WO2016199843A1 - 快削鋼 - Google Patents

快削鋼 Download PDF

Info

Publication number
WO2016199843A1
WO2016199843A1 PCT/JP2016/067188 JP2016067188W WO2016199843A1 WO 2016199843 A1 WO2016199843 A1 WO 2016199843A1 JP 2016067188 W JP2016067188 W JP 2016067188W WO 2016199843 A1 WO2016199843 A1 WO 2016199843A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
inclusions
mns
steel
cutting
Prior art date
Application number
PCT/JP2016/067188
Other languages
English (en)
French (fr)
Inventor
橋村 雅之
宏二 渡里
孝典 岩橋
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP16807549.7A priority Critical patent/EP3309272A4/en
Priority to JP2017523691A priority patent/JP6489215B2/ja
Publication of WO2016199843A1 publication Critical patent/WO2016199843A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to free-cutting steel, and more particularly to free-cutting steel manufactured into parts by cutting.
  • Free cutting steel is used for parts used as small hydraulic parts, OA equipment shafts, hinge shafts, etc. These parts are usually subjected to cutting in order to improve shape accuracy and surface properties, and then surface finishing treatment such as polishing or plating treatment is performed as necessary.
  • Free cutting steel is used for parts for such applications (hereinafter referred to as cutting parts) in order to ensure surface quality.
  • free-cutting steels free-cutting steels based on low carbon steel are defined in, for example, Japan Industrial Standards Committee, Standard Number: JIS G4804 (2008) (Non-patent Document 1).
  • free cutting steels containing a large amount of Pb represented by SUM24L
  • Free-cutting steel containing a large amount of Pb such as SUM24L
  • SUM24L is said to be excellent in ease of cutting of steel, that is, machinability.
  • cutting surface properties (surface roughness) among machinability are often determined by a combination of steel and a tool, and steel materials containing a large amount of Pb are considered to have excellent surface roughness.
  • Pb has a high possibility of being designated as an environmentally hazardous substance because it affects the environment.
  • Pb is designated as an environmentally hazardous substance, its use is restricted. In this case, there is a possibility that free-cutting steel containing a large amount of Pb cannot be used.
  • Patent Document 1 A free-cutting steel that replaces a free-cutting steel containing a large amount of Pb has been proposed in JP-A-2004-27297 (Patent Document 1).
  • the free-cutting steel disclosed in Patent Document 1 suppresses the Pb content, contains a large amount of S instead of Pb, and controls the shape of inclusions such as MnS. Thereby, the machinability superior to the conventional lead free-cutting steel is ensured.
  • the surface properties of the cutting surface such as surface roughness are important, and if it can be finished only by cutting, it is preferable in terms of both performance and manufacturing cost. Even if it is necessary to carry out a polishing process following the cutting process, if the surface roughness of the cutting surface is large or wrinkles remain, it is difficult to finish the polishing process. Therefore, it is required to keep the surface roughness of the cutting surface small.
  • the chips discharged with the cutting are divided into small pieces and discharged.
  • the chips are entangled with the cutting part, and wrinkles are likely to occur on the surface of the cutting part.
  • the chips are entangled with the cutting part, it is further necessary to temporarily stop the production line in order to remove the entangled chips. In this case, unmanned manufacturing becomes difficult, and personnel assignment for monitoring is required.
  • the chip disposability affects both the quality of the cut part and the manufacturing cost.
  • the outermost surface of the parts is plated for the purpose of suppressing rust generation during use and improving wear resistance.
  • the surface of the component may be subjected to a treatment for increasing the affinity with the resin.
  • the part after cutting may wait for a long time in the bucket or the like until the next process after cutting. For example, when cutting in Japan and the next process is processed in another factory in another country, a period of several days to several months may elapse after cutting until the next process is performed. In this case, suppression of the occurrence of cutting parts is required.
  • An object of the present invention is to provide a free-cutting steel excellent in machinability (surface roughness, tool life, chip disposal) and cracking characteristics.
  • the free-cutting steel according to the present embodiment is, in mass%, C: 0.005 to 0.150%, Si: less than 0.010%, Mn: 1.02 to 2.00%, P: 0.010 to 0.200%, S: 0.350 to 0.600%, Pb: 0.010 to 0.100%, N: 0.004 to 0.015%, O: 0.0080 to 0.0250%, Al : 0 to 0.003%, one or more selected from the group consisting of Ca, Mg and Zr: 0 to 0.0005% in total, and B: 0 to 0.0200%, the balance being Fe And a chemical composition satisfying the formula (1).
  • the content (mass%) of the corresponding element is substituted for the element symbol in the formula (1).
  • the free-cutting steel according to the present invention is excellent in machinability (surface roughness, tool life, chip disposal) and cracking characteristics.
  • FIG. 1A is a schematic diagram showing an S distribution in an observation surface obtained by EPMA analysis.
  • FIG. 1B is a schematic diagram showing a Pb distribution in the same observation surface as that of FIG. 1A obtained by EPMA analysis.
  • FIG. 1C is a schematic diagram of an image obtained by combining FIGS. 1A and 1B.
  • FIG. 2 is a schematic diagram for explaining a criterion for determining whether or not adjacent inclusions are regarded as one inclusion.
  • FIG. 3 is a cross-sectional view of the cast material.
  • FIG. 4 is a schematic diagram of a cutting test machine for explaining a cutting test.
  • FIG. 5A is a perspective view of chips.
  • FIG. 5B is a plan photograph of chips.
  • the present inventors investigated and examined the machinability and cracking characteristics of free-cutting steel, and obtained the following knowledge.
  • Mn and Pb in steel form MnS inclusions, Pb inclusions, and composite inclusions containing MnS inclusions and Pb.
  • MnS inclusions contain Mn and S, and the balance means inclusions composed of impurities.
  • the Pb inclusion means an inclusion composed of Pb and impurities.
  • the composite inclusions contain MnS and Pb, and the balance means inclusions made of impurities.
  • MnS and Pb may be adjacent to each other to form composite inclusions, or Pb may be dissolved in MnS to form composite inclusions.
  • specific inclusions the generic name of MnS inclusions, Pb inclusions, and composite inclusions is referred to as “specific inclusions”.
  • MnS inclusions are conventionally known as inclusions that enhance machinability.
  • the melting point of the Pb inclusion is lower than the melting point of the MnS inclusion. Therefore, the Pb inclusion exhibits a lubricating action during cutting, and as a result, machinability is increased.
  • the composite inclusions have higher machinability than the MnS inclusions and the Pb inclusions alone.
  • a crack occurs around the composite inclusion, liquefied Pb enters the opened crack. Thereby, progress of a crack is accelerated
  • these specific inclusions are the starting point of the trap.
  • the occurrence of wrinkles does not depend on the size of specific inclusions, but depends on the number of specific inclusions.
  • MnS inclusions may crystallize in molten steel or may precipitate after solidification.
  • the size of MnS inclusions due to crystallization is larger than that of MnS inclusions due to precipitation. Therefore, when MnS inclusions are generated by precipitation, the number of MnS inclusions is significantly greater than when MnS inclusions are generated by crystallization. Therefore, in order to reduce the starting point of wrinkles while obtaining machinability, it is preferable to generate MnS inclusions by crystallization as much as possible.
  • Mn / S 2.90
  • the content (mass%) of the corresponding element is substituted for each element symbol in the formula (1).
  • F1 Mn / S. If the Mn content is small relative to the S content, MnS is difficult to crystallize in the molten steel. If F1 is 2.90 or more, the Mn content is sufficiently larger than the S content. In this case, MnS is easily crystallized in the liquid phase. Therefore, a sufficient amount of complex inclusions for obtaining machinability are generated, and a sufficient amount of specific inclusions including the complex inclusions can be obtained. As a result, excellent machinability is obtained. Furthermore, since it can suppress that the number of fine MnS inclusions increases excessively, the starting point of soot generation can be suppressed. As a result, the firing characteristics can be improved.
  • the free-cutting steel according to the present invention completed based on the above knowledge is, in mass%, C: 0.005 to 0.150%, Si: less than 0.010%, Mn: 1.02 to 2.00%, P: 0.010 to 0.200%, S: 0.350 to 0.600%, Pb: 0.010 to 0.100%, N: 0.004 to 0.015%, O: 0.0080 to 0.0250%, Al: 0 to 0.003%, one or more selected from the group consisting of Ca, Mg and Zr: 0 to 0.0005% in total, and B: 0 to 0.0200% And the balance is composed of Fe and impurities and has a chemical composition satisfying the formula (1).
  • the content (mass%) of the corresponding element is substituted for the element symbol in the formula (1).
  • the chemical composition of the above free-cutting steel may contain Al: 0.001 to 0.003%.
  • the chemical composition of the free-cutting steel may include one or more selected from the group consisting of Ca, Mg, and Zr in a total content of 0.0001 to 0.0005%.
  • the chemical composition of the free-cutting steel may include B: 0.0005 to 0.0200%.
  • the ratio of the number of Pb inclusions to the total number of specific inclusions is 17% or less.
  • the starting characteristics are further enhanced.
  • the chemical composition of the free-cutting steel according to the invention contains the following elements: Unless otherwise indicated,% regarding an element means the mass%.
  • Carbon (C) increases the basic strength of steel. Free-cutting steel manufactured for cutting parts is usually cut after being subjected to processing such as wire drawing. If the C content is 0.005% or more, the strength of the free-cutting steel will be suitable for the tool life and surface roughness of cutting after wire drawing. If the C content is less than 0.005%, the steel becomes soft and wire drawing and cutting become difficult. In particular, flaking is likely to occur in cutting. On the other hand, if the C content exceeds 0.150%, the steel hardens and cold workability deteriorates, and further, tool wear becomes severe in cutting after wire drawing. Therefore, the C content is 0.005 to 0.150%. A preferable lower limit of the C content is 0.06%. The upper limit with preferable C content is 0.120%. If the C content is 0.06 to 0.120%, the rate of occurrence of rolling wrinkles decreases.
  • Si less than 0.010%
  • Silicon (Si) usually deoxidizes steel.
  • O oxygen
  • the Si content is too high, the O concentration in the steel will be too low.
  • a hard oxide such as SiO 2 will remain in the steel and the machinability will be reduced.
  • the amount of oxygen in MnS is reduced by the formation of hard oxide. In this case, MnS is stretched by rolling and wire drawing, and MnS having a large aspect ratio is generated. MnS having a large aspect ratio decreases the surface roughness (surface properties). Accordingly, the Si content is less than 0.010%.
  • Mn 1.02 to 2.00%
  • Manganese (Mn) deoxidizes steel, but its deoxidizing power is weaker than other deoxidizing elements such as Si and Al, so that a large amount is allowed. Mn further increases the strength of the steel. Further, Mn combines with S in the steel to form MnS and enhances machinability. In free-cutting steel containing a large amount of S, MnS does not crystallize unless Mn is also contained in a large amount.
  • MnS is crystallized in the steel in the steel making process, and therefore sufficient Mn is contained with respect to the S content.
  • the Mn content is less than 1.02%, the Mn content is not sufficient with respect to the S content, so that crystallization of MnS is delayed. In this case, MnS precipitated after solidification increases.
  • the compounding ratio with Pb is higher than when it is precipitated, and the machinability is improved. Therefore, when the Mn content is less than 1.02%, the machinability is lowered.
  • the Mn content exceeds 2.00%, the hardenability of the steel becomes too high and the steel becomes brittle. Therefore, surface flaws are likely to occur due to rolling or wire drawing. Therefore, the Mn content is 1.02 to 2.00%.
