WO2016203790A1 - 自走式電子機器および前記自走式電子機器の走行方法 - Google Patents

自走式電子機器および前記自走式電子機器の走行方法 Download PDF

Info

Publication number
WO2016203790A1
WO2016203790A1 PCT/JP2016/056246 JP2016056246W WO2016203790A1 WO 2016203790 A1 WO2016203790 A1 WO 2016203790A1 JP 2016056246 W JP2016056246 W JP 2016056246W WO 2016203790 A1 WO2016203790 A1 WO 2016203790A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving wheel
self
wheel
drive wheel
propelled
Prior art date
Application number
PCT/JP2016/056246
Other languages
English (en)
French (fr)
Inventor
雅倫 坪井
松本 正士
妹尾 敏弘
文夫 吉村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201680012957.5A priority Critical patent/CN107615203B/zh
Priority to US15/552,464 priority patent/US10653283B2/en
Publication of WO2016203790A1 publication Critical patent/WO2016203790A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/009Carrying-vehicles; Arrangements of trollies or wheels; Means for avoiding mechanical obstacles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2805Parameters or conditions being sensed
    • A47L9/281Parameters or conditions being sensed the amount or condition of incoming dirt or dust
    • A47L9/2815Parameters or conditions being sensed the amount or condition of incoming dirt or dust using optical detectors
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2805Parameters or conditions being sensed
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2836Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
    • A47L9/2852Elements for displacement of the vacuum cleaner or the accessories therefor, e.g. wheels, casters or nozzles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0227Control of position or course in two dimensions specially adapted to land vehicles using mechanical sensing means, e.g. for sensing treated area
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0272Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/06Control of the cleaning action for autonomous devices; Automatic detection of the surface condition before, during or after cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/008Manipulators for service tasks
    • B25J11/0085Cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a self-propelled electronic device and a traveling method thereof, and more particularly to a self-propelled electronic device having a fall avoidance function and a step-over function and a traveling method thereof.
  • a self-propelled electronic device that autonomously runs indoors or outdoors and performs operations such as cleaning is known.
  • the drive wheel steps off the floor surface.
  • the wheel removal sensor is a sensor that detects the lift of the drive wheel caused by the drive wheel stepping off the floor surface and removing the wheel at a step.
  • a self-propelled electronic device having a fall avoidance function immediately performs a fall avoidance operation in order to prevent the main body from falling from the floor surface when the derailing sensor detects the lift of the drive wheel.
  • the self-propelled electronic device When the driving wheel lifts off when the driving wheel steps off the floor at a descending step, it is common for the self-propelled electronic device to immediately move to avoiding operation or stop the driving wheel. Because even if one of the driving wheels has stepped off the floor surface, the remaining driving wheel is traveling in a state where it is in contact with the floor surface. It is.
  • the lift of the drive wheel is caused by the impact caused when the drive wheel of the self-propelled electronic device collides with an up step (hereinafter referred to as “up step”) or the main body of the self-propelled electronic device. It may be caused by climbing up an ascending step.
  • the lift of the drive wheel is caused by the drive wheel stepping off the floor at the down step, or the impact when the drive wheel collides with the up step, It cannot be distinguished whether the main body of the self-propelled electronic device is caused by climbing up an ascending step.
  • the drive wheel lift is caused by climbing over an ascending step, when the drive wheel lift is detected, the drive wheel is immediately stopped or the drive wheel is lifted in the opposite direction. If the fall avoidance operation such as driving is performed, the self-propelled electronic device cannot get over the climbing step, and the function of the self-propelled electronic device may not be performed sufficiently.
  • the self-propelled electronic device can get over the climbing step, but the driving wheel is not lifted.
  • the main body of the self-propelled electronic device may fall from the floor surface.
  • the present invention has been made in consideration of the above-described circumstances, and the object thereof is a self-propelled electronic device that achieves both climbing performance of an ascending step and performance of avoiding falling from the floor at a descending step. And providing a traveling method thereof.
  • the present invention includes a housing, a driving wheel that travels the housing, a wheel removal sensor that detects lifting of the driving wheel from a floor surface, and a traveling control unit that controls traveling of the housing, The travel control unit continues the travel of the housing for a predetermined continuous travel time when the wheel removal sensor detects the lift of the drive wheel, and after the continuous travel time has elapsed, When the wheel sensor detects the lifting of the driving wheel, after the rotation of the driving wheel is stopped, the driving wheel is rotated in a direction opposite to the rotation direction during a predetermined reverse running time.
  • the present invention provides a self-propelled electronic device characterized in that the casing is caused to run backward.
  • the housing when the lifting of the driving wheel that drives the housing from the floor surface is detected, the housing continues to travel for a predetermined continuous travel time, and after the continuous travel time has elapsed.
  • the driving wheel is rotated in a direction opposite to the direction of the rotation for a predetermined reverse running time.
  • FIG. 7 is an explanatory diagram showing a state when the drive wheel shown in FIG. 6 is in contact with the ground (FIG. 7A) and when it is lifted (FIG. 7B).
  • FIG. 7 is an explanatory diagram showing a state of the wheel removal sensor shown in FIG. 6 when the drive wheel is in contact with the ground (FIG. 8A) and when it is lifted (FIG. 8B). It is explanatory drawing which shows the example of the lift of the drive wheel of the self-propelled cleaner shown in FIG. It is a flowchart which shows the driving
  • Embodiment 1 demonstrates and demonstrates the case of the self-propelled cleaner 1 as a self-propelled electronic device, this invention is self-propelled electronic devices other than a cleaner (for example, self-propelled ion generator) ) Is also applicable.
  • FIG. 1 is a perspective view showing a self-propelled cleaner 1 according to Embodiment 1 of the present invention.
  • FIG. 2 is a bottom view of the self-propelled cleaner 1 shown in FIG.
  • FIG. 3 is a block diagram showing a schematic configuration of a control circuit of the self-propelled cleaner 1 shown in FIG. 4 is a side sectional view of the self-propelled cleaner 1 shown in FIG.
  • FIG. 5 is a cross-sectional plan view of the self-propelled cleaner 1 shown in FIG.
  • FIG. 6 is an explanatory diagram showing a schematic configuration of a wheel removal sensor 220 that detects the lifting of the drive wheel 22L of the self-propelled cleaner 1 shown in FIG.
  • the self-propelled cleaner 1 includes a disk-shaped housing 2, and includes a collision detection unit 43, a rotating brush 9, a side brush 10, and a dust collection chamber 15 inside and outside the housing 2.
  • Components such as a battery as a drive source for driving the control unit 40, the drive wheels 22L and 22R, the rotating brush 9, the side brush 10, the electric blower 50, and the like including the sensor 18 and electronic device parts are provided.
  • the part where the rear wheel 26 is arranged is the rear part
  • the part opposite to the rear wheel 26 is the front part
  • the part where the pair of left and right drive wheels 22L and 22R are arranged is the intermediate part.
  • the forward direction refers to the direction in which the self-propelled cleaner 1 advances toward the front side
  • the backward direction refers to the direction in which the self-propelled cleaner 1 moves toward the rear side.
  • the left and right directions refer to the left and right directions when the self-propelled cleaner 1 moves forward
  • the up and down direction refers to the up and down direction when the housing 2 is supported on the floor FL by three wheels. Point to.
  • the housing 2 opens and closes when the dust collection box 15a is inserted into and removed from the housing 2 and the bottom plate 2a having a suction port 31 formed at a position near the boundary with the intermediate portion in the front portion.
  • a top plate 2b having a lid portion and a side plate 2c having an annular shape in plan view provided along the outer peripheral portions of the bottom plate 2a and the top plate 2b are provided.
  • the bottom plate 2a is formed with a pair of left and right openings 2a 2 for housing a part of the left and right drive wheels 22L, 22R in the housing 2.
  • a support member 2a 4 is provided around each opening 2a 2 on the inner surface of the bottom plate 2a.
  • each drive wheel 22L, 22R is connected to a drive wheel unit UL, UR provided with a drive force transmission mechanism having a drive motor 51 and a gear for transmitting the rotational drive force of the travel motor 51 to each drive wheel 22L, 22R, which will be described later.
  • Each drive wheel unit UL, UR is supported by each support member 2a 4 in a swingable manner via a horizontal axis.
  • the side plate 2c is a front bumper 2c 1 and the rear side plate 2c 2 and the bisected configuration, an exhaust port 32 is formed in the rear side plate 2c 2.
  • a portion of the housing 2 excluding the bumper 2c 1 is referred to as a housing body 2x.
  • an intermediate space 2s 1 in the housing 2 is a space for storing the dust collection box 15a
  • a rear space 2s 2 is a space for storing the battery.
  • the control circuit for controlling the operation of the entire self-propelled cleaner 1 includes a control unit 40, an operation panel 41 for inputting setting conditions and operation commands relating to the operation of the self-propelled cleaner 1, traveling A storage unit 42 for storing the map 42a, a motor driver 50a for driving the electric blower 50, a motor driver 51a for driving the traveling motor 51 of the drive wheels 22L and 22R, a brush for driving the rotating brush 9 and the side brush 10.
  • Motor driver 52a for driving the motor 52
  • control unit 18a for controlling the floor detection sensor 18, control unit 6a for controlling the ultrasonic sensor 6 described later
  • control unit 43a for controlling the moving object detection unit 43b described later Etc.
  • the control unit 40 includes a microcomputer including a CPU, a ROM, and a RAM.
  • the control unit 40 individually transmits control signals to the motor drivers 50a, 51a, and 52a based on program data stored in advance in the storage unit 42. A series of cleaning operations are performed by drivingly controlling the travel motor 51 and the brush motor 52.
  • the program data includes program data for a normal mode for cleaning a wide area of the floor surface FL, and for a wall-side mode for cleaning along a wall.
  • control unit 40 accepts setting conditions and operation commands by the user from the operation panel 41 and stores them in the storage unit 42.
  • the travel map 42a stored in the storage unit 42 is information related to travel such as a travel route and a travel speed around the installation location of the self-propelled cleaner 1, and is stored in the storage unit 42 by the user in advance.
  • the self-propelled cleaner 1 itself can automatically record during the cleaning operation.
  • the self-propelled cleaner 1 detects the obstacle on the course by the ultrasonic transmitter 6b 1 and the ultrasonic receiver 6b 2 constituting the ultrasonic sensor 6 shown in FIG. ,
  • the driving wheels 22L and 22R are temporarily stopped, and then the left and right driving wheels 22L and 22R are rotated in opposite directions to change directions. Thereby, the self-propelled cleaner 1 can perform self-propelled cleaning while avoiding obstacles in the entire installation place or the entire desired range.
  • the detection signal is transmitted to the control unit 40, and the control unit 40 stops or directs the self-propelled cleaner 1. Control to switch.
  • the bumper 2c 1 collides with an obstacle.
  • the detection signal is transmitted to the control unit 40, and the control unit 40 stops or turns the self-propelled cleaner 1. Control as follows.
  • the floor surface detection sensor 18 for detecting the floor surface FL as described above is disposed at the front center position and the positions of the left and right side brushes 10 in the bottom plate 2a of the housing 2 shown in FIG.
  • the detection signal is transmitted to the control unit 40 which will be described later, and the control unit 40 controls to stop both the drive wheels 22L and 22R. Thereby, the fall of the self-propelled cleaner 1 to the descending step DL is prevented.
  • the control unit 40 may perform control so as to avoid the descending step DL.
  • a pair of left and right charging terminals 13 for charging a built-in battery is provided at the front end of the bottom plate 2 a of the housing 2.
  • the self-propelled cleaner 1 that cleans the room while self-propelled returns to the charging stand installed in the room when the cleaning is completed. Specifically, the self-propelled cleaner 1 detects an infrared signal transmitted from a charging stand installed on the floor surface FL, recognizes the direction in which the charging stand exists, and autonomously obstructs the obstacle. Travel around and return to the charging station.
