WO2007111345A1 - 活性酸素測定用試薬 - Google Patents

活性酸素測定用試薬 Download PDF

Info

Publication number
WO2007111345A1
WO2007111345A1 PCT/JP2007/056558 JP2007056558W WO2007111345A1 WO 2007111345 A1 WO2007111345 A1 WO 2007111345A1 JP 2007056558 W JP2007056558 W JP 2007056558W WO 2007111345 A1 WO2007111345 A1 WO 2007111345A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
salt
hydrogen atom
luciferase
Prior art date
Application number
PCT/JP2007/056558
Other languages
English (en)
French (fr)
Inventor
Hideo Takakura
Yasuteru Urano
Tetsuo Nagano
Original Assignee
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo filed Critical The University Of Tokyo
Priority to JP2008507512A priority Critical patent/JPWO2007111345A1/ja
Publication of WO2007111345A1 publication Critical patent/WO2007111345A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/64Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
    • C07D277/66Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2 with aromatic rings or ring systems directly attached in position 2

Definitions

  • the present invention relates to a compound useful as a reagent for measuring active oxygen or a salt thereof.
  • the present invention also relates to a reagent for measuring active oxygen containing the above compound or a salt thereof.
  • the bioluminescence method using the bioluminescence generated by the combination of firefly luciferase and luciferin does not require excitation light, so that knock ground noise is almost zero and high sensitivity measurement is possible.
  • measurement can be performed with an apparatus having a simple structure. Due to these features, the bioluminescence method is widely used in various assay systems such as detection of target substances in blotting and reporter enzymes.
  • in vivo imaging systems have been studied.
  • the bioluminescence method is considered to be effective in in vivo imaging.
  • the emission wavelength in the conventional bioluminescence method is limited to 570 nm of luciferin, in vivo
  • the wavelength is short for use in imaging.
  • studies have been carried out to shift the emission wavelength to the longer wavelength side, which is more excellent in tissue permeability. In any case, these studies are performed by modifying the properties of the enzyme luciferase. There are few reports of approach to the substrate luciferin.
  • the inventors of the present invention have the same high strength and luminescence as luciferin in which an alkyl group is introduced into the amino group of aminoluciferin, and the emission wavelength is significantly longer than that of luciferin. And has an emission wavelength of 610 nm or more, and when a compound in which an aminophenethyl group is introduced into the amino group of aminoluciferin does not lose its property as a substrate for luciferase, It has been found that the compound having no luminescence and the amino group of the compound has a luciferase property as a substrate and also emits strong light by reaction with luciferase. Biology It has been reported that a functional luciferase substrate capable of on / o hoof control with optical properties can be provided (Abstracts of 18th Biomedical Analytical Science Symposium, pp.101-102, 2005).
  • the bioluminescence method has focused attention on its sensitivity.
  • Research on functional luciferase substrates that can be turned on and off with bioluminescence properties such that luminescence occurs only in the presence of target molecules. Have also been reported (for example, JP 2000-270894 A, J. Clin. Chem. Clin. Bio chem., 25, pp. 23-30, 1987, etc.).
  • These utilize the fact that the luciferin methyl ether type amide amino luciferin amide form does not emit luciferase and does not emit light.
  • By binding sugar or peptide to luciferin or aminoluciferin it reacts specifically with them. This is based on the principle of measuring the enzyme activity. However, this principle has a problem that applicable probe targets are very limited. Therefore, development of a versatile bioluminescent probe that enables functional in vivo luminescence imaging has been desired.
  • peroxynitrite (ONOO-) produced by the reaction of nitrogen monoxide and superoxide-one has a high acidity capability, such as the ability to -trolate an aromatic ring. It also has a characteristic reactivity, such as efficient tyrosine-trolation. According to a recent report, it has been pointed out that phosphorylation of tyrosine is inhibited by tyrosine-trolation and has an important effect on information transmission such as MAPK and PI3K / Akt cascade. Furthermore, in recent years, the action of hypochlorite ions in vivo has attracted attention.
  • hypochlorite ions The bactericidal action by neutrophils is thought to be mainly due to hypochlorite ions, and the peroxydase in the azul granules produces hypochlorite ions for both hydrogen peroxide and salt ions.
  • hypochlorite ions activate platelets It has been reported that factor-induced microcirculation disorders play an important role in vascular endothelial surface damage (Suematsu, M., et al, J. Biochem., 106, pp.355-360, 1989).
  • Cetate, Molecular One'Probes, catalog number D-399) is known. Also, a method for measuring superoxide-on by the chemiluminescence method using the luciferin derivative MCLA (Clinica Chimica Acta, 179, pp.177-182, 1989), and a method for measuring singlet oxygen ( J. Biolumin. Chemilumin., 6, pp.69-72, 1991) has also been proposed. However, little is known about the method of measuring active oxygen using a luciferin derivative as a bioluminescent probe for active oxygen.
  • Patent Document 1 JP 2000-270894 A
  • Patent Document 2 International Publication WO01 / 64664
  • Patent Document 3 International Publication W099 / 51586
  • Patent Document 4 International Publication WO02 / 18362
  • Patent Document 5 Japanese Patent Laid-Open No. 10-226688
  • Patent Document 6 International Publication WO2004 / 76466
  • Non-Patent Document 1 J. Clin. Chem. Clin. Biochem., 25, pp.23-30, 1987
  • Non-Patent Document 2 Clinica Chimica Acta, 179, pp.177-182, 1989
  • Non-Patent Document 3 J. Biolumin. Chemilumin., 6, pp.69-72, 1991
  • An object of the present invention is to selectively visualize reactive oxygen species having high oxalate activity such as hydroxy radical, hypochlorite ion, horseradish peroxidase (HRP) / hydrogen peroxide system, etc. It is to provide a possible reagent. In particular, it is an object of the present invention to provide a reagent for measuring active oxygen, which can be applied to animal individual imaging of oxidative stress, which is impossible with conventional methods.
  • reactive oxygen species having high oxalate activity such as hydroxy radical, hypochlorite ion, horseradish peroxidase (HRP) / hydrogen peroxide system, etc.
  • the inventors of the present invention have the same high strength and luminescence as luciferin in which an alkyl group is introduced into the amino group of aminoluciferin, and the emission wavelength is significantly longer than that of luciferin. And has an emission wavelength of 610 nm or more, and when a compound in which an aminophenethyl group is introduced into the amino group of aminoluciferin does not lose its property as a substrate for luciferase, It has been found that the compound having no luminescence and the amino group of the compound has a luciferase property as a substrate and also emits strong light by reaction with luciferase. It was found that a functional luciferase substrate capable of on / o hoof control of bioluminescence characteristics can be provided (Japanese Patent Application No. 2005-286948).
  • the aminophene of aminoluciferin is an aminophenol in the general formula described in Japanese Patent Application No. 2005-286948.
  • Compound strength with dioxyalkyl group introduced S before reaction with active oxygen, has properties as a substrate for luciferase, and is non-luminescent when the compound reacts as a substrate. It reacts with radicals, peroxynitrite, hypochlorite ions, and strong oxygen forces such as HRP / peracid-hydrogen system and reacts with reactive oxygen species to remove the amino-alkyloxyalkyl group!
  • R 1 and R 2 are each independently a hydrogen atom, an optionally substituted C group, or the following formula (A):
  • X 1 is —N (R 3 ) (R 4 ) (wherein R 3 and R 4 each independently have a hydrogen atom or a substituent !, but may represent a C alkyl group) ), Having a hydroxy group and a substituent! /, May! /, C
  • X 2 represents a hydrogen atom substituted on the benzene ring or 1 to 3 monovalent substituents; Y represents —0— or —S—; n represents 1 In which at least one of R 1 and R 2 represents a group represented by the formula (A)] or a salt thereof is provided.
  • R 1 and R 2 are each independently a hydrogen atom, an optionally substituted C alkyl group, or a compound of the formula ( A) (where X 1 is
  • R 3 and R 4 each independently represents a hydrogen atom or an optionally substituted C alkyl group), a hydroxy group, or a substituent.
  • 1-6 represents a 1-6 group
  • X 2 represents a hydrogen atom substituted on the benzene ring or one or three monovalent substituents
  • Y represents -0-
  • n represents 1 to And a salt thereof, or a salt thereof
  • R 1 and R 2 represents a group represented by the formula (A).
  • R 1 is a hydrogen atom
  • R 2 is represented by the formula (A) (wherein X 1 represents NH, X 2 represents a hydrogen atom, and Y represents ⁇ 0— N represents 2) or a compound represented by
  • R 11 and R 12 are each independently a hydrogen atom or an optionally substituted C
  • R 11 and R 12 are represented by — (CH 2) — Z—H.
  • R 11 and R 12 are each independently a hydrogen atom, a C alkyl group optionally having substituent (s), or (CH 3) 2 Z— H (formula
  • R 11 and R 12 represents (CH) Z—
  • R 11 is a hydrogen atom
  • R 12 is-(CH) -ZH
  • R 11 is a hydrogen atom
  • R 12 is — (CH 2).
  • a compound represented by 2 2 OH or a salt thereof is provided.
  • Another aspect of the present invention provides a reagent for measuring active oxygen comprising the compound represented by the above general formula (I) or a salt thereof.
  • a method for measuring active oxygen comprising the following steps: (A) reacting a compound represented by the above general formula (I) or a salt thereof with active oxygen, and (B) the above There is provided a method comprising the step of measuring bioluminescence produced by reacting the dearylized compound (compound represented by the above general formula (II)) produced in step (A) or a salt thereof with luciferase.
  • the present invention provides a kit for measuring active oxygen containing the above-mentioned reagent for measuring active oxygen and luciferase as elements.
  • the compound represented by the above general formula (I) or a salt thereof provided by the present invention is a lucifera Although it has properties as a substrate! /, It has the ability to emit no light when reacted as a substrate. On the other hand, such as hydroxy radicals, peroxynitrite, hypochlorite ions, etc.
  • Contact with an active oxygen species having extremely strong acidity causes delamination and yields a compound represented by the above general formula (II) or a salt thereof.
  • the compound represented by the above general formula (II) or a salt thereof retains the properties as a substrate of luciferase and produces a luminescent compound when reacted as a substrate.
  • the compound represented by the above general formula (I) or a salt thereof provided by the present invention is preferably used as an in vitro assay system for in vivo active oxygen imaging or enzyme immunoassay. it can.
  • FIG. 1 shows the result of measuring the emission spectrum when compound 8 is reacted with various reactive oxygen species and the product is reacted with luciferase.
  • FIG. 2 The result of plotting the luminescence intensity when compound 8 is reacted with hypochlorite ions at various concentrations and the product is reacted with luciferase against the concentration of sodium hypochlorite. .
  • FIG. 3 shows the result of measuring the emission spectrum when compound 8 is reacted with reactive oxygen species of HRP / peroxyhydrogen system and the product is reacted with luciferase.
  • FIG. 5 is a result of plotting the luminescence intensity when compound 8 is reacted with reactive oxygen species of HRP / peroxyhydrogen system and the product is reacted with luciferase against the concentration of HRP.
  • FIG. 6 is a result of measuring an emission spectrum when compound 13 is reacted with luciferase.
