WO2016203533A1 - 実装管理装置 - Google Patents

実装管理装置 Download PDF

Info

Publication number
WO2016203533A1
WO2016203533A1 PCT/JP2015/067212 JP2015067212W WO2016203533A1 WO 2016203533 A1 WO2016203533 A1 WO 2016203533A1 JP 2015067212 W JP2015067212 W JP 2015067212W WO 2016203533 A1 WO2016203533 A1 WO 2016203533A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
time
recipe
component mounting
mounting
Prior art date
Application number
PCT/JP2015/067212
Other languages
English (en)
French (fr)
Inventor
輝之 大橋
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to PCT/JP2015/067212 priority Critical patent/WO2016203533A1/ja
Priority to JP2017524169A priority patent/JP6526808B2/ja
Publication of WO2016203533A1 publication Critical patent/WO2016203533A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a mounting management apparatus.
  • a mounting management apparatus that manages a component mounting apparatus that picks up a component supplied from a component supply apparatus and mounts it on a substrate.
  • a mounting management device there is known a device that displays OEE (OverallciEquipment Efficiency) defined by SEMI (Semiconductor Equipment and Materials International) (for example, Patent Document 1).
  • OEE is a rough index for measuring productivity. If the OEE declines, it can be judged that any of the equipment availability (operating status), equipment performance, and quality (quality) is the cause of the decline in productivity. It is necessary to check individual indicators to determine whether this is the cause of this.
  • the component mounting apparatus after producing a single type of component-mounted board, when producing another single type of component-mounted board, the component supply device is replaced or the nozzle for picking up the component is replaced. Work (setup change) occurs.
  • setup change time time required for such setup change (setup change time) becomes long, the downtime of the apparatus increases and the productivity decreases. In that case, there is a desire to make the downtime as short as possible.
  • productivity may be improved by shortening the cycle time per substrate as much as possible even when the setup change time is increased. In that case, there is a desire to make the cycle time as short as possible.
  • the cycle time varies depending on the recipe (production program).
  • the OEE reflects the length of the downtime but does not reflect the quality of the recipe. Therefore, an index that takes into consideration the quality of the recipe has been demanded.
  • the present invention has been made to solve the above-described problems, and has as its main object to provide an index that involves both the length of downtime and the quality of a recipe.
  • the mounting management apparatus of the present invention In the mounting management device that manages the component mounting device that picks up the component supplied from the component supply device and mounts it on the board Storage means for storing a calculation formula of a production index including recipe productivity of the component mounting apparatus and downtime elements of the component mounting apparatus; After the component mounting apparatus has produced a predetermined number of single-type component mounted boards, a control unit that calculates the production index based on the calculation formula and displays it on a display unit; It is equipped with.
  • a calculation formula for a production index including recipe productivity of the component mounting apparatus and downtime factors of the component mounting apparatus is calculated based on the above and displayed on the display means.
  • This production index is an index that involves both the length of downtime and the quality of the recipe. Therefore, the operator can judge the productivity of the component mounting apparatus by analyzing this one production index, including both the length of the downtime and the quality of the recipe productivity.
  • the recipe productivity is a value calculated using a cycle time required for the component mounting apparatus to produce the single type of component-mounted board, and the component mounting apparatus It is good also as ratio of the theoretical fastest cycle time of this and the cycle time of the recipe provided to the said component mounting apparatus this time.
  • the cycle time is the time from when the board enters the component mounting apparatus until it comes out.
  • recipe productivity can be quantified relatively easily.
  • the fastest cycle time may be, for example, the cycle time under the best conditions considering only the production of a single type of component-mounted board.
  • the recipe given to the component mounting device is generally created under conditions that consider the production of different types of component-mounted boards before and after, so the cycle time is faster than the fastest cycle time. become longer.
  • the recipe productivity is a value calculated by using the number of production that the component mounting apparatus produces the single type of component mounted board per unit time, and the component mounting It is good also as a ratio of the standard value of the number of productions per unit time of an apparatus, and the number of productions per unit time of the recipe given to the said component mounting apparatus this time. Even in this way, the recipe productivity can be quantified relatively easily.
  • the standard value of the number of production per unit time for example, a value described in a catalog of the component mounting apparatus may be adopted, or a value according to the IPC standard may be used.
  • the number of recipes produced per unit time is based on conditions specific to the board (combination of the types of parts to be used, mounting positions of individual parts, etc.) and consideration of producing different types of parts mounted boards before and after Since it is a numerical value below, it is smaller than the standard value.
  • the calculation formula includes availability used for OEE as an element of the downtime.
  • the calculation formula preferably includes at least one of performance and quality used for OEE. If this is done, the production index this time is a new index, but it uses elements that are used in general-purpose OEE, so it is easily accepted by many producers.
  • FIG. 1 is a schematic explanatory diagram of a component mounting system 1.
  • FIG. The perspective view of the component mounting machine 10.
  • FIG. The enlarged view of the rotary head 36.
  • FIG. FIG.
  • a graph showing the relationship between jobs 1 to 3 and the new production index.
  • FIG. 1 is a schematic explanatory diagram of the component mounting system 1
  • FIG. 2 is a perspective view of the component mounting machine 10
  • FIG. 3 is an enlarged view of the rotary head 36
  • FIG. 4 is a perspective view of the reel 42.
  • the left-right direction (X-axis), the front-rear direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIGS.
  • the component mounting system 1 includes a plurality of component mounters 10 that form the mounting line 2 and a mounting management device 80 that manages the production of the board.
  • each component mounter 10 mounts components on the substrate 12 carried in from the upstream side, and the substrate 12 after component mounting is unloaded.
  • the component mounter 10 includes a board transfer device 18, a head unit 34, a parts camera 39, a feeder 40, a feeder set base 60, and a mounting controller 70.
  • the substrate transport device 18 is provided with support plates 20 and 20 provided at intervals in the front and rear direction of FIG. 2 and extending in the left-right direction, and conveyor belts 22 and 22 provided on the mutually opposing surfaces of the support plates 20 and 20 (FIG. 1 shows only one of them).
  • the conveyor belts 22 and 22 are stretched over the drive wheels and the driven wheels provided on the left and right sides of the support plates 20 and 20 so as to be endless.
  • the substrate 12 is carried on the upper surfaces of the pair of conveyor belts 22 and 22 and is conveyed from left to right.
  • the substrate 12 is supported by a large number of support pins 23 erected on the back side.
  • the head unit 34 is detachably attached to the front surface of the X-axis slider 26.