  • the charging terminal 13 of the self-propelled cleaner 1 is in contact with the power supply terminal portion provided on the charging stand, and the power supply terminal portion is connected to the positive terminal and the negative terminal of the battery via the charging terminal 13.
  • the battery is charged.
  • the self-propelled cleaner 1 does not operate automatically during charging, and is in a standby state.
  • the charging stand connected to a commercial power source (outlet) is usually installed along the side wall of the room.
  • the battery supplies power to each drive control element such as various motors and a control circuit.
  • the self-propelled cleaner 1 is in contact with the floor surface FL at the three points of the left and right drive wheels 22L and 22R and the rear wheel 26.
  • the weight is distributed in a balance that does not lift from the FL. Therefore, even if the self-propelled cleaner 1 stops suddenly before the descending step DL while moving forward, the self-propelled cleaner 1 is prevented from tilting forward and falling to the descending step DL.
  • the drive wheels 22L and 22R are formed by fitting rubber tires having tread patterns (grooves) on the ground surface into the wheels so that they do not slip even when suddenly stopped.
  • the suction port 31 is an open surface of a recess formed on the bottom surface of the housing 2 (the lower surface of the bottom plate 2a) so as to face the floor surface FL.
  • a rotating brush 9 is provided that rotates about a horizontal axis parallel to the bottom surface of the housing 2.
  • An axial center perpendicular to the bottom surface of the housing 2 is provided on both left and right sides of the recess.
  • a side brush 10 that rotates about the center is provided.
  • the rotating brush 9 is formed by implanting a brush spirally on the outer peripheral surface of a roller that is a rotating shaft.
  • the side brush 10 is formed by providing brush hair bundles radially at the lower end of the rotating shaft.
  • the rotating shaft of the rotating brush 9 and the rotating shaft of the pair of side brushes 10 are pivotally attached to a part of the bottom plate 2a of the housing 2, and include a brush motor 52, a pulley, a belt, and the like provided in the vicinity thereof. It is rotatably connected via a power transmission mechanism.
  • FIG. 4 As shown in, the air containing dust sucked from the suction port 31 into the housing 2, the suction passage and through the suction port 15a 1 of the dust collecting box 15a in the dust collecting box 15a as shown by arrow A Led to. At this time, the rotating brush 9 rotates to scrape dust on the floor surface FL into the suction port 31, and the pair of side brushes 10 rotate to scrape dust on the left and right sides of the suction port 31 to the suction port 31. .
  • a cover 15c is a cover of the dust collection box 15a that covers the filter 15b.
  • the self-propelled cleaner 1 turns when the left and right drive wheels 22L and 22R rotate forward in the same direction, move backward in the same direction, move backward, and rotate in opposite directions. For example, when the self-propelled cleaner 1 reaches the periphery of the cleaning area and collides with an obstacle on the course, the drive wheels 22L and 22R stop and the left and right drive wheels 22L and 22R are moved in opposite directions. Rotate to change direction. Thereby, the self-propelled cleaner 1 can be self-propelled while avoiding obstacles in the entire installation place or the entire desired range.
  • the bumper 2c 1 semicircular arc shape to the left and right plurality of locations in the circumferential direction central position and the central position has a circular hole, of the bumper 2c 1 so as to be exposed from the holes
  • An ultrasonic transmitter 6b 1 and an ultrasonic receiver 6b 2 of the ultrasonic sensor 6 are provided on the inner surface.
  • the bumper 2c 1 is formed with five holes in a row, and the ultrasonic wave receiving part 6b 2 is disposed in the central position and the left and right holes, and two adjacent to the central position.
  • the ultrasonic transmitter 6b 1 is disposed in the hole.
  • the control unit 6a (FIG. 3) transmits ultrasonic waves from the ultrasonic transmission unit 6b 1 of the ultrasonic sensor 6 until the transmitted ultrasonic waves are reflected by the obstacle and received by the ultrasonic reception unit 6b 2.
  • the distance from the time to the obstacle is calculated and transmitted to the control unit 40 as a detection signal.
  • the bumper 2c 1 is fitted into the peripheral edge of the front opening 2x 1 so as to cover the front opening 2x 1 of the housing body 2x constituted by the end portions of the bottom plate 2a, the top plate 2b and the rear side plate 2c 2. ing. At this time, the bumper 2c 1 is supported by a fitting structure that is movable in the front-rear and left-right directions with respect to the housing body 2x and does not fall off from the front opening 2x 1 .
  • FIG. 6 is an explanatory diagram showing a schematic configuration of a wheel removal sensor 220 that detects the lifting of the drive wheel 22L of the self-propelled cleaner 1 shown in FIG.
  • FIG. 7 is an explanatory diagram showing a state when the drive wheel 22L shown in FIG. 6 is in contact with the ground (FIG. 7A) and when it is lifted up (FIG. 7B).
  • FIG. 8 is an explanatory view showing a state of the wheel removal sensor 220 shown in FIG. 6 when the drive wheel 22L is in contact with the ground (FIG. 8A) and when it is lifted up (FIG. 8B).
  • the escape sensor 220 of the present invention is realized by the cooperation of the drive wheel 22 ⁇ / b> L, the support arm 221, the rotation support shaft 222, the slit 223, and the optical sensor 224.
  • the driving wheel 22L is supported by the support arm 221 so as to be rotatable in the vertical direction around the rotation support shaft 222.
  • a slit 223 is provided at one end of the rotation support shaft 222 opposite to the support arm 221, and the slit 223 is provided so as to be freely inserted into the optical sensor 224 in accordance with the rotation of the rotation support shaft 222.
  • the housing 2 sinks toward the floor surface FL due to the weight of the main body of the self-propelled cleaner 1, and thus the drive wheel 22L. Rotates relative to the housing 2 relatively upward.
  • the slit 223 rotates downward in conjunction with the upward rotation of the support arm 221, the slit 223 blocks the optical signal 225 in the optical sensor 224. Move to no position.
  • the drive wheel 22L has been described above as an example, but the same applies to the drive wheel 22R. Further, since the wheel removal sensor 220 is provided independently for each of the drive wheels 22L and 22R, it can detect whether one of the drive wheels 22L or 22R has been removed.
  • FIGS. 6 to 8 are merely examples, and various modes are conceivable as to how the drive wheels 22L and the slits 223 are interlocked.
  • a physical switch such as a tactile switch using a spring may be used. Therefore, the present invention should not be construed to be limited by the examples shown in FIGS.
  • FIG. 9 is an explanatory diagram showing an example of lifting of the drive wheels 22L (22R) of the self-propelled cleaner 1 shown in FIG.
  • FIG. 9A shows a state in which the drive wheel 22L of the self-propelled cleaner 1 is removed from the end of the floor surface FL. This state occurs, for example, in an environment where the main body of the self-propelled cleaner 1 may fall, such as a lift at the entrance.
  • the floor surface detection sensor 18 that detects the floor surface FL is disposed at the front center position and the left and right side brushes 10 in the bottom plate 2a of the housing 2, the front surface of the housing 2 is disposed. Although it does not fall from the left and right front, it may occur when the self-propelled cleaner 1 retreats while curving from the rear right side or the rear left side and enters the end of the floor surface FL.
  • FIG. 9B shows a state where the drive wheels 22L (22R) are lifted from the floor surface FL by the self-propelled cleaner 1 riding on the ascending step RL.
  • the self-propelled cleaner 1 has the front surface of the casing 2 on the front step RL, and the main body of the self-propelled cleaner 1 is composed of the lower surface of the casing 2 and the rear wheel 26. It is in a state to support.
  • the drive wheel 22L (22R) is slightly grounded or not grounded.
  • This state occurs, for example, in an environment where the driving wheel 22L (22R) of the self-propelled cleaner 1 may be lifted, such as a Japanese room sill or a door stop, and the self-propelled cleaner 1 main body is raised.
  • the self-propelled cleaner 1 may be lifted together with the main body due to an impact when the driving wheel 22L (22R) hits the ascending step RL.
  • the driving wheel 22L (22R) may slip and lift up without engaging the ascending step RL, thereby stopping the operation. .
  • FIG. 9B shows an example in which the self-propelled cleaner 1 rides on the ascending step RL from the front.
  • the self-propelled cleaner 1 thrusts obliquely into the ascending step RL, one drive wheel 22L is obtained.
  • a tread pattern (groove) is provided on the contact surface of the drive wheel 22L (22R), but the tread pattern bites the ascending step RL immediately after the driving wheel 22L (22R) hits the ascending step RL and floats. There are also times when it is idle. Even in such a case, the lifted state of the drive wheels 22L (22R) continues.
  • the driving wheel 22L (22R) is lifted not only when the driving wheel 22L (22R) steps off the floor surface FL at the descending step DL (FIG. 9A), but also when the driving wheel 22L (22R) is lifted.
  • the driving wheel 22L (22R) is lifted.
  • the up step RL due to an impact when hitting the up step RL (FIG. 9B), or when the main body of the self-propelled cleaner 1 gets on the up step RL (FIG. 9C). May also occur.
  • the wheel removal sensor 220 detects only the lift of the drive wheel 22L (22R), is it detecting the lift of the drive wheel 22L (22R) due to the downward step DL as shown in FIG. 9B and 9C, it cannot be distinguished at all whether the self-propelled cleaner 1 detects the lifting of the drive wheels 22L (22R) when trying to get over the ascending step RL. .
  • the driving wheel 22L (22R) is stopped. It is not preferable. Because if the self-propelled cleaner 1 is stopped every time it reaches the ascending step RL, or if it is shifted to an avoidance operation, the ascending step RL cannot be overcome, and the function of the self-propelled cleaner 1 is improved. This is because there is a risk that it will not be able to be fulfilled sufficiently.
  • the self-propelled cleaner 1 steps off the floor surface FL at the descending step DL as shown in FIG. 9A to lift the drive wheel 22L (22R). If the drive wheel 22L (22R) continues to run without stopping when it occurs, there is a risk of the main body falling.
  • a self-propelled type that achieves both the climbing performance of the ascending step RL and the avoidance performance of falling from the floor surface FL at the descending step DL by the following traveling procedure.
  • a vacuum cleaner 1 is realized.
  • FIG. 10 and FIG. 11 are flowcharts showing a traveling procedure after detection of lifting of the drive wheel 22L of the self-propelled cleaner 1 shown in FIG.
  • the case where the lift of the drive wheel 22L is detected will be described, but the same applies to the case where the lift of the drive wheel 22R is detected.
  • step S1 the control unit 40 determines whether or not the wheel removal sensor 220 has detected the driving wheel 22L being lifted (step S1).
  • step S1 When the wheel removal sensor 220 detects the lifting of the drive wheel 22L (when the determination in step S1 is Yes), the control unit 40 continues the rotation of the drive wheels 22L and 22R in step S2 (step S2). Thereafter, the control unit 40 performs the determination in step S3. On the other hand, when the derailing sensor 220 does not detect the lift of the drive wheel 22L (when the determination at Step S1 is No), the control unit 40 repeats the determination at Step S1 (Step S1).
  • step S3 the control unit 40 determines whether or not the wheel removal sensor 220 detects the grounding of the drive wheel 22L (step S3).
  • the control unit 40 repeats the determination at Step S1 (Step S1).
  • the control unit 40 performs the determination in step S4 (step S4).
  • step S4 the control unit 40 determines whether or not 1000 msec has elapsed since the start of lifting of the drive wheels 22L (step S4).
  • step S4 determines whether or not 1000 msec has elapsed since the driving wheel 22L started to float (when the determination in step S4 is Yes).
  • step S5 the control unit 40 stops the rotation of the driving wheels 22L and 22R in step S5 (step S5).
  • step S6 step S6
  • step S4 when 1000 msec has not elapsed since the driving wheel 22L started to float (when the determination in step S4 is No), the control unit 40 performs the process of step S2 (step S2).
  • step S6 the control unit 40 determines whether or not the grounding of the drive wheel 22L has been detected (step S6).
  • the control unit 40 repeats the determination in step S1 (step S1).
  • the control unit 40 performs the determination in step S7 (step S7).
  • step S7 the control unit 40 determines whether or not the stop of the drive wheels 22L and 22R has been confirmed (step S7).
  • the control unit 40 performs the process of step S8 in FIG. 11 (step S8).
  • the control unit 40 repeats the determination in step S6 (step S6).
  • step S8 of FIG. 11 the control unit 40 rotates the drive wheels 22L and 22R in the direction opposite to the rotation direction before stopping (step S8).
  • step S9 the control unit 40 determines whether or not the wheel removal sensor 220 detects the grounding of the drive wheel 22L (step S9).