  • Luminescence intensity when compound 8 is reacted with hypochlorite ion and the product is reacted with luciferase is measured using a luminescence measuring device, and the accumulated luminescence intensity is measured with hypochlorite. It is the result plotted with respect to the density
  • FIG. 11 The luminescence intensity when compound 8 reacts with hydroxyl radicals and the product reacts with luciferase is measured using a luminescence measuring device, and the integrated luminescence intensity is measured against the concentration of hydroxyl xyl radicals. And plotted.
  • an “alkyl group” or an alkyl part of a substituent containing an alkyl part is a saturated hydrocarbon group that is linear, branched, cyclic, or a combination thereof.
  • the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, and a cyclo group.
  • a propylmethyl group, n-pentyl group, n-hexyl group and the like can be mentioned.
  • the type, number, and substitution position of the substituent are not particularly limited.
  • aryl group may be a monocyclic or polycyclic aryl group, but a phenol group is preferably used. The same applies to the aryl ring, and a benzene ring can be preferably used.
  • R 1 and R 2 are a hydrogen atom or an optionally substituted C alkyl.
  • At least one of the forces R 1 and R 2 indicating a kill group or a group represented by the formula (A) represents a group represented by the formula (A).
  • One of R 1 and R 2 represents a group represented by the formula (A), and the other has a hydrogen atom or a substituent, and is preferably a C alkyl group, and R 1 and R 2 !, slip
  • one of them is a group represented by the formula (A) and the other is a hydrogen atom.
  • the C alkyl group optionally having a substituent represented by R 1 and R 2 has a substituent.
  • C alkyl group is a straight chain C alkyl.
  • the substituent is not particularly limited, and any substituent may be used as long as it does not impair the function of the compound of the present invention represented by the general formula (I) as a reagent for measuring active oxygen.
  • X 1 is N (R 3 ) (R 4 ) (wherein R 3 and R 4 Each independently represents a hydrogen atom or a C alkyl which may have a substituent.
  • C represents a group represented by an alkylsulfanyl group
  • a xy group is preferred and has a substituent! /, May! /, A C alkylsulfanyl group
  • X 1 is one (CH) —Y—force substitution position
  • X 2 represents a hydrogen atom substituted on the benzene ring or 1 to 3 monovalent substituents, and when 2 or more substituents are represented, they may be the same or different.
  • the substitution position of the substituent represented by X 2 is not particularly limited, and can be substituted at any substitutable position on the benzene ring.
  • Y represents —0 or 1 S, and is preferably 0.
  • n is preferably a force n indicating an integer of 1 to 6, and n is preferably 2.
  • the compound of the present invention represented by the general formula (I) or a salt thereof has a structure that can serve as a luciferase substrate, and has a high electron density when reacted as a luciferase substrate (HOMO High energy!) Benzene ring site force Electron donation to the amino luciferin site which is a luminescence site occurs, and as a result, it has the property of not producing luminescence.
  • R 11 and R 12 are each independently a hydrogen atom, a C alkyl group which may have a substituent, or a group represented by (CH 3) —Z—H. Force R 11 and R 12
  • At least one of represents a group represented by — (CH 2) —Z—H.
  • One of R 11 and R 12 is — (CH
  • R 11 and R 12 are — (CH 2) — Z— H
  • R 11 and R 12 have a substituent, and the C alkyl group is a substituent represented by R 1 and R 2 represented by the general formula (I).
  • m is preferably a force m indicating an integer of 1 to 6, and m is particularly preferably 2.
  • the compound of the present invention represented by the general formula (II) or a salt thereof has a structure that can serve as a luciferase substrate, and has a property of emitting light when reacted as a luciferase substrate.
  • luminescent means the property of generating luminescence by reaction with luciferase.
  • compound of the present invention is “non-luminous” means that the product of the enzyme reaction is not substantially luminescent although it is chemically modified as a luciferase substrate. I mean.
  • the compound of the present invention represented by the above general formula (I) exists as an acid addition salt or a base addition salt.
  • acid addition salts include mineral acids such as hydrochloride, sulfate, and nitrate, or organic acids such as methanesulfonate, P-toluenesulfonate, oxalate, citrate, and tartrate.
  • base addition salt include metal salts such as sodium salt, potassium salt, calcium salt, and magnesium salt, organic amine salts such as ammonium salt, and triethylamine salt. Sometimes these salts form salts with amino acids such as glycine.
  • the compound of the present invention or a salt thereof may exist as a hydrate or a solvate. Any of these substances is included in the scope of the present invention.
  • the compound of the present invention represented by the above general formula (I) may have one or more asymmetric carbons depending on the type of the substituent, but one or two or more asymmetric carbons may be present.
  • stereoisomers such as optically active substances based on asymmetric carbon and diastereoisomers based on two or more asymmetric carbons, any mixture of stereoisomers, racemates, etc. are all within the scope of the present invention.
  • the active oxygen measurement method of the present invention generally comprises (A) a step of reacting a compound represented by the above general formula (I) or a salt thereof with active oxygen, and (B) the above step (A). And a method for measuring bioluminescence generated by reacting the compound represented by the general formula (II) or a salt thereof generated with the above with luciferase.
  • Luminescence of the luciferin luciferase system is caused by a reaction in which D-luciferin as a substrate is acidified by luciferase to oxyluciferin, which is a luminescent substance, in the presence of adenosine triphosphate (ATP) and magnesium ions.
  • ATP adenosine triphosphate
  • ATP adenosine triphosphate
  • the power that previously required a luminometer with an auto-injector because the emitted light decays quickly With the improved method (Promega Protocols and Application Guide, 2nd edition) with Coenzyme A (CoA), stronger and more stable light emission can be obtained, and no special equipment is required.
  • bioluminescence imaging technique using the bioluminescence generated by the combination of firefly luciferase and luciferin does not require excitation light irradiation compared to imaging using a fluorescent probe, so (1) there is almost no background noise.
  • Features include S / N imaging capability, and (2) poor light transmission and deep imaging capability.
  • the reagent for measuring active oxygen containing the compound represented by the general formula (I) of the present invention is brought into contact with a cell into which a luciferase gene has been introduced (cancer cell, bacteria, etc.), or a transgenic mouse, Alternatively, by intraperitoneal administration to a disease state model animal or the like, it is possible to measure oxidative stress in cells or in an individual organism in real time, which can be suitably used for investigating the cause of a disease state or developing a therapeutic drug.
  • the reagent for measuring active oxygen of the present invention can measure HRP / peroxyhydrogen-hydrogen reactions with high sensitivity with almost no knock ground noise. 'It is also useful as a measurement system for vitro assembly.
  • the compound obtained by reacting the compound represented by the general formula (I) of the present invention with both reactive oxygen species and luciferase emits light at a wavelength of around 615 nm. Peak emission wavelength of compounds obtained by reaction with both luciferases However, by using a combination of compounds different from the emission peak of the present invention, it is possible to simultaneously measure reactive oxygen species and other measurement objects.
  • ALP activity can be measured by specifically reacting with both alkaline phosphatase (ALP) and luciferase.
  • ALP alkaline phosphatase
  • Luphos Toya, Y. et. Al., Bulletin of the Chemical Society of Japan, 65 , pp.2604-2610, 1992
  • ALP activity and reactive oxygen species in the material can be measured simultaneously.
  • the compound represented by the above general formula (I) or a salt thereof may be used as it is, but if necessary, preparation of the reagent Additives that are usually used may be added to the composition and used as a composition.
  • solubilizers, P H modifiers, buffering agents can be used additives such as HitoshiChoi ⁇ agent, the amount of these formulations to those skilled in the art It can be selected as appropriate.
  • additives for using the reagents in the physiological environment solubilizers, P H modifiers, buffering agents, can be used additives such as HitoshiChoi ⁇ agent, the amount of these formulations to those skilled in the art It can be selected as appropriate.
  • These compositions are provided as a composition in an appropriate form such as a mixture in powder form, a lyophilized product, a granule, a tablet, or a liquid.
  • Dimethyl sulfoxide (2.8 mL, 39 mmol) was added to 20 mL of 2 mol / L oxalyl dichloride (dichloromethane solution) at 78 ° C. After stirring for 5 minutes, Compound 4 (1.1 g, 3.8 mmol) and 2 mL of dimethyl sulfoxide in dichloromethane were added dropwise at 78 ° C. and stirred for 30 minutes. That Then 10 mL of trimethylamine was added.
  • D-cystine hydrochloride monohydrate 150 mg, 0.85 mmol was dissolved in purified water degassed with argon, and a D-cysteine solution adjusted to pH 8 with 0.5 mol / L potassium carbonate solution was added.
  • Compound 7 (84 mg, 0.27 mmol) was dissolved in 20 mL of ethanol degassed with argon and 2 mL of acetone, and a D-cysteine solution was added. The mixture was purged with argon, stirred at room temperature while protected from light.
  • D cysteine hydrochloride monohydrate (18 mg, 0.1 mmol) was dissolved in purified water degassed with argon, and a D cysteine solution with a pH of 8 was prepared with 0.5 mol / L potassium carbonate aqueous solution.
  • Compound 12 (9 mg, 40 ⁇ mol) was dissolved in 10 mL of methanol degassed with argon, and D-cysteine solution was added.
  • Argon substitution was carried out, and it stirred at room temperature, protected from light. The organic solvent was distilled off, and the remaining aqueous layer was extracted with ethyl acetate, washed with saturated brine, and concentrated under reduced pressure.
  • a solution of compound 8 (final concentration 12 mol / L, containing 0.2% dimethylformamide as a co-solvent) was prepared in pH 7.7, 0.1 mol / L sodium phosphate buffer and used for the test. Prepared Solution under the following conditions:
  • Compound 8 reacted strongly with peroxynitrite, hydroxyl radical and hypochlorite ion, but emitted strong light, but hardly reacted with hydrogen peroxide, singlet oxygen, and nitric oxide, and changed the emission vector. It was unobservable power. Therefore, it was confirmed that Compound 8 is a bioluminescent probe that specifically recognizes only reactive oxygen species having strong acidity, such as peroxynitrite, hydroxyl radicals and hypochlorite ions. .
  • Example 4 Dependence of hypochlorite ion concentration on reaction of compound 8 with hypochlorite ion pH 7.7, compound 8 (final concentration 12 ⁇ mol / L, 0.1 mol / L sodium phosphate buffer) After dissolution of 0.2% dimethylformamide as an auxiliary solvent), sodium hypochlorite is added to a final concentration of 1.87 ⁇ mol / L, 3.74 ⁇ mol / L, 6.2 ⁇ mol / L, 9.34 ⁇ mol / L, 12.4 mol / L was added to each and stirred at 25 ° C for 1 minute.
  • magnesium sulfate and ATP were added to final concentrations of 5 mmol / L and 2.6 mmol / L, respectively, and measurement of luminescence at 615 nm was started. After 30 seconds, firefly luciferase was added to a final concentration of 20 ⁇ / mL, and the initial luminescence intensity at that time was plotted against the concentration of sodium hypochlorite.
  • the measurement equipment used was F-4500 (Hitachi).