  • the minimum with preferable Mn content is 1.10%, More preferably, it is 1.30%.
  • P 0.010 to 0.200% Phosphorus (P) embrittles steel and improves machinability.
  • P since the C content for increasing the strength is low, P further increases the strength of the steel together with Mn. If the P content is less than 0.010%, the machinability is low and the surface roughness is poor. Furthermore, the strength of the steel becomes insufficient. On the other hand, if the P content exceeds 0.200%, the hot ductility of the steel is lowered, and rolling defects are liable to occur, which impairs the production stability. Therefore, the P content is 0.010 to 0.200%. A preferable lower limit of the P content is 0.050%. The upper limit with preferable P content is 0.100%.
  • S 0.350 to 0.600% Sulfur (S) forms MnS in steel and improves machinability. If the S content is less than 0.350%, sufficient machinability cannot be obtained. On the other hand, if the S content exceeds 0.600%, grain boundary embrittlement tends to occur due to grain boundary segregation. Therefore, the S content is 0.350 to 0.600%. A preferable lower limit of the S content is 0.400%. The upper limit with preferable S content is 0.550%. When giving priority to machinability, the preferable range of the S content is 0.450 to 0.500%. When giving priority to manufacturability, the preferable range of the S content is 0.400 to 0.450%.
  • Pb 0.010 to 0.100%
  • Lead (Pb) increases the machinability of steel. If the Pb content is less than 0.010%, the machinability is insufficient. On the other hand, the Pb content is. If it exceeds 0.100%, the steel becomes brittle, the productivity is lowered, and rolling defects are likely to occur. If the Pb content exceeds 0.100%, more Pb inclusions (lead grains) exist alone, and the cracking characteristics are deteriorated. Therefore, the Pb content is 0.010 to 0.100%.
  • a preferable lower limit of the Pb content is 0.020%.
  • the upper limit with preferable Pb content is 0.040%. If the Pb content is 0.020 to 0.040%, the deterioration of the wrinkle characteristics is suppressed, and further, machinability is further enhanced by combining Pb with MnS.
  • N 0.004 to 0.015%
  • Nitrogen (N) increases the strength of the steel and increases the cutting resistance in cutting, but improves the surface roughness. If the N content is 0.004% or more, the above effect can be obtained. If the N content is less than 0.004%, the manufacturing cost becomes too high, making industrial production difficult. On the other hand, if the N content exceeds 0.015%, the steel material becomes brittle and surface flaws are likely to occur during rolling and wire drawing. Therefore, the N content is 0.004 to 0.015%.
  • the preferable lower limit of the N content when priority is given to machinability is 0.007%
  • the preferable upper limit of the N content when priority is given to manufacturability is 0.012%.
  • the N content here means the total N (TN) content.
  • N combines with B to form BN, and the machinability of steel is further enhanced.
  • the N content is preferably equal to the B content.
  • Oxygen (O) generates an oxide.
  • O is also contained in sulfides and controls the form of sulfides. Specifically, O is contained in MnS and suppresses stretching of MnS during rolling and stretching. If the O content is less than 0.0080%, the oxygen content in MnS is low, so MnS is stretched during rolling and wire drawing, and the aspect ratio is increased. On the other hand, if the O content exceeds 0.0250%, defects are likely to occur in the cast structure. Furthermore, a large amount of oxide is generated, and the machinability of the steel is lowered. The generation of a large amount of oxide further promotes the melting loss of the refractories in the production line and reduces the production stability.
  • the O content is 0.0080 to 0.0250%.
  • the minimum with preferable O content is 0.0120%, More preferably, it is 0.0150%.
  • the upper limit with preferable O content is 0.0200%, More preferably, it is 0.0180%.
  • the O content means the total O (TO) content.
  • the balance of the chemical composition of the free-cutting steel according to the present invention consists of Fe and impurities.
  • an impurity means what is mixed from the ore as a raw material, scrap, or a manufacturing environment when manufacturing steel materials industrially.
  • the chemical composition of the free-cutting steel according to the invention may further contain Al.
  • Al 0 to 0.003%
  • Aluminum (Al) is an optional element. Al is a deoxidizing element of steel. However, in the present invention, oxygen needs to remain to some extent in the steel in order to control the shape of MnS. If the Al content exceeds 0.003%, the amount of oxygen in MnS becomes too low, MnS is stretched by rolling and wire drawing, the aspect ratio is increased, and the surface roughness is lowered. If the Al content exceeds 0.003%, further, alumina-based inclusions (hard oxides) remain in the steel, thereby reducing the machinability of the steel. Therefore, the Al content is 0 to 0.003%. A preferred lower limit of the Al content is 0.001%. The Al content here means the total Al (t-Al) content.
  • the chemical composition of the free-cutting steel according to the present invention may further contain one or more selected from the group consisting of Ca, Mg and Zr. These elements are arbitrary elements.
  • Ca, Mg and Zr 0 to 0.0005% in total Calcium (Ca) magnesium (Mg) and zirconium (Zr) both increase the workability of steel by controlling the form of inclusions and precipitates.
  • Ca produces composite sulfide (Mn, Ca) S with CaS and MnS, and suppresses the stretching of MnS during rolling and wire drawing. This increases the workability and machinability of the steel.
  • the upper limit of the Ca content is 0.0005%, more preferably 0.0003%.
  • a preferable lower limit of the Ca content is 0.0001%.
  • Mg Magnesium (Mg) generates composite sulfide (Mn, Mg) S with MgS and MnS, and suppresses the extension of MnS. This increases the workability and machinability of the steel. Mg further generates fine Mg oxides and becomes a nucleus for the formation of sulfides such as MnS. Thereby, the number of large MnS inclusions can be increased. On the other hand, if the Mg content exceeds 0.0005%, the oxygen content in MnS decreases and MnS is easily stretched. Further, a large amount of oxide is generated in the molten steel and adheres to the refractory or adheres to the nozzle and causes nozzle clogging. Therefore, the upper limit of Mg content is 0.0005%. A preferable lower limit of the Mg content is 0.0001%.
  • Zirconium (Zr) generates oxides, sulfides and nitrides, and controls the form of inclusions and precipitates.
  • the preferable lower limit of the Zr content for controlling the form of inclusions to improve the workability and machinability of the steel is 0.0002%.
  • the upper limit of the Zr content is 0.0005%, more preferably 0.0003%.
  • a preferable lower limit of the Zr content is 0.0001%.
  • the total of one or more selected from the group consisting of Ca, Mg and Zr is 0 to 0.0005%.
  • the form of precipitates and inclusions is controlled to improve the workability of steel.
  • 2 or more types selected from the group which consists of Ca, Mg, and Zr are contained.
  • many spherical sulfides can be dispersed, and the workability of steel is further enhanced.
  • a more preferable upper limit of the total content of these elements is 0.0003%.
  • a preferable lower limit of the total content of these elements is 0.0001%.
  • the free-cutting steel of this embodiment may further contain B.
  • B is an optional element.
  • B 0 to 0.0200% Boron (B) combines with N to form BN and enhances the machinability of the steel.
  • B Boron
  • the machinability is improved by embrittlement of the grain boundary.
  • the embrittlement effect due to the stress concentration of MnS is promoted by suppressing the deformation of sulfide, and the machinability of steel is increased.
  • the B content exceeds 0.0200%, the B oxide is generated and the machinability of the steel is lowered, or the B oxide reacts with the refractory to promote melting damage. Therefore, the B content is 0 to 0.0200%.
  • a preferable lower limit of the B content for further effectively improving the machinability is 0.0005%, and more preferably 0.0008%.
  • the upper limit with preferable B content is 0.0150%.
  • F1 Mn / S. If the Mn content is small relative to the S content, MnS is difficult to crystallize in the molten steel. As a result, the solid solution S after solidification tends to remain at the grain boundaries and often deteriorates the hot ductility. In this case, MnS precipitates after solidification. Precipitated MnS is very fine compared to crystallized MnS. Furthermore, the number of precipitated MnS is extremely large compared to the number of crystallized MnS. MnS can be a starting point for generation of soot. Therefore, the larger the number of MnS, the lower the firing characteristics. Furthermore, Pb tends to adhere to MnS crystallized in the liquid phase, but hardly adheres to MnS precipitated in the solid phase. Therefore, composite inclusions are not easily generated.
  • F1 is 2.90 or more
  • the Mn content is sufficiently larger than the S content.
  • MnS is easily crystallized in the liquid phase. Therefore, a sufficient amount of specific inclusions for obtaining machinability is obtained, and excellent machinability is obtained. Furthermore, it is possible to suppress an excessive increase in the number density of fine MnS and to suppress the starting point of soot generation. As a result, the firing characteristics can be improved.
  • the minimum with preferable F1 is 3.00, More preferably, it is 3.30. As F1 is higher, MnS can be crystallized in the liquid phase from the initial stage of solidification, and as a result, complex inclusions of MnS and Pb are likely to be generated.
  • the free-cutting steel according to the present embodiment further includes any of MnS inclusions, Pb inclusions, and composite inclusions, and the total number of specific inclusions having an equivalent circle diameter of 10 ⁇ m or more is 200 to 10,000. / Mm 2 or more.
  • the sprout characteristic is further enhanced.
  • the specific inclusion having an equivalent circle diameter of 10 ⁇ m or more is referred to as “coarse specific inclusion”.
  • the Pb inclusion means a single Pb grain.
  • the composite inclusion contains MnS and Pb.
  • Coarse inclusions increase machinability.
  • MnS inclusions having an equivalent circle diameter of 10 ⁇ m or more and composite inclusions of MnS and Pb enhance chip disposal.
  • Pb softened by cutting heat penetrates into the generated crack and promotes the progress of the crack, so that the chip disposal is particularly improved.
  • Pb ratio the ratio of the number of Pb inclusions to the total number of coarse specific inclusions
  • Pb ratio RA the ratio of the number of Pb inclusions to the total number of coarse specific inclusions
  • Pb ratio RA the ratio of the number of Pb inclusions to the total number of coarse specific inclusions
  • the Pb ratio RA is 17% or less. If the Pb ratio RA is high, the number of Pb inclusions increases. As described above, Pb inclusions reduce the sag characteristics. Therefore, the one where the ratio of the Pb inclusion in a coarse specific inclusion is low is preferable. If the Pb ratio RA is 17% or less, the number of Pb inclusions is sufficiently small. Therefore, the sprout characteristic is further enhanced.
  • a preferable upper limit of the Pb ratio RA is 13%.
  • the number TN and the Pb ratio RA are measured by the following method.
  • a sample is taken from free-cutting steel.
  • the free-cutting steel is a steel bar or a wire rod
  • a sample is taken from the central portion (hereinafter referred to as R / 2 portion) of the radius R connecting the surface and the central axis in the cross section (surface perpendicular to the axial direction).
  • R / 2 portion the central portion of the radius R connecting the surface and the central axis in the cross section (surface perpendicular to the axial direction).
  • Collect. 20 fields of view are randomly observed at a magnification of 1000 times using a scanning electron microscope (SEM) on the cross section (surface) of the R / 2 part sample.
  • SEM scanning electron microscope
  • MnS inclusions, Pb inclusions, composite inclusions In each field of view (referred to as an observation surface), specific inclusions (MnS inclusions, Pb inclusions, composite inclusions) are specified. Specific inclusions and other inclusions can be distinguished by contrast. Further, among the specific inclusions, MnS inclusions, Pb inclusions, and composite inclusions are specified by the following methods, respectively.
  • FIG. 1A is a schematic diagram showing the S distribution in the observation surface obtained by EPMA analysis
