WO2016189778A1 - 半導体ウェーハの評価方法 - Google Patents

半導体ウェーハの評価方法 Download PDF

Info

Publication number
WO2016189778A1
WO2016189778A1 PCT/JP2016/001274 JP2016001274W WO2016189778A1 WO 2016189778 A1 WO2016189778 A1 WO 2016189778A1 JP 2016001274 W JP2016001274 W JP 2016001274W WO 2016189778 A1 WO2016189778 A1 WO 2016189778A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor wafer
lpd
detected
wafer
measurement modes
Prior art date
Application number
PCT/JP2016/001274
Other languages
English (en)
French (fr)
Inventor
正弘 加藤
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to EP16799498.7A priority Critical patent/EP3306653B1/en
Priority to SG11201709206WA priority patent/SG11201709206WA/en
Priority to CN201680029024.7A priority patent/CN107615469B/zh
Priority to KR1020177034033A priority patent/KR102115334B1/ko
Priority to US15/573,058 priority patent/US10054554B2/en
Publication of WO2016189778A1 publication Critical patent/WO2016189778A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8822Dark field detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8861Determining coordinates of flaws
    • G01N2021/8864Mapping zones of defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8867Grading and classifying of flaws using sequentially two or more inspection runs, e.g. coarse and fine, or detecting then analysing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8874Taking dimensions of defect into account
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8877Proximity analysis, local statistics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers

