WO2016203525A1 - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- WO2016203525A1 WO2016203525A1 PCT/JP2015/067182 JP2015067182W WO2016203525A1 WO 2016203525 A1 WO2016203525 A1 WO 2016203525A1 JP 2015067182 W JP2015067182 W JP 2015067182W WO 2016203525 A1 WO2016203525 A1 WO 2016203525A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- signal
- voltage
- sampling
- semiconductor device
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 42
- 238000005070 sampling Methods 0.000 claims abstract description 116
- 230000003321 amplification Effects 0.000 claims abstract description 55
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 55
- 230000004044 response Effects 0.000 claims abstract description 5
- 239000003990 capacitor Substances 0.000 claims description 120
- 238000001514 detection method Methods 0.000 claims description 27
- 238000010521 absorption reaction Methods 0.000 claims description 20
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 description 65
- 101000648528 Homo sapiens Transmembrane protein 50A Proteins 0.000 description 19
- 102100028770 Transmembrane protein 50A Human genes 0.000 description 19
- 230000000875 corresponding effect Effects 0.000 description 16
- 101000983850 Homo sapiens Phosphatidate phosphatase LPIN3 Proteins 0.000 description 13
- 102100025728 Phosphatidate phosphatase LPIN3 Human genes 0.000 description 13
- KXRZBTAEDBELFD-UHFFFAOYSA-N sulfamethopyrazine Chemical compound COC1=NC=CN=C1NS(=O)(=O)C1=CC=C(N)C=C1 KXRZBTAEDBELFD-UHFFFAOYSA-N 0.000 description 13
- 230000007704 transition Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 6
- 102100036285 25-hydroxyvitamin D-1 alpha hydroxylase, mitochondrial Human genes 0.000 description 5
- 101000875403 Homo sapiens 25-hydroxyvitamin D-1 alpha hydroxylase, mitochondrial Proteins 0.000 description 5
- 238000013016 damping Methods 0.000 description 5
- 230000005669 field effect Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 101000859758 Homo sapiens Cartilage-associated protein Proteins 0.000 description 1
- 101000916686 Homo sapiens Cytohesin-interacting protein Proteins 0.000 description 1
- 101000726740 Homo sapiens Homeobox protein cut-like 1 Proteins 0.000 description 1
- 101000761460 Homo sapiens Protein CASP Proteins 0.000 description 1
- 101000761459 Mesocricetus auratus Calcium-dependent serine proteinase Proteins 0.000 description 1
- 102100024933 Protein CASP Human genes 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/01—Shaping pulses
- H03K5/08—Shaping pulses by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45179—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
- H03F3/45183—Long tailed pairs
- H03F3/45188—Non-folded cascode stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45475—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45479—Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
- H03F3/45632—Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit
- H03F3/45636—Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit by using feedback means
- H03F3/45641—Measuring at the loading circuit of the differential amplifier
- H03F3/45659—Controlling the loading circuit of the differential amplifier
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/71—Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
- H04N25/75—Circuitry for providing, modifying or processing image signals from the pixel array
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/78—Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45288—Differential amplifier with circuit arrangements to enhance the transconductance
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45424—Indexing scheme relating to differential amplifiers the CMCL comprising a comparator circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45514—Indexing scheme relating to differential amplifiers the FBC comprising one or more switched capacitors, and being coupled between the LC and the IC
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45551—Indexing scheme relating to differential amplifiers the IC comprising one or more switched capacitors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1009—Calibration
- H03M1/1014—Calibration at one point of the transfer characteristic, i.e. by adjusting a single reference value, e.g. bias or gain error
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1009—Calibration
- H03M1/1033—Calibration over the full range of the converter, e.g. for correcting differential non-linearity
- H03M1/1057—Calibration over the full range of the converter, e.g. for correcting differential non-linearity by trimming, i.e. by individually adjusting at least part of the quantisation value generators or stages to their nominal values
- H03M1/1061—Calibration over the full range of the converter, e.g. for correcting differential non-linearity by trimming, i.e. by individually adjusting at least part of the quantisation value generators or stages to their nominal values using digitally programmable trimming circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/38—Analogue value compared with reference values sequentially only, e.g. successive approximation type
- H03M1/46—Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
- H03M1/466—Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors
- H03M1/468—Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors in which the input S/H circuit is merged with the feedback DAC array
Definitions
- the present invention relates to a semiconductor device, and more particularly, to a technique for suppressing current consumption.
- a semiconductor device used in an imaging device such as a digital camera includes a circuit that performs correlated double sampling processing on an output signal (pixel signal) of a pixel, and amplifies a pixel signal subjected to correlated double sampling processing.
- An amplification circuit, an A / D conversion circuit for A / D converting an amplified pixel signal, and the like are provided.
- this type of semiconductor device it is necessary to operate the pixel and the amplifier circuit with a high power supply voltage in order to secure the dynamic range of the pixel signal, and to realize low power consumption. It operates with a low power supply voltage. Therefore, this type of semiconductor device is provided with a level shift circuit for converting the signal level of the output signal of the pixel to a signal level compatible with the low power supply voltage A / D conversion circuit (Patent Document 1) .
- the above-mentioned level shift circuit is composed of a source follower circuit provided with a constant current source as a load circuit. For this reason, there is a problem that idling current is constantly generated in the level shift circuit and current consumption is increased.
- the present invention provides a semiconductor device capable of converting the signal level of a pixel signal to a signal level compatible with a desired power supply voltage system circuit while suppressing current consumption.
- a semiconductor device includes an amplifier circuit that samples and amplifies an input signal, and a post-stage circuit that operates in response to an output signal of the amplifier circuit, the amplifier circuit sampling A sampling capacitor for holding the input signal as a signal based on a first reference voltage, a feedback capacitor for transferring the signal held in the sampling capacitor, and a signal held in the sampling capacitor And an operational amplifier circuit that amplifies the signal according to the ratio between the sampling capacitor and the feedback capacitor and outputs the amplified signal as a signal based on the second reference voltage.
- the first reference voltage may be a voltage higher than the second reference voltage.
- the first reference voltage in the first aspect or the second aspect, is a quarter of the first power supply voltage supplied to the operational amplifier circuit.
- the second reference voltage is set to a voltage within the range of 1 ⁇ 4 to 3 ⁇ 4 of the second power supply voltage supplied to the post-stage circuit. It may be set.
- a clip circuit is further provided which limits the voltage of the output signal of the operational amplifier circuit to a predetermined voltage or less. Good.
- the clip circuit when the voltage of the output signal of the operational amplifier circuit exceeds the second power supply voltage supplied to the subsequent stage circuit, the clip circuit An overcurrent detection circuit for detecting an generated overcurrent may be provided, and an overcurrent absorption circuit for absorbing the overcurrent may be provided.
- the amplifier circuit further includes a plurality of pixels arranged in a matrix, and the amplification circuit is configured to One or more may be arranged with respect to.
- the subsequent stage circuit may be a successive approximation A / D converter circuit.
- the operational amplifier circuit may be a transconductance amplifier.
- the transconductance amplifier may be a telescopic transconductance amplifier.
- the signal level of the pixel signal can be converted to a signal level compatible with the circuit of the desired power supply voltage system while suppressing current consumption.
- FIG. 1 is a view showing a configuration example of a semiconductor device according to a first embodiment of the present invention. It is a figure showing an example of composition of an operational amplification circuit with which a semiconductor device by a 1st embodiment of the present invention is provided. It is a timing chart for explaining the example of operation of the semiconductor device by a 1st embodiment of the present invention. It is a figure which shows the structural example of the semiconductor device by the 2nd Embodiment of this invention. It is a figure which shows the structural example of the overcurrent detection circuit with which the semiconductor device by the 2nd Embodiment of this invention is provided.
- FIG. 10 is a circuit diagram showing a configuration example of a sampling circuit and a capacitive DAC circuit included in a successive approximation A / D converter circuit according to a third embodiment of the present invention. It is a figure which shows the structural example of the damping capacity with which the successive approximation type A / D converter circuit by the 3rd Embodiment of this invention is equipped, (A) is schematic, (B) is a detailed view.
- FIG. 1 is a view showing a configuration example of a semiconductor device 10 according to a first embodiment of the present invention.
- the semiconductor device 10 includes a pixel array 11, an amplifier circuit 12, and a rear stage circuit 13.
- the pixel array 11 is composed of a plurality of pixels (P1, P2, etc.) arranged in a matrix.
- the pixel array 11 photoelectrically converts an optical image formed by an optical system (not shown) and outputs a pixel signal to the amplifier circuit 12.
- the amplification circuit 12 is an element for sampling and amplifying a pixel signal input from the pixel array 11 as an input signal.
- the amplification circuit 12 amplifies and outputs the difference between the reset signal and the video signal which are output as pixel signals from each pixel in the pixel array 11.
- the reset signal and the video signal are pixel signals used in the correlated double sampling process, and among them, the reset signal is a pixel signal in an initial state before the video signal is read out, and the video signal is the above It is a pixel signal including a video component superimposed on a reset signal.
- the post-stage circuit 13 is an element that operates in response to the output signal of the amplifier circuit 12.
- the post-stage circuit 13 includes an A / D conversion circuit 100 that performs analog / digital conversion (hereinafter referred to as A / D conversion) of the output signal of the amplification circuit 12.
- An output signal of the A / D conversion circuit 100 is supplied to an optional digital signal processing circuit (not shown).
- the semiconductor device 10 may include only the amplifier circuit 12 as a component thereof, or may include the amplifier circuit 12 and the rear stage circuit 13.
- the circuit type of the A / D conversion circuit is arbitrary, the digital type A / D conversion circuit is more desirable than the analog type from the viewpoint of reducing power consumption and power supply voltage.
- the configuration of the amplifier circuit 12 will be described in detail.
- One or more amplification circuits 12 are arranged for a plurality of pixel columns.
- FIG. 1 shows an example in which one amplifier circuit 12 is disposed, two or more amplifier circuits 12 may be disposed.
- the amplification circuit 12 includes a sampling circuit SMP1 for sampling a pixel signal input from the pixel column to which the pixel P1 forming the pixel array 11 belongs, and a pixel input from the pixel column to which the pixel P2 forming the pixel array 11 belongs.
- a sampling circuit SMP2 for sampling a signal
- a difference signal amplifier circuit DA for amplifying a difference signal of a video signal and a reset signal included in each pixel signal output from the sampling circuits SMP1 and SMP2.
- control signals such as control signals SHR, SHS, CB1, CB1b, ⁇ 1, ⁇ 2 shown in FIG. 1 are output from a control signal generation circuit (not shown).
- the sampling circuit SMP1 includes sampling capacitors C1R and C1S, and switches SW11, SW12R, SW12S, SW13R, SW13S, SW14R, and SW14S.
- the first terminal of the switch SW12R and the first terminal of the switch SW12S are commonly connected to the signal line of the pixel column to which the pixel P1 belongs.
- the switch SW11 is connected between the second terminal of the switch SW12R and the second terminal of the switch SW12S.
- the switch SW12R is an element that samples a reset signal supplied as a pixel signal from the pixel column to which the pixel P1 belongs and holds the reset signal in the sampling capacitor C1R.
- the first electrode of the sampling capacitor C1R is connected to the second terminal of the switch SW12R.
- the switch SW14R is connected between the second electrode of the sampling capacitor C1R and the first reference voltage VCM1.
- the first terminal of the switch SW13R is connected to the second electrode of the sampling capacitor C1R.
- the switch SW13R is an element for transferring the charge of the signal held by the sampling capacitor C1R to the feedback capacitor CR. When the switch SW13R is controlled to be closed, the signal held by the sampling capacitor C1R is transferred to the feedback capacitor CR through the switch SW13R.
- the switch SW12S is an element that samples a video signal supplied as a pixel signal from the pixel column to which the pixel P1 belongs and holds the video signal in the sampling capacitor C1S.
- the first electrode of the sampling capacitor C1S is connected to the second terminal of the switch SW12S.
- the switch SW14S is connected between the second electrode of the sampling capacitor C1S and the first reference voltage VCM1.
- the first terminal of the switch SW13S is connected to the second electrode of the sampling capacitor C1S.
- the switch SW13S is an element for transferring the charge of the signal held by the sampling capacitor C1S to the feedback capacitor CS. When the switch SW13S is controlled to be closed, the signal held by the sampling capacitor C1S is transferred to the feedback capacitor CS through the switch SW13S.
- the opening and closing of the switch SW12R is controlled by the control signal SHR
- the opening and closing of the switch SW12S is controlled by the control signal SHS.
- Opening and closing of the switches SW11, SW13R, and SW13S are controlled by a control signal CB1 (not shown), and opening and closing of the switches SW14R, SW14S are controlled by a control signal CB1b (an inverted signal of the control signal CB1).
- the sampling circuit SMP2 is configured in the same manner as the sampling circuit SMP1.
- the sampling circuit SMP2 includes sampling capacitors C2R and C2S, and switches SW21, SW22R, SW22S, SW23R, SW23S, SW24R, and SW24S.
- the first terminal of the switch SW22R and the first terminal of the switch SW22S are commonly connected to the signal line of the pixel column to which the pixel P2 belongs.
- the switch SW21 is connected between the second terminal of the switch SW22R and the second terminal of the switch SW2S.
- the switch SW22R is an element that samples a reset signal supplied as a pixel signal from the pixel column to which the pixel P2 belongs, and transfers the reset signal to the sampling capacitor C2R.
- the first terminal of the sampling capacitor C2R is connected to the second terminal of the switch SW22R.
- the switch SW24R is connected between the second electrode of the sampling capacitor C2R and the first reference voltage VCM1.
- the first terminal of the switch SW23R is connected to the second electrode of the sampling capacitor C2R.
- the switch SW23R is an element for transferring the charge of the signal held by the sampling capacitor C2R to the feedback capacitor CR.
- the first electrode of the sampling capacitor C2S is connected to the second terminal of the switch SW22S.
- the switch SW22S is an element that samples a video signal supplied as a pixel signal from a pixel column to which the pixel P2 belongs and holds the video signal in the sampling capacitor C2S.
- the switch SW24S is connected between the second electrode of the sampling capacitor C2S and the first reference voltage VCM1.
- the first terminal of the switch SW23S is connected to the second electrode of the sampling capacitor C2S.
- the switch SW23S is an element for transferring the charge of the signal held by the sampling capacitor C2S to the feedback capacitor CS.
- the opening and closing of the switch SW22R is controlled by the control signal SHR
- the opening and closing of the switch SW22S is controlled by the control signal SHS.
- Opening and closing of the switches SW21, SW23R, and SW23S are controlled by a control signal CB2 (not shown)
- opening and closing of the switches SW24R, SW24S are controlled by a control signal CB2b (an inverted signal of the control signal CB2) (not shown).
- sampling circuits SMP1 and SMP2 are illustrated in the example of FIG. 1, sampling circuits similar to the sampling circuits SMP1 and SMP2 are individually provided for each of a plurality of pixel columns constituting the pixel array 11. It is provided.
- the sampling circuits SMP1 and SMP2 are also elements that function as column circuits for selecting pixel signals output from the pixel array 11.
- the difference signal amplifier circuit DA includes feedback capacitors CR and CS, switches SW1R, SW1S, SW2R, SW2S, SW3R, SW3S, SW4R, SW4S, and an operational amplifier circuit A.
- the second terminal of the switch SW13R constituting the sampling circuit SMP1 described above and the second terminal of the switch SW23R constituting the sampling circuit SMP2 described above are commonly connected to the first electrode of the feedback capacitor CR.
- the switch SW1R is connected between the first electrode of the feedback capacitor CR and the first reference voltage VCM1.
- a switch SW3R is connected between the first electrode of the feedback capacitor CR and the inverting input portion of the operational amplifier circuit A.
- a switch SW4R is connected between the inverting input portion of the operational amplifier circuit A and the first reference voltage VCM1.
- the switch SW2R is connected between the second electrode of the feedback capacitor CR and the second reference voltage VCM2.
- the second electrode of the feedback capacitor CR is connected to the non-inverted output of the operational amplifier circuit A.
- the switch SW1S is connected between the first electrode of the feedback capacitor CS and the first reference voltage VCM1.
- a switch SW3S is connected between the first electrode of the feedback capacitor CS and the non-inversion input part of the operational amplifier circuit A.
- a switch SW4S is connected between the non-inversion input portion of the operational amplifier circuit A and the first reference voltage VCM1.
- the switch SW2S is connected between the second electrode of the feedback capacitor CS and the second reference voltage VCM2.
- the second electrode of the feedback capacitor CS is connected to the inverting output portion of the operational amplifier circuit A.
- the opening and closing of the switches SW1R, SW1S, SW2R, SW2S, SW4R and SW4S are controlled by a control signal ⁇ 1 not shown, and the opening and closing of the switches SW3R and SW3S are controlled by a control signal ⁇ 2 not shown.
- An output voltage VOUTP and an output voltage VOUTN are respectively output from the non-inverted output portion and the inverted output portion of the operational amplifier circuit A that constitutes the difference signal amplifier circuit DA.
- the output voltage VOUTP and the output voltage VOUTN of the operational amplifier circuit A are input to the A / D conversion circuit 100 constituting the post-stage circuit 13, and the difference signal between the output voltage VOUTP and the output voltage VOUTN of the operational amplifier circuit A is a digital signal Converted to
- the amplification circuit 12 is configured as a so-called switched capacitor circuit, and discretely amplifies the difference signal between the reset signal input from the pixel array 11 as a pixel signal and the video signal to perform a post-stage circuit 13 (A / D conversion circuit Output to 100).
- the second reference voltage VCM2 is lower than the first reference voltage VCM1.
- the first reference voltage VCM1 is higher than the second reference voltage VCM2.
- the voltage at the node between the sampling capacitors C1R, C1S, C2R, C2S and the feedback capacitors CR, CS is The reference voltage VCM1 is initialized to one, and the output voltages VOUTP and VOUTN are initialized to the second reference voltage VCM2.
- FIG. 2 is a diagram showing a configuration example of the operational amplifier circuit A provided in the semiconductor device 10 according to the first embodiment of the present invention.
- the operational amplification circuit A shown in FIG. 2 is a telescopic transconductance amplifier which is a type of a transconductance amplifier (Operational trans-conductance amplifier).
- the present invention is not limited to this example, and the operational amplifier circuit A may be configured of an amplifier of any circuit type.