  • the control unit 40 repeats the determination at Step S1 (Step S1).
  • the control unit 40 performs the determination of step S10 (step S10).
  • step S10 the control unit 40 determines whether or not 1900 msec has elapsed since the stop of the driving wheel 22L was confirmed (step S10).
  • control unit 40 causes self-propelled cleaner 1 to stop in error in step S11 (step S11). Thereafter, the control unit 40 ends the cleaning operation.
  • the control unit 40 repeats the determination in step S9 (step S9).
  • the duration of the backward movement in step S10 is 1900 msec, which is merely an example and actually varies depending on the configuration of the main body.
  • the minimum duration of the forward operation 1000 msec
  • the minimum duration of the forward operation 1000 msec
  • the reverse operation is started after the lift of the drive wheel 22L is detected. This is because it is necessary to get out of the state advanced by the forward movement and return the self-propelled cleaner 1 to the position at the time of lifting detection.
  • the situation where the drive wheel 22L is lifted may be a situation where the housing 2 rides on the ascending step RL or rides on the lump of the power cord.
  • the drive wheels 22L and 22R may slip to some extent. Therefore, in practice, the duration of the backward movement is longer than the duration of the forward movement (1000 msec).
  • the self-propelled cleaner 1 may fall from the descending step DL if operated for a long time.
  • FIG. 12 is a flowchart showing the operation of returning the self-propelled cleaner 1 shown in FIG. 1 to the charging stand.
  • the self-propelled cleaner 1 may suddenly leave the charging stand. For example, when the user's foot hits the self-propelled cleaner 1 or an earthquake occurs, the self-propelled cleaner 1 is detached from the charging stand. In this case, it is desirable that the self-propelled cleaner 1 automatically starts the return operation to the charging stand without bothering the user.
  • the self-propelled cleaner 1 moves away from the charging stand, the self-propelled cleaner 1 has suddenly left without any intention of the user, or the user himself / herself removes the self-propelled cleaner 1 from another.
  • the control unit 40 cannot distinguish whether it is intentionally left by carrying it to a place.
  • the self-propelled cleaner 1 of the present invention performs a return operation to the charging stand according to the procedure of FIG.
  • step S21 of FIG. 12 the control unit 40 determines whether or not the self-propelled cleaner 1 is separated from the charging stand (step S21). Specifically, whether or not the self-propelled cleaner 1 has been separated from the charging stand by monitoring whether or not the current from the charging stand has been changed to a state in which no current has been detected. Determine whether.
  • Step S21 When the self-propelled cleaner 1 is separated from the charging stand (when the determination at Step S21 is Yes), the control unit 40 performs the determination at Step S22 (Step S22). On the other hand, when the self-propelled cleaner 1 is not separated from the charging stand (when the determination in step S21 is No), the control unit 40 repeats the determination in step S21 (step S21).
  • step S22 the control unit 40 determines whether or not an operation instruction from the user has been received (step S22).
  • the control unit 40 follows the operation instruction from the user and does not perform the return operation to the charging stand.
  • the control unit 40 performs the determination of step S23 (step S23).
  • step S23 the control unit 40 determines whether or not a signal from the charging stand is received (step S23).
  • the control unit 40 performs the determination in step S24 (step S24).
  • the control part 40 does not perform the feedback operation to a charging stand.
  • step S24 the control unit 40 determines whether or not the self-propelled cleaner 1 is grounded to the floor surface FL (step S24).
  • the control unit 40 causes the self-propelled cleaner 1 to contact the floor FL. Judge that there is. (1) At least one floor surface detection sensor 18 detects the floor surface FL. (2) The wheel removal sensor 220 does not detect the lifting of the drive wheels 22L and 22R.
  • the moving object detection unit 43b when a user lifts the self-propelled cleaner 1, per the user's hand bumper 2c 1, the moving object detection unit 43b is able to detect the user's hand. Therefore, the following condition (3) may be further considered as a criterion for determining whether or not the self-propelled cleaner 1 is lifted by the user. (3) The moving object detection unit 43b does not detect an obstacle (user's hand).
  • step S25 control unit 40 performs a return operation to the charging stand according to a predetermined procedure. This is performed (step S25).
  • the control unit 40 determines that the self-propelled cleaner 1 has been lifted by the user. Do not return to the charging stand.
  • step S26 the control unit 40 determines whether or not the self-propelled cleaner 1 has returned to the charging stand (step S26).
  • the control unit 40 ends the feedback operation.
  • the control unit 40 continues the process of step S25 (step S25).
  • the self-propelled cleaner 1 when the self-propelled cleaner 1 is separated from the charging stand, it is determined whether or not it is unintentional detachment by the user, and if it is unintentional detachment by the user, the user's hand is bothered.
  • the self-propelled cleaner 1 that automatically returns to the charging stand can be realized.
  • the user's safety can be ensured because the return operation to the charging stand is not performed.
  • the charging stand controls the charging stand so that the charging stand does not emit a signal at the time of a power failure, it is possible to prevent the self-propelled cleaner 1 from automatically returning to the charging stand at the time of a power failure.
  • the self-propelled cleaner 1 is detached from the charging stand due to the occurrence of an earthquake, the risk that the user trips on the self-propelled cleaner 1 due to the self-propelled cleaner 1 moving around the room. Can be reduced.
  • the rotational speeds of the left and right drive wheels 22L and 22R are differentiated. Specifically, the speed of the driving wheel 22L (or 22R) that is floating is increased, and the speed of the driving wheel 22R (or 22L) that is not floating is decreased.
  • the driving wheel 22L (or 22R) of the self-propelled cleaner 1 is derailed by stepping off the floor surface FL at the descending step DL, the driving wheel 22R (or 22L) is in contact with the floor surface FL. ) Is reduced, the housing 2 can be moved backward in a direction away from the descending step DL.
  • Embodiment 1 the rotational speed of the drive wheel 22L (22R) at the time of forward movement or reverse movement may be changed after detection of the lift of the drive wheel 22L (22R).
  • Embodiment 3 the rotational speed of the drive wheel 22L (22R) at the time of forward movement or reverse movement may be changed after detection of the lift of the drive wheel 22L (22R).
  • the rotational speed is increased, and then the rotational speed is decreased. In this way, it is possible to improve the climbing performance of the ascending step RL and reduce the risk of falling from the descending step DL.
  • the operation continuation time of the drive wheel 22L (22R) at the time of forward movement or backward movement may be changed after detecting the lift of the drive wheel 22L (22R).
  • a self-propelled electronic device includes a housing, a driving wheel that causes the housing to travel, a wheel removal sensor that detects lifting of the driving wheel from a floor surface, and the traveling of the housing.
  • a travel control unit that controls the travel control unit to continue the travel of the housing for a predetermined continuous travel time when the derailing sensor detects the lift of the drive wheel, If the wheel removal sensor detects the lift of the drive wheel even after the continuous travel time has elapsed, after the rotation of the drive wheel is stopped, the rotation direction and the rotation direction are determined during a predetermined reverse travel time. Is characterized in that the casing is rotated backward by rotating the drive wheel in the opposite direction.
  • the traveling of the casing is continued for a predetermined continuous traveling time. If the driving wheel is lifted after the continuous running time has elapsed, the rotation of the driving wheel is stopped, and then the direction of rotation is reversed during a predetermined reverse running time. By rotating the driving wheel in a direction, the casing is caused to run backward.
  • the “self-propelled electronic device” performs operations such as cleaning, air cleaning, and ion generation while traveling.
  • a self-propelled cleaner is mentioned, for example.
  • the self-propelled cleaner includes a housing having an air inlet on the bottom and a dust collecting portion inside, a driving wheel for driving the housing, a control unit for controlling rotation, stopping, and rotating direction of the driving wheel, and the like.
  • the self-propelled electronic device of the present invention includes not only a self-propelled cleaner, but also a self-propelled air cleaner that performs air suction and exhausts purified air, and an ion generator that generates ions. It includes those that run on their own, those that present necessary information to the user, and those that run on a robot that can satisfy the user's desires.
  • the “wheel-removal sensor” detects the lift of the drive wheel that occurs when the drive wheel steps off the floor at the step down, or the self-propelled electronic device gets over the step up to get over the step up. It is a sensor to detect.
  • Continuous travel time is the time during which the self-propelled electronic device continues to travel from the time when the lift of the drive wheel from the floor surface is detected.
  • the “reverse running time” is the time for the housing to run backward in order to escape from the lifted state of the driving wheel after stopping the rotation of the driving wheel.
  • Reverse running means traveling in the direction opposite to the traveling direction of the self-propelled electronic device before detecting the lift of the drive wheel from the floor. For example, when the self-propelled electronic device is moving forward, when the drive wheel is lifted from the floor surface, “reverse running” means that the self-propelled electronic device travels backward. Further, when the self-propelled electronic device is moving backward, when the drive wheel is lifted from the floor surface, “reverse running” means traveling in the direction in which the self-propelled electronic device moves forward.
  • “Floor surface” represents the surface on which the drive wheels come into contact with the ground, and is not limited to the actual floor surface. For example, when an ascending step is provided on the floor surface and the driving wheel is grounded on the ascending step surface, the step surface becomes the “floor surface”. In addition, when two or more drive wheels are grounded on different step surfaces, the step surfaces with which the respective drive wheels are grounded are “floor surfaces”.
  • the self-propelled electronic device further includes a notifying unit for notifying predetermined information, and when the lift of the driving wheel is detected even after the reverse running time has elapsed, the traveling control The unit may stop the driving wheel, and the notification unit may notify error information.
  • the self-propelled electronic device that can notify the user of error information after stopping the self-propelled electronic device. realizable.
  • the continuous travel time is determined by the driving wheel colliding with the step when the step over the maximum height that can be overcome by the housing is reached from the front. It may be a time until the ring comes into contact with the ground again after the wheel is lifted.
  • the maximum height difference that the casing can get over depends on the model of the self-propelled electronic device, and varies depending on the size, height, traveling speed, etc. of the self-propelled electronic device, for example.
  • the reverse running time may be a minimum time required for getting out of the lifted state of the driving wheel after the rotation of the driving wheel is stopped or longer. Good.
  • the driving wheel includes a left driving wheel and a right driving wheel that are driven independently of each other, and the derailing sensor is provided on the left driving wheel or the right driving wheel.
  • the travel control unit is a drive wheel that has not detected the lift from the drive wheel that has detected the lift.
  • the left drive wheel and the right drive wheel may be rotated such that the rotation speed of the left drive wheel is reduced.
  • the driving wheel includes a left driving wheel and a right driving wheel that are driven independently of each other, and the derailing sensor is provided for the left driving wheel and the right driving wheel.
  • the travel control unit detects the lift earlier than the drive wheel that detected the lift later.
  • the left drive wheel and the right drive wheel may be rotated such that the rotation speed of the left drive wheel is reduced.
  • Preferred embodiments of the present invention include combinations of any of the above-described plurality of embodiments.
  • various modifications of the present invention are possible. These modifications should not be construed as not belonging to the scope of the present invention.
  • the present invention should include the meaning equivalent to the scope of the claims and all modifications within the scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Electric Vacuum Cleaner (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Electric Suction Cleaners (AREA)