Definitions

  • the present invention relates to a semiconductor wafer evaluation method.
  • a device manufacturing process using a semiconductor wafer various processes such as polishing, film formation, etching, ion implantation, cleaning, heat treatment, exposure, coating, and bonding are performed on a silicon wafer as a material.
  • Defects may occur in the middle of such a plurality of processes, which not only deteriorates the quality of the final product but also adversely affects subsequent processes. Defects that affect quality and processes are called killer defects, and even a single wafer may be considered a defective product as a whole. In particular, in the case where the wafer becomes defective after the subsequent process due to a killer defect generated in the initial process, all costs associated with the subsequent process are lost.
  • a wafer containing a killer defect is selected at an intermediate stage.
  • a sorting method using a laser surface inspection apparatus is used, and examples of the apparatus include SP1, SP2, and SP3 manufactured by KLA Tencor. These detect light scattered from the defect, and can be processed at high speed and have high sensitivity.
  • LPD Light Point Defect
  • a discrimination method using a plurality of detection angle information has been proposed. While scanning the wafer, the surface is irradiated with laser light obliquely from above, DNO (low angle incidence / high angle detection) detection of light signals scattered in the high angle direction, and detection of light signals scattered in the low angle direction Is classified as DWO (low-angle incidence / low-angle detection), and the LPD sizes calculated from these are compared.
  • D is an acronym for Darkfield and means a dark field inspection.
  • Patent Document 1 describes a method of classifying particles and microscratches using the LPD size ratio of DWO and DNO.
  • Patent Document 2 describes that crystal defects and foreign substances are classified using the LPD size ratio of DWO and DNO.
  • Patent Document 3 describes that pits and protrusions are classified using the LPD size ratio of DWO and DNO.
  • Patent Document 4 describes that defects and foreign substances are classified using the LPD size ratio of DWO and DNO.
  • FIG. 11 is a diagram illustrating the relationship between the actual LPD size and the detected optical signal intensity of the LPD.
  • Five examples of typical detection signals are arranged on the horizontal axis, and the vertical axis shows the scattered light intensity (signal intensity) of the detected light.
  • Signal examples 1 to 3 in FIG. 11 show examples in which the LPD size can be quantified.
  • the laser surface inspection apparatus uses a highly sensitive detector, and a small amount of light is scattered while scanning a normal surface.
  • the detector When the laser beam hits the LPD, a strong spike-like scattered signal is detected, and the size of the LPD is calculated from the peak intensity for the signal exceeding the set lower threshold. For this calculation, a conversion formula derived from the size of PSL (polystyrene latex) standard particles and the actually measured scattering intensity is used.
  • the detector has an upper limit for quantifying the intensity, and if the value is exceeded, the size of the LPD cannot be quantified. This is shown in signal example 4 in FIG. The detected signal intensity is saturated at the upper limit of the intensity, and even if there is a difference in the actual LPD size, it cannot be identified as a numerical value.
  • an LPD detected by a signal such as signal examples 1 to 3 is a size LPD
  • an LPD detected by a signal such as signal example 4 is a saturated LPD
  • signal example 5 An LPD detected by a simple signal is referred to as an area LPD.
  • the present invention has been made in view of the above-described problems, and includes a semiconductor wafer capable of classifying killer defects and foreign matters for all LPDs including saturated LPDs for which quantitative size information cannot be obtained.
  • the purpose is to provide an evaluation method.
  • a laser surface inspection apparatus is used to detect LPD on the surface of a semiconductor wafer, and the detected LPD is detected on crystal defects on the surface of the semiconductor wafer and on the surface of the semiconductor wafer.
  • a semiconductor wafer evaluation method classified as foreign matter The process of detecting the LPD on the surface of the semiconductor wafer, which is a sample for investigation, by two measurement modes of low angle incidence / low angle detection (DWO) and low angle incidence / high angle detection (DNO) of the laser surface inspection apparatus.
  • Presetting a judgment criterion for each classified size Detecting the LPD of the semiconductor wafer to be evaluated in the two measurement modes; A step of classifying the semiconductor wafer to be evaluated based on the size information of the LPD detected in the two measurement modes; Calculating a distance between the detection coordinates in the two measurement modes and a relative angle with respect to the wafer center from the detection coordinates of the LPD detected in the two measurement modes for the semiconductor wafer to be evaluated; And a step of classifying LPD detected on the surface of the semiconductor wafer to be evaluated into killer defects and foreign substances based on the result of the calculation and the determination criteria.
  • the coordinate information of LPD by DWO and DNO is also used to include saturated LPD for which quantitative size information cannot be obtained.
  • the semiconductor wafer that is the sample for investigation and the semiconductor wafer that is the object of evaluation can be used as an epitaxial wafer.
  • the wafer evaluation method of the present invention can be suitably used to evaluate an epitaxial wafer in which an epitaxial defect (hereinafter also referred to as an epi defect), which is a kind of killer defect, may occur.
  • an epitaxial defect hereinafter also referred to as an epi defect
  • the semiconductor wafer to be evaluated can be used as a material for a silicon-on-insulator wafer (SOI wafer).
  • SOI wafer silicon-on-insulator wafer
  • the killer defect can be a square pyramidal epitaxial defect.
  • Such a defect tends to cause a difference in signal intensity to the high-angle and low-angle detectors, and a difference in detection coordinates. Also, such defects have high scattering intensity and often exceed the limit of quantification of the detector. In such a case, quantitative intensity information cannot be obtained, but rather classification based on position information (coordinate information) is effective. Therefore, the present invention using the coordinate information of LPD by DWO and DNO is particularly effective.
  • the determination criteria can be set more accurately.
  • killer defects and foreign matters can be easily and accurately classified for all LPDs, including saturated LPDs for which quantitative size information cannot be obtained with a laser surface inspection apparatus. It is possible to suppress a total loss including a defect loss in the process and a loss of the material wafer.
  • DWO and DNO is a graph showing an example of the relationship between the distance r 2 and the corresponding ratio of the killer defect between the detection coordinates of the LPD. It is a figure which shows the concept of "missing failure rate” and “overkill rate”. It is a graph showing the relationship between the distance r 2 between LPD detection coordinates by DWO and DNO as "missing defect rate” and "overkill rate”.
  • DWO and DNO is a graph showing the relationship between the distance r 2 between the overall loss index of between detection coordinates of the LPD. It is the graph which compared the total loss index
  • FIG. It is a figure which shows the relationship between actual LPD size and the detected optical signal strength of LPD. It is a figure which shows the criterion of each area
  • the present inventor has intensively studied to achieve the above object. As a result, the present inventors have found that a wafer evaluation method using not only LPD size information by DWO and DNO but also LPD coordinate information by DWO and DNO can solve the above-mentioned problems.
  • FIG. 1 is a flowchart showing an example of the semiconductor wafer evaluation method of the present invention, and the specific contents of each item are shown below.
  • the semiconductor wafer to be evaluated here is regarded as a material for the next process, and the following procedures (FIGS. 1 (a) to (i)) are for the purpose of setting a criterion for determining whether or not the semiconductor wafer can be used. Yes. Based on this determination criterion, the semiconductor wafer to be evaluated is evaluated (FIGS. 1 (j) to (m)).
  • a sample for pre-investigation (semiconductor wafer which is a sample for investigation) is prepared (FIG. 1A).
  • semiconductor wafer which is a sample for investigation is not particularly limited, it can be an epitaxial wafer.
  • the present invention can be suitably used for evaluating an epitaxial wafer in which an epi defect which is a kind of killer defect may occur.
  • the target sample is measured by a laser surface inspection device (FIG. 1 (b)).
  • the LPD on the surface of the semiconductor wafer which is a sample for investigation, is detected by two measurement modes of low angle incidence / low angle detection (DWO) and low angle incidence / high angle detection (DNO).
  • DWO low angle incidence / low angle detection
  • DNO low angle incidence / high angle detection
  • the laser surface inspection apparatus used here may be any one having the above-described two measurement modes. Therefore, what is necessary is just to have an incident system having at least one type of incident angle and a detection system having two types of detection angles.
  • the incident at one type of incident angle is a low angle incident having an incident angle of a predetermined angle (for example, 30 °) or less, and the detection at the high angle side of the two types of detection angles is performed at the high angle, The detection by means of low angle detection.
  • FIG. 2 is a diagram illustrating an example of region classification based on the size of LPD by DWO and DNO.
  • the vertical axis is the LPD size by DNO
  • the horizontal axis is the LPD size by DWO.
  • An LPD that is detected by only one of DWO and DNO is excluded from killer defect determination.
  • FIG. 1D the distance between the detected coordinates of the LPD by DWO and DNO and the relative angle with respect to the wafer center are calculated.
  • the coordinate information of each LPD can be acquired in two measurement modes. Using this information, the distance and relative angle between the detected coordinates in the two measurement modes are calculated for each LPD.
  • FIG. 3 is a diagram for explaining a distance and a relative angle between detection coordinates of LPD by DWO and DNO. In the example of FIG.
  • the difference between the detected coordinates of LPD by DWO and DNO is calculated using the distance r 2 to the detected coordinates of LPD by DWO and the relative angle ⁇ 2 when the detected coordinates of LPD by DNO are used as reference points. It is shown as polar coordinates.
  • the in-plane position is also calculated at the same time. The in-plane position is represented as polar coordinates using the distance r 1 to the LPD detection coordinates by DNO and the position angle ⁇ 1 when the wafer center is the origin.
  • an LPD whose distance and relative angle between detection coordinates in two measurement modes are within a predetermined range is determined as a foreign substance, and an LPD other than an LPD within a predetermined range is determined as a killer defect that is a defect of a semiconductor wafer. Determination criteria to be set are set in advance for each classified size.
  • the detected LPD is a killer defect using an evaluation method different from the evaluation method using DWO and DNO, in particular, another evaluation method with high determination accuracy (FIG. 1).
  • another evaluation method with high determination accuracy
  • a method using an LPD image obtained by a bright field inspection apparatus, a method of inputting a test in a subsequent process, and determining a killer defect corresponding to a defect occurrence position, etc. are conceivable. As a result, determination criteria can be set more accurately.
  • the determination criteria can be set, for example, with reference to FIGS. 1 (f) to (i) shown below.
  • the type of killer defect is not particularly limited, but for example, it can be a square pyramidal epitaxial defect. Such a defect is because the laser surface inspection apparatus sometimes cannot obtain quantitative intensity information, and classification based on coordinate information is effective.
  • FIG. 5 shows a mask region set based on the relationship of FIG. In FIG. 4, the occurrence frequency in the masked ⁇ region shown in FIG. In such a case, a criterion for determining that the LPD corresponding to the mask area is acceptable (that is, foreign matter) is set. In the example of FIG. 5, the range of ⁇ 1 ⁇ 12 ° ⁇ 2 ⁇ 1 + 12 ° is used as the mask region.
  • FIG. 6 shows an example thereof, and as the distance r 2 between the detected coordinates of the LPD by DWO and DNO is larger, the hit rate of the killer defect is increased.
  • a constant selection threshold value is set for r 2 , and a judgment criterion for rejecting more LPDs (ie, killer defects) is used.