  • FIG. 1B is a schematic diagram showing the Pb distribution in the same observation surface obtained by EPMA analysis as in FIG. 1A. is there.
  • Numeral 10 in FIG. 1A is an area where S exists. Since S exists almost as MnS, it can be considered that MnS exists in the code
  • Reference numeral 20 in FIG. 1B is an area where Pb exists.
  • Pb may be divided by rolling or the like and arranged in the rolling direction as shown by reference numeral 20A.
  • FIG. 2 in the image obtained by the EPMA analysis, when all the adjacent inclusions IN have an equivalent circle diameter of 5 ⁇ m or more, if the interval D between the adjacent inclusions IN is within 10 ⁇ m, these The inclusion IN is regarded as one inclusion.
  • the area of the specified inclusion is obtained, and the diameter of a circle having the same area as the area is defined as the equivalent circle diameter ( ⁇ m).
  • the equivalent circle diameter is the same circle diameter as the total area of the inclusion group.
  • FIG. 1C is an image obtained by synthesizing FIG. 1B with FIG. 1A.
  • Pb inclusion 20 overlaps with MnS inclusion 10
  • the inclusion is recognized as composite inclusion 30.
  • MnS inclusions 10 and Pb inclusions 20 do not overlap (region A1, region A2, etc. in FIG. 1C)
  • these inclusions are MnS inclusions and Pb inclusions. Identifies it.
  • MnS inclusions, Pb inclusions, and composite inclusions are specified using a scanning microscope and EPMA.
  • the area of each specified inclusion is determined, and the diameter of a circle having the same area is defined as the equivalent circle diameter ( ⁇ m) of each inclusion.
  • the free-cutting steel of the present invention can be manufactured by a known manufacturing method.
  • molten steel satisfying the above-mentioned chemical composition is made into a slab by a continuous casting method.
  • the molten steel is made into an ingot by an ingot forming method (casting process).
  • a slab or an ingot is hot-worked 1 or more times, and a free-cutting steel material is manufactured (hot work process).
  • the casting process and the hot working process may be performed by a well-known method. Hereinafter, each process will be described.
  • molten steel is melted by a known method such as a converter or an electric furnace. And the slab or ingot is manufactured by casting the manufactured molten steel.
  • slabs and ingots are collectively referred to as materials.
  • the solidification cooling rate RC at the time of casting may be a well-known rate, and is not particularly limited.
  • the solidification cooling rate RC is, for example, 150 ° C./min or less.
  • MnS crystallizes in the liquid phase and that the Pb existing in the liquid phase adheres to MnS. Therefore, it is preferable that the solidification cooling rate RC is low.
  • a preferable solidification cooling rate RC is 50 ° C./min or less.
  • MnS inclusions are sufficiently crystallized and grow in the molten steel. Therefore, coarse specific inclusions are easily generated, and the Pb ratio RA is 17% or less.
  • solidification cooling rate RC is 20 ° C./min or less.
  • coarse MnS tends to crystallize and grow in the liquid phase.
  • Pb the time until solidification is long, it is possible to secure a sufficient time for Pb to move in the molten steel and adhere to coarse MnS. Therefore, composite inclusions containing MnS and Pb are easily generated, and the Pb ratio RA is 13% or less.
  • the solidification cooling rate can be determined from the cast material.
  • FIG. 3 is a cross-sectional view of the cast material.
  • the cooling rate from the liquidus temperature to the solidus temperature at the point P1 at the position W / 4 from the surface toward the material center is the solidification cooling rate RC in the casting process. (° C./min).
  • the solidification cooling rate RC can be obtained by the following method. Cut the solidified material in the transverse direction. Of the cross section of the material, the secondary dendrite arm interval ⁇ 2 ( ⁇ m) in the thickness direction of the solidified tissue at the point P1 is measured. Using the measured value ⁇ 2, the cooling rate RC (° C./min) is obtained based on the following equation (3).
  • RC ( ⁇ 2 / 770) ⁇ (1 / 0.41) (3)
  • the secondary dendrite arm interval ⁇ 2 depends on the solidification cooling rate. Therefore, the solidification cooling rate RC can be obtained by measuring the secondary dendrite arm interval ⁇ 2.
  • Hot working process In the hot working process, one or more hot workings are usually performed. The material is heated before each hot working. Thereafter, hot working is performed on the material. Hot working is, for example, block rolling or hot forging. The material after hot working is cooled by a known cooling method such as air cooling. Then, if necessary, a second hot working is performed to manufacture a steel material. For example, the material is rolled by a continuous rolling mill to produce a bar steel or a wire rod. Free cutting steel is manufactured by the above manufacturing process.
  • the free-cutting steel of the present invention is excellent in machinability improvement (surface roughness, tool life, chip disposal) and cracking characteristics. Therefore, if the free-cutting steel of the present invention is used, complex shaped parts and precision parts manufactured through a plurality of processes can be manufactured with high accuracy and a low defect rate. Therefore, if the free-cutting steel of the present invention is used, it is easy to automate and unmanned in the part manufacturing process, and rust is not easily generated even if the manufactured cutting part is stored for a long period of time.
  • the molten steel which has the chemical composition shown in Table 1 was manufactured.
  • Slab was produced by casting molten steel.
  • the solidification cooling rate RC at the time of casting was as shown in Table 1.
  • the manufactured slab was hot-worked to manufacture a steel bar having a diameter of 10 mm.
  • the solidification cooling rate RC was obtained from the above equation (3) by measuring the secondary dendrite arm interval of the ingot.
  • the steel bar was drawn and straightened to produce a steel bar having a diameter of 8 mm.
  • Machinability evaluated the surface roughness, the tool life characteristic by a normal drill, and the chip disposal property. In any of the evaluations, those that were “x” were judged as “low machinability”, and the others were judged as “good machinability”.
  • [Cutting test] A steel bar having a diameter of 8 mm was cut at a predetermined length to obtain a cutting test piece.
  • the outer periphery turning shown in FIG. 2 was implemented with respect to the test piece. Specifically, a K10 type carbide tool was used as the tool 10. The nose R of the tool 10 was 0.4, and the rake angle was 5 °.
  • the peripheral turning was carried out at a cutting speed V1: 80 m / min, a feed speed V2: 0.05 mm / rev, a cutting depth D1: 1 mm, and a cutting width L1: 10 mm per test piece.
  • An insoluble cutting oil was used during turning.
  • a turning test under the above conditions was performed on 1000 test pieces.
  • Tool life evaluation The tool wear amount (mm) of the front flank was measured for the tool 10 after the turning of the 1000th test piece was completed. The measurement results are shown in the “Tool wear” column of Table 1.
  • “ ⁇ ” means that the amount of tool wear is 150 ⁇ m or less.
  • “ ⁇ ” means that the amount of tool wear is more than 150 to 200 ⁇ m.
  • “X” means that the amount of tool wear exceeds 200 ⁇ m. When the amount of tool wear was 200 ⁇ m or less, it was evaluated that the tool life was excellent.
  • the chip disposal was evaluated as follows. “ ⁇ ” means that the chip was a coil shape with a diameter of 30 mm or less and the chip length was 20 mm or less. “O” is a coil shape with a chip having a diameter of 30 mm or less, and the chip length was more than 20 mm, or the chip was not a coil shape with a diameter of 30 mm or less, and the chip length was 20 mm or less. It means that there was. “ ⁇ ” means that the chip is not in a coil shape with a diameter of 30 mm or less, and the chip length is more than 20 mm to less than 50 mm. “X” means that the chip was not in a coil shape with a diameter of 30 mm or less, and the chip length was 50 mm or more. When the measurement result of chip was “ ⁇ ”, “ ⁇ ” or “ ⁇ ”, it was evaluated that the chip disposal was excellent.
  • test piece was prepared by cutting a steel bar having a diameter of 8 mm into a predetermined length. The test piece was turned under the same conditions as the cutting test described above. While spraying tap water on the cut surface, the test piece was stored in an atmosphere of 70% humidity and 20 ° C. for 24 hours. After storage, the cut surface of the test piece was observed and the number of rust points was measured. The measurement results are shown in the “Spring characteristics” column of Table 1. “ ⁇ ” indicates that the saddle point was less than 10. “ ⁇ ” indicates that the saddle points were 11 to 15 points. “ ⁇ ” indicates that the rust point was 16 to 19 points. “X” indicates that the saddle point was 20 points or more.
  • test piece having a diameter of 10 mm and a length of 100 mm was produced from the steel bar having a diameter of 10 mm. Both ends of the test piece were threaded, the test piece was attached to a jig for tensile test, and then a hot tensile test was conducted by energization heating. Specifically, the test piece was heated to 1100 ° C. by energization heating and held for 3 minutes. Then, it cooled to 900 degreeC by standing_to_cool. A tensile test was performed when the temperature of the test piece reached 900 ° C., and the ductility (drawing value) at the time of fracture was evaluated.
  • test results Referring to Table 1, all of the test numbers 1 to 34 and 46 to 48 had the chemical composition within the scope of the present invention and satisfied the formula (1). Therefore, cutting accuracy (surface roughness), tool life, and chip disposal are all excellent, and machinability is excellent. Furthermore, it was also excellent in crease characteristics and ductility. In the test numbers 1 to 34 and 46, the number ratio RA of Pb inclusions was 17% or less.
  • test numbers 1 to 34 particularly, the test numbers 1 to 5, 10, 12, 17 to 19, and 21 to 34 were in a range in which the chemical composition was preferable. Therefore, in these test numbers, compared with the test numbers 6 to 9, 11, 13 to 16, and 20, the wrinkling characteristics were further excellent.
  • test numbers 1 to 34 in particular, the test numbers 24 to 34 contained arbitrary elements (Ca, Mg, Zr and B). Therefore, in these test numbers, cutting accuracy (surface roughness) was superior to test numbers 1 to 23.
  • test numbers 1 to 34 and 46 to 48 in particular, in the test numbers 1 to 34 and 46, the cooling rate was 50 ° C./min or less. Therefore, the Pb ratio RA is 17% or less. As a result, compared with test numbers 47 and 48, the wrinkling characteristics were further excellent.
  • the cooling rate was 20 ° C./min or less. Therefore, the Pb ratio RA was 13% or less. As a result, compared with the test numbers 46 to 48, the wrinkling characteristics were further excellent.
  • test numbers 37 and 38 the Pb content exceeded the upper limit prescribed in the present invention. Therefore, the glazing property was low and the ductility was also low. This is probably because there were many Pb inclusions.
  • Test numbers 39 and 40 did not satisfy the formula (1). Therefore, the glazing property was low and the ductility was also low. This is probably because there were few complex inclusions of MnS and Pb and there were many Pb inclusions.
  • test number 41 the Si content exceeded the upper limit prescribed in the present invention
  • test number 42 the Al content exceeded the upper limit prescribed in the present invention. Therefore, machinability was low. This is probably because a large amount of hard oxide was generated.
  • test number 43 the O content was less than the lower limit prescribed in the present invention. Therefore, machinability was low. This is probably because MnS was stretched and the aspect ratio was large.
  • test number 44 the P content was less than the lower limit prescribed in the present invention. Therefore, the cutting accuracy (surface roughness) was low. It is thought that because the P content was too low, the embrittlement effect of the steel was insufficient and machinability was reduced.
  • test number 45 the C content exceeded the upper limit prescribed in the present invention. Therefore, the tool life was low. This is probably because the C content was too high and the strength of the steel was high.
  • test numbers 49 and 50 the Pb content was less than the lower limit prescribed in the present invention. Therefore, machinability was low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