  • the head unit 34 has a handle 35 on the front surface to be gripped by an operator during replacement work.
  • the X-axis slider 26 is slidably attached to a pair of upper and lower guide rails 28, 28 provided in front of the Y-axis slider 30 and extending in the left-right direction.
  • the Y-axis slider 30 is slidably attached to a pair of left and right guide rails 32, 32 extending in the front-rear direction.
  • the head unit 34 moves in the left-right direction as the X-axis slider 26 moves in the left-right direction, and moves in the front-rear direction as the Y-axis slider 30 moves in the front-rear direction.
  • Each slider 26, 30 is driven by a drive motor (not shown).
  • the head unit 34 has a rotary head 36 including a plurality of suction nozzles 38.
  • the suction nozzle 38 uses pressure to suck a component at the tip of the nozzle or release a component sucked at the tip of the nozzle.
  • the height of the suction nozzle 38 can be adjusted by a Z-axis motor (not shown) mounted on the head unit 34.
  • a suction nozzle 38 is appropriately replaced in accordance with the type and size of the component.
  • the rotary head 36 is appropriately replaced with a rotary head having a different number of suction nozzles or a head having a single suction nozzle.
  • the parts camera 39 is installed between the feeder set base 60 and the substrate transfer device 18 so that the imaging direction is upward at the approximate center of the length in the left-right direction.
  • the parts camera 39 images the parts sucked by the suction nozzle 38 passing above, and outputs an image obtained by the imaging to the mounting controller 70.
  • the feeder 40 holds the reel 42 rotatably. As shown in FIG. 4, a tape 44 is wound around the reel 42. A plurality of recesses 46 are formed in the tape 44 so as to be arranged along the longitudinal direction of the tape 44. Each recess 46 accommodates a part P. These parts P are protected by a film 48 that covers the surface of the tape 44.
  • the feeder 40 has a component suction position. The component suction position is a position determined by design in which the suction nozzle 38 sucks the component P. Each time the tape 44 is fed backward by a predetermined amount by the feeder 40, the parts P accommodated in the tape 44 are sequentially arranged at the parts suction position.
  • the part P that has reached the part suction position is in a state where the film 48 is peeled off, and is sucked by the suction nozzle 38.
  • the width of the tape 44 increases as the size of the component P increases
  • the width of the reel 42 increases as the width of the tape 44 increases
  • the width of the feeder 40 increases as the width of the reel 42 increases. Therefore, there are feeders having various widths depending on the size of the part P.
  • the feeder set base 60 has a plurality of slots on the upper surface (not shown).
  • the slot is a groove extending along the Y axis.
  • a rail (not shown) provided on the lower surface of the feeder 40 is inserted into the slot.
  • the narrow one occupies one slot of the feeder set base 60, while the wide one occupies a plurality of slots.
  • the mounting controller 70 is configured as a microprocessor centered on a CPU, and includes a ROM that stores processing programs, an HDD that stores various data, a RAM that is used as a work area, and the like. These are electrically connected via a bus (not shown).
  • the mounting controller 70 is connected to a feeder controller (not shown) of the feeder 40 and a mounting management device 80 so as to be capable of bidirectional communication. Further, the mounting controller 70 is connected so as to be able to output control signals to the substrate transport device 18, the X-axis slider 26, the Y-axis slider 30, the Z-axis motor, etc. Has been.
  • the mounting controller 70 picks up the component P from the component supply tape sent to the component supply position by each feeder 40 by the suction nozzle 38 based on the recipe (production program) received from the mounting management device 80, and the substrate 12.
  • the substrate transport device 18, the X-axis slider 26, the Y-axis slider 30, the Z-axis motor, and the like are controlled so as to be sequentially mounted at the predetermined positions above.
  • the mounting controller 70 determines whether or not a component is attracted to the suction nozzle 38 based on an image captured by the parts camera 39, and determines the shape, size, suction position, and the like of the component.
  • the mounting management apparatus 80 is a microprocessor centered on a CPU 81, and includes a ROM 82 that stores a processing program, an HDD 83 that stores a board production program, and a RAM 84 that is used as a work area. . These are electrically connected via a bus (not shown).
  • An input signal is input to the mounting management device 80 from an input device 85 such as a mouse or a keyboard, and an image signal to the display 86 is output from the mounting management device 80.
  • FIG. 5 is a flowchart of the new production index notification routine. This routine is executed automatically or in response to an operator activation request when the mounting line 2 has processed all of the plurality of jobs.
  • jobs 1 to 3 a case where the mounting line 2 processes jobs 1 to 3 will be described as an example, and will be described with reference to this example as appropriate.
  • job 1 1000 single-component component-mounted boards A are manufactured, in job 2, 100 single-component component-mounted boards B different from job 1 are manufactured, and in job 3, jobs 1 and 2 are defined. Assume that 100 other single-type component-mounted boards C are manufactured.
  • the component-mounted boards A to C are boards having different types, combinations, and numbers of parts to be mounted.
  • the CPU 81 of the mounting management device 80 acquires a time parameter related to the production of each job (step S100). For example, a time parameter related to production is acquired for each of jobs 1 to 3.
  • the time parameters are production time, standby time, engineering time, planned downtime, unplanned downtime, and non-planned time, which are determined based on SEMI.
  • the production time includes the time for mounting components on the board and the loading time.
  • the waiting time includes idle time, switch waiting time, waiting time for the previous process, and waiting time for the subsequent process.
  • the engineering time is undefined (zero) in this embodiment.
  • the planned downtime includes parts waiting time, maintenance time, and setup change time.
  • the setup change time refers to the time required for attaching a feeder or nozzle used for the job to each component mounter 10 before starting the job.
  • Unplanned downtime includes equipment error time.
  • the unplanned time includes a device off time and a connection off time.
  • the manufacturing time is the sum of the production time and the standby time.
  • Device uptime is the sum of manufacturing time and engineering time.
  • Device downtime is the sum of planned and unplanned downtime.
  • the operating time is the sum of the device up time and the device down time. Total time is the sum of operating time and unplanned time.
  • the CPU 81 calculates the OEE of each job (step S200). For example, the OEE is calculated for each of jobs 1 to 3. Specifically, the CPU 81 calculates availability, performance, and quality using equations (1) to (3), and then calculates OEE using equation (4).
  • the job cycle time is the time required for one board to go out of the last component mounter 10 after entering the first component mounter 10 on the mounting line 2, and the job cycle time is calculated. The time obtained by simulation of the job cycle time.
  • the number of non-defective products refers to the number obtained by subtracting the number of defective products (for example, the number of substrates on which components are not correctly mounted) from the number of products produced.
  • the values acquired in step S100 are used for the standby time, production time, total time, and unplanned time.
  • the CPU 81 calculates recipe productivity for each job (step S300). For example, recipe productivity is calculated for each of jobs 1 to 3. Specifically, the CPU 81 calculates recipe productivity using equation (5).