Abstract

上り段差の乗り越え性能と、下り段差における床面からの落下回避性能とを両立させる自走式電子機器を提供する。 筐体と、前記筐体を走行させる駆動輪と、前記駆動輪の床面からの浮き上がりを検知する脱輪センサと、前記筐体の走行を制御する走行制御部とを備え、前記走行制御部は、前記脱輪センサが前記駆動輪の浮き上がりを検知したとき、予め定められた継続走行時間の間、前記筐体の走行を継続させ、前記継続走行時間の経過後も前記脱輪センサが前記駆動輪の浮き上がりを検知している場合、前記駆動輪の回転を停止させた後、予め定められた逆走時間の間、前記回転の方向とは逆方向に前記駆動輪を回転させることによって、前記筐体を逆走させることを特徴とする自走式電子機器。

Description

自走式電子機器および前記自走式電子機器の走行方法
 この発明は、自走式電子機器およびその走行方法に関し、詳しくは、落下回避機能および段差乗り越え機能を備えた自走式電子機器およびその走行方法に関する。
 従来、屋内または屋外を自律的に走行して掃除などの作業を行う自走式電子機器が知られている。このような自走式電子機器には、自走中に自走式電子機器本体が下りの段差(以下、「下り段差」)から落下するのを防止するため、駆動輪が床面を踏み外して脱輪したか否かを検知する脱輪センサを備えたものがある。
 脱輪センサは、下り段差で駆動輪が床面を踏み外して脱輪することによって生じる駆動輪の浮き上がりを検知するセンサである。落下回避機能を備えた自走式電子機器は、脱輪センサが駆動輪の浮き上がりを検知したとき、床面から本体が落下するのを防止すべく、直ちに落下回避動作を行う。
 従来、このような脱輪センサを備えた自走式電子機器としては、例えば、脱輪センサによって、車輪の低下を検出した場合、前記車輪を短時間逆方向に駆動してから停止するよう、移動手段を制御する移動型ロボット掃除機の発明が開示されている(例えば、特許文献1を参照)。
 また、浮き上がり検知手段により駆動輪の浮き上がりが検知されたとき、段差センサの出力に基づいて、掃除機本体が床面から所定範囲以内の近いところにあると判断された場合には、前記駆動輪が床面にある段差に脱輪したものと判断して、前記駆動輪を駆動させて前記段差からの脱出を試み、前記段差センサの出力に基づいて、掃除機本体が床面から所定範囲より遠いところにあると判断された場合には、掃除機本体がユーザーにより持ち上げられたものと判断して、前記駆動輪を停止させることを特徴とする自走式掃除機の発明が開示されている(例えば、特許文献2を参照)。
特開2014-186742号公報 特開2005-211360号公報
 下り段差で駆動輪が床面を踏み外すことによって駆動輪の浮き上がりが生じた場合、自走式電子機器は即座に回避動作に移るか、または駆動輪を停止させるのが一般的である。なぜなら、駆動輪の1つが床面を踏み外していたとしても、残りの駆動輪は床面に接地した状態で走行しているため、そのまま走行を継続させると、本体の落下に繋がるおそれがあるためである。
 一方、このような駆動輪の浮き上がりは、自走式電子機器の駆動輪が走行中に上りの段差(以下、「上り段差」)に衝突した際の衝撃や、自走式電子機器の本体が上り段差に乗り上がることよって生じることもある。
 しかしながら、自走式電子機器は、当該駆動輪の浮き上がりが、下り段差で駆動輪が床面を踏み外すことによって生じたものであるのか、あるいは、駆動輪が上り段差に衝突した際の衝撃や、自走式電子機器の本体が上り段差に乗り上がることによって生じたものであるのかを区別することができない。
 駆動輪の浮き上がりが上り段差を乗り越える際に生じたものである場合、駆動輪の浮き上がりが検出されたときに、ただちに当該駆動輪の駆動を停止させたり、当該駆動輪を浮き上がり前とは逆方向に駆動させたりするなどの落下回避動作を行うと、自走式電子機器が上り段差を乗り越えることができず、自走式電子機器の機能を十分に果たせなくなるおそれがある。
 一方、駆動輪の浮き上がりが検出された後も当該駆動輪の駆動を停止させずに継続させれば、自走式電子機器は上り段差を乗り越えられるようにはなるが、当該駆動輪の浮き上がりが下り段差における床面の踏み外しに起因するものである場合、自走式電子機器の本体が床面から落下してしまうおそれがある。
 このように、自走式電子機器の上り段差の乗り越え性能と、下り段差における床面からの落下回避性能との間には、トレードオフの関係がある。
 この発明は、以上のような事情を考慮してなされたものであって、その目的は、上り段差の乗り越え性能と、下り段差における床面からの落下回避性能とを両立させる自走式電子機器およびその走行方法を提供することにある。
 この発明は、筐体と、前記筐体を走行させる駆動輪と、前記駆動輪の床面からの浮き上がりを検知する脱輪センサと、前記筐体の走行を制御する走行制御部とを備え、前記走行制御部は、前記脱輪センサが前記駆動輪の浮き上がりを検知したとき、予め定められた継続走行時間の間、前記筐体の走行を継続させ、前記継続走行時間の経過後も前記脱輪センサが前記駆動輪の浮き上がりを検知している場合、前記駆動輪の回転を停止させた後、予め定められた逆走時間の間、前記回転の方向とは逆方向に前記駆動輪を回転させることによって、前記筐体を逆走させることを特徴とする、自走式電子機器を提供するものである。
 また、この発明は、筐体を走行させる駆動輪の床面からの浮き上がりを検知したとき、予め定められた継続走行時間の間、前記筐体の走行を継続させ、前記継続走行時間の経過後も前記駆動輪の浮き上がりを検知している場合、前記駆動輪の回転を停止させた後、予め定められた逆走時間の間、前記回転の方向とは逆方向に前記駆動輪を回転させることによって、前記筐体を逆走させることを特徴とする、自走式電子機器の走行方法を提供するものである。
 この発明によれば、上り段差の乗り越え性能と、下り段差における床面からの落下回避性能とを両立させる自走式電子機器およびその走行方法を実現できる。
この発明の実施形態1に係る自走式掃除機を示す斜視図である。 図1に示す自走式掃除機の底面図である。 図1に示す自走式掃除機の制御回路の概略構成を示すブロック図である。 図1に示す自走式掃除機の側断面図である。 図1に示す自走式掃除機の平断面図である。 図1に示す自走式掃除機の駆動輪の浮き上がりを検知する脱輪センサの概略構成を示す説明図である。 図6に示す駆動輪の接地時(図7(A))および浮き上がり時(図7(B))における状態を示す説明図である。 図6に示す脱輪センサの、駆動輪の接地時(図8(A))および浮き上がり時(図8(B))における状態を示す説明図である。 図1に示す自走式掃除機の駆動輪の浮き上がりの例を示す説明図である。 図1に示す自走式掃除機の駆動輪の浮き上がりの検知後の走行手順を示すフローチャートである。 図1に示す自走式掃除機の駆動輪の浮き上がりの検知後の走行手順を示すフローチャートである。 図1に示す自走式掃除機の充電台への帰還動作を示すフローチャートである。
(実施形態1)
 以下、図面を用いてこの発明をさらに詳述する。なお、以下の説明は、すべての点で例示であって、この発明を限定するものと解されるべきではない。
 なお、実施形態1では、自走式電子機器として自走式掃除機1の場合を例示して説明するが、この発明は掃除機以外の自走式電子機器(例えば、自走式イオン発生機)にも適用可能である。
 図1は、この発明の実施形態1に係る自走式掃除機1を示す斜視図である。図2は、図1に示す自走式掃除機1の底面図である。図3は、図1に示す自走式掃除機1の制御回路の概略構成を示すブロック図である。図4は、図1に示す自走式掃除機1の側断面図である。図5は、図1に示す自走式掃除機1の平断面図である。図6は、図1に示す自走式掃除機1の駆動輪22Lの浮き上がりを検知する脱輪センサ220の概略構成を示す説明図である。
 実施形態1の自走式掃除機1は、円盤形の筐体2を備え、この筐体2の内部および外部に、衝突検知部43、回転ブラシ9、サイドブラシ10、集塵室15を構成する集塵ボックス15a、電動送風機50、筐体2を前後方向へ直進および左右方向へ旋回させる左右一対の駆動輪22L、22R、後輪26、左右一対の充電用端子13、複数の床面検知センサ18および電子機器部品等を含む制御部40、駆動輪22L、22R、回転ブラシ9、サイドブラシ10および電動送風機50等を駆動する駆動源としてのバッテリーなどの構成要素が設けられている。
 この自走式掃除機1において、後輪26が配置されている部分が後方部、後輪26と反対側が前方部、左右一対の駆動輪22L、22Rが配置されている部分が中間部であり、停止時および水平面の走行時は、左右一対の駆動輪22L、22Rおよび後輪26の三輪で筐体2を支持している。よって、本明細書において、前進方向(前方)とは自走式掃除機1が前方部側へ進む方向を指し、後退方向(後方)とは自走式掃除機1が後方部側へ進む方向を指し、左右方向とは自走式掃除機1が前進するときの左側と右側の方向を指し、上下方向とは筐体2が三輪にて床面FL上で支持された状態での上下方向を指す。
 筐体2は、前方部における中間部との境界付近の位置に形成された吸込口31を有する平面視円形の底板2aと、筐体2に対して集塵ボックス15aを出し入れする際に開閉する蓋部を有する天板2bと、底板2aおよび天板2bの外周部に沿って設けられた平面視円環形の側板2cとを備えている。
 底板2aには左右の駆動輪22L、22Rの一部を筐体2内に収納するための左右一対の開口部2a2が形成されている。また、底板2aの内面における各開口部2a2の周囲には支持部材2a4が設けられている。さらに、各駆動輪22L、22Rは、後述の走行モータ51および走行モータ51の回転駆動力を各駆動輪22L、22Rに伝達するギヤを有する駆動力伝達機構を備えた駆動輪ユニットUL、URにそれぞれ組み込まれており、各駆動輪ユニットUL、URは各支持部材2a4に水平軸心を介して揺動可能に支持されている。
 また、側板2cは、前部のバンパー2c1と後部側板2c2とに二分割された構成であり、後部側板2c2には排気口32が形成されている。以下、筐体2におけるバンパー2c1を除く部分を筐体本体2xという。
 筐体2の内部には、走行モータ51、ブラシ用モータ52、電動送風機50、イオン発生器120、集塵ボックス15a、制御回路、バッテリー等の部品が設けられ、左右一対の駆動輪22L、22Rおよび後輪26の三輪で筐体2を支持できるよう筐体2の重心位置は後方部側に配置されている。なお、図5において、筐体2内の中間スペース2s1は集塵ボックス15aを収納するスペースであり、後方スペース2s2はバッテリーを収納するスペースである。
 図3に示すように、自走式掃除機1全体の動作制御を行う制御回路は、制御部40、自走式掃除機1の動作に係る設定条件や作動指令を入力する操作パネル41、走行マップ42aを記憶する記憶部42、電動送風機50を駆動するためのモータドライバ50a、駆動輪22L、22Rの走行モータ51を駆動するためのモータドライバ51a、回転ブラシ9とサイドブラシ10を駆動するブラシ用モータ52を駆動するためのモータドライバ52a、床面検知センサ18を制御する制御ユニット18a、後述する超音波センサ6を制御する制御ユニット6a、後述する移動物検知部43bを制御する制御ユニット43a等を備える。
 制御部40はCPU、ROM、RAMからなるマイクロコンピュータを備え、記憶部42に予め記憶されたプログラムデータに基いて、モータドライバ50a、51a、52aに個別に制御信号を送信し、電動送風機50、走行モータ51およびブラシ用モータ52を駆動制御して、一連の掃除運転を行う。なお、プログラムデータには、床面FLの広い領域を清掃する通常モード用と、壁際に沿って清掃する壁際モード用のプログラムデータなどが含まれる。
 また、制御部40は、ユーザーによる設定条件や作動指令を操作パネル41から受け入れて記憶部42に記憶させる。この記憶部42に記憶される走行マップ42aは、自走式掃除機1の設置場所周辺の走行経路や走行速度などといった走行に係る情報であり、予めユーザーによって記憶部42に記憶させるか、あるいは自走式掃除機1自体が掃除運転中に自動的に記録することができる。
 また、自走式掃除機1は、図1に示される超音波センサ6を構成する超音波送信部6b1および超音波受信部6b2によって進路上の障害物を検知した場合および掃除領域の周縁に到達した場合、駆動輪22L、22Rが一旦停止し、次に左右の駆動輪22L、22Rを互いに逆方向に回転して向きを変える。これにより、自走式掃除機1は、設置場所全体あるいは所望範囲全体に障害物を避けながら自走して掃除をすることができる。