被削性(表面粗さ、工具寿命、切り屑処理性)及び発銹特性に優れた快削鋼を提供する。本発明による快削鋼は、質量%で、C:0.005~0.150%、Si:0.010%未満、Mn:1.02~2.00%、P:0.010~0.200%、S:0.350~0.600%、Pb:0.010~0.100%、N:0.004~0.015%、O:0.0080~0.0250%、Al:0~0.003%、Ca、Mg及びZrからなる群から選択される1種以上:合計で0~0.0005%、及び、B:0~0.0200%、を含有し、残部はFe及び不純物からなり、式(1)を満たす化学組成を有する。 Mn/S≧2.90 (1) ここで、式(1)中の元素記号には、対応する元素の含有量(質量%)が代入される。

Description

快削鋼
 本発明は、快削鋼に関し、さらに詳しくは、切削加工により部品に製造される快削鋼に関する。
 小型の油圧部品、OA機器のシャフト、ヒンジ部の軸等として用いられる部品では表面品質が重要である。これらの部品では通常、形状精度及び表面性状を高めるために、切削加工が実施され、その後、必要に応じて研磨やめっき処理等の表面仕上げ処理が実施される。このような用途の部品(以下、切削部品という)には、表面の品質を確保するために、快削鋼が用いられている。快削鋼のうち、低炭素鋼をベースとした快削鋼は、例えば、日本工業標準調査会、規格番号:JIS G4804(2008年)(非特許文献1)に規定されている。上述の表面品質が求められる切削部品には、JIS G4804(2008年)に規定される快削鋼のうち、SUM24Lに代表される、Pbを多量に含有する快削鋼が用いられている。
 SUM24LのようなPbを多量に含有する快削鋼は、鋼材の削られやすさ、すなわち被削性に優れるとされている。特に、被削性の中でも切削面性状(表面粗さ)は、鋼と工具の組み合わせで決まる場合が多く、Pbを多量に含有する鋼材は表面粗さに優れるとされている。
 しかしながら、Pbは環境に影響を与えるため、環境負荷物質に指定される可能性が高い。Pbが環境負荷物質に指定された場合、その使用は制限される。この場合、Pbを多量に含有する快削鋼が利用できなくなる可能性がある。
 Pbを多量に含有する快削鋼に代わる快削鋼が特開2004-27297号公報(特許文献1)に提案されている。特許文献1に開示された快削鋼は、Pb含有量を抑え、Pbに代えてSを多量に含有し、MnS等の介在物の形状を制御する。これにより、従来の鉛快削鋼よりも優れた被削性を確保している。
特開2004-27297号公報
日本工業標準調査会、規格番号:JIS G4804(2008年)、規格名称:硫黄及び硫黄複合快削鋼鋼材
 切削部品の製造では表面粗さ等、切削面の表面性状が重要であり、切削だけで仕上げることができれば、その性能と製造コストの両面で好ましい。切削工程に続いて研磨工程の実施が必要な場合であっても、切削面の表面粗さが大きかったり、疵が残留していたりすれば、研磨工程で仕上げることは困難になる。したがって、切削面の表面粗さを小さく抑えることが求められる。
 さらに、1日に1000個以上等、自動化された製造設備で大量に切削部品を製造する場合、優れた切り屑処理性が求められる。切削に伴って排出される切り屑は小さく分断されて排出される方が好ましい。切り屑が長くつながったままの場合、切削部品に切り屑が絡みつき、切削部品の表面に疵が発生しやすくなる。切り屑が切削部品に絡みついた場合はさらに、絡みついた切り屑を除去するために、製造ラインを一時的に停止する必要がある。この場合、無人での製造が困難になり、監視のための人員配置が必要になる。このように、切り屑処理性は、切削部品の品質及び製造コストの両面に影響する。
 電子部品、油圧部品、摺動部品など各種精密機器に用いられる切削部品ではさらに、使用中の錆の発生を抑制するとともに、耐摩耗性を向上させることを目的として、部品の最表面にめっきを施す場合があり、また、部品表面に樹脂との親和性を高めるための処理を施す場合もある。
 切削後の部品(切削部品)は、切削後次工程までの間に、バケット内等で長期間待機する場合がある。たとえば、国内で切削加工し、次工程が他国の別工場で処理される場合、切削後、次工程が実施されるまで、数日~数カ月の期間が経過する場合がある。この場合、切削部品の発銹の抑制が求められる。
 本発明の目的は、被削性(表面粗さ、工具寿命、切り屑処理性)及び発銹特性に優れた快削鋼を提供することである。
 本実施形態によるによる快削鋼は、質量%で、C:0.005~0.150%、Si:0.010%未満、Mn:1.02~2.00%、P:0.010~0.200%、S:0.350~0.600%、Pb:0.010~0.100%、N:0.004~0.015%、O:0.0080~0.0250%、Al:0~0.003%、Ca、Mg及びZrからなる群から選択される1種以上:合計で0~0.0005%、及び、B:0~0.0200%を含有し、残部はFe及び不純物からなり、式(1)を満たす化学組成を有する。
 Mn/S≧2.90 (1)
 ここで、式(1)中の元素記号には、対応する元素の含有量(質量%)が代入される。
 本発明による快削鋼は、被削性(表面粗さ、工具寿命、切り屑処理性)及び発銹特性に優れる。
図1Aは、EPMA分析により得られた、観察面中のS分布を示す模式図である。 図1Bは、EPMA分析により得られた、図1Aと同じ観察面中のPb分布を示す模式図である。 図1Cは、図1A及び図1Bを合成した画像の模式図である。 図2は、隣り合う介在物を1つの介在物とみなすか否かの判断基準を説明するための模式図である。 図3は、鋳造された素材の横断面図である。 図4は、切削試験を説明するための切削試験機の模式図である。 図5Aは、切り屑の斜視図である。 図5Bは、切り屑の平面写真図である。
 本発明者らは、快削鋼の被削性及び発銹特性に調査、検討し、次の知見を得た。
 鋼中のMn及びPbは、MnS介在物、Pb介在物、及びMnS介在物とPbとを含有する複合介在物を形成する。本明細書において、MnS介在物は、Mn及びSを含有し、残部は不純物からなる介在物を意味する。Pb介在物は、Pb及び不純物からなる介在物を意味する。複合介在物は、MnS及びPbを含有し、残部は不純物からなる介在物を意味する。MnSとPbとが互いに隣接して複合介在物を形成する場合もあるし、MnS中にPbが固溶して複合介在物を形成する場合もある。以降の説明では、MnS介在物、Pb介在物及び複合介在物の総称を「特定介在物」と称する。
 MnS介在物は従来より、被削性を高める介在物として知られている。一方、Pb介在物の融点はMnS介在物の融点よりも低い。そのため、Pb介在物は切削時に潤滑作用を発揮し、その結果、被削性が高まる。
 さらに、複合介在物は、MnS介在物、及び、Pb介在物単体よりも被削性を高めると考えられる。複合介在物周辺で亀裂が発生した場合、開口したクラックに液状化したPbが侵入する。これにより、クラックの進展が促進され、被削性が高まる。したがって、複合介在物を含む特定介在物が生成すれば、被削性が高まる。
 Pbは固相よりも液相の方が動きやすい。したがって、複合介在物は、凝固後に析出するMnSからは生成できず、溶鋼中で晶出したMnSにPbが付着することで生成する。したがって、複合介在物を多数生成するためには、晶出によりMnSを生成できる方が好ましい。
 一方で、これらの特定介在物は、銹の起点となる。銹の発生は、特定介在物のサイズに依存せず、特定介在物の個数に依存する。上述のとおり、MnS介在物は溶鋼中で晶出する場合と、凝固後に析出する場合とがある。晶出によるMnS介在物のサイズは、析出によるMnS介在物よりも大きい。そのため、析出によりMnS介在物が生成した場合、MnS介在物の個数は、晶出によりMnS介在物が生成した場合よりも顕著に多くなる。したがって、被削性を得つつ、銹の起点を減らすには、なるべく晶出によりMnS介在物を生成するのが好ましい。
 晶出によりMnS介在物を多く生成するためには、鋼中のS含有量に対して十分なMn含有量が必要である。具体的には、Mn含有量及びS含有量は次の式(1)を満たす。
 Mn/S≧2.90 (1)
 ここで、式(1)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
 F1=Mn/Sと定義する。S含有量に対するMn含有量が少なければ、溶鋼においてMnSが晶出しにくい。F1が2.90以上であれば、S含有量に対してMn含有量が十分に大きい。この場合、液相中でMnSが晶出しやすい。そのため、被削性を得るための十分な量の複合介在物が生成し、複合介在物を含む十分な量の特定介在物が得られる。その結果、優れた被削性が得られる。さらに、微細なMnS介在物の個数が過剰に多くなるのを抑制できるため、銹発生の起点を抑制できる。その結果、発銹特性を高めることができる。
 以上の知見に基づいて完成した本発明による快削鋼は、質量%で、C:0.005~0.150%、Si:0.010%未満、Mn:1.02~2.00%、P:0.010~0.200%、S:0.350~0.600%、Pb:0.010~0.100%、N:0.004~0.015%、O:0.0080~0.0250%、Al:0~0.003%、Ca、Mg及びZrからなる群から選択される1種以上:合計で0~0.0005%、及び、B:0~0.0200%を含有し、残部はFe及び不純物からなり、式(1)を満たす化学組成を有する。
 Mn/S≧2.90 (1)
 ここで、式(1)中の元素記号には、対応する元素の含有量(質量%)が代入される。
 上記快削鋼の化学組成は、Al:0.001~0.003%を含有してもよい。上記快削鋼の化学組成は、Ca、Mg及びZrからなる群から選択される1種以上を総含有量で0.0001~0.0005%含有してもよい。上記快削鋼の化学組成は、B:0.0005~0.0200%含有してもよい。
