WO2016189757A1 - 空間殺菌装置及び空間除臭装置 - Google Patents

空間殺菌装置及び空間除臭装置 Download PDF

Info

Publication number
WO2016189757A1
WO2016189757A1 PCT/JP2015/076596 JP2015076596W WO2016189757A1 WO 2016189757 A1 WO2016189757 A1 WO 2016189757A1 JP 2015076596 W JP2015076596 W JP 2015076596W WO 2016189757 A1 WO2016189757 A1 WO 2016189757A1
Authority
WO
WIPO (PCT)
Prior art keywords
hypochlorous acid
space
concentration
acid water
water
Prior art date
Application number
PCT/JP2015/076596
Other languages
English (en)
French (fr)
Inventor
千草 尚
修介 森田
高橋 健
大川 猛
松田 秀三
正 柳沢
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN201580043868.2A priority Critical patent/CN106659811B/zh
Priority to JP2017520202A priority patent/JP6448781B2/ja
Publication of WO2016189757A1 publication Critical patent/WO2016189757A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/3481Organic compounds containing oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/04Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Definitions

  • Embodiments of the present invention relate to a space sterilization device and a space deodorization device.
  • suspended bacteria are sterilized by spraying hypochlorous acid water into the space for the purpose of sterilizing bacteria floating in the air or deodorizing the space, and methyl mercaptan and toilet odors are deodorized.
  • Devices that spray into the space for the purpose of deodorization are also sold.
  • hypochlorous acid water having a concentration of 50 to 150 ppm is sprayed on methyl mercaptan in a sealed space of 8.1 m 3 to obtain a deodorizing effect.
  • concentration in the space that is effective for sterilization and deodorization due to variations and inactivation is unknown.
  • the problem of the embodiment of the present invention is to define the concentration of hypochlorous acid that is not adversely affected by hypochlorous acid water and that can sufficiently sterilize and deodorize the space to be treated, and maintain that concentration.
  • An object of the present invention is to provide a space sterilization apparatus that can perform such a process.
  • the apparatus includes a hypochlorous acid water supply unit that supplies gaseous and / or mist-like hypochlorous acid water to the processing space, and the concentration of hypochlorous acid in the processing space is 400 ppb or more.
  • a space sterilization apparatus characterized by being 500 ppm is provided.
  • FIG. 1 is a diagram illustrating an example of a hypochlorous acid state diagram.
  • Drawing 2 is a mimetic diagram showing an example of composition of a space sterilizer of an embodiment.
  • FIG. 3 is a schematic diagram illustrating an example of a hypochlorous acid water supply unit that can be used in the embodiment.
  • Drawing 4 is a mimetic diagram showing an example of a sterilizer concerning an embodiment.
  • FIG. 5 is a graph showing the relationship between the theoretical space spray amount and the amount of effective hypochlorous acid.
  • FIG. 6 is a graph showing the relationship between the theoretical space spray amount and the amount of effective hypochlorous acid.
  • FIG. 7 is a graph showing the relationship between the supplied hypochlorous acid concentration and the spatial hypochlorous acid concentration.
  • FIG. 1 is a diagram illustrating an example of a hypochlorous acid state diagram.
  • Drawing 2 is a mimetic diagram showing an example of composition of a space sterilizer of an embodiment.
  • FIG. 3 is a schematic diagram
  • FIG. 8A is a photograph showing the bactericidal effect of okra general bacteria by the culture method.
  • FIG. 8B is a photograph showing the bactericidal effect of okra general bacteria by the culture method.
  • FIG. 8C is a photograph showing the bactericidal effect of okra general bacteria by the culture method.
  • FIG. 8D is a photograph showing the bactericidal effect of okra general bacteria by the culture method.
  • FIG. 9 is a diagram illustrating an example of an electrolysis apparatus for creating acidic electrolyzed water applicable to the embodiment.
  • FIG. 10 is a graph showing the relationship between the effective abundance of hypochlorous acid and the amount of gas decomposition.
  • FIG. 11 is a graph showing an example of the relationship between the dry mist supply amount and the sterilization time.
  • FIG. 12 is a graph showing another example of the relationship between the dry mist supply amount and the sterilization time.
  • the space sterilization apparatus includes a hypochlorous acid water supply unit that supplies gaseous and / or mist-like hypochlorous acid water to the treated space, and hypochlorous acid in the treated space.
  • the acid concentration can be 400 ppb to 500 ppm.
  • the space deodorization apparatus concerning 2nd Embodiment contains the hypochlorous acid water supply part which supplies gaseous and / or fog-like hypochlorous acid water to a to-be-processed space, In the said to-be-processed space
  • the hypochlorous acid concentration can be 400 ppb to 500 ppm.
  • gaseous and / or mist-like hypochlorous acid water is supplied to the processing space by the hypochlorous acid water supply unit, and the hypochlorous acid concentration in the processing space is set to 400 ppb to 500 ppm.
  • sterilization means killing at least a part of the bacteria in the treated space.
  • Deodorization refers to inhibiting the growth of bacteria and preventing the generation or emission of odors.
  • Hypochlorous acid water contains hypochlorous acid molecules (HClO) and hypochlorite ions (ClO ⁇ ) in equilibrium, and HClO has a stronger bactericidal power than ClO soot.
  • the constituent ratio of the two changes depending on the pH, and the ratio of ClO ⁇ is high in the alkaline region, and HClO is increased in the weakly acidic region, so that strong sterilizing power can be exhibited.
  • the sterilizing power of chlorine gas (Cl 2 ) is lower than that of ClO soot.
  • FIG. 1 shows an example of a hypochlorous acid phase diagram at a temperature of 25 ° C., for example.
  • the electrolyzed water is strongly acidic electrolyzed water in the SA region, weakly acidic electrolyzed water in the WA region, slightly acidic electrolyzed water in the MA region, and electrolyzed sub-aqueous water in the AI region.
  • the hypochlorous acid water supply unit can include a vaporizer that makes the hypochlorous acid water in a gaseous state, or a spraying device that makes it mist.
  • the space sterilization apparatus which concerns on embodiment can further contain the system which measures hypochlorous acid concentration.
  • a system for measuring hypochlorous acid concentration includes, for example, a container for collecting gaseous and / or mist-like hypochlorous acid water in a processing space, A hypochlorous acid water collecting unit containing a fluorescent reagent that emits light by reacting with chloric acid and a luminescence intensity measuring unit are included, and the hypochlorous acid concentration can be calculated from the luminescence intensity.
  • a fluorescent reagent used is aminophenylfluorescein (APF) reagent.
  • the APF reagent has high reactivity to hypochlorous acid and generates a fluorescent compound by oxidation.
  • the system for measuring hypochlorous acid concentration is, for example, hypochlorous acid water having a container for collecting gaseous and / or mist-like hypochlorous acid water in the space to be treated.
  • a hypochlorous acid water sampling unit including pure water contained in the sampling unit and the container, and an effective chlorine concentration meter for measuring the effective chlorine concentration in the pure water recovered from the container can be included.
  • the effective chlorine concentration meter used iodine absorption photometry or DPD method is used, hypochlorous acid in the collected pure water is colored by reaction to measure the effective chlorine concentration, and hypochlorous acid is measured based on the effective chlorine concentration.
  • the chloric acid concentration can be calculated.
  • the hypochlorous acid concentration can be preferably 500 ppb to 200 ppm. If it is less than 500 ppb, a sufficient sterilizing effect cannot be obtained, and if it exceeds 200 ppm, the metal in the device or space tends to rust.
  • the space sterilization apparatus according to the embodiment is also connected to the intake device that sucks air in the processing space, and the intake device and the hypochlorous acid water supply unit, and the air introduced by the intake device is gaseous and / or A sterilization part sterilized using a mist-like hypochlorous acid water can be further included.
  • FIG. 2 the schematic diagram showing an example of a structure of the space sterilizer provided with the intake device is shown.
  • this space sterilizer is connected to an intake device 51, a hypochlorous acid water supply unit 56, a sterilization unit 54 connected to the intake device 51 and a hypochlorous acid water supply unit 56, and a sterilization unit 54.
  • the exhaust portion 57 is included.
  • a dust removal filter 52 that removes coarse dust can be optionally provided upstream of the intake device 51.
