WO2016203581A1 - 冷媒回路及び空気調和機 - Google Patents

冷媒回路及び空気調和機 Download PDF

Info

Publication number
WO2016203581A1
WO2016203581A1 PCT/JP2015/067486 JP2015067486W WO2016203581A1 WO 2016203581 A1 WO2016203581 A1 WO 2016203581A1 JP 2015067486 W JP2015067486 W JP 2015067486W WO 2016203581 A1 WO2016203581 A1 WO 2016203581A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
refrigerant
heat exchanger
source side
heat source
Prior art date
Application number
PCT/JP2015/067486
Other languages
English (en)
French (fr)
Inventor
松本 崇
洋次 尾中
博幸 岡野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/575,417 priority Critical patent/US11320175B2/en
Priority to JP2017524211A priority patent/JP6366837B2/ja
Priority to EP15895602.9A priority patent/EP3312527B1/en
Priority to PCT/JP2015/067486 priority patent/WO2016203581A1/ja
Publication of WO2016203581A1 publication Critical patent/WO2016203581A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • F25B2400/061Several compression cycles arranged in parallel the capacity of the first system being different from the second
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Definitions

  • the present invention relates to a refrigerant circuit including a plurality of evaporators and an air conditioner including the refrigerant circuit.
  • the present invention has been made to solve the above-described problems, and can distribute a refrigerant having a gas-liquid mixing ratio corresponding to a thermal load to a plurality of heat exchangers connected in parallel. It is an object of the present invention to provide a refrigerant circuit that can be used and an air conditioner including the refrigerant circuit.
  • the refrigerant circuit according to the present invention includes a compressor, a condenser, a throttle device, and a plurality of evaporators having different heat loads, and the plurality of evaporators are arranged in parallel between the throttle device and the suction side of the compressor.
  • a refrigerant having a lower dryness than that supplied to the second evaporator, which is the evaporator having a smaller heat load than the first evaporator, is supplied to the first evaporator that is one. ing.
  • the refrigerant circuit according to the present invention is configured to supply a refrigerant having a lower dryness to an evaporator having a large heat load than an evaporator having a small heat load by a branch circuit. That is, the refrigerant circuit according to the present invention has a configuration in which a large amount of liquid phase refrigerant having a large latent heat flows into an evaporator having a large heat load, compared to an evaporator having a small heat load. For this reason, since the refrigerant circuit according to the present invention can realize the refrigerant diversion according to the heat load by the branch circuit, the heat exchange performance of the evaporator can be improved as compared with the conventional one.
  • FIG. 6 is a PH cycle diagram when a hydrofluorocarbon refrigerant R410a is used in the air conditioner according to Embodiment 1 of the present invention.
  • FIG. 1 is a refrigerant circuit diagram illustrating an example of an air conditioner according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective perspective view showing a heat source side unit of the air conditioner.
  • FIG. 3 is a perspective view showing an example of a heat source side heat exchanger of the air conditioner.
  • FIG. 4 is an enlarged view (cross-sectional view) of the main part showing the vicinity of the vertical piping part of the branch circuit of the air conditioner.
  • the white arrow of FIG. 1 has shown the flow direction of the refrigerant
  • the refrigerant circuit of the air conditioner 10 according to Embodiment 1 includes a compressor 4, a use-side heat exchanger 16 that functions as a condenser during heating operation, a throttling device 15, and a plurality that functions as an evaporator during heating operation.
  • These heat source side heat exchangers 2 are sequentially connected by piping.
  • the plurality of heat source side heat exchangers 2 are connected in parallel between the expansion device 15 and the suction side of the compressor 4.
  • the plurality of heat source side heat exchangers 2 have different heat loads as described later.
  • FIG. 1 the example provided with the two heat source side heat exchangers 2 (the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b) is shown.
  • the upper heat source side heat exchanger 2a corresponds to the first evaporator of the present invention
  • the lower heat source side heat exchanger 2b corresponds to the second evaporator of the present invention.
  • the refrigerant circuit of the air conditioner 10 includes a branch circuit 9 provided between the expansion device 15 and the plurality of heat source side heat exchangers 2.
  • the branch circuit 9 distributes the refrigerant having a gas-liquid mixing ratio according to the heat load to each of the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b during the heating operation.
  • the refrigerant circuit of the air conditioner 10 according to the first embodiment includes the flow path switch 12 on the discharge side of the compressor 4 in order to realize both the cooling operation and the heating operation. Further, the refrigerant circuit of the air conditioner 10 according to the first embodiment also includes an accumulator 5 that suppresses liquid back to the compressor 4 on the suction side of the compressor 4.
  • the heat source side unit 1 constitutes a refrigeration cycle that circulates the refrigerant together with the use side unit 14. Specifically, the heat source side unit 1 supplies heat collected from the outdoors to the use side unit 14 during the heating operation. Moreover, the heat source side unit 1 discharges
  • the heat source side unit 1 has a housing 11, and a compressor 4, a flow path switch 12, an upper heat source side heat exchanger 2 a, a lower heat source side heat exchanger 2 b, a blower 3, in the housing 11. The accumulator 5 and the branch circuit 9 are accommodated.
  • the use side unit 14 is installed in a room or the like to be air-conditioned, and houses the use side heat exchanger 16 and the expansion device 15.
  • the air conditioner 10 according to Embodiment 1 includes two usage-side units 14 (a first usage-side unit 14a and a second usage-side unit 14b).
  • the first usage side unit 14a houses a first usage side heat exchanger 16a and a first expansion device 15a.
  • the second usage side unit 14b houses the second usage side heat exchanger 16b and the second expansion device 15b.
  • the first usage side unit 14a and the second usage side unit 14b are connected in parallel. Note that the number of usage-side units 14 is not limited to two, but may be one or three or more.
  • the compressor 4 sucks and compresses the refrigerant to bring it into a high temperature / high pressure state, and includes, for example, a scroll compressor, a vane compressor, and the like.
  • the flow path switching unit 12 switches between the heating flow path and the cooling flow path in accordance with switching of the operation mode of the cooling operation or the heating operation, and includes, for example, a four-way valve.
  • the flow path switch 12 connects the discharge side of the compressor 4 and the use side heat exchanger 16 during the heating operation, and is provided with the heat source side heat exchanger 2 and the suction side of the compressor 4 (accumulator 5 is provided). If it is, connect it to the accumulator 5).
  • the flow path switch 12 connects the discharge side of the compressor 4 and the heat source side heat exchanger 2 during the cooling operation, and also uses the heat exchanger 16 on the use side and the suction side (accumulator 5 is connected to the compressor 4). If provided, the accumulator 5) is connected.
  • a four-way valve is used as the flow path switching device 12 is illustrated, the present invention is not limited to this. For example, a plurality of two-way valves may be combined. Further, when the air conditioner 10 is configured exclusively for heating operation, it is not particularly necessary to provide the flow path switch 12.
  • the heat source side heat exchanger 2 performs heat exchange between the refrigerant and outside air (outdoor air), and is bent into, for example, a U-shape (in other words, a U shape) of the casing 11. It has a different shape.
  • the air conditioner 10 according to the first embodiment includes the two heat source side heat exchangers 2 (the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b).
  • the lower heat source side heat exchanger 2 b is disposed at the lower part of the housing 11.
  • the upper heat source side heat exchanger 2a is disposed on the upper side of the casing 11, that is, above the lower heat source side heat exchanger 2b.
  • the housing 11 has a suction port 1a formed in a side surface facing the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b. Heat transfer fins are cut from the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b.
  • the heat source side heat exchanger 2 (each of the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b) is configured as shown in FIG. 3, for example.
  • the heat source side heat exchanger 2 includes a plurality of heat transfer tubes 40 arranged in the horizontal direction. These heat transfer tubes 40 are arranged side by side with a predetermined interval in the vertical direction.
  • the heat transfer tube 40 is, for example, a flat tube, and a plurality of refrigerant channels are formed therein.
  • the heat source side heat exchanger 2 includes a plurality of heat transfer fins 41 into which a plurality of heat transfer tubes 40 are inserted.
  • heat transfer fins 41 are arranged in parallel in the axial direction of the heat transfer tube 40 with a predetermined interval (for example, 3 mm).
  • a predetermined interval for example, 3 mm.
  • air flows between the heat transfer fins 41 along the plane of the heat transfer fins 41, as indicated by white arrows in FIG. 3.
  • the refrigerant flowing through the refrigerant flow path of the heat transfer tube 40 flows in the axial direction of the heat transfer tube 40.
  • waste heat or heat supply is realized by heat exchange between the refrigerant and the outside air.
  • a plurality of heat transfer tubes 40 and a plurality of heat transfer fins 41 constitute a heat exchange unit, and a plurality of heat exchange units are arranged side by side along the direction of the outside air flow.
  • the exchanger 2 is configured.
  • the heat source side heat exchanger 2 includes a merging pipe 8 connected to a plurality of heat transfer pipes 40 and a distributor.
  • a header-type distributor 7 is used.
  • each heat transfer tube 40 of the upper heat source side heat exchanger 2a is connected to the upper junction tube 8a and the header type upper distributor 7a.
  • the upper junction pipe 8a serves as a refrigerant outlet when the upper heat source side heat exchanger 2a functions as an evaporator (during heating operation), and is connected to the flow path switch 12.
  • the upper distributor 7a serves as a refrigerant inlet when the upper heat source side heat exchanger 2a functions as an evaporator (at the time of heating operation), and each heat transfer tube of the upper heat source side heat exchanger 2a from the header and the header.
  • 40 has a branch pipe connected to 40. During the heating operation, the refrigerant flowing into the upper distributor 7a is distributed from each branch pipe to each heat transfer pipe 40 of the upper heat source side heat exchanger 2a and flows out from the upper junction pipe 8a.
  • each heat transfer tube 40 of the lower heat source side heat exchanger 2b is connected to the lower junction tube 8b and the header type lower distributor 7b.
  • the lower junction pipe 8b serves as a refrigerant outlet when the lower heat source side heat exchanger 2b functions as an evaporator (during heating operation), and is connected to the flow path switch 12.
  • the lower distributor 7b serves as a refrigerant inlet when the lower heat source side heat exchanger 2b functions as an evaporator (at the time of heating operation), and each heat transfer tube of the lower heat source side heat exchanger 2b from the header and the header.
  • 40 has a branch pipe connected to 40. In the heating operation, the refrigerant flowing into the lower distributor 7b is distributed from each branch pipe to each heat transfer pipe 40 of the lower heat source side heat exchanger 2b and flows out from the lower junction pipe 8b.
  • the blower 3 blows air to the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b.
  • the blower outlet 1b is formed in the top
  • the air blower 3 makes it compatible not to make an airflow interfere with the compressor 4, the accumulator 5, and the flow path switch 12 in the housing
  • the expansion device 15 (the first expansion device 15a and the second expansion device 15b) is provided between the use-side heat exchanger 16 and the branch circuit 9, and adjusts the state of the refrigerant by adjusting the flow rate. It is.
  • the throttling device 15 is composed of a throttling device represented by, for example, LEV (linear electronic expansion valve) or the like, or an on-off valve that turns the refrigerant flow on and off by opening and closing.
  • the accumulator 5 is provided on the suction side of the compressor 4 and stores the refrigerant. The compressor 4 sucks and compresses the gas-phase refrigerant among the refrigerant stored in the accumulator 5. In the case where the air conditioner 10 is operated only under the condition that the liquid is not returned to the compressor 4, it is not particularly necessary to provide the accumulator 5.
  • the branch circuit 9 distributes the refrigerant having a gas-liquid mixing ratio corresponding to the heat load to each of the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b. Specifically, as described later, the heat load on the upper heat source side heat exchanger 2a is larger than the heat load on the lower heat source side heat exchanger 2b. For this reason, the branch circuit 9 is configured to supply a refrigerant having a lower dryness to the upper heat source side heat exchanger 2a than the refrigerant supplied to the lower heat source side heat exchanger 2b.
  • the branch circuit 9 includes a gas-liquid separator 6, a main flow pipe 20, a first branch pipe 21a, and a second branch pipe 21b.
  • the gas-liquid separator 6 is provided between the expansion device 15 and the heat source side heat exchanger 2, and separates the gas-liquid two-phase refrigerant that has flowed out of the expansion device 15 during heating operation into a gas phase refrigerant and a liquid phase refrigerant. Is.
  • One end of the main flow pipe 20 is connected to, for example, the lower part of the gas-liquid separator 6 and supplies liquid-phase refrigerant or gas-liquid two-phase refrigerant to the downstream side during heating operation.
  • the first branch pipe 21a has one end connected to the main flow pipe 20 and the other end connected to the upper distributor 7a of the upper heat source side heat exchanger 2a.
  • the main flow pipe 20 has a vertical pipe portion 20a arranged in the vertical direction.
  • One end of the first branch pipe 21a is connected to, for example, the lower end of the vertical pipe part 20a.
  • the second branch pipe 21b has one end connected to the main flow pipe 20 and the other end connected to the lower distributor 7b of the lower heat source side heat exchanger 2b.
  • one end of the second branch pipe 21b is connected to the first branch pipe 21a at a position upstream of the connection position between the vertical pipe portion 20a and the first branch pipe 21a in the refrigerant flow direction. Has been.
  • the second branch pipe 21 b is arranged along the horizontal direction, and a connection portion between the second branch pipe 21 b and the vertical pipe portion 20 a of the main flow pipe 20 is a T-shaped branch flow path. It has become. Moreover, in this Embodiment 1, it is set as the structure which made the end of the 2nd branch pipe 21b protrude inside the vertical piping part 20a.
  • the liquid-phase refrigerant or the gas-liquid two-phase refrigerant that has flowed from the gas-liquid separator 6 into the main flow pipe 20 flows from the upper part to the lower part in the vertical pipe part 20a.
  • coolant is distributed by the connection part of the 2nd branch pipe 21b and the vertical piping part 20a of the main flow pipe 20, A part passes through the 2nd branch pipe 21b, and the lower distributor of the lower heat source side heat exchanger 2b Flows into 7b.
  • the remaining part of the refrigerant flows into the upper distributor 7a of the upper heat source side heat exchanger 2a through the first branch pipe 21a.
  • the liquid-phase refrigerant that has flowed out of the upper distributor 7a flows into the gas-liquid separator 6 through the first branch pipe 21a and the main flow pipe 20. Further, the liquid phase refrigerant flowing out from the lower distributor 7 b flows into the gas-liquid separator 6 through the second branch pipe 21 b and the main flow pipe 20.
  • the air conditioner 10 includes a gas phase refrigerant outflow pipe 23 through which the gas phase refrigerant flows out from the gas-liquid separator 6, and a flow rate control device 13 provided in the gas phase refrigerant outflow pipe 23.
  • One end of the gas-phase refrigerant outflow pipe 23 is connected to, for example, the upper part of the gas-liquid separator 6.
  • the other end of the gas-phase refrigerant outflow pipe 23 is connected to a pipe 42 that connects the heat source side heat exchanger 2 and the flow path switch 12.
  • the other end of the gas-phase refrigerant outflow pipe 23 is connected to a pipe 42 that connects the heat source side heat exchanger 2 and the suction side of the compressor 4 during heating operation.
  • the flow control device 13 adjusts the outflow amount of the gas-phase refrigerant from the gas-liquid separator 6.
  • the flow control device 13 is a throttle device represented by LEV (linear electronic expansion valve) or the like, and ON / OFF of the refrigerant flow by opening and closing. It consists of an on-off valve that turns off.
  • LEV linear electronic expansion valve
  • a linear electronic expansion valve is used as the flow control device 13.
  • the pipe 42 corresponds to the suction pipe of the present invention.
  • the gas-phase refrigerant outflow pipe 23 and the flow rate control device 13 are not essential components. Even without these configurations, it is possible to distribute the refrigerant having a gas-liquid mixing ratio corresponding to the heat load to each of the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b. However, the heat exchange performance of the heat source side heat exchanger 2 can be further improved by providing the gas-phase refrigerant outlet pipe 23 and the flow rate control device 13. An example of the control method of the flow control device 13 will be described later in a fifth embodiment.
  • the refrigerant becomes a gas-phase refrigerant compressed in the compressor 4 and flows from the compressor 4 to the first usage side heat exchanger 16a and the second usage side heat exchanger 16b via the flow path switch 12.
  • the gas-phase refrigerant dissipates heat in the first usage-side heat exchanger 16a and the second usage-side heat exchanger 16b and condenses from gas to liquid, and the condensed refrigerant is the first expansion device 15a and the second expansion device.