  • Example 5 Luminescence of compound 8 in HRP I hydrogen peroxide system
  • Compound 8 (final concentration 12 ⁇ mol / L, containing 0.2% dimethylformamide as a co-solvent) is dissolved in pH 7.7, 0.1 mol / L sodium phosphate buffer, and HRP is adjusted to a final concentration of 0.2 mol / L. After the addition, hydrogen peroxide was added to 3 mol / L and pipetting was performed at room temperature. Next, magnesium sulfate and ATP were added to final concentrations of 5 mmol / L and 2.6 mmol / L, respectively, and finally the final concentration of 40 ⁇ g / mL firefly luciferase was measured.
  • Compound 8 (final concentration 12 ⁇ mol / L, containing 0.2% dimethylformamide as a co-solvent) is dissolved in pH 7.7, 0.1 mol / L sodium phosphate buffer, and HRP is adjusted to a final concentration of 0.2 mol / L. After the addition of hydrogen peroxide, final concentrations of 0.12 ⁇ mol / L, 0.36 ⁇ mol / L, 0.6 ⁇ L, 1.2 ⁇ mol / L, 1.8 ⁇ mol / L, 2.4 ⁇ mol / L, 3.6 mol / L were added and pipetted at room temperature.
  • magnesium sulfate and ATP were added to final concentrations of 5 mmol / L and 2.6 mmol / L, respectively, and emission measurement at 615 nm was started. After 30 seconds, a final concentration of 20 ⁇ g / mL firefly luciferase was added, and the initial luminescence intensity at that time was plotted against the concentration of hydrogen peroxide.
  • the measurement equipment used was F-4500 (Hitachi). The results are shown in Fig. 4. Since the emission intensity increased depending on the hydrogen peroxide concentration, it was shown that the hydrogen peroxide concentration can be measured quantitatively by combining the compound 8 and the luciferase reaction.
  • Luminescence was measured at pH 7.7, 30 mmol / L N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) buffer, 5 mmol / L magnesium sulfate, 2.6 mmol / L ATP, 3.5 mmol / L dithiothreitol (DTT), 1.5 mmol / L CoA, 40 g / ml Firefly luciferase is dissolved in each reagent, and finally the final concentration is 12 ⁇ mol / L.
  • HEPES N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid
  • Compound 13 was prepared so as to be (containing 0.2% dimethyl sulfoxide as a co-solvent).
  • the measurement equipment used was F-4500 (Hitachi).
  • Compound 13 is the reaction product of compound 8 and active oxygen. It was confirmed that this compound 13 reacted as a luciferase substrate and emitted light.
  • Example 5 the luminescence was detected using the fluorescence measurement device F-4500 (Hitachi), but again using the luminescence measurement device Perkin-Elmer Envision 2103 Multilabel reader, The luminescence measurement of Compound 8 was conducted.
  • the final concentration was dispensed, and the reaction solution was added to the well from the previous cuvette so that the final concentration was 1.8 mol / L (as the concentration of Compound 8 at the start of the reaction), and measurement was started.
  • 2.6 mmol / L ATP final concentration 5 seconds after the start of measurement
  • the amount of luminescence for 5 seconds after addition was integrated and plotted against the concentration of hydrogen peroxide.
  • the reaction with HRP was carried out at 37 ° C, and the luminescence was measured at room temperature. The results are shown in Fig. 7. Since the luminescence intensity increased in a hydrogen peroxide concentration-dependent manner even when the luminescence measuring device was used, a combination of compound 8 and luciferase resulted in peroxidation. It was shown that the hydrogen concentration can be measured quantitatively.
  • 0.1 mol / L sodium phosphate buffer (pH 7.7) was added to each well of the plate. , Containing 5 mmol / L magnesium sulfate and 300 ng / mL firefly luciferase (both concentrations are the final concentration), and the final concentration of 1.8 ⁇ mol / L (from the start of the reaction) into the well. Measurement was started by adding the reaction solution so that the concentration of the compound 8 was as follows: 2.6 mmol / L ATP (final concentration) was added 5 seconds after the start of measurement, and the amount of luminescence for 5 seconds after addition was integrated. , HRP was plotted against the concentration.
  • the plate was filled with 0.1 mol / L sodium phosphate buffer (pH 7.7, 5 mmol / L magnesium sulfate and 300 ng / mL firefly luciferase, both of which had concentrations
  • the final concentration was dispensed, and the reaction solution was added to the well from the previous cuvette so that the final concentration was 1.8 mol / L (as the concentration of Compound 8 at the start of the reaction).
  • 2.6 mmol / L ATP final concentration
  • the measurement was performed at room temperature.
  • the measurement was performed with a Perkin-Elmer Environment 2103 Multilabel reader using Microlite (IWAKI) as a plate. The results are shown in Figs. It was confirmed that any reactive oxygen species can be quantitatively detected using Compound 8.
  • the hydrogen peroxide concentration is 100 mol / L (final concentration). Then, dispense 0.1 mol / L sodium phosphate buffer (pH 7.7, containing 5 mmol / L magnesium sulfate and 300 ng / mL firefly luciferase, both in the final concentration) to each well of the plate. The reaction solution was added to the well so that the final concentration was 1.8 mol / L (as the concentration of Compound 8 and Luphos at the start of the reaction) from the previous cuvette. After 5 seconds from the start of measurement, 2.6 mmol / L ATP (final concentration) was added. The amount of luminescence for 10 seconds after the addition was measured.
  • the reaction between HRP and ALP was carried out at 37 ° C, and luminescence was measured at room temperature.
  • the measurement was performed with a Perkin-Elmer Envision 2103 Multilabel reader using Microlite (IWAKI) as a plate. 615 nm / 8.5 nm and 545 nm / 7 nm (Perkin-Elmer) were used as filters, and the following determinants were used in the analysis.
  • F and F are measured values when using each filter, ⁇ , ⁇ , ⁇ , ⁇
  • X Liuphos
  • Y Compound 8