  • the intake device 51 includes an intake duct 58 and an intake fan 53.
  • the sterilization unit 54 the air introduced into the sterilization unit 54 from the space to be treated by the intake device 51 is sterilized using gaseous and / or mist-like hypochlorous acid water, and again enters the space to be treated through the exhaust unit 57. Can be discharged.
  • the hypochlorous acid concentration in the sterilization unit 54 can be measured by an effective chlorine concentration meter, an APF reagent, or the like, and can be preferably 500 ppb to 200 ppm. If it is less than 500 ppb, a sufficient sterilizing effect cannot be obtained, and if it exceeds 200 ppm, metal corrosion proceeds due to metal oxidation in the apparatus due to corrosive gas generated due to equilibrium and the like, and the apparatus life tends to be shortened.
  • FIG. 3 an example of the hypochlorous acid water supply part which can be used for embodiment is shown. As illustrated, the hypochlorous acid water supply unit 1 includes a tank 10, a pipe 11, a pump 12, a spray device 13, and a controller 14.
  • the tank 10 stores hypochlorous acid water which is an example of sterilizing water.
  • the hypochlorous acid water is appropriately replenished manually by a water supply port provided in the tank 10 or by a power source such as a pump through a water supply pipe connected to the tank 10.
  • One end of the pipe 11 is connected to the bottom surface of the tank 10, for example, and the other end is connected to the spraying device 13.
  • the pump 12 functions as a liquid feeding device that supplies hypochlorous acid water in the tank 10 to the spray device 13, and is provided in the pipe 11.
  • the pump 12 can adjust the flow rate of hypochlorous acid water to be sent to the spraying device 13 by, for example, variable control of the rotation speed.
  • hypochlorous acid water feeding from the tank 10 to the spraying device 13 may be performed using a water head pressure or the like.
  • the flow rate of hypochlorous acid water sent to the spraying device 13 can be adjusted by providing the piping 11 with an electromagnetic valve having a variable opening degree.
  • the spray device 13 includes a housing 15 having an intake port 15 a and an exhaust port 15 b, and a vaporizer 16 and a fan 17 housed in the housing 15.
  • the pipe 11 extends into the housing 15 and is connected to the vaporizer 16.
  • the vaporizer 16 vaporizes hypochlorous acid water supplied via the pipe 11 and discharges a sterilizing component to the space.
  • the vaporizer 16 also generates mist having a relatively small particle size.
  • an ultrasonic method can be employed as a vaporization method that does not mainly generate mist.
  • the vaporizer 16 vibrates the hypochlorous acid water supplied through the pipe 11 and the hypochlorous acid water stored in the container by ultrasonic waves so that the hypochlorous acid water is vibrated from the liquid surface.
  • An ultrasonic vibrator that generates mist of chloric acid water.
  • a method of vaporizing (atomizing) the hypochlorous acid water by discharging the hypochlorous acid water from a nozzle having a fine hole, etc. May be adopted.
  • the fan 17 sends the vaporized hypochlorous acid water and mist generated by the vaporizer 16 to the outside of the housing 15.
  • the controller 14 includes, for example, a processor that plays a central role in the control of the first sterilizer 1, a memory that stores various setting conditions and computer programs executed by the processor, a power supply device that generates voltages to be supplied to the respective units, and the like. Yes.
  • the controller 14 controls the pump 12, the vaporizer 16, the fan 17, and the like. In the example of FIG.
  • an input / output device 18 including a display device such as an indicator lamp or a display, an input device such as a button or a switch, and an audio output device such as a speaker is connected to the controller 14.
  • vaporized sterilizing water hyperochlorous acid water
  • a display device such as an indicator lamp or a display
  • an input device such as a button or a switch
  • an audio output device such as a speaker
  • hypochlorous acid water for example, electrolyzed water obtained by electrolysis of an aqueous electrolyte solution containing sodium chloride, potassium chloride, or inorganic chloride can be used.
  • the effective chlorine concentration in hypochlorous acid water is preferably 10 to 200 ppm.
  • the hypochlorous acid water preferably has a pH of 7 or less.
  • the space sterilization apparatus in FIG. 2 can be used as a space deodorization apparatus, and the hypochlorous acid water supply unit in FIG. 3 is applicable to the space deodorization apparatus.
  • the hypochlorous acid water When used as a space deodorizer, the hypochlorous acid water preferably has a pH of 3 to 7.
  • Example 1 In Example 1, the spatial abundance of hypochlorous acid was calculated using a fluorescent reagent as described below, and the bactericidal effect of okra general bacteria was evaluated. Calculation of Space Amount of Hypochlorous Acid The inventors first determined the space abundance of hypochlorous acid due to the difference in pH and the difference in spray form as follows. In FIG. 4, the schematic diagram showing the sterilizer applicable to Example 1 is shown. First, since deactivation was predicted, a sealed space 20 having a width of 3 m, a depth of 4 m, and a height of 2 m was prepared for experiments.
  • Sekisui Medical's APF reagent 5000-fold diluted solution is placed in 20 ml portions of the first, second, and third petri dishes, and the first, second, and third hypochlorous acid water collection units 22, 23, 24 It was created.
  • the space sterilizer 25 is provided in the sealed space 20 and supplies hypochlorous acid water to the hypochlorous acid water supply unit 1 having the same configuration as in FIG. 3 and the floor 21 of the sealed space 20.
  • Hypochlorous acid water having an effective chlorine concentration of 50 mg / L obtained on the anode side by electrolyzing sodium chloride with a two-partition, three-chamber electrolyzed water generator was prepared at pH 3 and pH 6.
  • the pH was adjusted by adding electrolytic alkaline water obtained on the cathode side of the apparatus.
  • the obtained hypochlorous acid water was applied to the hypochlorous acid water supply part of this sterilizer 25, for example, and each was sprayed in sealed space for 2 hours.
  • the actual spray amount of hypochlorous acid water was determined from the difference in the weight of hypochlorous acid water before and after spraying.
  • the theoretical space spray amount per hour was obtained from the space volume.
  • the fluorescence emission intensity in the petri dish after 30 minutes, 1 hour, and 2 hours was measured using a spectrofluorometer not shown. From the measurement results, the amount of hypochlorous acid water dropped on the petri dish after 30 minutes, 1 hour, and 2 hours was calculated. Furthermore, after spraying, in order to confirm the presence or absence of hypochlorous acid water floating on the petri dish, leave it in the same place for 2 hours, and calculate the sum of the amount of hypochlorous acid water during and after spraying as the volume of the cylinder on the petri dish. The amount of hypochlorous acid water above was calculated, and the concentration of hypochlorous acid as a spatial abundance was calculated.
  • the emission intensity was measured using an RF-5300PC manufactured by Shimadzu Corporation as a spectrofluorometer at an excitation wavelength of 490 nm and a fluorescence wavelength of 526 nm.
  • the calibration curve was obtained from the emission intensity of hypochlorous acid water having a known concentration directly added to a reagent 5000 times that of APF.
  • FIG. 5 shows the relationship between the amount of theoretical space spray obtained from the change in weight when spraying hypochlorous acid water having an effective chlorine concentration of 50 ppm at pH 3 and the amount of supplemented hypochlorous acid. The graph figure to represent is shown.
  • a graph 31, a graph 32, and a graph 33 respectively show a first hypochlorous acid water collection unit 22, a second hypochlorous acid water collection unit 23, and a third hypochlorous acid water collection unit.
  • the measurement result in 24 petri dishes is shown.
  • Graph 30 shows the theoretical total spray amount. From FIG. 5, it can be seen that in the case of pH 3, the effective spatial abundance of hypochlorous acid is 20 to 30% of the theoretical space spray amount.
  • FIG. 6 is a graph showing the relationship between the theoretical spray amount obtained from the change in weight when 50 ppm hypochlorous acid water having a pH of 6 is sprayed with a vaporization apparatus and the amount of supplemented hypochlorous acid water. The figure is shown.
  • a graph 41, a graph 42, and a graph 43 are respectively a first hypochlorous acid water collection unit 22, a second hypochlorous acid water collection unit 23, and a third hypochlorous acid water collection unit.
  • the measurement result in 24 petri dishes is shown.