- the operational amplifier circuit A includes: transistors M11 and M12 (P-type field effect transistors) forming an input differential pair; transistors M13 and M14 (P-type field effect transistors) forming a cascode circuit for the input differential pair; The transistors M15 and M16 (N-type field effect transistors) forming a load, the transistors M17 and M18 (N-type field effect transistors) forming a cascode circuit for an active load, and the transistor M19 (P-type electric field forming a constant current source) And a bias generation circuit BG, and a common mode feedback circuit (CMFB: Common Mode Feed Back) CF.
- CMFB Common Mode Feed Back
- the bias generation circuit BG includes a bias voltage VCM supplied to the common mode feedback circuit CF, a bias signal CASP for biasing the gates of the transistors M13 and M14, a bias signal CASN for biasing the gates of the transistors M17 and M18, and a transistor M19. And a bias signal BIASP for biasing the gate of the The VCM generated by the bias generation circuit BG is set to the second reference voltage VCM2.
- the operational amplification circuit A which is a telescopic transconductance amplifier
- low power consumption can be realized.
- a telescopic transconductance amplifier as the operational amplifier circuit A, high frequency characteristics can be improved and high gain can be obtained as compared with amplifiers of other circuit types.
- FIG. 3 is a timing chart for explaining an operation example of the semiconductor device 10 according to the first embodiment of the present invention.
- the operation of the semiconductor device 10 will be described focusing on the sampling circuit SMP1 among the components of the semiconductor device 10 shown in FIG. 1 for simplification of the description, but the operation focusing on other sampling circuits SMP2 etc. Is the same as the operation when focusing on the sampling circuit SMP1.
- the control signal ⁇ 1 in the initial state before time t1, the control signal ⁇ 1 is at the low level, whereby the switches SW1R, SW1S, SW2R, SW2S, SW4R, and SW4S of the difference signal amplifier circuit DA are in the open state. Further, the control signal ⁇ 2 is at the high level, whereby the switches SW3R and SW3S are closed. Further, the control signal SHR and the control signal SHS are at the low level, whereby the switches SW12R and SW12S of the sampling circuit SMP1 and the switches SW22R and SW22S of the sampling circuit SMP2 are opened.
- the control signal CB1 is at the low level and the control signal CB1b is at the high level, whereby the switches SW11, SW13R, and SW13S of the sampling circuit SMP1 are opened, and the switches SW14R and SW14S are closed. It is in the state. Further, the control signal CB2 is at low level and the control signal CB2b is at high level, whereby the switches SW21, SW23R, and SW23S of the sampling circuit SMP2 are opened, and the switches SW24R and SW24S are closed. . In this initial state, the first reference voltage VCM1 is applied to the second electrode of the sampling capacitor C1R and the second electrode of the sampling capacitor C1S through the switches SW14R and SW14S closed by the control signal CB1b. It has become.
- the switch SW12R of the sampling circuit SMP1 is closed. Therefore, the reset signal supplied as the pixel signal from the pixel P1 is supplied to the first electrode of the sampling capacitor C1R through the switch SW12R. In other words, the reset signal supplied from the pixel P1 is sampled and held in the sampling capacitor C1R. In this case, since the first reference voltage VCM1 is supplied to the second electrode of the sampling capacitor C1R through the switch SW14R, the sampling capacitor C1R uses the sampled reset signal as a reference to the first reference voltage VCM1. Hold as a signal.
- the control signal SHR goes low, and in a period T2 from time t2 to time t3, the control signal SHS goes high.
- the video signal supplied as the pixel signal from the pixel P1 is supplied to the first electrode of the sampling capacitor C1S through the switch SW12S.
- the video signal supplied from the pixel P1 is sampled and held in the sampling capacitor C1S.
- the sampling capacitor C1S uses the sampled video signal as a reference to the first reference voltage VCM1. Hold as a signal.
- a reset operation is performed.
- the control signal ⁇ 1 changes from the low level to the high level.
- the switches SW1R, SW1S, SW2R, SW2S, SW3R, SW3S of the difference signal amplifier circuit DA are closed.
- the first reference voltage VCM1 is applied to the first electrode of the feedback capacitor CR
- the second reference voltage VCM2 is applied to the second electrode of the feedback capacitor CR
- the feedback capacitor CR becomes equal to the first reference voltage VCM1. It is charged by the difference voltage (VCM1-VCM2) with the second reference voltage VCM2.
- the amplification operation of the pixel signal (difference signal between the reset signal and the video signal) held in the sampling capacitors C1R and C1S of the sampling circuit SMP1 is performed. Specifically, when a predetermined time has elapsed from time t5, control signal ⁇ 2 transitions from the low level to the high level. As a result, the switches SW3R and SW3S of the difference signal amplifier circuit DA are closed.
- the inverting input unit of the operational amplifier circuit A is connected to the first electrode of the feedback capacitor CR through the switch SW3R, and the noninverting input unit of the operational amplifier circuit A is connected to the first electrode of the feedback capacitor CS through the switch SW3S. Be done.
- the feedback capacitance CR is electrically connected between the inverting input and the noninverting output of the operational amplifier A, and the feedback is performed between the noninverting input and the inverting output of the operational amplifier A.
- the capacitance CS is electrically connected. That is, signal amplification by the difference signal amplification circuit DA is possible.
- the operational amplifier circuit A amplifies the difference signal between the reset signal forming the pixel signal from the pixel P1 and the video signal in accordance with the ratio between the sampling capacitors C1R and C1S and the feedback capacitors CR and CS.
- the output voltage VOUT (VOUTP-VOUTN) is generated with reference to the reference voltage VCM2 of
- amplification circuit 12 sequentially performs the reset operation and the amplification operation to synchronize the reset signal, which is the pixel signal from pixel P1, with the video signal at the timing when control signal .phi.2 becomes high level.
- the difference signal is amplified in accordance with the ratio between the sampling capacitors C1R and C1S and the feedback capacitors CR and CS, and the amplified signal is output to the A / D conversion circuit 100 that constitutes the post-stage circuit 13.
- the A / D conversion circuit 100 converts the output voltage VOUT (analog signal) of the amplification circuit 12 obtained by amplifying the pixel signal from the pixel P1 into a digital signal and outputs the digital signal.
- a reset operation for amplifying a pixel signal output from the pixel P2 of the pixel array 11 is performed, and in an amplification period T6 from time t7 to time t8, An amplification operation is performed to amplify the pixel signal output from the pixel P2 of the pixel array 11.
- the state of each switch of the difference signal amplifier circuit DA is controlled as in the above-described reset period T3.
- the state of each switch of the sampling circuit SMP2 is controlled in the same manner as the state of each switch of the sampling circuit SMP1 in the above-described amplification period T4.
- the operational amplification circuit A generates a difference signal between the reset signal forming the pixel signal from the pixel P2 and the video signal according to the ratio of the sampling capacitances C2R and C2S to the feedback capacitances CR and CS. It amplifies and generates an output voltage VOUT (VOUTP-VOUTN) with reference to the second reference voltage VCM2.
- the amplification circuit 12 sequentially performs the reset operation and the amplification operation to adjust the pixel signal from the pixel P2 to the timing when the control signals CB (CB1, CB2,...) Become high level.
- the difference signal between a certain reset signal and the video signal is amplified according to the ratio of the sampling capacitors C2R and C2S to the feedback capacitors CR and CS, and the amplified signal is output to the A / D conversion circuit 100 constituting the post-stage circuit 13.
- the A / D conversion circuit 100 converts the output voltage VOUT (analog signal) of the amplification circuit 12 obtained by amplifying the pixel signal from the pixel P2 into a digital signal and outputs it.
- the amplification circuit 12 performs the above-described reset operation on the pixel signals of all the pixels in the pixel array 11. Repeat the amplification operation.
- the output voltage VOUT of the amplifier circuit 12 is given by the following equation (1).
- the sampling capacitors C1R, C1S, C2R and C2S are "Cs”
- the feedback capacitors CR and CS are "Cf”
- the voltage of the reset signal held in the sampling capacitors C1R and C2R is "Vob
- the voltage of the video signal held in the sampling capacitors C1S and C2S is “Vsig”.
- VOUTP Cs / Cf * ⁇ (Vsig + VCM1)-(Vob + VCM1) ⁇ / 2+ VCM2
- VOUTN Cs / Cf * ⁇ -(Vsig + VCM1) + (Vob + VCM1) ⁇ / 2 + VCM2
- the output voltage VOUTP of the amplifier circuit 12 is set to “Vob” as the voltage of the reset signal according to the ratio of the sampling capacitance (Cs) to the feedback capacitance (Cf).
- a half signal of the difference signal (Vsig ⁇ Vob) of “Vsig” is amplified to be an output voltage VOUTP.
- the output voltage VOUTN of the amplifier circuit 12 corresponds to the voltage of the reset signal “Vob” according to the ratio of the sampling capacitance (Cs) to the feedback capacitance (Cf).
- the signal voltage is amplified to a half of the difference signal ( ⁇ Vsig + Vob) of “Vsig” to be an output voltage VOUTN.
- the output voltages VOUTP and VOUTN of the amplifier circuit 12 are not related to the first reference voltage VCM1 set by the power supply voltage of the pixel array 11. It is generated as a voltage signal based on the second reference voltage VCM2. This means that the signal levels of the reset signal and the video signal constituting the pixel signal are shifted to voltage signals based on the second reference voltage VCM2. Further, as understood from the equation (3), the output voltage VOUT of the amplifier circuit 12 is expressed as a difference signal between the output voltage VOUTP and the output voltage VOUTN, and the first reference voltage VCM1 and the second reference voltage VCM2 are represented. Does not include the effects of
- the amplification circuit 12 sets the first reference voltage VCM1 and the second reference voltage VCM2 to different voltages, thereby eliminating the need for using the conventional level shift circuit.
- the pixel signals (Vsig, Vob) from the pixel P1 biased to VCM1 can be level-shifted to the output voltage VOUT (Voutp, Voutn) biased by the second reference voltage VCM2 and output.
- the first reference voltage VCM1 is supplied to the pixel P1 and the amplification circuit 12 first.
- the second reference voltage VCM2 is set to a voltage of approximately half the second power supply voltage supplied to the A / D conversion circuit 100 of the post-stage circuit 13 It is preferable to set to.
- the first reference voltage VCM1 is set to a voltage within the range of 1/4 to 3/4 of the first power supply voltage supplied to the pixel array 11 and the amplifier circuit 12, and the second reference voltage Even if VCM 2 is set to a voltage within the range of 1 ⁇ 4 to 3 ⁇ 4 of the second power supply voltage supplied to A / D conversion circuit 100 of post-stage circuit 13, amplification circuit 12 and post-stage circuit 13 It is possible to secure the dynamic range of the A / D conversion circuit 100 of FIG.
- performance deterioration (S / N, power consumption, mounting area) caused by the level shift circuit as shown in the prior art can be avoided.
- the A / D conversion circuit 100 can be operated at a power supply voltage lower than that of the amplification circuit 12, the reduction in power consumption of the A / D conversion circuit 100 can be realized. it can.
- the signal level of the pixel signal can be converted to a signal level compatible with the desired power supply voltage system circuit while suppressing the current consumption.
- a circuit technology that implements a level shift function using a high pass filter, but according to this circuit technology, it is necessary to secure a mounting area of a capacitor that constitutes the high pass filter.
- the level shift function can be realized without using a high pass filter, the mounting area can be suppressed.
- FIG. 4 is a view showing a configuration example of a semiconductor device 20 according to the second embodiment of the present invention.
- the semiconductor device 20 further includes a clip circuit 14 in the configuration of FIG. 1 according to the first embodiment.
- the clip circuit 14 is an element for limiting the output voltage VOUT (VOUTP, VOUTN) of the operational amplification circuit A to a predetermined voltage, ie, a predetermined clip voltage VCLP or less, and the overcurrent detection circuits B1 and B2 and the overcurrent absorption It consists of circuits K1 and K2.
- the overcurrent absorbing circuits K1 and K2 are each formed of an N-channel type field effect transistor (hereinafter referred to as "transistor").
- a non-inversion input portion of the overcurrent detection circuit B1 is connected to a non-inversion output portion of the operational amplification circuit A of the amplification circuit 12.
- the clip voltage VCLP is applied to the inverting input portion of the overcurrent detection circuit B1.
- the output portion of the overcurrent detection circuit B1 is connected to the gate of the transistor that constitutes the overcurrent absorption circuit K1.
- the source of the transistor constituting the overcurrent absorbing circuit K1 is connected to the ground, and the drain thereof is connected to the non-inverting output of the operational amplifier A of the amplifier 12 together with the non-inverting input of the overcurrent detecting circuit B1. .
- the overcurrent detection circuit B1 and the overcurrent absorption circuit K1 are elements for suppressing an overvoltage generated in the output voltage VOUTP of the amplification circuit 12.
- the overcurrent detection circuit B1 is an element for detecting an overcurrent generated when the output voltage VOUTP of the operational amplifier circuit A exceeds the second power supply voltage supplied to the post-stage circuit 13.
- the overcurrent absorbing circuit K1 is an element for absorbing an overcurrent caused by the output voltage VOUTP.
- the overcurrent detection circuit B1 outputs a high level signal S to the gate of the transistor constituting the overcurrent absorption circuit K1 to turn it on.
- the overcurrent due to the output voltage VOUTP is absorbed by the overcurrent absorption circuit K1. Thereby, the overvoltage of the output voltage VOUTP is limited to the clip voltage VCLP or less.
- the non-inversion input portion of the overcurrent detection circuit B2 is connected to the inversion output portion of the operational amplification circuit A of the amplification circuit 12.
- the clip voltage VCLP is applied to the inverting input portion of the overcurrent detection circuit B2.
- the output portion of the overcurrent detection circuit B2 is connected to the gate of the transistor that constitutes the overcurrent absorption circuit K2.
- the source of the transistor constituting the overcurrent absorbing circuit K2 is connected to the ground, and the drain thereof is connected to the inverting output of the operational amplifier A of the amplifier 12 together with the non-inverting input of the overcurrent detecting circuit B2.
- the overcurrent detection circuit B2 and the overcurrent absorption circuit K2 are elements for suppressing an overvoltage generated in the output voltage VOUTN of the amplifier circuit 12.
- the overcurrent detection circuit B2 is an element for detecting an overcurrent generated when the output voltage VOUTN of the operational amplification circuit A exceeds the second power supply voltage supplied to the post-stage circuit 13.
- the overcurrent absorbing circuit K2 is an element for absorbing an overcurrent caused by the output voltage VOUTN.
- the overcurrent detection circuit B2 outputs a high level signal S to the gate of the transistor constituting the overcurrent absorption circuit K2 to turn it on.
- the overcurrent due to the output voltage VOUTN is absorbed by the overcurrent absorption circuit K1. This limits the overvoltage of the output voltage VOUTN to the clip voltage VCLP or less.
- FIG. 5 is a diagram showing a configuration example of the overcurrent detection circuits B1 and B2 provided in the semiconductor device 20 according to the second embodiment of the present invention.
- FIG. 5 shows a configuration example of one of the overcurrent detection circuits B1 and B2.
- the overcurrent detection circuits B1 and B2 have the same configuration.
- any one of the overcurrent detection circuits B1 and B2 will be referred to as an "overcurrent detection circuit B”.
- the over-current absorption circuits K1 and K2 also have the same configuration, and any one of the over-current absorption circuits K1 and K2 is referred to as an "over-current absorption circuit K".
- the overcurrent detection circuit B includes a constant current source IS and transistors M1 to M5.
- the transistors used for the over current detection circuit B and the over current absorption circuit K are of the same type as the transistors used for the amplification circuit 12, and the size of each transistor is the minimum size. This suppresses the current consumption. Further, the clip voltage VCLP supplied to the overcurrent detection circuit B is set to be substantially the same as the second power supply voltage supplied to the A / D conversion circuit 100.
- the overcurrent detection circuit B compares the output voltage VOUT (VOUTP, VOUTN) from the amplification circuit 12 with the clip voltage VCLP.
- the overcurrent detection circuit B outputs a high level signal S to the overcurrent absorption circuit K.
- the transistors constituting the over-current absorption circuit K are turned on, and the over-current absorption circuit K is controlled so that the output voltage VOUT (VOUTP, VOUTN) of the amplification circuit 12 becomes less than the clip voltage VCLP. Absorbs the overcurrent discharged from the output terminal.
- the clipping circuit 14 clips the overvoltage generated at the output voltage VOUT in accordance with the following equation (4):
- Vout indicates the output voltage VOUT of the amplification circuit 12
- Vclip indicates the clip voltage VCLP
- Vgs1 indicates the voltage between the gate and source terminals of the transistor M1
- Vgs2 indicates the transistor M2. Shows the voltage between the gate and source terminals of
- Vout Vclip ⁇ Vgs1 + Vgs2 (4)
- Vout Vclip (5)
- the transistor M2 shown in FIG. 5 is maintained in the off state, and the overcurrent detection circuit B overcurrents the signal S at low level. Output to absorption circuit K.
- the transistors constituting the overcurrent absorbing circuit K are turned off, and the normal current discharged from the output terminal of the amplifier circuit 12 is not absorbed. Therefore, in this case, the clip circuit 14 does not operate, and the output voltage VOUT of the amplifier circuit 12 is not affected.
- the operation of the semiconductor device 20 becomes unstable, or the pixel array 11 is irradiated with excessive light.
- the overvoltage generated by the amplifier circuit 12 can be suppressed. Therefore, it is possible to suppress the influence of the overvoltage generated in the output voltage VOUT (VOUTP, VOUTN) of the amplifier circuit 12 on the post-stage circuit 13, which is caused by the insufficient withstand voltage of the A / D conversion circuit 100 constituting the post-stage circuit 13. Stepwise performance deterioration and destruction can be avoided.
- the output load capacity of the amplifier circuit 12 can be reduced. Therefore, the output current of the amplifier circuit 12 due to the output load capacitance of the amplifier circuit 12 can be suppressed, and the reduction in power consumption of the amplifier circuit 12 can be realized.
- a / D conversion circuit 100 in the first and second embodiments described above. Others are the same as in the first embodiment or the second embodiment.
- the A / D conversion circuit 100 shown in FIG. 1 will be referred to as a “sequential comparison type A / D conversion circuit 100”.
- FIG. 6 is a block diagram showing a configuration example of the successive approximation A / D converter circuit 100 provided in the semiconductor device according to the third embodiment of the present invention.