 好ましくは、上記快削鋼ではさらに、特定介在物の総個数に対するPb介在物の個数の比率が17%以下である。
 この場合、発銹特性がさらに高まる。
 以下、本発明による快削鋼について詳細に説明する。本発明による快削鋼の化学組成は、次の元素を含有する。元素に関する%は、特に断らない限り、質量%を意味する。
 [化学組成]
 本実施形態の機械構造用鋼の化学組成は、次の元素を含有する。
 C:0.005~0.150%
 炭素(C)は、鋼の基本強度を高める。切削部品に製造される快削鋼は通常、伸線等の加工が実施された後、切削される。C含有量が0.005%以上であれば、快削鋼の強度が、伸線後に切削の工具寿命や表面粗さに適した強度になる。C含有量が0.005%未満であれば、鋼が軟質になり、伸線や切削が困難になる。特に、切削にむしれが生じやすくなる。一方、C含有量が0.150%を超えれば、鋼が硬化して冷間加工性が低下し、さらに、伸線後の切削において工具摩耗が激しくなる。したがって、C含有量は0.005~0.150%である。C含有量の好ましい下限は0.06%である。C含有量の好ましい上限は0.120%である。C含有量が0.06~0.120%であれば、圧延疵の発生率が低下する。
 Si:0.010%未満
 珪素(Si)は、通常、鋼を脱酸する。しかしながら、本発明において、MnSの形状を制御するために、鋼中に酸素(O)をある程度残留させる必要がある。Si含有量が高すぎれば、鋼中のO濃度が低くなりすぎる。Si含有量が高すぎればさらに、SiO2等の硬質酸化物が鋼中に残留して被削性を低下する。さらに、硬質酸化物の生成により、MnS中の酸素量がかえって低減する。この場合、MnSが圧延及び伸線で延伸し、アスペクト比の大きなMnSが生成する。アスペクト比の大きなMnSは、表面粗さ(表面性状)を低下する。したがって、Si含有量は0.010%未満である。
 Mn:1.02~2.00%
 マンガン(Mn)は、鋼を脱酸するが、SiやAlのような他の脱酸元素に比べてその脱酸力は弱いため、多量の含有が許容される。Mnはさらに、鋼の強度を高める。Mnはさらに、鋼中でSと結合してMnSを形成し、被削性を高める。Sを多量に含有する快削鋼では、Mnも多量に含有しなければ、MnSが晶出しない。
 本発明では製鋼工程で鋼中にMnSを晶出させるため、S含有量に対して十分なMnを含有する。Mn含有量が1.02%未満の場合、S含有量に対してMn含有量が十分ではないため、MnSの晶出が遅れる。この場合、凝固後に析出するMnSが増加する。MnSは、晶出させる場合の方が、析出させる場合よりも、Pbとの複合化率が高く、被削性を高める。したがって、Mn含有量が1.02%未満の場合、被削性が低下する。一方、Mn含有量が2.00%を超えれば、鋼の焼入れ性が高くなりすぎ、かつ、鋼が脆化する。そのため、圧延又は伸線により、表面疵が発生しやすくなる。したがって、Mn含有量は1.02~2.00%である。Mn含有量の好ましい下限は1.10%であり、さらに好ましくは1.30%である。
 P:0.010~0.200%
 燐(P)は鋼を脆化させ、被削性を高める。本発明では強度を高めるC含有量が低いため、Pはさらに、Mnとともに鋼の強度を高める。P含有量が0.010%未満であれば、被削性が低く、表面粗さに劣る。さらに、鋼の強度が不十分になる。一方、P含有量が0.200%を超えれば、鋼の熱間延性が低下し、圧延疵が発生しやすくなり、製造安定性を損なう。したがって、P含有量は0.010~0.200%である。P含有量の好ましい下限は0.050%である。P含有量の好ましい上限は0.100%である。
 S:0.350~0.600%
 硫黄(S)は、鋼中でMnSを形成し、被削性を向上させる。S含有量が0.350%未満であれば、十分な被削性が得られない。一方、S含有量が0.600%を超えれば、粒界偏析によって粒界脆化が発生しやすくなる。したがって、S含有量は0.350~0.600%である。S含有量の好ましい下限は0.400%である。S含有量の好ましい上限は0.550%である。被削性を優先させる場合、S含有量の好ましい範囲は0.450~0.500%である。製造性を優先させる場合、S含有量の好ましい範囲は0.400~0.450%である。
 Pb:0.010~0.100%
 鉛(Pb)は鋼の被削性を高める。Pb含有量が0.010%未満であれば、被削性が不十分である。一方、Pb含有量が.0.100%を超えれば、鋼が脆化して製造性が低下し、圧延疵が発生しやすくなる。Pb含有量が0.100%を超えればさらに、単独で存在するPb介在物(鉛粒)が多く発生し、発銹特性が低下する。したがって、Pb含有量は0.010~0.100%である。Pb含有量の好ましい下限は0.020%である。Pb含有量の好ましい上限は0.040%である。Pb含有量が0.020~0.040%であれば、銹特性の低下が抑制され、さらに、PbがMnSと複合化することで被削性がさらに高まる。
 N:0.004~0.015%
 窒素(N)は鋼の強度を高め、切削において切削抵抗を増加させるものの、表面粗さを向上する。N含有量が0.004%以上であれば、上記効果が得られる。なお、N含有量を0.004%未満にする場合、製造コストが高くなりすぎ、工業的な製造が困難になる。一方、N含有量が0.015%を超えれば、鋼材が脆化して、圧延時及び伸線時に表面疵が発生しやすくなる。したがって、N含有量は0.004~0.015%である。被削性を優先させる場合のN含有量の好ましい下限は0.007%であり、製造性を優先させる場合のN含有量の好ましい上限は0.012%である。なお、ここでいうN含有量とは、全N(T-N)の含有量を意味する。
 後述のBを含有する場合、NはBと結合してBNを形成し、鋼の被削性がさらに高まる。その場合、N含有量はB含有量と同等にするのが好ましい。
 O:0.0080~0.0250%
 酸素(O)は、酸化物を生成する。Oはさらに、硫化物にも含有され、硫化物の形態を制御する。具体的には、OはMnS中に含有され、圧延時及び延伸時にMnSが延伸するのを抑制する。O含有量が0.0080%未満であれば、MnS中の酸素含有量が低くなるため、圧延時及び伸線時にMnSが延伸してそのアスペクト比が大きくなる。一方、O含有量が0.0250%を超えれば、鋳造組織に欠陥が生じやすい。さらに、酸化物が多量に生成し、鋼の被削性が低下する。酸化物の多量の生成はさらに、製造ラインの耐火物の溶損を促進し、製造安定性を低下する。したがって、O含有量は0.0080~0.0250%である。O含有量の好ましい下限は0.0120%であり、さらに好ましくは0.0150%である。O含有量の好ましい上限は0.0200%であり、さらに好ましくは0.0180%である。なお、ここでいうO含有量とは、全O(T-O)の含有量を意味する。
 本発明による快削鋼の化学組成の残部は、Feおよび不純物からなる。ここで、不純物とは、鋼材を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境などから混入されるものを意味する。
 [任意元素について]
 本発明による快削鋼の化学組成はさらに、Alを含有してもよい。
 Al:0~0.003%
 アルミニウム(Al)は任意元素である。Alは鋼の脱酸元素である。しかしながら、本発明では、MnSの形状を制御するために鋼中に酸素をある程度残留させておく必要がある。Al含有量が0.003%を超えれば、MnS中の酸素量が低くなりすぎ、圧延及び伸線によりMnSが延伸してアスペクト比が大きくなり、表面粗さを低下する。Al含有量が0.003%を超えればさらに、アルミナ系の介在物(硬質酸化物)が鋼中に残留して、鋼の被削性を低下する。したがって、Al含有量は0~0.003%である。Al含有量の好ましい下限は0.001%である。ここでいうAl含有量とは、全Al(t-Al)の含有量を意味する。
 本発明による快削鋼の化学組成はさらに、Ca、Mg及びZrからなる群から選択される1種以上を含有してもよい。これらの元素は任意元素である。
 Ca、Mg及びZrからなる群から選択される1種以上:合計で0~0.0005%
 カルシウム(Ca)マグネシウム(Mg)及びジルコニウム(Zr)はいずれも、介在物及び析出物の形態を制御して、鋼の加工性を高める。以下、各元素について説明する。
 Caは、CaS、及びMnSとの複合硫化物(Mn,Ca)Sを生成し、圧延時及び伸線時のMnSの延伸を抑制する。これにより、鋼の加工性及び被削性が高まる。しかしながら、Ca含有量が0.0005%を超えれば、MnS中の酸素含有量が低下して、圧延及び伸線により、アスペクト比の大きなMnSが形成される。したがって、Ca含有量の上限は0.0005%であり、さらに好ましくは0.0003%である。Ca含有量の好ましい下限は0.0001%である。
 マグネシウム(Mg)は、MgS、及びMnSとの複合硫化物(Mn,Mg)Sを生成し、MnSの延伸を抑制する。これにより、鋼の加工性及び被削性が高まる。Mgはさらに、微細なMg酸化物を生成して、MnS等の硫化物の生成核となる。これにより、大型のMnS系介在物の個数を増加させることができる。一方、Mg含有量が0.0005%を超えれば、MnS中の酸素含有量が低下して、MnSが延伸しやすくなる。さらに、溶鋼中に多量の酸化物が生成して、耐火物に付着したり、ノズルに付着してノズル詰まりを引き起こす。したがって、Mg含有量の上限は0.0005%である。Mg含有量の好ましい下限は0.0001%である。