  • the graph 40 shows the theoretical total spray amount. From FIG. 6, it can be seen that the effective amount of hypochlorous acid present in space is 20 to 50% of the theoretical space spray amount at pH 6. Bactericidal effect of general bacteria of okra The first hypochlorous acid water collecting unit 22, the second hypochlorous acid water collecting unit 23, and the third hypochlorous acid water collecting unit 24 of the experimental closed space 20 Okra placed on a petri dish was placed in the vicinity.
  • Hypochlorous acid water having an effective chlorine concentration of 50 mg / L was prepared at pH 3 and pH 6, and the effective abundance of hypochlorous acid was 0 ppb, 200 ppb, 400 ppb, 500 ppb, 5 ppm, 50 ppm, 200 ppm, 500 ppm.
  • the theoretical spray amount was set so as to be, and each was exposed for 2 hours.
  • a chlorine gas sensor Toxile-2-CL2 manufactured by Nippon Toxilay Systems
  • Graphs 81 and 82 are spatial concentrations after 2 hours when hypochlorous acid having various concentrations of pH 3 and pH 6 was sprayed at 200 ml / hour in the experimental space, respectively.
  • hypochlorous acid having a concentration of 130 mg / L at pH 3 for 2 hours and hypochlorous acid having a concentration of 100 mg / L at pH 6 Water can be sprayed continuously for 2 hours. Moreover, spraying can be performed at regular intervals even if it is not continuous, depending on the desired space abundance.
  • FIG. 8A shows the number of general bacteria of okra when the spatial abundance is 0 ppb.
  • 8B shows the general bacterial count of okra at 5 ppm, FIG. 8C at 50 ppm, and FIG.
  • this electrolyzed water generating apparatus 150 includes a three-chamber electrolytic cell comprising an anode chamber 154, a cathode chamber 155, and an intermediate chamber 151 provided between the anode chamber 154 and the cathode chamber 155. 158.
  • the intermediate chamber 151 includes a saturated saline reservoir 161 that stores a saturated saline solution 165 and a residual salt 166 that is the inorganic chloride as an aqueous electrolyte solution containing inorganic chloride, a salt water circulation pump 162, and a saline solution supply line 169. It is connected to the provided saturated saline circulation system 163, and a substantially saturated saline solution 165 is always supplied.
  • the anode chamber 154 and the cathode chamber 155 are connected to the water supply system 164 and are always supplied with fresh water.
  • the intermediate chamber 151 and the anode chamber 154 are partitioned by an anion exchange membrane 152, and the intermediate chamber 151 and the cathode chamber 155 are partitioned by a cation exchange membrane 153.
  • the anode chamber 154 includes an anode electrode 156, and the cathode chamber 155 includes a cathode electrode 157, to which positive and negative voltages are applied, respectively.
  • the chlorine ions in the intermediate chamber 151 are pulled by the anode electrode 156, pass through the anion exchange membrane 152, move to the anode chamber 154, pass electrons to the anode electrode 156, become chlorine gas, Reacts to produce hypochlorous acid and hydrochloric acid.
  • the acidic electrolyzed water containing hypochlorous acid and hydrochloric acid is taken out through the acidic electrolyzed water line 167 together with chlorine gas that cannot be dissolved in the acidic electrolyzed water.
  • sodium ions in the intermediate chamber 151 are pulled by the cathode electrode 157, pass through the cation exchange membrane 153, move to the cathode chamber 155, and hydrogen ions whose water is decomposed at the cathode electrode 157 receive electrons.
  • This aqueous solution of sodium hydroxide is taken out through an alkaline electrolyzed water line 171 as alkaline electrolyzed water.
  • the inorganic chloride used in the embodiment include sodium chloride and potassium chloride. In this case, as the alkaline electrolyzed water, a sodium hydroxide aqueous solution and a potassium hydroxide aqueous solution are obtained, respectively.
  • Example 2 In Example 2, the space abundance of hypochlorous acid was calculated using a reagent other than the fluorescent reagent, and the gas decomposition performance of methyl mercaptan was evaluated as a deodorizing effect.
  • a hypochlorous acid water supply unit is provided with a sonic sprayer, a hypochlorous acid water sampling unit such as a petri dish, and a space deodorizer including an effective chlorine concentration meter.
  • a certain amount of methyl mercaptan gas 100 ppm / N 2 was injected into the experimental booth, and the methyl mercaptan concentration in the booth was set to 3 ppm.
  • CGI Corporation ultrasonic sprayer Area Clean CS-P102 was installed in the booth and sprayed with hypochlorous acid water.
  • the amount of methyl mercaptan gas decomposed by the spatial concentration of hypochlorous acid water was measured.
  • the concentration of the methyl mercaptan gas was measured by using a gas sampling device GV-110 manufactured by Gastec Co., Ltd. It was measured with 70 L (mercaptan detector tube).
  • the spatial concentration 20 ml of water was put on the petri dish, the petri dish was taken out after a certain time, and the effective chlorine concentration of the water was measured by the iodine reagent absorptiometry using AQUAB AQ-102 manufactured by Shibata Chemical.
  • FIG. 10 is a graph showing the relationship between the amount of gas decomposition of methyl mercaptan (initial gas concentration ⁇ residual amount of gas) with respect to the effective space abundance of hypochlorous acid.
  • 83 represents the methyl mercaptan decomposition performance when pH 3 and 84 are pH 6.
  • the gas is decomposed in proportion to the HClO concentration in the space, and the ratio is 1: 1.
  • Example 2 the space abundance of hypochlorous acid was calculated using an iodine reagent and the gas decomposition performance of methyl mercaptan was evaluated. As shown in Example 1, the same evaluation should be performed using a fluorescent reagent. Is also possible.
  • Example 3 The surface of the object in the sterilization space is sterilized, but the sterilization power is defined by the sterilization concentration of the sterilization space, the sterilization treatment time, and the sterilization target (bacterial type and number (density), etc.).
  • FIG. 11 shows the relationship between the bactericidal concentration and the bactericidal treatment time required at that concentration when the gray mold fungus that has landed on the surface of okra is used as the sterilization target.
  • the horizontal axis of the graph 90 represents the hypochlorous acid dry mist supply amount ⁇ g / (m 2 ⁇ min) supplied per unit area per unit time.
  • the amount of hypochlorous acid dry mist supplied can be calculated by a fluorescence intensity measurement method using a fluorescent reagent for detecting active oxygen (Aminophenyl Fluorescein), commonly called an APF solution.
  • the target per unit area / unit time is calculated from the amount of HCLO in the collected petri dish after a certain amount of dry hypochlorous acid water dry mist is placed in the spray space for a certain period of time in a petri dish filled with APF. Calculate the amount of hypochlorous acid dry mist supplied to the product.
  • the vertical axis indicates the sterilization processing time, and indicates the processing time required to sufficiently sterilize the target with respect to an arbitrary dry mist supply amount.
  • condition (1) For example, in a spray space using hypochlorous acid water having a concentration of 100 (mg / l) as the condition (1) and having a hypochlorous acid dry mist supply amount of 53 ⁇ g / (m 2 ⁇ min), 1.3 hours (80 minutes) It shows that an object can be sterilized by processing.
  • condition (1) 3 million gray molds on the okra surface were reduced to 7000, and after that, even if stored at 20 ° C for 1 week, it was confirmed that there was no bacterial disease. Yes.
  • the sample without sterilization treatment the occurrence of gray mold fungus is observed after 1 week under the same storage conditions.
  • the dry mist total supply amount ( ⁇ g).
  • the total amount of dry mist supplied to one okra when sterilized under condition (1) is 48 ⁇ g.
  • a dry mist supply amount of 7 ⁇ g / (m 2 ⁇ min) using hypochlorous acid water having a concentration of 25 mg / L is used, and sterilization treatment time is 24 hours, which is equivalent to condition (1).
  • a total supply amount of 112 ⁇ g and a dry mist total supply amount more than doubled are required.
  • FIG. 11 there is a sterilizing effect in the region 91 on the graph 90.
  • the sterilizing effect cannot be judged only by a simple total amount of dry mist supplied, and the sterilizing concentration supplied instantaneously affects.
  • the gray mold fungus of this example is a fungus, and it is said that bacteria represented by Escherichia coli and the like can be sterilized with a sterilizing power 1/10 that of the fungus. To do.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Immunology (AREA)
  • Plasma & Fusion (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