  • FIG. 7 shows each concept. Two ellipses are drawn, and the left ellipse is determined to be unacceptable from the result of the laser surface inspection apparatus based on the determination criteria of either or both of FIG. 1 (f) and FIG. 1 (g). It represents a set of LPDs. On the other hand, the ellipse on the right represents the actual set of killer defects. If the two ellipses are completely coincident, the killer defect can be completely selected, which is the ideal state. However, in reality, the overlap occurs. As a result, four sets are assumed, and each is displayed as A to D in the figure.
  • the set of A is not actually a killer defect, but is a set that is determined to be rejected, and corresponds to an “overkill defect”. Originally, a wafer that should pass can not be used, resulting in loss of material.
  • the set of B determines that the killer defect is correctly rejected, and no unnecessary loss occurs.
  • the set of C is actually a killer defect, but corresponds to a “missing defect” that is accepted. In order to generate a defect in a subsequent process, a loss due to the defect is generated. In the region D, a foreign substance that does not have an adverse effect is judged as acceptable, and no loss occurs. Two sets of A and C cause unnecessary loss.
  • the values obtained by dividing the number of corresponding LPDs by the number of populations (A + B + C + D) are “overkill rate” and “missed”.
  • Defective rate is defined. Each value varies depending on the judgment criteria of FIG. 1 (f) and FIG. 1 (g), and the selection threshold value is set for the distance r 2 between the detected coordinates of the LPD by DWO and DNO in FIG. 1 (g).
  • FIG. 8 shows a calculation example of the “overkill rate” and the “missing failure rate”.
  • FIG. 8 is a graph showing the relationship between the distance r 2 between the LPD detection coordinates by DWO and DNO and the “missing failure rate” and “overkill rate”.
  • the leftmost data shows a case where all detected LPDs are rejected. In this case, the “missing failure rate” is 0%, but the “overkill rate” is increased. Conversely, the rightmost data is a case where all the detected LPDs pass, and the “overkill rate” is 0%, but the “missing failure rate” increases.
  • the central graph applies the mask of ⁇ obtained in FIG. 1 (f), and continuously calculates the threshold value for the distance r 2 between the detected coordinates of the LPD by DWO and DNO calculated in FIG. 1 (g). In the graph when changed, the “overkill rate” and the “missing failure rate” continuously change.
  • the total loss index is calculated for each of the nine areas in FIG. 2, and the determination condition that minimizes the value is set in each area (FIG. 1 (i)).
  • the total loss index can be obtained by the following formula (1).
  • Total loss index missed defect rate x product value factor + overkill rate x material value factor (1)
  • the missed defect rate and the overkill rate are as described above, the product value coefficient is a coefficient determined according to the product value, and the material value coefficient is a coefficient determined according to the material value. .
  • FIG. 9 shows a calculation example of the total loss index (specific example of the determination method).
  • Figure 9 is a graph showing the relationship between the distance r 2 between the overall loss index between the detection coordinates of LPD by DWO and DNO.
  • the leftmost data in FIG. 9 is a case where all the detected LPDs are rejected
  • the rightmost data is a case where all the detected LPDs are acceptable
  • the central graph is FIG. 1 (f). It is a graph when the threshold value for the distance r 2 between the detected coordinates of LPD by DWO and DNO, which is calculated in FIG.
  • the final loss is calculated by integrating both the loss of material due to “overkill” and the failure loss of subsequent processes due to “missing miss”. At that time, since there is a difference between the material value and the subsequent product value, each defect rate is multiplied by a value coefficient considering the influence.
  • the total is the total loss index.
  • the total loss index is minimized when the r 2 value selection threshold is 10 to 20 ⁇ m.
  • the selection threshold value obtained in this way is adopted as a determination criterion for the corresponding region in FIG. Similarly, a determination criterion is set for each classified size.
  • LPD LPD can be selected according to FIGS. 1 (j) to 1 (m) shown below.
  • the semiconductor wafer to be evaluated may be of the same type as the semiconductor wafer that is the sample for investigation, and may be, for example, an epitaxial wafer. Moreover, the semiconductor wafer which is such an evaluation object can be used as the material of the SOI wafer. By using the wafer evaluated according to the present invention as the material of the SOI wafer, the occurrence of void defects in the SOI wafer can be suppressed.
  • LPD of a semiconductor wafer to be evaluated is detected by two measurement modes (FIG. 1 (j)).
  • the semiconductor wafer to be evaluated is classified based on the size information of the LPD detected in the two measurement modes (FIG. 1 (k)).
  • the distance between the detection coordinates in the two measurement modes and the relative angle with respect to the wafer center are calculated from the detection coordinates of the LPD detected in the two measurement modes (FIG. 1 (l )).
  • each LPD is classified into nine regions in FIG.
  • the LPD detected on the surface of the semiconductor wafer to be evaluated is determined as killer defects, (FIG. 1 (m)).
  • the determination criteria determination criteria set for each classified size
  • FIGS. 1 (f) to (i) are applied to each region of FIG. 2 in the semiconductor wafer to be evaluated.
  • a pass / fail decision is made based on this. Only wafers with an LPD of 0 determined as reject (killer defect) are accepted (that is, evaluated as a wafer having no killer defect) and used as a material for the next process.
  • Laser surface inspection equipment scans the wafer surface at high speed while irradiating it with laser light, and detects the scattered light emitted from foreign matters and defects existing on the surface, thereby acquiring the coordinate information and size information of the LPD. .
  • a method is used in which a plurality of detectors are set at different detection angle positions and their signal intensities are compared to distinguish between defects and foreign matters. This utilizes a phenomenon in which a deviation occurs in the light scattering direction due to the shape of a defect or foreign matter.
  • the information of coordinate difference is also used to distinguish the LPD types.
  • This method is particularly effective when the target killer defect has a quadrangular pyramid shape with a side length of about 100 to 200 ⁇ m and a height of about 0.2 to 2 ⁇ m. . While scattering at a wide angle occurs at the apex portion of the defect, narrow-angle scattering close to the regular reflection angle occurs at the skirt portion of the quadrangular suspension. As a result, a difference in signal intensity to the high angle and low angle detectors occurs, and a difference in detected coordinates due to a difference in horizontal distance between the apex portion and the skirt portion also occurs. Defects that have such characteristics in shape have high scattering intensity and often exceed the limit of quantification of the detector. In such a case, quantitative intensity information cannot be obtained, but rather classification based on coordinate information is effective.
  • the shape of the defect to which the present invention can be applied is not limited to the rectangular shape shown in the previous example, but has anisotropy reflecting the crystallinity of silicon and has a size of several hundred microns in the horizontal direction. Any form defect is effective against any defect.
  • the target manufacturing process is a silicon on insulator (SOI) wafer manufacturing process.
  • SOI silicon on insulator
  • the contents of this process are as follows. First, a fragile layer is formed by implanting hydrogen ions into a material wafer called a bond wafer (silicon single crystal wafer) on which an oxide film is formed, and then bonded to another material wafer called a base wafer, and heat is applied. As a result, a part of the bond wafer is peeled off and transferred to the base wafer. Thereafter, an SOI wafer product is obtained through further bonding heat treatment, planarization treatment, sacrificial oxidation treatment, and the like.
  • a polished wafer (silicon single crystal wafer) whose surface is polished is used as a base wafer material for an SOI wafer, but in this embodiment, a product using an epitaxial wafer as a material is targeted.
  • An epitaxial wafer is obtained by additionally growing a silicon layer by vapor phase epitaxial growth.
  • An epitaxial wafer may have a square pyramid-shaped defect (epi defect) having a side length of about 100 to 200 ⁇ m and a height of about 0.2 to 2 ⁇ m in the manufacturing process. This defect becomes a hindrance to bonding in the bonding step and generates an unbonded region called a void defect.
  • epi defect square pyramid-shaped defect
  • This defect becomes a hindrance to bonding in the bonding step and generates an unbonded region called a void defect.
  • the entire wafer is judged as a defective product, and thus epi defects are regarded as important killer defects.
  • killer defects were selected with SP2 manufactured by KLA Tencor on the epitaxial wafer as a material.
  • Example 1 First, according to FIGS. 1 (a) and 1 (b), an epitaxial wafer for preliminary investigation was prepared and measured by SP2. The laser was irradiated obliquely from above, and the LPD size information and coordinate information were obtained for the high angle scattering signal (DNO) and the low angle scattering signal (DWO). Further, all the detected LPDs were classified into nine size regions shown in FIG. 2 according to FIG. Moreover, according to FIG.1 (d), the distance and relative angle between the detection coordinates in two kinds of measurement modes were calculated about each LPD.
  • DNO high angle scattering signal
  • DWO low angle scattering signal
  • the killer defect was determined with high accuracy.
  • a bright field inspection apparatus manufactured by Lasertec was used. Since this apparatus can acquire an image together with the detection of LPD, it can classify LPD with high accuracy.
  • M350 bright field inspection apparatus manufactured by Lasertec was used. Since this apparatus can acquire an image together with the detection of LPD, it can classify LPD with high accuracy.
  • this method has a limitation in throughput, it is difficult to use it continuously for a large amount of inspection, but it is suitable for a preliminary survey in which the amount is limited.
  • the selection threshold value was determined based on the difference information of the coordinates of the LPD by DWO and DNO according to FIGS. 1 (f) to (i).
  • the total loss index was calculated for the region “h” in FIG. 2, and the results shown in FIG. 9 were obtained.
  • the selection threshold value for the distance r 2 between the detected coordinates of the LPD by DWO and DNO is 15 ⁇ m, and the relative angle ⁇ 2 is ⁇ 1 ⁇ 12 ° ⁇ 2 ⁇ 1 LPD that falls within the range of + 12 ° was set as a criterion for acceptance.
  • determination criteria are set for regions other than the region “h” in FIG. 2.
  • FIG. 12 shows determination criteria for each region in the first embodiment.
  • the numerical values in FIG. 12 is a selection threshold r 2.
  • the material wafer that failed in FIG. 1 (m) was re-investigated, and the value obtained by dividing the number of killer defects by the original number of all epitaxial wafers was expressed as “overkill rate”.
  • the value obtained by multiplying this by the material value coefficient was defined as the “material loss index”.
  • the value obtained by dividing the number of void defects caused by epi defects among the wafers determined to be acceptable in FIG. The value obtained by multiplying this by the product value coefficient was defined as the “defect loss index”.
  • the “total loss index” is the sum of the “material loss index” and the “bad loss index”.
  • the final loss was investigated.
  • the value obtained by dividing the number of void defects due to epi defects in SOI wafer products by the original total number of epitaxial wafers is the “missing defect rate”, and the product value coefficient multiplied by this is the “defect loss index” It was.
  • the ratio of the number of wafers for which no void defect occurred after the manufacture of the SOI wafer to the total number of wafers was determined as “virtual overkill rate”, and the value obtained by multiplying the material value coefficient by “virtual overkill rate” Material loss index ”.
  • the ratio of the number of void defects that occurred after manufacturing an SOI wafer while being determined to be acceptable to the total number of wafers was defined as the “virtual missed defect rate”, and the product value coefficient multiplied by this was “virtual defect” Loss index ".
  • the “virtual material loss index” and the “virtual failure loss index” are added to obtain the “virtual total loss index”.
  • the case where the loss is minimized is a case where only the region “g” is accepted and all the other 8 regions are rejected. It was.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

