう、ピストンとロータの位置関係が機械的に設定される。従って、最大フリクショントルクを最大出力にて乗り越えることができ、最小限の出力のモータでエンジンを始動できる。
 前記エンジンスタータシステムにおいて、前記エンジンを停止させる際、所定の前記コイルに通電することにより、前記エンジンの最大乗越しトルク位置に対応する位置に前記ロータを停止させるようにしても良い。そして、前記エンジン始動時は、前記エンジン停止の際に通電した前記コイルとは異なる前記コイルに通電して前記電動モータを駆動しても良い。
 また、前記コイルを、位相を異にする電流が通電供給される複数相の相コイルから構成し、前記エンジンを停止させる際、1相の前記相コイル通電することにより、前記エンジンの最大乗越しトルク位置に対応する位置に前記ロータを停止させるようにしても良い。そして、前記エンジン始動時は、前記電動モータの出力トルクが最大となるよう、前記エンジン停止の際に通電した相とは異なる相の前記相コイルに通電して前記電動モータを駆動しても良い。
 本発明のエンジンスタータシステムによれば、エンジンのピストンが上死点又は上死点を若干越えた位置にあるとき、所定のポールがロータの所定位置と対向するようにピストンとロータの位置関係を設定する。その結果、エンジン始動時のフリクショントルクが最大となる上死点位置を、モータの最大出力にて乗り越えることが可能となる。従って、最小限の出力のモータでエンジンを始動でき、エンジンスタータの小型化やシステムの信頼性向上を図ることが可能となる。
 本発明の他のエンジンスタータシステムによれば、エンジン始動時の最大乗越しトルク位置において、電動モータの出力トルクが最大となるようにピストンとロータの位置関係を設定する。その結果、エンジン始動時の最大乗越しトルクをモータの最大出力にて乗り越えることが可能となる。従って、最小限の出力のモータでエンジンを始動でき、エンジンスタータの小型化やシステムの信頼性向上を図ることが可能となる。
本発明の一実施形態であるエンジンスタータシステムの構成を示す説明図である。 図1のエンジンスタータシステムにおけるロータとピストンの位置関係を示す説明図である。 当該エンジンスタータシステムの制御手順を示すフローチャートであり、(a)は停止時、(b)は再始動時を示している。 モータのトルクリップルとエンジンフリクショントルクのリップルの関係を示す説明図である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。以下の実施形態の目的は、最小限の出力のモータで確実にエンジンを始動可能なエンジンスタータシステムを提供することにある。図1は本発明の一実施形態であるエンジンスタータシステムの構成を示す説明図である。図1のエンジンスタータシステムは、ブラシレスモータの一種であるSRモータを用いたスタータ1と、スタータ1によって始動されるエンジン2とから構成されている。なお、本実施形態では、システム構成を分かり易く示すため、エンジンは単気筒構造とし、図1も、シリンダブロックやモータケース等の周辺部材の図示を省いている。
 スタータ1はインナーロータ型の電動モータである。スタータ1は、図示しないモータケース内に固定されたステータ11と、ステータ11内に回転自在に配置されたロータ21とを備えている。ステータ11は、薄板の電磁鋼板を多数積層して形成されている。ステータ11は、リング状のヨーク12と、ポール13とを有している。ポール13は、ヨーク12から、径方向内側(中心方向)に向かって放射状に突設されている。隣接するポール13の間はスロット14となっている。スタータ1では、ポール13とスロット14は、同じ大きさ(同中心角)に形成されている。ポール13は、周方向に沿って6個等分に設けられている。
 ポール13の外周にはコイル15が巻装されている。コイル15には、エンジンコントローラの制御の下、バッテリから電流が供給される。コイル15は、位相を異にする電流が通電供給される複数相の相コイル(ここでは、U相コイル15U,V相コイル15V,W相コイル15Wの3組)からなる。コイル15では、対向する一対が同相となっている。そして、三対のコイル15に順次通電することより、スタータ1内には3相(U相,V相,W相)の回転磁界が形成される。
 ステータ11の内側には、ステータ11と同軸に、ロータ21がステータ11に対して相対回転可能に挿入されている。ロータ21は、エンジン2のクランクシャフト31に直結されており、クランクシャフト31と共に回転する。ロータ21は、ロータコア22と、ロータコア22の内側に固定されたロータボディ23を有している。ロータコア22は、薄板の電磁鋼板を多数積層して形成されている。ロータボディ23は、クランクシャフト31の端部に形成されたクランクジャーナル24に、取付ボルト25によって固定されている。クランクジャーナル24は、図示しないメインベアリングによってシリンダブロックに回転自在に支持される。ロータコア22の外周には、径方向外側に向かって突極26が突設されている。突極26は、周方向に沿って4個等分に設けられている。突極26は、ポール13やスロット14と同大きさ(同中心角)に形成されている。