 この自走式掃除機1では、超音波センサ6によって進行方向に障害物が検知されると、その検知信号が制御部40に送信され、制御部40が自走式掃除機1を停止又は方向転換するように制御する。
 一方、自走式掃除機1の走行時において、超音波センサ6によって障害物が検知されない場合、バンパー2c1が障害物に衝突する。この際、移動物検知部43bによってバンパー2c1が障害物に衝突したことを検知すると、その検知信号が制御部40に送信され、制御部40が自走式掃除機1を停止又は方向転換するよう制御する。
 図2に示される筐体2の底板2aにおける前部中央位置および左右のサイドブラシ10の位置には、前述のように床面FLを検知する床面検知センサ18が配置されているので、床面検知センサ18によって下り段差DLが検知されると、その検知信号が後述の制御部40に送信され、制御部40が両駆動輪22L、22Rを停止するよう制御する。それによって、自走式掃除機1の下り段差DLへの落下が防止される。また、制御部40は、床面検知センサ18が下り段差DLを検知すると、下り段差DLを回避して走行するように制御してもよい。
 筐体2の底板2aの前端には、内蔵するバッテリーの充電を行う左右一対の充電用端子13が設けられている。室内を自走しながら掃除する自走式掃除機1は、掃除が終了すると室内に設置されている充電台に帰還する。
 具体的には、自走式掃除機1は、床面FL上に設置された充電台から発信された赤外線などの信号を検出して充電台が存在する方向を認識し、自律的に障害物を避けながら走行して充電台に帰還する。
 これにより、充電台に設けられた給電端子部に自走式掃除機1の充電用端子13が接触し、給電端子部が充電用端子13を介してバッテリーの正極端子および負極端子に接続され、バッテリーへの充電が行われる。
 なお、充電中に自走式掃除機1が自動で動作を行うことは基本的にはなく、スタンバイ状態をとる。
 また、商用電源(コンセント)に接続される充電台は、通常、室内の側壁に沿って設置される。なお、バッテリーは、各種モータ等の各駆動制御要素や制御回路に電力を供給する。
 自走式掃除機1は、前述のように、左右の駆動輪22L、22Rと後輪26の3点で床面FLに接触しており、前進時に急停止しても後輪26が床面FLから浮き上がらないようなバランスで重量配分されている。
 そのため、自走式掃除機1が前進中に下り段差DLの手前で急停止しても、それによって自走式掃除機1が前のめりに傾いて下り段差DLへ落下するということが防止されている。なお、駆動輪22L、22Rは、急停止してもスリップしないよう、接地面にトレッドパターン(溝)を有するゴムタイヤをホイールに嵌め込んで形成されている。
 吸込口31は、床面FLに対面するよう筐体2の底面(底板2aの下面)に形成された凹部の開放面である。この凹部内には、筐体2の底面と平行な左右方向の軸心を中心に回転する回転ブラシ9が設けられており、凹部の左右両側には筐体2の底面と垂直な軸心を中心に回転するサイドブラシ10が設けられている。回転ブラシ9は、回転軸であるローラの外周面に螺旋状にブラシを植設することにより形成されている。サイドブラシ10は、回転軸の下端にブラシ毛束を放射状に設けることにより形成されている。回転ブラシ9の回転軸および一対のサイドブラシ10の回転軸は、筐体2の底板2aの一部に枢着されると共に、その付近に設けられたブラシ用モータ52、プーリおよびベルト等を含む動力伝達機構を介して回転可能に連結されている。
 筐体2の内部において、吸込口31と集塵ボックス15aの間には吸引路が設けられ、集塵ボックス15aと排気口32の間には排気路が設けられている。
 図4に示すように、吸込口31から筐体2内に吸い込まれた塵埃を含む空気は、矢印Aのように吸引路および集塵ボックス15aの吸引口15a1を通って集塵ボックス15a内に導かれる。このとき、回転ブラシ9が回転して床面FL上の塵埃を吸込口31へ掻き込むと共に、一対のサイドブラシ10が回転して吸込口31の左右側の塵埃を吸込口31へ掻き集めている。
 集塵ボックス15a内に塵埃が集められた後、フィルター15bを通過して塵埃が除去された空気は、矢印Bのように集塵ボックス15aの排出口15a2、この排出口15a2と接続されたダクト114、ダクト114に接続された電動送風機50および排気路34を通って排気口32から外部に放出される。なお、図4において、カバー15cはフィルター15bを覆う集塵ボックス15aのカバーである。
 この自走式掃除機1は、左右の駆動輪22L、22Rが同一方向に正回転して前進し、同一方向に逆回転して後退し、互いに逆方向に回転することにより旋回する。例えば、自走式掃除機1は、掃除領域の周縁に到達した場合および進路上の障害物に衝突した場合、駆動輪22L、22Rが停止し、左右の駆動輪22L、22Rを互いに逆方向に回転して向きを変える。これにより、自走式掃除機1は、設置場所全体あるいは所望範囲全体に障害物を避けながら自走することができる。
<バンパー2c1、衝突検知部43およびそれらの周辺構成について>
 図1に示すように、半円弧形状のバンパー2c1は、周方向中央位置および中央位置の左右複数箇所に円形の孔部を有しており、各孔部から露出するようにバンパー2c1の内面に超音波センサ6の超音波送信部6b1および超音波受信部6b2が設けられている。実施形態1の場合、バンパー2c1には5個の孔部が一列に形成されており、中央位置と左右両端の孔部に超音波受信部6b2が配置され、中央位置に隣接する2個の孔部に超音波送信部6b1が配置されている。
 制御ユニット6a(図3)は、超音波センサ6の超音波送信部6b1から超音波を発信させ、発信させた超音波が障害物で反射されて超音波受信部6b2で受信されるまでの時間から障害物までの距離を算出し制御部40へ検知信号として送信する。
 バンパー2c1は、底板2a、天板2bおよび後部側板2c2の端部で構成された筐体本体2xの前方開口部2x1を覆うように、その前方開口部2x1の周縁部に嵌め込まれている。この際、バンパー2c1は、筐体本体2xに対して前後および左右方向に可動でありかつ前方開口部2x1から脱落しない嵌め込み構造によって支持されている。
<脱輪センサ220について>
 次に、図6~図8に基づき、この発明の脱輪センサ220について説明する。
 図6は、図1に示す自走式掃除機1の駆動輪22Lの浮き上がりを検知する脱輪センサ220の概略構成を示す説明図である。
 図7は、図6に示す駆動輪22Lの接地時(図7(A))および浮き上がり時(図7(B))における状態を示す説明図である。
 図8は、図6に示す脱輪センサ220の、駆動輪22Lの接地時(図8(A))および浮き上がり時(図8(B))における状態を示す説明図である。
 図6に示すように、この発明の脱輪センサ220は、駆動輪22L、支持アーム221、回転支軸222、スリット223および光センサ224の協働により実現する。
 駆動輪22Lは、支持アーム221を介して回転支軸222を中心として上下方向に回動可能に支持される。
 また、支持アーム221と反対側の回転支軸222の一端には、スリット223が設けられ、回転支軸222の回動にあわせて、スリット223が光センサ224内に挿入自在に設けられる。
 図7(A)に示すように、駆動輪22Lが地面に接地したとき、自走式掃除機1の本体の重量を受けて筐体2が床面FLに向かって沈み込むため、駆動輪22Lは筐体2に対し、相対的に上方に向かって回動する。
 このとき、図8(A)に示すように、支持アーム221の上方への回動に連動してスリット223が下方へ回動するため、スリット223は、光センサ224内の光信号225を遮らない位置に移動する。
 一方、図7(B)に示すように、本体が持ち上げられて駆動輪22Lが地面から離れたとき、駆動輪22L自体の重量によって駆動輪22Lが下方へ引っぱられるため、駆動輪22Lは筐体2に対し、相対的に下方へ回動する。
 このとき、図8(B)に示すように、支持アーム221の下方への回動に連動してスリット223が上方へ回動するため、光センサ224内の光信号225を遮る位置に移動する。
 このように、スリット223が光信号225を遮っているか否かに基づき、駆動輪22Lが床面FLに接地していないか否か、すなわち、駆動輪22Lが床面FLから浮き上がっているか否かを判定することが可能となる。
 以上、駆動輪22Lを例に説明したが、駆動輪22Rについても同様である。また、脱輪センサ220は、駆動輪22Lおよび22Rにそれぞれ独立に設けられているため、駆動輪22Lまたは22Rのいずれか一方が脱輪したか否かを検知することができる。
 なお、図6~図8に示した例は、あくまで一例にすぎず、駆動輪22Lとスリット223との連動の仕方にはさまざまな形態が考えられる。スリットの光センサの組み合わせの代わりに、例えば、バネを併用したタクタイルスイッチ等の物理的なスイッチに置き換えてもよい。それゆえ、図6~図8に示される例によって、この発明が限定されるものと解されるべきではない。
<駆動輪22L(22R)の浮き上がりの例>
 次に、図9(A)~(C)に基づき、この発明の自走式掃除機1の駆動輪22L(22R)の浮き上がりの例を示す。
 図9は、図1に示す自走式掃除機1の駆動輪22L(22R)の浮き上がりの例を示す説明図である。
 図9(A)は、自走式掃除機1の駆動輪22Lが床面FLの端から脱輪した状態を示す。
 この状態は、例えば、玄関の上がり框のような自走式掃除機1本体が落下する可能性のある環境において発生する。
 前述のように、筐体2の底板2aにおける前部中央位置および左右のサイドブラシ10の位置には、床面FLを検知する床面検知センサ18が配置されているので、筐体2の正面および左右前方から落下することはないが、自走式掃除機1が後方右側または後方左側からカーブしながら後退し、床面FLの端に突入するときに発生することがある。
 図9(B)は、自走式掃除機1が上り段差RLに乗り上げることによって、駆動輪22L(22R)が床面FLから浮き上がった状態を示す。
 図9(B)に示すように、自走式掃除機1は、筐体2の下面前部が上り段差RLに乗り上げ、筐体2の下面と後輪26とで自走式掃除機1本体を支える状態になっている。このとき、駆動輪22L(22R)は、わずかに接地しているか、または接地していない状態にある。
 この状態は、例えば、和室の敷居や扉止め段差などの自走式掃除機1の駆動輪22L(22R)が浮き上がってしまう可能性のある環境において発生し、自走式掃除機1本体が上り段差RLを乗り越えようとしたときに、駆動輪22L(22R)が上り段差RLにぶつかったときの衝撃で自走式掃除機1が本体ごと浮き上がることがある。この状態で自走式掃除機1が上り段差RLを乗り越えようとしたとき、駆動輪22L(22R)が上り段差RLを噛まずにスリップして浮き上がることにより、動作を停止してしまうことがある。
 図9(B)は、自走式掃除機1が正面から上り段差RLに乗り上がった例であるが、自走式掃除機1が上り段差RLに斜めに突っ込むことにより、片方の駆動輪22Lまたは22Rのみ上り段差RLに乗り上げる状況が生じることもある。
 また、図9(C)に示すように、自走式掃除機1本体が左右の駆動輪22Lおよび22Rで上り段差RLをまたぐように走行したとき、本体が上り段差RLに乗り上げてしまうことがある。このとき、駆動輪22Lおよび22Rが浮き上がった状態となるため、駆動輪22Lおよび22Rを駆動してもスリップして、自走式掃除機1の走行が停止してしまうことがある。
 駆動輪22L(22R)の接地面には、トレッドパターン(溝)が設けられているが、駆動輪22L(22R)が上り段差RLにぶつかって浮き上がった直後にトレッドパターンが上り段差RLを噛んだまま空回りすることもある。このような場合も、駆動輪22L(22R)の浮き上がり状態が継続する。
 このように、駆動輪22L(22R)の浮き上がりは、下り段差DLで駆動輪22L(22R)が床面FLを踏み外した場合(図9(A))だけでなく、駆動輪22L(22R)が上り段差RLに衝突した際の衝撃で上り段差RLに乗り上がる場合(図9(B))や、自走式掃除機1の本体が上り段差RLに乗り上がる場合(図9(C))にも生じることがある。