  • the fastest cycle time does not consider other jobs when mounting components on a board in one component mounting machine 10, that is, common feeders and suction nozzles with other jobs. This refers to the cycle time when components are mounted under the best conditions without consideration.
  • the cycle time refers to the time required for a single board to enter and exit from one component mounter 10.
  • the recipe is set to a condition lower than the best condition in consideration of other jobs when mounting components on the board, that is, considering commonality of feeders and suction nozzles with other jobs. Is done.
  • the cycle time of the recipe refers to the cycle time when components are mounted under the conditions.
  • the recipe is a production program that determines what kind of feeder 40 is arranged on the feeder set base 60 in each component mounting machine 10 and what kind of suction nozzle 38 is attached to the rotary head 36. Say.
  • the CPU 81 calculates the recipe productivity of the bottleneck mounting machine, that is, the mounting machine with the longest fast cycle time among the plurality of component mounting machines 10 constituting the mounting line 2.
  • the suction nozzle 38 sucks the components supplied from the feeder 40 and then passes over the parts camera 39 and then moves to a predetermined position on the substrate 12 where the components are mounted. Therefore, the distance and time for the suction nozzle 38 to move are shorter as the feeder 40 is closer to the parts camera 39 and longer as it is farther away.
  • feeder 40 that supplies the largest number of component types to be mounted on one board 12 is set to be closest to parts camera 39. However, it is considered best to set the feeder 40 of the part type so that it is farther from the part camera 39 as the number of mounted parts decreases.
  • a feeder 40 that supplies component types that are frequently mounted in jobs 2 and 3 near the parts camera 39.
  • recipes may be set using conditions that are not optimal for each job.
  • the cycle time of the recipe is longer than the fastest cycle time, but the time required for processing all the jobs 1 to 3 may be shortened.
  • the recipe productivity of equation (5) does not exceed the value 1 because the recipe cycle time is longer than the fastest cycle time. Note that the fastest cycle time and the cycle time of the recipe can be actually measured, or can be obtained by simulation if the performance of the component mounting machine 10 is known.
  • the CPU 81 calculates a new production index for each job and displays the result on the display 86 (step S400). Specifically, the CPU 81 calculates a new production index using Expression (6). Further, the CPU 81 displays the result in a graph on the display 86 as shown in FIG.
  • index is not restricted to a graph, For example, you may display with a list.
  • FIG. 7 shows a new production index that takes recipe productivity into consideration. The operator who sees this determines that improvement including job 1 is necessary. That is, the operator can appropriately determine whether or not each job needs to be improved only by confirming the new production index instead of confirming various factors.
  • the CPU 81 displays numerical values of various elements (availability, performance, quality, recipe productivity, etc.) on the display 86 as shown in Table 1.
  • the format for displaying numerical values is not limited to a table format, and may be a graph, for example.
  • the operator confirms the numerical values of these elements for a job that needs to be improved based on the new production index, and determines where to improve. From Table 1, it is determined that the recipe productivity needs to be improved for job 1, and the recipe change is examined. For job 2, it is determined that availability improvement is necessary, and improvement such as abnormal stop of the device (improvement of device downtime) is examined. For job 3, it is determined that performance needs to be improved, and an improvement in delay (improvement of manufacturing time) due to component re-suction (recovery) due to component suction mistakes or defective suction components is examined.
  • the mounting management apparatus 80 of this embodiment corresponds to the mounting management apparatus of the present invention
  • the feeder 40 corresponds to the component supply apparatus
  • the component mounter 10 corresponds to the component mounting apparatus
  • the HDD 83 corresponds to the storage means.
  • the CPU 81 corresponds to the control means.
  • the recipe productivity of the component mounter 10 and the downtime of the component mounter 10 are reduced.
  • a new production index including the elements is calculated and displayed on the display 86.
  • This new production index is an index that involves both the length of downtime and the quality of the recipe. Therefore, the operator can determine the productivity of the component mounting machine 10 by analyzing this one new production index, including both the length of the downtime and the quality of the recipe productivity.
  • the recipe productivity is a value calculated using a cycle time required for the component mounter 10 to produce a single type of component-mounted board, and is the theoretical fastest cycle time of the component mounter 10. It is a ratio with the cycle time of the recipe given to the component mounter this time. Therefore, the recipe productivity can be quantified relatively easily.
  • the formula for calculating the recipe productivity includes all of the availability, performance, and quality used for OEE as elements of downtime. Therefore, although the new production index this time is a new index, it uses elements that are widely used for OEE, and is easily accepted by many producers.
  • the new production index is an index that comprehensively determines OEE and recipe productivity, operators can perform production or change production conditions while confirming overall productivity using this new production index. it can.
  • the new production index is the product of OEE and recipe productivity, but the new production index may be the product of OEE availability and recipe productivity.
  • the new production index may be a product of OEE performance and recipe productivity, or may be a product of OEE availability, OEE performance and recipe productivity.
  • it is not restricted to a product, For example, it is good also as a sum and good also as ratio (fraction).
  • the recipe productivity of the bottleneck component mounting machine 10 among the plurality of component mounting machines 10 constituting the mounting line 2 is used as the recipe productivity of each job. Sex may be used.
  • the recipe productivity is obtained by taking the time from when the board enters the first component mounting machine 10 of the mounting line 2 to when the board comes out from the last component mounting machine 10 as a cycle time. In this way, the productivity of the mounting line 2 can be determined.
  • the recipe productivity is calculated using the formula (5), but may be calculated using the following formula (5 ′).
  • CPH is chip per hour and indicates the number of chips produced per hour.
  • the standard CPH is a CPH in a catalog or an IPC standard. Also in this case, the recipe productivity can be quantified relatively easily.
  • Recipe productivity (CPH of recipe) / (Standard CPH) (5 ′)
  • the notification may be made by voice.
  • the present invention can be used for a mounting management apparatus that manages a component mounting apparatus that picks up a component supplied from a component supply apparatus and mounts it on a board.
  • 1 component mounting system 2 mounting line, 10 component mounting machine, 12 substrate, 18 substrate transfer device, 20 support plate, 22 conveyor belt, 23 support pin, 26 X axis slider, 28 guide rail, 30 Y axis slider, 32 guide Rail, 34 head unit, 35 handle, 36 rotary head, 38 suction nozzle, 39 parts camera, 40 feeder, 42 reel, 44 tape, 46 recess, 48 film, 60 feeder set stand, 70 mounting controller, 80 mounting management device, 81 CPU, 82 ROM, 83 HDD, 84 RAM, 85 input device, 86 display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • General Factory Administration (AREA)