- the successive approximation type A / D conversion circuit 100 is an 8-bit output A / D conversion circuit, but is not limited to this example, and the number of output bits of the successive approximation type A / D conversion circuit 100 can be set arbitrarily. .
- the successive approximation A / D conversion circuit 100 includes a sampling circuit 110, a capacitive DAC circuit 120, a comparison circuit 130, and a control circuit 140.
- the sampling circuit 110 tracks and holds a pair of output voltages VOUTP and VOUTN that constitute the output voltage VOUT (differential input signal) of the amplifier circuit 12, samples the analog signals VAP and VAN, and performs the successive comparison type A This is an element to be incorporated into the / D conversion circuit 100.
- the operation of sampling circuit 110 is controlled based on clock signal CLK.
- the capacitive DAC circuit 120 generates a reference signal based on the digital signal (D0 to D7) generated by the control circuit 140, is held by the sampling circuit 110, and generates a reference signal from each of the sampled output voltages VOUTP and VOUTN. Is an element for obtaining a cumulative residual between the differential input signal VA and the 8-bit digital signal D0-D7.
- the differential input signal VA is a signal having the output voltages VOUTP and VOUTN as elements.
- the capacitive DAC circuit 120 outputs the subtraction result obtained by subtracting the reference signal from each of the output voltages VOUTP and VOUTN to the comparison circuit 130 as the analog signals VCP and VCN in which the accumulated residual is reflected.
- the comparison circuit 130 is an element for comparing the analog signal VCP input from the capacitive DAC circuit 120 with the analog signal VCN, and outputs digital signals VOP and VON indicating the comparison result according to the magnitude relationship. Specifically, when the signal level of the analog signal VCP is higher than the signal level of the analog signal VCN, the comparison circuit 130 outputs a high level signal as the digital signal VOP and outputs a low level signal as the digital signal VON. Do. Conversely, when the signal level of the analog signal VCP is lower than the signal level of the analog signal VCN, the comparison circuit 130 outputs a low level signal as the digital signal VOP and outputs a high level signal as the digital signal VON.
- the operation of the comparison circuit 130 is controlled based on an internal clock signal BIT_CLK and an inverted internal clock signal BIT_CLKb generated by a control circuit 140 described later.
- Control circuit 140 is an element that functions as a SAR (Successive Approximation Register) logic circuit, and according to a binary search algorithm, digital signals DP0-DP7, DN0 corresponding to digital signals VOP, VON indicating the result of comparison by comparison circuit 130. Determine the value of each bit of DN7 sequentially.
- the control circuit 140 supplies the capacitive DAC circuit 120 with digital signals DP 0 -DP 7 and DN 0 -DN 7 corresponding to the digital signals VOP, VON.
- the control circuit 140 reflects the value of each bit of the digital signals DP0 to DP7 and DN0 to DN7 in the reference signal.
- Control circuit 140 outputs digital signals DP 0 -DP 7 as digital signals D 0 -D 7 representing the result of A / D conversion.
- the control circuit 140 also generates an internal clock signal BIT_CLK and an inverted internal clock signal BIT_CLKb for controlling the comparison circuit 130, and supplies the generated internal clock signal BIT_CLK to the comparison circuit 130.
- the operation of control circuit 140 is controlled based on clock signal CLK.
- Control circuit 140 generates internal clock signal BIT_CLK and inverted internal clock signal BIT_CLKb while clock signal CLK is at high level.
- the capacitive DAC circuit 120 includes a capacitive circuit 121, a drive circuit 122, and an attenuation capacity control unit 123.
- the capacitance circuit 121 is an element for subtracting the reference signal from the output voltages VOUTP and VOUTN to obtain analog signals VCP and VCN indicating the accumulated residual, by utilizing charge redistribution among a plurality of capacitors. It is.
- the drive circuit 122 is an element for generating the reference signal based on the digital signals DP 0 -DP 7 and DN 0 -DN 7 input from the control circuit 140 to drive the capacitance circuit 121.
- the damping capacitance control unit 123 is an element for controlling the capacitance value of damping capacitances CHP and CHN described later provided in the capacitance circuit 121.
- the successive approximation A / D conversion circuit 100 sequentially obtains A / D conversion results bit by bit from the most significant bit (D7) of the digital signal D0 to D7 toward the least significant bit (D0).
- FIG. 7 shows a configuration example of the sampling circuit 110 and the capacitive DAC circuit 120.
- the attenuation capacity control unit 123 shown in FIG. 1 which is a component of the capacitive DAC circuit 120 is omitted.
- the sampling circuit 110 includes switches 110P and 110N.
- the switch 110P conducts between the first terminal E1P and the second terminal E2P when the switch 110P is on, and high impedance between the first terminal E1P and the second terminal E2P when the switch 110P is off. Make it The output voltage VOUTP of the amplifier circuit 12 is input to the first terminal E1P of the switch 110P through the non-inverting input terminal INP.
- the switch 110P holds and samples the output voltage VOUTP in a capacitor portion 121P, which will be described later, at the moment of switching from on to off.
- the switch 110P is switched on and off based on the clock signal CLK.
- the switch 110N conducts between the first terminal E1N and the second terminal E2N when the switch 110N is on, and high impedance between the first terminal E1N and the second terminal E2N when the switch 110N is off. Make it The output voltage VOUTN of the amplifier circuit 12 is input to the first terminal E1N of the switch 110N via the inverting input terminal INN.
- the switch 110N holds and samples the output voltage VOUTN in a capacitor portion 121N, which will be described later, at the moment of switching from on to off.
- the on and off of the switch 110N is switched based on the clock signal CLK.
- the capacitive circuit 121 configuring the capacitive DAC circuit 120 is configured of capacitive sections 121P and 121N.
- the capacitance unit 121P includes an attenuation capacitance CHP and binary capacitances C0P to C7P.
- the attenuation capacitance CHP is connected between the signal node NP corresponding to the wiring connected to the second terminal E2P of the switch 110P and the ground GND.
- each of the binary capacitors C0P to C7P is connected between the signal node NP and the output portion of the drive portion 122P which configures the drive circuit 122. That is, one electrodes of each of the binary capacitors C0P to C7P are commonly connected to the signal node NP.
- the other electrodes of the binary capacitors C0P to C7P are individually connected to the output parts of the inverters Q0P to Q7P that constitute the drive part 122P, respectively.
- binary capacitors C0P to C7P are arranged corresponding to digital signals DP0 to DP7 generated by control circuit 140.
- the respective capacitance values of the binary capacitors C0P to C7P are different.
- the capacitance value of the capacitor C (n + 1) P corresponding to the digital signal DP (n + 1) is twice the capacitance value of the capacitor CnP corresponding to the digital signal DPn (n is an integer from 0 to 6). That is, the respective capacitance values of the binary capacitors C0P to C7P are weighted by a binary number according to the order of each bit of the digital signals DP1 to DP7.
- the capacitive section 121N includes an attenuation capacity CHN and binary capacities C0N to C7N.
- the attenuation capacitance CHN is connected between the signal node NN corresponding to the wiring connected to the second terminal E2N of the switch 110N and the ground GND.
- each of the binary capacitors C0N to C7N is connected between the signal node NN and an output portion of the drive portion 122N constituting the drive circuit 122. That is, one electrode of each of the binary capacitors C0N to C7N is commonly connected to the signal node NN.
- the other electrodes of the binary capacitors C0N to C7N are individually connected to the output parts of the inverters Q0N to Q7N constituting the drive part 122N.
- the capacitance values of the binary capacitors C0N to C7N are also weighted by a binary number in the same manner as the binary capacitors C0P to C7P.
- the respective capacitance values of the binary capacitors C0N to C7N constituting the capacitance section 121N are set to be the same as the respective capacitance values of the binary capacitances C0P to C7P constituting the capacitance section 121P.
- the drive circuit 122 constituting the capacitive DAC circuit 120 includes drive units 122P and 122N.
- the drive unit 122P includes inverters Q0P to Q7P.
- the first power supply voltage VDD1 is supplied as a power supply voltage to the inverters Q0P to Q7P. This means that the amplitudes of the reference signals D0P to D7P output from the inverters Q0P to Q7P are equal to the first power supply voltage VDD1.
- Inverters Q 0 P to Q 7 P are arranged corresponding to digital signals DP 0 to DP 7 generated by control circuit 140. Respective bits of digital signals DP0 to DP7 are input from the control circuit 140 to the inverters Q0 P to Q7 P, respectively.
- the output parts of the inverters QP0 to QP7 are connected to the other electrodes of the binary capacitors C0P to C7P, respectively.
- the inverters QP0 to QP7 invert the digital signals DP0 to DP7 inputted from the control circuit 140 to generate reference signals D0P to D7P.
- a plurality of binary capacitors C0P to C7P included in the capacitive portion 121P extract charges based on the reference signals D0P to D7P from charges based on the output voltage VOUTP of the amplifier circuit 12 held in the attenuation capacitance CHP by charge redistribution.
- the reference signals D0P to D7P are subtracted from the output voltage VOUTP.
- the capacitance unit 121P outputs an analog signal VCP that is a subtraction result.
- the drive unit 122N includes inverters Q0N to Q7N.
- the first power supply voltage VDD1 is supplied to the inverters Q0N to Q7N as a power supply voltage. This means that the amplitudes of the reference signals D0N to D7N output from the inverters Q0N to Q7N are equal to the first power supply voltage VDD1.
- Inverters Q0N to Q7N are arranged corresponding to digital signals DN0 to DN7 generated by control circuit 140. Respective bits of digital signals DN0 to DN7 are inputted from the control circuit 140 to the inverters Q0N to Q7P, respectively.
- the output parts of the inverters Q0N to Q7N are connected to the other electrodes of the binary capacitors C0N to C7N, respectively.
- the inverters QN0 to QN7 invert the digital signals DN0 to DN7 input from the control circuit 140 to generate reference signals D0N to D7N.
- a plurality of binary capacitors C0N to C7N included in the capacitive portion 121N extract charges based on the reference signals D0N to D7N from charges based on the output voltage VOUTN of the amplifier circuit 12 held in the attenuation capacitance CHN by charge redistribution.
- the reference signals D0N to D7N are subtracted from the analog signal VAN.
- the capacitance unit 121N outputs an output voltage VOUTN which is a subtraction result.
- FIG. 8 is a view showing a configuration example of the attenuation capacity CHP provided in the successive approximation type A / D conversion circuit 100 according to the third embodiment of the present invention.
- FIG. 8A is a schematic view of the damping capacity CHP
- FIG. 8B is a detail view of the damping capacity CHP.
- the attenuation capacity CHN is also similar to the attenuation capacity CHP, and the description thereof is omitted here.
- the attenuation capacity CHP includes a fixed capacity Ch1 and a variable capacity Ch2.
- the first electrode of the fixed capacitance Ch1 is connected to the signal node NP, and the second electrode of the fixed capacitance Ch1 is connected to the ground GND (predetermined potential node).
- the first electrode of the variable capacitance Ch2 is connected to the signal node NP, and the second electrode of the variable capacitance Ch2 is connected to the ground GND. That is, the fixed capacitance Ch1 and the variable capacitance Ch2 are connected in parallel between the signal node NP and the ground GND.
- the variable capacitance Ch2 includes capacitances Ch21, Ch22, Ch23, and Ch24, and switches SW1, SW2, SW3, and SW4.
- the capacitor Ch21 is connected in series with the switch SW1 between the signal node NP and the ground GND.
- the first electrode of the capacitor Ch21 is connected to the signal node NP
- the second electrode of the capacitor Ch21 is connected to the first terminal of the switch SW1.
- the second terminal of the switch SW1 is connected to the ground GND.
- the capacitor Ch22 is connected in series with the switch SW2 between the signal node NP and the ground GND.
- the capacitance Ch23 is connected in series with the switch SW3 between the signal node NP and the ground GND.
- the capacitor Ch24 is connected in series with the switch SW4 between the signal node NP and the ground GND.
- the connection relationship between the capacitors Ch21 to Ch24 and the switches SW1 to SW4 may be in series, and the positions of the capacitors Ch21 to Ch24 and the switches SW1 to SW4 may be interchanged.
- the on / off of the switches SW1, SW2, SW3, and SW4 are individually controlled by the attenuation capacity control unit 123, respectively.
- the capacitance value of the variable capacitance Ch2 is determined according to the combination of the on and off of the switches SW1, SW2, SW3, and SW4. As shown in FIG. 8A, since the variable capacitance Ch2 is connected in parallel to the fixed capacitance Ch1, the fixed capacitance Ch1 and the variable capacitance are controlled by controlling the on / off of the switches SW1, SW2, SW3, and SW4.
- the combined capacitance value of the attenuation capacitance CHP composed of Ch2 can be adjusted. Details of the adjustment of the combined capacity of the attenuation capacity CHP will be described later.
- the sampling circuit 110 provided in the successive approximation A / D converter 100 tracks and samples the analog signal VAP and the analog signal VAN input as the differential input signal VA when the clock signal CLK is at a low level.
- the analog signal VAP and the analog signal VAN are held at the timing when the clock signal CLK transitions from low level to high level.
- a low level period of the clock signal CLK is referred to as a sample period.
- the analog signal VAP and the analog signal VAN are held in a high level period of the clock signal CLK, the high level period of the clock signal CLK is referred to as a hold period.
- the successive approximation A / D converter 100 performs A / D conversion of the analog signals VAP and VAN sampled by the sampling circuit 110 in the sample period in the hold period, as described below. Roughly speaking, the successive approximation A / D converter 100 synchronizes the clock timings of the internal clock signal BIT_CLK and the inverted internal clock signal BIT_CLKb input from the control circuit 140 in the hold period, and selects the maximum of the digital signals D0 to D7. The value of each bit of the digital signals D0 to D7 is determined sequentially from the upper bit (D7) to the least significant bit (D0). As a result, the successive approximation A / D converter 100 performs A / D conversion of the analog signals VAP and VAN held in the sampling circuit 110 to generate digital signals D0 to D7.
- a / D conversion by the successive approximation A / D converter 100 will be described in detail.
- the clock signal CLK is at the low level. Therefore, the switches 110P and 110N of the sampling circuit 110 are in the on state.
- the analog signals VAP and VAN are sampled (tracked) by the sampling circuit 110 and supplied to the capacitive DAC circuit 120. Charges corresponding to the potentials of the analog signal VAP and the analog signal VAN supplied from the sampling circuit 110 are charged in the attenuation capacitances CHP and CHN and the binary capacitances C0P to C7P and C0N to C7N of the capacitive DAC circuit 120.
- each bit of the digital signals DP0 to DP7 and DN0 to DN7 output from the control circuit 140 is set (initialized) to “0”.
- the clock signal CLK transitions from low level to high level, and when the hold period starts, the switch 110P and the switch 110N of the sampling circuit 110 are turned off.
- the analog signals VAP and VAN immediately before the transition of the clock signal CLK from low level to high level are the attenuation capacitances CHP and CHN of the capacitance circuit 121 provided in the capacitive DAC circuit 120 and binary capacitances C0P to C7P and C0N. It is held at ⁇ C7N.
- the held analog signals VAP and VAN are respectively supplied from the capacitive DAC circuit 120 to the comparison circuit 130 as the analog signals VCP and VCN.
- the comparison circuit 130 sequentially compares the analog signal VCP supplied from the capacitive DAC circuit 120 with the analog signal VCN under the control of the control circuit 140 as described below. First, an operation in a period T1 from time t1 to t2 corresponding to the first cycle of the internal clock signal BIT_CLK after time t0 will be described.
- comparison circuit 130 In a state where analog signals VAP and VAN are held in sampling circuit 110 and output from capacitive DAC circuit 120 as analog signals VCP and VCN, when internal clock signal BIT_CLK changes from low level to high level at time t1, comparison circuit 130 The latch circuit 132 is activated, and the comparison circuit 130 starts the comparison operation of the analog signal VCP and the analog signal VCN.
- the comparison circuit 130 since the signal level of the analog signal VCP is larger than the signal level of the analog signal VCN at time t1 (VCP> VCN), the comparison circuit 130 outputs the high level digital signal VOP as a comparison result. And outputs a low level digital signal VON.
- the control circuit 140 receives the above comparison result of the comparison circuit 130, and outputs a high level digital signal DP7 and a low level digital signal DN7.
- the value of the most significant bit (D7) given by the digital signals DP7 and DN7 is determined.
- the output signal (reference signal) of the inverter Q7P of the drive unit 122P transitions from high level to low level.
- the voltage between the electrodes of the binary capacitor C7P to which the output signal of Q7P is applied changes. Therefore, in accordance with the amount of change in voltage between the electrodes of the binary capacitor C7P, the charge stored in the binary capacitor C7P is extracted and charge redistribution is performed. As a result, the potential of the signal node NP (FIG.
- the output signal (reference signal) of the inverter Q7N of the drive unit 122N to which the digital signal DN7 is input is maintained at the high level. Therefore, there is no movement of the charge of binary capacitance C7N to which the output signal of inverter Q7N is applied, so the signal node NN of capacitive DAC circuit 120 in which attenuation capacitance CHN and binary capacitances C0N to C7N are commonly connected The potential in FIG. 2) does not change. Therefore, the signal level of the analog signal VCN given by the potential of the signal node NN does not change.
- the comparison circuit 130 since the signal level of the analog signal VCP is smaller than the signal level of the analog signal VCN at time t2 (VCP ⁇ VCN), the comparison circuit 130 outputs the low level digital signal VOP as a comparison result. At the same time, it outputs a high level digital signal VON.
- the control circuit 140 receives the above comparison result of the comparison circuit 130, and outputs a low level digital signal DP6 and a high level digital signal DN6.
- the value of the second most significant bit (D6) given by the digital signals DP6 and DN6 is determined.
- the output signal (reference signal) of the inverter Q6P of the drive unit 122P to which the digital signal DP6 is input is maintained at high level. Therefore, since there is no movement of the charge of binary capacitance C6P to which the output signal of inverter Q6P is applied, signal node NP in capacitive DAC circuit 120 in which attenuation capacitance CHP and binary capacitances C0P to C7P are commonly connected The potential in FIG. 2) does not change. Therefore, the signal level of the analog signal VCP given by the potential of the signal node NP does not change.
- the output signal (reference signal) of the inverter Q6N of the drive unit 122N transitions from high level to low level.
- the voltage between the electrodes of the binary capacitor C6N to which the output signal of V.sub.2 is applied changes. Therefore, according to the amount of change in voltage between the electrodes of the binary capacitance C6N, the charge stored in the binary capacitance C6N is drawn out, and charge redistribution is performed. As a result, the potential of the signal node NN (FIG.