  • the gas-liquid two-phase refrigerant flows into the gas-liquid separator 6, the gas-phase refrigerant flows through the flow rate control device 13 to the flow path switch 12, and the gas-liquid two-phase or liquid-phase refrigerant is mainstream. It flows into the pipe 20.
  • the gas-liquid two-phase or liquid-phase refrigerant flowing into the main flow pipe 20 is distributed to the upper distributor 7a and the lower distributor 7b through the first branch pipe 21a and the second branch pipe 21b.
  • the gas-liquid two-phase or liquid-phase refrigerant that has flowed into the upper distributor 7a and the lower distributor 7b is respectively distributed to the plurality of heat transfer tubes 40 and is evaporated by absorbing heat from the air by the blower 3.
  • the ratio of the gas in the gas-liquid two-phase state increases in the refrigerant flowing through the heat transfer tubes 40 of the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b.
  • the refrigerant that has flowed out of each heat transfer tube 40 flows through the upper merge tube 8a or the lower merge tube 8b, flows with the flow from the flow rate control device 13, and then flows into the accumulator 5 through the flow path switch 12. Thereafter, the refrigerant in the accumulator 5 is sucked into the compressor 4.
  • FIG. 5 is a PH cycle diagram when the hydrofluorocarbon refrigerant R410a is used in the air conditioner according to Embodiment 1 of the present invention.
  • FIG. 5 has shown the case of said heating operation in which the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b operate as an evaporator.
  • a substantially trapezoidal solid line indicates a cycle operation state.
  • the convex solid line is a saturation line, and the left region is gas and the right region is liquid.
  • Point AB is a superheated gas at the discharge part of the compressor 4.
  • the refrigerant is dissipated in the first usage side heat exchanger 16a and the second usage side heat exchanger 16b, so that the point AC is supercooled at the outlet of the first usage side heat exchanger 16a and the second usage side heat exchanger 16b. Become liquid.
  • the refrigerant is depressurized by passing through the first expansion device 15a and the second expansion device 15b, and enters a gas-liquid two-phase state with a point AF of about 0.2 dryness.
  • the refrigerant in the gas-liquid two-phase state flows into the gas-liquid separator 6 for gas-liquid separation, and the gas-phase refrigerant flows into the point AA of the accumulator 5 via the flow rate control device 13 to be gas-liquid two-phase or liquid-phase.
  • the refrigerant flows into the main flow pipe 20.
  • the gas-liquid two-phase or liquid-phase refrigerant flowing into the main flow pipe 20 is distributed to the upper distributor 7a and the lower distributor 7b through the first branch pipe 21a and the second branch pipe 21b.
  • the gas-liquid two-phase refrigerant at point AD having a relatively low dryness flows into the upper distributor 7a, and the gas-liquid two-phase refrigerant at point AE having a relatively high dryness flows into the lower distributor 7b. Inflow. Thereafter, the refrigerant evaporates in each of the heat transfer tubes 40 of the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b to reach a state point of point AA. It will be described later that the main flow pipe 20, the first branch pipe 21a, and the second branch pipe 21b are branched into different dryness refrigerants.
  • a gas-liquid two-phase refrigerant flows into the upper distributor 7a and the lower distributor 7b.
  • the gas-liquid two-phase refrigerant includes a mixture of gas and liquid having different densities, and the refrigerant of each phase flows while maintaining a balance between kinetic energy depending on flow velocity and potential energy determined by gravity.
  • the liquid refrigerant having a low enthalpy heats from the upper distributor 7a and the lower distributor 7b to the heat transfer tubes 40. It is desirable to distribute according to the load.
  • the distance from the upper heat source side heat exchanger 2a to the blower 3 and the distance from the lower heat source side heat exchanger 2b to the blower 3 are different.
  • the flow rate of air flowing into the upper heat source side heat exchanger 2a and the flow rate of air flowing into the lower heat source side heat exchanger 2b are also different. That is, the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b have different heat loads.
  • the inflow of air into the upper heat source side heat exchanger 2a adjacent to the blower 3 is relatively larger than that of the lower heat source side heat exchanger 2b, so that the heat load is also higher on the lower heat source side. It is larger than the heat exchanger 2b.
  • the number of heat transfer fins 41 of the upper heat source side heat exchanger 2a is more densely provided than the lower heat source side heat exchanger 2b.
  • the heat transfer area of the upper heat source side heat exchanger 2a is relatively larger than that of the lower heat source side heat exchanger 2b.
  • the shape of the heat transfer fin 41 of the upper heat source side heat exchanger 2a is different from that of the lower heat source side heat exchanger 2b, and the heat transfer rate determined by the shape of the heat transfer fin 41 is lower heat source side heat exchanger 2b. May have a larger configuration.
  • the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b are provided with the upper distributor 7a and the lower distributor 7b, respectively, upstream of the heat transfer tube 40.
  • the distribution of the refrigerant to the upper distributor 7a and the lower distributor 7b is performed in the main flow pipe 20, the first branch pipe 21a, and the second branch pipe 21b.
  • FIG. 6 is an essential part enlarged view (sectional view) showing the vicinity of the vertical piping part of the branch circuit of the air conditioner according to Embodiment 1 of the present invention, and the flow state of the refrigerant flowing through the vertical piping part and the second branch pipe Is shown.
  • the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b operate as evaporators, the upper heat source side heat exchanger 2a contains more liquid phase refrigerant having a larger latent heat than the lower heat source side heat exchanger 2b. It is necessary to make it flow. Therefore, it is necessary to flow more liquid phase refrigerant into the upper distributor 7a than in the lower distributor 7b.
  • the gas-liquid two-phase refrigerant flows vertically downward from the upper part in the main flow pipe 20.
  • the liquid phase refrigerant (“A” in FIG. 6) is in the outer peripheral direction, that is, the wall surface side, and the gas phase refrigerant (“B” in FIG. 6) is in the inner peripheral direction. It is unevenly distributed. Since the density of the liquid phase refrigerant is relatively higher than that of the gas phase refrigerant, the descending speed increases due to the influence of gravity.
  • the second branch pipe 21b has relatively less liquid refrigerant than the outlet of the main pipe 20, that is, the liquid refrigerant flowing into the first branch pipe 21a relatively increases. Therefore, the lower distributor 7b is connected to the second branch pipe 21b, and the upper distributor 7a is connected to the first branch pipe 21a connected to the main flow pipe 20 at a position below the lower distributor 7b.
  • a relatively large amount of liquid-phase refrigerant can flow into the upper heat source side heat exchanger 2a having a large heat load. That is, a refrigerant having a lower dryness than the refrigerant supplied to the lower heat source side heat exchanger 2b can be supplied to the upper heat source side heat exchanger 2a having a large heat load.
  • the gas-liquid mixing ratio of the refrigerant flowing into the second branch pipe 21b can be adjusted according to the amount of projection into the main flow pipe 20 at the tip of the second branch pipe 21b. Specifically, the more the tip (that is, the opening) of the second branch pipe 21b is arranged closer to the tube axis of the main flow pipe 20, the easier the gas-phase refrigerant flows into the second branch pipe 21b and the liquid-phase refrigerant flows into the second branch pipe 21b. It becomes difficult to do.
  • FIG. 7 is a diagram showing the degree of superheat of the heat transfer tube outlets of the upper heat source side heat exchanger and the lower heat source side heat exchanger of the air conditioner according to Embodiment 1 of the present invention.
  • shaft of FIG. 7 has shown each heat exchanger tube 40 of the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b, The heat exchanger tube arrange
  • the number is given to 40. Numbers “1” to “16” are the heat transfer tubes 40 of the lower heat source side heat exchanger 2b, and numbers “17” to “33” are the heat transfer tubes 40 of the upper heat source side heat exchanger 2a.
  • shaft shows the superheat degree of each heat exchanger tube 40 outlet in case the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b operate
  • the degree of superheat is obtained by subtracting the temperature of the gas-liquid two-phase refrigerant flowing into the heat transfer tube 40 from the temperature of the refrigerant at the outlet of the heat transfer tube 40.
  • the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b are connected in parallel using the branch circuit 9 as in the first embodiment, so that the heating degree distribution is on the upper heat source side.
  • the heat exchanger 2a and the lower heat source side heat exchanger 2b can equalize.
  • the branch circuit 9 causes the liquid phase to be transferred to the upper heat source side heat exchanger 2a having a large heat load.
  • the heat exchange performance (heat exchange efficiency) of the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b can be increased, and the system performance of the entire air conditioner 10 can be improved.
  • connection configuration of the mainstream pipe 20 and the second branch pipe 21b shown in the first embodiment is merely an example. Any structure that can supply a refrigerant having a lower dryness than the refrigerant supplied to the lower heat source side heat exchanger 2b to the upper heat source side heat exchanger 2a having a large heat load may be used. If this condition is satisfied, the installation posture of the main flow pipe 20 and the second branch pipe 21b, the connection angle of the second branch pipe 21b to the main flow pipe 20, and the cross-sectional shapes of the main flow pipe 20 and the second branch pipe 21b are arbitrary. .
  • Embodiment 2 The branch circuit that allows a relatively large amount of liquid-phase refrigerant to flow into the upper heat source side heat exchanger 2a having a large heat load is not limited to that shown in the first embodiment.
  • the end part of the 2nd branch pipe 21b should just be connected between the expansion apparatus 15 and the connection part of the main flow pipe 20 and the 1st branch pipe 21a.
  • the branch circuit may be configured as follows. In the second embodiment, parts having the same configuration as in the first embodiment are given the same reference numerals, and the description thereof is omitted.
  • FIG. 8 is a refrigerant circuit diagram illustrating an example of an air conditioner according to Embodiment 2 of the present invention.
  • the difference between the air conditioner 110 according to the second embodiment and the air conditioner 10 according to the first embodiment is the configuration of the heat source side heat exchanger 102 and the branch circuit 109.
  • the heat source side heat exchanger 102 includes a header 107-type distributor 107 instead of the header-type distributor 7 shown in the first embodiment.
  • the air conditioner 110 according to the second embodiment includes two heat source side heat exchangers 102 (an upper heat source side heat exchanger 102a and a lower heat source side heat exchanger 102b) as in the first embodiment. I have.
  • the heat transfer tubes 40 of the upper heat source side heat exchanger 102a are connected to the upper distributor 107a, and the heat transfer tubes 40 of the lower heat source side heat exchanger 102b are connected to the lower distributor 107b.
  • the heat load of the upper heat source side heat exchanger 102a is larger than the heat load of the lower heat source side heat exchanger 102b.
  • the distributor 7 is merely an example.
  • the header-type distributor 7 shown in the first embodiment may be used for the heat source side heat exchanger 102.
  • a non-header distributor 107 may be used for the heat source side heat exchanger according to the first embodiment and the embodiments described later.
  • the branch circuit 109 includes a gas-liquid separator 6, a main flow pipe 20, a first branch pipe 21a, and a second branch pipe 21b, similarly to the branch circuit 9 shown in the first embodiment.
  • the first branch pipe 21a has one end connected to the main flow pipe 20 and the other end connected to the upper distributor 107a of the upper heat source side heat exchanger 102a.
  • the second branch pipe 21b has one end connected to a position upstream of the gas-liquid separator 6 during heating operation, and the other end connected to the lower distributor 107b of the lower heat source side heat exchanger 102b.
  • one end of the second branch pipe 21 b is connected to an inflow pipe 22 that connects the expansion device 15 and the gas-liquid separator 6.
  • a connecting portion between the inflow pipe 22 and the second branch pipe 21b is, for example, a Y-shaped branch flow path.
  • substantially the same amount of liquid-phase refrigerant branches At the connection portion between the inflow pipe 22 and the second branch pipe 21b, substantially the same amount of liquid-phase refrigerant branches. Accordingly, during the heating operation in which the upper heat source side heat exchanger 102a and the lower heat source side heat exchanger 102b operate as an evaporator, the refrigerant having decreased in dryness after passing through the gas-liquid separator 6 flows into the upper distributor 107a. Then, a relatively dry refrigerant flows into the lower distributor 107b.
  • the branch circuit 109 supplies a liquid phase refrigerant to the lower heat source side heat exchanger 102b having a small heat load.
  • the heat exchange performance (heat exchange efficiency) of the upper heat source side heat exchanger 102a and the lower heat source side heat exchanger 102b can be increased, and the overall system performance of the air conditioner 110 can be improved.
  • Embodiment 3 As described above, the end of the second branch pipe 21b only needs to be connected between the expansion device 15 and the connecting portion between the main flow pipe 20 and the first branch pipe 21a. For this reason, for example, a branch circuit can be configured as follows.
  • parts having the same configuration as those in the first or second embodiment are denoted by the same reference numerals. Further, matters not mentioned in the third embodiment are the same as those in the first or second embodiment.
  • FIG. 9 is a refrigerant circuit diagram illustrating an example of an air conditioner according to Embodiment 3 of the present invention.
  • FIG. 10 is an enlarged view (cross-sectional view) of a main part showing the vicinity of the gas-liquid separator of the branch circuit of the air conditioner.
  • FIG. 10 is an enlarged view (cross-sectional view) of the main part showing the vicinity of the gas-liquid separator of the branch circuit of the air conditioner, and shows the flow state of the refrigerant flowing through the gas-liquid separator.
  • the difference between the air conditioner 210 according to the third embodiment and the air conditioner 10 according to the first embodiment is the configuration of the branch circuit 209.
  • an inflow pipe 22 that connects the expansion device 15 and the gas-liquid separator 6 is connected, for example, substantially horizontally at the center of the side surface. Further, the gas-liquid separator 6 is connected to a gas-phase refrigerant outflow pipe 23 for allowing the gas-phase refrigerant to flow out from the gas-liquid separator 6, for example. Moreover, the mainstream pipe
  • the gas-liquid two-phase refrigerant flows into the gas-liquid separator 6 from the inflow pipe 22.
  • a liquid-phase refrigerant (“A” in FIG. 11), a gas-phase refrigerant (“B” in FIG. 11), and a gas-liquid two-phase refrigerant (“B” in FIG. 11) due to the balance between gravity and inertial force. It is separated into “C” in FIG.
  • the main flow pipe 20 opens at a position below the second branch pipe 21b. For this reason, it is possible to selectively flow out the liquid refrigerant generated at the bottom of the gas-liquid separator 6.
  • the gas-liquid separator 6 supplies liquid to the upper heat source side heat exchanger 202a having a large heat load.
  • the heat exchange performance (heat exchange efficiency) of the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b is increased and the system performance of the entire air conditioner 210 is improved. it can.
  • Embodiment 4 As described above, the end of the second branch pipe 21b only needs to be connected between the expansion device 15 and the connecting portion between the main flow pipe 20 and the first branch pipe 21a. For this reason, for example, a branch circuit can be configured as follows.
  • parts having the same configuration as in any of the first to third embodiments are given the same reference numerals. Further, matters not mentioned in the fourth embodiment are the same as those in any one of the first to third embodiments.
  • FIG. 12 is a refrigerant circuit diagram illustrating an example of an air conditioner according to Embodiment 4 of the present invention.
  • FIG. 13 is an enlarged view (cross-sectional view) of a main part showing the vicinity of the horizontal piping part of the branch circuit of the air conditioner.
  • FIG. 14 is an enlarged view (cross-sectional view) of the main part showing the vicinity of the horizontal pipe part of the branch circuit of the air conditioner, and shows the flow state of the refrigerant flowing through the horizontal pipe part.
  • the difference between the air conditioner 310 according to the fourth embodiment and the air conditioner 10 according to the first embodiment is the configuration of the branch circuit 309.
  • the main flow pipe 20 of the branch circuit 309 has a horizontal pipe section 27 arranged in the horizontal direction with the opening of the end section closed on the end section side not connected to the gas-liquid separator 6. Yes. And the 1st branch pipe 21a connected to the upper heat source side heat exchanger 2a with a large heat load is connected to this horizontal piping part 27 substantially vertically, for example. Further, the second branch pipe 21b connected to the lower heat source side heat exchanger 2b having a small heat load is located upstream in the refrigerant flow direction during heating operation from the connection position between the horizontal pipe portion 27 and the first branch pipe 21a. For example, the horizontal pipe portion 27 is connected substantially vertically to the horizontal piping portion 27.
  • the gas-liquid two-phase refrigerant flows into the horizontal piping part 27 from the direction of the white arrow shown in FIGS. To do.
  • the liquid phase refrigerant having a large inertial force tends to be unevenly distributed at the end portion of the horizontal pipe portion 27. Therefore, a refrigerant with high dryness flows into the second branch pipe 21b near the inlet of the horizontal pipe section 27, and a refrigerant with low dryness flows into the first branch pipe 21a far away.