  • Figures 12 and 13 show the results of plotting the amount of luminescence obtained by solving this equation against the concentration of HRP and ALP, respectively. The In the simultaneous detection system of HRP and ALP, it was confirmed that HRP can be quantitatively detected using Compound 8 and ALP can be quantitatively detected using Luphos.
  • the compound represented by the above general formula (I) or a salt thereof has a property as a substrate for luciferase, it is non-luminescent even when reacted as a substrate.
  • a compound represented by the above general formula (II) or a salt thereof is produced by contact with an active oxygen species having a strong acidity such as peroxynitrite or hypochlorite ion to cause detachment. Arise.
  • the compound represented by the above general formula (II) or a salt thereof retains the properties as a substrate of luciferase and produces a luminescent compound when reacted as a substrate.
  • Extremely strong acid species such as oxynitrite, hypochlorite ion, and HRP / peracid-hydrogen system, active oxygen species and nitric oxide, hydrogen peroxide, superoxide-on, It is extremely useful as a reagent for measuring active oxygen that distinguishes and measures active oxygen species such as singlet oxygen.

Description

明 細 書
活性酸素測定用試薬
技術分野
[0001] 本発明は、活性酸素測定用試薬として有用な化合物又はその塩に関するものであ る。また、本発明は上記化合物又はその塩を含む活性酸素測定用試薬に関する。 背景技術
[0002] ホタルルシフェラーゼとルシフェリンの組み合わせにより生じる生物発光を利用した 生物発光法は、励起光を必要としな 、ためノ ックグランドノイズがほぼゼロであり高感 度な測定が可能である。また、励起光を必要としないことから簡単な構造の装置で測 定をすることができる。これらの特長により、生物発光法は、ブロッテイングにおける目 的物質の検出やレポーター酵素など様々なアツセィ系に汎用されている。さらに、最 近では、光透過性の悪い生物試料の深部のイメージングも可能であることから、イン' ビボのイメージング系への応用も検討されるようになってきた。
[0003] このようにイン'ビボのイメージングにおいて生物発光法は有効であると考えられて いるが、従来の生物発光法における発光波長はルシフヱリンが有する 570 nmに限ら れているため、イン'ビボのイメージングに用いるには波長が短いという問題がある。こ のため、発光波長をより組織透過性に優れた長波長側にシフトさせる研究が行われ ているが、これらの研究は、いずれの場合も酵素であるルシフェラーゼの特性を改変 することにより行われており、基質であるルシフェリンについてアプローチした報告は ほとんどない。
[0004] 本発明者らは、アミノルシフェリンのァミノ基にアルキル基を導入したィ匕合物力 ル シフェリンと同様の高 、発光性を有し、かつ発光波長がルシフェリンに比べて大幅に 長波長側にシフトし 610 nm以上の発光波長を有すること、及びアミノルシフェリンのァ ミノ基にアミノフエネチル基を導入したィ匕合物がルシフェラーゼの基質としての性質を 失わず、基質となって反応した際にも無発光性であること、及び該化合物のアミノ基 をァシルイ匕したィ匕合物ではルシフェラーゼの基質としての性質が保持されるとともに 、ルシフェラーゼとの反応により強く発光することを見出し、これを原理として生物発 光特性の on/o蹄 U御が可能な機能性ルシフェラーゼ基質が提供可能なことを報告し ている(第 18回バイオメディカル分析科学シンポジウム講演要旨集, pp.101-102, 200 5)。
[0005] また、生物発光法はその感度に注目が集中していた力 標的分子の存在下のみで 発光が生じるような生物発光特性の on/o蹄 lj御が可能な機能性ルシフェラーゼ基質 の研究も報告されている(例えば特開 2000-270894号公報、 J. Clin. Chem. Clin. Bio chem., 25, pp.23-30, 1987など)。これらはルシフェリンのメチルエーテル型ゃァミノ ルシフェリンのアミド型がルシフェラーゼの基質とならず発光しな 、ことを利用し、ルシ フェリンやアミノルシフェリンに糖やペプチドを結合させて、それらと特異的に反応す る酵素の活性を測定するという原理に基づくものである。しかし、この原理では適用 可能なプローブの標的は非常に限られてしまうという問題がある。このため、機能性ィ ン'ビボ発光イメージングを可能にする汎用性の高い生物発光プローブの開発が望 まれていた。
[0006] 一方、活性酸素は生体にお!、て様々な重要な役割を演じて 、ることが報告されて いる。例えば、一酸ィ匕窒素は情報伝達のセカンドメッセンジャーとして作用しており、 循環器系などにぉ 、て血圧の制御を行うなど多様な生理作用を発揮して 、ることが 知られており、スーパーオキサイドァニオンや過酸ィヒ水素は免疫系などにおいて重 要な生理作用を発揮していることが明らかにされている。ヒドロキシラジカルは血管障 害ゃ虚血後の脳障害、あるいは紫外線による DNA修飾に関わる知見が多数報告さ れ、病因'病態との関係で特に障害性が高い活性酸素種と考えられている。
[0007] また、一酸ィ匕窒素とスーパーオキサイドァ-オンが反応することにより生成するパー ォキシナイトライト (ONOO—)は芳香環の-トロ化が可能であるなど高い酸ィ匕能を有し、 またチロシンの-トロ化を効率よく行うなど、特徴的な反応性を有する。最近の報告に よれば、チロシンが-トロ化されることにより、チロシンのリン酸化が阻害され、 MAPK、 PI3K/Aktカスケードなどの情報伝達に重要な影響を及ぼすことが指摘されて 、る。さ らに、近年、次亜塩素酸イオンの生体内での作用が注目されている。好中球による 殺菌作用は主に次亜塩素酸イオンによると考えられており、ァズール顆粒中のミエ口 ペルォキシダーゼにより、過酸ィ匕水素と塩ィ匕物イオン力も次亜塩素酸イオンが生成 することがイン 'ビトロで示され(Klebanoff, S. J. et al., The Neutrophils: Function and Clinical Disorders, North-Holland Publishing Company, Amsterdam, Netherlands, 1 978)、また、次亜塩素酸イオンは血小板活性化因子に誘導される微小循環障害の 血管内皮表面の損傷において重要な役割を果たすとの報告がある(Suematsu, M., e t al, J. Biochem., 106, pp.355- 360, 1989)。
このように活性酸素は炎症、老化、動脈硬化等の各種疾患や情報伝達に関与して いることから、種々の活性酸素種の生体内での役割の解明の重要性が高まっており 、生体内の活性酸素種を測定するため、いくつかの蛍光プローブが提案されている。 例えば、国際公開 WO 01/64664の活性酸素蛍光プローブ (J. Biol. Chem., 278, pp. 3170-3175, 2003)、国際公開 W099/51586、及び国際公開 WO02/18362に記載の 一重項酸素蛍光プローブ、特開平 10-226688、及び国際公開 WO 2004/76466に記 載の一酸化窒素蛍光プローブ、 H DCFDA(2',7,-ジクロロジヒドロフルォレセインジァ
2
セテート、モレキユラ一'プローブス社、カタログ番号 D- 399)などが知られている。ま た、ゥミホタルルシフェリン誘導体 MCLAを用いて化学発光法によってスーパーォキ サイドア-オンを測定する方法(Clinica Chimica Acta, 179, pp.177- 182, 1989)、及 び一重項酸素を測定する方法 (J. Biolumin. Chemilumin., 6, pp.69- 72, 1991)も提案 されている。しかし、ルシフェリン誘導体を活性酸素に対する生物発光プローブとして 使用した活性酸素を測定する方法についてはほとんど知られていな力つた。
特許文献 1:特開 2000-270894号公報
特許文献 2:国際公開 WO01/64664
特許文献 3:国際公開 W099/51586
特許文献 4:国際公開 WO02/18362
特許文献 5:特開平 10-226688号公報
特許文献 6:国際公開 WO2004/76466
非特許文献 1 :J. Clin. Chem. Clin. Biochem., 25, pp.23- 30, 1987
非特許文献 2 : Clinica Chimica Acta, 179, pp.177- 182, 1989
非特許文献 3 : J. Biolumin. Chemilumin., 6, pp.69- 72, 1991
発明の開示 発明が解決しょうとする課題
[0009] 本発明の課題は、ヒドロキシラジカル、次亜塩素酸イオン、ホースラディッシュペル ォキシダーゼ (HRP) /過酸化水素系などの高!ヽ酸ィ匕活性を有する活性酸素種を選 択的に可視化可能な試薬を提供することにある。特に、従来法では不可能であった 酸化ストレスの動物個体イメージングに適応可能な活性酸素測定用試薬を提供する ことが本発明の課題である。
課題を解決するための手段
[0010] 本発明者らは、アミノルシフェリンのァミノ基にアルキル基を導入したィ匕合物力 ル シフェリンと同様の高 、発光性を有し、かつ発光波長がルシフェリンに比べて大幅に 長波長側にシフトし 610 nm以上の発光波長を有すること、及びアミノルシフェリンのァ ミノ基にアミノフエネチル基を導入したィ匕合物がルシフェラーゼの基質としての性質を 失わず、基質となって反応した際にも無発光性であること、及び該化合物のアミノ基 をァシルイ匕したィ匕合物ではルシフェラーゼの基質としての性質が保持されるとともに 、ルシフェラーゼとの反応により強く発光することを見出し、これを原理として生物発 光特性の on/o蹄 U御が可能な機能性ルシフェラーゼ基質が提供可能なことを見出し た(特願 2005-286948号明細書)。
[0011] 本発明者らは上記の知見を基にさらに検討を行った結果、特願 2005-286948号明 細書に記載された一般式に包含される化合物のうち、アミノルシフェリンのァミノ基に ァミノフエ二ルォキシアルキル基を導入した化合物力 S、活性酸素との反応前はルシフ エラーゼの基質としての性質を有しており、該化合物が基質となって反応した際には 無発光性であること、ヒドロキシラジカルやパーォキシナイトライト、次亜塩素酸イオン 、及び HRP/過酸ィ匕水素系などの酸ィ匕力の強 、活性酸素種と反応して該ァミノフエ- ルォキシアルキル基にお!、て脱ァリールイ匕反応が起こること、並びに該脱ァリール化 反応生成物がルシフェラーゼの基質としての性質を保持しており、かつルシフェラー ゼとの反応により強く発光することを見出した。本発明は上記の知見に基づいて完成 されたものである。
[0012] すなわち、本発明により、下記の一般式 (I):
[化 1]
Figure imgf000007_0001
[式中、 R1及び R2はそれぞれ独立に水素原子、置換基を有していてもよい C ル基、又は下記の式 (A):
[化 2]
Figure imgf000007_0002
〔式中、 X1は— N(R3)(R4) (式中、 R3及び R4はそれぞれ独立に水素原子、置換基を有し て!、てもよ 、C アルキル基を示す)、ヒドロキシ基、置換基を有して!/、てもよ!/、C ァ
1-6 1-6 ルコキシ基、スルファ-ル基又は置換基を有して 、てもよ 、C アルキルスルファ-ル
1-6
基で表される基を示し; X2はベンゼン環上に置換する水素原子又は 1個ないし 3個の 一価の置換基を示し; Yは- 0-又は- S-を示し; nは 1〜6の整数を示す〕で表される基 を示すが、 R1及び R2の少なくとも一つは式 (A)で表される基を示す]で表される化合 物又はその塩が提供される。
上記の発明の好ま 、態様によれば、一般式 (I)にお 、て、 R1及び R2がそれぞれ独 立に水素原子、置換基を有していてもよい C アルキル基、又は式 (A)〔式中、 X1
1-6
— N(R3)(R4) (式中、 R3及び R4がそれぞれ独立に水素原子、置換基を有していてもよい C アルキル基を示す)、ヒドロキシ基、又は置換基を有していてもよい C アルコキシ
1-6 1-6 基を示し、 X2がベンゼン環上に置換する水素原子又は 1個な 、し 3個の一価の置換 基を示し、 Yが- 0-を示し、 nが 1〜6の整数を示す〕で表される基を示すが、 R1及び R2 の少なくとも一つは式 (A)で表される基を示すィ匕合物又はその塩が提供される。この 発明の最も好ましい態様によれば、 R1が水素原子であり、 R2が式 (A)〔式中、 X1は N Hを示し、 X2は水素原子を示し、 Yは- 0-を示し、 nは 2を示す〕で表される化合物又