- the latch circuit 132 of the comparison circuit 130 becomes inactive. Accordingly, the comparison circuit 130 outputs low level as the digital signals VOP and VON.
- the comparison operation similar to the comparison operation in each of the periods T1 and T2 is sequentially repeated (that is, sequential comparison is performed), and the third digital signals D0 to D7
- Each value of the least significant bit (D0) is determined from the bit (D5) of.
- digital signals D0 to D7 in which the values of all bits are determined by A / D conversion are obtained.
- the control circuit 140 of the successive approximation A / D converter 100 outputs the digital signals D0 to D7 finally obtained by the A / D conversion from the output terminal.
- the switch 110P and the switch 110N of the sampling circuit 110 are turned on.
- the sampling circuit 110 newly samples (tracks) the analog signal VAP and the analog signal VAN in the sample period from time t10 to time t11 in which the clock signal CLK is maintained at the low level.
- each bit of the digital signals DP0 to DP7 and DN0 to DN7 is set (initialized) to "0". Thereafter, similar to the A / D conversion in the hold period from time t1 to time t10 in FIG. 6 described above, A / D conversion by sequential comparison is performed in the hold period after time t11.
- the full scale range of the digital signals VP0 to VP7 which is a feature of the present embodiment, will be described in detail.
- the full scale range of the digital signals VP0 to VP7 obtained by the above-mentioned A / D conversion can be adjusted by the attenuation capacitances CHP and CHN as described below.
- FIG. 10 is a diagram for explaining the adjustment principle of the capacitance value of the variable capacitance Ch2 constituting the attenuation capacitance CHP of the successive approximation type A / D conversion circuit 100 according to the first embodiment of the present invention.
- FIG. 6 is a diagram showing input / output characteristics of the A / D conversion circuit 100.
- the successive approximation A / D conversion circuit 100 is a fully differential type device, and is an AC component of the output voltage VOUTP of the amplifier circuit 12 that constitutes a differential input signal input to the inverting input terminal INN and the noninverting input terminal INP. And the AC component of the output voltage VOUTN are in an inverted phase relationship with each other, and are out of phase by 180 degrees. Therefore, when the output voltage VOUT of the amplifier circuit 12 forming the differential input signal is 0 V, that is, when the differential voltage between the output voltage VOUTP and the output voltage VOUTN is 0 V, Each voltage is a reference point (center point) of the input voltage in the A / D conversion operation.
- the input / output characteristics of the successive approximation type A / D conversion circuit 100 are represented by a straight line passing through the coordinates ( ⁇ VDD / 2, 0), the coordinates (0 V, 127 d), and the coordinates (+ VDD / 2, 255 d). In this case, a full scale range is obtained. This means that full-scale output codes (0d to 255d) can be obtained as digital signals obtained by A / D conversion for the entire range (-VDD / 2 to + VDD / 2) of the differential input signal VA. Means
- the slope of the straight line indicating the input / output characteristics of successive approximation A / D conversion circuit 100 is the reference point. It fluctuates around the corresponding coordinates (0 V, 127 d).
- the slope of the straight line indicates a tendency to increase.
- the successive approximation A / D converter circuit 100 can reduce power consumption substantially in proportion to the supplied power supply voltage, so that low consumption of the successive approximation type A / D converter circuit 100 can be achieved. Power can be realized.
- the attenuation capacity value can be adjusted to an optimal value so as to reduce the influence of parasitic capacity in response to process variation and temperature variation. Therefore, a full scale range can be secured, and a successive approximation A / D conversion circuit with less conversion error can be provided which operates in an optimum input dynamic range.
- the signal level of the pixel signal can be converted to a signal level compatible with the circuit of the desired power supply voltage system while suppressing current consumption.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Amplifiers (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Analogue/Digital Conversion (AREA)
Abstract
消費電流を抑制しつつ、画素信号の信号レベルを所望の電源電圧系の回路に適合する信号レベルに変換することができる半導体装置を提供する。半導体装置は、入力信号をサンプリングして増幅する増幅回路と、前記増幅回路の出力信号に応答して作動する後段回路と、を備える。前記増幅回路は、サンプリングされた前記入力信号を、第1の基準電圧を基準とした信号として保持するサンプリング容量と、前記サンプリング容量に保持された信号が転送される帰還容量と、前記サンプリング容量に保持された信号を前記サンプリング容量と前記帰還容量との比率に応じて増幅し、第2の基準電圧を基準とした信号として出力する演算増幅回路と、を備える。
Description
本発明は、半導体装置に関し、更に詳しくは、消費電流を抑制するための技術に関する。
従来、例えばデジタルカメラ等の撮像装置に用いられる半導体装置は、画素の出力信号(画素信号)に対して相関二重サンプリング処理を施す回路、相関二重サンプリング処理が施された画素信号を増幅する増幅回路、増幅された画素信号をA/D変換するA/D変換回路等を備えている。この種の半導体装置では、画素信号のダイナミックレンジを確保する必要上、画素や増幅回路を高い電源電圧で動作させており、また、低消費電力化を実現する必要上、A/D変換回路を低い電源電圧で動作させている。このため、この種の半導体装置は、画素の出力信号の信号レベルを低電源電圧系のA/D変換回路に適合する信号レベルに変換するためのレベルシフト回路を備えている(特許文献1)。
一般に、上述のレベルシフト回路は、定電流源を負荷回路として備えたソースフォロワ回路から構成されている。このため、レベルシフト回路において定常的にアイドリング電流が発生し、消費電流が増加するという問題がある。
本発明は、消費電流を抑制しつつ、画素信号の信号レベルを所望の電源電圧系の回路に適合する信号レベルに変換することができる半導体装置を提供する。
本発明の第1の態様に係る半導体装置は、入力信号をサンプリングして増幅する増幅回路と、前記増幅回路の出力信号に応答して作動する後段回路と、を備え、前記増幅回路は、サンプリングされた前記入力信号を、第1の基準電圧を基準とした信号として保持するサンプリング容量と、前記サンプリング容量に保持された信号が転送される帰還容量と、前記サンプリング容量に保持された信号を前記サンプリング容量と前記帰還容量との比率に応じて増幅し、第2の基準電圧を基準とした信号として出力する演算増幅回路と、を備えている。
本発明の第2の態様によれば、上記第1の態様において、前記第1の基準電圧は、前記第2の基準電圧よりも高い電圧であってもよい。
本発明の第3の態様によれば、上記第1の態様または上記第2の態様において、前記第1の基準電圧は、前記演算増幅回路に供給される第1の電源電圧の4分の1から4分の3の範囲内の電圧に設定され、前記第2の基準電圧は、前記後段回路に供給される第2の電源電圧の4分の1から4分の3の範囲内の電圧に設定されてもよい。
本発明の第4の態様によれば、上記第1の態様から上記第3の態様の何れかにおいて、前記演算増幅回路の出力信号の電圧を所定電圧以下に制限するクリップ回路を更に備えてもよい。
本発明の第3の態様によれば、上記第1の態様または上記第2の態様において、前記第1の基準電圧は、前記演算増幅回路に供給される第1の電源電圧の4分の1から4分の3の範囲内の電圧に設定され、前記第2の基準電圧は、前記後段回路に供給される第2の電源電圧の4分の1から4分の3の範囲内の電圧に設定されてもよい。
本発明の第4の態様によれば、上記第1の態様から上記第3の態様の何れかにおいて、前記演算増幅回路の出力信号の電圧を所定電圧以下に制限するクリップ回路を更に備えてもよい。
本発明の第5の態様によれば、上記第4の態様において、前記クリップ回路は、前記演算増幅回路の出力信号の電圧が前記後段回路に供給される第2の電源電圧を超えた場合に発生する過電流を検出する過電流検出回路と、前記過電流を吸収する過電流吸収回路と、を備えてもよい。
本発明の第6の態様によれば、上記第1の態様から上記第5の態様の何れかにおいて、行列状に配置された複数の画素を更に備え、前記増幅回路は、前記複数の画素列に対して1個以上配置されてもよい。
本発明の第6の態様によれば、上記第1の態様から上記第5の態様の何れかにおいて、行列状に配置された複数の画素を更に備え、前記増幅回路は、前記複数の画素列に対して1個以上配置されてもよい。
本発明の第7の態様によれば、上記第1の態様から上記第6の態様の何れかにおいて、前記後段回路は、逐次比較型A/D変換回路であってもよい。
本発明の第8の態様によれば、上記第1の態様から上記第7の態様の何れかにおいて、前記演算増幅回路は、トランスコンダクタンスアンプであってもよい。
本発明の第9の態様によれば、上記第8の態様において、前記トランスコンダクタンスアンプは、テレスコピック型のトランスコンダクタンスアンプであってもよい。
本発明の第8の態様によれば、上記第1の態様から上記第7の態様の何れかにおいて、前記演算増幅回路は、トランスコンダクタンスアンプであってもよい。
本発明の第9の態様によれば、上記第8の態様において、前記トランスコンダクタンスアンプは、テレスコピック型のトランスコンダクタンスアンプであってもよい。
上記各態様の半導体装置によれば、消費電流を抑制しつつ、画素信号の信号レベルを所望の電源電圧系の回路に適合する信号レベルに変換することができる。
図面を参照し、本発明の実施形態を説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態による半導体装置10の構成例を示す図である。
半導体装置10は、画素アレイ11と、増幅回路12と、後段回路13とから構成されている。画素アレイ11は、行列状に配置された複数の画素(P1,P2など)から構成される。画素アレイ11は、図示しない光学系により結像された光像を光電変換して画素信号を増幅回路12に出力する。増幅回路12は、画素アレイ11から入力される画素信号を入力信号としてサンプリングして増幅するための要素である。
(第1の実施形態)
図1は、本発明の第1の実施形態による半導体装置10の構成例を示す図である。
半導体装置10は、画素アレイ11と、増幅回路12と、後段回路13とから構成されている。画素アレイ11は、行列状に配置された複数の画素(P1,P2など)から構成される。画素アレイ11は、図示しない光学系により結像された光像を光電変換して画素信号を増幅回路12に出力する。増幅回路12は、画素アレイ11から入力される画素信号を入力信号としてサンプリングして増幅するための要素である。
増幅回路12は、画素アレイ11内の各画素から画素信号として出力されるリセット信号および映像信号の差分を増幅して出力する。ここで、リセット信号および映像信号は、相関二重サンプリング処理で用いられる画素信号であり、このうち、リセット信号は、映像信号を読み出す前の初期状態での画素信号であり、映像信号は、上記リセット信号に重畳された映像成分を含む画素信号である。後段回路13は、増幅回路12の出力信号に応答して作動する要素である。第1の実施形態では、後段回路13は、増幅回路12の出力信号をアナログ/デジタル変換(以下、A/D変換と称す。)するA/D変換回路100から構成されている。A/D変換回路100の出力信号は、図示しない任意のデジタル信号処理回路に供給される。
なお、半導体装置10は、その構成要素として、増幅回路12のみを備えてもよく、増幅回路12及び後段回路13を備えてもよい。また、A/D変換回路の回路形式は任意であるが、低消費電力化および低電源電圧化の観点から、アナログ形式よりもデジタル形式のA/D変換回路が望ましい。
増幅回路12の構成を詳細に説明する。
増幅回路12は、複数の画素列に対して1個以上配置されている。図1では1個の増幅回路12が配置された例が示されているが、2個以上の増幅回路12が配置されてもよい。
増幅回路12は、画素アレイ11を構成する画素P1が属する画素列から入力される画素信号をサンプリングするためのサンプリング回路SMP1と、画素アレイ11を構成する画素P2が属する画素列から入力される画素信号をサンプリングするためのサンプリング回路SMP2と、上記サンプリング回路SMP1,SMP2から出力される各画素信号に含まれるリセット信号と映像信号の差信号を増幅する差信号増幅回路DAとを備えている。後述するように、増幅回路12による増幅は、サンプリング回路SMP1を構成するサンプリング容量C1R,C1Sと、差信号増幅回路DAを構成する帰還容量CR,CSとの比率に応じて実施される。
図1に示す制御信号SHR,SHS,CB1,CB1b,φ1,φ2などの制御信号は、図示しない制御信号生成回路から出力される。
増幅回路12は、複数の画素列に対して1個以上配置されている。図1では1個の増幅回路12が配置された例が示されているが、2個以上の増幅回路12が配置されてもよい。
増幅回路12は、画素アレイ11を構成する画素P1が属する画素列から入力される画素信号をサンプリングするためのサンプリング回路SMP1と、画素アレイ11を構成する画素P2が属する画素列から入力される画素信号をサンプリングするためのサンプリング回路SMP2と、上記サンプリング回路SMP1,SMP2から出力される各画素信号に含まれるリセット信号と映像信号の差信号を増幅する差信号増幅回路DAとを備えている。後述するように、増幅回路12による増幅は、サンプリング回路SMP1を構成するサンプリング容量C1R,C1Sと、差信号増幅回路DAを構成する帰還容量CR,CSとの比率に応じて実施される。
図1に示す制御信号SHR,SHS,CB1,CB1b,φ1,φ2などの制御信号は、図示しない制御信号生成回路から出力される。
サンプリング回路SMP1は、サンプリング容量C1R,C1Sと、スイッチSW11,SW12R,SW12S,SW13R,SW13S,SW14R,SW14Sとを備えている。スイッチSW12Rの第1端子とスイッチSW12Sの第1端子は、画素P1が属する画素列の信号線に共通接続されている。スイッチSW12Rの第2端子とスイッチSW12Sの第2端子との間にはスイッチSW11が接続されている。スイッチSW12Rは、画素P1が属する画素列から画素信号として供給されるリセット信号をサンプリングしてサンプリング容量C1Rに保持させる要素である。スイッチSW12Rの第2端子には、サンプリング容量C1Rの第1電極が接続されている。サンプリング容量C1Rの第2電極と第1の基準電圧VCM1との間にはスイッチSW14Rが接続されている。サンプリング容量C1Rの第2電極には、スイッチSW13Rの第1端子が接続されている。スイッチSW13Rは、サンプリング容量C1Rに保持された信号の電荷を帰還容量CRに転送するための要素である。スイッチSW13Rが閉状態に制御されると、サンプリング容量C1Rに保持された信号がスイッチSW13Rを通じて帰還容量CRに転送される。