本発明は、DWO、DNOの2通りの測定モードにより、調査用サンプルである半導体ウェーハのLPDを検出する工程、LPDのサイズ分類を行う工程、2通りの測定モードにおける検出座標間の距離及び相対角度を計算する工程、LPDを異物又はキラー欠陥と判定する判定基準を分類されたサイズ毎に予め設定する工程、評価対象である半導体ウェーハのLPDを2通りの測定モードにより検出する工程、評価対象のLPDのサイズ分類を行う工程、評価対象について、検出座標間の距離及び相対角度を計算する工程、及び該計算の結果及び判定基準に基づいて、評価対象の表面に検出されたLPDをキラー欠陥と異物とに分類する工程を有する半導体ウェーハの評価方法である。これにより、定量的なサイズ情報が得られない飽和LPDも含め、全てのLPDに対しキラー欠陥と異物との分類を可能とする半導体ウェーハの評価方法が提供される。

Description

半導体ウェーハの評価方法
 本発明は、半導体ウェーハの評価方法に関する。
 半導体ウェーハを利用したデバイス製造工程では、材料となるシリコンウェーハに対し、研磨、製膜、エッチング、イオン注入、洗浄、熱処理、露光、塗布、貼り合わせ、等の様々な処理が行われる。このような複数の工程の途中で欠陥が発生することがあり、最終的な製品の品質を劣化させるだけでなく、後の工程に悪影響を及ぼすこともある。品質や工程に影響する欠陥は、キラー欠陥と呼ばれ、1個でも発生したウェーハは、全体が不良品とされることがある。特に初期工程で発生したキラー欠陥により、その後の工程を経た後にそのウェーハが不良品となるケースでは、後続の工程に関わったコストが全て損失となる。
 このような事態を防ぐため、キラー欠陥を含むウェーハを途中段階で選別することが行われる。一般的に、レーザー表面検査装置による選別方法が用いられており、装置としては、例えば、KLAテンコール社製のSP1,SP2,SP3等がある。これらは欠陥から散乱する光を検出するもので、高速処理が可能で、なおかつ、高感度という特徴がある。
 一方、ウェーハ表面には、キラー欠陥だけでなく、表面に付着した異物も存在する。これらは、その後の洗浄で容易に除去できるため、ウェーハの最終品質に対する影響は少ないが、レーザー表面検査装置による途中検査でキラー欠陥との区別ができず欠陥と誤認される場合がある。この場合はオーバーキルとなり、材料としての損失が発生する。このため、途中工程で実施する検査において、キラー欠陥と異物を高精度に分類することが重要となる。高倍率の直接観察により高精度な判別を行う検査方法もあるが、一般的に処理速度に制限があり検査頻度には制限が生じる。
 そこで、レーザー表面検査装置で検出されるLPD(Light Point Defect)の分類精度を向上させる方法として、複数の検出角度情報を用いた判別方法が提案されている。ウェーハを走査しながら、表面に斜め上方からレーザー光を照射し、高角度方向に散乱する光の信号の検出をDNO(低角度入射・高角度検出)、低角度方向に散乱する光信号の検出をDWO(低角度入射・低角度検出)とし、それぞれから算出されるLPDサイズを比較することで分類を行う。なお、DはDarkfieldの頭文字であり、暗視野検査であることを意味している。
 例えば、特許文献1には、DWOとDNOのLPDサイズ比を用いて、粒子とマイクロスクラッチを分類する方法が記載されている。特許文献2には、DWOとDNOのLPDサイズ比を用いて、結晶欠陥と異物を分類することが記載されている。特許文献3には、DWOとDNOのLPDサイズ比を用いて、ピットと突起を分類することが記載されている。特許文献4には、DWOとDNOのLPDサイズ比を用いて、欠陥と異物を分類することが記載されている。
特開2009-162768号公報 特開2010-129748号公報 特開2011-249479号公報 国際公開第WO2005/101483号パンフレット
 前述の方法はいずれもDWOとDNOのLPDサイズ情報に基づく判別方法であるが、実際のLPDのサイズが大きく、散乱強度が検出器の飽和レンジを超えてしまう場合は、定量的なサイズ情報が得られない問題がある。この様子を図11を用いて説明する。図11は、実際のLPDサイズとLPDの検出光信号強度の関係を示す図である。横軸に代表的な検出信号例を5例並べており、縦軸は検出された光の散乱強度(信号強度)を示す。図11の信号例1~3は、LPDサイズが定量化できる例を示している。レーザー表面検査装置では、高感度の検出器を用いており、正常な表面を走査している間もわずかな光が散乱されている。レーザー光がLPDに当たるとスパイク状の強い散乱信号が検知され、設定した下限閾値を超えた信号に対し、ピーク強度からLPDのサイズを計算する。この計算には、PSL(ポリスチレンラテックス)標準粒子のサイズと、散乱強度の実測値から導かれる換算式を用いる。ただし、検出器には、強度を定量化できる上限があり、その値を超えた場合はLPDのサイズを定量化することができない。この様子を示したのが、図11の信号例4である。検出される信号強度は強度上限で飽和しており、それ以上の強度では実際のLPDサイズに差があっても、数値として識別することができない。なお、更に実際のLPDサイズが大きく、図11の信号例5のように飽和した信号の継続時間が一定の走査幅よりも長くなる場合は、その幅を積算した面積としての数値化が可能となる。このように図11の信号例1~3と、信号例5はサイズを数値化できるが、信号例4ではサイズの数値情報が得られない問題が発生する。上記特許文献1~3は、DWOとDNO、両方によるLPDのサイズの数値情報が必要であり、いずれかの一方が、図11の信号例4に該当する場合、キラー欠陥と異物の区別ができない問題があった。特に、品質に重大な影響を与えるキラー欠陥の場合はサイズが大きく、この問題に該当することが多い。
 なお、図11及び本発明の説明において、信号例1~3のような信号により検知されるLPDをサイズLPD、信号例4のような信号により検知されるLPDを飽和LPD、信号例5のような信号により検知されるLPDを面積LPDと称する。
 本発明は、上記問題点に鑑みてなされたものであって、定量的なサイズ情報が得られない飽和LPDも含め、全てのLPDに対しキラー欠陥と異物との分類を可能とする半導体ウェーハの評価方法を提供することを目的とする。
 上記目的を達成するために、本発明では、レーザー表面検査装置を用いて半導体ウェーハの表面のLPDを検出し、該検出されたLPDを前記半導体ウェーハの表面の結晶欠陥と前記半導体ウェーハの表面上の異物とに分類する半導体ウェーハの評価方法であって、
 前記レーザー表面検査装置の低角度入射・低角度検出(DWO)、低角度入射・高角度検出(DNO)の2通りの測定モードにより、調査用サンプルである半導体ウェーハの表面のLPDを検出する工程と、
 前記2通りの測定モードにより検出されたLPDのサイズ情報に基づいてサイズ分類を行う工程と、
 前記2通りの測定モードにより検出されたLPDの検出座標から前記2通りの測定モードにおける前記検出座標間の距離及びウェーハ中心に対する相対角度を計算する工程と、
 前記2通りの測定モードによる検出座標間の距離及び相対角度が所定の範囲に入るLPDを異物と判定し、前記所定の範囲に入るLPD以外のLPDを前記半導体ウェーハの欠陥であるキラー欠陥と判定する判定基準を前記分類されたサイズ毎に予め設定する工程と、
 評価対象である半導体ウェーハのLPDを前記2通りの測定モードにより検出する工程と、
 前記評価対象である半導体ウェーハについて、前記2通りの測定モードにより検出されたLPDのサイズ情報に基づいてサイズ分類を行う工程と、
 前記評価対象である半導体ウェーハについて、前記2通りの測定モードにより検出されたLPDの検出座標から前記2通りの測定モードにおける前記検出座標間の距離及びウェーハ中心に対する相対角度を計算する工程と、
 該計算の結果及び前記判定基準に基づいて、前記評価対象である半導体ウェーハの表面に検出されたLPDをキラー欠陥と異物とに分類する工程と
を有することを特徴とする半導体ウェーハの評価方法を提供する。
 このようなウェーハの評価方法であれば、DWOとDNOによるLPDのサイズ情報に加えて、DWOとDNOによるLPDの座標情報も利用することにより、定量的なサイズ情報が得られない飽和LPDも含め、全てのLPDに対しキラー欠陥と異物との分類(判別)を行うことができる。
 また、本発明では、前記調査用サンプルである半導体ウェーハ及び前記評価対象である半導体ウェーハをエピタキシャルウェーハとすることができる。
 本発明のウェーハの評価方法は、キラー欠陥の一種であるエピタキシャル欠陥(以下、エピ欠陥ともいう)が発生することがあるエピタキシャルウェーハを評価するのに好適に用いることができる。
 また、前記評価対象である半導体ウェーハをシリコンオンインシュレーターウェーハ(SOIウェーハ)の材料として使用されるものとすることができる。
 本発明により評価されたウェーハをSOIウェーハの材料として用いることで、SOIウェーハにおけるボイド欠陥の発生を抑制することができる。
 また、前記キラー欠陥を四角錘形のエピタキシャル欠陥とすることができる。
 このような欠陥は、高角度及び低角度の検出器への信号強度の差が生じやすく、検出座標の差異も生じやすい。また、このような欠陥は、散乱強度が強く、検出器の定量化限界を超えてしまうことが多い。このような場合は、定量的な強度情報が得られず、むしろ位置情報(座標情報)による分類が有効となる。従って、DWOとDNOによるLPDの座標情報を利用する本発明が特に有効である。
 また、前記判定基準を設定する際に、前記検出されたLPDが前記キラー欠陥か否かの確認を、前記DWO及び前記DNOを用いた評価方法とは異なる評価方法を用いて行うことが好ましい。
 このようなウェーハの評価方法であれば、判定基準の設定をより正確に行うことができる。
 本発明によれば、レーザー表面検査装置での定量的なサイズ情報が得られない飽和LPDも含め、全てのLPDに対し、キラー欠陥と異物とを簡便かつ高精度に分類することができ、後続工程での不良損失、及び、材料ウェーハの損失からなる総合的な損失を抑制することができる。