2
はその塩が提供される。 [0014] 別の観点からは、下記の一般式 (II)
[化 3]
Figure imgf000008_0001
〔式中、 R11及び R12はそれぞれ独立に水素原子、置換基を有していてもよい C アル
1-6 キル基、又は (CH ) —Ζ—Η (式中、 Ζは- 0-又は- S-を示し; mは 1〜6の整数を示
2 m
す)で表される基を示すが、 R11及び R12の少なくとも一つは— (CH ) — Z— Hで表され
2 m
る基を示す〕で表される化合物又はその塩が提供される。
[0015] 上記の発明の好ましい態様として、一般式 (II)において、 R11及び R12がそれぞれ独 立に水素原子、置換基を有していてもよい C アルキル基、又は (CH ) Z— H (式
1-6 2 m 中、 Zは- 0-を示し; mは 1〜6の整数を示す)で表される基を示す力 R11及び R12の少 なくとも一つは (CH ) Z— Hで表される基を示すィ匕合物又はその塩が提供される
2 m
。この発明の好ましい態様によれば、 R11が水素原子であり、 R12がー (CH ) -Z-H (
2 m 式中、 Zは- 0-を示し; mは 1〜6の整数を示す)で表される化合物又はその塩が提供 される。この発明の最も好ましい態様によれば、 R11が水素原子であり、 R12がー (CH )
2 2 OHで表される化合物又はその塩が提供される。
[0016] 別の観点力 は、上記の一般式 (I)で表される化合物又はその塩を含む活性酸素 測定用試薬が本発明により提供される。さらに、本発明により、活性酸素の測定方法 であって、下記の工程: (A)上記一般式 (I)で表される化合物又はその塩と活性酸素と を反応させる工程、及び (B)上記工程 (A)で生成した脱ァリールイ匕合物(上記一般式 (I I)で表される化合物)又はその塩をルシファラーゼと反応させて生じる生物発光を測 定する工程を含む方法が提供される。さらに、上記の活性酸素測定用試薬とルシフ エラーゼとを要素として含む活性酸素測定用キットが本発明により提供される。
発明の効果
[0017] 本発明により提供される上記一般式 (I)で表される化合物又はその塩は、ルシフェラ 一ゼの基質としての性質を有して!/、るものの、基質となって反応しても無発光性であ る力 一方、ヒドロキシラジカルやパーォキシナイトライト、次亜塩素酸イオンなどの極 めて酸ィ匕力の強い活性酸素種と接触して脱ァリールイ匕を起こして上記一般式 (II)で 表される化合物又はその塩を生じる。該上記一般式 (II)で表される化合物又はその塩 は、ルシフェラーゼの基質としての性質を保持しつつ、かつ基質となって反応すると 発光性の化合物を生じることから、ヒドロキシラジカルやパーォキシナイトライト、次亜 塩素酸イオン、及び HRP/過酸ィ匕水素系などの極めて酸ィ匕力の強い活性酸素種と一 酸化窒素、過酸化水素、スーパーオキサイドァ-オン、及び一重項酸素などの活性 酸素種を区別して測定する活性酸素測定試薬として極めて有用である。さらに、本 発明により提供される上記一般式 (I)で表される化合物又はその塩は、イン'ビボでの 活性酸素のイメージングゃ酵素免疫測定法などのイン'ビトロアツセィの測定系として 好適に使用できる。
図面の簡単な説明
[図 1]化合物 8と種々の活性酸素種を反応させ、その生成物をルシフ ラーゼと反応 させた時の発光スペクトルを測定した結果である。
[図 2]化合物 8と各濃度の次亜塩素酸イオンを反応させ、その生成物をルシフェラー ゼと反応させた時の発光強度を次亜塩素酸ナトリウムの濃度に対してプロットした結 果である。
[図 3]化合物 8と HRP/過酸ィ匕水素系の活性酸素種を反応させ、その生成物をルシフ エラーゼと反応させた時の発光スペクトルを測定した結果である。
[図 4]化合物 8と HRP/過酸ィ匕水素系の活性酸素種を反応させ、その生成物をルシフ エラーゼと反応させた時の発光強度を過酸ィヒ水素の濃度に対してプロットした結果で ある。
[図 5]化合物 8と HRP/過酸ィ匕水素系の活性酸素種を反応させ、その生成物をルシフ エラーゼと反応させた時の発光強度を HRPの濃度に対してプロットした結果である。
[図 6]化合物 13をルシフェラーゼと反応させた時の発光スペクトルを測定した結果で ある。
[図 7]化合物 8と HRP/過酸ィ匕水素系の活性酸素種を反応させ、その生成物をルシフ エラーゼと反応させたときの発光強度を発光測定装置を用いて測定し、その積算発 光強度を過酸化水素の濃度に対してプロットした結果である。
[図 8]化合物 8と HRP/過酸ィ匕水素系の活性酸素種を反応させ、その生成物をルシフ エラーゼと反応させたときの発光強度を発光測定装置を用いて測定し、その積算発 光強度を HRPの濃度に対してプロットした結果である。
[図 9]化合物 8と次亜塩素酸イオンを反応させ、その生成物をルシフ ラーゼと反応さ せたときの発光強度を発光測定装置を用いて測定し、その積算発光強度を次亜塩 素酸イオンの濃度に対してプロットした結果である。
[図 10]化合物 8とパーォキシナイトライトを反応させ、その生成物をルシフェラーゼと 反応させたときの発光強度を発光測定装置を用いて測定し、その積算発光強度をパ 一ォキシナイトライトの濃度に対してプロットした結果である。
[図 11]化合物 8とヒドロキシルラジカルを反応させ、その生成物をルシフェラーゼと反 応させたときの発光強度を発光測定装置を用いて測定し、その積算発光強度をヒド 口キシルラジカルの濃度に対してプロットした結果である。
[図 12]HRPと ALPの同時検出系において、化合物 8と HRP/過酸化水素系の活性酸 素種を反応させ、その生成物をルシフェラーゼと反応させたときの発光強度を発光測 定装置を用いて測定し、その積算発光強度を HRPの濃度に対してプロットした結果 である。
[図 13]HRPと ALPの同時検出系において、 Luphosと ALPを反応させ、その生成物を ルシフェラーゼと反応させたときの発光強度を発光測定装置を用いて測定し、その積 算発光強度を ALPの濃度に対してプロットした結果である。
発明を実施するための最良の形態
本明細書において、「アルキル基」又はアルキル部分を含む置換基 (例えばアルキ ルカルボニル基など)のアルキル部分は、直鎖、分枝鎖、環状、又はそれらの組み合 わせ力 なる飽和炭化水素基を意味している。より具体的には、アルキル基としては 、例えば、メチル基、ェチル基、 n-プロピル基、イソプロピル基、シクロプロピル基、 n- ブチル基、 sec-ブチル基、イソブチル基、 tert-ブチル基、シクロプロピルメチル基、 n- ペンチル基、 n-へキシル基などを挙げることができる。 [0020] 本明細書にぉ 、て、ある官能基にっ 、て「置換基を有して 、てもよ 、」と言う場合に は、置換基の種類、個数、置換位置は特に限定されないが、例えば、アルキル基、 ハロゲン原子 (フッ素原子、塩素原子、臭素原子、ヨウ素原子のいずれでもよい)、水 酸基、アミノ基、カルボキシル基、スルホン酸基、アルキルスルホネート基などを置換 基として有していてもよい。また、本明細書においてァリール基という場合には、単環 性又は多環性のァリール基の 、ずれであってもよ 、が、好ましくはフエ-ル基を用い ることができる。ァリール環についても同様であり、好ましくはベンゼン環を用いること ができる。
[0021] 上記一般式 (I)において、 R1及び R2は水素原子、置換基を有していてもよい C アル
1-6 キル基、又は式 (A)で表される基を示す力 R1及び R2の少なくとも一つは式 (A)で表さ れる基を示す。 R1及び R2の一方が式 (A)で表される基を示し、他方が水素原子、又 は置換基を有して 、てもよ 、C アルキル基であることが好ましく、 R1及び R2の!、ずれ
1-6
か一方が式 (A)で表される基であり、他方が水素原子であることが特に好ましい。
[0022] R1及び R2が示す置換基を有していてもよい C アルキル基としては、置換基を有し
1-6
ていてもよい直鎖、分枝鎖、環状、又はそれらの組み合わせ力 なる飽和炭化水素 基の何れでもよいが、 C アルキル基が直鎖 C アルキルであることが好ましぐメチ
1-6 1-6
ル基であることが特に好ましい。 R1及び R2が示す C アルキル基が置換基を有する場
1-6
合、該置換基は特に限定されず、上記一般式 (I)で表される本発明の化合物の活性 酸素測定用試薬としての機能を損なわな 、ものであれば 、かなるものであってもよ!、
[0023] 一般式 (I)中の R1及び R2に置換する式 (A)で表される基において、 X1は N(R3)(R4) ( 式中、 R3及び R4はそれぞれ独立に水素原子、置換基を有していてもよい C アルキ
1-6 ル基を示す)、ヒドロキシ基、置換基を有して!/、てもよ!/、C アルコキシ基、スルファニ
1-6
ル基又は置換基を有して!/、てもよ!/、C アルキルスルファニル基で表される基を示す
1-6
力 X1が— N(R3)(R4)で表される基である場合には、 R3及び R4が共に水素原子である ことが好ましい。 X1が置換基を有していてもよい C アルコキシ基である場合にはメト
1-6
キシ基が好ましく、置換基を有して!/、てもよ!/、C アルキルスルファニル基である場合
1-6
には、メチルスルファニル基であることが好ましい。 X1は一 (CH )—Y—力置換する位
2 n 置に対してパラ位に結合することが好ま U、。 X2はベンゼン環上に置換する水素原 子又は 1個ないし 3個の一価の置換基を示すが、 2個以上の置換基を示す場合には それらは同一でも異なっていてもよい。 X2が示す置換基の置換位置は特に限定され ず、ベンゼン環上の置換可能な任意の位置に置換することができる。 Yは— 0 、又 は一 S を示すが、 0 であることが好ましい。 nは 1〜6の整数を示す力 nが 1〜3 であることが好ましぐ特に nが 2であることが好ましい。
[0024] 一般式 (I)で表される本発明の化合物又はその塩は、ルシフ ラーゼの基質となりう る構造を有しており、かつルシフェラーゼの基質として反応した際に電子密度の高い (HOMOエネルギーの高!、)ベンゼン環部位力 発光部位であるアミノルシフヱリン部 位への電子供与が起こり、その結果、発光を生じない性質を有している。
[0025] 上記一般式 (II)において、 R11及び R12はそれぞれ独立に水素原子、置換基を有して いてもよい C アルキル基、又は (CH ) —Z— Hで表される基を示す力 R11及び R12
1-6 2 m
の少なくとも一つは— (CH ) —Z— Hで表される基を示す。 R11及び R12の一方が— (CH
2 m
) —Z— Hで表される基を示し、他方が水素原子、又は置換基を有していてもよい C
2 m 1 - アルキル基であることが好ましぐ R11及び R12のいずれか一方が— (CH ) — Z— Hで
6 2 m
表される基であり、他方が水素原子であることが特に好ましい。 R11及び R12が示す置 換基を有して 、てもよ 、C アルキル基は、一般式 (I)が示す R1及び R2が示す置換基
1-6
を有していてもよい C アルキル基と同様である。 Zは— 0 、又は— S を示すが、
1-6
0 であることが好ましい。 mは 1〜6の整数を示す力 mカ^〜 3であることが好まし ぐ特に mが 2であることが好ましい。
[0026] 一般式 (II)で表される本発明の化合物又はその塩は、ルシフェラーゼの基質となりう る構造を有し、かつルシフェラーゼの基質として反応した際に発光する性質を有して いる。
本明細書において「発光性」とはルシフェラーゼとの反応により発光を生じる性質を 意味している。一方、本明細書において、本発明の化合物が「無発光性」であるとは 、ルシフェラーゼの基質となって化学修飾を受けるものの、酵素反応の生成物が実 質的に発光しな 、ことを意味して 、る。
[0027] 上記一般式 (I)で表される本発明の化合物は酸付加塩又は塩基付加塩として存在 することができる。酸付加塩としては、例えば、塩酸塩、硫酸塩、硝酸塩などの鉱酸 塩、又はメタンスルホン酸塩、 P-トルエンスルホン酸塩、シユウ酸塩、クェン酸塩、酒 石酸塩などの有機酸塩などを挙げることができ、塩基付加塩としては、ナトリウム塩、 カリウム塩、カルシウム塩、マグネシウム塩などの金属塩、アンモニゥム塩、又はトリエ チルァミン塩などの有機アミン塩などを挙げることができる。これらのほ力 グリシンな どのアミノ酸との塩を形成する場合もある。本発明の化合物又はその塩は水和物又 は溶媒和物として存在する場合もある力 これらの物質はいずれも本発明の範囲に 包含される。
[0028] 上記一般式 (I)で表される本発明の化合物は、置換基の種類により、 1個又は 2個以 上の不斉炭素を有する場合があるが、 1個又は 2個以上の不斉炭素に基づく光学活 性体や 2個以上の不斉炭素に基づくジァステレオ異性体などの立体異性体のほか、 立体異性体の任意の混合物、ラセミ体などは、いずれも本発明の範囲に包含される
[0029] 本発明の化合物の代表的化合物の製造方法を本明細書の実施例に具体的に示 した。従って、当業者は、これらの説明を基にして反応原料、反応条件、及び反応剤 などを適宜選択し、必要に応じてこれらの方法に修飾や改変をカ卩えることによって、 上記一般式 (I)及び一般式 (II)で表される本発明の化合物をいずれも製造することが できる。
[0030] 本明細書において用いられる「測定」という用語は、定量、定性、又は診断などの目 的で行われる測定、検査、検出などを含めて、最も広義に解釈しなければならない。 本発明の活性酸素の測定方法は、一般的には、(A)上記一般式 (I)で表される化合物 又はその塩と活性酸素とを反応させる工程、及び (B)上記工程 (A)で生成した一般式 ( II)で表される化合物又はその塩をルシフェラーゼと反応させて生じる生物発光を測 定する方法を含んでいる。