被処理空間にガス状及び/または霧状の次亜塩素酸水を供給する次亜塩素酸水供給部を含み、被処理空間中の次亜塩素酸濃度を400ppbないし500ppmにする空間殺菌装置。次亜塩素酸水の悪影響を受けず、かつ被処理空間内を十分に殺菌、除臭することが可能な次亜塩素酸濃度を規定し、その濃度を維持し得る空間殺菌装置を得る。

Description

空間殺菌装置及び空間除臭装置
 本発明の実施形態は、空間殺菌装置及び空間除臭装置に関する。
 従来、空気中に浮遊する菌を殺菌する目的や空間の除臭をする目的で次亜塩素酸水を空間中に噴霧することにより浮遊菌が殺菌されること、メチルメルカプタンやトイレ臭が除臭されることが知られており、除臭目的で空間中に噴霧する装置も販売されている。
 ところで、殺菌、除臭に対して室内空間に噴霧される濃度が少ないと殺菌、除臭に対して効果がなく、また多すぎると酸性ガスが充満し、空間内の金属製品が錆びたり、健康を害する等の悪影響を受ける可能性がある。
 例えば8.1mの密閉空間にあるメチルメルカプタンに対し、50~150ppmの濃度の次亜塩素酸水を25~30ml噴霧し、除臭効果が得られることが開示されているが、場所による濃度ばらつきや失活などにより除菌や除臭に効果的となる空間中の濃度は不明である。
特開2009−034025号公報 特開2009−178640号公報
第38回空気調和・衛生工学会近畿支部学術研究発表会論文集,pp.33−36
 本発明の実施形態の課題は、次亜塩素酸水の悪影響を受けず、かつ被処理空間内を十分に殺菌、除臭することが可能な次亜塩素酸濃度を規定し、その濃度を維持し得る空間殺菌装置を提供することにある。
 実施形態によれば、被処理空間にガス状及び/または霧状の次亜塩素酸水を供給する次亜塩素酸水供給部を含み、前記被処理空間中の次亜塩素酸濃度を400ppbないし500ppmにすることを特徴とする空間殺菌装置が提供される。
 図1は次亜塩素酸状態図の一例を表す図である。
 図2は実施形態の空間殺菌装置の構成の一例を表す模式図である。
 図3は実施形態に使用可能な次亜塩素酸水供給部の一例を表す模式図である。
 図4は実施形態にかかる殺菌装置の一例を表す模式図である。
 図5は理論空間噴霧量と有効な次亜塩素酸との量との関係を表すグラフ図である。
 図6は理論空間噴霧量と有効な次亜塩素酸との量との関係を表すグラフ図である。
 図7は供給した次亜塩素酸濃度と空間次亜塩素酸濃度との関係を表すグラフ図である。
 図8Aは培養法によるオクラの一般細菌の殺菌効果を表す写真である。
 図8Bは培養法によるオクラの一般細菌の殺菌効果を表す写真である。
 図8Cは培養法によるオクラの一般細菌の殺菌効果を表す写真である。
 図8Dは培養法によるオクラの一般細菌の殺菌効果を表す写真である。
 図9は実施形態に適用可能な酸性電解水を作成するための電解装置の一例を表す図である。
 図10は有効な次亜塩素酸の空間存在量とガス分解量との関係を表すグラフ図である。
 図11はドライミスト供給量と殺菌時間との関係の一例を表すグラフ図である。
 図12はドライミスト供給量と殺菌時間との関係の他の一例を表すグラフ図である。
 第1の実施形態にかかる空間殺菌装置は、被処理空間にガス状及び/または霧状の次亜塩素酸水を供給する次亜塩素酸水供給部を含み、被処理空間中の次亜塩素酸濃度を400ppbないし500ppmにすることができる。
 また、第2の実施形態にかかる空間除臭装置は、被処理空間にガス状及び/または霧状の次亜塩素酸水を供給する次亜塩素酸水供給部を含み、前記被処理空間中の次亜塩素酸濃度を400ppbないし500ppmにすることができる。
 実施形態によれば、次亜塩素酸水供給部により被処理空間にガス状及び/または霧状の次亜塩素酸水を供給して、被処理空間中の次亜塩素酸濃度を400ppbないし500ppmとすることにより、次亜塩素酸水による悪影響が無く、かつ十分な殺菌及び除臭効果が得られる。
 なお、ここでは、殺菌とは、被処理空間の菌の少なくとも一部を殺すことをいう。
 また、除臭とは、菌の繁殖を抑制し、臭気の発生、あるいは発散を防ぐことをいう。
 次亜塩素酸水は、次亜塩素酸分子(HClO)と次亜塩素酸イオン(ClO)とを平衡して含んでおり、HClOはClO ̄に比較し強い殺菌力を有する。両者の構成比率はpHによって変化し、アルカリ性領域ではClOの比率が高くなり、弱酸性領域ではHClOが多くなるため、強い殺菌力を発揮できる。なお、塩素ガス(Cl)の殺菌力は、ClO ̄の殺菌力よりも低い。
 図1に、例えば温度25℃における次亜塩素酸状態図の一例を示す。
 図中、電解水は、pHにより、SA領域では強酸性電解水、WA領域では弱酸性電解水、MA領域では微酸性電解水、AI領域では電解次亜水となっている。
 次亜塩素酸水供給部は、次亜塩素酸水をガス状にする気化装置、または霧状にする噴霧装置を含むことができる。
 また、実施形態に係る空間殺菌装置は、次亜塩素酸濃度を計測するシステムをさらに含むことができる。
 一実施形態において、次亜塩素酸濃度を計測するシステムは、例えば、被処理空間内のガス状及び/または霧状の次亜塩素酸水を採取する容器及び前記容器内に収容され、次亜塩素酸と反応して発光する蛍光試薬を含む次亜塩素酸水採取部と、発光強度計測部とを含み、発光強度から次亜塩素酸濃度を算出することができる。
 使用される蛍光試薬として、アミノフェニルフルオレセイン(APF)試薬があげられる。APF試薬は、次亜塩素酸に対して高い反応性を持ち、酸化により蛍光化合物を生成する。
 また、他の実施形態において、次亜塩素酸濃度を計測するシステムは、例えば、被処理空間内のガス状及び/または霧状の次亜塩素酸水を採取する容器を有する次亜塩素酸水採取部及び容器内に収容された純水を含む次亜塩素酸水採取部と、容器から回収した純水中の有効塩素濃度を計測する有効塩素濃度計とを含むことができる。
 使用される有効塩素濃度計として、ヨウ素吸光光度法またはDPD法を用い、回収した純水中の次亜塩素酸を反応により発色させて有効塩素濃度を計測し、有効塩素濃度に基づいて次亜塩素酸濃度を算出することができる。
 次亜塩素酸濃度は、好ましくは500ppbないし200ppmにすることができる。
 500ppb未満であると、十分な殺菌効果が得られず、200ppmを越えると装置や空間の金属が錆びやすくなる傾向がある。
 実施形態に係る空間殺菌装置はまた、被処理空間内の空気を吸気する吸気装置、及び吸気装置と次亜塩素酸水供給部に接続され、吸気装置により導入された空気をガス状及び/または霧状の次亜塩素酸水を用いて殺菌する殺菌部をさらに含むことができる。
 図2に、吸気装置を備えた空間殺菌装置の構成の一例を表す模式図を示す。
 図示するように、この空間殺菌装置は、吸気装置51、次亜塩素酸水供給部56、及び吸気装置51と次亜塩素酸水供給部56に接続された殺菌部54、殺菌部54に接続された排気部57を含む。また、吸気装置51前段には、任意に、粗い塵を取り除く除塵フィルタ52を設けることができる。吸気装置51は、吸気ダクト58及び吸気ファン53から構成される。殺菌部54では、被処理空間から吸気装置51により殺菌部54に導入された空気をガス状及び/または霧状の次亜塩素酸水を用いて殺菌し、排気部57を通して再び被処理空間に排出することができる。殺菌部54内の次亜塩素酸濃度は、有効塩素濃度計やAPF試薬等により、計測することが可能であり、好ましくは500ppbないし200ppmにすることができる。500ppb未満であると、十分な殺菌効果を得ることができず、200ppmを越えると平衡等により生じる腐食性ガスにより装置内の金属酸化により金属腐食が進み、装置寿命が短くなる傾向がある。
 図3に、実施形態に使用可能な次亜塩素酸水供給部の一例を示す。
 図示するように、次亜塩素酸水供給部1は、タンク10と、配管11と、ポンプ12と、噴霧装置13と、コントローラ14と、を備えている。
 タンク10は、殺菌水の一例である次亜塩素酸水を貯水する。この次亜塩素酸水は、タンク10が備える給水口を介して人手により、或いはタンク10に接続された給水管を介してポンプなどの動力源により、適宜に補充される。