Abstract

実装管理装置80は、フィーダ40から供給された部品をピックアップして基板へ実装する部品実装機10を管理する。この実装管理装置80のHDDは、部品実装機10のレシピ生産性と部品実装機10のダウンタイムの要素(例えば段取り替え時間、部品待ち時間、メンテナンス時間、装置エラー時間など)とを含む新生産指標の算出式を記憶している。実装管理装置80のCPUは、部品実装機10が単一種の部品実装済み基板を所定数生産したあと、新生産指標を算出してディスプレイ86に表示する。

Description

実装管理装置
 本発明は、実装管理装置に関する。
 従来より、部品供給装置から供給された部品をピックアップして基板へ実装する部品実装装置を管理する実装管理装置が知られている。こうした実装管理装置としては、SEMI(Semiconductor Equipment and Materials International)が規定するOEE(Overall Equipment Efficiency)を表示するものが知られている(例えば特許文献1)。OEEは、生産性を計る大まかな指標である。OEEが低下した場合には、装置のアベイラビリティ(稼働状況)、装置のパフォーマンス、クオリティ(品質)のいずれかが生産性低下の要因だと判断することができるが、具体的にどれが生産性低下の要因なのかを判断するには個々の指標を確認することが必要となる。
特開2012-330707号公報
 ところで、部品実装装置では、単一種の部品実装済み基板を生産した後、別の単一種の部品実装済み基板を生産する場合、部品供給装置を交換したり部品をピックアップするノズルを交換したりする作業(段取り替え)が発生する。多品種少量生産の場合、こうした段取り替えに要する時間(段取り替え時間)が長くなると装置のダウンタイムが増大し、生産性が低下する。その場合、ダウンタイムをできるだけ短くしたいという要望がある。その一方で、ある種類の基板を大量生産する場合、段取り替え時間が長くなっても基板1枚あたりのサイクルタイムをできるだけ短くした方が生産性が向上することがある。その場合、サイクルタイムをできるだけ短くしたいという要望がある。サイクルタイムはレシピ(生産プログラム)によって変動する。OEEには、ダウンタイムの長短は反映されるものの、レシピの良否が反映されない。そのため、レシピの良否も加味された指標が求められていた。
 本発明は、上記課題を解決するためになされたものであり、ダウンタイムの長短とレシピの良否の両方が関与する指標を提供することを主目的とする。
 本発明の実装管理装置は、
 部品供給装置から供給された部品をピックアップして基板へ実装する部品実装装置を管理する実装管理装置において、
 前記部品実装装置のレシピ生産性と前記部品実装装置のダウンタイムの要素とを含む生産指標の算出式を記憶する記憶手段と、
 前記部品実装装置が単一種の部品実装済み基板を所定数生産したあと、前記算出式に基づいて前記生産指標を算出して表示手段に表示する制御手段と、
 を備えたものである。
 本発明の実装管理装置では、部品実装装置が単一種の部品実装済み基板を所定数生産したあと、部品実装装置のレシピ生産性と部品実装装置のダウンタイムの要素とを含む生産指標の算出式に基づいて生産指標を算出して表示手段に表示する。ダウンタイムの要素としては、例えば段取り替え時間、部品待ち時間、メンテナンス時間、装置エラー時間などのうち少なくとも1つが挙げられる。この生産指標は、ダウンタイムの長短とレシピの良否の両方が関与する指標である。そのため、オペレータは、この一つの生産指標を分析することにより、ダウンタイムの長短、レシピ生産性の良否の両方を含めて部品実装装置の生産性を判断することができる。
 本発明の実装管理装置において、前記レシピ生産性は、前記部品実装装置が前記単一種の部品実装済み基板を生産するのに要するサイクルタイムを用いて算出される値であって、前記部品実装装置の理論上の最速サイクルタイムと前記部品実装装置に今回付与されたレシピのサイクルタイムとの比率としてもよい。サイクルタイムとは、基板が部品実装装置に入ってから出てくるまでの時間をいう。こうすれば、比較的容易にレシピ生産性を数値化することができる。ここで、最速サイクルタイムは、例えば、単一種の部品実装済み基板を生産することだけを考慮した最良条件下におけるサイクルタイムとしてもよい。部品実装装置に付与されるレシピは、一般に、前後に別の種類の部品実装済み基板を生産することを考慮した条件下で作成されたものであるため、そのサイクルタイムは、最速サイクルタイムよりも長くなる。
 本発明の実装管理装置において、前記レシピ生産性は、前記部品実装装置が前記単一種の部品実装済み基板を単位時間当たりに生産する生産数を用いて算出される値であって、前記部品実装装置の単位時間当たりの生産数の規格値と前記部品実装装置に今回付与されたレシピの単位時間当たりの生産数との比率としてもよい。こうしても、比較的容易にレシピ生産性を数値化することができる。単位時間当たりの生産数の規格値は、例えば、その部品実装装置のカタログに記載された値を採用してもよいし、IPC規格による値としてもよい。レシピの単位時間当たりの生産数は、基板固有の条件(使用する部品の種類の組合せや個々の部品の実装位置等)や前後に別の種類の部品実装済み基板を生産することを考慮した条件下における数値であるため、規格値よりも小さくなる。
 本発明の実装管理装置において、前記算出式には、前記ダウンタイムの要素として、OEEに用いられるアベイラビリティが含まれていることが好ましい。また、前記算出式には、OEEに用いられるパフォーマンス及びクオリティの少なくとも一方が含まれていることが好ましい。こうすれば、今回の生産指標は新たな指標ではあるが、汎用されているOEEに用いられる要素を利用しているため、多くの生産者に広く受け入れられやすい。
部品実装システム1の概略説明図。 部品実装機10の斜視図。 ロータリーヘッド36の拡大図。 リール42の斜視図。 新生産指標報知ルーチンのフローチャート。 生産に関連する時間パラメータの説明図。 ジョブ1~3と新生産指標との関係を示すグラフ。 ジョブ1~3とOEEとの関係を示すグラフ。
 本発明の好適な実施形態を図面を参照しながら以下に説明する。図1は部品実装システム1の概略説明図、図2は部品実装機10の斜視図、図3はロータリーヘッド36の拡大図、図4はリール42の斜視図である。なお、本実施形態において、左右方向(X軸)、前後方向(Y軸)及び上下方向(Z軸)は、図1及び図2に示した通りとする。