 スタータ1では、ロータ21の回転角度を、図示しないレゾルバにて検出している。エンジンコントローラは、ロータ21の角度位置に応じて各相コイル15U,15V,15Wを順次励磁する。コイル15が励磁されると、それが巻装されたポール13は順次磁極となり、スタータ1内に回転磁界が形成される。ロータ21の突極26は、磁化されたポール13に吸引され、これによりステータ11内にてロータ21が回転する。
 エンジン2は、クランクシャフト31と接続されたピストン32を有している。ピストン32は、シリンダブロック33に形成されたシリンダボア34内に配置されている。シリンダボア34内におけるピストン32の位置は、図示しないピストン位置センサによって常時検出されている。クランクシャフト31には、クランクアーム35とカウンタウエイト36が設けられている。クランクアーム35間には、クランクピン37が取り付けられている。クランクピン37には、ピストン32とクランクシャフト31を連結するコンロッド38が取り付けられている。エンジン始動時には、スタータ1によってクランクアーム35を回転させることにより、ピストン32を上下動させる。また、それと同時にシリンダボア34内に燃料を噴射し、それを適宜燃焼、爆発させ、エンジン2を始動させる。
 ここで、当該エンジンスタータシステムでは、スタータ1のトルクが最大となるロータ回転位置が、エンジンフリクショントルクが最大となるクランクシャフト回転位置に合うように、ロータ21とクランクシャフト31の位置関係が設定されている。つまり、スタータ1とエンジン2は、それぞれのトルクリップル波形の山の頂上位置が一致するように機械的な設定が施されている。
 通常、エンジンフリクショントルクが最大となるのは、ピストン32が上死点位置にあるときであり、そこが最大乗越しトルク位置となる。一方、スタータ1の出力トルクが最大となるのは、図2のように、一対の突極26(26a,26c)がポール13(例えば、U相のポール13U)と対向し、他の一対の突極26(26b,26d)が隣接するポール13間にちょうど配置されている状態のときである。このとき、スタータ1のポール13(同じく、W相のポール13W)を励磁すると、突極26b,26dには最も大きな吸引力が作用し、スタータ1は最大トルクにて回転する。
 そこで、スタータ1は、ピストン32が上死点位置又は上死点位置を若干越えた位置(以下、上死点位置等と略記する)にあるとき、ロータ21が図2のような状態となるよう、ロータ21がクランクシャフト31に取り付けられている。これにより、本発明によるエンジンスタータシステムにおいては、モータの最大トルクにてエンジンを始動でき、出力余力頼りではない、無駄のないエンジン始動動作が可能となる。従って、当該システムでは、トルクリップルが大きいSRモータを使用しても、最大乗越しトルクを超えらないような作動不良が生じることがない。その結果、最小限の出力のモータにて確実にエンジンを始動でき、スタータ1の小型化やシステムの信頼性向上が可能となる。
 また、このような構成を有するエンジンスタータシステムでは、その構造上の利点を最大限に生かすべく、次のようなモータ制御が行われる。図3は、当該エンジンスタータシステムの制御手順を示すフローチャートであり、(a)は停止時、(b)は再始動時を示している。ここでは、アイドルストップ車におけるエンジン再始動を想定している。図3に示すように、車両停止に伴い、エンジンコントローラよりエンジンの停止指令が出されると(ステップS1)、ピストン32の位置が検出・判定される(ステップS2)。
 エンジン停止指令を発したエンジンコントローラは、ピストン32が上死点位置近傍まで来たとき、スタータ1のU相コイルのみを通電する(ステップS3)。これにより、スタータ1は、突極26a,26cがU相のポール13Uと対向した状態で停止する。前述のように、スタータ1では、突極26a,26cがポール13Uと対向したとき、ピストン32が上死点位置等となるように設定されている(ステップS4)。従って、ロータ21は、ピストン32が上死点位置等に存在する状態で停止し拘束される(ステップS5)。
 一方、エンジンを再始動させるときは、上死点位置拘束状態(ステップS5→S11)から、U相コイルに隣接(ここでは、ロータ回転方向とは逆側に隣接)する他相であるW相コイルのみを通電する(ステップS12)。これにより、突極26b,26dがW相のポール13Wに吸引され、スタータ1が最大トルクで回転する(図2の状態)。すなわち、エンジンフリクショントルク最大位置(上死点)のエンジンをスタータ1の最大トルクにて始動させる。従って、モータ出力を最大限に生かして確実にエンジンを始動させることが可能となる。そして、その後は励磁するコイルを順次変化させ、ロータ21を回転させエンジンを始動させる(ステップS13)。