 配管11は、一端がタンク10の例えば底面に接続されるとともに、他端が噴霧装置13に接続されている。ポンプ12は、タンク10の次亜塩素酸水を噴霧装置13に供給する送液装置として機能するものであり、配管11に設けられている。ポンプ12は、例えば回転数の可変制御により、噴霧装置13に送る次亜塩素酸水の流量を調整することができる。なお、タンク10から噴霧装置13への次亜塩素酸水の送液は、水頭圧等を利用して行われても良い。この場合においては、例えば配管11に開度が可変な電磁弁を設けることにより、噴霧装置13に送る次亜塩素酸水の流量を調整することができる。
 噴霧装置13は、吸気口15a及び排気口15bを有する筐体15と、この筐体15に収容された気化器16及びファン17と、を備えている。図3の例において、配管11は筐体15の内部に延び、気化器16に接続されている。
 気化器16は、配管11を介して供給される次亜塩素酸水を気化し、殺菌成分を空間に放出する。同時に、気化器16は粒径が比較的小さいミストも発生する。また、ミストの発生を主目的としない気化の方式としては、例えば、超音波方式を採用することができる。この場合において、気化器16は、配管11を介して供給される次亜塩素酸水を溜める容器と、超音波によりこの容器に溜められた次亜塩素酸水を振動させ、液面から次亜塩素酸水のミストを発生させる超音波振動子と、を有している。その他にも、気化器16により次亜塩素酸水を気化する方式としては、微細孔を有するノズルから次亜塩素酸水を放出することにより次亜塩素酸水を気化(霧化)する方式などを採用しても良い。さらに気化フィルタにファン等で風を当てる自然気化式がある。空間殺菌の場合には、対象物を濡らさずに殺菌することが好ましいため、発生するミスト量は少なく、かつ粒径が小さいことが望ましい。
 ファン17は、気化器16により生成された気化した次亜塩素酸水及びミストを筐体15の外部に送り出す。具体的には、ファン17の回転に伴って吸気口15aから筐体15に空気が取り込まれ、この空気が気化器16により生成された気化した次亜塩素酸水及びミストとともに排気口15bから排出(噴霧)される。ファン17の回転数の可変制御により、筐体15の外部に噴霧する気化した次亜塩素酸水等の量を調整することができる。
 コントローラ14は、例えば第1殺菌装置1の制御の中枢を担うプロセッサ、各種の設定条件やプロセッサが実行するコンピュータプログラムを記憶したメモリ、及び、各部に供給する電圧を生成する電源装置などを備えている。このコントローラ14は、ポンプ12、気化器16、及びファン17などを制御する。図3の例において、コントローラ14には、表示灯或いはディスプレイなどの表示装置、ボタン或いはスイッチ等の入力装置、及びスピーカなどの音声出力装置を備える入出力装置18が接続されている。
 このような気化した殺菌水(次亜塩素酸水)は、被処理空間の内壁を濡らさずに殺菌することができ、同時に発生する粒径の小さいミストが付着しても迅速に蒸発するため、被処理空間の内壁表面等を過度に濡らすことがない。したがって、水洗いなどに不向きな被処理物の殺菌に適している。
 次亜塩素酸水は、例えば、塩化ナトリウム、塩化カリウム、あるいは無機塩化物を含む電解質水溶液の電気分解により得られる電解水を使用することができる。
 次亜塩素酸水中の有効塩素濃度は、10ないし200ppmであることが好ましい。
 次亜塩素酸水は、pH7以下であることが好ましい。
 図2の空間殺菌装置は空間除臭装置として使用可能であり、また、図3の次亜塩素酸水供給部は空間除臭装置に適用可能である。
 空間除臭装置として使用場合、次亜塩素酸水は、pH3ないし7であることが好ましい。
 実施例1
 実施例1では、以下のように、蛍光試薬を用いて次亜塩素酸の空間存在量を算出し、オクラの一般細菌の殺菌効果を評価した。
 次亜塩素酸の空間存在量の算出
 発明者らはまずpHの違い、噴霧形態の違いによる次亜塩素酸の空間存在量を下記のように求めた。
 図4に、実施例1に適用可能な殺菌装置を表す模式図を示す。
 まず、失活などが予測されるため、実験用に幅3m、奥行き4m高さ2mの密閉空間20を用意した。
 積水メディカル製 APF試薬の5000倍希釈液を20mlずつ第1、第2、及び第3のシャーレに入れて、第1、第2、及び第3の次亜塩素酸水採取部22,23,24を作成した。
 図示するように、空間殺菌装置25は、密閉空間20内に設けられ、図3と同様の構成を有する次亜塩素酸水供給部1と、密閉空間20の床21に次亜塩素酸水供給部1に近い位置から順に配置された、第1の次亜塩素酸水採取部22、第2の次亜塩素酸水採取部23、及び第3の次亜塩素酸水採取部24と、図示しない分光蛍光光度計とを含む。
 食塩を2隔壁3室型の電解水生成装置によって電気分解することによって陽極側で得られた50mg/Lの有効塩素濃度を有する次亜塩素酸水をpH3およびpH6にて作成した。pHは同装置の陰極側で得られる電解アルカリ水を添加することにより調整した。
 得られた次亜塩素酸水を、例えばこの殺菌装置25の次亜塩素酸水供給部に適用し、各々、密閉空間に2時間噴霧した。
 次亜塩素酸水の実際の噴霧量は、噴霧した前後の次亜塩素酸水の重量の差から求めた。
 空間体積より時間当たりの理論空間噴霧量を求めた。
 それぞれ30分、1時間、2時間後のシャーレ内の蛍光発光強度を図示しない分光蛍光光度計を用いて計測した。計測結果より、30分、1時間、2時間後のシャーレ上に落下した次亜塩素酸水の量を算出した。
 さらに、噴霧後、シャーレ直上に浮遊する次亜塩素酸水の有無を確認するため、同一場所で2時間放置し、噴霧中及び噴霧後の次亜塩素酸水量の和をシャーレ直上の円柱の体積上にあった次亜塩素酸水量とし、空間存在量としての次亜塩素酸の濃度を算出した。
 なお、発光強度は、分光蛍光光度計として島津製作所製RF−5300PCを用い、励起波長490nm,蛍光波長526nmにて測定した。また、検量線は、既知の濃度の次亜塩素酸水を直接APFの5000倍試薬に投入し、その発光強度から求めた。
 図5は、気化式装置でpH3の有効塩素濃度50ppmの次亜塩素酸水を噴霧した時の重量変化から求めた理論空間噴霧量と、補足された次亜塩素酸との量との関係を表すグラフ図を示す。
 図中、グラフ31,グラフ32,グラフ33は、各々、第1の次亜塩素酸水採取部22、第2の次亜塩素酸水採取部23、及び第3の次亜塩素酸水採取部24のシャーレにおける計測結果を示す。グラフ30は、理論総噴霧量を示す。
 図5から、pH3の場合、有効な次亜塩素酸の空間存在量は理論空間噴霧量の20から30%であることがわかる。
 また、図6は、気化式装置でpH6の50ppmの次亜塩素酸水を噴霧した時の重量変化から求めた理論噴霧量と、補足された次亜塩素酸水の量との関係を表すグラフ図を示す。
 図中、グラフ41,グラフ42,グラフ43は、各々、第1の次亜塩素酸水採取部22、第2の次亜塩素酸水採取部23、及び第3の次亜塩素酸水採取部24のシャーレにおける計測結果を示す。グラフ40は、理論総噴霧量を示す。
 図6から、有効な次亜塩素酸の空間存在量はpH6の場合は理論空間噴霧量の20から50%であることがわかる。
 オクラの一般細菌の殺菌効果
 実験用密閉空間20の第1の次亜塩素酸水採取部22、第2の次亜塩素酸水採取部23、及び第3の次亜塩素酸水採取部24の近傍にシャーレに載せたオクラをそれぞれ配置した。
 50mg/Lの有効塩素濃度を有する次亜塩素酸水をpH3およびpH6にて作成し、有効な次亜塩素酸の空間存在量が、0ppb,200ppb,400ppb,500ppb,5ppm,50ppm,200ppm,500ppmとなるよう理論噴霧量を設定して、各々、2時間暴露した。また安全のため塩素ガスセンサー(日本トキシレーシステムズ社製 トキシレ−2−CL2)を空間室内にセットした。
 なお、ブース内の有効な次亜塩素酸の空間存在量は、予め実験により次亜塩素酸水の濃度、pH、単位時間あたりの噴霧量等を設定することにより調整することができる。
 図7は、供給した次亜塩素酸濃度と空間次亜塩素酸濃度との関係を表すグラフ図である。
 グラフ81,82は、それぞれ、pH3、pH6の種々の濃度の次亜塩素酸を実験空間に200ml/時間の噴霧を行った場合の2時間後の空間濃度である。