 部品実装システム1は、図1に示すように、実装ライン2を形成する複数の部品実装機10と、基板の生産を管理する実装管理装置80とを備えている。部品実装システム1は、上流側から搬入された基板12に対し、各部品実装機10が部品の実装を行い、部品実装後の基板12を搬出するものである。
 部品実装機10は、図2に示すように、基板搬送装置18と、ヘッドユニット34と、パーツカメラ39、フィーダ40と、フィーダセット台60と、実装コントローラ70とを備えている。
 基板搬送装置18は、図2の前後に間隔を開けて設けられ左右方向に延びる支持板20,20と、両支持板20,20の互いに対向する面に設けられたコンベアベルト22,22(図1では片方のみ図示)とを備えている。コンベアベルト22,22は、支持板20,20の左右に設けられた駆動輪及び従動輪に無端状となるように架け渡されている。基板12は、一対のコンベアベルト22,22の上面に乗せられて左から右へと搬送される。この基板12は、裏面側に多数立設された支持ピン23によって支持される。
 ヘッドユニット34は、X軸スライダ26の前面に着脱可能に取り付けられている。このヘッドユニット34は、交換作業時に作業者が掴むための取っ手35を前面に有している。X軸スライダ26は、Y軸スライダ30の前面に設けられた左右方向に延びる上下一対のガイドレール28,28にスライド可能に取り付けられている。Y軸スライダ30は、前後方向に延びる左右一対のガイドレール32,32にスライド可能に取り付けられている。ヘッドユニット34は、X軸スライダ26が左右方向に移動するのに伴って左右方向に移動し、Y軸スライダ30が前後方向に移動するのに伴って前後方向に移動する。なお、各スライダ26,30は、それぞれ駆動モータ(図示せず)により駆動される。ヘッドユニット34は、図3に示すように、複数の吸着ノズル38を備えたロータリーヘッド36を有している。吸着ノズル38は、圧力を利用して、ノズル先端に部品を吸着したり、ノズル先端に吸着している部品を離したりするものである。この吸着ノズル38は、ヘッドユニット34に搭載された図示しないZ軸モータによって高さ調整が可能となっている。こうした吸着ノズル38は、部品の種類や大きさなどに応じて適宜交換される。また、ロータリーヘッド36は、異なる本数の吸着ノズルを備えたロータリーヘッドや一本の吸着ノズルを備えたヘッドに適宜交換される。
 パーツカメラ39は、フィーダセット台60と基板搬送装置18との間であって左右方向の長さの略中央にて、撮像方向が上向きとなるように設置されている。このパーツカメラ39は、その上方を通過する吸着ノズル38に吸着された部品を撮像し、撮像により得られた画像を実装コントローラ70へ出力する。
 フィーダ40は、リール42を回転可能に保持している。リール42には、図4に示すように、テープ44が巻回されている。テープ44には、複数の凹部46がテープ44の長手方向に沿って並ぶように形成されている。各凹部46には、部品Pが収容されている。これらの部品Pは、テープ44の表面を覆うフィルム48によって保護されている。フィーダ40には、部品吸着位置が定められている。部品吸着位置は、吸着ノズル38が部品Pを吸着する設計上定められた位置である。テープ44がフィーダ40によって所定量後方へ送られるごとに、テープ44に収容された部品Pが順次、部品吸着位置へ配置されるようになっている。部品吸着位置に至った部品Pは、フィルム48が剥がされた状態になっており、吸着ノズル38によって吸着される。テープ44の幅は、部品Pの大きさが大きいほど広くなり、リール42の幅は、テープ44の幅が広いほど広くなり、フィーダ40の幅は、リール42の幅が広いほど広くなる。そのため、フィーダ40は、部品Pの大きさに応じて種々の幅を持つものが存在する。
 フィーダセット台60は、図示しないが、上面に複数のスロットを有している。スロットは、Y軸に沿って延びる溝である。スロットには、フィーダ40の下面に設けられた図示しないレールが差し込まれるようになっている。フィーダ40のうち、幅の狭いものはフィーダセット台60のスロットを1つだけ占有するが、幅が広いものはスロットを複数個占有する。
 実装コントローラ70は、図2に示すように、CPUを中心とするマイクロプロセッサとして構成されており、処理プログラムを記憶するROM、各種データを記憶するHDD、作業領域として用いられるRAMなどを備える。これらは、図示しないバスを介して電気的に接続されている。この実装コントローラ70は、フィーダ40の図示しないフィーダコントローラや実装管理装置80と双方向通信可能なように接続されている。また、実装コントローラ70は、基板搬送装置18やX軸スライダ26、Y軸スライダ30、Z軸モータなどへ制御信号を出力可能なように接続されると共に、パーツカメラ39から画像を受信可能に接続されている。例えば、実装コントローラ70は、実装管理装置80から受信したレシピ(生産プログラム)に基づいて、各フィーダ40によって部品供給位置に送り出された部品供給テープから部品Pが吸着ノズル38によりピックアップされて基板12上の所定位置に順次装着されるよう、基板搬送装置18やX軸スライダ26、Y軸スライダ30、Z軸モータなどを制御する。また、実装コントローラ70は、パーツカメラ39で撮像された画像に基づいて吸着ノズル38に部品が吸着されているか否かの判断やその部品の形状、大きさ、吸着位置などを判定する。
 実装管理装置80は、図1に示すように、CPU81を中心とするマイクロプロセッサであって、処理プログラムを記憶するROM82、基板の生産プログラムなどを記憶するHDD83、作業領域として用いられるRAM84などを備える。これらは、図示しないバスを介して電気的に接続されている。実装管理装置80には、マウスやキーボード等の入力デバイス85から入力信号が入力され、実装管理装置80からは、ディスプレイ86への画像信号が出力される。