 ジルコニウム(Zr)は、酸化物、硫化物及び窒化物を生成して、介在物及び析出物の形態を制御する。介在物の形態を制御して鋼の加工性及び被削性を高めるためのZr含有量の好ましい下限は0.0002%である。一方、Zr含有量が高すぎれば、MnS中の酸素含有量が低下して、MnSが延伸しやすくなる。さらに、多量の硬質酸化物が生成して、被削性が低下する。したがって、Zr含有量の上限は0.0005%であり、さらに好ましくは0.0003%である。Zr含有量の好ましい下限は0.0001%である。
 本発明では、上述のCa、Mg及びZrからなる群から選択される1種以上が、合計で0~0.0005%である。この場合、上述のとおり、析出物及び介在物の形態を制御して鋼の加工性を高める。好ましくは、Ca、Mg及びZrからなる群から選択される2種以上を含有する。この場合、球状の硫化物を多数分散させることができ、鋼の加工性がさらに高まる。これらの元素の総含有量のさらに好ましい上限は0.0003%である。これらの元素の総含有量の好ましい下限は0.0001%である。
 本実施形態の快削鋼はさらに、Bを含有してもよい。Bは任意元素である。
 B:0~0.0200%
 ボロン(B)はNと結合してBNを形成し、鋼の被削性を高める。BNが粒界に存在する場合、粒界を脆化させることにより被削性が高まる。BNがMnS周辺に存在する場合、硫化物の変形を抑制することによりMnSの応力集中による脆化効果が促進され、鋼の被削性が高まる。しかしながら、B含有量が0.0200%を超えれば、B酸化物が生成して鋼の被削性がかえって低下したり、B酸化物が耐火物と反応して溶損を促進したりする。したがって、B含有量は0~0.0200%である。被削性をさらに有効に高めるためのB含有量の好ましい下限は0.0005%であり、さらに好ましくは0.0008%である。B含有量の好ましい上限は0.0150%である。BNの生成量を多くして鋼の被削性をさらに高めるためには、0.7≦B/N≦1.8とするのが好ましい。
 [式(1)について]
 上述の快削鋼の化学組成はさらに、式(1)を満たす。
 Mn/S≧2.90 (1)
 ここで、式(1)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
 F1=Mn/Sと定義する。S含有量に対するMn含有量が少なければ、溶鋼においてMnSが晶出しにくい。その結果、凝固後の固溶Sが粒界に残留しやすく、熱間延性を劣化させる場合が多い。この場合、凝固後にMnSが析出する。析出したMnSは、晶出したMnSと比較して非常に微細である。さらに、析出したMnSの個数は、晶出したMnSの個数と比較して極めて多い。MnSは銹の発生の起点となり得る。したがって、MnSの個数が多い程、発銹特性は低下する。さらに、Pbは液相中で晶出したMnSには付着しやすいが、固相中で析出したMnSには付着しにくい。したがって、複合介在物が生成しにくい。
 F1が2.90以上であれば、S含有量に対してMn含有量が十分に大きい。この場合、液相中でMnSが晶出しやすい。そのため、被削性を得るための十分な量の特定介在物が得られ、優れた被削性が得られる。さらに、微細なMnSの数密度が過剰に多くなるのを抑制でき、銹発生の起点を抑制できる。その結果、発銹特性を高めることができる。F1の好ましい下限は3.00であり、さらに好ましくは3.30である。F1が高いほど、凝固初期から液相中にMnSを晶出でき、その結果、MnSとPbとの複合介在物を生成しやすい。
 [粗大特定介在物の個数TN]
 好ましくは、本実施形態の快削鋼はさらに、MnS介在物、Pb介在物及び複合介在物のいずれかであって、円相当径が10μm以上である特定介在物の総個数が200~10000個/mm以上である。この場合、発銹特性がさらに高まる。以下、円相当径が10μm以上である特定介在物を「粗大特定介在物」と称する。
 ここで、Pb介在物とは、単独のPb粒を意味する。複合介在物は、MnSとPbとを含有する。
 粗大特定介在物は、被削性を高める。特に、円相当径が10μm以上のMnS介在物、及び、MnSとPbとの複合介在物は、切り屑処理性を高める。複合介在物の場合、発生した亀裂内部に、切削熱で軟化したPbが侵入して亀裂の進展を促進するため、特に切り屑処理性を高める。
 [粗大特定介在物の個数に対するPb介在物の個数の比(Pb比)RA]
 さらに好ましくは、粗大特定介在物のうち、粗大特定介在物の総個数に対するPb介在物の個数の比(以下、Pb比という)RAは17%以下である。Pb比RAが高ければ、Pb介在物の個数が多くなる。上述のとおり、Pb介在物は発銹特性を低下する。したがって、粗大特定介在物中に占めるPb介在物の割合は低い方が好ましい。Pb比RAが17%以下であれば、Pb介在物の個数が十分に少ない。そのため、発銹特性がさらに高まる。Pb比RAの好ましい上限は13%である。
 [粗大特定介在物の個数TN及びPb比RAの測定方法]
 個数TN及びPb比RAは次の方法で測定する。快削鋼からサンプルを採取する。たとえば、快削鋼が棒鋼又は線材である場合、横断面(軸方向に垂直な面)のうち、表面と中心軸とを結ぶ半径Rの中央部(以下、R/2部という)からサンプルを採取する。R/2部のサンプルの横断面(表面)に対して、走査型電子顕微鏡(SEM)を用いて1000倍の倍率でランダムに20視野観察する。各視野(観察面という)において、特定介在物(MnS介在物、Pb介在物、複合介在物)を特定する。特定介在物と他の介在物とは、コントラストで区別可能である。さらに、特定介在物のうち、MnS介在物、Pb介在物及び複合介在物はそれぞれ次の方法で特定する。
 各観察面において、波長分散型X線解析装置(EPMA)により、観察面中のS分布及びPb分布の画像を得る。図1Aは、EPMA分析により得られた、観察面中のS分布を示す模式図であり、図1Bは、EPMA分析により得られた、図1Aと同じ観察面中のPb分布を示す模式図である。
 図1A中の符号10がSが存在する領域である。SはほぼMnSとして存在するため、図1A中の符号10にはMnSが存在するとみなすことができる。図1B中の符号20は、Pbが存在する領域である。
 図1Bに示すとおり、Pbは符号20Aに示すとおり、圧延等により分断され、圧延方向に配列される場合がある。Sについても同様である。図2に示すとおり、EPMA分析で得られた画像において、隣り合う介在物INがいずれも5μm以上の円相当径を有する場合、隣り合う介在物INの間隔Dが10μm以内であれば、これらの介在物INは1つの介在物とみなす。なお、特定された介在物の面積を求め、その面積と同一の面積の円の直径を、円相当径(μm)と定義する。1つの介在物と定義された介在物群において、円相当径は、介在物群の総面積と同一の円の直径とする。
 図1Cは、図1Aに図1Bを合成した画像である。図1Cを参照して、MnS介在物10にPb介在物20が重複する場合、その介在物は複合介在物30であると認定する。一方、図1Cを参照して、MnS介在物10とPb介在物20とが重複しない場合、(図1C中の領域A1、領域A2等)、それらの介在物はMnS介在物、Pb介在物であると特定する。
 以上の方法により、走査型顕微鏡及びEPMAを用いて、MnS系介在物、Pb介在物、複合介在物を特定する。特定された各介在物の面積を求め、同じ面積の円の直径を、各介在物の円相当径(μm)と定義する。
 各特定介在物のうち、円相当径が10μm以上の粗大特定介在物を特定する。特定された粗大特定介在物の総個数(20視野での個数)を求め、1mm当たりの個数TN(個/mm)に換算する。以上の方法により、個数TNを求める。さらに、特定された粗大特定介在物のうち、円相当径が10μm以上のPb介在物の個数MN(個/mm)を求め、次の式(A)に基づいて、Pb比RA(%)を求める。
 RA=MN/TN×100 (A)
 [製造方法]
 本発明の快削鋼は、周知の製造方法で製造可能である。本発明の快削鋼の製造方法の一例では、初めに、上述の化学組成を満たす溶鋼を連続鋳造法により鋳片にする。又は、溶鋼を造塊法によりインゴットにする(鋳造工程)。そして、鋳片又はインゴットを1又は複数回熱間加工して快削鋼材を製造する(熱間加工工程)。鋳造工程及び熱間加工工程は周知の方法で実施すれば足りる。以下、それぞれの工程について説明する。
 [鋳造工程]
 初めに、溶鋼を転炉、電炉等の周知の方法で溶製する。そして、製造された溶鋼を鋳造して鋳片又はインゴットを製造する。以下、鋳片及びインゴットを総称して素材という。
 鋳造時の凝固冷却速度RCは周知の速度で足り、特に限定されない。凝固冷却速度RCは、たとえば、150℃/分以下である。MnSとPbとの複合介在物をさらに多く生成するためには、液相中にMnSを晶出させ、かつ、液相中に存在するPbをMnSに付着させる時間が長い方が好ましい。したがって、凝固冷却速度RCは遅い方が好ましい。
 好ましい凝固冷却速度RCは50℃/分以下である。この場合、溶鋼においてMnS介在物が十分に晶出及び成長する。そのため、粗大特定介在物が生成しやすく、Pb比RAが17%以下となる。
 さらに好ましい凝固冷却速度RCは20℃/分以下である。この場合、液相中で粗大なMnSが晶出及び成長しやすい。さらに、凝固するまでの時間が長いため、Pbが溶鋼中を移動して粗大なMnSに付着するための十分な時間を確保できる。そのため、MnS及びPbを含有する複合介在物が生成しやすくなり、Pb比RAが13%以下になる。
 凝固冷却速度は、鋳造された素材から求めることができる。図3は、鋳造された素材の横断面図である。厚さW(mm)の素材のうち、表面から素材中心に向かってW/4の位置の地点P1において、液相線温度から固相線温度までの冷却速度を、鋳造工程における凝固冷却速度RC(℃/min)と定義する。凝固冷却速度RCは次の方法で求めることができる。凝固後の素材を横断方向に切断する。素材の横断面のうち、地点P1での凝固組織の厚み方向の2次デンドライトアーム間隔λ2(μm)を測定する。測定値λ2を用いて、次の式(3)に基づいて冷却速度RC(℃/min)を求める。