本発明の半導体ウェーハの評価方法の一例を示すフロー図である。 DWOとDNOによるLPDのサイズによる領域分類の一例を示す図である。 DWOとDNOによるLPDの検出座標間の距離及び相対角度を説明する図である。 DNOによるLPDの検出座標に対するDWOによるLPDの検出座標の相対角度θとウェーハ中心に対するDNOによるLPDの位置角度θとキラー欠陥の該当の関係を示すグラフである。 図4の関係に基づいて設定したマスク領域を示すグラフである。 DWOとDNOによるLPDの検出座標間の距離rとキラー欠陥の該当率との関係の一例を示すグラフである。 「見逃し不良率」と「オーバーキル率」の概念を示す図である。 DWOとDNOによるLPDの検出座標間の距離rと「見逃し不良率」及び「オーバーキル率」との関係を示すグラフである。 DWOとDNOによるLPDの検出座標間の距離rと総合損失指数との関係を示すグラフである。 実施例1と比較例1、2の総合損失指数を比較したグラフである。 実際のLPDサイズとLPDの検出光信号強度の関係を示す図である。 実施例1における各領域の判定基準を示す図である。
 以下、本発明をより詳細に説明する。
 上記のように、定量的なサイズ情報が得られない飽和LPDも含め、全てのLPDに対しキラー欠陥と異物との分類を可能とする半導体ウェーハの評価方法が求められている。
 本発明者は、上記目的を達成するために鋭意検討を行った。その結果、DWOとDNOによるLPDのサイズ情報に加えて、DWOとDNOによるLPDの座標情報も利用するウェーハの評価方法が、上記課題を解決できることを見出し、本発明を完成させた。
 以下、本発明の実施の形態について図面を参照して具体的に説明するが、本発明はこれらに限定されるものではない。
 図1は、本発明の半導体ウェーハの評価方法の一例を示すフロー図であり、各項目の具体的な内容を以下に示す。なお、ここで評価の対象となる半導体ウェーハは次工程にとっての材料とみなされ、以下の手順(図1(a)~(i))は、その使用の可否についての判断基準の設定を目的としている。この判断基準に基づいて評価対象である半導体ウェーハの評価を行う(図1(j)~(m))。
 まず、事前調査用のサンプル(調査用サンプルである半導体ウェーハ)を準備する(図1(a))。調査用サンプルである半導体ウェーハの種類は特に限定されないが、エピタキシャルウェーハとすることができる。本発明は、キラー欠陥の一種であるエピ欠陥が発生することがあるエピタキシャルウェーハを評価するのに好適に用いることができる。
 次に、対象サンプルに対し、レーザー表面検査装置による測定を実施する(図1(b))。具体的には、低角度入射・低角度検出(DWO)、低角度入射・高角度検出(DNO)の2通りの測定モードにより、調査用サンプルである半導体ウェーハの表面のLPDを検出する。
 ここで用いるレーザー表面検査装置は、上記の2通りの測定モードを有するものであればよい。従って、少なくとも1種類の入射角を有する入射系と、2種類の検出角を有する検出系とを備えたものであればよい。この場合、1種類の入射角による入射を所定角(例えば、30°)以下の入射角を有する低角度入射とし、2種類の検出角のうちの高角度側による検出を高角度検出、もう一方による検出を低角度検出とする。
 次に、上記2通りの測定モードにより検出されたLPDのサイズ情報に基づいてサイズ分類を行う(図1(c))。具体的には、図1(b)で検出された全てのLPDに対し、DWOとDNOによるLPDのサイズ情報を確認し、図2に示す9領域に分類する。図2は、DWOとDNOによるLPDのサイズによる領域分類の一例を示す図である。縦軸はDNOによるLPDサイズ、横軸はDWOによるLPDサイズである。DWOとDNOのいずれか一方でしか検出されなかったLPDは、キラー欠陥判定の対象外とする。
 次に、図1(b)で検出された全LPDについて、DWOとDNOによるLPDの検出座標間の距離及びウェーハ中心に対する相対角度を計算する(図1(d))。図1(b)における測定により、各LPDの座標情報を2通りの測定モードで取得できる。この情報を用いて、各LPDについて、2通りの測定モードにおける検出座標間の距離及び相対角度を計算する。図3に一例を示す。図3は、DWOとDNOによるLPDの検出座標間の距離及び相対角度を説明する図である。図3の例では、DWOとDNOによるLPDの検出座標の差を、DNOによるLPDの検出座標を基準点とした場合の、DWOによるLPDの検出座標までの距離rと相対角度θを用いた極座標として示している。ここでは、同時に、面内位置も計算する。面内位置はウェーハ中心を原点とした場合の、DNOによるLPDの検出座標までの距離rと位置角度θを用いた極座標として表す。
 次に、2通りの測定モードによる検出座標間の距離及び相対角度が所定の範囲に入るLPDを異物と判定し、所定の範囲に入るLPD以外のLPDを半導体ウェーハの欠陥であるキラー欠陥と判定する判定基準を分類されたサイズ毎に予め設定する。
 この際、検出されたLPDがキラー欠陥か否かについて、DWO及びDNOを用いた評価方法とは異なる評価方法、特に、判定精度の高い別の評価法を用いて確認することが好ましい(図1(e))。別の評価法の例として、明視野検査装置で得られるLPD画像を用いる方法、あるいは、後工程にテスト投入し、不良発生位置に対応するキラー欠陥として判別する方法等が考えられる。これにより、判定基準の設定をより正確に行うことができる。
 判定基準の設定は、例えば、以下に示す図1(f)~(i)により行うことができる。なお、ここでキラー欠陥の種類は特に限定されないが、例えば、四角錘形のエピタキシャル欠陥とすることができる。このような欠陥は、レーザー表面検査装置では、定量的な強度情報が得られないことがあり、座標情報による分類が有効となるためである。
 まず、図2の9領域毎に、図1(d)で得られたDNOによるLPDの検出座標に対するDWOによるLPDの検出座標の相対角度θとウェーハ中心に対するDNOによるLPDの検出座標の位置角度θとキラー欠陥の該当の関係を確認する(図1(f))。一例を図4に示す。また、図5に、図4の関係に基づいて設定したマスク領域を示す。図4の中でキラー欠陥に該当するものは、図5に示すマスクされたθ領域での発生頻度が低下している。このような場合は、マスク領域に該当するLPDを合格(すなわち、異物)とする判断基準を設定する。図5の例では、θ-12°<θ<θ+12°の範囲をマスク領域としている。
 次に、図2の9領域毎に、図1(d)で得られたDWOとDNOによるLPDの検出座標間の距離rとキラー欠陥の該当率との関係を確認する(図1(g))。図6はその一例を示しており、DWOとDNOによるLPDの検出座標間の距離rが大きいほど、キラー欠陥の該当率が増加する。このような場合、rに一定の選別閾値を設定し、それ以上のLPDを不合格(すなわち、キラー欠陥)とする判断基準にする。
 次に、図2の9領域毎に、上記の判断基準を用いた場合の、「見逃し不良率」と「オーバーキル率」を計算する(図1(h))。図7にそれぞれの概念を示す。2つの楕円が描かれており、左側の楕円は図1(f)、図1(g)のどちらか一方、あるいは両方の判断基準に基づき、レーザー表面検査装置の結果から不合格と判定されるLPDの集合を表している。一方、右側の楕円は実際のキラー欠陥の集合を現している。二つの楕円が完全に一致する場合は、キラー欠陥を完全に選別できることから最も理想的な状態だが、現実には重なりにずれが生じる。その結果、4通りの集合が想定され、各々を図中のA~Dとして表示する。Aの集合は、実際はキラー欠陥ではないが、不合格と判断される集合で、「オーバーキル欠陥」に該当する。本来、合格となるはずのウェーハが使用できないことから、材料としての損失が発生する。Bの集合は、キラー欠陥を正しく不合格と判断しており、不要な損失は発生しない。Cの集合は、実際はキラー欠陥だが、合格とされる「見逃し欠陥」に該当する。後続工程で不良を発生させるため、不良による損失を発生させる。Dの領域は悪影響のない異物が、そのまま合格と判断されるものであり、損失は発生しない。不要な損失を発生させるのは、AとCの2つの集合であり、それぞれに該当するLPDの個数を母集団(A+B+C+D)の個数で割った値を、「オーバーキル率」、及び、「見逃し不良率」と定義する。それぞれの値は、図1(f)と図1(g)の判断基準によって変化し、図1(g)の、DWOとDNOによるLPDの検出座標間の距離rについては、選別閾値の設定に対応し連続的に変化する。「オーバーキル率」と「見逃し不良率」の計算例を図8に示す。図8は、DWOとDNOによるLPDの検出座標間の距離rと「見逃し不良率」及び「オーバーキル率」との関係を示すグラフである。左端のデータは検出LPDを全て不合格とする場合を示しており、この場合、「見逃し不良率」は0%になるが、「オーバーキル率」が増大してしまう。逆に右端のデータは、検出LPDを全て合格とするケースで、「オーバーキル率」は0%になるが、「見逃し不良率」が増大する。中央のグラフは、図1(f)で求められるθのマスクを適用し、更に図1(g)で計算される、DWOとDNOによるLPDの検出座標間の距離rに対する閾値を連続的に変化させた場合のグラフで、「オーバーキル率」と「見逃し不良率」が連続的に変化している。
 次に、図2の9領域毎に、総合損失指数を計算し、その値が最小となる判定条件を各領域で設定する(図1(i))。総合損失指数は下記式(1)により求めることができる。
総合損失指数=見逃し不良率×製品価値係数+オーバーキル率×材料価値係数(1)
(式中、見逃し不良率及びオーバーキル率は、上記の通りであり、製品価値係数は、製品価値に応じて決められる係数であり、材料価値係数は、材料価値に応じて決められる係数である。)
 図9に、総合損失指数の計算例(決定方法の具体例)を示す。図9は、DWOとDNOによるLPDの検出座標間の距離rと総合損失指数との関係を示すグラフである。図8と同様に、図9における左端のデータは検出LPDを全て不合格とする場合であり、右端のデータは検出LPDを全て合格とするケースであり、中央のグラフは図1(f)で求められるθのマスクを適用し、更に図1(g)で計算される、DWOとDNOによるLPDの検出座標間の距離rに対する閾値を連続的に変化させた場合のグラフである。
 最終的な損失は、「オーバーキル」による材料の損失と、「見逃し不良」による後続工程の不良損失の両方を統合して計算される。その際、材料価値と後の製品価値には差があるため、影響を考慮した価値係数をそれぞれの不良率に掛け合わせる。図9では、「材料価値係数」=1、「製品価値係数」=5とした場合の計算例を示しており、それらを図8の「オーバーキル率」と「見逃し不良率」にかけた値の合計を総合損失指数としている。図9の例では、r値の選別閾値を10~20μmにした場合の総合損失指数が最小となっている。このようにして得られた選別閾値を、図2における該当領域の判定基準として採用する。同様にして、分類されたサイズ毎に判定基準を設定する。