 一方、脱輪センサ220は、駆動輪22L(22R)の浮き上がりのみを検知するため、図9(A)のような下り段差DLによる駆動輪22L(22R)の浮き上がりを検知しているのか、あるいは、図9(B)(C)のような自走式掃除機1が上り段差RLを乗り越えようとした際の駆動輪22L(22R)の浮き上がりを検知しているのか、全く区別することができない。
 図9(B)(C)のような上り段差RLに自走式掃除機1が乗り上げることによって、駆動輪22L(22R)の浮き上がりが生じたとき、駆動輪22L(22R)を停止させるのは好ましくない。なぜなら、上り段差RLに差し掛かる度に自走式掃除機1を停止させたり、または回避の動作に移行させたりすると、上り段差RLを乗り越えることができず、自走式掃除機1の機能を十分に果たせなくなるおそれがあるからである。
 一方、駆動輪22L(22R)の浮きが生じたときに、図9(A)のような下り段差DLで自走式掃除機1が床面FLを踏み外すことによって駆動輪22L(22R)の浮き上がりが生じたとき、駆動輪22L(22R)を停止させずにそのまま走行を継続させると、本体の落下に繋がるおそれがある。
 このように、自走式掃除機1の上り段差RLの乗り越え性能と、下り段差DLにおける床面FLからの落下回避性能との間には、トレードオフの関係がある。
 以上述べたような問題を解決すべく、この発明では、以下のような走行手順によって、上り段差RLの乗り越え性能と、下り段差DLにおける床面FLからの落下回避性能とを両立させる自走式掃除機1を実現する。
<自走式掃除機1の駆動輪22Lの浮き上がりの検知後の走行手順について>
 次に、図10および図11に基づき、自走式掃除機1の駆動輪22Lの浮き上がりの検知後の走行方法について説明する。
 図10および図11は、図1に示す自走式掃除機1の駆動輪22Lの浮き上がりの検知後の走行手順を示すフローチャートである。
 ここでは、駆動輪22Lの浮き上がりが検知された場合について説明するが、駆動輪22Rの浮き上がりが検知された場合も同様である。
 図10に示すように、掃除運転を開始した後、ステップS1において制御部40は、脱輪センサ220が駆動輪22Lの浮き上がりを検知したか否かを判定する(ステップS1)。
 脱輪センサ220が駆動輪22Lの浮き上がりを検知した場合(ステップS1の判定がYesの場合)、制御部40は、ステップS2において、駆動輪22Lおよび22Rの回転を継続させる(ステップS2)。その後、制御部40は、ステップS3の判定を行う。
 一方、脱輪センサ220が駆動輪22Lの浮き上がりを検知していない場合(ステップS1の判定がNoの場合)、制御部40は、ステップS1の判定を繰り返す(ステップS1)。
 次に、ステップS3において、制御部40は、脱輪センサ220が駆動輪22Lの接地を検知したか否かを判定する(ステップS3)。
 脱輪センサ220が駆動輪22Lの接地を検知した場合(ステップS3の判定がYesの場合)、制御部40は、ステップS1の判定を繰り返す(ステップS1)。
 一方、脱輪センサ220が駆動輪22Lの接地を検知していない場合(ステップS3の判定がNoの場合)、制御部40は、ステップS4の判定を行う(ステップS4)。
 次に、ステップS4において、制御部40は、駆動輪22Lの浮き上がり開始時から1000msecを経過したか否かを判定する(ステップS4)。
 駆動輪22Lの浮き上がり開始時から1000msecを経過した場合(ステップS4の判定がYesの場合)、制御部40は、ステップS5において、駆動輪22Lおよび22Rの回転を停止させる(ステップS5)。
 その後、制御部40は、ステップS6の判定を行う(ステップS6)。
 一方、ステップS4において、駆動輪22Lの浮き上がり開始時から1000msecを経過していない場合(ステップS4の判定がNoの場合)、制御部40は、ステップS2の処理を行う(ステップS2)。
 次に、ステップS6において、制御部40は、駆動輪22Lの接地を検知したか否かを判定する(ステップS6)。
 駆動輪22Lの接地を検知した場合(ステップS6の判定がYesの場合)、制御部40は、ステップS1の判定を繰り返す(ステップS1)。
 一方、駆動輪22Lの接地を検知していない場合(ステップS6の判定がNoの場合)、制御部40は、ステップS7の判定を行う(ステップS7)。
 次に、ステップS7において、制御部40は、駆動輪22Lおよび22Rの停止を確認したか否かを判定する(ステップS7)。
 駆動輪22Lおよび22Rの停止を確認した場合(ステップS7の判定がYesの場合)、制御部40は、図11のステップS8の処理を行う(ステップS8)。
 一方、駆動輪22Lおよび22Rの停止を確認していない場合(ステップS7の判定のNoの場合)、制御部40は、ステップS6の判定を繰り返す(ステップS6)。
 次に、図11のステップS8において、制御部40は、駆動輪22Lおよび22Rを停止前の回転方向とは逆向きに回転させる(ステップS8)。
 続いてステップS9において、制御部40は、脱輪センサ220が駆動輪22Lの接地を検知したか否かを判定する(ステップS9)。
 脱輪センサ220が駆動輪22Lの接地を検知した場合(ステップS9の判定がYesの場合)、制御部40は、ステップS1の判定を繰り返す(ステップS1)。
 一方、脱輪センサ220が駆動輪22Lの接地を検知していない場合(ステップS9の判定がNoの場合)、制御部40は、ステップS10の判定を行う(ステップS10)。
 次に、ステップS10において、制御部40は、駆動輪22Lの停止確認時から1900msec経過したか否かを判定する(ステップS10)。
 駆動輪22Lの停止確認時から1900msec経過した場合(ステップS10の判定がYesの場合)、制御部40は、ステップS11において、自走式掃除機1をエラー停止させる(ステップS11)。その後、制御部40は、掃除運転を終了させる。
 一方、駆動輪22Lの停止確認時から1900msec経過していない場合(ステップS10の判定がNoの場合)、制御部40は、ステップS9の判定を繰り返す(ステップS9)。
 なお、ステップS10の後退動作の継続時間1900msecは一例にすぎず、実際には本体の構成によって異なるものと理解すべきである。
 後退動作の最低限の継続時間の目安としては、駆動輪22Lの浮き上がりを検知した後、後退動作を開始する前の前進動作の継続時間(1000msec)が最低限必要となる。これは、前進動作で進んだ状態から抜け出し、自走式掃除機1を浮き上がり検知時の位置にまで戻す必要があるためである。
 また、このとき、駆動輪22Lが浮き上がる状況として考えられるのは、筐体2が上り段差RLに乗り上げたり、電源コードの塊に乗り上げたりするような状況が考えられるが、この場合、後退動作時に駆動輪22Lおよび22Rがある程度スリップすることがある。それゆえ、実際には、前進動作の継続時間(1000msec)より長い後退動作の継続時間が必要となる。
 一方、駆動輪22Lが下り段差DLで床面FLを踏み外すことによって脱輪した場合、あまり長時間動作させると、自走式掃除機1が下り段差DLから落下してしまうおそれがある。
 以上を考慮すると、駆動輪22Lの浮き上がり状態からある程度抜け出すことができ、かつ、自走式掃除機1が落下しないバランスを見極めて、後退動作の継続時間を最終的に決定する必要がある。
<自走式掃除機1が充電台から突発的に離れてしまった場合の充電台への自動帰還動作について>
 最後に、図12に基づき、図1に示す自走式掃除機1の充電台への自動帰還動作について説明する。
 図12は、図1に示す自走式掃除機1の充電台への帰還動作を示すフローチャートである。
 ユーザーの意図によらず、自走式掃除機1が充電台から突発的に離れてしまうことがある。
 例えば、自走式掃除機1にユーザーの足が当たったり、地震が発生したりすることによって、自走式掃除機1が充電台から離脱する場合などが挙げられる。
 この場合、自走式掃除機1は、ユーザーの手を煩わせることなく、自動的に充電台への帰還動作を開始することが望ましい。
 しかしながら、自走式掃除機1が充電台から離れたとき、自走式掃除機1がユーザーの意図によらず突発的に離れたのか、あるいは、ユーザー自身が自走式掃除機1を別の場所に持ち運ぶことによって意図的に離れたのか、制御部40は区別することができない。
 それゆえ、自走式掃除機1が充電台から離れることを条件として、自動的に充電台への帰還動作を開始すると、ユーザー自身が自走式掃除機1を持ち運んでいる場合、駆動輪22Lおよび22Rや回転ブラシ9およびサイドブラシ10、電動送風機50が駆動するため、ユーザーの安全を確保できないおそれがある。
 このような問題を解決すべく、この発明の自走式掃除機1は、図12の手順に従って、充電台への帰還動作を行うものとする。
 図12のステップS21において、制御部40は、充電台から自走式掃除機1が離れたか否かを判定する(ステップS21)。
 具体的には、充電台からの電流を検知している状態から、電流を検知していない状態に変化したか否かをモニターすることにより、充電台から自走式掃除機1が離れたか否かを判定する。
 充電台から自走式掃除機1が離れた場合(ステップS21の判定がYesの場合)、制御部40は、ステップS22の判定を行う(ステップS22)。
 一方、充電台から自走式掃除機1が離れていない場合(ステップS21の判定がNoの場合)、制御部40は、ステップS21の判定を繰り返す(ステップS21)。
 次に、ステップS22において、制御部40は、ユーザーからの操作指示を受け付けていたか否かを判定する(ステップS22)。
 ユーザーからの操作指示を受け付けていた場合(ステップS22の判定がYesの場合)、制御部40は、ユーザーからの操作指示に従うものとし、充電台への帰還動作を行わない。
 一方、ユーザーからの操作指示を受け付けていない場合(ステップS22の判定がNoの場合)、制御部40は、ステップS23の判定を行う(ステップS23)。
 次に、ステップS23において、制御部40は、充電台からの信号を受信しているか否かを判定する(ステップS23)。
 充電台からの信号を受信している場合(ステップS23の判定がYesの場合)、制御部40は、ステップS24の判定を行う(ステップS24)。
 一方、充電台からの信号を受信していない場合(ステップS23の判定がNoの場合)、制御部40は、充電台への帰還動作を行わない。
 次に、ステップS24において、制御部40は、床面FLに自走式掃除機1が接地しているか否かを判定する(ステップS24)。
 具体的な判定方法としては、例えば、以下の(1)または(2)のいずれかまたは両方の条件を満たしたとき、制御部40は、床面FLに自走式掃除機1が接地しているものと判定する。
(1)少なくとも1つの床面検知センサ18が床面FLを検知している
(2)脱輪センサ220が駆動輪22Lおよび22Rの浮き上がりを検知していない
 また、一般に、ユーザーが自走式掃除機1を持ち上げたとき、バンパー2c1にユーザーの手が当たり、移動物検知部43bがユーザーの手を検知することがある。それゆえ、自走式掃除機1がユーザーに持ち上げられているか否かの判定基準として、さらに下の条件(3)を考慮するようにしてもよい。
(3)移動物検知部43bが障害物(ユーザーの手)を検知していない
 床面FLに自走式掃除機1が接地している場合(ステップS24の判定がYesの場合)、制御部40は、ステップS25において、予め定められた手順に従って、充電台への帰還動作を行う(ステップS25)。
 一方、床面FLに自走式掃除機1が接地していない場合(ステップS24の判定がNoの場合)、制御部40は、自走式掃除機1がユーザーに持ち上げられたものと判断し、充電台への帰還動作を行わない。
 最後に、ステップS26において、制御部40は、自走式掃除機1が充電台に帰還したか否かを判定する(ステップS26)。
 自走式掃除機1が充電台に帰還した場合(ステップS26の判定がYesの場合)、制御部40は、帰還動作を終了させる。
 一方、自走式掃除機1が充電台に帰還していない場合(ステップS26の判定がNoの場合)、制御部40は、ステップS25の処理を継続する(ステップS25)。
 このようにして、充電台から自走式掃除機1が離れたとき、それがユーザーの意図しない離脱か否かを判定し、ユーザーの意図しない離脱である場合は、ユーザーの手を煩わせることなく充電台まで自動的に帰還する自走式掃除機1を実現できる。
 また、ユーザー自らが自走式掃除機1を持ち上げることによる意図的な離脱の場合は、充電台への帰還動作を行わないため、ユーザーの安全性を確保することができる。