  • the liquid phase is transferred to the upper heat source side heat exchanger 2a having a large heat load in the horizontal pipe portion 27.
  • the heat exchange performance (heat exchange efficiency) of the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b can be increased, and the overall system performance of the air conditioner 310 can be improved.
  • Embodiment 5 The flow control device 13 shown in the first to fourth embodiments is controlled as follows, for example.
  • parts having the same configuration as in any of the first to fourth embodiments are denoted by the same reference numerals. Further, matters not mentioned in the fifth embodiment are the same as those in the first to fourth embodiments. Further, in the fifth embodiment, an example of the control method of the flow control device 13 will be described using the refrigerant circuit of the air conditioner shown in the first embodiment as an example.
  • FIG. 15 is a refrigerant circuit diagram illustrating an example of an air conditioner according to Embodiment 5 of the present invention.
  • FIG. 16 is a flowchart showing an example of a control method of the air conditioner flow control device.
  • the flow control device 13 for example, the inlet temperature detection device 31, the outlet temperature detection device 32, the merging temperature detection device 33, the flow control device control unit 35, and the calculation unit 35 a are provided in the refrigerant circuit of the air conditioner 410. .
  • the inlet temperature detection device 31 which is a temperature sensor such as a thermistor is provided in the second branch pipe 21b and detects the refrigerant temperature at the position.
  • the outlet temperature detection device 32 which is a temperature sensor such as a thermistor, is provided in a pipe 42 that connects the heat source side heat exchanger 2 and the flow path switch 12, and detects the refrigerant temperature at the position. More specifically, the outlet temperature detection device 32 is provided at a position upstream of the connection portion between the pipe 42 and the gas-phase refrigerant outflow pipe 23 in the refrigerant flow direction during heating operation.
  • the confluence temperature detection device 33 which is a temperature sensor such as a thermistor, is provided in the pipe 42 that connects the heat source side heat exchanger 2 and the flow path switch 12, and detects the refrigerant temperature at the position. More specifically, the merging temperature detection device 33 is provided at a position downstream of the connecting portion between the pipe 42 and the gas-phase refrigerant outflow pipe 23 in the refrigerant flow direction during the heating operation.
  • the calculation unit 35a is constituted by, for example, a microcomputer and receives output signals (detection values) from the inlet temperature detection device 31, the outlet temperature detection device 32, and the merging temperature detection device 33. And the calculating part 35a subtracts the detected value of the inlet temperature detection apparatus 31 from the detected value of the outlet temperature detection apparatus 32, and calculates a heat exchanger superheat degree. In addition, the calculation unit 35a subtracts the detection value of the inlet temperature detection device 31 from the detection value of the merging temperature detection device 33 to calculate the merging superheat degree.
  • the flow control device control unit 35 is constituted by, for example, a microcomputer.
  • the flow control device control unit 35 transmits a control signal to the flow control device 13 based on the heat exchanger superheat degree and the combined superheat degree calculated by the calculation unit 35a to control the opening degree of the flow control device 13. .
  • the opening degree control of the flow rate control device 13 is performed at predetermined time intervals, for example.
  • the flow control device controller 35 controls the opening degree of the flow control device 13 as shown in FIG. That is, the flow control device control unit 35 increases the opening degree of the flow control device 13 when the heat exchanger superheat degree> 0 and the combined superheat degree> 0. Further, the flow control device control unit 35 reduces the opening degree of the flow control device 13 when the heat exchanger superheat degree> 0 and the combined superheat degree ⁇ 0. Moreover, the flow control device control unit 35 increases the opening degree of the flow control device 13 when the heat exchanger superheat degree ⁇ 0.
  • the heat source side heat exchanger 2 When the heat exchanger superheat degree> 0 and the combined superheat degree> 0, the heat source side heat exchanger 2 is in a superheated state and the liquid back of the gas-liquid separator 6 is not generated. For this reason, the heat source side heat exchanger 2 can further exchange heat by increasing the flow rate of the gas-phase refrigerant flowing out from the gas-liquid separator 6 to the flow path switch 12. Therefore, the flow control device control unit 35 increases the opening degree of the flow control device 13 and increases the flow rate of the gas phase refrigerant flowing out from the gas-liquid separator 6 to the flow path switch 12.
  • the heat source side heat exchanger 2 When the heat exchanger superheat degree> 0 and the combined superheat degree ⁇ 0, the heat source side heat exchanger 2 is in a superheated state, and the liquid back of the gas-liquid separator 6 is generated. In this state, a large amount of liquid-phase refrigerant flows into the gas-phase refrigerant flowing out from the gas-liquid separator 6 to the flow path switch 12, and the refrigerant existing in the refrigerant circuit is stored in the accumulator 5, and heat source side heat exchange is performed. This is a state in which the thermal load of the vessel 2 is decreasing.
  • the flow control device control unit 35 decreases the opening degree of the flow control device 13, reduces the flow rate of the gas-phase refrigerant flowing out from the gas-liquid separator 6 to the flow path switch 12, and The liquid back is prevented and the accumulation of the refrigerant in the accumulator 5 is eliminated. Thereby, the overheating state in the heat source side heat exchanger 2 is eliminated.
  • the flow control device controller 35 increases the opening degree of the flow control device 13. Then, the amount of refrigerant circulating in the refrigerant circuit decreases, and the outlet of the heat source side heat exchanger 2 becomes overheated.
  • the heat exchange performance (heat exchange efficiency) of the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b.
  • the system performance of the entire air conditioner 410 can be further improved.
  • Embodiment 6 The flow control device 30 for adjusting the amount of refrigerant flowing through the second branch pipe 21b may be provided in the second branch pipe 21b of the refrigerant circuit of the air conditioner shown in the first to fifth embodiments.
  • parts having the same configuration as in any of the first to fifth embodiments are denoted by the same reference numerals. Further, matters not mentioned in the sixth embodiment are the same as those in any of the first to fifth embodiments.
  • an example in which the flow control device 30 is provided in the air conditioner shown in the fifth embodiment will be described.
  • FIG. 17 is a refrigerant circuit diagram illustrating an example of an air conditioner according to Embodiment 6 of the present invention.
  • the air conditioner 510 according to the sixth embodiment includes a flow rate control device 30 and a flow rate control device control unit 34 in addition to the configuration of the air conditioner 410 shown in the fifth embodiment.
  • the flow controller 30 adjusts the amount of refrigerant flowing through the second branch pipe 21b, that is, the amount of refrigerant flowing into the lower heat source side heat exchanger 2b.
  • the flow rate control is performed so that the inlet temperature detector 31 can detect the temperature of the refrigerant flowing into the lower heat source side heat exchanger 2b during the heating operation.
  • the device 30 is provided upstream of the inlet temperature detection device 31 in the refrigerant flow direction during the heating operation.
  • the flow control device 30 is a throttle device represented by, for example, LEV (linear electronic expansion valve).
  • the flow control device control unit 34 is configured by, for example, a microcomputer and transmits a control signal to the flow control device 30 to control the opening degree of the flow control device 30.
  • the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b in addition to the gas-liquid mixing ratio of the refrigerant flowing into the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b, the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger It is also possible to adjust the amount of refrigerant flowing into 2b. For this reason, the heat exchange performance (heat exchange efficiency) of the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b can be further increased, and the system performance of the entire air conditioner 510 can be further improved.
  • Embodiment 7 The heat source side heat exchanger that can be connected in parallel to the branch circuit of the present invention is not limited to two.
  • an example in which four heat source side heat exchangers are connected in parallel to the branch circuit will be described.
  • parts having the same configurations as those in any of the first to sixth embodiments are denoted by the same reference numerals. Further, matters not mentioned in the seventh embodiment are the same as those in any one of the first to sixth embodiments.
  • the branch circuit shown in the fourth embodiment will be described.
  • FIG. 18 is a perspective perspective view showing a heat source side unit of an air conditioner according to Embodiment 7 of the present invention.
  • FIG. 19 is a refrigerant circuit diagram illustrating an example of an air conditioner according to Embodiment 7 of the present invention.
  • FIG. 20 is an enlarged view (cross-sectional view) showing the vicinity of the horizontal piping portion of the branch circuit of the air conditioner according to Embodiment 7 of the present invention, and shows the flow state of the refrigerant flowing through the horizontal piping portion.
  • the air conditioner 610 according to the seventh embodiment includes four heat source side heat exchangers.
  • the air conditioner 610 includes two heat source side units (a first heat source side unit 501A and a second heat source side unit 501B).
  • the first heat source side unit 501A and the second heat source side unit 501B each house two heat source side heat exchangers.
  • the casing of the first heat source side unit 501A has the same shape as the casing 11 shown in the first embodiment, and the first blower 503a is provided at the outlet formed on the top surface.
  • two heat source side heat exchangers are arranged in the vertical direction in the casing of the first heat source side unit 501A. These heat source side heat exchangers have the same shape as the heat source side heat exchanger 2 shown in the first embodiment.
  • the heat source side heat exchanger disposed on the upper side is referred to as a first upper heat source side heat exchanger 502a
  • the heat source side heat exchanger disposed on the lower side is referred to as the first lower heat source side heat exchanger. This is referred to as a device 502b.
  • the first upper heat source side heat exchanger 502a includes a first upper distributor 507a having the same configuration as that of the distributor 7 shown in the first embodiment and a first pipe having the same configuration as that of the junction pipe 8 shown in the first embodiment.
  • An upper junction pipe 508a is provided.
  • a branch pipe 36 is connected to the first upper distributor 507a.
  • the first lower heat source side heat exchanger 502b has the same configuration as the first lower distributor 507b having the same configuration as the distributor 7 shown in the first embodiment and the junction pipe 8 shown in the first embodiment.
  • the first lower junction pipe 508b is provided.
  • a branch pipe 38 is connected to the first lower distributor 507b. That is, the heat load of the first upper heat source side heat exchanger 502a is larger than the heat load of the first lower heat source side heat exchanger 502b.
  • the housing of the second heat source side unit 501B has the same shape as the housing 11 shown in the first embodiment, and the second blower 503b is provided at the air outlet formed on the top surface.
  • two heat source side heat exchangers are arranged in the vertical direction in the casing of the second heat source side unit 501B. These heat source side heat exchangers have the same shape as the heat source side heat exchanger 2 shown in the first embodiment.
  • the heat source side heat exchanger disposed on the upper side is referred to as a second upper heat source side heat exchanger 502c
  • the heat source side heat exchanger disposed on the lower side is referred to as a second lower heat source side heat exchanger. This is referred to as 502d.
  • the second upper heat source side heat exchanger 502c is a second upper distributor 507c having the same configuration as that of the distributor 7 shown in the first embodiment and a second pipe having the same configuration as that of the junction pipe 8 shown in the first embodiment.
  • An upper junction pipe 508c is provided.
  • a branch pipe 37 is connected to the second upper distributor 507c.
  • the second lower heat source side heat exchanger 502d is a second lower distributor 507d having the same configuration as the distributor 7 shown in the first embodiment and a second lower distributor 507d having the same configuration as the junction pipe 8 shown in the first embodiment.
  • Two lower joining pipes 508d are provided.
  • a branch pipe 39 is connected to the second lower distributor 507d. That is, the heat load of the second upper heat source side heat exchanger 502c is larger than the heat load of the second lower heat source side heat exchanger 502d.
  • the heat load of the first upper heat source side heat exchanger 502a is larger than the heat load of the second upper heat source side heat exchanger 502c, and the second upper heat source side heat exchanger 502a
  • the heat load of the heat exchanger 502c is larger than the heat load of the first lower heat source side heat exchanger 502b
  • the heat load of the first lower heat source side heat exchanger 502b is the second lower heat source side heat exchanger.
  • the configuration is larger than the thermal load of 502d. That is, the magnitude of the heat load is as follows: first upper heat source side heat exchanger 502a> second upper heat source side heat exchanger 502c> first lower heat source side heat exchanger 502b> second lower heat source side heat exchanger 502d. It has become.
  • the first upper heat source side heat exchanger 502a, the first lower heat source side heat exchanger 502b, the second upper heat source side heat exchanger 502c, and the second lower heat source side heat exchanger 502d are evaporators.
  • the gas-liquid two-phase refrigerant flows into the horizontal piping part 27 of the branch circuit 509 from the direction of the white arrow.
  • the liquid phase refrigerant having a large inertial force tends to be unevenly distributed at the end portion of the horizontal pipe portion 27. Therefore, the branch pipes connected to the heat source side heat exchanger having a large heat load are connected in order, for example, substantially vertically from the terminal end of the horizontal piping part 27 toward the inlet side.
  • the pipe 37, the branch pipe 38 connected to the first lower heat source side heat exchanger 502b, and the branch pipe 39 connected to the second lower heat source side heat exchanger 502d are connected in this order.
  • the gas-liquid two-phase refrigerant having a lower dryness flows into the branch pipe connected to the position closer to the terminal end of the horizontal pipe section 27. That is, a gas-liquid two-phase refrigerant having a lower dryness flows into the heat source side heat exchanger with a larger heat load.
  • the first upper heat source side heat exchanger 502a, the first lower heat source side heat exchanger 502b, the second upper heat source side heat exchanger 502c, and the second lower heat source side heat exchanger 502d are provided.
  • the first upper heat source side heat exchanger 502a, the first lower The heat exchange performance (heat exchange efficiency) of the partial heat source side heat exchanger 502b, the second upper heat source side heat exchanger 502c, and the second lower heat source side heat exchanger 502d is increased, and the system performance of the entire air conditioner 610 is improved. it can.
  • Embodiment 8 FIG.
  • casing was assumed.
  • the present invention is not limited to this, and the present invention can also be implemented for an air conditioner including a heat source unit having another configuration. Hereinafter, an example of such an air conditioner will be described.
  • parts having the same configuration as in any of the first to seventh embodiments are denoted by the same reference numerals. Further, matters not mentioned in the eighth embodiment are the same as those in the first to seventh embodiments.
  • FIG. 21 is a perspective view showing a heat source side unit of an air conditioner according to Embodiment 8 of the present invention.
  • the heat source side unit 601 of the air conditioner 710 according to the eighth embodiment includes a housing 611 in which a suction port 601a and a blower outlet 601b are formed on a side surface portion.
  • casing 611 the upper heat source side heat exchanger 2a and the lower heat source side heat exchanger 2b are arranged in parallel by the up-down direction so as to oppose the suction inlet 601a. Note that these heat source side heat exchangers may be juxtaposed in the horizontal direction.
  • the 1st air blower 603a and the 2nd air blower 603b are provided in the blower outlet 601b.
  • the 1st air blower 603a is arrange
  • the 2nd air blower 603b is arrange
  • the air conditioner 710 configured as described above, when the circulation amount of the refrigerant decreases during low-capacity operation or the like, a large amount of liquid phase refrigerant is supplied to one heat source side heat exchanger, and the heat source side heat is supplied. It is better to increase the rotational speed of the blower corresponding to the exchanger than the other. This is because the refrigerant is uniformly distributed to the heat transfer tubes of the heat source side heat exchanger. At this time, since the rotation speed of the other blower, that is, power consumption can be reduced, energy saving is comprehensively achieved.
  • the refrigerant circuit of the air conditioner 710 according to the eighth embodiment is the upper heat source side heat exchanger 2a.
  • a refrigerant having a lower dryness than the refrigerant supplied to the lower heat source side heat exchanger 2b can be supplied. That is, more liquid phase refrigerant can be supplied to the upper heat source side heat exchanger 2a than the lower heat source side heat exchanger 2b.
  • the air conditioner 710 according to the eighth embodiment includes the first blower 603a that supplies air to the upper heat source side heat exchanger 2a when the circulation amount of the refrigerant decreases during low-capacity operation or the like. Energy saving of the air conditioner 710 can be realized by increasing the number of rotations and decreasing the number of rotations of the second blower 603b.