 次に、調査対象となる実際の工程中のウェーハに、図1(f)~(i)で設定した判定基準を適用し、LPDの選別を実施する。具体的には、以下に示す図1(j)~(m)によりLPDの選別を実施することができる。
 なお、評価対象である半導体ウェーハは上記の調査用サンプルである半導体ウェーハと同じ種類のものであればよく、例えば、エピタキシャルウェーハとすることができる。また、このような評価対象である半導体ウェーハをSOIウェーハの材料として使用されるものとすることができる。本発明により評価されたウェーハをSOIウェーハの材料として用いることで、SOIウェーハにおけるボイド欠陥の発生を抑制することができる。
 まず、評価対象である半導体ウェーハのLPDを2通りの測定モードにより検出する(図1(j))。
 次に、評価対象である半導体ウェーハについて、2通りの測定モードにより検出されたLPDのサイズ情報に基づいてサイズ分類を行う(図1(k))。
 次に、評価対象である半導体ウェーハについて、2通りの測定モードにより検出されたLPDの検出座標から2通りの測定モードにおける検出座標間の距離及びウェーハ中心に対する相対角度を計算する(図1(l))。
 このように、図1(j)~(l)により、調査対象となる実際の工程中のウェーハについて、図1(b)~図1(d)と同様にレーザー表面検査を行い、DWOとDNOによるLPDのサイズ情報と座標の差分情報を取得する。また、得られた各LPDのサイズ情報に基づき、各LPDを図2の9領域に分類する。
 次に、図1(l)の計算の結果及び図1(f)~(i)で設定した判定基準に基づいて、評価対象である半導体ウェーハの表面に検出されたLPDをキラー欠陥と異物とに分類する(図1(m))。具体的には、評価対象である半導体ウェーハにおける図2のそれぞれの領域に対し、図1(f)~(i)で決定された判定基準(分類されたサイズ毎に設定された判定基準)を基に合否判定を行う。不合格(キラー欠陥)と判定されるLPDが0個のウェーハのみを合格(すなわち、キラー欠陥の存在しないウェーハと評価)とし、次工程の材料として利用する。
 レーザー表面検査装置では、ウェーハ表面にレーザー光を照射しながら高速で走査し、表面に存在する異物や欠陥から放出される散乱光を検知することで、そのLPDの座標情報やサイズ情報を取得する。その際、異なる検出角度位置に複数の検出器を設定し、それらの信号強度を比較することで、欠陥や異物の区別をする方法が用いられる。これは欠陥や異物の形状により、光の散乱方向に偏りが生じる現象を利用したものである。本発明においては、複数の検出器から得られる信号強度に加え、座標の差の情報も利用しLPD種の区別をしている。この方法は、対象とするキラー欠陥の形状が、1辺の長さが100~200μm程度で、高さが0.2~2μm程度の四角錘形の特徴を持つ場合に対し、特に有効である。欠陥の頂点部においては広角度への散乱が生じる一方、四角垂の裾部分では、正反射角度に近い狭角散乱が生じる。その結果、高角度及び低角度の検出器への信号強度の差が生じるとともに、頂点部分と裾部の水平距離の差に起因する検出座標の差異も生じる。形状にこのような特徴を持つ欠陥は散乱強度が強く、検出器の定量化限界を超えてしまうことが多い。このような場合は、定量的な強度情報が得られず、むしろ座標情報による分類が有効となる。なお、本発明が適用可能な欠陥の形状は、先の例に挙げた四角垂形とは限らず、シリコンの結晶性を反映した異方性を持ち、水平方向に数百ミクロンのサイズをもつ形態の欠陥であれば、いかなる欠陥に対しても有効となる。
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 対象とした製造工程は、シリコンオンインシュレーター(SOI)ウェーハの製造工程である。この工程の内容は、以下の通りである。まず、酸化膜を形成したボンドウェーハと呼ばれる材料ウェーハ(シリコン単結晶ウェーハ)に水素イオンの注入を行うことで脆弱層を形成し、その後ベースウェーハと呼ばれる別の材料ウェーハと貼り合わせ、熱を加えることでボンドウェーハの一部を剥離し、ベースウェーハに転写する。その後、さらに結合熱処理、平坦化処理、犠牲酸化処理等を経て、SOIウェーハ製品となる。SOIウェーハのベースウェーハ用材料として、表面を研磨した研磨ウェーハ(シリコン単結晶ウェーハ)を用いることが多いが、今回の実施例では、エピタキシャルウェーハを材料とした製品を対象としている。エピタキシャルウェーハは、気相エピタキシャル成長によりシリコン層を追加成長させたものである。
 エピタキシャルウェーハには、その製造過程において1辺の長さが100~200μm程度で、高さが0.2~2μm程度の四角錘形の欠陥(エピ欠陥)が発生することがある。この欠陥は、貼り合わせ工程において、結合の阻害要因となり、ボイド欠陥と呼ばれる未結合領域を発生させる。最終的なSOI製品において、一定サイズを超えるボイド欠陥が1個以上存在すると、ウェーハ全体が不良品と判断されることから、エピ欠陥は重要なキラー欠陥とみなされる。
 今回の実施例、及び比較例では、材料であるエピタキシャルウェーハに対し、KLAテンコール社製のSP2によるキラー欠陥の選別を行った。
<実施例1>
 初めに、図1(a)~(b)に従い、事前調査用のエピタキシャルウェーハを用意し、SP2による測定を行った。レーザーは斜め上方から照射し、高角度散乱信号(DNO)と、低角度散乱信号(DWO)について、LPDのサイズ情報と座標情報を取得した。また、検出された全LPDについて、図1(c)に従い、図2に示す9つのサイズ領域に分類した。また、図1(d)に従い、各LPDについて、2通りの測定モードにおける検出座標間の距離及び相対角度を計算した。
 次に、図1(e)に基づき、キラー欠陥の高精度判定を行った。判定には、レーザーテック社の明視野検査装置(M350)を使用した。この装置はLPDの検出とともに画像も取得できることから、LPDを高精度で分類することができる。なお、この手法は、スループットに制約があるため、大量の検査用途として継続的に使用することは難しいが、量が限定された事前調査には適している。
 続けて、図2の9領域毎に、図1(f)~(i)に従い、DWOとDNOによるLPDの座標の差分情報に基づく選別閾値の決定を行った。これら9領域のうち、具体例として、図2の領域「h」に対し、総合損失指数の計算を行なったところ、図9に示す結果が得られた。これにより、図2の領域「h」における、DWOとDNOによるLPDの検出座標間の距離rの選別閾値を15μmとし、かつ、相対角度θがθ-12°<θ<θ+12°の範囲に入るLPDは合格とする判定基準を設定した。
 同様にして図2の領域「h」以外の領域についても判定基準を設定した。図12に実施例1における各領域の判定基準を示す。なお、図12中の数値はrの選別閾値である。
 次に、新たな別のエピタキシャルウェーハ(5000枚)を準備し、図1(j)~(m)に従いウェーハ単位での合否判定を行ない、合格となったウェーハのみを後続のSOI製造工程に投入した。
 SOIウェーハ製品が完成した段階で、最終的な損失について調査を行った。損失指数の検証方法としては、図1(m)で不合格となった材料ウェーハを再調査し、キラー欠陥が存在しなかった枚数を元の全エピタキシャルウェーハ枚数で割った値を「オーバーキル率」とし、これに材料価値係数をかけた値を「材料損失指数」とした。一方、図1(m)で合格と判定し、後続工程に投入したウェーハの中で、エピ欠陥起因のボイド不良が発生した枚数を元の全エピタキシャルウェーハ枚数で割った値を「見逃し不良率」とし、これに製品価値係数をかけた値を「不良損失指数」とした。最後に「材料損失指数」と「不良損失指数」を足し合わせたものを、「総合損失指数」とした。
<比較例1>
 実施例1と同等の品質が予想される比較調査用のエピタキシャルウェーハ(5000枚)を用意し、実施例1と同様に、図1(b)に従い、SP2による測定を行った。レーザーは斜め上方から照射し、高角度散乱信号(DNO)と、低角度散乱信号(DWO)について、LPDのサイズ情報を取得した。また、検出された全LPDについて、図1(c)に従い、図2に示す9つのサイズ領域に分類した。これらのエピタキシャルウェーハの全数を、後続のSOI製造工程に投入した。
 SOIウェーハ製品が完成した段階で、最終的な損失について調査を行った。SOIウェーハ製品の中でエピ欠陥起因のボイド不良が発生した枚数を元の全エピタキシャルウェーハ枚数で割った値を「見逃し不良率」とし、これに製品価値係数をかけた値を「不良損失指数」とした。このケースでは、全数のエピタキシャルウェーハを材料として使用したため「材料損失指数」は0となり、「総合損失指数」=「不良損失指数」とした。
<比較例2>
 比較例1のデータを再解析することにより、SP2データのサイズ情報を一部利用して選別した場合の結果を計算予測した。具体的には、図2に示す9つのサイズ領域毎に、それぞれの領域全体を合格または不合格と判定する設定を行い、不合格と判定される領域に、欠陥が1個以上含まれるウェーハを不合格対象とした。なお、9領域の合否判定の組合せは、2=512通り想定され、それぞれのケースについて、「仮想の総合損失指数」の再計算を行った。具体的な計算方法を以下に示す。全ウェーハ枚数に対し、不合格対象と判定されながらSOIウェーハ製造後にボイド不良が発生しなかった枚数の比率を「仮想のオーバーキル率」とし、これに材料価値係数をかけた値を「仮想の材料損失指数」とした。一方、全ウェーハ枚数に対し、合格対象と判定されながらSOIウェーハ作製後にボイド不良が発生した枚数の比率を「仮想の見逃し不良率」とし、これに製品価値係数をかけた値を「仮想の不良損失指数」とした。最後に「仮想の材料損失指数」と「仮想の不良損失指数」を足し合わせたものを、「仮想の総合損失指数」とした。想定される512通りの組み合わせの中で、損失が最少となったケースは、領域「g」のみを合格とし、他の8領域を全て不合格とするケースであり、これを比較例2の結果とした。
 最後に、実施例1、比較例1、比較例2のそれぞれについて総合損失指数の比較を行った。その結果を図10に示す。なお、図10では、実施例1、比較例1、比較例2のそれぞれの総合損失指数を比較例1の値を1とした相対値で示してある。図10に示すように、実施例1の総合損失指数は、比較例1の1/5となっており、また、比較例2に対しても1/2と低い結果が得られ、本発明の有効性が実証された。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (5)