 例えば実験用密閉空間20内を200ppbにするには、pH3の場合は、130mg/Lの濃度を有する次亜塩素酸水を2時間、pH6の場合は100mg/Lの濃度を有する次亜塩素酸水を2時間、連続的に噴霧することでできる。また、噴霧は、所望の空間存在量に応じて、連続的でなくても一定時間毎に行うことができる。
 その時のオクラ表面の一般細菌を綿棒で採取して、標準寒天培地に移し、37℃のインキュベータ内で24時間培地培養した。
 上記の実験をそれぞれ4回(N1~N4)ずつ実施した。
 図8Aないし図8Dは、培養法によるオクラの一般細菌の殺菌効果を表す写真である。
 オクラの一般細菌数によれば有効な次亜塩素酸の空間存在量が400ppb以上で細菌の増殖防止効果がみられた。
 図8Aは空間存在量が0ppbの時のオクラの一般細菌数を示す。
また図8Bは5ppm、図8Cは50ppm時、図8Dは200ppm時のオクラの一般細菌数を示す。
 また、有効な次亜塩素酸の空間存在量が500ppmを越えると、塩素ガスモニターが0.5ppmを示した。
 同様にpH3の次亜塩素酸水においても実験を行った。この結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
これにおいても400ppb以上で殺菌効果がみられた。
 なお、図9に、実施例1に使用可能な2隔壁3室型の電解水生成装置の一例を表す概略図を示す。
 図示するように、この電解水生成装置150は、陽極室154と、陰極室155と、陽極室154及び陰極室155の間に設けられた中間室151との3室からなる3室型電解槽158を有する。中間室151は、無機塩化物を含む電解質水溶液として飽和食塩水165とその無機塩化物である残留塩166とを収容する飽和食塩水貯留器161、塩水循環ポンプ162、及び食塩水供給ライン169を備えた飽和食塩水循環システム163と接続され、常にほぼ飽和状態の食塩水165が供給される。一方、陽極室154及び陰極室155は、給水システム164と接続され、各々、常に新しい水が供給される。中間室151と陽極室154の間は陰イオン交換膜152で仕切られ、中間室151と陰極室155の間は陽イオン交換膜153で仕切られている。陽極室154には陽極電極156、陰極室155には陰極電極157が備えられており、それぞれにプラスとマイナスの電圧が印加されている。
 陽極室154では、中間室151中の塩素イオンが陽極電極156に引っ張られ、陰イオン交換膜152を通過して陽極室154に移動し、陽極電極156で電子を渡して塩素ガスとなり、水と反応して次亜塩素酸と塩酸を生じる。次亜塩素酸と塩酸を含む酸性電解水は、酸性電解水に溶解できない塩素ガスと共に酸性電解水ライン167を通して取り出される。
 陰極室155では、中間室151中のナトリウムイオンが陰極電極157に引っ張られ、陽イオン交換膜153を通過して陰極室155に移動し、陰極電極157で水が分解した水素イオンが電子を受け取って水素ガスとなり、水酸化ナトリウムを生じる。この水酸化ナトリウムの水溶液は、アルカリ性電解水として、アルカリ性電解水ライン171を通して取り出される。
 なお、実施形態に使用される無機塩化物として例えば塩化ナトリウム、及び塩化カリウムなどがあげられ、この場合、アルカリ性電解水としては、各々、水酸化ナトリウム水溶液、及び水酸化カリウム水溶液が得られる。
 実施例2
 実施例2では、蛍光試薬以外の試薬を使用して次亜塩素酸の空間存在量を算出し、除臭効果としてメチルメルカプタンのガス分解性能を評価した。
 まず、1mの実験用ブースを用意する。
 この実験用ブースの中に、次亜塩素酸水供給部として音波噴霧機、例えばシャーレなどの次亜塩素酸水採取部、及び有効塩素濃度計を含む空間防臭装置が設けられている。
 例えば実験用ブース中にメチルメルカプタンガス100ppm/Nを一定量注入し、ブース内のメチルメルカプタン濃度を3ppmに設定した。さらに、ブース内に株式会社CGI製超音波噴霧機エリアクリンCS−P102を設置し、次亜塩素酸水を噴霧した。次亜塩素酸水の空間濃度によるメチルメルカプタンガスの分解量を測定した。
 メチルメルカプタンガスの濃度はガステック製気体採取器GV−110を用い、同社製ガス検知管No.70L(メルカプタン類検知管)にて測定した。空間濃度はシャーレ上に20mlの水を入れ、一定時間後にシャーレを取り出し、その水の有効塩素濃度を柴田化学製AQUAB AQ−102を用いヨウ素試薬吸光光度法により測定し、そのデータよりブース内の次亜塩素酸濃度を求めた。
 有効な次亜塩素酸の空間存在量に対するメチルメルカプタンのガス分解量(初期ガス濃度−ガス残存量)との関係を表すグラフ図を図10に示す。
 図中、83がpH3,84がpH6のときのメチルメルカプタン分解性能を表す。
 図示するように、空間内のHClO濃度に比例してガスが分解され、またその比率が1:1であることがわかる。
 実施例2ではヨウ素試薬を用いて次亜塩素酸の空間存在量を算出し、メチルメルカプタンのガス分解性能を評価したが、実施例1に示すように蛍光試薬を用いて同様の評価を行うことも可能である。
 実施例3
 殺菌空間においた対象物は、その表面が殺菌されるが、その殺菌力は殺菌空間の殺菌濃度、殺菌処理時間、殺菌対象物(菌種類と数(密度)など)にて規定される。
 図11は、オクラの表面に着床した灰色かび病菌を殺菌対象物とした場合の、殺菌濃度と、その濃度にて必要な殺菌処理時間との関係を示している。
 グラフ90の横軸は、単位面積当たりに単位時間供給される次亜塩素酸ドライミスト供給量μg/(m・分)を表している。次亜塩素酸ドライミスト供給量は、活性酸素検出用蛍光試薬(Aminophenyl Fluorescein)、通称APF液を用いた蛍光強度測定法より算出できる。
 ここでは、APF液で満たしたφ84mmのシャーレを所定の濃度の次亜塩素酸水のドライミストを噴霧空間に一定時間設置後に、回収したシャーレ内のHCLO量から、単位面積・単位時間あたりの対象物への次亜塩素酸ドライミスト供給量を算出する。
 一方で、縦軸は、殺菌処理時間を示しており、任意のドライミスト供給量に対して、対象を十分に殺菌するために必要な処理時間を示している。例えば条件(1)として100(mg/l)の濃度の次亜塩素酸水を用いた、次亜塩素酸ドライミスト供給量が53μg/(m・分)の噴霧空間では、1.3時間(80分)処理すれば対象物を殺菌できることを示している。実際に条件(1)で殺菌した場合、オクラ表面に300万個いた灰色かび病菌が7000個まで減少し、その後に20℃にて一週間保管しても菌の発病がない事を確認している。一方で、殺菌処理無しのサンプルでは、同保管条件にて1週間後には灰色かび病菌の発病が観測される。
 また、オクラの表面積を113cm仮定して、ドライミスト供給量に表面積と処理時間を掛けた値がオクラ1本の表面に噴霧されたドライミストの総供給量となる。以下、ドライミスト総供給量(μg)とする。
 条件(1)で殺菌処理した場合のオクラ1本に供給されたドライミスト総供給量は48μgとなる。
 また、条件(2)では、25mg/Lの濃度の次亜塩素酸水を用いた、ドライミスト供給量7μg/(m・分)で、殺菌処理時間24時間、条件(1)と同等の殺菌効果を得るためには総供給量112μgと2倍以上のドライミスト総供給量が必要である。図11ではグラフ90の上の領域91で殺菌効果がある。つまり殺菌効果は単純なドライミスト総供給量だけでは判断できず、瞬間的に供給する殺菌濃度が影響することがわかる。
 また、本例の灰色かび病菌は真菌であり、大腸菌などに代表される細菌は真菌の1/10の殺菌力で殺菌できると言われているため、殺菌効果がある噴霧空間を図12で定義する。
 以上の結果から、殺菌処理時間y(時間)と次亜塩素酸ドライミスト供給量x(μg/(m・分)との関係において、図12のグラフ92で表されるy=16.217x−1.384以上の領域93すなわち下記式(1)
y≧16.217x−1.384…(1)
を満足するとき、殺菌効果がある噴霧空間とすることができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 20…密閉空間、22,23,24…次亜塩素酸水採取部、25…空間殺菌装置