Abstract

空気調和機10の冷媒回路においては、熱負荷が大きい上部熱源側熱交換器2aと熱負荷が小さい下部熱源側熱交換器2bとが、絞り装置15と圧縮機4の吸入側との間で並列に接続されている。また、空気調和機10冷媒回路は、上部熱源側熱交換器2a及び下部熱源側熱交換器2bのそれぞれに冷媒を分配する分岐回路9を備え、該分岐回路9は、上部熱源側熱交換器2aに対して、下部熱源側熱交換器2bに供給する冷媒よりも、乾き度の小さい冷媒を供給する構成となっている。

Description

冷媒回路及び空気調和機
 本発明は、複数の蒸発器を備えた冷媒回路、及び該冷媒回路を備えた空気調和機に関するものである。
 従来、蒸発器内に複数の冷媒流路を形成し、蒸発器の上流側に気液分離器及び分流管を設け、各冷媒流路に熱交換能力に応じた気液混合比率の冷媒を供給する冷媒回路が提案されている(例えば特許文献1参照)。
実開平2-96569号公報
 近年、複数の蒸発器を並列に接続した冷媒回路が提案されている。このような冷媒回路においては、各蒸発器の熱負荷が不均等になる場合がある。このような場合、蒸発器での熱交換性能の低下を抑制するために、熱負荷に応じた気液混合比率の冷媒を各蒸発器に分配する必要がある。しかしながら、特許文献1に記載の技術では、1つの蒸発器の各冷媒流路に異なる気液混合比率の冷媒を供給できるものの、複数の蒸発器を並列接続した際に各蒸発器へ熱負荷に応じた気液混合比率の冷媒を供給できず、蒸発器の熱交換性能が低下してしまうという問題点があった。
 本発明は、上記のような問題点を解決するためになされたものであり、並列に接続された複数の熱交換器に対し、熱負荷に応じた気液混合比率の冷媒を分配することができる冷媒回路、及び該冷媒回路を備えた空気調和機を提供することを目的としている。
 本発明に係る冷媒回路は、圧縮機、凝縮器、絞り装置及び熱負荷が異なる複数の蒸発器を備え、複数の前記蒸発器が、前記絞り装置と前記圧縮機の吸入側との間で並列に接続された冷媒回路において、前記絞り装置と複数の前記蒸発器との間に設けられ、複数の前記蒸発器のそれぞれに冷媒を分配する分岐回路を備え、該分岐回路は、前記蒸発器の1つである第一蒸発器に対して、当該第一蒸発器よりも熱負荷が小さい前記蒸発器である第二蒸発器に供給する冷媒よりも、乾き度の小さい冷媒を供給する構成となっている。
 本発明に係る冷媒回路は、分岐回路によって、熱負荷が大きい蒸発器に対して熱負荷が小さい蒸発器よりも乾き度の小さい冷媒を供給する構成となっている。つまり、本発明に係る冷媒回路は、熱負荷が大きい蒸発器に対して、熱負荷が小さい蒸発器よりも、潜熱が大きな液相の冷媒を多く流入させる構成となっている。このため、本発明に係る冷媒回路は、分岐回路によって熱負荷に応じた冷媒分流を実現できるので、蒸発器の熱交換性能を従来よりも向上させることができる。
本発明の実施の形態1による空気調和機の一例を示す冷媒回路図である。 本発明の実施の形態1による空気調和機の熱源側ユニットを示す斜視透視図である。 本発明の実施の形態1による空気調和機の熱源側熱交換器の一例を示す斜視図である。 本発明の実施の形態1による空気調和機の分岐回路の垂直配管部近傍を示す要部拡大図(断面図)である。 本発明の実施の形態1による空気調和機にハイドロフルオロカーボン冷媒R410aを用いた場合のP-Hサイクル線図である。 本発明の実施の形態1による空気調和機の分岐回路の垂直配管部近傍を示す要部拡大図(断面図)であり、垂直配管部及び第二分岐管を流れる冷媒の流動状態を示したものである。 本発明の実施の形態1による空気調和機の上部熱源側熱交換器及び下部熱源側熱交換器の伝熱管出口の過熱度を示す図である。 本発明の実施の形態2による空気調和機の一例を示す冷媒回路図である。 本発明の実施の形態3による空気調和機の一例を示す冷媒回路図である。 本発明の実施の形態3による空気調和機の分岐回路の気液分離器近傍を示す要部拡大図(断面図)である。 本発明の実施の形態3による空気調和機の分岐回路の気液分離器近傍を示す要部拡大図(断面図)であり、気液分離器を流れる冷媒の流動状態を示したものである。 本発明の実施の形態4による空気調和機の一例を示す冷媒回路図である。 本発明の実施の形態4による空気調和機の分岐回路の水平配管部近傍を示す要部拡大図(断面図)である。 本発明の実施の形態4による空気調和機の分岐回路の水平配管部近傍を示す要部拡大図(断面図)であり、水平配管部を流れる冷媒の流動状態を示したものである。 本発明の実施の形態5による空気調和機の一例を示す冷媒回路図である。 本発明の実施の形態5による空気調和機の流量制御装置の制御方法の一例を示すフローチャートである。 本発明の実施の形態6による空気調和機の一例を示す冷媒回路図である。 本発明の実施の形態7による空気調和機の熱源側ユニットを示す斜視透視図である。 本発明の実施の形態7による空気調和機の一例を示す冷媒回路図である。 本発明の実施の形態7による空気調和機の分岐回路の水平配管部近傍を示す要部拡大図(断面図)であり、水平配管部を流れる冷媒の流動状態を示したものである。 本発明の実施の形態8による空気調和機の熱源側ユニットを示す斜視図である。
 以下、本発明に係る冷媒回路、及び該冷媒回路を備えた空気調和機の実施の形態について、図面を参照しながら説明する。なお、以下に説明する各実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、本明細書における「垂直方向」及び「水平方向」は、厳格に解釈されるべきものではなく、方向の目安として理解されるべきものである。
実施の形態1.
 図1は、本発明の実施の形態1による空気調和機の一例を示す冷媒回路図である。図2は、この空気調和機の熱源側ユニットを示す斜視透視図である。図3は、この空気調和機の熱源側熱交換器の一例を示す斜視図である。また、図4は、この空気調和機の分岐回路の垂直配管部近傍を示す要部拡大図(断面図)である。なお、図1の白抜き矢印は、暖房運転時の冷媒の流れ方向を示している。
 本実施の形態1に係る空気調和機10の冷媒回路は、圧縮機4、暖房運転時に凝縮器として機能する利用側熱交換器16、絞り装置15、及び、暖房運転時に蒸発器として機能する複数の熱源側熱交換器2が順次配管接続されて構成されている。また、複数の熱源側熱交換器2は、絞り装置15と圧縮機4の吸入側との間で並列に接続されている。これら複数の熱源側熱交換器2は、後述のように、熱負荷が異なるものである。なお、図1では、2つの熱源側熱交換器2(上部熱源側熱交換器2a及び下部熱源側熱交換器2b)を備える例を示している。
 ここで、上部熱源側熱交換器2aが本発明の第一蒸発器に相当し、下部熱源側熱交換器2bが本発明の第二蒸発器に相当する。
 また、本実施の形態1に係る空気調和機10の冷媒回路は、絞り装置15と複数の熱源側熱交換器2との間に設けられた分岐回路9を備えている。分岐回路9は、暖房運転時、上部熱源側熱交換器2a及び下部熱源側熱交換器2bのそれぞれに、熱負荷に応じた気液混合比率の冷媒を分配するものである。
 また、本実施の形態1に係る空気調和機10の冷媒回路は、冷房運転及び暖房運転の双方を実現するため、圧縮機4の吐出側に流路切替器12を備えている。また、本実施の形態1に係る空気調和機10の冷媒回路は、圧縮機4の吸入側に、圧縮機4への液バックを抑制するアキュムレータ5も備えている。
 空気調和機10の冷媒回路を構成するこれらの構成は、熱源側ユニット1又は利用側ユニット14に収納されている。
 熱源側ユニット1は、利用側ユニット14と共に冷媒を循環させる冷凍サイクルを構成する。詳しくは、熱源側ユニット1は、暖房運転時、戸外から収集した熱を利用側ユニット14に供給するものである。また、熱源側ユニット1は、冷房運転時、空調対象である室内等から利用側ユニット14が収集した熱を戸外へ排出するものである。この熱源側ユニット1は、筐体11を有しており、筐体11内に圧縮機4、流路切替器12、上部熱源側熱交換器2a、下部熱源側熱交換器2b、送風機3、アキュムレータ5及び分岐回路9を収納している。
 一方、利用側ユニット14は、空調対象である室内等に設置されており、利用側熱交換器16及び絞り装置15を収納している。なお、本実施の形態1に係る空気調和機10は、2つの利用側ユニット14(第一利用側ユニット14a及び第二利用側ユニット14b)を備えている。第一利用側ユニット14aは、第一利用側熱交換器16a及び第一絞り装置15aを収納している。第二利用側ユニット14bは、第二利用側熱交換器16b及び第二絞り装置15bを収納している。第一利用側ユニット14a及び第二利用側ユニット14bは、並列接続されている。
 なお、利用側ユニット14の数は2つに限定されるものではなく、1つであってもよいし、3つ以上あってもよい。
 圧縮機4は、冷媒を吸引及び圧縮して高温・高圧の状態にするものであって、例えばスクロール型圧縮機、ベーン型圧縮機等から構成されている。流路切替器12は、冷房運転又は暖房運転の運転モードの切替に応じて暖房流路と冷房流路との切替を行うものであって、例えば四方弁からなっている。流路切替器12は、暖房運転時において、圧縮機4の吐出側と利用側熱交換器16とを接続するとともに、熱源側熱交換器2と圧縮機4の吸入側(アキュムレータ5が設けられている場合にはアキュムレータ5)とを接続する。一方、流路切替器12は、冷房運転時において、圧縮機4の吐出側と熱源側熱交換器2とを接続するとともに、利用側熱交換器16と圧縮機4の吸入側(アキュムレータ5が設けられている場合にはアキュムレータ5)とを接続する。なお、流路切替器12として四方弁を用いた場合について例示しているが、これに限らず例えば複数の二方弁等を組み合わせて構成してもよい。また、空気調和機10を暖房運転専用のものとして構成する場合には、流路切替器12を設ける必要は特にない。
 熱源側熱交換器2は、冷媒と外気(戸外の空気)との間で熱交換を行うものであって、例えば筐体11の天面視コ字状(換言するとU字状)に曲げられた形状を有している。上述のように、本実施の形態1に係る空気調和機10は、2つの熱源側熱交換器2(上部熱源側熱交換器2a及び下部熱源側熱交換器2b)を有している。下部熱源側熱交換器2bは筐体11の下部に配置されている。上部熱源側熱交換器2aは、筐体11の上部側、つまり下部熱源側熱交換器2bよりも上方に配置されている。また、筐体11には、上部熱源側熱交換器2a及び下部熱源側熱交換器2bと対向する側面部に、吸込口1aが形成されている。上部熱源側熱交換器2aと下部熱源側熱交換器2bとは伝熱フィンが切断されている。
 具体的には、熱源側熱交換器2(上部熱源側熱交換器2a及び下部熱源側熱交換器2bのそれぞれ)は、例えば図3のように構成されている。熱源側熱交換器2は、水平方向に配置された複数の伝熱管40を備えている。これら伝熱管40は、上下方向に所定の間隔を空けて並設されている。伝熱管40は例えば扁平管であり、その内部に複数の冷媒流路が形成されている。また、熱源側熱交換器2は、複数の伝熱管40が挿入された複数の伝熱フィン41を備えている。これら伝熱フィン41は、伝熱管40の軸方向に所定の間隔(例えば3mm)を空けて並設されている。空気調和機10の運転時、図3に白抜き矢印で示すように、伝熱フィン41の平面に沿って伝熱フィン41間に空気が流れる。また、伝熱管40の冷媒流路を流れる冷媒は、伝熱管40の軸方向に流動する。これにより、冷媒と外気とが熱交換して廃熱又は熱供給が実現される。なお、本実施の形態1では、複数の伝熱管40及び複数の伝熱フィン41で熱交換ユニットを構成し、外気の通風方向にそって複数の熱交換ユニットを並設して、熱源側熱交換器2を構成している。
 また、図1及び図2に示すように、熱源側熱交換器2は、複数の伝熱管40に接続された合流管8及び分配器を備えている。本実施の形態1ではヘッダ型の分配器7を用いている。
 詳しくは、上部熱源側熱交換器2aの各伝熱管40は、上部合流管8a及びヘッダ型の上部分配器7aに接続されている。上部合流管8aは、上部熱源側熱交換器2aが蒸発器として機能する際(暖房運転時)に冷媒出口になるものであって、流路切替器12に接続されている。上部分配器7aは、上部熱源側熱交換器2aが蒸発器として機能する際(暖房運転時)に冷媒入口になるものであって、ヘッダ及びヘッダから上部熱源側熱交換器2aの各伝熱管40に接続された分岐管を有している。そして、暖房運転時において、上部分配器7aに流入した冷媒は、各分岐管から上部熱源側熱交換器2aの各伝熱管40へ分配され、上部合流管8aから流出するようになっている。
 また、下部熱源側熱交換器2bの各伝熱管40は、下部合流管8b及びヘッダ型の下部分配器7bに接続されている。下部合流管8bは、下部熱源側熱交換器2bが蒸発器として機能する際(暖房運転時)に冷媒出口になるものであって、流路切替器12に接続されている。下部分配器7bは、下部熱源側熱交換器2bが蒸発器として機能する際(暖房運転時)に冷媒入口になるものであって、ヘッダ及びヘッダから下部熱源側熱交換器2bの各伝熱管40に接続された分岐管を有している。そして、暖房運転時において、下部分配器7bに流入した冷媒は、各分岐管から下部熱源側熱交換器2bの各伝熱管40へ分配され、下部合流管8bから流出するようになっている。