 このように、本発明のエンジンスタータシステムにあっては、エンジン始動時におけるフリクショントルクが最大となるときモータの出力も最大となるよう、ピストンとロータの位置関係が機械的に設定される。しかも、エンジン停止の際に、再始動に備え、モータ出力が最大となる位置(フリクショントルクも最大)にロータが停止・保持されるように所定の1相にのみ通電する。すなわち、エンジン停止の際は、次回の始動に最適な位置にロータが来るように、簡単な1相通電によるスタンバイ制御を実施する。これにより、エンジン始動時は、隣接する次相に通電を行うだけでモータを最大トルクにて駆動でき、最大フリクショントルクを最大出力にて乗り越えることが可能となる。従って、出力余力頼りの従来のシステムとは異なり、エンジンに対し最適な出力・体格のモータを使用でき、エンジンスタータの小型化やシステムの信頼性向上を図ることが可能となる。
 本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 例えば、前述の実施形態では、単気筒エンジンに本システムを適用した例を示したが、4気筒や6気筒などの多気筒エンジンにも本システムは適用可能である。多気筒エンジンは、単気筒エンジンに比してエンジンフリクショントルクの振れ幅は小さいものの、各気筒のトルクリップルを合成した形でリップルは存在している。従って、各エンジンの特性に合わせ、その合成リップルが最大となるクランクシャフト位置とスタータ1の最大トルク位置とを合わせることにより、前述同様、無駄のない確実なエンジン始動が可能となる。
 また、前述の実施形態では、U相のポール13Uと対向したとき、ピストン32が上死点位置(エンジンフリクショントルクの最大位置)となるように設定したが、突極26を停止・拘束するポール13の相はU相には限定されず、U相,V相,W相の何れでも良い。その場合も、エンジン始動の際には、隣接する相を励磁してスタータ1を最大トルクにて起動させる(V相停止→U相起動,W相停止→V相起動)。
 さらに、スタータ1のポール13の数を6個、突極26の数を4個の例を示したが、ポール13と突極26の数はこれに限定されない。加えて、スタータ1として、ステータの内側にロータを相対回転自在に配置したインナーロータ型の電動モータの例を示したが、ステータの外側にロータを相対回転自在に配置したアウターロータ型の電動モータにも適用可能である。
 一方、前述のスタータ1は、エンジン始動機能のみならず、発電機としての機能を併存させることが可能である。例えば、ロータが回転し突極26とポール13が整列したとき、当該ポール13のコイル15に瞬時通電する。通電により、コイル15には磁束が生じるが、慣性で回り続ける突極26によって磁束が切られ、コイル15に誘導電流が生じる。従って、アクセルオフ時に、上述の動作を行うことにより発電作用が生じ、エンジンには制動力(回生ブレーキ)が加わる。この場合、SRモータでは、ロータにマグネットを使用しないため、重量が小さく、レアアース資源の枯渇の影響もない。また、エンジン加速時(コイル無通電時)には発電作用は生じないため、エンジン負荷ともならず、燃費の向上が図られる。さらに、鋼材のみにて装置を構成できるため強度的にも高く、過酷な使用条件にも好適である。
 前述の制御例では、本願発明をアイドルストップ車におけるエンジン停止・再始動に適用した場合について述べたが、アイドルストップ仕様ではない車両のエンジン停止や始動にも本発明は適用可能である。
 また、本発明は、SRモータを用いたエンジンスタータシステムのみならず、ロータの停止位置を制御可能なモータを用いたスタータシステムに広く適用可能である。例えば、ステッピングモータや、ロータ内にスリットを設けてd-q軸を形成しリラクタンストルクのみで駆動するようにしたシンクロナスリラクタンスモータなど、所定の位置にロータを停止・保持可能なモータを用いたスタータシステムにも本発明は適用可能である。
 1  スタータ            2  エンジン
11  ステータ           12  ヨーク
13  ポール            13U U相ポール
13W W相ポール          14  スロット
15  コイル            15U U相コイル
15V V相コイル          15W W相コイル
21  ロータ            22  ロータコア
23  ロータボディ         24  クランクジャーナル
25  取付ボルト          26  突極
26a~26d  突極        31  クランクシャフト
32  ピストン           33  シリンダブロック
34  シリンダボア         35  クランクアーム
36  カウンタウエイト       37  クランクピン
38  コンロッド