 RC=(λ2/770)-(1/0.41) (3)
 2次デンドライトアーム間隔λ2は凝固冷却速度に依存する。したがって、2次デンドライトアーム間隔λ2を測定することにより凝固冷却速度RCを求めることができる。
 [熱間加工工程]
 熱間加工工程では通常、1又は複数回の熱間加工が実施される。各熱間加工を実施する前に、素材を加熱する。その後、素材に対して熱間加工を実施する。熱間加工はたとえば、分塊圧延又は熱間鍛造である。熱間加工後の素材は空冷等の周知の冷却法により冷却される。続いて、必要に応じて、2回目の熱間加工を実施して、鋼材を製造する。たとえば、連続圧延機により素材を圧延して棒鋼や線材を製造する。以上の製造工程により、快削鋼が製造される。
 以上の説明のとおり、本発明の快削鋼は、被削性向上(表面粗さ、工具寿命、切り屑処理性)及び発銹特性に優れる。そのため、本発明の快削鋼を用いれば、複数工程を経て製造される複雑形状部品や精密部品を、高精度かつ低不良率で製造できる。したがって、本発明の快削鋼を用いれば、部品の製造工程において、自動化、無人化を実施しやすく、製造された切削部品を長期間保管しても錆が発生しにくい。
 表1に示す化学組成を有する溶鋼を製造した。
Figure JPOXMLDOC01-appb-T000001
 溶鋼を鋳造して鋳片を製造した。鋳造時の凝固冷却速度RCは表1に記載のとおりであった。製造された鋳片に対して熱間加工を実施して、直径が10mmの棒鋼を製造した。凝固冷却速度RCは、インゴットの2次デンドライトアーム間隔を測定して、上述の式(3)により求めた。棒鋼に対して伸線及び矯直を実施して、直径が8mmの棒鋼を製造した。
 [評価試験]
 [Pb比RA]
 各試験番号の棒鋼のR/2部から、組織観察用の試験片を採取した。試験片の表面のうち、棒鋼の長手方向(つまり、圧延方向又は延伸方向)と平行な断面を観察面と定義した。上述の方法に基づいて、Pb比RA(%)を求めた。
 [被削性]
 被削性は、表面粗さ、通常ドリルによる工具寿命特性、及び切り屑処理性を評価した。いずれかの評価において「×」であったものを「被削性が低い」とし、それ以外を「被削性良好」と判断した。
 [切削試験]
 直径8mmの棒鋼を所定の長さで切断し、切削試験片とした。試験片に対して、図2に示す外周旋削を実施した。具体的には、工具10として、K10種超硬工具を用いた。工具10のノーズRは0.4であり、すくい角は5°であった。切削速度V1:80m/分、送り速度V2:0.05mm/rev、切込み量D1:1mm、切削幅L1:1試験片あたり10mm、として、外周旋削を実施した。なお、旋削時に不溶性切削油を使用した。1000個の試験片に対して上記条件の旋削試験を実施した。
 [表面粗さ評価]
 上記の切削試験において、1000個目の試験片の旋削が完了した後、その試験片の表面粗さを測定した。表面粗さは、JIS B0601(2001)に規定された十点表面粗さ(Rz)で求めた。測定結果を表1の「表面粗さ」欄に示す。表1中で、「◎」は、表面粗さが10μmRzJIS以下であることを意味する。「○」は、表面粗さが10超~15μmRzJISであることを意味する。「△」は、表面粗さが15超~20μmRzJISであることを意味する。「×」は、表面粗さが20μmRzJISを超えたことを意味する。表面粗さが20μmRzJIS以下の場合、優れた表面粗さが得られたと評価した。なお、表中の「○~◎」は、複数の測定で◎及び○の評価が得られたことを意味する。
 [工具寿命評価]
 1000個目の試験片の旋削が完了した後の工具10について、前逃げ面の工具摩耗量(mm)を測定した。測定結果を表1の「工具摩耗」欄に示す。表1中で「◎」は、工具摩耗量が150μm以下であることを意味する。「○」は、工具摩耗量が150超~200μmであることを意味する。「×」は、工具摩耗量が200μmを超えたことを意味する。工具摩耗量が200μm以下の場合、工具寿命に優れると評価した。
 [切り屑処理性評価]
 1000個目の試験片の旋削では、図3A及び図3Bに示す切り屑20が得られた。そこで、切り屑20の長さL20と、直径D20とを測定した。測定結果に基づいて、表2に示すように分類した。
Figure JPOXMLDOC01-appb-T000002
 表2を参照して、切り屑処理性は次のとおり評価した。「◎」は、切り屑が直径30mm以下のコイル形状であり、切り屑長さが20mm以下であったことを意味する。「○」は、切り屑が直径30mm以下のコイル形状であり、切り屑長さが20mm超であった、又は、切り屑が直径30mm以下のコイル形状ではなく、切り屑長さが20mm以下であったことを意味する。「△」は、切り屑が直径30mm以下のコイル形状ではなく、切り屑長さが20mm超~50mm未満であったことを意味する。「×」は、切り屑が直径30mm以下のコイル形状ではなく、切り屑長さが50mm以上であったことを意味する。切り屑の測定結果が「◎」、「○」又は「△」である場合、切り屑処理性に優れると評価した。
 [発銹特性(耐食性)評価試験]
 直径8mmの棒鋼を所定の長さに切断した試験片を作製した。試験片に対して、上述の切削試験と同様の条件で旋削加工を行った。切削面に水道水を噴霧しながら、湿度70%、20℃の雰囲気内に24時間試験片を保管した。保管後、試験片の切削面を観察し、錆点の個数を測定した。測定結果を表1の「発銹特性」欄に示す。「◎」は、銹点が10点未満であったことを示す。「○」は、銹点が11~15点であったことを示す。「△」は錆点が16~19点であったことを示す。「×」は銹点が20点以上であったことを示す。
 [熱間加工時の表面疵評価試験]
 上述の直径が10mmの棒鋼から、直径10mm、長さ100mmの丸棒試験片を作製した。試験片の両端にねじ加工を施し、試験片を引張試験の治具に取り付けた後、通電加熱による熱間引張試験を実施した。具体的には、通電加熱により試験片を1100℃に加熱し、3分間保持した。その後、放冷により900℃まで冷却した。試験片の温度が900℃となった時点で引張試験を実施し、破断時の延性(絞り値)を評価した。各試験番号において、3本の試験片で上記引張試験を実施し、得られた絞り値の平均を求めた。結果を表1の「表面疵」欄に示す。「◎」は、絞り値の平均が60%以上であったことを意味する。「○」は、絞り値の平均が50~60%未満であったことを意味する。「△」は、絞り値の平均が40~50%未満であったことを意味する。「×」は、絞り値の平均が40%未満であったことを意味する。絞り値の平均が40%以上であった場合、熱間加工時の延性に優れ、表面疵の発生が抑制されると評価した。
 [試験結果]
 表1を参照して、試験番号1~34、及び46~48はいずれも、化学組成が本発明の範囲内であり、式(1)を満たした。そのため、切削精度(表面粗さ)、工具寿命、切り屑処理性はいずれも優れており、被削性に優れた。さらに、発銹特性及び延性にも優れた。なお、試験番号1~34、及び46では、Pb介在物の個数比率RAが17%以下であった。
 試験番号1~34のうち、特に、試験番号1~5、10、12、17~19、及び21~34は、化学組成が好ましい範囲であった。そのため、これらの試験番号では、試験番号6~9、11、13~16、及び20と比較して、発銹特性がさらに優れた。
 試験番号1~34のうち、特に、試験番号24~34は、任意元素(Ca、Mg、Zr及びB)を含有した。そのため、これらの試験番号では、試験番号1~23と比較して、切削精度(表面粗さ)が優れた。
 試験番号1~34、及び46~48のうち、特に、試験番号1~34、及び46では、冷却速度が50℃/分以下であった。そのため、Pb比RAが17%以下となった。その結果、試験番号47及び48と比較して、発銹特性がさらに優れた。
 試験番号1~34、及び46~48のうち、特に、試験番号1~34では、冷却速度が20℃/分以下であった。そのため、Pb比RAが13%以下であった。その結果、試験番号46~48と比較して、発銹特性がさらに優れた。
 一方、試験番号35及び36では、S含有量が本発明の規定の下限未満であった。そのため、切削精度及び工具寿命が低く、被削性が低かった。MnS介在物の生成が少なかったためと考えられる。
 試験番号37及び38では、Pb含有量が本発明の規定の上限を超えた。そのため、発銹特性が低く、延性も低かった。Pb介在物が多かったためと考えられる。
 試験番号39及び40では、式(1)を満たさなかった。そのため、発銹特性が低く、延性も低かった。MnSとPbとの複合介在物が少なく、Pb介在物が多かったためと考えられる。
 試験番号41ではSi含有量が本発明の規定の上限を超え、試験番号42ではAl含有量が本発明の規定の上限を超えた。そのため、被削性が低かった。硬質の酸化物が多量に生成したためと考えられる。
 試験番号43ではO含有量が本発明の規定の下限未満であった。そのため、被削性が低かった。MnSが延伸してアスペクト比が大きかったためと考えられる。
 試験番号44では、P含有量が本発明の規定の下限未満であった。そのため、切削精度(表面粗さ)が低かった。P含有量が低すぎたため、鋼の脆化効果が不足し、被削性が低下したためと考えられる。
 試験番号45では、C含有量が本発明の規定の上限を超えた。そのため、工具寿命が低かった。C含有量が高すぎて鋼の強度が高かったためと考えられる。
 試験番号49及び50では、Pb含有量が本発明の規定の下限未満であった。そのため、被削性が低かった。
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。
10 MnS介在物
20 Pb介在物
30 複合介在物
 