スイッチSW12Sは、画素P1が属する画素列から画素信号として供給される映像信号をサンプリングしてサンプリング容量C1Sに保持させる要素である。スイッチSW12Sの第2端子には、サンプリング容量C1Sの第1電極が接続されている。サンプリング容量C1Sの第2電極と第1の基準電圧VCM1との間にはスイッチSW14Sが接続されている。サンプリング容量C1Sの第2電極には、スイッチSW13Sの第1端子が接続されている。スイッチSW13Sは、サンプリング容量C1Sに保持された信号の電荷を帰還容量CSに転送するための要素である。スイッチSW13Sが閉状態に制御されると、サンプリング容量C1Sに保持された信号がスイッチSW13Sを通じて帰還容量CSに転送される。
ここで、スイッチSW12Rの開閉は、制御信号SHRにより制御され、スイッチSW12Sの開閉は、制御信号SHSにより制御される。スイッチSW11,SW13R,SW13Sの開閉は、図示しない制御信号CB1により制御され、スイッチSW14R,SW14Sの開閉は、図示しない制御信号CB1b(制御信号CB1の反転信号)により制御される。
サンプリング回路SMP2は、サンプリング回路SMP1と同様に構成される。
サンプリング回路SMP2は、サンプリング容量C2R,C2Sと、スイッチSW21,SW22R,SW22S,SW23R,SW23S,SW24R,SW24Sとを備えている。スイッチSW22Rの第1端子とスイッチSW22Sの第1端子は、画素P2が属する画素列の信号線に共通接続されている。スイッチSW22Rの第2端子とスイッチSW2Sの第2端子との間にはスイッチSW21が接続されている。スイッチSW22Rは、画素P2が属する画素列から画素信号として供給されるリセット信号をサンプリングしてサンプリング容量C2Rに転送する要素である。スイッチSW22Rの第2端子には、サンプリング容量C2Rの第1電極が接続されている。サンプリング容量C2Rの第2電極と第1の基準電圧VCM1との間にはスイッチSW24Rが接続されている。サンプリング容量C2Rの第2電極には、スイッチSW23Rの第1端子が接続されている。スイッチSW23Rは、サンプリング容量C2Rに保持された信号の電荷を帰還容量CRに転送するための要素である。
サンプリング回路SMP2は、サンプリング容量C2R,C2Sと、スイッチSW21,SW22R,SW22S,SW23R,SW23S,SW24R,SW24Sとを備えている。スイッチSW22Rの第1端子とスイッチSW22Sの第1端子は、画素P2が属する画素列の信号線に共通接続されている。スイッチSW22Rの第2端子とスイッチSW2Sの第2端子との間にはスイッチSW21が接続されている。スイッチSW22Rは、画素P2が属する画素列から画素信号として供給されるリセット信号をサンプリングしてサンプリング容量C2Rに転送する要素である。スイッチSW22Rの第2端子には、サンプリング容量C2Rの第1電極が接続されている。サンプリング容量C2Rの第2電極と第1の基準電圧VCM1との間にはスイッチSW24Rが接続されている。サンプリング容量C2Rの第2電極には、スイッチSW23Rの第1端子が接続されている。スイッチSW23Rは、サンプリング容量C2Rに保持された信号の電荷を帰還容量CRに転送するための要素である。
スイッチSW22Sの第2端子には、サンプリング容量C2Sの第1電極が接続されている。スイッチSW22Sは、画素P2が属する画素列から画素信号として供給される映像信号をサンプリングしてサンプリング容量C2Sに保持させる要素である。サンプリング容量C2Sの第2電極と第1の基準電圧VCM1との間にはスイッチSW24Sが接続されている。サンプリング容量C2Sの第2電極には、スイッチSW23Sの第1端子が接続されている。スイッチSW23Sは、サンプリング容量C2Sに保持された信号の電荷を帰還容量CSに転送するための要素である。
ここで、スイッチSW22Rの開閉は、制御信号SHRにより制御され、スイッチSW22Sの開閉は、制御信号SHSにより制御される。スイッチSW21,SW23R,SW23Sの開閉は、図示しない制御信号CB2により制御され、スイッチSW24R,SW24Sの開閉は、図示しない制御信号CB2b(制御信号CB2の反転信号)により制御される。
なお、図1の例では、二つのサンプリング回路SMP1,SMP2が例示されているが、画素アレイ11を構成する複数の画素列のそれぞれに対し、サンプリング回路SMP1,SMP2と同様のサンプリング回路が個別に設けられている。サンプリング回路SMP1,SMP2は、画素アレイ11から出力される画素信号を選択するためのカラム回路として機能する要素でもある。
差信号増幅回路DAは、帰還容量CR,CS、スイッチSW1R,SW1S,SW2R,SW2S,SW3R,SW3S,SW4R,SW4S、演算増幅回路Aを備えている。
帰還容量CRの第1電極には、上述したサンプリング回路SMP1を構成するスイッチSW13Rの第2端子と、上述したサンプリング回路SMP2を構成するスイッチSW23Rの第2端子とが共通接続されている。帰還容量CRの第1電極と第1の基準電圧VCM1との間には、スイッチSW1Rが接続されている。帰還容量CRの第1電極と演算増幅回路Aの反転入力部との間には、スイッチSW3Rが接続されている。演算増幅回路Aの反転入力部と第1の基準電圧VCM1との間には、スイッチSW4Rが接続されている。帰還容量CRの第2電極と第2の基準電圧VCM2との間には、スイッチSW2Rが接続されている。帰還容量CRの第2電極は、演算増幅回路Aの非反転出力部に接続されている。
帰還容量CRの第1電極には、上述したサンプリング回路SMP1を構成するスイッチSW13Rの第2端子と、上述したサンプリング回路SMP2を構成するスイッチSW23Rの第2端子とが共通接続されている。帰還容量CRの第1電極と第1の基準電圧VCM1との間には、スイッチSW1Rが接続されている。帰還容量CRの第1電極と演算増幅回路Aの反転入力部との間には、スイッチSW3Rが接続されている。演算増幅回路Aの反転入力部と第1の基準電圧VCM1との間には、スイッチSW4Rが接続されている。帰還容量CRの第2電極と第2の基準電圧VCM2との間には、スイッチSW2Rが接続されている。帰還容量CRの第2電極は、演算増幅回路Aの非反転出力部に接続されている。
帰還容量CSの第1電極には、上述したサンプリング回路SMP1を構成するスイッチSW13Sの第2端子と、上述したサンプリング回路SMP2を構成するスイッチSW23Sの第2端子とが共通接続されている。帰還容量CSの第1電極と第1の基準電圧VCM1との間には、スイッチSW1Sが接続されている。帰還容量CSの第1電極と演算増幅回路Aの非反転入力部との間には、スイッチSW3Sが接続されている。演算増幅回路Aの非反転入力部と第1の基準電圧VCM1との間には、スイッチSW4Sが接続されている。帰還容量CSの第2電極と第2の基準電圧VCM2との間には、スイッチSW2Sが接続されている。帰還容量CSの第2電極は、演算増幅回路Aの反転出力部に接続されている。ここで、スイッチSW1R,SW1S,SW2R,SW2S,SW4R,SW4Sの開閉は、図示しない制御信号φ1により制御され、スイッチSW3R,SW3Sの開閉は、図示しない制御信号φ2により制御される。
差信号増幅回路DAを構成する演算増幅回路Aの非反転出力部および反転出力部から、それぞれ、出力電圧VOUTPおよび出力電圧VOUTNが出力される。演算増幅回路Aの出力電圧VOUTPと出力電圧VOUTNとは、後段回路13を構成するA/D変換回路100に入力され、演算増幅回路Aの出力電圧VOUTPと出力電圧VOUTNとの差信号がデジタル信号に変換される。
増幅回路12は、所謂スイッチドキャパシタ回路として構成され、画素アレイ11から画素信号として入力されるリセット信号と映像信号との差信号を離散的に増幅処理して後段回路13(A/D変換回路100)に出力する。
第1の実施形態では、第2の基準電圧VCM2は、第1の基準電圧VCM1よりも低い電圧である。換言すれば、第1の基準電圧VCM1は、第2の基準電圧VCM2よりも高い電圧である。図1の構成では、第1の基準電圧VCM1および第2の基準電圧VCM2を用いたことにより、サンプリング容量C1R,C1S,C2R,C2Sと帰還容量CR,CSとの間のノードの電圧は、第1の基準電圧VCM1に初期化され、出力電圧VOUTP,VOUTNが第2の基準電圧VCM2に初期化される。
図2は、本発明の第1の実施形態による半導体装置10が備える演算増幅回路Aの構成例を示す図である。図2に示す演算増幅回路Aは、トランスコンダクタンスアンプ(Operational trans-conductance amplifier)の一種であるテレスコピック(Telescopic)型のトランスコンダクタンスアンプである。ただし、この例に限定されず、演算増幅回路Aは、任意の回路形式のアンプから構成され得る。
演算増幅回路Aは、入力差動対を形成するトランジスタM11,M12(P型電界効果トランジスタ)と、入力差動対に対するカスコード回路を形成するトランジスタM13,M14(P型電界効果トランジスタ)と、能動負荷を形成するトランジスタM15,M16(N型電界効果トランジスタ)と、能動負荷に対するカスコード回路を形成するトランジスタM17,M18(N型電界効果トランジスタ)と、定電流源を形成するトランジスタM19(P型電界効果トランジスタ)と、バイアス発生回路BGと、コモンモード帰還回路(CMFB:Common Mode FeedBack)CFとから構成される。
バイアス発生回路BGは、コモンモード帰還回路CFに供給されるバイアス電圧VCMと、トランジスタM13,M14のゲートをバイアスするバイアス信号CASPと、トランジスタM17,M18のゲートをバイアスするバイアス信号CASNと、トランジスタM19のゲートをバイアスするバイアス信号BIASPとを発生させる。バイアス発生回路BGが発生させるVCMは、第2の基準電圧VCM2に設定される。コモンモード帰還回路CFは、バイアス発生回路BGから供給されるバイアス電圧VCM(=VCM2)を基準電圧(中心電圧)として出力電圧VOUTP,VOUTNを発生させるように、能動負荷を形成するトランジスタM15,M16のゲート電圧を調整する。
テレスコピック型のトランスコンダクタンスアンプである演算増幅回路Aによれば、低消費電力化を実現することができる。また、演算増幅回路Aとしてテレスコピック型のトランスコンダクタンスアンプを用いることにより、他の回路形式のアンプに比較して、高周波特性を改善することができ、また、高ゲインを得ることができる。
次に、図3を参照して、第1の実施形態による半導体装置10の動作を説明する。
図3は、本発明の第1の実施形態による半導体装置10の動作例を説明するためのタイミングチャートである。
ここでは、説明の簡略化のため、図1に示す半導体装置10の構成要素のうち、サンプリング回路SMP1に着目して半導体装置10の動作を説明するが、他のサンプリング回路SMP2等に着目した動作は、サンプリング回路SMP1に着目した場合の動作と同様である。
図3は、本発明の第1の実施形態による半導体装置10の動作例を説明するためのタイミングチャートである。
ここでは、説明の簡略化のため、図1に示す半導体装置10の構成要素のうち、サンプリング回路SMP1に着目して半導体装置10の動作を説明するが、他のサンプリング回路SMP2等に着目した動作は、サンプリング回路SMP1に着目した場合の動作と同様である。
図3において、時刻t1以前の初期状態では、制御信号φ1はローレベルであり、これにより、差信号増幅回路DAのスイッチSW1R,SW1S,SW2R,SW2S,SW4R,SW4Sは開状態とされている。また、制御信号φ2はハイレベルであり、これにより、スイッチSW3R,SW3Sは閉状態とされている。また、制御信号SHRおよび制御信号SHSはローレベルであり、これにより、サンプリング回路SMP1のスイッチSW12R,SW12Sとサンプリング回路SMP2のスイッチSW22R,SW22Sが開状態とされている。
また、上記初期状態では、制御信号CB1がローレベルであり、制御信号CB1bがハイレベルであり、これにより、サンプリング回路SMP1のスイッチSW11,SW13R,SW13Sが開状態とされ、スイッチSW14R,SW14Sが閉状態とされている。また、制御信号CB2がローレベルであり、制御信号CB2bがハイレベルであり、これにより、サンプリング回路SMP2のスイッチSW21,SW23R,SW23Sが開状態とされ、スイッチSW24R,SW24Sが閉状態とされている。この初期状態では、制御信号CB1bにより閉状態とされているスイッチSW14R,SW14Sを通じて、サンプリング容量C1Rの第2電極とサンプリング容量C1Sの第2電極には、第1の基準電圧VCM1が印加された状態となっている。
上記の初期状態から、時刻t1から時刻t2までの期間T1において、制御信号SHRがハイレベルになると、サンプリング回路SMP1のスイッチSW12Rが閉状態になる。このため、画素P1から画素信号として供給されるリセット信号がスイッチSW12Rを通じてサンプリング容量C1Rの第1電極に供給される。換言すれば、画素P1から供給されるリセット信号がサンプリングされてサンプリング容量C1Rに保持される。この場合、サンプリング容量C1Rの第2電極には、スイッチSW14Rを通じて第1の基準電圧VCM1が供給されているので、サンプリング容量C1Rは、サンプリングされたリセット信号を、第1の基準電圧VCM1を基準とした信号として保持する。
続いて、時刻t2で制御信号SHRがローレベルになり、時刻t2から時刻t3までの期間T2において制御信号SHSがハイレベルになる。これにより、画素P1から画素信号として供給される映像信号がスイッチSW12Sを通じてサンプリング容量C1Sの第1電極に供給される。換言すれば、画素P1から供給される映像信号がサンプリングされてサンプリング容量C1Sに保持される。この場合、サンプリング容量C1Sの第2電極には、スイッチSW14Sを通じて第1の基準電圧VCM1が供給されているので、サンプリング容量C1Sは、サンプリングされた映像信号を、第1の基準電圧VCM1を基準とした信号として保持する。
時刻t3で制御信号SHSがローレベルに遷移した後、制御信号φ2がローレベルに遷移すると、差信号増幅回路DAのスイッチSW3R,SW3Sが開状態となる。これにより、帰還容量CRの第1電極と演算増幅回路Aの反転入部とが切り離されると共に、帰還容量CSの第1電極と演算増幅回路Aの非反転入部とが切り離される。
続いて、時刻t4から時刻t5までのリセット期間T3において、リセット動作が実施される。詳細には、時刻t4から一定時間が経過すると、制御信号φ1がローレベルからハイレベルに遷移する。これにより、差信号増幅回路DAのスイッチSW1R,SW1S,SW2R,SW2S、SW3R,SW3Sが閉状態になる。この結果、帰還容量CRの第1電極に第1の基準電圧VCM1が印加され、帰還容量CRの第2電極に第2の基準電圧VCM2が印加され、帰還容量CRが第1の基準電圧VCM1と第2の基準電圧VCM2との差電圧(VCM1-VCM2)で充電される。
続いて、リセット期間T3において、制御信号φ1がハイレベルからローレベルに遷移すると、差信号増幅回路DAのスイッチSW1R,SW1S,SW2R,SW2S,SW4R,SW4Sが開状態になる。
続いて、時刻t5から時刻t6までの増幅期間T4において、サンプリング回路SMP1のサンプリング容量C1R,C1Sに保持された画素信号(リセット信号と映像信号の差信号)の増幅動作が実施される。詳細には、時刻t5から一定時間が経過すると、制御信号φ2がローレベルからハイレベルに遷移する。これにより、差信号増幅回路DAのスイッチSW3R,SW3Sが閉状態になる。この結果、演算増幅回路Aの反転入力部がスイッチSW3Rを通じて帰還容量CRの第1電極と接続されると共に、演算増幅回路Aの非反転入力部がスイッチSW3Sを通じて帰還容量CSの第1電極と接続される。これにより、演算増幅回路Aの反転入力部と非反転出力部との間に帰還容量CRが電気的に接続されると共に、演算増幅回路Aの非反転入力部と反転出力部との間に帰還容量CSが電気的に接続された状態になる。即ち、差信号増幅回路DAによる信号増幅が可能な状態になる。
続いて、時刻t5Aで、制御信号CB1がローレベルからハイレベルに遷移し、制御信号CB1bがハイレベルからローレベルに遷移すると、サンプリング回路SMP1のスイッチSW14R,SW14Sが開状態になると共に、スイッチSW11,SW13R,SW13Sが閉状態になる。これにより、サンプリング容量C1R,C1Sの第2電極から第1の基準電圧VCM1が切り離されると共に、演算増幅回路Aの非反転出力部と反転出力部との間に、サンプリング容量C1R,C1Sと帰還容量CR,CSとが直列接続された状態になる。この結果、演算増幅回路Aは、サンプリング容量C1R,C1Sと帰還容量CR,CSとの比率に応じて、画素P1からの画素信号をなすリセット信号と映像信号との差信号を増幅し、第2の基準電圧VCM2を基準として出力電圧VOUT(VOUTP-VOUTN)を発生させる。
続いて、時刻t5Bで、制御信号CB1がハイレベルからローレベルに遷移すると共に、制御信号CB1bがローレベルからハイレベルに遷移すると、サンプリング回路SMP1のスイッチSW14R,SW14Sが閉状態になると共に、スイッチSW11,SW13R,SW13Sが開状態になる。
このように、増幅回路12は、リセット動作と増幅動作とを順次実施することにより、制御信号φ2がハイレベルとなるタイミングに合わせて、画素P1からの画素信号であるリセット信号と映像信号との差信号を、サンプリング容量C1R,C1Sと帰還容量CR,CSとの比率に応じて増幅し、後段回路13を構成するA/D変換回路100に出力する。A/D変換回路100は、画素P1からの画素信号を増幅して得られた増幅回路12の出力電圧VOUT(アナログ信号)をデジタル信号に変換して出力する。
続いて、時刻t6から時刻t7までのリセット期間T5において、画素アレイ11の画素P2から出力される画素信号を増幅するためのリセット動作が実施され、時刻t7から時刻t8までの増幅期間T6において、画素アレイ11の画素P2から出力される画素信号を増幅するための増幅動作が実施される。リセット期間T5では、上述のリセット期間T3と同様に、差信号増幅回路DAの各スイッチの状態が制御される。
また、増幅期間T6では、上述の増幅期間T4におけるサンプリング回路SMP1の各スイッチの状態と同様に、サンプリング回路SMP2の各スイッチの状態が制御される。この結果、増幅期間T6において、演算増幅回路Aは、サンプリング容量C2R,C2Sと帰還容量CR,CSとの比率に応じて、画素P2からの画素信号をなすリセット信号と映像信号との差信号を増幅し、第2の基準電圧VCM2を基準として出力電圧VOUT(VOUTP-VOUTN)を発生させる。
このように、増幅回路12は、リセット動作と増幅動作とを順次実施することにより、制御信号CB(CB1,CB2・・・)がハイレベルとなるタイミングに合わせて、画素P2からの画素信号であるリセット信号と映像信号との差信号を、サンプリング容量C2R,C2Sと帰還容量CR,CSとの比率に応じて増幅し、後段回路13を構成するA/D変換回路100に出力する。A/D変換回路100は、画素P2からの画素信号を増幅して得られた増幅回路12の出力電圧VOUT(アナログ信号)をデジタル信号に変換して出力する。
なお、図3の例では、二つの画素P1,P2からの画素信号を増幅する場合を示しているが、増幅回路12は、画素アレイ11内の全画素の画素信号について、上述したリセット動作と増幅動作とを繰り返す。
次に、増幅回路12の増幅動作を詳細に説明する。
増幅回路12の出力電圧VOUTは、次式(1)により与えられる。
但し、式(1)では、サンプリング容量C1R,C1S,C2R,C2Sを「Cs」とし、帰還容量CR,CSを「Cf」とし、サンプリング容量C1R,C2Rに保持されるリセット信号の電圧を「Vob」とし、サンプリング容量C1S,C2Sに保持される映像信号の電圧を「Vsig」としている。
増幅回路12の出力電圧VOUTは、次式(1)により与えられる。
但し、式(1)では、サンプリング容量C1R,C1S,C2R,C2Sを「Cs」とし、帰還容量CR,CSを「Cf」とし、サンプリング容量C1R,C2Rに保持されるリセット信号の電圧を「Vob」とし、サンプリング容量C1S,C2Sに保持される映像信号の電圧を「Vsig」としている。
VOUTP = Cs/Cf * {(Vsig+VCM1)-(Vob+VCM1)}/2 + VCM2 …(1)
VOUTN = Cs/Cf * {-(Vsig+VCM1)+(Vob+VCM1)}/2 + VCM2 …(2)
VOUT = VOUTP-VOUTN = Cs/Cf * (Vsig-Vob) …(3)
VOUTN = Cs/Cf * {-(Vsig+VCM1)+(Vob+VCM1)}/2 + VCM2 …(2)
VOUT = VOUTP-VOUTN = Cs/Cf * (Vsig-Vob) …(3)