Claims (11)

  1.  電動モータによりエンジンの始動を行うエンジンスタータシステムであって、
     前記電動モータは、複数のポールと該ポールのそれぞれに巻装されたコイルとを備えたステータと、該ステータと同軸に配置されたロータと、を有し、
     前記ロータは、前記エンジンのクランクシャフトに連結され、前記クランクシャフトと同期して回転し、
     前記ロータと前記クランクシャフトは、前記エンジンのピストンが上死点又は上死点を若干越えた位置にあるとき、所定の前記ポールが前記ロータの所定の位置と対向するように連結されてなることを特徴とするエンジンスタータシステム。
  2.  請求項1記載のエンジンスタータシステムにおいて、
     前記エンジンを停止させる際、所定の前記コイルに通電することにより、前記ロータの所定の位置を前記所定のポールと対向させて停止させ、前記ピストンを上死点又は上死点を若干越えた位置にて停止させることを特徴とするエンジンスタータシステム。
  3.  請求項2記載のエンジンスタータシステムにおいて、
     前記エンジン始動時は、前記エンジン停止の際に通電した前記コイルとは異なる前記コイルに通電することを特徴とするエンジンスタータシステム。
  4.  請求項1記載のエンジンスタータシステムにおいて、
     前記ポールは前記ステータの径方向内側に向かって突設されるとともに、
     前記ロータは、前記ステータの内側に配置され、径方向外側に向かって突設された複数の突極を有し、
     前記エンジンのピストンが上死点又は上死点を若干越えた位置にあるとき、所定の前記突極が所定の前記ポールと対向することを特徴とするエンジンスタータシステム。
  5.  請求項4記載のエンジンスタータシステムにおいて、
     前記コイルは、位相を異にする電流が通電供給される複数相の相コイルからなり、
     前記エンジンを停止させる際、1相の前記相コイルに通電することにより、前記所定の突極を前記所定のポールと対向させて停止させ、前記ピストンを上死点又は上死点を若干越えた位置にて停止させることを特徴とするエンジンスタータシステム。
  6.  請求項5記載のエンジンスタータシステムにおいて、
     前記エンジン始動時は、前記エンジン停止の際に通電した前記相コイルに隣接する他相の相コイルに通電することを特徴とするエンジンスタータシステム。
  7.  電動モータによりエンジンの始動を行うエンジンスタータシステムであって、
     前記電動モータは、複数のポールと該ポールのそれぞれに巻装されたコイルとを備えたステータと、該ステータと同軸に配置されたロータと、を有し、
     前記ロータは、前記エンジンのクランクシャフトに連結され、前記クランクシャフトと同期して回転し、
     前記ロータと前記クランクシャフトは、前記エンジンの最大乗越しトルク位置において前記電動モータの出力トルクが最大となるように連結されてなることを特徴とするエンジンスタータシステム。
  8.  請求項7記載のエンジンスタータシステムにおいて、
     前記エンジンを停止させる際、所定の前記コイルに通電することにより、前記エンジンの最大乗越しトルク位置に対応する位置に前記ロータを停止させることを特徴とするエンジンスタータシステム。
  9.  請求項8記載のエンジンスタータシステムにおいて、
     前記エンジン始動時は、前記エンジン停止の際に通電した前記コイルとは異なる前記コイルに通電することを特徴とするエンジンスタータシステム。
  10.  請求項7記載のエンジンスタータシステムにおいて、
     前記コイルは、位相を異にする電流が通電供給される複数相の相コイルからなり、
     前記エンジンを停止させる際、1相の前記相コイル通電することにより、前記エンジンの最大乗越しトルク位置に対応する位置に前記ロータを停止させることを特徴とするエンジンスタータシステム。
  11.  請求項10記載のエンジンスタータシステムにおいて、
     前記エンジン始動時は、前記電動モータの出力トルクが最大となるよう、前記エンジン停止の際に通電した相とは異なる相の前記相コイルに通電することを特徴とするエンジンスタータシステム。
PCT/JP2016/067497 2015-06-17 2016-06-13 エンジンスタータシステム WO2016204109A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680034493.8A CN107683370B (zh) 2015-06-17 2016-06-13 发动机起动系统
EP16811583.0A EP3312411A4 (en) 2015-06-17 2016-06-13 ENGINE STARTING SYSTEM
US15/735,317 US10138857B2 (en) 2015-06-17 2016-06-13 Engine starter system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015122170A JP6462503B2 (ja) 2015-06-17 2015-06-17 エンジンスタータシステム
JP2015-122170 2015-06-17