Claims (5)

  1.  質量%で、
     C:0.005~0.150%、
     Si:0.010%未満、
     Mn:1.02~2.00%、
     P:0.010~0.200%、   
     S:0.350~0.600%、
     Pb:0.010~0.100%、
     N:0.004~0.015%、
     O:0.0080~0.0250%、
     Al:0~0.003%、
     Ca、Mg及びZrからなる群から選択される1種以上:合計で0~0.0005%、及び、
     B:0~0.0200%を含有し、残部はFe及び不純物からなり、
     式(1)を満たす化学組成を有する、快削鋼。
     Mn/S≧2.90 (1)
     ここで、式(1)中の元素記号には、対応する元素の含有量(質量%)が代入される。
  2.  請求項1に記載の快削鋼であって、
     前記化学組成は、
     Al:0.001~0.003%を含有する、快削鋼。
  3.  請求項1又は請求項2に記載の快削鋼であって、
     前記化学組成は、
     Ca、Mg及びZrからなる群から選択される1種以上を、合計で0.0001~0.0005%含有する、快削鋼。
  4.  請求項1~請求項3のいずれか1項に記載の快削鋼であって、
     前記化学組成は、
     B:0.0005~0.0200%を含有する、快削鋼。
  5.  請求項1~請求項4のいずれか1項に記載の快削鋼であって、
     前記特定介在物の総個数に対する前記Pb介在物の個数の比率が17%以下である、快削鋼。
PCT/JP2016/067188 2015-06-10 2016-06-09 快削鋼 WO2016199843A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16807549.7A EP3309272A4 (en) 2015-06-10 2016-06-09 Free-cutting steel
JP2017523691A JP6489215B2 (ja) 2015-06-10 2016-06-09 快削鋼

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-117795 2015-06-10
JP2015117795 2015-06-10

Publications (1)

Publication Number Publication Date
WO2016199843A1 true WO2016199843A1 (ja) 2016-12-15

Family

ID=57503732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067188 WO2016199843A1 (ja) 2015-06-10 2016-06-09 快削鋼

Country Status (4)

Country Link
EP (1) EP3309272A4 (ja)
JP (1) JP6489215B2 (ja)
TW (1) TWI609092B (ja)
WO (1) WO2016199843A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110382727A (zh) * 2017-02-28 2019-10-25 杰富意钢铁株式会社 切削加工用线材

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6927444B1 (ja) * 2019-12-23 2021-09-01 Jfeスチール株式会社 快削鋼およびその製造方法
CN115058634B (zh) * 2022-06-21 2023-06-30 河南济源钢铁(集团)有限公司 一种中间包冶金技术生产含铅易切钢的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196361A (ja) * 1986-02-20 1987-08-29 Daido Steel Co Ltd 快削鋼
JPH07252588A (ja) * 1994-03-15 1995-10-03 Nippon Steel Corp 被削性の優れた低炭硫黄系快削鋼
JP2001207240A (ja) * 1999-11-16 2001-07-31 Kobe Steel Ltd 冷間引き抜き加工後の真直性に優れた鋼材
WO2008066194A1 (fr) * 2006-11-28 2008-06-05 Nippon Steel Corporation Acier de décolletage avec une excellente aptitude à la fabrication
WO2014125770A1 (ja) * 2013-02-18 2014-08-21 新日鐵住金株式会社 鉛快削鋼

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3929029B2 (ja) * 2002-03-12 2007-06-13 三菱製鋼株式会社 含硫黄快削鋼
KR20080007386A (ko) * 2005-05-30 2008-01-18 수미도모 메탈 인더스트리즈, 리미티드 저탄소 유황 쾌삭강
JP4041511B2 (ja) * 2005-10-17 2008-01-30 株式会社神戸製鋼所 被削性に優れた低炭素硫黄快削鋼
JP4876638B2 (ja) * 2006-03-08 2012-02-15 住友金属工業株式会社 低炭素硫黄快削鋼材
JP5092578B2 (ja) * 2007-06-26 2012-12-05 住友金属工業株式会社 低炭素硫黄快削鋼
TWI391500B (zh) * 2008-08-06 2013-04-01 Posco 環保無鉛之快削鋼及其製作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196361A (ja) * 1986-02-20 1987-08-29 Daido Steel Co Ltd 快削鋼
JPH07252588A (ja) * 1994-03-15 1995-10-03 Nippon Steel Corp 被削性の優れた低炭硫黄系快削鋼
JP2001207240A (ja) * 1999-11-16 2001-07-31 Kobe Steel Ltd 冷間引き抜き加工後の真直性に優れた鋼材
WO2008066194A1 (fr) * 2006-11-28 2008-06-05 Nippon Steel Corporation Acier de décolletage avec une excellente aptitude à la fabrication
WO2014125770A1 (ja) * 2013-02-18 2014-08-21 新日鐵住金株式会社 鉛快削鋼

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3309272A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110382727A (zh) * 2017-02-28 2019-10-25 杰富意钢铁株式会社 切削加工用线材
KR20190123303A (ko) * 2017-02-28 2019-10-31 제이에프이 스틸 가부시키가이샤 절삭 가공용 선재
EP3591086A4 (en) * 2017-02-28 2020-01-08 JFE Steel Corporation WIRE ROD FOR CUTTING
KR102306264B1 (ko) * 2017-02-28 2021-09-29 제이에프이 스틸 가부시키가이샤 절삭 가공용 선재
US11427901B2 (en) 2017-02-28 2022-08-30 Jfe Steel Corporation Wire rod for cutting work

Also Published As

Publication number Publication date
JPWO2016199843A1 (ja) 2018-04-12
EP3309272A1 (en) 2018-04-18
JP6489215B2 (ja) 2019-03-27
TWI609092B (zh) 2017-12-21
EP3309272A4 (en) 2018-10-24
TW201708572A (zh) 2017-03-01

Similar Documents

Publication Publication Date Title
JP5224009B2 (ja) 鋼線材及びその製造方法
JP6760375B2 (ja) 機械構造用鋼
KR101612474B1 (ko) 냉간 단조성 및 절삭성이 우수한 페라이트계 스테인리스 강선
KR102099767B1 (ko) 강, 침탄강 부품 및 침탄강 부품의 제조 방법
JP7417091B2 (ja) 鋼材
JP6760378B2 (ja) 機械構造用鋼
JP2007063589A (ja) 棒鋼・線材
KR20180082518A (ko) 강, 침탄강 부품 및 침탄강 부품의 제조 방법
JP6489215B2 (ja) 快削鋼
JP6760379B2 (ja) 機械構造用鋼
JP5954483B2 (ja) 鉛快削鋼
CN108138288B (zh) 热锻造用钢及热锻造品
JP6652021B2 (ja) 熱間鍛造用鋼及び熱間鍛造品
JP5907760B2 (ja) マルテンサイト系快削ステンレス鋼棒線およびその製造方法
JP5957241B2 (ja) フェライト系快削ステンレス鋼棒線およびその製造方法
JP2003253390A (ja) 低炭素硫黄系快削鋼線材およびその製造方法
JP6814655B2 (ja) フェライト系快削ステンレス線材
JP2011184716A (ja) 鍛造性に優れるマルテンサイト系ステンレス快削鋼棒線
JP6668741B2 (ja) 熱間圧延棒線材
JP7469612B2 (ja) 機械構造用棒鋼及びその切削方法
JP7189053B2 (ja) 非調質鍛造用鋼および非調質鍛造部品
JP6683073B2 (ja) 浸炭用鋼、浸炭鋼部品及び浸炭鋼部品の製造方法
JP6683072B2 (ja) 浸炭用鋼、浸炭鋼部品及び浸炭鋼部品の製造方法
JP2024031698A (ja) 鋼材
KR20240027759A (ko) 강재

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017523691

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016807549

Country of ref document: EP