 さらに、停電時に充電台が信号を発しないように充電台を制御することで、停電時に自走式掃除機1が充電台に自動的に帰還しないようにすることもできる。
 このようにすれば、地震の発生により自走式掃除機1が充電台から離脱した場合において、自走式掃除機1が室内を動き回ることにより、ユーザーが自走式掃除機1につまずくリスクを低減できる。
 (実施形態2)
<実施形態2に係る自走式掃除機1の駆動輪22L(22R)の浮き上がりの検知後の走行方法について>
 次に、この発明の実施形態2に係る自走式掃除機1の駆動輪22L(22R)の浮き上がりの検知後の走行方法について説明する。
 実施形態2においては、図11のステップS8で駆動輪22L(22R)を停止前の回転方向と逆向きに回転させる場合、左右の駆動輪22Lおよび22Rの回転速度に差をつける。具体的には、浮き上がっている方の駆動輪22L(または22R)の速度を速く、浮き上がっていない方の駆動輪22R(または22L)の速度を遅くする。
 このようにすれば、自走式掃除機1の駆動輪22L(または22R)が下り段差DLで床面FLを踏み外して脱輪した場合、床面FLに接地している駆動輪22R(または22L)の回転速度を遅くすることで、下り段差DLから離れる方向に筐体2を後退させることが可能となる。
 なお、左右の駆動輪22Lおよび22Rが両方とも浮き上がってしまった場合は、後から浮き上がった駆動輪22L(または22R)の速度を速くするものとする(後勝ち)。
(その他の実施形態)
1.実施形態1または2において、駆動輪22L(22R)の浮き上がりの検知後、前進時または後退時の駆動輪22L(22R)の回転速度を変更してもよい。(実施形態3)
 例えば、後退時の駆動輪22L(22R)の回転速度としては、
(1)200mm/sec
(2)180mm/sec
(3)160mm/sec
等にしてもよい。
 このようにすれば、前進時に乗り上げ可能な上り段差RLの高さの調整や、後退時に浮き上がり状態からの脱出速度の調整を行うことにより、後退時の落下のリスクを軽減することが可能となる。
2.実施形態1~3において、駆動輪22L(22R)の浮き上がりの検知後、前進時または後退時の駆動輪22L(22R)の回転速度を時間の経過とともに適宜変更するようにしてもよい。(実施形態4)
 例えば、駆動輪22L(22R)の浮き上がりを検知した直後は、回転速度を上げ、その後、回転速度を下げることなどが挙げられる。
 このようにすれば、上り段差RLの乗り越え性能を高めることができ、かつ、下り段差DLからの落下のリスクを軽減することができる。
3.実施形態1~4において、駆動輪22L(22R)の浮き上がりの検知後、前進時または後退時の駆動輪22L(22R)の動作継続時間を変更してもよい。(実施形態5)
 例えば、前進時および後退時の駆動輪22L(22R)の動作継続時間としては、
(1)前進1000msec、後退1900msec
(2)前進800msec、後退1600msec
(3)前進1200msec、後退2000msec
等にしてもよい。
 このようにすれば、前進時に乗り上げ可能な上り段差RLの高さの調整や、後退時に浮き上がり状態からの脱出時間の調整を行うことにより、後退時の落下のリスクを軽減することが可能となる。
4.実施形態2において、後退時の駆動輪22Lおよび22Rの回転方向を変更してもよい。(実施形態6)
 例えば、後退時の駆動輪22L(22R)の速度として、
(1)浮き上がっているほうの駆動輪22L(または22R):
  20mm/secで後退させる
   浮き上がっていないほうの駆動輪22R(または22L):
  5mm/secで後退させる
または
(2)浮き上がっているほうの駆動輪22L(または22R):
  20mm/secで後退させる
   浮き上がっていないほうの駆動輪22R(または22L):
  5mm/secで前進させる
等が考えられる。
 このようにすれば、後退時に浮き上がり状態からの脱出方向の調整を行うことにより、後退時の落下のリスクを軽減することが可能となる。
 以上に述べたように、
 (i)この発明の自走式電子機器は、筐体と、前記筐体を走行させる駆動輪と、前記駆動輪の床面からの浮き上がりを検知する脱輪センサと、前記筐体の走行を制御する走行制御部とを備え、前記走行制御部は、前記脱輪センサが前記駆動輪の浮き上がりを検知したとき、予め定められた継続走行時間の間、前記筐体の走行を継続させ、前記継続走行時間の経過後も前記脱輪センサが前記駆動輪の浮き上がりを検知している場合、前記駆動輪の回転を停止させた後、予め定められた逆走時間の間、前記回転の方向とは逆方向に前記駆動輪を回転させることによって、前記筐体を逆走させることを特徴とする。
 また、この発明の自走式電子機器の走行方法は、筐体を走行させる駆動輪の床面からの浮き上がりを検知したとき、予め定められた継続走行時間の間、前記筐体の走行を継続させ、前記継続走行時間の経過後も前記駆動輪の浮き上がりを検知している場合、前記駆動輪の回転を停止させた後、予め定められた逆走時間の間、前記回転の方向とは逆方向に前記駆動輪を回転させることによって、前記筐体を逆走させることを特徴とする。
 この発明において、「自走式電子機器」は、走行しながら掃除や空気清浄やイオン発生などの作業を実行するものである。その具体的な態様の一例としては、例えば、自走式掃除機が挙げられる。自走式掃除機は、底面に吸気口を有すると共に内部に集塵部を有する筐体、筐体を走行させる駆動輪、駆動輪の回転、停止及び回転方向等を制御する制御部などを備え、自律的に掃除動作する掃除機を意味し、前述の図面を用いた実施形態によって一例が示される。
 また、この発明の自走式電子機器としては、自走式掃除機だけでなく、空気吸引を行い清浄化した空気を排気する空気清浄機が自走するもの、イオン発生を行うイオン発生機が自走するもの、ユーザーに対して必要な情報等を提示するもの、あるいはユーザーが欲する要求を満足できるロボット等が自走するもの等を含む。
 また、「脱輪センサ」は、駆動輪が下り段差において床面を踏み外したり、自走式電子機器が上り段差を乗り越えようとして、上り段差に乗り上げてしまったりすることによって生じる駆動輪の浮き上がりを検知するセンサである。
 「継続走行時間」は、駆動輪の床面からの浮き上がりを検知した時点から、自走式電子機器が走行を継続する時間である。
 「逆走時間」は、駆動輪の回転を停止した後、駆動輪の浮き上がり状態から抜け出すべく、筐体を逆走させる時間である。
 「逆走」は、駆動輪の床面からの浮き上がりを検知する前の自走式電子機器の走行方向とは逆方向に走行することである。
 例えば、自走式電子機器が前進している際に、駆動輪の床面からの浮き上がりが生じた場合、「逆走」は、自走式電子機器が後進する方向に走行することである。
 また、自走式電子機器が後進している際に、駆動輪の床面からの浮き上がりが生じた場合、「逆走」は、自走式電子機器が前進する方向に走行することである。
 「床面」は、駆動輪が接地する面を表し、実際の床面に限られない。例えば、床面上に上り段差が設けられ、当該上り段差面上に駆動輪が接地しているときは、当該段差面が「床面」となる。また、2以上の駆動輪がそれぞれ異なる段差面上に接地しているときは、各駆動輪がそれぞれ接地している段差面が「床面」となる。
 さらに、この発明の好ましい態様について説明する。
 (ii)この発明による自走式電子機器において、予め定められた情報を報知する報知部をさらに備え、前記逆走時間の経過後も前記駆動輪の浮き上がりを検知している場合、前記走行制御部は、前記駆動輪を停止させ、前記報知部はエラー情報を報知させるものであってもよい。
 このようにすれば、逆走しても脱輪状態から抜け出せない状況に陥った場合、自走式電子機器を停止させた上でエラー情報をユーザーに知らせることが可能な自走式電子機器を実現できる。
 「エラー情報を報知」は、例えば、ユーザーに警告音を発したり、筐体の上面等に警告用の赤ランプを表示させたり、あるいは、ユーザーの通信端末に表示すべきエラー情報を送信したりすることなどが挙げられる。
 (iii)この発明による自走式電子機器において、前記継続走行時間は、前記筐体が乗り越え可能な最大の高さの段差を正面から乗り越える際に、駆動輪が前記段差に衝突して前記駆動輪が浮き上がった状態になった後、再び接地するまでの時間またはそれ以上の時間であってもよい。
 このようにすれば、自走式電子機器の駆動輪の浮き上がりを検知した後も、段差を乗り越えるのに最低限必要な時間の間、継続して走行させるため、段差乗り越え性能が低下しない自走式電子機器を実現できる。
 「前記筐体が乗り越え可能な最大の高さの段差」は、自走式電子機器の機種に依存し、例えば、自走式電子機器の大きさ、高さ、走行速度等によって異なる。
 (iv)この発明による自走式電子機器において、前記逆走時間は、前記駆動輪の回転の停止後、前記駆動輪の浮き上がり状態から抜け出すのに要する最低時間またはそれ以上の時間であってもよい。
 このようにすれば、自走式電子機器の駆動輪の回転の停止後、駆動輪の浮き上がり状態から抜け出すことが可能な自走式電子機器を実現できる。
 (v)この発明による自走式電子機器において、前記駆動輪は、互いに独立して駆動される左駆動輪および右駆動輪を含み、前記脱輪センサが前記左駆動輪または前記右駆動輪のいずれか一方の浮き上がりを検知した場合において、前記左駆動輪および前記右駆動輪を逆方向に回転させるとき、前記走行制御部は、浮き上がりを検知した駆動輪より、浮き上がりを検知していない駆動輪の回転速度が遅くなるように、前記左駆動輪および前記右駆動輪を回転させるものであってもよい。
 このようにすれば、床面からの自走式電子機器の落下のリスクを軽減しつつ、駆動輪の浮き上がり状態からの離脱を効率よく行うことのできる自走式電子機器を実現できる。
 (vi)この発明による自走式電子機器において、前記駆動輪は、互いに独立して駆動される左駆動輪および右駆動輪を含み、前記脱輪センサが前記左駆動輪および前記右駆動輪の両方の浮き上がりを検知した場合において、前記左駆動輪および前記右駆動輪を逆方向に回転させるとき、前記走行制御部は、後から浮き上がりを検知した駆動輪より、先に浮き上がりを検知した駆動輪の回転速度が遅くなるように、前記左駆動輪および前記右駆動輪を回転させるものであってもよい。
 このようにすれば、左駆動輪および右駆動輪の両方の浮き上がりを検知した場合においても、床面からからの自走式電子機器の落下のリスクを軽減しつつ、駆動輪の浮き上がり状態からの離脱を効率よく行うことのできる自走式電子機器を実現できる。
 この発明の好ましい態様は、上述した複数の態様のうちの何れかを組み合わせたものも含む。
 前述した実施形態の他にも、この発明について種々の変形例があり得る。それらの変形例は、この発明の範囲に属さないと解されるべきものではない。この発明には、請求の範囲と均等の意味及び前記範囲内でのすべての変形とが含まれるべきである。
1:自走式掃除機、  2:筐体、  2a:底板、  2a2:開口部、  2a4:支持部材、  2b:天板、  2c:側板、  2c1:バンパー、  2c2:後部側板、  2s1:中間スペース、  2s2:後方スペース、  2x:筐体本体、  2x1:前方開口部、  6:超音波センサ、  6a:制御ユニット、  6b1:超音波送信部、  6b2:超音波受信部、  9:回転ブラシ、  10:サイドブラシ、  13:充電用端子、  15:集塵室、  15a:集塵ボックス、  15a1:吸引口、  15a2:排出口、  15b:フィルター、  15c:カバー、  18:床面検知センサ、  18a:制御ユニット、  22L,22R:駆動輪、  26:後輪、  31:吸込口、  32:排気口、  34:排気路、  40:制御部、  41:操作パネル、  42:記憶部、  42a:走行マップ、  43:衝突検知部、  43a:制御ユニット、  43b:移動物検知部、  50:電動送風機、  50a,51a,52a:モータドライバ、  51:走行モータ、  52:ブラシ用モータ、  114:ダクト、  120:イオン発生器、  220:脱輪センサ、  221:支持アーム、  222:回転支軸、  223:スリット、  224:光センサ、  225:光信号、  A,B:矢印、 RL:上り段差、  DL:下り段差、  FL:床面、  UL,UR:駆動輪ユニット