Publications (1)

Publication Number Publication Date
WO2016204109A1 true WO2016204109A1 (ja) 2016-12-22

Family

ID=57546631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067497 WO2016204109A1 (ja) 2015-06-17 2016-06-13 エンジンスタータシステム

Country Status (5)

Country Link
US (1) US10138857B2 (ja)
EP (1) EP3312411A4 (ja)
JP (1) JP6462503B2 (ja)
CN (1) CN107683370B (ja)
WO (1) WO2016204109A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10883467B2 (en) 2015-11-12 2021-01-05 Bombardier Recreational Products Inc. Method and system for starting an internal combustion engine
US11448146B2 (en) * 2015-11-12 2022-09-20 Bombardier Recreational Products Inc. Method and system for starting an internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176569U (ja) * 1982-05-21 1983-11-25 日産自動車株式会社 内燃機関の始動装置
JP2003189675A (ja) * 2001-12-11 2003-07-04 Honda Motor Co Ltd 内燃機関駆動用ブラシレス回転電機の始動方法
JP2004308645A (ja) * 2003-03-25 2004-11-04 Denso Corp エンジン始動装置
JP2012241562A (ja) * 2011-05-17 2012-12-10 Honda Motor Co Ltd エンジン発電機

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176569A (ja) 1982-04-09 1983-10-17 Hitachi Ltd 中性子及びガンマ線検出方法
JPH0386095A (ja) * 1989-08-28 1991-04-11 Secoh Giken Inc 3相リラクタンス型電動機
US5327069A (en) * 1992-06-19 1994-07-05 General Electric Company Switched reluctance machine including permanent magnet stator poles
US6442535B1 (en) * 1998-10-28 2002-08-27 Emerson Electric Co. Method and apparatus for implementing a low cost, intelligent controller for a switched reluctance machine
JP2001028851A (ja) 1999-07-13 2001-01-30 Nissan Motor Co Ltd モータおよびスタータ・ジェネレータ
JP2003111488A (ja) * 2001-10-02 2003-04-11 Toyota Industries Corp スイッチトリラクタンスモータの制御方法及び制御装置並びに圧縮機
TW575718B (en) 2001-12-11 2004-02-11 Honda Motor Co Ltd Method of starting an electric brushless rotating machine for driving an internal combustion engine
DE102004007393A1 (de) * 2003-02-28 2004-09-09 Denso Corp., Kariya Maschinenanlasser mit einem Anlassermotor
US7201244B2 (en) * 2003-10-03 2007-04-10 Letourneau, Inc. Vehicle for materials handling and other industrial uses
US20070204827A1 (en) * 2006-03-02 2007-09-06 Kokusan Denki Co., Ltd. Engine starting device
JP2008061453A (ja) * 2006-09-01 2008-03-13 Denso Corp 車載用モータ制御装置