 次に、こうして構成された部品実装システム1の実装管理装置80が実施する新生産指標報知ルーチンについて説明する。図5は新生産指標報知ルーチンのフローチャートである。このルーチンは、実装ライン2が複数のジョブをすべて処理した時点で自動的に又はオペレータの起動要求に応じて実行される。以下には、実装ライン2がジョブ1~3を処理する場合を例に挙げ、適時、この例を交えながら説明する。ジョブ1では、単一種の部品実装済み基板Aを1000枚製造し、ジョブ2ではジョブ1とは別の単一種の部品実装済み基板Bを100枚製造し、ジョブ3ではジョブ1,2とは別の単一種の部品実装済み基板Cを100枚製造するものとする。部品実装済み基板A~Cは、それぞれ実装される部品の種類や組合せ、個数の異なる基板とする。
 新生産指標報知ルーチンが開始されると、実装管理装置80のCPU81は、各ジョブの生産に関する時間パラメータを取得する(ステップS100)。例えば、ジョブ1~3のそれぞれについて生産に関する時間パラメータを取得する。ここで、時間パラメータとは、図6に示すように、生産時間、待機時間、エンジニアリング時間、計画ダウンタイム、計画外ダウンタイム及び非計画時間であり、これらはSEMIをベースに定められている。生産時間は、基板へ部品を実装している時間やローディング時間を含む。待機時間は、アイドル時間やスイッチ待ち時間、前工程の待ち時間、後工程の待ち時間を含む。エンジニアリング時間は、本実施形態では未定義(ゼロ)とする。計画ダウンタイムは、部品待ち時間やメンテナンス時間、段取り替え時間を含む。なお、段取り替え時間は、ジョブを開始する前にそのジョブに使用するフィーダやノズルなどを各部品実装機10に取り付ける作業に要する時間をいう。計画外ダウンタイムは、装置エラー時間を含む。非計画時間は、装置オフ時間や接続オフ時間を含む。また、製造時間は、生産時間と待機時間との和である。装置アップタイムは、製造時間とエンジニアリング時間との和である。装置ダウンタイムは、計画ダウンタイムと計画外ダウンタイムとの和である。稼働時間は、装置アップタイムと装置ダウンタイムとの和である。総時間は、稼働時間と非計画時間との和である。
 続いて、CPU81は、各ジョブのOEEを算出する(ステップS200)。例えば、ジョブ1~3のそれぞれについてOEEを算出する。具体的には、CPU81は、式(1)~(3)を用いてアベイラビリティ、パフォーマンス及びクオリティを算出し、その後、式(4)を用いてOEEを算出する。ここで、ジョブサイクルタイムは、1枚の基板が実装ライン2の最初の部品実装機10に入ってから最後の部品実装機10の外へ出るまでに要する時間をいい、計算上ジョブサイクルタイムは、ジョブサイクルタイムをシミュレーションによって求めた時間をいう。良品枚数は、生産枚数の中から不良枚数(例えば部品が正しく実装されていない基板の枚数)を引いた数をいう。待機時間、生産時間、総時間及び非計画時間は、ステップS100で取得した値を使用する。
Figure JPOXMLDOC01-appb-M000001
 続いて、CPU81は、各ジョブのレシピ生産性を算出する(ステップS300)。例えば、ジョブ1~3のそれぞれについてレシピ生産性を算出する。具体的には、CPU81は、式(5)を用いてレシピ生産性を算出する。ここで、最速サイクルタイムは、1台の部品実装機10において基板へ部品を実装するにあたり、他のジョブを考慮せず、つまり他のジョブとのフィーダの共通化や吸着ノズルの共通化などを考慮せず、最良の条件で部品の実装を行ったときのサイクルタイムをいう。なお、サイクルタイムは、1枚の基板が1台の部品実装機10に入ってから出るまでに要する時間をいう。レシピは、基板へ部品を実装するにあたり、他のジョブを考慮して、つまり他のジョブとのフィーダの共通化や吸着ノズルの共通化などを考慮して、最良の条件よりも低い条件に設定される。そのため、レシピのサイクルタイムは、その条件で部品の実装を行ったときのサイクルタイムをいう。なお、レシピとは、各部品実装機10において、どういう種類のフィーダ40をフィーダセット台60のどこに配置するかとか、どういう種類の吸着ノズル38をロータリーヘッド36に取り付けるか等を定めた生産プログラムをいう。CPU81は、レシピ生産性を算出する際、実装ライン2を構成する複数の部品実装機10のうちボトルネックの実装機つまり最速サイクルタイムが最も長い実装機のレシピ生産性を算出する。
 ところで、吸着ノズル38は、フィーダ40から供給された部品を吸着したあとパーツカメラ39の上方を通り、その後基板12の所定位置へ移動して、そこで部品を実装する。そのため、吸着ノズル38が移動する距離や時間は、フィーダ40がパーツカメラ39に近いほど短く、遠いほど長くなる。この点を考慮すると、ジョブ1において、ジョブ2,3を考慮しなければ、1枚の基板12へ実装する個数の最も多い部品種を供給するフィーダ40をパーツカメラ39の最も近くなるようにセットし、実装する個数が少なくなるにつれてその部品種のフィーダ40をパーツカメラ39から遠くなるようにセットするのが最良と考えられる。また、ジョブ1において、ジョブ2,3を考慮しなければ、ジョブ1に使用する吸着ノズル38だけをロータリーヘッド36に取り付けるのが最良と考えられる。ジョブ2,3についても、同様である。最速サイクルタイムは、こうした最良の条件で部品の実装を行ったときのサイクルタイムである。
 一方、ジョブ1~3はこの順に処理されるため、各ジョブを処理する前にそのジョブの最良の条件となるようにフィーダ40や吸着ノズル38を取り付け直すつまり段取り替えを行うとすると、その段取り替え時間(ダウンタイムの要素)が長くかかってしまう。その結果、各ジョブの処理に要する時間は短いとしても、すべてのジョブ1~3の処理に要する時間は却って長くなることがある。特に各ジョブの生産枚数が少なく、ジョブ数が多い場合には、その傾向が強くなる。このような段取り替え時間を考慮すると、例えば、ジョブ1を処理する際に、ジョブ2,3で使用しジョブ1では使用しない吸着ノズル38を最初からロータリーヘッド36に装着しておいた方がよい場合がある。また、ジョブ1を処理する際に、ジョブ2,3で実装頻度の高い部品種を供給するフィーダ40をパーツカメラ39の近くに配置した方がよい場合がある。つまり、ジョブ1~3を考慮すると、各ジョブにつき最良ではない条件を採用してレシピを設定することがある。その場合、最速サイクルタイムに比べてレシピのサイクルタイムは長くなるが、すべてのジョブ1~3の処理に要する時間は短くなることがある。式(5)のレシピ生産性は、最速サイクルタイムに比べてレシピのサイクルタイムの方が長くなるため、値1を超えることはない。なお、最速サイクルタイムやレシピのサイクルタイムは、実測することもできるし、部品実装機10の性能がわかっていればシミュレーションで求めることができる。