 送風機3は、上部熱源側熱交換器2a及び下部熱源側熱交換器2bに送風するものである。筐体11の天面には吹出口1bが形成されており、送風機3は該吹出口1b(換言すると筐体11の天面)に設けられている。つまり、送風機3は、吹出口1bから吹き出される気流と上部熱源側熱交換器2a及び下部熱源側熱交換器2bを流れる気流とが角度をもつように設けられている。なお、送風機3は、筐体11内において、圧縮機4、アキュムレータ5及び流路切替器12に気流を干渉させないことを両立させている。この結果、吸込口1aから筐体11内に吸い込まれた空気は、筐体11内部で転向し、筐体11の天面に形成された吹出口1bからおおよそ垂直方向に吹き出される。
 絞り装置15(第一絞り装置15a及び第二絞り装置15b)は、利用側熱交換器16と分岐回路9との間に設けられており、流量を調整することにより冷媒の状態を調整するものである。絞り装置15は、例えばLEV(リニア電子膨張弁)等に代表される絞り装置、又は開閉により冷媒の流れのON/OFFを行う開閉弁等からなっている。アキュムレータ5は、圧縮機4の吸入側に設けられたものであって冷媒を貯留するものである。そして、圧縮機4は、アキュムレータ5に貯留された冷媒のうち気相冷媒を吸引し圧縮するようになっている。なお、圧縮機4に液バックしない条件でしか空気調和機10を運転しないような場合には、アキュムレータ5を設ける必要は特にない。
 分岐回路9は、上述のように、上部熱源側熱交換器2a及び下部熱源側熱交換器2bのそれぞれに、熱負荷に応じた気液混合比率の冷媒を分配するものである。詳しくは、後述のように、上部熱源側熱交換器2aの熱負荷は、下部熱源側熱交換器2bの熱負荷よりも大きくなっている。このため、分岐回路9は、上部熱源側熱交換器2aに対して、下部熱源側熱交換器2bに供給する冷媒よりも、乾き度の小さい冷媒を供給する構成となっている。
 本実施の形態1に係る分岐回路9は、気液分離器6、主流管20、第一分岐管21a及び第二分岐管21bで構成されている。気液分離器6は、絞り装置15と熱源側熱交換器2との間に設けられ、暖房運転時に絞り装置15から流出した気液二相冷媒を気相冷媒と液相冷媒とに分離するものである。主流管20は、一端が気液分離器6の例えば下部に接続され、暖房運転時に下流側へ液相冷媒又は気液二相冷媒を供給するものである。第一分岐管21aは、一端が主流管20に接続され、他端が上部熱源側熱交換器2aの上部分配器7aに接続されるものである。本実施の形態1では、主流管20は、垂直方向に配置された垂直配管部20aを有している。そして、第一分岐管21aの一端は、垂直配管部20aの例えば下端部に接続されている。第二分岐管21bは、一端が主流管20に接続され、他端が下部熱源側熱交換器2bの下部分配器7bに接続されるものである。本実施の形態1では、第二分岐管21bの一端は、垂直配管部20aと第一分岐管21aとの接続位置よりも冷媒流れ方向の上流側となる位置において、第一分岐管21aに接続されている。図4に示すように、第二分岐管21bは水平方向に沿って配置されており、第二分岐管21bと主流管20の垂直配管部20aとの接続部は、T字状の分岐流路となっている。また、本実施の形態1では、第二分岐管21bの一端を、垂直配管部20aの内部に突出させた構成にしている。
 暖房運転時、気液分離器6から主流管20に流入した液相冷媒又は気液二相冷媒は、垂直配管部20a内を上部から下部へ流れる。そして、この冷媒は、第二分岐管21bと主流管20の垂直配管部20aとの接続部で分配され、一部が第二分岐管21bを通って下部熱源側熱交換器2bの下部分配器7bに流入する。また、この冷媒の残りの一部は、第一分岐管21aを通って上部熱源側熱交換器2aの上部分配器7aに流入する。一方、冷房運転時、上部分配器7aから流出した液相冷媒は、第一分岐管21a及び主流管20を通って気液分離器6に流入する。また、下部分配器7bから流出した液相冷媒は、第二分岐管21b及び主流管20を通って気液分離器6に流入する。
 また、本実施の形態1に係る空気調和機10は、気液分離器6から気相冷媒を流出させる気相冷媒流出配管23と、該気相冷媒流出配管23に設けられた流量制御装置13とを備えている。気相冷媒流出配管23の一端は、気液分離器6の例えば上部に接続されている。また、気相冷媒流出配管23の他端は、熱源側熱交換器2と流路切替器12とを接続する配管42に接続されている。換言すると、気相冷媒流出配管23の他端は、暖房運転時に熱源側熱交換器2と圧縮機4の吸入側とを接続する配管42に接続されている。流量制御装置13は、気液分離器6からの気相冷媒の流出量を調整するものであり、例えばLEV(リニア電子膨張弁)等に代表される絞り装置や開閉により冷媒の流れのON/OFFを行う開閉弁等で構成される。なお、本実施の形態1では、流量制御装置13としてリニア電子膨張弁を用いる。
 ここで、配管42が本発明の吸入配管に相当する。なお、気相冷媒流出配管23及び流量制御装置13は、必須の構成ではない。これらの構成が無くとも、上部熱源側熱交換器2a及び下部熱源側熱交換器2bのそれぞれに、熱負荷に応じた気液混合比率の冷媒を分配することができる。ただし、気相冷媒流出配管23及び流量制御装置13を備えることにより、熱源側熱交換器2の熱交換性能をより向上させることができる。流量制御装置13の制御方法の一例は、実施の形態5で後述する。
 次に、図1を参照して、上部熱源側熱交換器2a及び下部熱源側熱交換器2bが蒸発器として動作する場合(暖房運転)の空気調和機10の動作例について説明する。
 まず、冷媒が圧縮機4において圧縮された気相冷媒になり、圧縮機4から流路切替器12を介して第一利用側熱交換器16a及び第二利用側熱交換器16bへと流れる。その後、気相冷媒は、第一利用側熱交換器16a及び第二利用側熱交換器16bにおいて放熱して気体から液体へと凝縮し、凝縮した冷媒が第一絞り装置15a及び第二絞り装置15bにおいて減圧されることで気液二相状態となる。そして、気液二相状態の冷媒が気液分離器6へと流入し、気相冷媒が流量制御装置13を通じて流路切替器12へ流通し、他方気液二相又は液相の冷媒が主流管20へ流入する。主流管20に流入した気液二相又は液相の冷媒は、第一分岐管21a及び第二分岐管21bを介して上部分配器7a及び下部分配器7bへと分配される。上部分配器7a及び下部分配器7bに流入した気液二相又は液相の冷媒は、各々、複数の伝熱管40に分配され、送風機3の送風により空気から吸熱することで蒸発する。これにより、上部熱源側熱交換器2a及び下部熱源側熱交換器2bの各伝熱管40内を流れる冷媒は、気液二相状態の気体の割合が上昇する。その後、各伝熱管40から流出した冷媒は、上部合流管8a又は下部合流管8bを経て、流量制御装置13からの流れと合流の後、流路切替器12を経てアキュムレータ5に流れる。その後、アキュムレータ5内の冷媒が圧縮機4へと吸入される。
 図5は、本発明の実施の形態1による空気調和機にハイドロフルオロカーボン冷媒R410aを用いた場合のP-Hサイクル線図である。なお、図5は、上部熱源側熱交換器2a及び下部熱源側熱交換器2bが蒸発器として動作する上記の暖房運転の場合を示している。また、図5のうち、略台形の実線がサイクル動作状態を示している。また、横軸の比エンタルピー軸から伸びたX=0.1からX=0.9の線は冷媒の気相の比率を示す等乾き度線である。また、凸実線は飽和線であり、左側の領域が気体、右側の領域が液体となる。
 上述した暖房運転時の冷凍サイクルは、点AAから点AB、点AC、点AF、点AE、点ADにて運転される。点ABは圧縮機4の吐出部で過熱気体である。冷媒は第一利用側熱交換器16a及び第二利用側熱交換器16bで放熱されることで第一利用側熱交換器16a及び第二利用側熱交換器16bの出口では点ACの過冷却液になる。その後、冷媒は第一絞り装置15a及び第二絞り装置15bを通過することで減圧され、点AFの乾き度0.2程度の気液二相状態になる。この気液二相状態の冷媒は気液分離器6に流入し気液分離がなされ、気相冷媒は流量制御装置13を介してアキュムレータ5の点AAへ流入し、気液二相又は液相の冷媒は主流管20へ流入する。主流管20に流入した気液二相又は液相の冷媒は、第一分岐管21a及び第二分岐管21bを介して上部分配器7a及び下部分配器7bへと分配される。このとき、上部分配器7aへは乾き度の相対的に低い点ADの気液二相冷媒が流入し、下部分配器7bへは乾き度の相対的に高い点AEの気液二相冷媒が流入する。その後、上部熱源側熱交換器2a及び下部熱源側熱交換器2bの各伝熱管40で冷媒が蒸発し、点AAの状態点となる。なお、主流管20、第一分岐管21a及び第二分岐管21bにおいて異なる乾き度の冷媒に分岐されることは後述する。
 ここで、上部熱源側熱交換器2a及び下部熱源側熱交換器2bが蒸発器として動作する場合、上部分配器7a及び下部分配器7bには気液二相状態の冷媒が流入する。気液二相冷媒は密度が異なる気体と液体とが混在しており、各相の冷媒は、流速に依存した運動エネルギーと、重力によって定まる位置エネルギーの釣り合いとを維持しながら流動する。上部熱源側熱交換器2a及び下部熱源側熱交換器2bの熱交換効率を高めるためには、エンタルピーが低い液相の冷媒が上部分配器7a及び下部分配器7bから各々の伝熱管40へ熱負荷に応じて分配されることが望ましい。
 空気調和機10の熱源側ユニット1においては、上部熱源側熱交換器2aから送風機3までの距離と、下部熱源側熱交換器2bから送風機3までの距離とが異なる。このため、上部熱源側熱交換器2aに流入する空気の流量と、下部熱源側熱交換器2bと流入する空気の流量も異なる。すなわち、上部熱源側熱交換器2aと下部熱源側熱交換器2bとは、熱負荷が異なっている。具体的には送風機3に近接する上部熱源側熱交換器2aへの空気の流入が下部熱源側熱交換器2bより相対的に大きく、従って熱負荷も上部熱源側熱交換器2aが下部熱源側熱交換器2bより大きい。
 なお、上部熱源側熱交換器2aの熱負荷が大きくなる構成としては、前述以外に例えば、上部熱源側熱交換器2aの伝熱フィン41の枚数が下部熱源側熱交換器2bより密に設けられ、上部熱源側熱交換器2aの伝熱面積が下部熱源側熱交換器2bよりも相対的に大きくなる場合がある。また例えば、上部熱源側熱交換器2aの伝熱フィン41の形状が下部熱源側熱交換器2bとは異なっていて、伝熱フィン41の形状によって定まる熱伝達率が下部熱源側熱交換器2bより大きい構成の場合がある。
 空気調和機10の性能として重要な蒸発時の熱交換器効率を向上するためには、熱負荷の比に応じて液相の冷媒を各熱源側熱交換器2へ分配することが望ましい。従って、上部熱源側熱交換器2aには、下部熱源側熱交換器2bよりも潜熱が大きな液相の冷媒を多く流入させる必要がある。上述のように、上部熱源側熱交換器2a及び下部熱源側熱交換器2bは、伝熱管40の上流に、各々、上部分配器7a及び下部分配器7bが設けられている。そして、上部分配器7a及び下部分配器7bへの冷媒の分配は、主流管20、第一分岐管21a及び第二分岐管21bにおいて行われる。
 図6は、本発明の実施の形態1による空気調和機の分岐回路の垂直配管部近傍を示す要部拡大図(断面図)であり、垂直配管部及び第二分岐管を流れる冷媒の流動状態を示したものである。
 上部熱源側熱交換器2a及び下部熱源側熱交換器2bが蒸発器として動作する場合、上部熱源側熱交換器2aには下部熱源側熱交換器2bよりも潜熱が大きな液相の冷媒を多く流入させる必要がある。従って、上部分配器7aに下部分配器7bよりも多くの液相の冷媒を流入させる必要がある。
 上部熱源側熱交換器2a及び下部熱源側熱交換器2bが蒸発器として動作する場合、主流管20内では、気液二相冷媒が上部より鉛直下向き方向に流動する。このとき、図6に示すとおり、主流管20内では、外周方向つまり壁面側に液相冷媒(図6中「A」)が、内周方向に気相冷媒(図6中「B」)が偏在する。液相冷媒は、気相冷媒に比べて密度が相対的に大きいため、重力の影響で降下速度が増加する。従って、第二分岐管21bへは、主流管20の内周側から気相冷媒が相対的に多く流入する。また、慣性力の大きな液相冷媒は、第二分岐管21bへと転向流入しにくく、第二分岐管21bへの流入量が相対的に少なくなる。
 この性質から、第二分岐管21bは主流管20の出口に比べて相対的に液相の冷媒が少なく、すなわち第一分岐管21aへ流入する液相の冷媒が相対的に増加する。そこで、第二分岐管21bに下部分配器7bを接続し、主流管20において下部分配器7bのよりも下方となる位置に接続された第一分岐管21aに上部分配器7aを接続することで、熱負荷の大きな上部熱源側熱交換器2aに液相冷媒を相対的に多く流入させることが出来る。つまり、熱負荷の大きな上部熱源側熱交換器2aに対して、下部熱源側熱交換器2bに供給する冷媒よりも、乾き度の小さい冷媒を供給することができる。
 なお、第二分岐管21b先端の主流管20内への突出量に応じて、第二分岐管21bへ流入する冷媒の気液混合比率を調整することができる。詳しくは、第二分岐管21bの先端(つまり開口部)を主流管20の管軸近くに配置するほど、第二分岐管21bへは、気相冷媒が流入しやすくなり、液相冷媒が流入しにくくなる。
 図7は、本発明の実施の形態1による空気調和機の上部熱源側熱交換器及び下部熱源側熱交換器の伝熱管出口の過熱度を示す図である。なお、図7の縦軸は、上部熱源側熱交換器2a及び下部熱源側熱交換器2bの各伝熱管40を示しており、下部に配置された伝熱管40から上方に配置された伝熱管40にかけて、番号を付したものである。番号「1」から「16」が下部熱源側熱交換器2bの伝熱管40であり、番号「17」から「33」が上部熱源側熱交換器2aの伝熱管40である。また、横軸に示す過熱度は、上部熱源側熱交換器2a及び下部熱源側熱交換器2bが蒸発器として動作する場合における各伝熱管40出口の過熱度を示したものである。過熱度とは、伝熱管40の出口の冷媒の温度から、伝熱管40に流入する気液二相冷媒の温度を減算したものである。