  1.  レーザー表面検査装置を用いて半導体ウェーハの表面のLPDを検出し、該検出されたLPDを前記半導体ウェーハの表面の結晶欠陥と前記半導体ウェーハの表面上の異物とに分類する半導体ウェーハの評価方法であって、
     前記レーザー表面検査装置の低角度入射・低角度検出(DWO)、低角度入射・高角度検出(DNO)の2通りの測定モードにより、調査用サンプルである半導体ウェーハの表面のLPDを検出する工程と、
     前記2通りの測定モードにより検出されたLPDのサイズ情報に基づいてサイズ分類を行う工程と、
     前記2通りの測定モードにより検出されたLPDの検出座標から前記2通りの測定モードにおける前記検出座標間の距離及びウェーハ中心に対する相対角度を計算する工程と、
     前記2通りの測定モードによる検出座標間の距離及び相対角度が所定の範囲に入るLPDを異物と判定し、前記所定の範囲に入るLPD以外のLPDを前記半導体ウェーハの欠陥であるキラー欠陥と判定する判定基準を前記分類されたサイズ毎に予め設定する工程と、
     評価対象である半導体ウェーハのLPDを前記2通りの測定モードにより検出する工程と、
     前記評価対象である半導体ウェーハについて、前記2通りの測定モードにより検出されたLPDのサイズ情報に基づいてサイズ分類を行う工程と、
     前記評価対象である半導体ウェーハについて、前記2通りの測定モードにより検出されたLPDの検出座標から前記2通りの測定モードにおける前記検出座標間の距離及びウェーハ中心に対する相対角度を計算する工程と、
     該計算の結果及び前記判定基準に基づいて、前記評価対象である半導体ウェーハの表面に検出されたLPDをキラー欠陥と異物とに分類する工程と
    を有することを特徴とする半導体ウェーハの評価方法。
  2.  前記調査用サンプルである半導体ウェーハ及び前記評価対象である半導体ウェーハをエピタキシャルウェーハとすることを特徴とする請求項1に記載の半導体ウェーハの評価方法。
  3.  前記評価対象である半導体ウェーハをシリコンオンインシュレーターウェーハの材料として使用されるものとすることを特徴とする請求項1又は請求項2に記載の半導体ウェーハの評価方法。
  4.  前記キラー欠陥を四角錘形のエピタキシャル欠陥とすることを特徴とする請求項1から請求項3のいずれか1項に記載の半導体ウェーハの評価方法。
  5.  前記判定基準を設定する際に、前記検出されたLPDが前記キラー欠陥か否かの確認を、前記DWO及び前記DNOを用いた評価方法とは異なる評価方法を用いて行うことを特徴とする請求項1から請求項4のいずれか1項に記載の半導体ウェーハの評価方法。
PCT/JP2016/001274 2015-05-27 2016-03-09 半導体ウェーハの評価方法 WO2016189778A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16799498.7A EP3306653B1 (en) 2015-05-27 2016-03-09 Semiconductor wafer evaluation method
SG11201709206WA SG11201709206WA (en) 2015-05-27 2016-03-09 Method for evaluating semiconductor wafer
CN201680029024.7A CN107615469B (zh) 2015-05-27 2016-03-09 半导体晶圆的评价方法
KR1020177034033A KR102115334B1 (ko) 2015-05-27 2016-03-09 반도체 웨이퍼의 평가 방법
US15/573,058 US10054554B2 (en) 2015-05-27 2016-03-09 Method for evaluating semiconductor wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-107398 2015-05-27
JP2015107398A JP6256413B2 (ja) 2015-05-27 2015-05-27 半導体ウェーハの評価方法