Claims (22)

  1.  被処理空間にガス状及び/または霧状の次亜塩素酸水を供給する次亜塩素酸水供給部を含み、前記被処理空間中の次亜塩素酸濃度を400ppbないし500ppmにする空間殺菌装置。
  2.  次亜塩素酸水供給部は、次亜塩素酸水をガス状にする気化装置、または霧状にする噴霧装置を含む請求項1に記載の空間殺菌装置。
  3.  前記被処理空間中の前記次亜塩素酸濃度を計測するシステムをさらに含む請求項1または2に記載の空間殺菌装置。
  4.  前記被処理空間中の前記次亜塩素酸濃度を計測するシステムは、前記被処理空間内の前記ガス状及び/または霧状の次亜塩素酸水を採取する容器及び前記容器内に収容され、前記次亜塩素酸と反応して発光する蛍光試薬を含む次亜塩素酸水採取部と、発光強度計測部とを含み、発光強度から前記次亜塩素酸濃度を算出する請求項3に記載の空間殺菌装置。
  5.  前記蛍光試薬は、アミノフェニルフルオレセイン試薬である請求項4に記載の空間殺菌装置。
  6.  前記被処理空間中の前記次亜塩素酸濃度を計測するシステムは、前記被処理空間内の前記ガス状及び/または霧状の次亜塩素酸水を採取する容器を有する次亜塩素酸水採取部及び前記容器内に収容された純水を含む次亜塩素酸水採取部と、前記容器から回収した純水中の有効塩素濃度を計測する有効塩素濃度計とを含む請求項3に記載の空間殺菌装置。
  7.  前記有効塩素濃度計は、ヨウ素吸光光度法またはDPD法を用い、回収した純水中の次亜塩素酸を反応により発色させて有効塩素濃度を計測し、前記有効塩素濃度に基づいて次亜塩素酸濃度を算出する請求項6に記載の空間殺菌装置。
  8.  前記被処理空間中の前記次亜塩素酸濃度は、500ppbないし200ppmである請求項1ないし7のいずれか1項に記載の空間殺菌装置。
  9.  前記次亜塩素酸水中のpHは、7以下である請求項1ないし7のいずれか1項に記載の空間殺菌装置。
  10.  被処理空間内の空気を吸気する吸気装置、及び前記吸気装置と前記次亜塩素酸水供給部に接続され、前記吸気装置により導入された空気を前記ガス状及び/または霧状の次亜塩素酸水を用いて殺菌する殺菌部を具備する請求項1ないし9のいずれか1項に記載の空間殺菌装置。
  11.  殺菌処理時間y(時間)と、単位面積、単位時間当たりに供給される次亜塩素酸ドライミスト供給量x(μg/(m・min)との関係が下記式(1)を満足する請求項1ないし10のいずれか1項に記載の空間殺菌装置。
     y≧16.217x−1.384…(1)
  12.  被処理空間にガス状及び/または霧状の次亜塩素酸水を供給する次亜塩素酸水供給部を含み、前記被処理空間中の次亜塩素酸濃度を400ppbないし500ppmにする空間除臭装置。
  13.  次亜塩素酸水供給部は、次亜塩素酸水をガス状にする気化装置、または霧状にする噴霧装置を含む請求項12に記載の空間除臭装置。
  14.  前記次亜塩素酸濃度を計測するシステムをさらに含む請求項12または13に記載の空間除臭装置。
  15.  前記次亜塩素酸濃度を計測するシステムは、前記被処理空間内の前記ガス状及び/または霧状の次亜塩素酸水を採取する容器及び前記容器内に収容され、前記次亜塩素酸と反応して発光する蛍光試薬を含む次亜塩素酸水採取部と、発光強度計測部とを含み、発光強度から前記次亜塩素酸濃度を算出する請求項14に記載の空間除臭装置。
  16.  前記蛍光試薬は、アミノフェニルフルオレセイン試薬である請求項15に記載の空間除臭装置。
  17.  前記次亜塩素酸濃度を計測するシステムは、前記被処理空間内の前記ガス状及び/または霧状の次亜塩素酸水を採取する容器を有する次亜塩素酸水採取部及び前記容器内に収容された純水を含む次亜塩素酸水採取部と、前記容器から回収した純水中の有効塩素濃度を計測する有効塩素濃度計とを含む請求項14に記載の空間除臭装置。
  18.  前記有効塩素濃度計は、ヨウ素吸光光度法またはDPD法を用い、回収した純水中の次亜塩素酸を反応により発色させて有効塩素濃度を計測し、前記有効塩素濃度に基づいて次亜塩素酸濃度を算出する請求項17に記載の空間除臭装置。
  19.  前記次亜塩素酸濃度は、1ないし200ppmである請求項12ないし18のいずれか1項に記載の空間除臭装置。
  20.  前記次亜塩素酸水中のpHは、3ないし7である請求項12ないし18のいずれか1項に記載の空間除臭装置。
  21.  被処理空間内の空気を吸気する吸気装置、及び前記吸気装置と前記次亜塩素酸水供給部に接続され、前記吸気装置により導入された空気を前記ガス状及び/または霧状の次亜塩素酸水を用いて殺菌する殺菌部を具備する請求項12ないし20のいずれか1項に記載の空間除臭装置。
  22.  殺菌処理時間y(時間)と、単位面積、単位時間当たりに供給される次亜塩素酸ドライミスト供給量x(μg/(m・min)との関係が下記式(1)を満足する請求項12ないし21のいずれか1項に記載の空間除臭装置。
     y≧16.217x−1.384…(1)
PCT/JP2015/076596 2015-05-22 2015-09-11 空間殺菌装置及び空間除臭装置 WO2016189757A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580043868.2A CN106659811B (zh) 2015-05-22 2015-09-11 空间杀菌装置及空间除臭装置
JP2017520202A JP6448781B2 (ja) 2015-05-22 2015-09-11 空間殺菌装置及び空間除臭装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015104600 2015-05-22
JP2015-104600 2015-05-22