JP4412355B2 (ja) * 2007-06-08 2010-02-10 株式会社デンソー シフトレンジ切替装置
JP4406453B2 (ja) * 2007-10-03 2010-01-27 トヨタ自動車株式会社 シフト切替装置
KR101301385B1 (ko) * 2011-09-20 2013-09-10 삼성전기주식회사 스위치드 릴럭턴스 모터의 속도 제어 장치
JP5993616B2 (ja) * 2012-05-25 2016-09-14 日立オートモティブシステムズ株式会社 電動機の駆動制御装置
US20170187315A1 (en) * 2015-12-24 2017-06-29 Toyota Jidosha Kabushiki Kaisha Control device for switched reluctance motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176569U (ja) * 1982-05-21 1983-11-25 日産自動車株式会社 内燃機関の始動装置
JP2003189675A (ja) * 2001-12-11 2003-07-04 Honda Motor Co Ltd 内燃機関駆動用ブラシレス回転電機の始動方法
JP2004308645A (ja) * 2003-03-25 2004-11-04 Denso Corp エンジン始動装置
JP2012241562A (ja) * 2011-05-17 2012-12-10 Honda Motor Co Ltd エンジン発電機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3312411A4 *

Also Published As

Publication number Publication date
CN107683370B (zh) 2020-07-28
EP3312411A1 (en) 2018-04-25
JP2017008741A (ja) 2017-01-12
EP3312411A4 (en) 2019-07-03
US20180171959A1 (en) 2018-06-21
CN107683370A (zh) 2018-02-09
JP6462503B2 (ja) 2019-01-30
US10138857B2 (en) 2018-11-27

Similar Documents

Publication Publication Date Title
JP4001331B2 (ja) エンジン始動装置
TWI551776B (zh) Engine unit and vehicle
JP5035895B2 (ja) 発電制御装置
EP2528207A1 (en) Brushless electric machine
JP2017031808A (ja) エンジンユニット、及び車両
WO2016204109A1 (ja) エンジンスタータシステム
JP2017041963A (ja) モータ・ジェネレータ
WO2018030153A1 (ja) 始動発電機用三相回転電機
EP1633036A1 (en) Single phase induction motor
KR20020090335A (ko) 기계 및 부하 특성의 동기화 방법 및 시스템
JPH0816454B2 (ja) 内燃機関のトルク変動抑制装置
JP2017036666A (ja) エンジンユニット
JP7133970B2 (ja) 回転電機
EP3562012A1 (en) Rotary electric machine
JP4446563B2 (ja) ブラシレス直流モータの始動方法
JP2001025286A (ja) Srモータ
WO2018084108A1 (ja) 車両用モータの取付構造、車載機器及びブラシレスモータ
WO2021015183A1 (ja) 内燃機関用発電電動機
JP2004064968A (ja) 複合3相ステッピングモータ
US20030094863A1 (en) Starter for engine
WO2021095353A1 (ja) 回転電機及び回転電機システム
JP2017036665A (ja) エンジンユニット
JP6670709B2 (ja) スイッチドリラクタンスモータ
JP6551273B2 (ja) スイッチトリラクタンスモータ
EP1311055A2 (en) Starter for engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811583

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15735317

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016811583

Country of ref document: EP