Publications (1)

Publication Number Publication Date
WO2016189778A1 true WO2016189778A1 (ja) 2016-12-01

Family

ID=57393222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001274 WO2016189778A1 (ja) 2015-05-27 2016-03-09 半導体ウェーハの評価方法

Country Status (8)

Country Link
US (1) US10054554B2 (ja)
EP (1) EP3306653B1 (ja)
JP (1) JP6256413B2 (ja)
KR (1) KR102115334B1 (ja)
CN (1) CN107615469B (ja)
SG (1) SG11201709206WA (ja)
TW (1) TWI674404B (ja)
WO (1) WO2016189778A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021105570A (ja) * 2019-12-26 2021-07-26 株式会社Sumco 結晶欠陥の検出方法、エピタキシャル成長装置の管理方法およびエピタキシャルウェーハの製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6536517B2 (ja) * 2016-09-07 2019-07-03 信越半導体株式会社 結晶欠陥評価方法
CN108303373B (zh) * 2018-02-01 2021-01-22 京东方科技集团股份有限公司 一种检测消影等级的装置及其控制方法
US10818005B2 (en) * 2018-03-12 2020-10-27 Kla-Tencor Corp. Previous layer nuisance reduction through oblique illumination
JP6675433B2 (ja) * 2018-04-25 2020-04-01 信越化学工業株式会社 欠陥分類方法、フォトマスクブランクの選別方法、およびマスクブランクの製造方法
JP6874737B2 (ja) * 2018-05-21 2021-05-19 三菱電機株式会社 SiC基板の製造方法
JP7103211B2 (ja) 2018-12-27 2022-07-20 株式会社Sumco 半導体ウェーハの評価方法および製造方法ならびに半導体ウェーハの製造工程管理方法
JP7218710B2 (ja) * 2019-11-07 2023-02-07 株式会社Sumco レーザー表面検査装置の座標位置特定精度校正方法および半導体ウェーハの評価方法
JP6918434B1 (ja) * 2021-03-30 2021-08-11 直江津電子工業株式会社 半導体ウエハの評価方法、半導体ウエハの評価システム、プログラム、半導体ウエハの検査方法および半導体ウエハの検査システム
JP2022178817A (ja) * 2021-05-21 2022-12-02 株式会社Sumco シリコン単結晶インゴットの評価方法、シリコンエピタキシャルウェーハの評価方法、シリコンエピタキシャルウェーハの製造方法およびシリコン鏡面ウェーハの評価方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027600A1 (fr) * 1999-10-14 2001-04-19 Sumitomo Metal Industries., Ltd. Technique d'inspection de la surface d'une tranche de semi-conducteur
US6515742B1 (en) * 2000-11-28 2003-02-04 Memc Electronic Materials, Inc. Defect classification using scattered light intensities
WO2005101483A1 (ja) * 2004-04-13 2005-10-27 Komatsu Electronic Metals Co., Ltd. 半導体ウェハの検査装置及び方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL99823A0 (en) * 1990-11-16 1992-08-18 Orbot Instr Ltd Optical inspection method and apparatus
US5399229A (en) * 1993-05-13 1995-03-21 Texas Instruments Incorporated System and method for monitoring and evaluating semiconductor wafer fabrication
JP2001153815A (ja) * 1999-11-29 2001-06-08 Sumitomo Metal Ind Ltd 基板表面の評価方法
JP2001153635A (ja) * 1999-11-29 2001-06-08 Sumitomo Metal Ind Ltd 半導体ウェ−ハの品質評価方法
JP2001284423A (ja) * 2000-03-29 2001-10-12 Mitsubishi Electric Corp 半導体検査装置及び半導体装置の製造方法
JP2002228596A (ja) * 2001-01-31 2002-08-14 Shin Etsu Handotai Co Ltd 半導体ウェーハの測定方法及び半導体ウェーハの製造方法
JP4230674B2 (ja) * 2001-03-01 2009-02-25 株式会社日立製作所 欠陥検査装置およびその方法
US6538730B2 (en) 2001-04-06 2003-03-25 Kla-Tencor Technologies Corporation Defect detection system
WO2002082064A1 (en) 2001-04-06 2002-10-17 Kla-Tencor Corporation Improved defect detection system
JP4604734B2 (ja) * 2005-01-27 2011-01-05 株式会社Sumco ウェーハの評価方法
JP5023900B2 (ja) * 2006-09-05 2012-09-12 株式会社Sumco エピタキシャルシリコンウェーハ
JP5040315B2 (ja) * 2007-01-10 2012-10-03 富士通セミコンダクター株式会社 検査方法、検査システムおよび検査装置
JP5509581B2 (ja) * 2008-11-27 2014-06-04 信越半導体株式会社 半導体ウェーハの評価方法
KR101453033B1 (ko) * 2008-12-02 2014-10-23 주식회사 엘지실트론 에피택셜 웨이퍼의 에피 적층결함 검출방법
JP5521775B2 (ja) 2010-05-25 2014-06-18 株式会社Sumco 単結晶シリコンウェーハの評価方法
JP6086050B2 (ja) * 2013-09-30 2017-03-01 信越半導体株式会社 ウエーハの評価方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027600A1 (fr) * 1999-10-14 2001-04-19 Sumitomo Metal Industries., Ltd. Technique d'inspection de la surface d'une tranche de semi-conducteur
US6515742B1 (en) * 2000-11-28 2003-02-04 Memc Electronic Materials, Inc. Defect classification using scattered light intensities
WO2005101483A1 (ja) * 2004-04-13 2005-10-27 Komatsu Electronic Metals Co., Ltd. 半導体ウェハの検査装置及び方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021105570A (ja) * 2019-12-26 2021-07-26 株式会社Sumco 結晶欠陥の検出方法、エピタキシャル成長装置の管理方法およびエピタキシャルウェーハの製造方法
JP7259736B2 (ja) 2019-12-26 2023-04-18 株式会社Sumco 結晶欠陥の検出方法、エピタキシャル成長装置の管理方法およびエピタキシャルウェーハの製造方法

Also Published As

Publication number Publication date
CN107615469A (zh) 2018-01-19
EP3306653A1 (en) 2018-04-11
SG11201709206WA (en) 2017-12-28
EP3306653B1 (en) 2019-12-04
KR20180005674A (ko) 2018-01-16
TW201708811A (zh) 2017-03-01
JP2016225347A (ja) 2016-12-28
KR102115334B1 (ko) 2020-05-26
JP6256413B2 (ja) 2018-01-10
US20180136143A1 (en) 2018-05-17
US10054554B2 (en) 2018-08-21
TWI674404B (zh) 2019-10-11
EP3306653A4 (en) 2018-10-31
CN107615469B (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
JP6256413B2 (ja) 半導体ウェーハの評価方法
KR101700319B1 (ko) 웨이퍼 상의 결함 검출 시스템 및 방법
TWI713638B (zh) 缺陷檢測方法及相關裝置
JP5509581B2 (ja) 半導体ウェーハの評価方法
JP2011529274A5 (ja)
US9633913B2 (en) Method of evaluating epitaxial wafer
US6726319B1 (en) Method for inspecting surface of semiconductor wafer
JP2017072461A (ja) 半導体ウェーハの評価方法および半導体ウェーハ
US7405817B2 (en) Method and apparatus for classifying defects of an object
TW462100B (en) Wafer surface inspection method
JP6508082B2 (ja) エピタキシャルウェーハの評価方法
JP5565237B2 (ja) ウェーハの欠陥検出方法
EP2261644B1 (en) Method for judging whether a semiconductor wafer is a non-defective wafer by using a laser scattering method
JP5585438B2 (ja) ウェーハの欠陥検出方法
JP5614243B2 (ja) シリコンエピタキシャルウェーハの評価方法
JP2001015567A (ja) 半導体基板の評価装置および評価方法
US20220373478A1 (en) Method of calibrating coordinate position identification accuracy of laser surface inspection apparatus and method of evaluating semiconductor wafer
JP2001153635A (ja) 半導体ウェ−ハの品質評価方法
JP2005043277A (ja) 半導体ウエーハの品質評価方法
JP2024140298A (ja) 欠陥領域の判定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799498

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201709206W

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 15573058

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177034033

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016799498

Country of ref document: EP