 続いて、CPU81は、各ジョブの新生産指標を算出し、その結果をディスプレイ86に表示する(ステップS400)。具体的には、CPU81は、式(6)を用いて新生産指標を算出する。また、CPU81は、例えば図7のように、その結果をディスプレイ86にグラフ化して表示する。なお、新生産指標の表示方法は、グラフに限らず、例えば一覧表で表示してもよい。
 次に、新生産指標の使い方について説明する。ジョブ1~3について下記表1のような結果が得られたとする。従来の指標であるOEEをグラフ化すると、図8のようになる。これを見たオペレータは、ジョブ2,3については生産性が低かったが、ジョブ1については特に改善の必要はないと判断する。しかしながら、レシピ生産性を加味した新生産指標をグラフ化すると、図7のようになる。これを見たオペレータは、ジョブ1も含めて改善が必要だと判断する。つまり、オペレータは、様々な要素を確認するのではなく、新生産指標を確認するだけで各ジョブの改善の必要性の有無を適切に判断することができる。
Figure JPOXMLDOC01-appb-T000002
 ところで、CPU81は、新生産指標に加えて、表1に示すように様々な要素(アベイラビリティ、パフォーマンス、クオリティ、レシピ生産性など)の数値をディスプレイ86に表示する。数値を表示する形式としては、表形式に限らず、例えばグラフなどでもよい。オペレータは、新生産指標に基づいて改善が必要だと判断したジョブについては、これらの要素の数値を確認し、具体的にどこを改善すべきかを判断する。表1から、ジョブ1については、レシピ生産性の改善が必要だと判断し、レシピの変更を検討する。ジョブ2については、アベイラビリティの改善が必要だと判断し、装置の異常停止等の改善(装置ダウンタイムの改善)を検討する。ジョブ3については、パフォーマンスの改善が必要だと判断し、部品の吸着ミスや吸着部品の不良等による部品の再吸着(リカバリ)による遅延等の改善(製造時間の改善)を検討する。
 ここで、本実施形態の実装管理装置80本発明の実装管理装置に相当し、フィーダ40が部品供給装置に相当し、部品実装機10が部品実装装置に相当し、HDD83が記憶手段に相当し、CPU81が制御手段に相当する。
 以上説明した本実施形態の実装管理装置80によれば、部品実装機10が単一種の部品実装済み基板を所定数生産したあと、部品実装機10のレシピ生産性と部品実装機10のダウンタイムの要素とを含む新生産指標を算出してディスプレイ86に表示する。この新生産指標は、ダウンタイムの長短とレシピの良否の両方が関与する指標である。そのため、オペレータは、この一つの新生産指標を分析することにより、ダウンタイムの長短、レシピ生産性の良否の両方を含めて部品実装機10の生産性を判断することができる。
 また、レシピ生産性は、部品実装機10が単一種の部品実装済み基板を生産するのに要するサイクルタイムを用いて算出される値であって、部品実装機10の理論上の最速サイクルタイムと部品実装機に今回付与されたレシピのサイクルタイムとの比率である。そのため、比較的容易にレシピ生産性を数値化することができる。
 更に、レシピ生産性の算出式には、ダウンタイムの要素としてOEEに用いられるアベイラビリティ、パフォーマンス、クオリティがすべて含まれている。そのため、今回の新生産指標は新たな指標ではあるが、汎用されているOEEに用いられる要素を利用しているため、多くの生産者に広く受け入れられやすい。
 更にまた、OEEとレシピ生産性とは相反する結果を出す場合もあるし、連動する結果を出す場合もある。新生産指標は、OEEとレシピ生産性とを総合的に判断する指標のため、オペレータは、この新生産指標によって、全体の生産性を確認しながら生産したり生産条件を変更したりすることができる。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 上述した実施形態では、新生産指標をOEEとレシピ生産性との積としたが、新生産指標をOEEのアベイラビリティとレシピ生産性との積としてもよい。あるいは、新生産指標をOEEのパフォーマンスとレシピ生産性との積としてもよいし、OEEのアベイラビリティとOEEのパフォーマンスとレシピ生産性との積としてもよい。また、積に限らず、例えば和としてもよいし比(分数)としてもよい。
 上述した実施形態では、各ジョブのレシピ生産性として、実装ライン2を構成する複数の部品実装機10のうちボトルネックの部品実装機10のレシピ生産性を用いたが、実装ライン2のレシピ生産性を用いてもよい。その場合、実装ライン2の1番目の部品実装機10に基板が入ってから最後の部品実装機10から基板が出てくるまでの時間をサイクルタイムとして、レシピ生産性を求める。こうすれば、実装ライン2の生産性を判断することができる。
 上述した実施形態では、レシピ生産性を式(5)を用いて算出したが、下記式(5’)を用いて算出してもよい。式(5’)において、CPHは、チップ・パー・アワー(chip per hour)であり、1時間あたりのチップの生産数を示す。また、規格のCPHは、カタログやIPC規格などにおけるCPHである。この場合も、比較的容易にレシピ生産性を数値化することができる。
 レシピ生産性=(レシピのCPH)/(規格のCPH) …(5’)
 上述した実施形態では、新生産指標をディスプレイ86に表示する場合を例示したが、それに代えて又は加えて、音声で報知してもよい。
 本発明は、部品供給装置から供給された部品をピックアップして基板へ実装する部品実装装置を管理する実装管理装置に利用可能である。
1 部品実装システム、2 実装ライン、10 部品実装機、12 基板、18 基板搬送装置、20 支持板、22 コンベアベルト、23 支持ピン、26 X軸スライダ、28 ガイドレール、30 Y軸スライダ、32 ガイドレール、34 ヘッドユニット、35 取っ手、36 ロータリーヘッド、38 吸着ノズル、39 パーツカメラ、40 フィーダ、42 リール、44 テープ、46 凹部、48 フィルム、60 フィーダセット台、70 実装コントローラ、80 実装管理装置、81 CPU、82 ROM、83 HDD、84 RAM、85 入力デバイス、86 ディスプレイ。