[0031] ルシフェリンールシフェラーゼ系の発光は、アデノシン三リン酸 (ATP)及びマグネシ ゥムイオンの存在下、基質の D-ルシフェリンがルシフェラーゼによって発光体である ォキシルシフェリンに酸ィ匕される反応によっておこる。従来は発光が速やかに減衰し てしまうためにオートインジェクターを備えたルミノメーターを必要としていた力 現在 ではコェンザィム A (CoA)を添カ卩した改良法(Promega Protocols and Application Gui de, 2nd edition)により、より強くかつ安定した発光が得られるようになり、特別な装置 は不要となっている。
[化 4]
Figure imgf000014_0001
Oxyluciferin
[0032] また、近年、 CCDカメラや画像解析技術の進歩により、従来は捕捉が難し力つた体 内(イン'ビボ)の微量ルシフェラーゼ発光を捉えることが可能となっている。ホタルル シフェラーゼとルシフェリンの組み合わせにより生じる生物発光を利用した生物発光 イメージング技法は、蛍光プローブを用いたイメージングと比較して励起光照射の必 要がないため、(1)バックグラウンドノイズがほとんど無ぐ高 S/Nイメージングが可能で あること、及び (2)光透過性の悪 、深部のイメージングも可能であることなどの特徴を 有する。
[0033] 本発明の一般式 (I)で表される化合物を含む活性酸素測定用試薬は、ルシフェラー ゼ遺伝子を導入した細胞 (癌細胞や細菌など)に接触させ、あるいはトランスジェ-ッ クマウス、又は病態モデル動物などに腹腔内投与することにより、細胞又は生物個体 内での酸化ストレスをリアルタイムに測定することが可能であり、疾患病態の原因究明 、治療薬の開発などに好適に利用できる。また、本発明の活性酸素測定用試薬は、 ノックグラウンドノイズがほとんど無ぐ高感度に HRP/過酸ィ匕水素系の反応を測定す ることが可能なことから、酵素免疫測定法などのイン'ビトロアッセィ系の測定系として も有用である。
[0034] 本発明の一般式 (I)で表される化合物が活性酸素種およびルシフェラーゼの両方 と反応して得られる化合物の発光は長波は 615nm付近にあるので、活性酸素以外の 測定対象物及びルシフ ラーゼの両方と反応して得られる化合物の発光ピーク波長 が本発明の発光ピークと異なる化合物を組み合わせて用いることにより、活性酸素種 とそれ以外の測定対象物を同時に測定することが可能である。
[0035] 例えば、アルカリホスファターゼ (ALP)及びルシフェラーゼの両方と特的に反応して ALP活性を測定することができる Luphos (Toya, Y. et. al., Bulletin of the Chemical S ociety of Japan, 65, pp.2604-2610, 1992)と本発明の化合物を組み合わせれば、資 料中の ALP活性と活性酸素種を同時に測定できる。
[0036] 本発明の化合物又はその塩を活性酸素測定用試薬として用いる場合、上記一般 式 (I)で表される化合物又はその塩をそのまま用いてもよいが、必要に応じて、試薬の 調製に通常用いられる添加剤を配合して組成物として用いてもよい。例えば、生理的 環境で試薬を用いるための添加剤として、溶解補助剤、 PH調節剤、緩衝剤、等張ィ匕 剤などの添加剤を用いることができ、これらの配合量は当業者に適宜選択可能であ る。これらの組成物は、粉末形態の混合物、凍結乾燥物、顆粒剤、錠剤、液剤など適 宜の形態の組成物として提供される。
実施例
[0037] 以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲は下記の 実施例に限定されることはない。
例 1 :化合物 8の合成
化合物 8の合成スキームを以下に示した。
[化 5]
Figure imgf000016_0001
Figure imgf000016_0002
Figure imgf000016_0003
D-cysteine, H20
acetone, BOH
Figure imgf000016_0004
8, APL (A)化合物 2の合成
4-二トロフエノールナトリウム塩(ィ匕合物 1) (1.1 g, 7.0 mmol)を 15 mLのジメチルホル ムアミドに溶解し、 2—クロ口エタノール(0.6 mL, 8.9 mmol)をカ卩ぇ 130 °Cで加熱還流 して一晩撹拌した。薄層クロマトグラフィー(酢酸ェチル I n—へキサン : 1 1 1)で原 料の消失を確認した後、反応溶液を留去し、残渣を酢酸ェチルで抽出して飽和食塩 水で洗った。無水硫酸ナトリウムで乾燥して減圧濃縮した。残渣をシリカゲルカラムク 口マトグラフィー(酢酸ェチル I n—へキサン = 1 / 1— 2 / 1)にて精製し、化合物 2 ( 固体)を得た(850 mg, 66%)。
1H-NMR (300 MHz, CDC1 ) δ 1.96 (t, 1Η, J = 6.2 Hz), 4.00-4.07 (m, 2H), 4.19 (t,
3
2H, J = 4.5 Hz), 6.99 (td, 2H, J = 2.8, 10.1 Hz), 8.22 (td, 2H, J = 2.8, 10.1 Hz). 13C-NMR (75 MHz, CDC1 ) δ 61.0, 69.9, 114.5, 125.9, 141.6, 163.7. MS (EI+) 183, M+
[0039] (B)化合物 3の合成
化合物 2 (850 mg, 4.6 mmol)を 20 mLのメタノールに溶解し、 30 mgの 10%パラジウム カーボンを加え水素置換して室温にて一晩撹拌した。薄層クロマトグラフィー(酢酸ェ チル I n キサン = 2 I 1)で原料の消失を確認した後、反応溶液をろ過してろ液 を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸ェチル I n—へキサ ン = 2 / 1)にて精製し、化合物 3 (固体)を得た(590 mg, 84%)。
JH-NMR (300 MHz, CDC1 ) δ 2.05 (br, 1H), 3.45 (br, 2H), 3.88—3.92 (m, 2H), 3.9
3
9-4.04 (m, 2H), 6.65 (td, 2H, J = 2.7, 8.9 Hz), 6.77 (td, 2H, J = 2.7, 8.9 Hz).
13C-NMR (75 MHz, acetone— d ) δ 61.4, 70.9, 116.2, 116.4, 142.6, 151.9.
6
MS (EI+) 153, M+
[0040] (C)化合物 4の合成
化合物 3 (1.8 g, 12 mmol)を 10 mLのピリジンに溶解し、ベンジルォキシカルボ-ル クロライド(2.2 mL, 15 mmol)を氷浴上でカ卩えて、そのままー晚撹拌した。薄層クロマト グラフィー(酢酸ェチル I n キサン = 2 I 1)で反応の進行を確認した後、反応溶 液を留去し、残渣を酢酸ェチルで抽出して飽和食塩水で洗った。無水硫酸ナトリウム で乾燥し減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸ェチル I n- へキサン = 1 / 2 — 2 / 1)にて精製して、化合物 4 (白色固体)を得た (2.3 g, 68 %)。 'H-NMR (300 MHz, CDC1 ) δ 1.98 (t, 1H, J = 6.2 Hz), 3.91—3.99 (m, 2H), 4.03—4.
3
09 (m, 2H), 5.19 (s, 2H), 6.53 (br, 1H), 6.87 (td, 2H, J = 2.4, 9.2 Hz), 7.26-7.43 (m , 7H).
13C-NMR (75 MHz, acetone— d ) δ 61.4, 66.7, 70.8, 115.5, 120.8, 128.8, 128.9, 12
6
9.2, 133.2, 138.0, 154.5, 155.8.
HRMS (ESI Calcd for [M+Na]+, 310.1055, Found, 310.1057.
[0041] (D)化合物 5の合成
ジメチルスルホキシド(2.8 mL, 39 mmol)を 78 °Cで 2 mol/L二塩化ォキサリル(ジ クロロメタン溶液) 20 mLに加えた。 5分撹拌した後、ィ匕合物 4 (1.1 g, 3.8 mmol)と 2 mL のジメチルスルホキシドのジクロロメタン溶液を一 78 °Cで滴下し 30分撹拌した。その 後、 10 mLのトリメチルァミンを加えた。室温に戻した後、反応溶液に水を加えて有機 溶媒層を分離し 1 mol/L塩酸、 0.5w/w%炭酸水素ナトリウム水溶液、飽和食塩水で洗 い、無水硫酸ナトリウムで乾燥して減圧濃縮した。残渣をシリカゲルカラムクロマトダラ フィー(酢酸ェチル I n—へキサン = 1 / 3— 1 / 1)にて精製して、化合物 5 (白色固 体)を得た(700 mg, 64 %)。
1H-NMR (300 MHz, CDC1 ) δ 4.55 (d, 2Η, J = 1.0 Hz), 5.19 (s, 2H), 6.61 (br, 1H),
3
6.85 (td, 2H, J = 2.2, 9.0 Hz), 7.28-7.44 (m, 7H).
13C-NMR (75 MHz, CDC1 ) δ 66.9, 73.0, 115.0, 120.6, 128.2, 128.3, 128.5, 132.0,
3
136.0, 153.6, 153.8, 199.2.
HRMS (ES Calcd for [M+Na]+, 308.0899, Found, 308.0938.
(E)化合物 6の合成
化合物 5 (140 mg, 0.5 mmol)を 20 mLのテトラヒドロフランに溶解し、 180 mmol/L硫 酸 2.8 mL (0.5 mmol)を加え室温で数分撹拌した。 2 シァノ 6 ァミノべンゾチアゾ ール(93 mg, 0.5 mmol)と水素化ホウ素ナトリウム(23 mg, 0.6 mmol)を 30 mLのテトラヒ ドロフランに溶力しこれをカ卩え、室温で撹拌した。薄層クロマトグラフィー(酢酸ェチル
I n キサン = 2 I 1)で反応の進行を確認し反応溶液に精製水を加えた後、飽和 食塩水を加えてテトラヒドロフラン層と分離した。水層を酢酸ェチルで抽出しテトラヒド 口フラン層と合わせ、この有機溶媒層を無水硫酸ナトリウムで乾燥し減圧濃縮した。シ リカゲルクロマトグラフィー(酢酸ェチル I n—へキサン = 1 / 3— 1 / 1)で精製した 後、セミ分取 HPLC (溶出液 A =水/ 0.1%トリフルォロ酢酸、溶出液 B = 80%ァセトニト リル I 20%水 I 0.1%トリフルォロ酢酸、 A / B = 50 / 50— 0 / 100 (10分))で精製し、 化合物 6 (黄色固体)を得た(130 mg, 58 %)。
1H-NMR (300 MHz, CD OD) δ 3.49 (t, 2H, J = 5.4 Hz), 4.07 (t, 2H, J = 5.4 Hz), 5
3
.05 (s, 2H), 6.79 (td, 2H, J = 2.2, 9.0 Hz), 6.97 (dd, 1H, J = 2.3, 9.1 Hz), 7.07 (d, 1 H, J = 2.3 Hz), 7.17-7.33 (m, 7H), 7.75 (d, 1H, J = 9.1 Hz).
13C-NMR (75 MHz, acetone— d ) δ 43.6, 66.8, 67.4, 100.6, 114.8, 115.7, 118.2, 12
6
0.7, 126.0, 128.8, 128.9, 129.3, 129.7, 133.6, 138.0, 139.8, 145.2, 150.9, 154.5, 15 5.5. HRMS (ESI Calcd for [M+H]+, 445.1334, Found, 445.1355.
[0043] (F)化合物 8の合成
化合物 6を 5 mLのジクロロメタンに溶解し、トリフルォロ酢酸を 20 mLカ卩えて 60でで 加熱還流した。薄層クロマトグラフィー(酢酸ェチル I n キサン : 1 1 1)で原料の 消失を確認した後、トルエンと共沸して溶媒を除去した。残渣を酢酸ェチルで抽出し 、無水硫酸ナトリウムで乾燥して減圧濃縮した。シリカゲルカラムクロマトグラフィー( 酢酸ェチル I n—へキサン = 1 / 2— 1 / 1— 2 / 1)で精製し、化合物 7を得た。次 に、 D—システィン塩酸塩 ·一水和物(150 mg, 0.85 mmol)をアルゴンで脱気した精製 水に溶解し、 0.5 mol/L炭酸カリウム溶液で pHを 8とした D—システィン溶液を調製し た。化合物 7 (84 mg, 0.27 mmol)をアルゴンで脱気したエタノール 20 mL、アセトン 2 m Lに溶解し、 D—システィン溶液を加えた。アルゴン置換し、遮光して室温で撹拌した 。有機溶媒を留去し、残った水層を分取 HPLC (溶出液 A =水/ 0.1 %トリフルォロ酢 酸、溶出液 B = 80 %ァセトニトリノレ I 20%水 I 0.1%トリフノレオ口酢酸、 A / B = 80 / 20 - 20 / 80 (20分))で精製し、化合物 8を得た(18 mg, 16%, 2段階)。
JH-NMR (300 MHz, CD OD)
3 δ 3.62 (t, 2H, J = 5.3 Hz), 3.65—3.77 (m, 2H), 4.23 (t
, 2H, J = 5.3 Hz), 5.35 (t, 1H, J = 9.1 Hz), 6.96 (dd, 1H, J = 2.3, 9.0 Hz), 7.09 (td, 2H, J = 2.2, 9.0 Hz), 7.14 (d, 1H, J = 2.3 Hz), 7.29 (td, 2H, J = 2.2, 9.0 Hz), 7.77 ( d, 1H, J = 9.0 Hz).