Publications (1)

Publication Number Publication Date
WO2016189757A1 true WO2016189757A1 (ja) 2016-12-01

Family

ID=57392670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076596 WO2016189757A1 (ja) 2015-05-22 2015-09-11 空間殺菌装置及び空間除臭装置

Country Status (3)

Country Link
JP (2) JP6448781B2 (ja)
CN (1) CN106659811B (ja)
WO (1) WO2016189757A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180082022A (ko) * 2017-01-09 2018-07-18 김재량 차아염소산을 이용한 살균 탈취 설비 및 이를 이용한 살균 탈취 방법
JP2018183082A (ja) * 2017-04-25 2018-11-22 株式会社東芝 電解水を用いた青果物の処理方法
WO2019142599A1 (ja) * 2018-01-22 2019-07-25 パナソニックIpマネジメント株式会社 空間環境制御システム、空間環境制御装置及び空間環境制御方法
JPWO2019142647A1 (ja) * 2018-01-22 2020-11-26 パナソニックIpマネジメント株式会社 空間環境制御システム、空間環境制御装置及び空間環境制御方法
WO2021060138A1 (ja) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 空間浄化装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021634A1 (ja) * 2017-07-28 2019-01-31 パナソニックIpマネジメント株式会社 電解水散布装置
CN111481723B (zh) * 2020-04-17 2022-02-01 重庆有艾生物科技有限公司 一种运用弱酸性次氯酸消毒液在聚集性场所进行空气动态消毒的集成技术与方法
JP7403048B2 (ja) 2021-05-14 2023-12-22 パナソニックIpマネジメント株式会社 空間浄化装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111345A1 (ja) * 2006-03-29 2007-10-04 The University Of Tokyo 活性酸素測定用試薬
WO2008035795A1 (fr) * 2006-09-21 2008-03-27 Gouda Co., Ltd. Procédé de prévention et de traitement de maladie avec de l'acide hypochloreux
JP2011050702A (ja) * 2009-09-04 2011-03-17 Es Technology Kk 除菌・消臭方法および除菌・消臭装置
JP2013148327A (ja) * 2011-12-20 2013-08-01 Life Network Co Ltd ミストによる空気清浄装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204653A (ja) * 1994-01-21 1995-08-08 Sanden Corp 噴霧用殺菌水及び噴霧用殺菌水を用いた殺菌方法
JPH11169441A (ja) * 1997-12-16 1999-06-29 Yoshiya Okazaki 屋内殺菌方法
JP2004141429A (ja) * 2002-10-24 2004-05-20 N & S:Kk 殺菌方法及び殺菌水
CN2630259Y (zh) * 2003-06-06 2004-08-04 中国兵器工业第二○八研究所 次氯酸钠消毒液发生器
JP2005013714A (ja) * 2004-05-07 2005-01-20 Tatsuo Okazaki 屋内空間殺菌方法及び装置
JP4944740B2 (ja) * 2007-11-19 2012-06-06 大幸薬品株式会社 亜塩素酸イオンの測定方法
WO2009139452A1 (ja) * 2008-05-16 2009-11-19 国立大学法人東京大学 活性酸素測定用試薬
JP2011087905A (ja) * 2009-09-28 2011-05-06 Sanyo Electric Co Ltd 空気除菌装置
JP5581546B2 (ja) * 2010-01-27 2014-09-03 甲 清光 環境浄化方法及び環境浄化装置
KR20120082982A (ko) * 2011-01-17 2012-07-25 한국돌기 주식회사 실내 공기 유동이 있는 실내 공간의 공기 살균 시스템 및 그 방법
CN102818802A (zh) * 2012-05-29 2012-12-12 山西大学 一种检测次氯酸根的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111345A1 (ja) * 2006-03-29 2007-10-04 The University Of Tokyo 活性酸素測定用試薬
WO2008035795A1 (fr) * 2006-09-21 2008-03-27 Gouda Co., Ltd. Procédé de prévention et de traitement de maladie avec de l'acide hypochloreux
JP2011050702A (ja) * 2009-09-04 2011-03-17 Es Technology Kk 除菌・消臭方法および除菌・消臭装置
JP2013148327A (ja) * 2011-12-20 2013-08-01 Life Network Co Ltd ミストによる空気清浄装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180082022A (ko) * 2017-01-09 2018-07-18 김재량 차아염소산을 이용한 살균 탈취 설비 및 이를 이용한 살균 탈취 방법
KR101899898B1 (ko) 2017-01-09 2018-09-18 김재량 차아염소산을 이용한 살균 탈취 설비 및 이를 이용한 살균 탈취 방법
JP2018183082A (ja) * 2017-04-25 2018-11-22 株式会社東芝 電解水を用いた青果物の処理方法
WO2019142599A1 (ja) * 2018-01-22 2019-07-25 パナソニックIpマネジメント株式会社 空間環境制御システム、空間環境制御装置及び空間環境制御方法
JPWO2019142599A1 (ja) * 2018-01-22 2020-10-22 パナソニックIpマネジメント株式会社 空間環境制御システム、空間環境制御装置及び空間環境制御方法
JPWO2019142647A1 (ja) * 2018-01-22 2020-11-26 パナソニックIpマネジメント株式会社 空間環境制御システム、空間環境制御装置及び空間環境制御方法
WO2021060138A1 (ja) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 空間浄化装置

Also Published As

Publication number Publication date
JP6448781B2 (ja) 2019-01-09
CN106659811A (zh) 2017-05-10
JPWO2016189757A1 (ja) 2017-11-30
JP6696701B2 (ja) 2020-05-20
CN106659811B (zh) 2019-11-19
JP2019069163A (ja) 2019-05-09

Similar Documents

Publication Publication Date Title
JP6448781B2 (ja) 空間殺菌装置及び空間除臭装置
JP4588104B1 (ja) 除菌・消臭方法および除菌・消臭装置
JP3224953U (ja) ドライ殺菌消臭装置
US20060177521A1 (en) Humidifer sanitization
EP2252171A2 (en) Apparatus and method for air treatment and sanitization
JP2019154884A (ja) 次亜塩素酸タブレットを用いた除菌・消臭システム
JP2003181338A (ja) 次亜塩素酸生成噴霧器
JP6214855B2 (ja) 微細気泡含有の微酸性次亜塩素酸水、その製造方法及び使用方法
JP2005013714A (ja) 屋内空間殺菌方法及び装置
US20220042692A1 (en) Method, apparatus and system for disinfecting air and/or surfaces
JP6475903B2 (ja) 塩素徐放具およびそれを用いた弱酸性次亜塩素酸水を製造する方法、並びに簡易消臭・除菌装置
JP2011201838A (ja) 植物の防疫方法および防疫装置
JP2004141429A (ja) 殺菌方法及び殺菌水
JP2016010528A (ja) 電解水噴霧方法及び噴霧用電解水
JP3802815B2 (ja) 保存庫の庫内の殺菌消臭方法および殺菌消臭機能付き保存庫
WO2005000368A1 (ja) 除菌消臭剤、除菌消臭剤溶液及びこれを用いた除菌消臭方法
JP2012052165A (ja) 塩徐放用カートリッジ、この塩徐放用カートリッジを備えた電解水生成装置、及びこの電解水生成装置を備えた除菌装置若しくは空気清浄装置
JP6794205B2 (ja) 次亜塩素酸気化装置
JP2015226598A (ja) 除菌性空気清浄機
JP2020151276A (ja) 空気浄化装置
JP7491537B2 (ja) 空間除菌装置および空間除菌方法
JP7242189B2 (ja) 切り花の殺菌処理方法及び殺菌ユニット
JP2023053928A (ja) 空間除菌装置および空間除菌方法
WO2020203698A1 (ja) オゾン水製造装置、オゾン水製造方法、オゾン水、オゾン水処理装置、および、評価方法
JP3820462B2 (ja) 殺菌方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520202

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893390

Country of ref document: EP

Kind code of ref document: A1