Claims (5)

  1.  部品供給装置から供給された部品をピックアップして基板へ実装する部品実装装置を管理する実装管理装置において、
     前記部品実装装置のレシピ生産性と前記部品実装装置のダウンタイムの要素とを含む生産指標の算出式を記憶する記憶手段と、
     前記部品実装装置が単一種の部品実装済み基板を所定数生産したあと、前記算出式に基づいて前記生産指標を算出して表示手段に表示する制御手段と、
     を備えた実装管理装置。
  2.  前記レシピ生産性は、前記部品実装装置が前記単一種の部品実装済み基板を生産するのに要するサイクルタイムを用いて算出される値であって、前記部品実装装置の理論上の最速サイクルタイムと前記部品実装装置に今回付与されたレシピのサイクルタイムとの比率である、
     請求項1に記載の実装管理装置。
  3.  前記レシピ生産性は、前記部品実装装置が前記単一種の部品実装済み基板を単位時間当たりに生産する生産数を用いて算出される値であって、前記部品実装装置の単位時間当たりの生産数の規格値と前記部品実装装置に今回付与されたレシピの単位時間当たりの生産数との比率である、
     請求項1に記載の実装管理装置。
  4.  前記算出式には、前記ダウンタイムの要素として、OEEに用いられるアベイラビリティが含まれる、
     請求項1~3のいずれか1項に記載の実装管理装置。
  5.  前記算出式には、OEEに用いられるパフォーマンス及びクオリティの少なくとも一方が含まれる、
     請求項1~4のいずれか1項に記載の実装管理装置。
PCT/JP2015/067212 2015-06-15 2015-06-15 実装管理装置 WO2016203533A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/067212 WO2016203533A1 (ja) 2015-06-15 2015-06-15 実装管理装置
JP2017524169A JP6526808B2 (ja) 2015-06-15 2015-06-15 実装管理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/067212 WO2016203533A1 (ja) 2015-06-15 2015-06-15 実装管理装置

Publications (1)

Publication Number Publication Date
WO2016203533A1 true WO2016203533A1 (ja) 2016-12-22

Family

ID=57545552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067212 WO2016203533A1 (ja) 2015-06-15 2015-06-15 実装管理装置

Country Status (2)

Country Link
JP (1) JP6526808B2 (ja)
WO (1) WO2016203533A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020046789A (ja) * 2018-09-18 2020-03-26 パナソニックIpマネジメント株式会社 生産指標表示方法および生産管理装置
DE112019007391T5 (de) 2019-05-30 2022-02-17 Yamaha Hatsudoki Kabushiki Kaisha Vorrichtung zur auelementbestückungsverwaltung, verfahren zur auelementbestückungsverwaltung, programm zur bauelementbestückungsverwaltung und datenträger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230409795A1 (en) * 2020-11-27 2023-12-21 Fuji Corporation Substrate production simulation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268934A (ja) * 1997-03-26 1998-10-09 Toshiba Corp 設備稼働状況の集計方法およびその装置
JP2000123085A (ja) * 1998-10-16 2000-04-28 Omron Corp データ集計処理装置およびデータ集計処理用プログラムが記録された記録媒体
JP2006339389A (ja) * 2005-06-01 2006-12-14 Yamaha Motor Co Ltd 実装機の段取り支援方法
JP2013084646A (ja) * 2011-10-06 2013-05-09 Yamaha Motor Co Ltd 基板処理システム、基板供給順序決定方法、プログラム、記録媒体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4335119B2 (ja) * 2000-07-27 2009-09-30 パナソニック株式会社 稼動分析方法と稼働分析システム
JP2002182725A (ja) * 2000-12-11 2002-06-26 Japan Institute Of Plant Maintenance 加工工場における設備総合効率算出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268934A (ja) * 1997-03-26 1998-10-09 Toshiba Corp 設備稼働状況の集計方法およびその装置
JP2000123085A (ja) * 1998-10-16 2000-04-28 Omron Corp データ集計処理装置およびデータ集計処理用プログラムが記録された記録媒体
JP2006339389A (ja) * 2005-06-01 2006-12-14 Yamaha Motor Co Ltd 実装機の段取り支援方法
JP2013084646A (ja) * 2011-10-06 2013-05-09 Yamaha Motor Co Ltd 基板処理システム、基板供給順序決定方法、プログラム、記録媒体

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020046789A (ja) * 2018-09-18 2020-03-26 パナソニックIpマネジメント株式会社 生産指標表示方法および生産管理装置
JP2022122998A (ja) * 2018-09-18 2022-08-23 パナソニックIpマネジメント株式会社 生産指標表示方法および生産管理装置
JP7142207B2 (ja) 2018-09-18 2022-09-27 パナソニックIpマネジメント株式会社 生産指標表示方法および生産管理装置
JP7422283B2 (ja) 2018-09-18 2024-01-26 パナソニックIpマネジメント株式会社 生産指標表示方法および生産管理装置
DE112019007391T5 (de) 2019-05-30 2022-02-17 Yamaha Hatsudoki Kabushiki Kaisha Vorrichtung zur auelementbestückungsverwaltung, verfahren zur auelementbestückungsverwaltung, programm zur bauelementbestückungsverwaltung und datenträger

Also Published As

Publication number Publication date
JP6526808B2 (ja) 2019-06-05
JPWO2016203533A1 (ja) 2018-03-29

Similar Documents

Publication Publication Date Title
JP6445132B2 (ja) 実装管理装置
US10775775B2 (en) Preparation operation determination system, method, and apparatus
CN110268814B (zh) 生产管理装置
WO2016203533A1 (ja) 実装管理装置
JP5963873B2 (ja) 生産計画決定システム
US20180077830A1 (en) Component mounting system, component sorting method, and component mounter
US9346625B2 (en) Work system for substrates and working machine
WO2014073088A1 (ja) 部品実装ラインの生産監視システム及び生産監視方法
JP6947930B2 (ja) 部品供給ユニットの配置決定方法および部品実装システム
JP6424236B2 (ja) 対基板作業管理装置
WO2015004733A1 (ja) 検査制御装置、実装システム及び検査制御方法
CN112205097B (zh) 支撑装置的临时保管区域位置决定方法及决定装置
JP6752086B2 (ja) 実装管理装置
JP5384764B2 (ja) 電子部品実装方法
JP6963021B2 (ja) 対基板作業システム
JP7431927B2 (ja) 部品実装システム
WO2014024275A1 (ja) 対基板作業システム
JP7319448B2 (ja) 部品実装機
US10935963B2 (en) Required accuracy setting device
JP7332515B2 (ja) 部品実装ライン
WO2023013014A1 (ja) 情報処理装置、および表示方法
JP7250965B2 (ja) 部品実装プログラム
JP7364360B2 (ja) 部品実装機
US20240337996A1 (en) Component mounting system
WO2021234848A1 (ja) 部品実装システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895554

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524169

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15895554

Country of ref document: EP

Kind code of ref document: A1