 図7に示すように、本実施の形態1のように分岐回路9を用いて上部熱源側熱交換器2a及び下部熱源側熱交換器2bを並列接続することにより、加熱度分布が上部熱源側熱交換器2a及び下部熱源側熱交換器2bで均一化できる。
 上記実施の形態1によれば、上部熱源側熱交換器2a及び下部熱源側熱交換器2bが蒸発器として動作する場合、分岐回路9により熱負荷の大きな上部熱源側熱交換器2aに液相冷媒を相対的に多く流入させることにより、上部熱源側熱交換器2a及び下部熱源側熱交換器2bの熱交換性能(熱交換効率)を増加させ、空気調和機10全体のシステム性能を向上できる。
 なお、上記実施の形態1で示した主流管20及び第二分岐管21bの接続構成は、あくまでも一例である。熱負荷の大きな上部熱源側熱交換器2aに対して、下部熱源側熱交換器2bに供給する冷媒よりも乾き度の小さい冷媒を供給することができる構成であればよい。この条件を満たすのであれば、主流管20及び第二分岐管21bの設置姿勢、主流管20に対する第二分岐管21bの接続角度、主流管20及び第二分岐管21bの断面形状は任意である。
実施の形態2.
 熱負荷の大きな上部熱源側熱交換器2aに液相冷媒を相対的に多く流入させる分岐回路は、実施の形態1で示したものに限定されるものではない。第二分岐管21bの端部は、絞り装置15から主流管20と第一分岐管21aとの接続部までの間に接続されていればよい。例えば以下のように分岐回路を構成してもよい。なお、本実施の形態2では、実施意の形態1と同一の構成を有する部位には同一の符号を付し、その説明を省略する。
 図8は、本発明の実施の形態2による空気調和機の一例を示す冷媒回路図である。本実施の形態2に係る空気調和機110が実施の形態1に係る空気調和機10と異なる点は、熱源側熱交換器102及び分岐回路109の構成である。
 熱源側熱交換器102は、実施の形態1で示したヘッダ型の分配器7に換えて、ヘッダ型でない分配器107を備えている。詳しくは、本実施の形態2に係る空気調和機110は、実施の形態1と同様に、2つの熱源側熱交換器102(上部熱源側熱交換器102a及び下部熱源側熱交換器102b)を備えている。そして、上部熱源側熱交換器102aの各伝熱管40は上部分配器107aに接続されており、下部熱源側熱交換器102bの各伝熱管40は下部分配器107bに接続されている。また、実施の形態1と同様に、上部熱源側熱交換器102aの熱負荷は、下部熱源側熱交換器102bの熱負荷よりも大きい。
 なお、分配器7はあくまでも一例である。熱源側熱交換器102に、実施の形態1で示したヘッダ型の分配器7を用いてもよい。また、実施の形態1及び後述する実施の形態に係る熱源側熱交換器に、ヘッダ型でない分配器107を用いても勿論よい。
 本実施の形態2に係る分岐回路109は、実施の形態1で示した分岐回路9と同様に、気液分離器6、主流管20、第一分岐管21a及び第二分岐管21bを備えている。第一分岐管21aは、一端が主流管20に接続され、他端が上部熱源側熱交換器102aの上部分配器107aに接続されている。また、第二分岐管21bは、一端が暖房運転時において気液分離器6の上流側となる位置に接続されており、他端が下部熱源側熱交換器102bの下部分配器107bに接続されている。詳しくは、第二分岐管21bの一端は、絞り装置15と気液分離器6とを接続する流入管22に接続されている。流入管22と第二分岐管21bとの接続部は、例えばY字状の分岐流路となっている。流入管22と第二分岐管21bとの接続部では、ほぼ同量の液相冷媒が分岐する。従って、上部熱源側熱交換器102a及び下部熱源側熱交換器102bが蒸発器として動作する暖房運転時には、気液分離器6を通過して乾き度が小さくなった冷媒が上部分配器107aに流入し、相対的に乾き度の大きな冷媒が下部分配器107bに流入する。
 上記実施の形態2においても、上部熱源側熱交換器102a及び下部熱源側熱交換器102bが蒸発器として動作する場合、分岐回路109により熱負荷の小さな下部熱源側熱交換器102bに液相冷媒を相対的に少なく流入させることにより、上部熱源側熱交換器102a及び下部熱源側熱交換器102bの熱交換性能(熱交換効率)を増加させ、空気調和機110全体のシステム性能を向上できる。
実施の形態3.
 上述のように、第二分岐管21bの端部は、絞り装置15から主流管20と第一分岐管21aとの接続部までの間に接続されていればよい。このため、例えば以下のように分岐回路を構成することもできる。なお、本実施の形態3では、実施の形態1又は実施の形態2と同一の構成を有する部位には同一の符号を付す。また、本実施の形態3で言及していない事項については、実施の形態1又は実施の形態2と同様とする。
 図9は、本発明の実施の形態3による空気調和機の一例を示す冷媒回路図である。図10は、この空気調和機の分岐回路の気液分離器近傍を示す要部拡大図(断面図)である。また、図10は、この空気調和機の分岐回路の気液分離器近傍を示す要部拡大図(断面図)であり、気液分離器を流れる冷媒の流動状態を示したものである。
 本実施の形態3に係る空気調和機210が実施の形態1に係る空気調和機10と異なる点は、分岐回路209の構成である。
 本実施の形態3に係る気液分離器6には、例えば側面の中央部に、絞り装置15と気液分離器6とを接続する流入管22が例えば略水平に接続されている。また、気液分離器6には、例えば上部に、気液分離器6から気相冷媒を流出させる気相冷媒流出配管23が接続されている。また、気液分離器6には、例えば下部に、主流管20が接続されている。本実施の形態3においては、さらに、気液分離器6の例えば下部に、第二分岐管21bも接続されている。主流管20及び第二分岐管21bの端部(つまり開口部)は、気液分離器6内に突出している。すなわち、主流管20及び第二分岐管21bは、気液分離器6内で開口している。そして、主流管20は、第二分岐管21bよりも下方となる位置に開口している。
 上部熱源側熱交換器2a及び下部熱源側熱交換器2bが蒸発器として動作する場合、気液二相冷媒が流入管22から気液分離器6に流入する。そして、気液分離器6内では、重力と慣性力のバランスにより、液相冷媒(図11中「A」)、気相冷媒(図11中「B」)、及び、気液二相冷媒(図11中「C」)に分離される。このとき、気液分離器6内において、主流管20は、第二分岐管21bよりも下方となる位置に開口している。このため、気液分離器6底部に生ずる液相冷媒を選択的に流出させることを可能としている。
 上記実施の形態3においても、上部熱源側熱交換器2a及び下部熱源側熱交換器2bが蒸発器として動作する場合、気液分離器6において熱負荷の大きな上部熱源側熱交換器202aに液相冷媒を相対的に大きく流入させることにより、上部熱源側熱交換器2a及び下部熱源側熱交換器2bの熱交換性能(熱交換効率)を増加させ、空気調和機210全体のシステム性能を向上できる。
実施の形態4.
 上述のように、第二分岐管21bの端部は、絞り装置15から主流管20と第一分岐管21aとの接続部までの間に接続されていればよい。このため、例えば以下のように分岐回路を構成することもできる。なお、本実施の形態4では、実施の形態1~実施の形態3のいずれかと同一の構成を有する部位には同一の符号を付す。また、本実施の形態4で言及していない事項については、実施の形態1~実施の形態3のいずれかと同様とする。
 図12は、本発明の実施の形態4による空気調和機の一例を示す冷媒回路図である。図13は、この空気調和機の分岐回路の水平配管部近傍を示す要部拡大図(断面図)である。また、図14は、この空気調和機の分岐回路の水平配管部近傍を示す要部拡大図(断面図)であり、水平配管部を流れる冷媒の流動状態を示したものである。
 本実施の形態4に係る空気調和機310が実施の形態1に係る空気調和機10と異なる点は、分岐回路309の構成である。
 分岐回路309の主流管20は、気液分離器6と接続されていない側の端部側に、該端部の開口部が閉塞されて水平方向に配置された水平配管部27を有している。そして、熱負荷の大きい上部熱源側熱交換器2aに接続されている第一分岐管21aは、この水平配管部27に例えばほぼ垂直に接続されている。また、熱負荷の小さい下部熱源側熱交換器2bに接続されている第二分岐管21bは、水平配管部27と第一分岐管21aとの接続位置よりも暖房運転時に冷媒流れ方向の上流側となる位置において、水平配管部27に例えばほぼ垂直に接続されている。
 上部熱源側熱交換器2a及び下部熱源側熱交換器2bが蒸発器として動作する場合、図13及び図14に示す白抜き矢印方向から、気液二相状態の冷媒が水平配管部27に流入する。このとき、慣性力の大きな液相冷媒が選択的に水平配管部27の終端部に偏在する傾向を示す。従って、水平配管部27の入口近傍の第二分岐管21bには乾き度の高い冷媒が流入し、遠方の第一分岐管21aには乾き度の低い冷媒が流入する。
 上記実施の形態4においても、上部熱源側熱交換器2a及び下部熱源側熱交換器2bが蒸発器として動作する場合、水平配管部27において熱負荷の大きな上部熱源側熱交換器2aに液相冷媒を相対的に大きく流入させることにより、上部熱源側熱交換器2a及び下部熱源側熱交換器2bの熱交換性能(熱交換効率)を増加させ、空気調和機310全体のシステム性能を向上できる。
実施の形態5.
 実施の形態1~実施の形態4で示した流量制御装置13は、例えば以下のように制御される。なお、本実施の形態5では、実施の形態1~実施の形態4のいずれかと同一の構成を有する部位には同一の符号を付す。また、本実施の形態5で言及していない事項については、実施の形態1~実施の形態4のいずれかと同様とする。また、本実施の形態5では、実施の形態1で示した空気調和機の冷媒回路を例に、流量制御装置13の制御方法の一例を説明する。
 図15は、本発明の実施の形態5による空気調和機の一例を示す冷媒回路図である。また、図16は、この空気調和機の流量制御装置の制御方法の一例を示すフローチャートである。
 流量制御装置13を制御する場合、例えば、入口温度検出装置31、出口温度検出装置32、合流温度検出装置33、流量制御装置制御部35及び演算部35aを、空気調和機410の冷媒回路に設ける。
 例えばサーミスタ等の温度センサーである入口温度検出装置31は、第二分岐管21bに設けられており、当該位置の冷媒温度を検出する。例えばサーミスタ等の温度センサーである出口温度検出装置32は、熱源側熱交換器2と流路切替器12とを接続する配管42に設けられており、当該位置の冷媒温度を検出する。より詳しくは、出口温度検出装置32は、該配管42と前記気相冷媒流出配管23との接続部よりも、暖房運転時における冷媒流れ方向の上流側となる位置に設けられている。例えばサーミスタ等の温度センサーである合流温度検出装置33は、熱源側熱交換器2と流路切替器12とを接続する配管42に設けられており、当該位置の冷媒温度を検出する。より詳しくは、合流温度検出装置33は、該配管42と前記気相冷媒流出配管23との接続部よりも、暖房運転時における冷媒流れ方向の下流側となる位置に設けられている。
 演算部35aは、例えばマイコン等で構成されており、入口温度検出装置31、出口温度検出装置32及び合流温度検出装置33の出力信号(検出値)を受信する。そして、演算部35aは、出口温度検出装置32の検出値から入口温度検出装置31の検出値を減算し、熱交換器過熱度を算出する。また、演算部35aは、合流温度検出装置33の検出値から入口温度検出装置31の検出値を減算し、合流過熱度を算出する。流量制御装置制御部35は、例えばマイコン等で構成されている。そして、流量制御装置制御部35は、演算部35aで算出された熱交換器過熱度及び合流過熱度に基づいて流量制御装置13に制御信号を発信し、流量制御装置13の開度を制御する。この流量制御装置13の開度制御は、例えば所定の時間間隔毎に行われる。
 具体的には、流量制御装置制御部35は、図16に示すように、流量制御装置13の開度を制御する。すなわち、流量制御装置制御部35は、熱交換器過熱度>0かつ合流過熱度>0のとき、流量制御装置13の開度を増加させる。また、流量制御装置制御部35は、熱交換器過熱度>0かつ合流過熱度<0のとき、流量制御装置13の開度を減少させる。また、流量制御装置制御部35は、熱交換器過熱度<0の時、流量制御装置13の開度を増加させる。
 熱交換器過熱度>0かつ合流過熱度>0のとき、熱源側熱交換器2は過熱状態であって、気液分離器6の液バックも発生していない状態である。このため、気液分離器6から流路切替器12へ流出する気相冷媒の流量を増加させることで、熱源側熱交換器2で更なる熱交換が可能となる。従って、流量制御装置制御部35は、流量制御装置13の開度を増加させ、気液分離器6から流路切替器12へ流出する気相冷媒の流量を増加させる。
 熱交換器過熱度>0かつ合流過熱度<0のとき、熱源側熱交換器2は過熱状態であって、気液分離器6の液バックが発生している状態である。この状態は、気液分離器6から流路切替器12へ流出する気相冷媒に液相冷媒が多く流入し、冷媒回路内に存在する冷媒がアキュムレータ5に貯留されてしまい、熱源側熱交換器2の熱負荷が減少している状態である。そこで、流量制御装置制御部35は、流量制御装置13の開度を減少させ、気液分離器6から流路切替器12へ流出する気相冷媒の流量を減少し、気液分離器6の液バックを防止して、アキュムレータ5への冷媒の貯留を解消する。これにより熱源側熱交換器2での過熱状態が解消する。