13C-NMR (75 MHz, CD OD)
3 δ 35.8, 40.4, 43.9, 68.2, 79.3, 101.7, 117.0, 124.6, 1
25.2, 125.5, 140.1, 146.4, 150.2, 155.7, 160.6, 167.7, 173.5.
HRMS (ESI Calcd for [M+H]+, 415.0899, Found, 415.0933.
[0044] 例 2 :化合物 13の合成
[化 6]
Figure imgf000020_0001
Figure imgf000020_0002
Figure imgf000020_0003
[0045] (A)化合物 9の合成
エチレングリコーノレ(1 mL, 18 mmol)とべンジノレブロミド(2.1 mL, 18 mmol)を 2 mol /L水酸化ナトリウム水溶液 10 mLとテトラヒドロフラン 5 mLに溶解し、 80 °Cで加熱還流 した。薄層クロマトグラフィー(酢酸ェチル I キサン = 2 / 1)で反応の進行を確 認した後、反応溶液を酢酸ェチルで振り取り、水層を 4 mol/L塩酸にて酸性にした。 水層を酢酸ェチルで振り取り、飽和食塩水で洗い、無水硫酸ナトリウムで乾燥して減 圧濃縮した。残渣をシリカゲルクロマトグラフィー(酢酸ェチル I n キサン = 1 / 4 - 1 / 2 - 1 / 1)にて精製し、化合物 9 (液体)を得た (970 mg, 36 %)。
JH-NMR (300 MHz, CDC1 ) δ 2.00 (br, 1H), 3.58—3.63 (m, 2H), 3.77 (t, 2H, J = 4.
3
5 Hz), 4.57 (s, 2H), 7.28-7.38 (m, 5H).
13C-NMR (75 MHz, CDC1 ) δ 60.9, 71.0, 72.6, 127.1, 127.3, 127.8, 137.6.
3
MS (EI+) 152, M+
[0046] (B)化合物 10の合成
ジメチルスルホキシド(2.7 mL, 38 mmol)を— 78 °Cで 2 mol/L二塩化ォキサリル(ジ クロロメタン溶液) 20 mLに加えた。 5分撹拌した後、化合物 9 (1.1 g, 3.8 mmol)と 1 m Lのジメチルスルホキシドのジクロロメタン溶液を一 78 °Cで滴下し 30分撹拌した。その 後、 10 mLのトリメチルァミンを加えた。室温に戻した後反応溶液に水を加えて、有機 溶媒層を分離し 1 mol/L塩酸、 0.5w/w%炭酸水素ナトリウム水溶液、飽和食塩水で洗 つた。無水硫酸ナトリウムで乾燥して減圧濃縮した。残渣をシリカゲルカラムクロマトグ ラフィー(酢酸ェチル I n—へキサン = 1 / 4— 1 / 2) にて精製して、化合物 10 (液 体)を得た(300 mg, 53 %)。
1H-NMR (300 MHz, CDC1 ) δ 4.11 (d, 2Η, J = 0.8 Hz), 4.64 (s, 2H), 7.28-7.39 (m,
3
5H), 9.73 (t, 1H, J = 0.8 Hz).
13C-NMR (75 MHz, CDC1 ) δ 73.1, 74.9, 127.6, 127.7, 128.2, 136.6, 199.9.
3
MS (EI+) 150, M+
[0047] (C)化合物 11の合成
化合物 10 (120 mg, 0.8 mmol)を 30 mLのテトラヒドロフランに溶解し、 180 mmol/L 硫酸 3.3 mL (0.6 mmol)をカ卩ぇ室温で数分撹拌した。 2—シァノー 6—ァミノべンゾチ ァゾール(110 mg, 0.6 mmol) と水素化ホウ素ナトリウム(23 mg, 0.6 mmol)を 30 mLの テトラヒドロフランに溶力しこれをカ卩え、室温で撹拌した。薄層クロマトグラフィー(酢 酸ェチル I n—へキサン = 2 I 1)で反応が進んでいることを確認し反応溶液に精製 水をカ卩えた後、飽和食塩水を加えテトラヒドロフラン層と分離した。水層を酢酸ェチル で抽出しテトラヒドロフラン層と合わせ、この有機溶媒層を無水硫酸ナトリウムで乾燥 し減圧濃縮した。シリカゲルクロマトグラフィー(酢酸ェチル I n—へキサン = 1 / 4—
1 I 2)で精製し、化合物 11 (黄色固体)を得た(70 mg, 38 %)。
JH-NMR (300 MHz, CDC1 ) δ 3.36—3.44 (m, 2H), 3.75 (t, 2H, J = 5.1 Hz), 4.57-4.
3
63 (m, 3H), 6.89 (dd, 1H, J = 2.4, 9.0 Hz), 6.94 (d, 1H, J = 2.4 Hz), 7.28-7.39 (m, 5H), 7.92 (d, 1H, J = 9.0 Hz).
13C-NMR (75 MHz, CDC1 ) δ 43.3, 67.9, 73.2, 100.0, 113.8, 117.1, 125.3, 127.7,
3
127.9, 128.4, 129.6, 137.6, 138.6, 144.7, 148.9.
HRMS (ESO Calcd for [M— H]—, 308.0858, Found, 308.0816.
[0048] (D)化合物 12の合成
化合物 11 (30 mg, 0.1 mL)を 2 mLのジクロロメタン〖こ溶解し、トリフルォロ酢酸を 15 mLカ卩え、 60 °Cでー晚加熱還流した。薄層クロマトグラフィー(酢酸ェチル I n キ サン = 2 / 1)で原料の消失を確認した後、トルエンと共沸して溶媒を除去した。残渣 を酢酸ェチルで抽出し、無水硫酸ナトリウムで乾燥して減圧濃縮した。残渣をシリカ ゲルカラムクロマトグラフィー(酢酸ェチル I n—へキサン = 1 /3— 1 /1 3 / 1)で 精製した後、分取 HPLC (溶出液 A =水/ 0.1%トリフルォロ酢酸、 溶出液 B = 80%ァ セトニトリル I 20%水 I 0.1%トリフルォロ酢酸、 A / B = 80 / 20— 20 / 80 (20分》で 精製し、化合物 12 (黄色固体)を得た(9 mg, 41 %)。
1H-NMR (300 MHz, CD CN) δ 3.25 (t, 2H, J = 5.6 Hz), 3.69 (t, 2H, J = 5.6 Hz), 7
3
.01 (dd, 1H, J = 2.3, 9.1 Hz), 7.11 (d, 1H, J = 2.3 Hz), 7.86 (d, 1H, J = 9.1 Hz). 13C-NMR (75 MHz, CD CN) δ 46.5, 60.7, 100.6, 115.0, 118.1, 125.9, 130.0, 139.
3
9, 145.1, 150.9.
HRMS (ESI") Calcd for [M— H]—, 218.0388, Found, 218.0429.
[0049] (E)化合物 13の合成
D システィン塩酸塩 ·一水和物(18 mg, 0.1 mmol)をアルゴンで脱気した精製水 に溶かし、 0.5 mol/L炭酸カリウム水溶液で pHを 8とした D システィン溶液を調製し た。化合物 12 (9 mg, 40 μ mol)をアルゴンで脱気したメタノール 10 mLに溶解し、 D —システィン溶液を加えた。アルゴン置換し、遮光して室温で撹拌した。有機溶媒を 留去し、残った水層を酢酸ェチルで抽出、飽和食塩水で洗い減圧濃縮した。残渣を 分取 HPLC (溶出液 A =水/ 0.1%トリフルォロ酢酸、 溶出液 B = 80%ァセトニトリル I 20%水 I 0.1%トリフルォロ酢酸、 A / B = 80 / 20— 20 / 80 (20分))で精製し、化合 物 13を得た (13 mg, 99 %)。
1H-NMR (300 MHz, CD CN) δ 3.26 (t, 2H, J = 5.5 Hz), 3.64—3.74 (m, 4H), 5.34 (t
3
, 1H, J = 9.3 Hz), 6.94 (dd, 1H, J = 2.3, 9.0 Hz), 7.11 (d, 1H, J = 2.3 Hz), 7.79 (d, 1H, J = 9.0 Hz).
13C-NMR (75 MHz, CD CN) δ 35.4, 47.1, 60.5, 78.7, 102.8, 117.0, 125.5, 139.5,
3
146.6, 148.7, 155.7, 166.7, 171.5.
HRMS (ESI Calcd for [M+H]+, 324.0477, Found, 324.0450.