式(1)から理解されるように、増幅回路12の出力電圧VOUTPは、サンプリング容量(Cs)と帰還容量(Cf)との比率に応じて、リセット信号の電圧を「Vob」と映像信号の電圧を「Vsig」の差信号(Vsig-Vob)の2分の1の信号が増幅されて出力電圧VOUTPとされる。また、式(2)から理解されるように、増幅回路12の出力電圧VOUTNは、サンプリング容量(Cs)と帰還容量(Cf)との比率に応じて、リセット信号の電圧を「Vob」と映像信号の電圧を「Vsig」の差信号(-Vsig+Vob)の2分の1の信号が増幅されて出力電圧VOUTNとされる。
また、式(1)および式(2)から理解されるように、増幅回路12の出力電圧VOUTP,VOUTNは、画素アレイ11の電源電圧によって設定される第1の基準電圧VCM1とは関係なく、第2の基準電圧VCM2を基準とした電圧信号として発生される。このことは、画素信号を構成するリセット信号および映像信号の各信号レベルが第2の基準電圧VCM2を基準とした電圧信号にシフトされることを意味する。また、式(3)から理解されるように、増幅回路12の出力電圧VOUTは、出力電圧VOUTPと出力電圧VOUTNとの差信号として表され、第1の基準電圧VCM1および第2の基準電圧VCM2の影響を含まない。
上述のように、増幅回路12は、第1の基準電圧VCM1と第2の基準電圧VCM2とを相互に異なる電圧に設定することにより、従来のレベルシフト回路を用いることなく、第1の基準電圧VCM1にバイアスされた画素P1からの画素信号(Vsig、Vob)を、第2の基準電圧VCM2でバイアスされた出力電圧VOUT(Voutp,Voutn)にレベルシフトして出力することができる。
ここで、増幅回路12及び後段回路13(A/D変換回路100)のダイナミックレンジを確保する観点から、好ましくは、第1の基準電圧VCM1は、画素P1と増幅回路12に供給される第1の電源電圧の略2分の1の電圧に設定し、第2の基準電圧VCM2は、後段回路13のA/D変換回路100に供給される第2の電源電圧の略2分の1の電圧に設定することが好適である。但し、第1の基準電圧VCM1を、画素アレイ11と増幅回路12に供給される第1の電源電圧の4分の1から4分の3の範囲内の電圧に設定し、第2の基準電圧VCM2を、後段回路13のA/D変換回路100に供給される第2の電源電圧の4分の1から4分の3の範囲内の電圧に設定しても、増幅回路12及び後段回路13のA/D変換回路100のダイナミックレンジを確保することは可能である。
上述した第1の実施形態によれば、従来技術に示すようなレベルシフト回路に起因する性能劣化(S/N、消費電力、実装面積)を回避することができる。
また、第1の実施形態によれば、A/D変換回路100を増幅回路12よりも低い電源電圧で動作させることができるため、A/D変換回路100の低消費電力化を実現することができる。
また、第1の実施形態によれば、A/D変換回路100を増幅回路12よりも低い電源電圧で動作させることができるため、A/D変換回路100の低消費電力化を実現することができる。
従って、第1の実施形態によれば、消費電流を抑制しつつ、画素信号の信号レベルを所望の電源電圧系の回路に適合する信号レベルに変換することができる。
また、ハイパスフィルタを利用してレベルシフト機能を実現する回路技術も存在するが、この回路技術によれば、ハイパスフィルタを構成するコンデンサの実装面積を確保する必要がある。しかしながら、第1の実施形態によれば、ハイパスフィルタを用いることなくレベルシフト機能を実現することができるので、実装面積を抑制することができる。
また、ハイパスフィルタを利用してレベルシフト機能を実現する回路技術も存在するが、この回路技術によれば、ハイパスフィルタを構成するコンデンサの実装面積を確保する必要がある。しかしながら、第1の実施形態によれば、ハイパスフィルタを用いることなくレベルシフト機能を実現することができるので、実装面積を抑制することができる。
(第2の実施形態)
次に、本発明の第2の実施形態を説明する。
図4は、本発明の第2の実施形態による半導体装置20の構成例を示す図である。
半導体装置20は、第1の実施形態による図1の構成において、クリップ回路14を更に備えている。クリップ回路14は、演算増幅回路Aの出力電圧VOUT(VOUTP,VOUTN)を所定電圧、即ち所定のクリップ電圧VCLP以下に制限するための要素であり、過電流検出回路B1,B2と、過電流吸収回路K1,K2とから構成される。過電流吸収回路K1,K2は、それぞれ、Nチャネル型の電界効果トランジスタ(以下、「トランジスタ」と称す。)から構成される。
次に、本発明の第2の実施形態を説明する。
図4は、本発明の第2の実施形態による半導体装置20の構成例を示す図である。
半導体装置20は、第1の実施形態による図1の構成において、クリップ回路14を更に備えている。クリップ回路14は、演算増幅回路Aの出力電圧VOUT(VOUTP,VOUTN)を所定電圧、即ち所定のクリップ電圧VCLP以下に制限するための要素であり、過電流検出回路B1,B2と、過電流吸収回路K1,K2とから構成される。過電流吸収回路K1,K2は、それぞれ、Nチャネル型の電界効果トランジスタ(以下、「トランジスタ」と称す。)から構成される。
過電流検出回路B1の非反転入力部は、増幅回路12の演算増幅回路Aの非反転出力部に接続されている。過電流検出回路B1の反転入力部にはクリップ電圧VCLPが印加されている。過電流検出回路B1の出力部は、過電流吸収回路K1を構成するトランジスタのゲートに接続されている。過電流吸収回路K1を構成するトランジスタのソースはグランドに接続され、そのドレインは、過電流検出回路B1の非反転入力部と共に増幅回路12の演算増幅回路Aの非反転出力部に接続されている。
過電流検出回路B1および過電流吸収回路K1は、増幅回路12の出力電圧VOUTPに発生する過電圧を抑制するための要素である。ここで、過電流検出回路B1は、演算増幅回路Aの出力電圧VOUTPが後段回路13に供給される第2の電源電圧を超えた場合に発生する過電流を検出するための要素である。過電流吸収回路K1は、出力電圧VOUTPに起因した過電流を吸収するための要素である。過電流検出回路B1は、演算増幅回路Aの出力電圧VOUTPがクリップ電圧VCLPを超えた場合、過電流吸収回路K1を構成するトランジスタのゲートにハイレベルの信号Sを出力してオンさせることにより、出力電圧VOUTPに起因した過電流を過電流吸収回路K1で吸収させる。これにより、出力電圧VOUTPの過電圧をクリップ電圧VCLP以下に制限する。
同様に、過電流検出回路B2の非反転入力部は、増幅回路12の演算増幅回路Aの反転出力部に接続されている。過電流検出回路B2の反転入力部にはクリップ電圧VCLPが印加されている。過電流検出回路B2の出力部は、過電流吸収回路K2を構成するトランジスタのゲートに接続されている。過電流吸収回路K2を構成するトランジスタのソースはグランドに接続され、そのドレインは、過電流検出回路B2の非反転入力部と共に増幅回路12の演算増幅回路Aの反転出力部に接続されている。
過電流検出回路B2および過電流吸収回路K2は、増幅回路12の出力電圧VOUTNに発生する過電圧を抑制するための要素である。ここで、過電流検出回路B2は、演算増幅回路Aの出力電圧VOUTNが後段回路13に供給される第2の電源電圧を超えた場合に発生する過電流を検出するための要素である。過電流吸収回路K2は、出力電圧VOUTNに起因した過電流を吸収するための要素である。過電流検出回路B2は、演算増幅回路Aの出力電圧VOUTNがクリップ電圧VCLPを超えた場合、過電流吸収回路K2を構成するトランジスタのゲートにハイレベルの信号Sを出力してオンさせることにより、出力電圧VOUTNに起因した過電流を過電流吸収回路K1で吸収させる。これにより、出力電圧VOUTNの過電圧をクリップ電圧VCLP以下に制限する。
図5は、本発明の第2の実施形態による半導体装置20が備える過電流検出回路B1,B2の構成例を示す図である。図5では、過電流検出回路B1,B2のうちの一つの構成例が示されている。過電流検出回路B1,B2は、互いに同一の構成を有している。以下では、過電流検出回路B1,B2のうちの任意の一つを「過電流検出回路B」と称す。また、過電流吸収回路K1,K2も互いに同一の構成を有し、過電流吸収回路K1,K2のうちの任意の一つを「過電流吸収回路K」と称す。
過電流検出回路Bは、定電流源ISと、トランジスタM1~M5から構成される。過電流検出回路B及び過電流吸収回路Kに用いるトランジスタは、増幅回路12に使用するトランジスタと同一の種類とし、各トランジスタのサイズは最小サイズとする。これにより、消費電流を抑制する。また、過電流検出回路Bに供給されるクリップ電圧VCLPは、A/D変換回路100に供給される第2の電源電圧と略同一に設定される。
次に、第2の実施形態による半導体装置20の動作について、クリップ回路14の動作に着目して説明する。
過電流検出回路Bは、増幅回路12からの出力電圧VOUT(VOUTP,VOUTN)とクリップ電圧VCLPとを比較する。増幅回路12の出力電圧VOUT(VOUTP,VOUTN)がクリップ電圧VCLPを超えた場合、過電流検出回路Bは、ハイレベルの信号Sを過電流吸収回路Kに出力する。この場合、過電流吸収回路Kを構成するトランジスタはオン状態となり、過電流吸収回路Kは、増幅回路12の出力電圧VOUT(VOUTP,VOUTN)がクリップ電圧VCLP以下となるように、増幅回路12の出力端子から吐き出される過電流を吸収する。
過電流検出回路Bは、増幅回路12からの出力電圧VOUT(VOUTP,VOUTN)とクリップ電圧VCLPとを比較する。増幅回路12の出力電圧VOUT(VOUTP,VOUTN)がクリップ電圧VCLPを超えた場合、過電流検出回路Bは、ハイレベルの信号Sを過電流吸収回路Kに出力する。この場合、過電流吸収回路Kを構成するトランジスタはオン状態となり、過電流吸収回路Kは、増幅回路12の出力電圧VOUT(VOUTP,VOUTN)がクリップ電圧VCLP以下となるように、増幅回路12の出力端子から吐き出される過電流を吸収する。
ここで、図5を参照すると、クリップ回路14は、増幅回路12の出力電圧VOUTを、次式(4)に従って、出力電圧VOUTに発生する過電圧をクリップする。但し、式(4)において、Voutは、増幅回路12の出力電圧VOUTを示し、Vclipは、クリップ電圧VCLPを示し、Vgs1は、トランジスタM1のゲート-ソース端子間電圧を示し、Vgs2は、トランジスタM2のゲート-ソース端子間電圧を示している。
Vout=Vclip - Vgs1 + Vgs2 …(4)
ここで、トランジスタM1,M2には定電流源IS、及びトランジスタM5より略同一の基準電流が供給され、増幅回路12の出力端子から吐き出される過電流は、過電流吸収回路Kによって吸収される。このため、トランジスタM1のゲート-ソース端子間電圧Vgs1とトランジスタM2のゲート-ソース端子間電圧Vgs2とが略等しいとすると、上式(4)から次式(5)が得られる。
Vout=Vclip …(5)
上式(5)から理解されるように、増幅回路12の出力電圧VOUTがクリップ電圧VCLPを超えた場合、増幅回路12の出力電圧VOUT(Vout)は、クリップ電圧VCLP(Vclip)と略等しくなるようにクリップされる。
一方、増幅回路12の出力電圧VOUT(VOUTP,VOUTN)がクリップ電圧VCLP以下の場合、図5に示すトランジスタM2はオフ状態に維持され、過電流検出回路Bは、ローレベルの信号Sを過電流吸収回路Kに出力する。この場合、過電流吸収回路Kを構成するトランジスタはオフ状態となり、増幅回路12の出力端子から吐き出される通常電流は吸収されない。従ってこの場合、クリップ回路14は作動せず、増幅回路12の出力電圧VOUTに影響を与えない。
第2の実施形態によれば、例えば、半導体装置20に電源電圧を印加した直後の期間などにおいて、半導体装置20の動作が不安定となった場合や、画素アレイ11に過剰な光が照射された場合に、増幅回路12が発生させる過電圧を抑制することができる。従って、増幅回路12の出力電圧VOUT(VOUTP,VOUTN)に発生する過電圧が後段回路13に与える影響を抑制することができ、後段回路13を構成するA/D変換回路100の耐圧不足に起因する段階的な性能劣化や破壊を回避することができる。
また、第2の実施形態によれば、クリップ回路14を構成する素子のサイズを小さく設定することができるので、増幅回路12の出力負荷容量を軽減することができる。このため、増幅回路12の出力負荷容量に起因した増幅回路12の出力電流を抑制することができ、増幅回路12の低消費電力化を実現することができる。
(第3の実施形態)
次に、本発明の第3の実施形態を説明する。
第3の実施形態では、上述した第1の実施形態および第2の実施形態におけるA/D変換回路100として、逐次比較型A/D変換回路を用いている。その他は、第1の実施形態または第2の実施形態と同様である。以下では、図1に示すA/D変換回路100を「逐次比較型A/D変換回路100」と称す。
次に、本発明の第3の実施形態を説明する。
第3の実施形態では、上述した第1の実施形態および第2の実施形態におけるA/D変換回路100として、逐次比較型A/D変換回路を用いている。その他は、第1の実施形態または第2の実施形態と同様である。以下では、図1に示すA/D変換回路100を「逐次比較型A/D変換回路100」と称す。
図6は、本発明の第3の実施形態による半導体装置が備える逐次比較型A/D変換回路100の構成例を示すブロック図である。
逐次比較型A/D変換回路100は、8ビット出力のA/D変換回路であるが、この例に限定されず、逐次比較型A/D変換回路100の出力ビット数は任意に設定し得る。
逐次比較型A/D変換回路100は、8ビット出力のA/D変換回路であるが、この例に限定されず、逐次比較型A/D変換回路100の出力ビット数は任意に設定し得る。
逐次比較型A/D変換回路100は、サンプリング回路110、容量性DAC回路120、比較回路130、制御回路140を備えている。
サンプリング回路110は、増幅回路12の出力電圧VOUT(差動入力信号)を構成する1対の出力電圧VOUTP,VOUTNのトラック・ホールドを行い、アナログ信号VAP,VANをサンプリングして当該逐次比較型A/D変換回路100に取り込むための要素である。サンプリング回路110の動作は、クロック信号CLKに基づいて制御される。
サンプリング回路110は、増幅回路12の出力電圧VOUT(差動入力信号)を構成する1対の出力電圧VOUTP,VOUTNのトラック・ホールドを行い、アナログ信号VAP,VANをサンプリングして当該逐次比較型A/D変換回路100に取り込むための要素である。サンプリング回路110の動作は、クロック信号CLKに基づいて制御される。
容量性DAC回路120は、制御回路140によって生成されるデジタル信号(D0-D7)に基づいた基準信号を生成し、サンプリング回路110によりホールドされ、サンプリングされた出力電圧VOUTP,VOUTNのそれぞれから基準信号を減算することにより、差動入力信号VAと8ビットのデジタル信号D0-D7との間の累積残差を取得するための要素である。差動入力信号VAは、出力電圧VOUTP,VOUTNを要素とする信号である。容量性DAC回路120は、出力電圧VOUTP,VOUTNのそれぞれから基準信号を減算した減算結果を、累積残差が反映されたアナログ信号VCP,VCNとして、比較回路130に出力する。
比較回路130は、容量性DAC回路120から入力されるアナログ信号VCPとアナログ信号VCNとを比較するための要素であり、その大小関係に応じた比較結果を示すデジタル信号VOP,VONを出力する。具体的には、比較回路130は、アナログ信号VCPの信号レベルがアナログ信号VCNの信号レベルよりも高い場合、デジタル信号VOPとしてハイレベルの信号を出力し、デジタル信号VONとしてローレベルの信号を出力する。逆に、比較回路130は、アナログ信号VCPの信号レベルがアナログ信号VCNの信号レベルよりも低い場合、デジタル信号VOPとしてローレベルの信号を出力し、デジタル信号VONとしてハイレベルの信号を出力する。比較回路130の動作は、後述の制御回路140で生成される内部クロック信号BIT_CLKおよび反転内部クロック信号BIT_CLKbに基づいて制御される。
制御回路140は、SAR(Successive Approximation Register)ロジック回路として機能する要素であり、2分探索アルゴリズムに従って、比較回路130による比較の結果を示すデジタル信号VOP,VONに対応するデジタル信号DP0-DP7,DN0-DN7の各ビットの値を逐次的に判定する。制御回路140は、デジタル信号VOP,VONに対応するデジタル信号DP0-DP7,DN0-DN7を容量性DAC回路120に供給する。これによって、制御回路140は、デジタル信号DP0~DP7,DN0~DN7の各ビットの値を基準信号に反映させる。制御回路140は、デジタル信号DP0-DP7を、A/D変換の結果を表すデジタル信号D0-D7として出力する。また、制御回路140は比較回路130を制御する内部クロック信号BIT_CLKおよび反転内部クロック信号BIT_CLKbを生成し、比較回路130に供給する。制御回路140の動作は、クロック信号CLKに基づいて制御される。制御回路140は、クロック信号CLKがハイレベルの期間において、内部クロック信号BIT_CLKおよび反転内部クロック信号BIT_CLKbを発生させる。
容量性DAC回路120は、容量回路121、駆動回路122、減衰容量制御部123を備えている。ここで、容量回路121は、複数の容量間の電荷再配分を利用することにより、出力電圧VOUTP,VOUTNから基準信号を減算して上記累積残差を示すアナログ信号VCP,VCNを得るための要素である。駆動回路122は、制御回路140から入力されるデジタル信号DP0-DP7,DN0-DN7に基づいて上記基準信号を発生させて容量回路121を駆動するための要素である。減衰容量制御部123は、容量回路121に備えられた後述の減衰容量CHP,CHNの容量値を制御するための要素である。
逐次比較型A/D変換回路100は、デジタル信号D0-D7の最上位ビット(D7)から最下位ビット(D0)に向かって、1ビットずつ順にA/D変換結果を得る。このA/D変換の過程で、比較回路130は、容量性DAC回路120の容量回路121によって上記減算が行われる都度、それまでの累積残差が反映されたアナログ信号VCPの電圧とアナログ信号VCNの電圧とを比較する。
図7は、サンプリング回路110および容量性DAC回路120の構成例を示している。ただし、図7では、容量性DAC回路120の構成要素である図1に示す減衰容量制御部123は省略されている。
サンプリング回路110は、スイッチ110P,110Nを備えている。スイッチ110Pは、オンであるときに第1の端子E1Pと第2の端子E2Pとの間を導通させ、オフであるときに第1の端子E1Pと第2の端子E2Pとの間を高インピーダンス状態にする。スイッチ110Pの第1の端子E1Pには、非反転入力端子INPを介して増幅回路12の出力電圧VOUTPが入力される。スイッチ110Pは、オンからオフに切り替わる瞬間に後述する容量部121Pに出力電圧VOUTPをホールドしてサンプリングする。スイッチ110Pのオンとオフとは、クロック信号CLKに基づいて切り替わる。
スイッチ110Nは、オンであるときに第1の端子E1Nと第2の端子E2Nとの間を導通させ、オフであるときに第1の端子E1Nと第2の端子E2Nとの間を高インピーダンス状態にする。スイッチ110Nの第1の端子E1Nには、反転入力端子INNを介して増幅回路12の出力電圧VOUTNが入力される。スイッチ110Nは、オンからオフに切り替わる瞬間に後述する容量部121Nに出力電圧VOUTNをホールドしてサンプリングする。スイッチ110Nのオンとオフとは、クロック信号CLKに基づいて切り替わる。
容量性DAC回路120を構成する容量回路121は、容量部121P,121Nから構成される。このうち、容量部121Pは、減衰容量CHPとバイナリ容量C0P~C7Pとを備えている。減衰容量CHPは、スイッチ110Pの第2の端子E2Pに接続された配線に相当する信号ノードNPとグランドGNDとの間に接続されている。また、バイナリ容量C0P~C7Pのそれぞれは、上記信号ノードNPと駆動回路122を構成する駆動部122Pの出力部との間に接続されている。即ち、バイナリ容量C0P~C7Pのそれぞれの一方の電極は信号ノードNPに共通接続されている。また、バイナリ容量C0P~C7Pの他方の電極は、それぞれ、駆動部122Pを構成するインバータQ0P~Q7Pの出力部に個別に接続されている。
ここで、バイナリ容量C0P~C7Pは、制御回路140によって生成されるデジタル信号DP0~DP7に対応して配置されている。バイナリ容量C0P~C7Pのそれぞれの容量値は異なる。例えば、デジタル信号DP(n+1)に対応する容量C(n+1)Pの容量値は、デジタル信号DPnに対応する容量CnPの容量値の2倍である(nは、0から6までの整数)。即ち、バイナリ容量C0P~C7Pのそれぞれの容量値は、デジタル信号DP1~DP7の各ビットの位に応じた2進数で重み付けされている。