Claims (7)

  1.  筐体と、前記筐体を走行させる駆動輪と、前記駆動輪の床面からの浮き上がりを検知する脱輪センサと、前記筐体の走行を制御する走行制御部とを備え、
     前記走行制御部は、前記脱輪センサが前記駆動輪の浮き上がりを検知したとき、予め定められた継続走行時間の間、前記筐体の走行を継続させ、前記継続走行時間の経過後も前記脱輪センサが前記駆動輪の浮き上がりを検知している場合、前記駆動輪の回転を停止させた後、予め定められた逆走時間の間、前記回転の方向とは逆方向に前記駆動輪を回転させることによって、前記筐体を逆走させることを特徴とする自走式電子機器。
  2.  予め定められた情報を報知する報知部をさらに備え、
     前記逆走時間の経過後も前記駆動輪の浮き上がりを検知している場合、前記走行制御部は、前記駆動輪を停止させ、前記報知部はエラー情報を報知させる請求項1に記載の自走式電子機器。
  3.  前記継続走行時間は、前記筐体が乗り越え可能な最大の高さの段差を正面から乗り越える際に、駆動輪が前記段差に衝突して前記駆動輪が浮き上がった状態になった後、再び接地するまでの時間またはそれ以上の時間である請求項1または2に記載の自走式電子機器。
  4.  前記逆走時間は、前記駆動輪の回転の停止後、前記駆動輪の浮き上がり状態から抜け出すのに要する最低時間またはそれ以上の時間である請求項1~3のいずれか1つに記載の自走式電子機器。
  5.  前記駆動輪は、互いに独立して駆動される左駆動輪および右駆動輪を含み、
     前記脱輪センサが前記左駆動輪または前記右駆動輪のいずれか一方の浮き上がりを検知した場合において、前記左駆動輪および前記右駆動輪を逆方向に回転させるとき、前記走行制御部は、浮き上がりを検知した駆動輪より、浮き上がりを検知していない駆動輪の回転速度が遅くなるように、前記左駆動輪および前記右駆動輪を回転させる請求項1~4のいずれか1つに記載の自走式電子機器。
  6.  前記駆動輪は、互いに独立して駆動される左駆動輪および右駆動輪を含み、
     前記脱輪センサが前記左駆動輪および前記右駆動輪の両方の浮き上がりを検知した場合において、前記左駆動輪および前記右駆動輪を逆方向に回転させるとき、前記走行制御部は、後から浮き上がりを検知した駆動輪より、先に浮き上がりを検知した駆動輪の回転速度が遅くなるように、前記左駆動輪および前記右駆動輪を回転させる請求項1~5のいずれか1つに記載の自走式電子機器。
  7.  筐体を走行させる駆動輪の床面からの浮き上がりを検知したとき、予め定められた継続走行時間の間、前記筐体の走行を継続させ、前記継続走行時間の経過後も前記駆動輪の浮き上がりを検知している場合、前記駆動輪の回転を停止させた後、予め定められた逆走時間の間、前記回転の方向とは逆方向に前記駆動輪を回転させることによって、前記筐体を逆走させることを特徴とする自走式電子機器の走行方法。
PCT/JP2016/056246 2015-06-15 2016-03-01 自走式電子機器および前記自走式電子機器の走行方法 WO2016203790A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680012957.5A CN107615203B (zh) 2015-06-15 2016-03-01 自走式电子设备及所述自走式电子设备的行走方法
US15/552,464 US10653283B2 (en) 2015-06-15 2016-03-01 Self-propelled electronic device and travel method for said self-propelled electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015120335A JP6634223B2 (ja) 2015-06-15 2015-06-15 自走式電子機器および前記自走式電子機器の走行方法
JP2015-120335 2015-06-15

Publications (1)

Publication Number Publication Date
WO2016203790A1 true WO2016203790A1 (ja) 2016-12-22

Family

ID=57545523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056246 WO2016203790A1 (ja) 2015-06-15 2016-03-01 自走式電子機器および前記自走式電子機器の走行方法

Country Status (5)

Country Link
US (1) US10653283B2 (ja)
JP (1) JP6634223B2 (ja)
CN (1) CN107615203B (ja)
TW (1) TWI596458B (ja)
WO (1) WO2016203790A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7036531B2 (ja) * 2016-01-08 2022-03-15 東芝ライフスタイル株式会社 自律走行体
CN105982621B (zh) * 2016-04-14 2019-12-13 北京小米移动软件有限公司 自动清洁设备的风路结构和自动清洁设备
JP2018114067A (ja) * 2017-01-17 2018-07-26 シャープ株式会社 自走式掃除機
US10780364B2 (en) * 2017-07-05 2020-09-22 Skip Hop, Inc. Children's toy for promoting movement
KR102137164B1 (ko) * 2018-06-15 2020-07-24 엘지전자 주식회사 안내 로봇
KR20200013505A (ko) * 2018-07-30 2020-02-07 엘지전자 주식회사 청소기의 노즐 및 그 제어방법
CN110811432B (zh) * 2018-08-09 2023-12-15 蒋春燕 清洁装置、清洁机、专用垃圾箱及以及工作方法
KR20200069103A (ko) * 2018-12-06 2020-06-16 삼성전자주식회사 로봇 청소기 및 로봇 청소기의 청소 경로 계획 방법
CH715633A2 (de) 2018-12-12 2020-06-15 Kemaro Ag Gerät und Verfahren zur selbsttätigen Ausführung einer Tätigkeit, insbesondere zur Reinigung verschmutzter Oberflächen.
CN110051290A (zh) * 2019-04-04 2019-07-26 尚科宁家(中国)科技有限公司 一种控制扫地机器人的方法
CN111990934A (zh) * 2019-05-27 2020-11-27 江苏美的清洁电器股份有限公司 机器人、机器人的控制方法及存储介质
KR102317727B1 (ko) * 2019-09-03 2021-10-26 엘지전자 주식회사 로봇 청소기 및 그 제어방법
KR102662322B1 (ko) * 2019-10-02 2024-04-30 엘지전자 주식회사 로봇 청소기
CN114504273A (zh) * 2020-11-16 2022-05-17 科沃斯机器人股份有限公司 机器人控制方法及装置
USD958858S1 (en) * 2021-03-29 2022-07-26 Heyun Yang Vacuum sealing machine
USD975764S1 (en) * 2021-06-30 2023-01-17 Heyun Yang Vacuum sealing machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004522231A (ja) * 2001-06-12 2004-07-22 アイロボット コーポレイション 自律型ロボット用マルチモード処理方法及びシステム
JP2005211360A (ja) * 2004-01-30 2005-08-11 Funai Electric Co Ltd 自走式掃除機
JP2008220882A (ja) * 2007-03-16 2008-09-25 Sanyo Electric Co Ltd 自走車
JP2013045463A (ja) * 2011-08-22 2013-03-04 Samsung Electronics Co Ltd ロボット掃除機及びその制御方法
JP2014176509A (ja) * 2013-03-14 2014-09-25 Toshiba Corp 電気掃除機

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007004065A (ja) * 2005-06-27 2007-01-11 Ricoh Co Ltd 画像形成装置
JP2007011798A (ja) * 2005-06-30 2007-01-18 Toshiba Tec Corp 自律走行体
JP4779039B2 (ja) * 2009-07-02 2011-09-21 株式会社福本ボデー 自走式掃除機
CN201782706U (zh) * 2010-04-09 2011-04-06 燕成祥 自动吸尘器的感应脱困装置
CN102880175B (zh) * 2011-07-16 2016-02-17 苏州宝时得电动工具有限公司 自动行走设备
JP6109477B2 (ja) * 2012-01-17 2017-04-05 シャープ株式会社 自走式電子機器、端末装置、および操作システム
JP2013146310A (ja) * 2012-01-17 2013-08-01 Sharp Corp 自走式電子機器
TWM435906U (ja) * 2012-04-06 2012-08-21 Uni Ring Tech Co Ltd
JP6068823B2 (ja) * 2012-04-27 2017-01-25 シャープ株式会社 自走式掃除機
JP6169325B2 (ja) * 2012-05-07 2017-07-26 シャープ株式会社 自走式電子機器、端末装置、およびリモコン付き電子機器の操作システム
TW201422190A (zh) * 2012-12-12 2014-06-16 Kinpo Elect Inc 運動裝置及具有運動裝置的自走式清潔器
TWI502297B (zh) * 2013-11-18 2015-10-01 Weistech Technology Co Ltd Mobile device with route memory function
US9480380B2 (en) * 2013-12-04 2016-11-01 Samsung Electronics Co., Ltd. Cleaning robot and control method thereof
CN108814422B (zh) * 2014-01-10 2022-04-01 艾罗伯特公司 自主移动机器人

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004522231A (ja) * 2001-06-12 2004-07-22 アイロボット コーポレイション 自律型ロボット用マルチモード処理方法及びシステム
JP2005211360A (ja) * 2004-01-30 2005-08-11 Funai Electric Co Ltd 自走式掃除機
JP2008220882A (ja) * 2007-03-16 2008-09-25 Sanyo Electric Co Ltd 自走車
JP2013045463A (ja) * 2011-08-22 2013-03-04 Samsung Electronics Co Ltd ロボット掃除機及びその制御方法
JP2014176509A (ja) * 2013-03-14 2014-09-25 Toshiba Corp 電気掃除機

Also Published As

Publication number Publication date
CN107615203A (zh) 2018-01-19
US20180049613A1 (en) 2018-02-22
TWI596458B (zh) 2017-08-21
JP2017000613A (ja) 2017-01-05
US10653283B2 (en) 2020-05-19
TW201701092A (zh) 2017-01-01
JP6634223B2 (ja) 2020-01-22
CN107615203B (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
WO2016203790A1 (ja) 自走式電子機器および前記自走式電子機器の走行方法
JP6476077B2 (ja) 自走式電子機器および前記自走式電子機器の走行方法
KR101931362B1 (ko) 로봇청소기 및 그 제어방법
WO2013164924A1 (ja) 自走式電子機器
CN204133373U (zh) 自走式吸尘器
KR20180106225A (ko) 로봇 청소기
JP6774736B2 (ja) 自走式電子機器
JP6486255B2 (ja) 自走式掃除機
JP2013230201A (ja) 自走式電子機器
JP2007175286A (ja) 自動掃除システム
JP5965709B2 (ja) 自走式掃除機
JP2017153787A (ja) 自走式掃除機
JP2015075825A (ja) 自走式電子機器
CN109744946B (zh) 自主行走式电吸尘器
WO2016117556A1 (ja) 自走式掃除機
JP6735066B2 (ja) 自走式電子機器
JP2003050633A (ja) 自立移動装置
JP6289327B2 (ja) 自走式掃除機
JP6526930B2 (ja) 自走式電子機器および前記自走式電子機器の走行方法
WO2019155667A1 (ja) 自走式電子機器
JP6140335B2 (ja) 自走式掃除機
JP2020173621A (ja) 自律走行型掃除機
JP7344772B2 (ja) 自走式電子機器
JP6360598B2 (ja) 自走式電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811265

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15552464

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811265

Country of ref document: EP

Kind code of ref document: A1