 熱交換器過熱度<0のとき、冷媒回路内を循環する冷媒量が過大であり、また、温度から熱源側熱交換器2の過熱状態を推定できない状態である。このため、流量制御装置制御部35は、流量制御装置13の開度を増加させる。すると、冷媒回路内を循環する冷媒量が減少し、熱源側熱交換器2の出口が過熱状態となる。
 上記実施の形態5によれば、冷媒回路内に適切な量の冷媒を循環させることができるので、上部熱源側熱交換器2a及び下部熱源側熱交換器2bの熱交換性能(熱交換効率)をより増加させ、空気調和機410全体のシステム性能をより向上できる。
実施の形態6.
 実施の形態1~実施の形態5で示した空気調和機の冷媒回路の第二分岐管21bに、該第二分岐管21bを流れる冷媒量を調節する流量制御装置30を設けてもよい。なお、本実施の形態6では、実施の形態1~実施の形態5のいずれかと同一の構成を有する部位には同一の符号を付す。また、本実施の形態6で言及していない事項については、実施の形態1~実施の形態5のいずれかと同様とする。また、本実施の形態6では、実施の形態5で示した空気調和機に流量制御装置30を設けた例について説明する。
 図17は、本発明の実施の形態6による空気調和機の一例を示す冷媒回路図である。
 本実施の形態6に係る空気調和機510は、実施の形態5で示した空気調和機410の構成に加え、流量制御装置30及び流量制御装置制御部34を備えている。流量制御装置30は、第二分岐管21bを流れる冷媒量、つまり、下部熱源側熱交換器2bに流入する冷媒量を調節するものである。第二分岐管21bに入口温度検出装置31が設けられている場合、暖房運転時に下部熱源側熱交換器2bへ流入する冷媒の温度を入口温度検出装置31で検出できるようにするため、流量制御装置30は、入口温度検出装置31よりも、暖房運転時における冷媒流れ方向の上流側に設けられる。流量制御装置30は、例えばLEV(リニア電子膨張弁)等に代表される絞り装置である。流量制御装置制御部34は、例えばマイコン等で構成されており、流量制御装置30に制御信号を発信し、流量制御装置30の開度を制御する。
 上記実施の形態6によれば、上部熱源側熱交換器2a及び下部熱源側熱交換器2bに流入する冷媒の気液混合比率に加え、上部熱源側熱交換器2a及び下部熱源側熱交換器2bに流入する冷媒量を調整することも可能となる。このため、上部熱源側熱交換器2a及び下部熱源側熱交換器2bの熱交換性能(熱交換効率)をより増加させ、空気調和機510全体のシステム性能をより向上できる。
実施の形態7.
 本発明の分岐回路に並列接続できる熱源側熱交換器は、2つに限定されるものではない。以下に、分岐回路に4つの熱源側熱交換器を並列接続する例について説明する。なお、本実施の形態7では、実施の形態1~実施の形態6のいずれかと同一の構成を有する部位には同一の符号を付す。また、本実施の形態7で言及していない事項については、実施の形態1~実施の形態6のいずれかと同様とする。また、本実施の形態7では、実施の形態4で示した分岐回路を用いた例について説明する。
 図18は、本発明の実施の形態7による空気調和機の熱源側ユニットを示す斜視透視図である。図19は、本発明の実施の形態7による空気調和機の一例を示す冷媒回路図である。また、図20は、本発明の実施の形態7による空気調和機の分岐回路の水平配管部近傍を示す要部拡大図(断面図)であり、水平配管部を流れる冷媒の流動状態を示したものである。
 本実施の形態7に係る空気調和機610は、4つの熱源側熱交換器を備えている。また、空気調和機610は、2つの熱源側ユニット(第一熱源側ユニット501A及び第二熱源側ユニット501B)を備えている。第一熱源側ユニット501A及び第二熱源側ユニット501Bは、それぞれ、2つずつ熱源側熱交換器を収納している。
 第一熱源側ユニット501Aの筐体は、実施の形態1で示した筐体11と同形状のものであり、天面に形成された吹出口に第一送風機503aが設けられている。また、第一熱源側ユニット501Aの筐体には、2つの熱源側熱交換器が上下方向に並設されている。これら熱源側熱交換器は、実施の形態1で示した熱源側熱交換器2と同形状のものである。本実施の形態7では、上側に配置された熱源側熱交換器を第一上部熱源側熱交換器502aと称し、下側に配置された熱源側熱交換器を第一下部熱源側熱交換器502bと称する。第一上部熱源側熱交換器502aは、実施の形態1で示した分配器7と同構成の第一上部分配器507a、及び、実施の形態1で示した合流管8と同構成の第一上部合流管508aを備えている。第一上部分配器507aには、分岐管36が接続されている。また、第一下部熱源側熱交換器502bは、実施の形態1で示した分配器7と同構成の第一下部分配器507b、及び、実施の形態1で示した合流管8と同構成の第一下部合流管508bを備えている。第一下部分配器507bには、分岐管38が接続されている。つまり、第一上部熱源側熱交換器502aの熱負荷は、第一下部熱源側熱交換器502bの熱負荷よりも大きい構成となっている。
 同様に、第二熱源側ユニット501Bの筐体は、実施の形態1で示した筐体11と同形状のものであり、天面に形成された吹出口に第二送風機503bが設けられている。また、第二熱源側ユニット501Bの筐体には、2つの熱源側熱交換器が上下方向に並設されている。これら熱源側熱交換器は、実施の形態1で示した熱源側熱交換器2と同形状のものである。本実施の形態7では、上側に配置された熱源側熱交換器を第二上部熱源側熱交換器502cと称し、下側に配置された熱源側熱交換器を第二下部熱源側熱交換器502dと称する。第二上部熱源側熱交換器502cは、実施の形態1で示した分配器7と同構成の第二上部分配器507c、及び、実施の形態1で示した合流管8と同構成の第二上部合流管508cを備えている。第二上部分配器507cには、分岐管37が接続されている。また、第二下部熱源側熱交換器502dは、実施の形態1で示した分配器7と同構成の第二下部分配器507d及び、実施の形態1で示した合流管8と同構成の第二下部合流管508dを備えている。第二下部分配器507dには、分岐管39が接続されている。つまり、第二上部熱源側熱交換器502cの熱負荷は、第二下部熱源側熱交換器502dの熱負荷よりも大きい構成となっている。
 また、本実施の形態7では、第一上部熱源側熱交換器502aの熱負荷は第二上部熱源側熱交換器502cの熱負荷よりも大きい構成となっており、第二上部熱源側熱交換器502cの熱負荷は第一下部熱源側熱交換器502bの熱負荷よりも大きい構成となっており、第一下部熱源側熱交換器502bの熱負荷は第二下部熱源側熱交換器502dの熱負荷よりも大きい構成となっている。つまり、熱負荷の大きさは、第一上部熱源側熱交換器502a>第二上部熱源側熱交換器502c>第一下部熱源側熱交換器502b>第二下部熱源側熱交換器502dとなっている。
 図20に示すように、第一上部熱源側熱交換器502a、第一下部熱源側熱交換器502b、第二上部熱源側熱交換器502c及び第二下部熱源側熱交換器502dが蒸発器として動作する場合、白抜き矢印方向から、気液二相状態の冷媒が分岐回路509の水平配管部27に流入する。このとき、慣性力の大きな液相冷媒が選択的に水平配管部27の終端部に偏在する傾向を示す。したがって、水平配管部27の終端部から入口側に向かって、熱負荷が大きな熱源側熱交換器に接続された分岐管から順番に例えばほぼ垂直に接続する。具体的には、水平配管部27の終端部から入口側に向かって、第一上部熱源側熱交換器502aに接続された分岐管36、第二上部熱源側熱交換器502cに接続された分岐管37、第一下部熱源側熱交換器502bに接続された分岐管38、第二下部熱源側熱交換器502dに接続された分岐管39の順で接続する。これにより、水平配管部27の終端部に近い位置に接続された分岐管ほど、乾き度の低い気液二相冷媒が流入することとなる。つまり、熱負荷が大きい熱源側熱交換器ほど、乾き度の低い気液二相冷媒が流入することとなる。
 上記実施の形態7によれば、第一上部熱源側熱交換器502a、第一下部熱源側熱交換器502b、第二上部熱源側熱交換器502c及び第二下部熱源側熱交換器502dが蒸発器として動作する場合、水平配管部27において、熱負荷が大きい熱源側熱交換器ほど乾き度の低い気液二相冷媒が流入するので、第一上部熱源側熱交換器502a、第一下部熱源側熱交換器502b、第二上部熱源側熱交換器502c及び第二下部熱源側熱交換器502dの熱交換性能(熱交換効率)を増加させ、空気調和機610全体のシステム性能を向上できる。
実施の形態8.
 上記の実施の形態では、筐体の天面に送風機が配置された熱源側ユニットを備えた空気調和機を想定していた。これに限らず、その他の構成の熱源ユニットを備えた空気調和機に対しても、本発明を実施することができる。以下、そのような空気調和機の一例について説明する。なお、本実施の形態8では、実施の形態1~実施の形態7のいずれかと同一の構成を有する部位には同一の符号を付す。また、本実施の形態8で言及していない事項については、実施の形態1~実施の形態7のいずれかと同様とする。
 図21は、本発明の実施の形態8による空気調和機の熱源側ユニットを示す斜視図である。なお、本実施の形態8に係る空気調和機710の冷媒回路は、実施の形態1~実施の形態7のいずれかと同様である。
 本実施の形態8に係る空気調和機710の熱源側ユニット601は、側面部に吸込口601a及び吹出口601bが形成された筐体611を備えている。この筐体611内には、吸込口601aと対向するように、上部熱源側熱交換器2a及び下部熱源側熱交換器2bが上下方向に並設されている。なお、これらの熱源側熱交換器を横方向に並設してもよい。
 また、筐体611内には、吹出口601bに、第一送風機603a及び第二送風機603bが設けられている。そして、第一送風機603aは、上部熱源側熱交換器2aと対向するように配置されている。また、第二送風機603bは、下部熱源側熱交換器2bと対向するように配置されている。つまり、上部熱源側熱交換器2aを流れる冷媒は第一送風機603aによって供給された空気と熱交換し、下部熱源側熱交換器2bを流れる冷媒は第二送風機603bによって供給された空気と熱交換する構成となっている。
 このように構成された空気調和機710においては、低能力の運転時等で冷媒の循環量が少なくなった場合、一方の熱源側熱交換器に液相冷媒を多く供給し、その熱源側熱交換器に対応する送風機の回転数を他方より多くしたほうよい。熱源側熱交換器の各伝熱管への冷媒の分配が均一となるからである。このとき、他方の送風機の回転数つまり消費電力を下げることができるので、総合的に省エネになる。
 ここで、上述のように、本実施の形態8に係る空気調和機710の冷媒回路(実施の形態1~実施の形態7のいずれかで示した冷媒回路)は、上部熱源側熱交換器2aに対して、下部熱源側熱交換器2bに供給する冷媒よりも、乾き度の小さい冷媒を供給することができる。つまり、上部熱源側熱交換器2aに対して、下部熱源側熱交換器2bよりも多くの液相冷媒を供給することができる。このため、本実施の形態8に係る空気調和機710は、低能力の運転時等で冷媒の循環量が少なくなった場合、上部熱源側熱交換器2aに空気を供給する第一送風機603aの回転数を多くし、第二送風機603bの回転数を下げることにより、空気調和機710の省エネを実現することができる。
 1,601 熱源側ユニット、501A 第一熱源側ユニット、501B 第二熱源側ユニット、1a,601a 吸込口、1b,601b 吹出口、2,102 熱源側熱交換器、2a,102a 上部熱源側熱交換器、2b,102b 下部熱源側熱交換器、502a 第一上部熱源側熱交換器、502b 第一下部熱源側熱交換器、502c 第二上部熱源側熱交換器、502d 第二下部熱源側熱交換器、3 送風機、503a,603a 第一送風機、503b,603b 第二送風機、4 圧縮機、5 アキュムレータ、6 気液分離器、7,107 分配器、7a,107a 上部分配器、7b,107b 下部分配器、507a 第一上部分配器、507b 第一下部分配器、507c 第二上部分配器、507d 第二下部分配器、8 合流管、8a 上部合流管、8b 下部合流管、508a 第一上部合流管、508b 第一下部合流管、508c 第二上部合流管、508d 第二下部合流管、9,109,209,309,509 分岐回路、10,110,210,310,410,510,610,710 空気調和機、11,611 筐体、12 流路切替器、13 流量制御装置、14 利用側ユニット、14a 第一利用側ユニット、14b 第二利用側ユニット、15 絞り装置、15a 第一絞り装置、15b 第二絞り装置、16 利用側熱交換器、16a 第一利用側熱交換器、16b 第二利用側熱交換器、20 主流管、20a 垂直配管部、21a 第一分岐管、21b 第二分岐管、22 流入管、23 気相冷媒流出配管、27 水平配管部、30 流量制御装置、31 入口温度検出装置、32 出口温度検出装置、33 合流温度検出装置、34 流量制御装置制御部、35 流量制御装置制御部、35a 演算部、36 分岐管、37 分岐管、38 分岐管、39 分岐管、40 伝熱管、41 伝熱フィン、42 配管。