同様に、容量部121Nは、減衰容量CHNとバイナリ容量C0N~C7Nとを備えている。減衰容量CHNは、スイッチ110Nの第2の端子E2Nに接続された配線に相当する信号ノードNNとグランドGNDとの間に接続されている。また、バイナリ容量C0N~C7Nのそれぞれは、上記信号ノードNNと駆動回路122を構成する駆動部122Nの出力部との間に接続されている。即ち、バイナリ容量C0N~C7Nのそれぞれの一方の電極は信号ノードNNに共通接続されている。また、バイナリ容量C0N~C7Nの他方の電極は、それぞれ、駆動部122Nを構成するインバータQ0N~Q7Nの出力部に個別に接続されている。
なお、バイナリ容量C0N~C7Nの容量値についても、バイナリ容量C0P~C7Pと同様に2進数で重み付けされている。
また、容量部121Nを構成するバイナリ容量C0N~C7Nの各容量値は、それぞれ、容量部121Pを構成するバイナリ容量C0P~C7Pの各容量値と同じに設定されている。
なお、バイナリ容量C0N~C7Nの容量値についても、バイナリ容量C0P~C7Pと同様に2進数で重み付けされている。
また、容量部121Nを構成するバイナリ容量C0N~C7Nの各容量値は、それぞれ、容量部121Pを構成するバイナリ容量C0P~C7Pの各容量値と同じに設定されている。
容量性DAC回路120を構成する駆動回路122は、駆動部122P,122Nを備えている。駆動部122Pは、インバータQ0P~Q7Pを備えている。インバータQ0P~Q7Pには、電源電圧として第1の電源電圧VDD1が供給されている。このことは、インバータQ0P~Q7Pのそれぞれから出力される基準信号D0P~D7Pの振幅が第1の電源電圧VDD1に等しいことを意味する。インバータQ0P~Q7Pは、制御回路140によって生成されるデジタル信号DP0~DP7に対応して配置されている。インバータQ0P~Q7Pには、それぞれ、制御回路140から、デジタル信号DP0~DP7の各ビットが入力される。また、インバータQP0~QP7の出力部は、それぞれ、バイナリ容量C0P~C7Pの他方の電極に接続されている。
インバータQP0~QP7は、制御回路140から入力されるデジタル信号DP0~DP7を反転することによって基準信号D0P~D7Pを生成する。容量部121Pが有する複数のバイナリ容量C0P~C7Pは、電荷再配分により、減衰容量CHPに保持されている増幅回路12の出力電圧VOUTPに基づく電荷から、基準信号D0P~D7Pに基づく電荷を引き抜くことによって、出力電圧VOUTPから基準信号D0P~D7Pを減算する。容量部121Pは、減算結果であるアナログ信号VCPを出力する。
同様に、駆動部122Nは、インバータQ0N~Q7Nを備えている。インバータQ0N~Q7Nには、電源電圧として第1の電源電圧VDD1が供給されている。このことは、インバータQ0N~Q7Nのそれぞれから出力される基準信号D0N~D7Nの振幅が第1の電源電圧VDD1に等しいことを意味する。インバータQ0N~Q7Nは、制御回路140によって生成されるデジタル信号DN0~DN7に対応して配置されている。インバータQ0N~Q7Pには、それぞれ、制御回路140から、デジタル信号DN0~DN7の各ビットが入力される。また、インバータQ0N~Q7Nの出力部は、それぞれ、バイナリ容量C0N~C7Nの他方の電極に接続されている。
インバータQN0~QN7は、制御回路140から入力されるデジタル信号DN0~DN7を反転することによって基準信号D0N~D7Nを生成する。容量部121Nが有する複数のバイナリ容量C0N~C7Nは、電荷再配分により、減衰容量CHNに保持されている増幅回路12の出力電圧VOUTNに基づく電荷から、基準信号D0N~D7Nに基づく電荷を引き抜くことによって、アナログ信号VANから基準信号D0N~D7Nを減算する。容量部121Nは、減算結果である出力電圧VOUTNを出力する。
図8は、本発明の第3の実施形態による逐次比較型A/D変換回路100が備える減衰容量CHPの構成例を示す図である。ここで、図8(A)は減衰容量CHPの概略図であり、図8(B)は減衰容量CHPの詳細図である。減衰容量CHNも減衰容量CHPと同様であり、ここではその説明を省略する。
図8(A)に示すように、減衰容量CHPは、固定容量Ch1と可変容量Ch2とを備えている。固定容量Ch1の第1の電極は信号ノードNPに接続され、固定容量Ch1の第2の電極はグランドGND(所定電位ノード)に接続されている。また、可変容量Ch2の第1の電極は信号ノードNPに接続され、可変容量Ch2の第2の電極はグランドGNDに接続されている。即ち、固定容量Ch1および可変容量Ch2は、信号ノードNPとグランドGNDとの間に並列接続されている。
図8(B)に示すように、可変容量Ch2は、容量Ch21,Ch22,Ch23,Ch24と、スイッチSW1,SW2,SW3,SW4とを備えている。ここで、容量Ch21は、信号ノードNPとグランドGNDとの間にスイッチSW1と直列接続されている。具体的には、容量Ch21の第1の電極は信号ノードNPに接続され、容量Ch21の第2の電極は、スイッチSW1の第1の端子に接続されている。スイッチSW1の第2の端子はグランドGNDに接続されている。
同様に、容量Ch22は、信号ノードNPとグランドGNDとの間にスイッチSW2と直列接続されている。容量Ch23は、信号ノードNPとグランドGNDとの間にとスイッチSW3と直列接続されている。容量Ch24は、信号ノードNPとグランドGNDとの間にとスイッチSW4と直列接続されている。
なお、容量Ch21~Ch24とスイッチSW1~SW4との間の接続関係は、直列であればよく、容量Ch21~Ch24とスイッチSW1~SW4との位置を入れ替えてもよい。
なお、容量Ch21~Ch24とスイッチSW1~SW4との間の接続関係は、直列であればよく、容量Ch21~Ch24とスイッチSW1~SW4との位置を入れ替えてもよい。
スイッチSW1,SW2,SW3,SW4のオン・オフは、それぞれ、減衰容量制御部123により個別に制御される。スイッチSW1,SW2,SW3,SW4のオンとオフの組み合わせに応じて、可変容量Ch2の容量値が定まる。図8(A)に示すように、可変容量Ch2は、固定容量Ch1と並列接続されているから、スイッチSW1,SW2,SW3,SW4のオン・オフを制御することにより、固定容量Ch1および可変容量Ch2から構成される減衰容量CHPの合成容量値を調整することができる。減衰容量CHPの合成容量の調整の詳細については後述する。
次に、逐次比較型A/D変換回路100の動作(A/D変換)について、図9のタイミングチャートを参照しながら説明する。
逐次比較型A/D変換装置100に備えられたサンプリング回路110は、クロック信号CLKがローレベルの場合、差動入力信号VAとして入力されるアナログ信号VAPとアナログ信号VANとをトラックしてサンプリングし、クロック信号CLKがローレベルからハイレベルに遷移するタイミングでアナログ信号VAPとアナログ信号VANとをホールドする。
逐次比較型A/D変換装置100に備えられたサンプリング回路110は、クロック信号CLKがローレベルの場合、差動入力信号VAとして入力されるアナログ信号VAPとアナログ信号VANとをトラックしてサンプリングし、クロック信号CLKがローレベルからハイレベルに遷移するタイミングでアナログ信号VAPとアナログ信号VANとをホールドする。
以下では、クロック信号CLKがローレベルの期間でアナログ信号VAPとアナログ信号VANとをトラックしてサンプリングすることから、クロック信号CLKがローレベルの期間をサンプル期間と称す。また、クロック信号CLKがハイレベルの期間でアナログ信号VAPとアナログ信号VANとをホールドすることから、クロック信号CLKがハイレベルの期間をホールド期間と称す。
逐次比較型A/D変換装置100は、次に説明するように、サンプル期間においてサンプリング回路110にサンプリングされたアナログ信号VAP,VANのA/D変換をホールド期間において実施する。概略的には、逐次比較型A/D変換装置100は、ホールド期間において制御回路140から入力される内部クロック信号BIT_CLKおよび反転内部クロック信号BIT_CLKbのクロックタイミングに合わせて、デジタル信号D0~D7の最上位ビット(D7)から最下位ビット(D0)に向かって、デジタル信号D0~D7の各ビットの値を逐次決定する。これにより、逐次比較型A/D変換装置100は、サンプリング回路110にホールドされたアナログ信号VAP,VANのA/D変換を実施してデジタル信号D0~D7を生成する。
逐次比較型A/D変換装置100によるA/D変換を詳細に説明する。
図6のタイミングチャートの時刻t0より前のサンプル期間において、クロック信号CLKはローレベルである。このため、サンプリング回路110のスイッチ110Pと110Nはオン状態である。この場合、アナログ信号VAP及びVANはサンプリング回路110によりサンプリング(トラック)されて容量性DAC回路120に供給される。容量性DAC回路120の減衰容量CHP,CHNおよびバイナリ容量C0P~C7P,C0N~C7Nには、サンプリング回路110から供給されるアナログ信号VAP及びアナログ信号VANの電位に対応する電荷が充電される。
図6のタイミングチャートの時刻t0より前のサンプル期間において、クロック信号CLKはローレベルである。このため、サンプリング回路110のスイッチ110Pと110Nはオン状態である。この場合、アナログ信号VAP及びVANはサンプリング回路110によりサンプリング(トラック)されて容量性DAC回路120に供給される。容量性DAC回路120の減衰容量CHP,CHNおよびバイナリ容量C0P~C7P,C0N~C7Nには、サンプリング回路110から供給されるアナログ信号VAP及びアナログ信号VANの電位に対応する電荷が充電される。
なお、サンプル期間においては制御回路140から出力されるデジタル信号DP0~DP7,DN0~DN7の各ビットは「0」に設定(初期化)されている。
時刻t0において、クロック信号CLKがローレベルからハイレベルに遷移し、ホールド期間が開始すると、サンプリング回路110のスイッチ110Pとスイッチ110Nとがオフ状態となる。このため、クロック信号CLKがローレベルからハイレベルに遷移する直前のアナログ信号VAP,VANが、容量性DAC回路120に備えられた容量回路121の減衰容量CHP,CHNおよびバイナリ容量C0P~C7P,C0N~C7Nにホールドされる。上記ホールドされたアナログ信号VAP,VANは、各々、アナログ信号VCP,VCNとして容量性DAC回路120から比較回路130に供給される。
比較回路130は、次に説明するように、制御回路140の制御の下、容量性DAC回路120から供給されるアナログ信号VCPとアナログ信号VCNとを逐次比較する。
先ず、時刻t0の後の内部クロック信号BIT_CLKの最初のサイクルに相当する時刻t1からt2までの期間T1における動作について説明する。
アナログ信号VAP,VANがサンプリング回路110にホールドされてアナログ信号VCP,VCNとして容量性DAC回路120から出力された状態で、時刻t1において内部クロック信号BIT_CLKがローレベルからハイレベルになると、比較回路130のラッチ回路132がアクティブとなり、比較回路130は、アナログ信号VCPとアナログ信号VCNとの比較動作を開始する。
先ず、時刻t0の後の内部クロック信号BIT_CLKの最初のサイクルに相当する時刻t1からt2までの期間T1における動作について説明する。
アナログ信号VAP,VANがサンプリング回路110にホールドされてアナログ信号VCP,VCNとして容量性DAC回路120から出力された状態で、時刻t1において内部クロック信号BIT_CLKがローレベルからハイレベルになると、比較回路130のラッチ回路132がアクティブとなり、比較回路130は、アナログ信号VCPとアナログ信号VCNとの比較動作を開始する。
図6の例では、時刻t1ではアナログ信号VCPの信号レベルがアナログ信号VCNの信号レベルよりも大きいので(VCP>VCN)、比較回路130は、比較結果として、ハイレベルのデジタル信号VOPを出力すると共に、ローレベルのデジタル信号VONを出力する。制御回路140は、比較回路130の上記比較結果を受けて、ハイレベルのデジタル信号DP7とローレベルのデジタル信号DN7とを出力する。これにより、A/D変換により得られるデジタル信号D0~D7の各ビットのうち、デジタル信号DP7,DN7によって与えられる最上位ビット(D7)の値が決定される。
ここで、デジタル信号DP7がローレベルからハイレベルになると、デジタル信号DP7が入力される駆動部122P(図2)のインバータQ7Pの出力信号(基準信号)はハイレベルからローレベルに遷移し、インバータQ7Pの出力信号が印加されるバイナリ容量C7Pの電極間の電圧が変化する。このため、バイナリ容量C7Pの電極間の電圧の変化量に応じて、バイナリ容量C7Pに蓄えられている電荷が引き抜かれて電荷再配分が行われる。その結果、減衰容量CHPとバイナリ容量C0P~C7Pが共通接続されている容量性DAC回路120の内部の信号ノードNP(図2)の電位は、電荷再配分によりバイナリ容量C7Pから引き抜かれた電荷に対応した電位に低下する。このため、信号ノードNPの電位によって与えられるアナログ信号VCPの信号レベルが低下する。
一方、デジタル信号DN7はローレベルに維持されているので、デジタル信号DN7が入力される駆動部122NのインバータQ7Nの出力信号(基準信号)はハイレベルに維持される。このため、インバータQ7Nの出力信号が印加されるバイナリ容量C7Nの電荷の移動はないので、減衰容量CHNおよびバイナリ容量C0N~C7Nが共通接続されている容量性DAC回路120の内部の信号ノードNN(図2)の電位は変化しない。このため、信号ノードNNの電位によって与えられるアナログ信号VCNの信号レベルは変化しない。
時刻t1aにおいて、内部クロック信号BIT_CLKがローレベルになり、反転内部クロック信号BIT_CLKbがハイレベルになると、比較回路130のラッチ回路132はインアクティブとなる。この場合、比較回路130は、デジタル信号VOP,VONとして共にローレベルを出力する。
次に、内部クロック信号BIT_CLKの2番目のサイクルに相当する時刻t2からt3までの期間T2における動作について説明する。
アナログ信号VAP,VANがサンプリング回路110にホールドされてアナログ信号VCP,VCNとして容量性DAC回路120から出力された状態で、時刻t2において内部クロック信号BIT_CLKがローレベルからハイレベルになり、反転内部クロック信号BIT_CLKbがローレベルになると、比較回路130のラッチ回路132がアクティブとなり、比較回路130は、容量性DAC回路120から供給されるアナログ信号VCPとアナログ信号VCNとの比較動作を開始する。
アナログ信号VAP,VANがサンプリング回路110にホールドされてアナログ信号VCP,VCNとして容量性DAC回路120から出力された状態で、時刻t2において内部クロック信号BIT_CLKがローレベルからハイレベルになり、反転内部クロック信号BIT_CLKbがローレベルになると、比較回路130のラッチ回路132がアクティブとなり、比較回路130は、容量性DAC回路120から供給されるアナログ信号VCPとアナログ信号VCNとの比較動作を開始する。
図6の例では、時刻t2でアナログ信号VCPの信号レベルがアナログ信号VCNの信号レベルよりも小さいので(VCP<VCN)、比較回路130は、比較結果として、ローレベルのデジタル信号VOPを出力すると共に、ハイレベルのデジタル信号VONを出力する。制御回路140は、比較回路130の上記比較結果を受けて、ローレベルのデジタル信号DP6とハイレベルのデジタル信号DN6とを出力する。これにより、A/D変換により得られるデジタル信号D0~D7の各ビットのうち、デジタル信号DP6,DN6によって与えられる最上位から2番目のビット(D6)の値が決定される。
ここで、デジタル信号DP6はローレベルに維持されているので、デジタル信号DP6が入力される駆動部122PのインバータQ6Pの出力信号(基準信号)はハイレベルに維持される。このため、インバータQ6Pの出力信号が印加されるバイナリ容量C6Pの電荷の移動はないので、減衰容量CHPおよびバイナリ容量C0P~C7Pが共通接続されている容量性DAC回路120の内部の信号ノードNP(図2)の電位は変化しない。このため、信号ノードNPの電位によって与えられるアナログ信号VCPの信号レベルは変化しない。
一方、デジタル信号DN6がローレベルからハイレベルになると、デジタル信号DN6が入力される駆動部122N(図2)のインバータQ6Nの出力信号(基準信号)はハイレベルからローレベルに遷移し、インバータQ6Nの出力信号が印加されるバイナリ容量C6Nの電極間の電圧が変化する。このため、バイナリ容量C6Nの電極間の電圧の変化量に応じて、バイナリ容量C6Nに蓄えられている電荷が引き抜かれて電荷再配分が行われる。その結果、減衰容量CHNとバイナリ容量C0N~C7Nが共通接続されている容量性DAC回路120の内部の信号ノードNN(図2)の電位は、電荷再配分によりバイナリ容量C6Nから引き抜かれた電荷に対応した電位に低下する。このため、信号ノードNNの電位によって与えられるアナログ信号VCNの信号レベルが低下する。
続いて、時刻t2aにおいて、内部クロック信号BIT_CLKがローレベルになり、反転内部クロック信号BIT_CLKbがハイレベルになると、比較回路130のラッチ回路132はインアクティブとなる。これにより、比較回路130は、デジタル信号VOP,VONとして共にローレベルを出力する。
続いて、時刻t3以降の期間T3~T8において、上記期間T1,T2のそれぞれにおける比較動作と同様の比較動作が順次繰り返され(即ち、逐次比較が実施され)、デジタル信号D0~D7の3番目のビット(D5)から最下位ビット(D0)の各値が決定される。これにより、A/D変換により全ビットの値が決定されたデジタル信号D0~D7が得られる。
続いて、期間T9において、逐次比較型A/D変換装置100の制御回路140は、上記A/D変換により最終的に得られたデジタル信号D0~D7を出力端子より出力する。
続いて、期間T9において、逐次比較型A/D変換装置100の制御回路140は、上記A/D変換により最終的に得られたデジタル信号D0~D7を出力端子より出力する。
続いて、時刻t10において、クロック信号CLKがハイレベルからローレベルに遷移すると、サンプリング回路110のスイッチ110Pとスイッチ110Nとがオン状態になる。これにより、クロック信号CLKがローレベルに維持される時刻t10から時刻t11までのサンプル期間において、サンプリング回路110により、新たにアナログ信号VAP及びアナログ信号VANのサンプル(トラック)が実施される。
そして、新たにサンプルされたアナログ信号VAP及びVANに対応する電荷が、容量性DAC回路120の減衰容量CHP,CHNおよびバイナリ容量C0P~C7P,C0N~C7Nに充電される。また、制御回路140において、デジタル信号DP0~DP7,DN0~DN7の各ビットは「0」に設定(初期化)される。この後、上述した図6の時刻t1から時刻t10までのホールド期間におけるA/D変換と同様に、時刻t11以降のホールド期間において逐次比較によるA/D変換が実施される。
次に、本実施形態の特徴であるデジタル信号VP0~VP7のフルスケールレンジを確保するための手法について詳細に説明する。
ここでは、理解の容易化のため、第1の電源電圧VDD1=第2の電源電圧VDD2=電源電圧VDDとする。
本実施形態では、上述のA/D変換により得られるデジタル信号VP0~VP7のフルスケールレンジは、次に説明するように、減衰容量CHP,CHNによって調整可能となっている。
ここでは、理解の容易化のため、第1の電源電圧VDD1=第2の電源電圧VDD2=電源電圧VDDとする。
本実施形態では、上述のA/D変換により得られるデジタル信号VP0~VP7のフルスケールレンジは、次に説明するように、減衰容量CHP,CHNによって調整可能となっている。
図10の特性図を参照しながら、可変容量Ch2の容量値の調整原理を説明する。図10は、本発明の第1の実施形態による逐次比較型A/D変換回路100の減衰容量CHPを構成する可変容量Ch2の容量値の調整原理を説明するための図であり、逐次比較型A/D変換回路100の入出力特性を示す図である。
逐次比較型A/D変換回路100は全差動型の装置であり、反転入力端子INNと非反転入力端子INPに入力される差動入力信号を構成する増幅回路12の出力電圧VOUTPのAC成分の位相と、出力電圧VOUTNのAC成分の位相は、相互に反転した位相関係にあり、180度だけ位相がずれた関係にある。このため、差動入力信号を構成する増幅回路12の出力電圧VOUTが0Vである場合、即ち、出力電圧VOUTPと出力電圧VOUTNとの間の差電圧が0Vである場合の出力電圧VOUTP,VOUTNの各電圧が、A/D変換動作における入力電圧の基準点(中心点)になる。
従って、8ビットの逐次比較型A/D変換回路100が理想的な動作をする場合、即ち、減衰容量CHPの容量値が正しく調整されている場合(k=1)には、図10に実線で例示するように、逐次比較型A/D変換回路100の入出力特性は、座標(-VDD/2,0)、座標(0V,127d)、座標(+VDD/2,255d)を通る直線によって表され、この場合、フルスケールレンジが得られる。このことは、差動入力信号VAの全範囲(-VDD/2~+VDD/2)に対し、A/D変換により得られるデジタル信号として、フルスケールの出力コード(0d~255d)が得られることを意味する。
従って、図10に実線で例示される理想的な特性の場合(k=1)、差動入力信号をなす増幅回路12の出力電圧VOUTと出力コード(変換後のデジタル信号)との間には、次の関係が成り立つ。
(1)出力電圧VOUT(差動入力信号)が0Vの場合、出力コードは、127d(中間値)になる。
(2)出力電圧VOUT(差動入力信号)が-VDD/2Vの場合、出力コードは0dになる。
(3)出力電圧VOUT(差動入力信号)が+VDD/2Vの場合、出力コードは255dになる。
(1)出力電圧VOUT(差動入力信号)が0Vの場合、出力コードは、127d(中間値)になる。
(2)出力電圧VOUT(差動入力信号)が-VDD/2Vの場合、出力コードは0dになる。
(3)出力電圧VOUT(差動入力信号)が+VDD/2Vの場合、出力コードは255dになる。
これに対し、減衰容量CHPの容量値が正しく調整されていない場合(kが1でない場合)には、逐次比較型A/D変換回路100の入出力特性を示す直線の傾きは、基準点に対応する座標(0V,127d)を軸にして変動する。図10の例では、一点鎖線で示すように、kが1よりも大きい場合(k>1)には、k=1の場合に比較して逐次比較型A/D変換回路100の入出力特性を示す直線の傾きが増加する傾向を示す。逆に、kが1よりも小さい場合(k<1)には、破線で示すように、k=1の場合に比較して逐次比較型A/D変換回路100の入出力特性を示す直線の傾きが減少する傾向を示す。
上述の特性を利用すれば、増幅回路12の出力電圧VOUT(差動入力信号)として、基準点を与える0V以外の既知の出力電圧VOUTP,VOUTNを逐次比較型A/D変換回路100に入力し、この場合に得られる出力コードの値と、図10に実線で示す特性によって表される目標コードとの大小関係を参照することにより、k=1を満たすように減衰容量CHPの可変容量Ch2の容量値を調整し、可変容量Ch2を正しく調整することが可能になる。
上述した第3の実施形態によれば、逐次比較型A/D変換回路100は、供給する電源電圧に略比例して消費電力を低減できるため、逐次比較型A/D変換回路100の低消費電力化を実現することができる。
また、上述した第3の実施形態によれば、プロセス変動及び温度変動に対応して寄生容量の影響を低減するように減衰容量値を最適な値に調整することができる。従って、フルスケールレンジが確保され、最適な入力ダイナミックレンジで動作する変換誤差の少ない逐次比較型A/D変換回路を提供することができる。
また、上述した第3の実施形態によれば、プロセス変動及び温度変動に対応して寄生容量の影響を低減するように減衰容量値を最適な値に調整することができる。従って、フルスケールレンジが確保され、最適な入力ダイナミックレンジで動作する変換誤差の少ない逐次比較型A/D変換回路を提供することができる。
以上、本発明の好ましい実施形態を説明したが、本発明はこれら実施形態およびその変形例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
上記各態様の半導体装置によれば、消費電流を抑制しつつ、画素信号の信号レベルを所望の電源電圧系の回路に適合する信号レベルに変換することができる。
10,20 半導体装置
11 画素アレイ
12 増幅回路
13 後段回路
14 クリップ回路
100 A/D変換回路(逐次比較型A/D変換回路)
110 サンプリング回路
120 容量性DAC回路
121 容量回路
122 駆動回路
123 減衰容量制御部
130 比較回路
140 制御回路
A 演算増幅回路
C1R,C1S,C2R,C2S サンプリング容量
CR,CS 帰還容量
M1~M5,M11~M19 トランジスタ
P1,P2 画素(単位画素)
SW1~SW4,SW11,SW12R,SW12S,SW13R,SW13S,SW14R,SW14S,SW21,SW22R,SW22S,SW23R,SW23S,SW24R,SW24S,SW1R,SW1S,SW2R,SW2S,SW3R,SW3S,SW4R,SW4S スイッチ
VCM1 第1の基準電圧
VCM2 第2の基準電圧
11 画素アレイ
12 増幅回路
13 後段回路
14 クリップ回路
100 A/D変換回路(逐次比較型A/D変換回路)
110 サンプリング回路
120 容量性DAC回路
121 容量回路
122 駆動回路
123 減衰容量制御部
130 比較回路
140 制御回路
A 演算増幅回路
C1R,C1S,C2R,C2S サンプリング容量
CR,CS 帰還容量
M1~M5,M11~M19 トランジスタ
P1,P2 画素(単位画素)
SW1~SW4,SW11,SW12R,SW12S,SW13R,SW13S,SW14R,SW14S,SW21,SW22R,SW22S,SW23R,SW23S,SW24R,SW24S,SW1R,SW1S,SW2R,SW2S,SW3R,SW3S,SW4R,SW4S スイッチ
VCM1 第1の基準電圧
VCM2 第2の基準電圧
Claims (9)
- 入力信号をサンプリングして増幅する増幅回路と、
前記増幅回路の出力信号に応答して作動する後段回路と、
を備え、
前記増幅回路は、
サンプリングされた前記入力信号を、第1の基準電圧を基準とした信号として保持するサンプリング容量と、
前記サンプリング容量に保持された信号が転送される帰還容量と、
前記サンプリング容量に保持された信号を前記サンプリング容量と前記帰還容量との比率に応じて増幅し、第2の基準電圧を基準とした信号として出力する演算増幅回路と、
を備えた半導体装置。 - 前記第1の基準電圧は、前記第2の基準電圧よりも高い電圧である、請求項1に記載の半導体装置。
- 前記第1の基準電圧は、前記演算増幅回路に供給される第1の電源電圧の4分の1から4分の3の範囲内の電圧に設定され、
前記第2の基準電圧は、前記後段回路に供給される第2の電源電圧の4分の1から4分の3の範囲内の電圧に設定される、請求項1または2に記載の半導体装置。 - 前記演算増幅回路の出力信号の電圧を所定電圧以下に制限するクリップ回路を更に備えた、請求項1から3の何れか1項に記載の半導体装置。
- 前記クリップ回路は、
前記演算増幅回路の出力信号の電圧が前記後段回路に供給される第2の電源電圧を超えた場合に発生する過電流を検出する過電流検出回路と、
前記過電流を吸収する過電流吸収回路と、
を備えた、請求項4に記載の半導体装置。 - 行列状に配置された複数の画素を更に備え、
前記増幅回路は、前記複数の画素列に対して1個以上配置された、請求項1から5の何れか1項に記載の半導体装置。 - 前記後段回路は、逐次比較型A/D変換回路である、請求項1から6の何れか1項に記載の半導体装置。
- 前記演算増幅回路は、トランスコンダクタンスアンプである、請求項1から7の何れか1項に記載の半導体装置。
- 前記トランスコンダクタンスアンプは、テレスコピック型のトランスコンダクタンスアンプである、請求項8に記載の半導体装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/067182 WO2016203525A1 (ja) | 2015-06-15 | 2015-06-15 | 半導体装置 |
JP2017524162A JPWO2016203525A1 (ja) | 2015-06-15 | 2015-06-15 | 半導体装置 |
US15/837,299 US10298216B2 (en) | 2015-06-15 | 2017-12-11 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/067182 WO2016203525A1 (ja) | 2015-06-15 | 2015-06-15 | 半導体装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/837,299 Continuation US10298216B2 (en) | 2015-06-15 | 2017-12-11 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016203525A1 true WO2016203525A1 (ja) | 2016-12-22 |
Family
ID=57546407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/067182 WO2016203525A1 (ja) | 2015-06-15 | 2015-06-15 | 半導体装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10298216B2 (ja) |
JP (1) | JPWO2016203525A1 (ja) |
WO (1) | WO2016203525A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3407487A1 (en) * | 2017-05-22 | 2018-11-28 | Instituto Politécnico De Leiria | High linearity signal amplifier |
JP2020036255A (ja) * | 2018-08-31 | 2020-03-05 | サンケン電気株式会社 | A/d変換回路 |
JP7537358B2 (ja) | 2020-08-24 | 2024-08-21 | 三菱電機株式会社 | ゲート電圧調整装置及びゲート電圧調整方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10498300B2 (en) * | 2017-07-17 | 2019-12-03 | Power Integrations, Inc. | Voltage-to-current transconductance operational amplifier with adaptive biasing |
JP7280691B2 (ja) * | 2018-11-27 | 2023-05-24 | キヤノン株式会社 | 撮像素子およびその制御方法、及び撮像装置 |
TWI799200B (zh) * | 2022-03-22 | 2023-04-11 | 瑞昱半導體股份有限公司 | 以比較器為核心的切換電容式電路 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000224495A (ja) * | 1998-11-24 | 2000-08-11 | Canon Inc | 撮像装置及びそれを用いた撮像システム |
JP2001006385A (ja) * | 1999-06-21 | 2001-01-12 | Sanyo Electric Co Ltd | サンプル/ホールド回路 |
JP2010166447A (ja) * | 2009-01-16 | 2010-07-29 | Sony Corp | Ad変換器および信号処理システム |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5914638A (en) * | 1997-06-06 | 1999-06-22 | Omnivision Technologies, Inc. | Method and apparatus for adjusting the common-mode output voltage of a sample-and-hold amplifier |
JP2006174091A (ja) * | 2004-12-16 | 2006-06-29 | Olympus Corp | 差動増幅回路及びそれを用いたデジタルカメラシステム |
JP2006295593A (ja) * | 2005-04-12 | 2006-10-26 | Olympus Corp | スイッチトキャパシタ増幅回路及びそれを用いた映像信号処理装置 |
JP2007043433A (ja) * | 2005-08-03 | 2007-02-15 | Renesas Technology Corp | 半導体集積回路装置 |
JP2008306405A (ja) * | 2007-06-06 | 2008-12-18 | Renesas Technology Corp | 半導体集積回路装置 |
JP5421371B2 (ja) * | 2009-07-28 | 2014-02-19 | 株式会社東芝 | 赤外線撮像装置 |
JP5299404B2 (ja) * | 2010-11-10 | 2013-09-25 | 日本電気株式会社 | アナログデジタル変換装置及びアナログデジタル変換方法 |
TWI428610B (zh) * | 2011-12-23 | 2014-03-01 | Anpec Electronics Corp | 過電流偵測電路及過電流偵測方法 |
US8610467B2 (en) * | 2012-04-25 | 2013-12-17 | Freescale Semiconductor, Inc. | Sample and hold circuit |
JP6319946B2 (ja) * | 2013-04-18 | 2018-05-09 | キヤノン株式会社 | 固体撮像装置及び撮像システム |
-
2015
- 2015-06-15 WO PCT/JP2015/067182 patent/WO2016203525A1/ja active Application Filing
- 2015-06-15 JP JP2017524162A patent/JPWO2016203525A1/ja active Pending
-
2017
- 2017-12-11 US US15/837,299 patent/US10298216B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000224495A (ja) * | 1998-11-24 | 2000-08-11 | Canon Inc | 撮像装置及びそれを用いた撮像システム |
JP2001006385A (ja) * | 1999-06-21 | 2001-01-12 | Sanyo Electric Co Ltd | サンプル/ホールド回路 |
JP2010166447A (ja) * | 2009-01-16 | 2010-07-29 | Sony Corp | Ad変換器および信号処理システム |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3407487A1 (en) * | 2017-05-22 | 2018-11-28 | Instituto Politécnico De Leiria | High linearity signal amplifier |
JP2020036255A (ja) * | 2018-08-31 | 2020-03-05 | サンケン電気株式会社 | A/d変換回路 |
JP7353028B2 (ja) | 2018-08-31 | 2023-09-29 | サンケン電気株式会社 | A/d変換回路 |
JP7537358B2 (ja) | 2020-08-24 | 2024-08-21 | 三菱電機株式会社 | ゲート電圧調整装置及びゲート電圧調整方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016203525A1 (ja) | 2018-03-29 |
US20180102768A1 (en) | 2018-04-12 |
US10298216B2 (en) | 2019-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7400279B2 (en) | Circuits and methods with comparators allowing for offset reduction and decision operations | |
WO2016203525A1 (ja) | 半導体装置 | |
US8120388B2 (en) | Comparator, sample-and-hold circuit, differential amplifier, two-stage amplifier, and analog-to-digital converter | |
US10224355B2 (en) | Comparator for low-banding noise and CMOS image sensor including the same | |
KR20150051422A (ko) | 전류 보상 및 노이즈 제거 기능을 가지는 비교기 및 그를 이용한 아날로그-디지털 변환 장치 | |
KR102105619B1 (ko) | 입력 공통모드 전압 샘플링 기반의 차동 증폭기 및 그를 이용한 비교기 | |
JP2006115003A (ja) | サンプルホールド回路およびそれを用いたパイプラインad変換器 | |
KR20200105187A (ko) | 저 밴딩 노이즈를 위한 비교 장치 및 그에 따른 씨모스 이미지 센서 | |
US20090015451A1 (en) | Flash a/d converter | |
US6710734B2 (en) | Parallel AD converter | |
US7408496B2 (en) | Method, apparatus and system sharing an operational amplifier between two stages of pipelined ADC and/or two channels of signal processing circuitry | |
WO2019107084A1 (ja) | 固体撮像装置、及びab級スーパーソースフォロワ | |
JP2010213042A (ja) | 増幅回路及びアナログ/デジタル変換回路 | |
US7276962B1 (en) | Circuit topology for reduced harmonic distortion in a switched-capacitor programmable gain amplifier | |
US9331683B2 (en) | Ramp signal generator with noise canceling function | |
JP2006279936A (ja) | アナログデジタル変換器 | |
US11528441B2 (en) | Solid-state imaging device, AD-converter circuit and current compensation circuit | |
US7289055B2 (en) | Analog-digital converter with gain adjustment for high-speed operation | |
US7898337B2 (en) | High slew rate amplifier, analog-to-digital converter using same, CMOS imager using the analog-to-digital converter and related methods | |
JP2011166278A (ja) | 差動増幅回路、2段増幅回路およびそれらを用いたa/d変換回路 | |
JP5802180B2 (ja) | 半導体集積回路およびイメージセンサ | |
US10784828B2 (en) | Methods and apparatus for an operational amplifier with a variable gain-bandwidth product | |
JP4961159B2 (ja) | 増幅回路及びその応用回路 | |
WO2024204072A1 (ja) | 撮像装置 | |
JP2006121307A (ja) | サンプルホールド回路又はそれを用いたad変換器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15895546 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017524162 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15895546 Country of ref document: EP Kind code of ref document: A1 |