Claims (13)

  1.  圧縮機、凝縮器、絞り装置及び熱負荷が異なる複数の蒸発器を備え、
     複数の前記蒸発器が、前記絞り装置と前記圧縮機の吸入側との間で並列に接続された冷媒回路において、
     前記絞り装置と複数の前記蒸発器との間に設けられ、複数の前記蒸発器のそれぞれに冷媒を分配する分岐回路を備え、
     該分岐回路は、前記蒸発器の1つである第一蒸発器に対して、当該第一蒸発器よりも熱負荷が小さい前記蒸発器である第二蒸発器に供給する冷媒よりも、乾き度の小さい冷媒を供給する構成である冷媒回路。
  2.  前記分岐回路は、
     前記絞り装置と複数の前記蒸発器との間に設けられた気液分離器と、
     一端が前記気液分離器に接続され、下流側に液相冷媒又は気液二相冷媒を供給する主流管と、
     一端が前記主流管に接続され、他端が前記第一蒸発器に接続された第一分岐管と、
     一端が前記絞り装置から前記主流管と前記第一分岐管との接続部までの間に接続され、他端が前記第二蒸発器に接続された第二分岐管と、
     を備えた請求項1に記載の冷媒回路。
  3.  前記主流管は、垂直方向に配置された垂直配管部を有し、
     前記第一分岐管の一端は、前記垂直配管部に接続され、
     前記第二分岐管の一端は、前記垂直配管部と前記第一分岐管との接続位置よりも冷媒流れ方向の上流側となる位置において、前記垂直配管部に接続されている請求項2に記載の冷媒回路。
  4.  前記第二分岐管の一端は、前記垂直配管部の内部に突出している請求項3に記載の冷媒回路。
  5.  前記第二分岐管の一端は、前記絞り装置と前記気液分離器とを接続する配管に接続されている請求項2に記載の冷媒回路。
  6.  前記第二分岐管の一端は、前記気液分離器に接続され、
     前記主流管及び前記第二分岐管は、前記気液分離器内で開口し、
     前記主流管は、前記第二分岐管よりも下方となる位置に開口している請求項2に記載の冷媒回路。
  7.  前記主流管は、前記気液分離器と接続されていない側の端部側に、該端部が閉塞されて水平方向に配置された水平配管部を有し、
     前記第一分岐管の一端は、前記水平配管部に接続され、
     前記第二分岐管の一端は、前記水平配管部と前記第一分岐管との接続位置よりも冷媒流れ方向の上流側となる位置において、前記水平配管部に接続されている請求項2に記載の冷媒回路。
  8.  一端が前記気液分離器に接続され、他端が前記蒸発器と前記圧縮機の吸入側とを接続する吸入配管に接続されて、前記気液分離器で分離された気相冷媒を前記気液分離器から流出させる気相冷媒流出配管と、
     該気相冷媒流出配管に設けられ、前記気液分離器からの前記気相冷媒の流出量を調節する流量制御装置と、
     を備えた請求項2~請求項7のいずれか一項に記載の冷媒回路。
  9.  前記第二分岐管に設けられた入口温度検出装置と、
     前記吸入配管において、前記吸入配管と前記気相冷媒流出配管との接続部よりも冷媒流れ方向の上流側となる位置に設けられた出口温度検出装置と、
     前記吸入配管において、前記吸入配管と前記気相冷媒流出配管との接続部よりも冷媒流れ方向の下流側となる位置に設けられた合流温度検出装置と、
     該流量制御装置の開度を制御する流量制御装置制御部と、
     前記出口温度検出装置の検出値から前記入口温度検出装置の検出値を減算した値である熱交換器過熱度、及び、前記合流温度検出装置の検出値から前記入口温度検出装置の検出値を減算した値である合流過熱度を算出する演算部と、
     を備え、
     前記流量制御装置制御部は、
     前記熱交換器過熱度>0かつ前記合流過熱度>0のとき、前記流量制御装置の開度を増加させ、
     前記熱交換器過熱度>0かつ前記合流過熱度<0のとき、前記流量制御装置の開度を減少させ、
     前記熱交換器過熱度<0のとき、前記流量制御装置の開度を増加させる構成である請求項8に記載の冷媒回路。
  10.  前記第二分岐管に、該第二分岐管を流れる冷媒量を調節する流量制御装置を備えた請求項2~請求項9のいずれか一項に記載の冷媒回路。
  11.  複数の前記蒸発器は、
     水平方向に配置された複数の伝熱管と、
     前記分岐回路に接続され、前記分岐回路から流入した冷媒を複数の前記伝熱管に分配する分配器と、
     を備えた請求項1~請求項10のいずれか一項に記載の冷媒回路。
  12.  請求項1~請求項11のいずれか一項に記載の冷媒回路と、
     側面部に吸込口が形成され、天面に吹出口が形成された筐体と、
     該筐体の吹出口に設けられた送風機と、
     を備え、
     複数の前記蒸発器は前記吸込口と対向するように前記筐体に収容されており、前記第一蒸発器が前記第二蒸発器よりも上方に配置されている空気調和機。
  13.  請求項1~請求項11のいずれか一項に記載の冷媒回路と、
     側面部に吸込口及び吹出口が形成された筐体と、
     該筐体の吹出口に設けられた複数の送風機と、
     を備え、
     複数の前記蒸発器は、前記吸込口と対向するように並設され、
     複数の前記送風機のそれぞれは、複数の前記蒸発器のそれぞれに対向して配置されている空気調和機。
PCT/JP2015/067486 2015-06-17 2015-06-17 冷媒回路及び空気調和機 WO2016203581A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/575,417 US11320175B2 (en) 2015-06-17 2015-06-17 Refrigerant circuit
JP2017524211A JP6366837B2 (ja) 2015-06-17 2015-06-17 冷媒回路及び空気調和機
EP15895602.9A EP3312527B1 (en) 2015-06-17 2015-06-17 Refrigerant circuit and air conditioner
PCT/JP2015/067486 WO2016203581A1 (ja) 2015-06-17 2015-06-17 冷媒回路及び空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/067486 WO2016203581A1 (ja) 2015-06-17 2015-06-17 冷媒回路及び空気調和機

Publications (1)

Publication Number Publication Date
WO2016203581A1 true WO2016203581A1 (ja) 2016-12-22

Family

ID=57545137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067486 WO2016203581A1 (ja) 2015-06-17 2015-06-17 冷媒回路及び空気調和機

Country Status (4)

Country Link
US (1) US11320175B2 (ja)
EP (1) EP3312527B1 (ja)
JP (1) JP6366837B2 (ja)
WO (1) WO2016203581A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018185922A1 (ja) * 2017-04-07 2018-10-11 三菱電機株式会社 空気調和機
CN109425139A (zh) * 2017-09-04 2019-03-05 Bsh家用电器有限公司 具有多个温度区的制冷器具
KR20190092162A (ko) * 2018-01-30 2019-08-07 엘지전자 주식회사 공기 조화기
WO2019160153A1 (ja) * 2018-02-19 2019-08-22 三星電子株式会社 室外機、及び、空気調和装置
WO2021149222A1 (ja) * 2020-01-23 2021-07-29 三菱電機株式会社 冷凍サイクル装置の室外機

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017072831A1 (ja) * 2015-10-26 2017-05-04 三菱電機株式会社 空気調和装置
WO2018047330A1 (ja) * 2016-09-12 2018-03-15 三菱電機株式会社 空気調和装置
FR3085468B1 (fr) 2018-09-03 2020-12-18 Arkema France Procede de conditionnement d'air

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177761A (ja) * 1989-12-06 1991-08-01 Matsushita Electric Ind Co Ltd 熱交換器
JPH03260566A (ja) * 1990-03-08 1991-11-20 Mitsubishi Electric Corp 気液二相流体の分配器
JPH05296586A (ja) * 1992-04-13 1993-11-09 Nippondenso Co Ltd 冷凍サイクル
JPH08219587A (ja) * 1995-02-10 1996-08-30 Daikin Ind Ltd 空気調和機用蒸発器
JP2005226972A (ja) * 2004-02-16 2005-08-25 Denso Corp 冷凍装置
JP2006029734A (ja) * 2004-07-21 2006-02-02 Matsushita Electric Ind Co Ltd 空気調和機
JP2006317098A (ja) * 2005-05-13 2006-11-24 Sharp Corp 分流器
JP2009085481A (ja) * 2007-09-28 2009-04-23 Daikin Ind Ltd 冷凍装置
JP2009300001A (ja) * 2008-06-13 2009-12-24 Mitsubishi Electric Corp 冷凍サイクル装置
JP2011247522A (ja) * 2010-05-28 2011-12-08 Mitsubishi Electric Corp 冷凍サイクル装置、ならびに本冷凍サイクル装置を用いた冷蔵庫、低温装置、および空調装置
JP2014025659A (ja) * 2012-07-27 2014-02-06 Daikin Ind Ltd 空気調和機
JP2014102009A (ja) * 2012-11-16 2014-06-05 Daikin Ind Ltd 空気調和装置用室外機
WO2014199484A1 (ja) * 2013-06-13 2014-12-18 三菱電機株式会社 冷媒分配ユニット及びこれを用いた空気調和装置
WO2015045452A1 (ja) * 2013-09-24 2015-04-02 三菱電機株式会社 空気調和機
JP2015087074A (ja) * 2013-10-31 2015-05-07 ダイキン工業株式会社 空気調和装置の室外ユニット

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296569U (ja) 1989-01-18 1990-08-01
AU636726B2 (en) * 1990-03-19 1993-05-06 Mitsubishi Denki Kabushiki Kaisha Air conditioning system
AU636215B2 (en) 1990-04-23 1993-04-22 Mitsubishi Denki Kabushiki Kaisha Air conditioning apparatus
JP3140376B2 (ja) * 1995-10-27 2001-03-05 リンナイ株式会社 吸収式空調装置
JPH1019416A (ja) 1996-07-03 1998-01-23 Toshiba Corp 熱交換器
US5842351A (en) * 1997-10-24 1998-12-01 American Standard Inc. Mixing device for improved distribution of refrigerant to evaporator
US6318116B1 (en) * 2000-09-22 2001-11-20 Delphi Technologies, Inc. Plastic internal accumulator-dehydrator baffle
KR100447204B1 (ko) * 2002-08-22 2004-09-04 엘지전자 주식회사 냉난방 동시형 멀티공기조화기 및 그 제어방법
JP2006275496A (ja) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd 冷凍装置及び冷蔵庫
JP5050563B2 (ja) * 2007-02-27 2012-10-17 株式会社デンソー エジェクタ及びエジェクタ式冷凍サイクル用ユニット
JP4864113B2 (ja) * 2009-04-10 2012-02-01 三菱電機株式会社 空気調和機
JP5073849B1 (ja) 2011-07-05 2012-11-14 シャープ株式会社 熱交換器及びそれを搭載した空気調和機

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177761A (ja) * 1989-12-06 1991-08-01 Matsushita Electric Ind Co Ltd 熱交換器
JPH03260566A (ja) * 1990-03-08 1991-11-20 Mitsubishi Electric Corp 気液二相流体の分配器
JPH05296586A (ja) * 1992-04-13 1993-11-09 Nippondenso Co Ltd 冷凍サイクル
JPH08219587A (ja) * 1995-02-10 1996-08-30 Daikin Ind Ltd 空気調和機用蒸発器
JP2005226972A (ja) * 2004-02-16 2005-08-25 Denso Corp 冷凍装置
JP2006029734A (ja) * 2004-07-21 2006-02-02 Matsushita Electric Ind Co Ltd 空気調和機
JP2006317098A (ja) * 2005-05-13 2006-11-24 Sharp Corp 分流器
JP2009085481A (ja) * 2007-09-28 2009-04-23 Daikin Ind Ltd 冷凍装置
JP2009300001A (ja) * 2008-06-13 2009-12-24 Mitsubishi Electric Corp 冷凍サイクル装置
JP2011247522A (ja) * 2010-05-28 2011-12-08 Mitsubishi Electric Corp 冷凍サイクル装置、ならびに本冷凍サイクル装置を用いた冷蔵庫、低温装置、および空調装置
JP2014025659A (ja) * 2012-07-27 2014-02-06 Daikin Ind Ltd 空気調和機
JP2014102009A (ja) * 2012-11-16 2014-06-05 Daikin Ind Ltd 空気調和装置用室外機
WO2014199484A1 (ja) * 2013-06-13 2014-12-18 三菱電機株式会社 冷媒分配ユニット及びこれを用いた空気調和装置
WO2015045452A1 (ja) * 2013-09-24 2015-04-02 三菱電機株式会社 空気調和機
JP2015087074A (ja) * 2013-10-31 2015-05-07 ダイキン工業株式会社 空気調和装置の室外ユニット

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018185922A1 (ja) * 2017-04-07 2018-10-11 三菱電機株式会社 空気調和機
JPWO2018185922A1 (ja) * 2017-04-07 2019-11-07 三菱電機株式会社 空気調和機
CN109425139A (zh) * 2017-09-04 2019-03-05 Bsh家用电器有限公司 具有多个温度区的制冷器具
CN109425139B (zh) * 2017-09-04 2021-03-16 Bsh家用电器有限公司 具有多个温度区的制冷器具
KR20190092162A (ko) * 2018-01-30 2019-08-07 엘지전자 주식회사 공기 조화기
KR102483762B1 (ko) * 2018-01-30 2023-01-03 엘지전자 주식회사 공기 조화기
WO2019160153A1 (ja) * 2018-02-19 2019-08-22 三星電子株式会社 室外機、及び、空気調和装置
JP2019143844A (ja) * 2018-02-19 2019-08-29 三星電子株式会社Samsung Electronics Co.,Ltd. 室外機、及び、空気調和装置
WO2021149222A1 (ja) * 2020-01-23 2021-07-29 三菱電機株式会社 冷凍サイクル装置の室外機
JPWO2021149222A1 (ja) * 2020-01-23 2021-07-29
JP7262625B2 (ja) 2020-01-23 2023-04-21 三菱電機株式会社 冷凍サイクル装置の室外機

Also Published As

Publication number Publication date
EP3312527A4 (en) 2018-12-26
EP3312527A1 (en) 2018-04-25
JP6366837B2 (ja) 2018-08-01
JPWO2016203581A1 (ja) 2018-01-18
US11320175B2 (en) 2022-05-03
US20180156498A1 (en) 2018-06-07
EP3312527B1 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
JP6366837B2 (ja) 冷媒回路及び空気調和機
US9534807B2 (en) Air conditioning apparatus with primary and secondary heat exchange cycles
JP6685409B2 (ja) 空気調和装置
JP5855312B2 (ja) 空気調和装置
JP4968373B2 (ja) 空気調和装置
JP6005255B2 (ja) 空気調和装置
AU2016202855B2 (en) Refrigeration apparatus
JP6188951B2 (ja) 冷媒分配器、熱交換器および冷凍サイクル装置
US20150316275A1 (en) Air-conditioning apparatus
JP5968519B2 (ja) 空気調和装置
JP2015078800A (ja) 空気調和装置
JP5979112B2 (ja) 冷凍装置
JP2006250479A (ja) 空気調和機
JP6041995B2 (ja) 空気調和機
JP6017049B2 (ja) 空気調和装置
JP2011058749A (ja) 空気調和装置
JP6391832B2 (ja) 空気調和装置及び熱源機
JP2015078799A (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524211

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15575417

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015895602

Country of ref document: EP