[0050] 例 3 :化合物 8と種々の活性酸素種との反応
pH 7.7、 0.1 mol/Lリン酸ナトリウム緩衝液にて化合物 8の溶液 (最終濃度 12 mol/ L、共溶媒として 0.2%ジメチルホルムアミド含有)を調製して試験に使用した。調製した 溶液を以下の条件:
(a)パーォキシナイトライトを終濃度 6 mol/Lとなるよう添加し、 25°Cにて 1分間撹拌
(b)過酸化水素を終濃度 1 mmol/Lとなるよう添加し、 25°Cにて 1分間撹拌
(c)二酸ィ匕カリウムを終濃度 1 mmol/Lとなるよう添加し、 25°Cにて 5分間撹拌
(d)過酸ィ匕水素及び過塩素酸鉄 (Π)をそれぞれ終濃度 lmmol/L、 360 mol/Lとなる よう添加し、 25°Cにて 1分間撹拌
(e)次亜塩素酸ナトリウムを終濃度 6 mol/Lとなるよう添加し、 25°Cにて 1分間撹拌 (DNOC-13 (一酸化窒素放出剤:同仁ィ匕学研究所製)を終濃度 1 mmol/Lとなるよう添 加し、 25°Cにて 15分間撹拌
で処理した。
[0051] 次 、で、それぞれ反応液に硫酸マグネシウム、 ATPをそれぞれ最終濃度 5 mmol/L 、 2.6 mmol/Lとなるように加え、最後に最終濃度 40 g / mLのホタルルシフェラーゼ を加え発光スペクトルを測定することで、(a)パーォキシナイトライト、(b)過酸ィ匕水素、( c)一重項酸素、(d)ヒドロキシルラジカル、(e)次亜塩素酸イオン、(1)一酸化窒素との反 応性を比較した。測定の装置は F-4500 (日立)を用いた。結果を図 1に示す。化合物 8はパーォキシナイトライト、ヒドロキシルラジカル及び次亜塩素酸イオンと反応して強 く発光したが、過酸化水素、一重項酸素、一酸化窒素とはほとんど反応せず発光ス ベクトルに変化が観察されな力つた。従って、化合物 8はパーォキシナイトライト、ヒド 口キシルラジカル及び次亜塩素酸イオンなどの酸ィ匕力の強い活性酸素種のみを特 異的に認識する生物発光プローブであることが確認された。
[0052] 例 4 :化合物 8と次亜塩素酸イオンとの反応における次亜塩素酸イオン濃度依存性 pH 7.7、 0.1 mol/Lリン酸ナトリウム緩衝液に化合物 8 (最終濃度 12 μ mol/L,補助 溶媒として 0.2%ジメチルホルムアミド含有)を溶解した後、次亜塩素酸ナトリウムを最 終濃度 1.87 μ mol/L, 3.74 μ mol/L, 6.2 μ mol/L, 9.34 μ mol/L, 12.4 mol/Lとな るようにそれぞれ添加し、 25 °Cにて 1分間撹拌した。次に硫酸マグネシウム、 ATPを それぞれ最終濃度 5 mmol/L, 2.6 mmol/Lとなるように加え、 615 nmにおける発光の 測定を開始した。 30秒後に最終濃度 20 μ § / mLとなるようにホタルルシフェラーゼ を加え、その時の初期発光強度を次亜塩素酸ナトリウムの濃度に対してプロットした。 測定の装置は F-4500 (日立)を用いた。
結果を図 2に示す。次亜塩素酸ナトリウム濃度依存的に発光強度が増力!]しており、 化合物 8を用いて定量的に次亜塩素酸イオン濃度が測定可能なことが示された。
[0053] 例 5 : HRP I過酸化水素系での化合物 8の発光
(A)発光スペクトルの測定
pH 7.7、 0.1 mol/Lリン酸ナトリウム緩衝液に化合物 8 (最終濃度 12 μ mol/L,共溶 媒として 0.2%ジメチルホルムアミド含有)を溶解し、 HRPを最終濃度 0.2 mol/Lとなる ように加えた後で、過酸化水素を 3 mol/Lとなるように加え室温にてピペッティング した。次に硫酸マグネシウム、 ATPをそれぞれ最終濃度 5 mmol/L、 2.6 mmol/Lとなる ように加え、最後に最終濃度 40 ^ g / mLホタルルシフェラーゼをカ卩ぇ測定した。さら に、 pH 7.7、 0.1 mol/Lリン酸ナトリウム緩衝液に化合物 8 (最終濃度 12 μ mol/L,共 溶媒として 0.2%ジメチルホルムアミド含有)を溶解した溶液に、前記と同量の HRPのみ を添カ卩したサンプル、過酸ィ匕水素のみを添カ卩したサンプル、および双方ともに添加し ていないサンプルを調整し、硫酸マグネシウム、 ATPをそれぞれ最終濃度 5 mmol/L 、 2.6 mmol/Lとなるようにカ卩えた後、これらにそれぞれ最終濃度 40 ^ g / mLホタル ルシフェラーゼをカ卩ぇ測定した。測定の装置は F-4500 (日立)を用いた。
結果を図 3に示す。化合物 8は、 HRPと過酸ィ匕水素が共に存在するときのみ、大き な発光スペクトル変化を示した。これ〖こより HRP/過酸ィ匕水素系の高い酸ィ匕活性を有 する活性酸素種についても測定が可能なことが示された。
[0054] (B)発光強度の過酸化水素に対する濃度依存性
pH 7.7、 0.1 mol/Lリン酸ナトリウム緩衝液に化合物 8 (最終濃度 12 μ mol/L,共溶 媒として 0.2%ジメチルホルムアミド含有)を溶解し、 HRPを最終濃度 0.2 mol/Lとなる ように加えた後で、過酸化水素を最終濃度 0.12 μ mol/L, 0.36 μ mol/L, 0.6 μ
Figure imgf000024_0001
L、 1.2 μ mol/L, 1.8 μ mol/L, 2.4 μ mol/L, 3.6 mol/Lとなるようにそれぞれ添カロ して、室温にてピペッティングした。次に硫酸マグネシウム、 ATPをそれぞれ最終濃度 5 mmol/L, 2.6 mmol/Lとなるように加え、 615 nmにおける発光の測定を開始した。 30 秒後に最終濃度 20 μ g / mLホタルルシフェラーゼを加え、その時の初期発光強度 を過酸ィ匕水素の濃度に対してプロットした。測定の装置は F-4500 (日立)を用いた。 結果を図 4に示す。過酸ィ匕水素濃度依存的に発光強度が増カロしていることから、化 合物 8とルシフェラーゼ反応を組み合わせることにより過酸ィヒ水素濃度を定量的に測 定できることが示された。
[0055] (C)発光強度の HRPに対する濃度依存性
pH 7.7, 0.1 mol/L リン酸ナトリウム緩衝液に化合物 8 (最終濃度 12 mol/L、共溶 媒として 0.2%ジメチルホルムアミド含有)を溶解し、 HRPを最終濃度 0.05 nmol/L、 0.1 nmol/L、 0.3 nmol/L、 0.5 nmol/L、 0.75 nmol/L (100 unit I mg)となるように加えた後 で、過酸化水素を最終濃度 1 mmol/Lとなるようにそれぞれ添加して、室温にて 10分 間撹拌した。次に硫酸マグネシウム、 ATPをそれぞれ最終濃度 5 mmol/L, 2.6 mmol/ Lとなるようにカ卩え、 615 nmにおける発光の測定を開始した。 30秒後に最終濃度 20 μ g / mLホタルルシフェラーゼをカ卩え、その時の初期発光強度を HRPの濃度に対し てプロットした。測定は 2回行ない、その平均値をグラフに示した。測定の装置は F-4 500 (日立)を用いた。
結果を図 5に示す。 HRP濃度依存的に発光強度が増カロしていることから、化合物 8 とルシフェラーゼ反応を組み合わせることにより HRP濃度を定量的に測定できること が示された。
[0056] 例 6 :化合物 13の発光スペクトル
発光の測定は pH 7.7、 30 mmol/L N- 2-ヒドロキシェチルピペラジン- N'-2-エタンス ルホン酸(HEPES)緩衝液に 5 mmol/L硫酸マグネシウム、 2.6 mmol/L ATP、 3.5 m mol/Lジチオスレィトール(DTT)、 1.5 mmol/L CoA、 40 g / mlホタルルシフェラ ーゼとなるようにそれぞれ試薬を溶解させておいて、最後に最終濃度が 12 μ mol/L
(共溶媒として 0.2%ジメチルスルホキシド含有)になるように化合物 13をカ卩えた。測定 の装置は F-4500 (日立)を用いた。
結果を図 6に示す。化合物 13は化合物 8と活性酸素との反応生成物である。この化 合物 13がルシフヱラーゼの基質となって反応し、発光することが確認された。
[0057] 例 7 HRPZ過酸化水素系での化合物 8の発光
例 5では発光を蛍光測定装置 F-4500 (日立)を用いて検出したが、発光測定装置 P erkin- Elmer Envision 2103 Multilabel readerを用いて再度、 HRPZ過酸化水素系で の化合物 8の発光測定を実施した。
(A)発光強度の過酸化水素に対する濃度依存性
キュベット中に 0.1 mol/Lナトリウムリン酸緩衝液 (pH 7.7)を用意し 12 mol/Lの化 合物 8 (最終濃度)を加え、そこに過酸化水素(最終濃度 0 /z mol/L O.Oll μ mol/L 、 0.043 μ mol/L, 0.065 μ mol/L, 0.11 μ mol/L, 0.22 μ mol/L, 0.43 μ mol/L, 0.6 5 ^ mol/ 1.1 μ mol/L, 2.2 ^ mol/L, 4.3 μ mol/L, 6.5 mol/L、過酸化水素溶 液の濃度は ε 240 = 43.6 M^-cm"1を用いて算出した)、 HRP (最終濃度 86 nU/mL) を添加しィ匕合物 8と 10分反応させた。その後、プレートの各ゥエルに 0.1 mol/Lナトリ ゥムリン酸緩衝液(pH 7.7、 5 mmol/L硫酸マグネシウムおよび 300 ng/mLホタルルシ フェラーゼ含有、いずれも濃度は最終濃度)を分注し、該ゥエルに対し先のキュベット 中から最終濃度 1.8 mol/L (反応開始時の化合物 8の濃度として) となるように反応 液を加え測定を開始した。測定開始後 5秒後に 2.6 mmol/L ATP (最終濃度)を添カロ し、添加後の 5秒間の発光量を積算し、過酸ィ匕水素の濃度に対してプロットした。 HR Pとの反応は 37 ° Cで行い、発光の測定は室温にて行った。結果を図 7に示す。発 光測定装置を用いた場合にも過酸化水素濃度依存的に発光強度が増加しているこ とから、化合物 8とルシフェラーゼを組み合わせることにより過酸ィ匕水素濃度を定量的 に測定できることが示された。
(B)発光強度の HRPに対する濃度依存性
キュベット中に 0.1 mol/Lナトリウムリン酸緩衝液 (pH 7.7)を用意し 12 mol/Lの化 合物 8 (最終濃度)を加え、そこに過酸化水素(最終濃度 100 /z mol/L) HRP (最終 濃度 0 nU/mL、 0.086 nU/mL、 0.13 nU/mL、 0.22 nU/mL、 0.43 nU/mL、 0.86 nU/m L、 1.3 nU/mLゝ 2.2 nU/mLゝ HRPの濃度は ε 403 = 102000 M^-cm"1を用いて算出 した。)を添加しィ匕合物 8と 10分反応させた。その後、プレートの各ゥエルに 0.1 mol/L ナトリウムリン酸緩衝液(pH 7.7、 5 mmol/L硫酸マグネシウムおよび 300 ng/mLホタ ルルシフェラーゼ含有、いずれも濃度は最終濃度)を分注し、該ゥエルに対し先のキ ュベット中から最終濃度 1.8 μ mol/L (反応開始時の化合物 8の濃度として) となるよ うに反応液を加え測定を開始した。測定開始後 5秒後に 2.6 mmol/L ATP (最終濃度 )を添加し、添加後の 5秒間の発光量を積算し、 HRPの濃度に対してプロットした。 H RPとの反応は 37 ° Cで行い、発光の測定は室温にて行った。測定はプレートとして Microlite (IWAKI)を用いて Perkin- Elmer Envision 2103 Multilabel readerで行った 。結果を図 8に示す。発光測定装置を用いた場合にも HRP濃度依存的に発光強度が 増加していることから、化合物 8とルシフェラーゼを組み合わせることにより HRP濃度 を定量的に測定できることが示された。
[0059] 例 8 化合物 8の発光強度の各種活性酸素種に対する濃度依存性
キュベット中に 0.1 mol/Lナトリウムリン酸緩衝液 (pH 7.7)を用意し 12 μ mol/Lの化 合物 8 (最終濃度)を加えた。ここに、次亜塩素酸イオンとの反応性を観察する場合は 、最終濃度が 0 μ mol/L, 0.19 μ mol/L, 0.37 μ mol/L, 0.62 ^ mol/ 1.9 μ mol/L 、 3.7 μ mol/L, 6.2 μ mol/L, 9.4 μ mol/L, 12.4 μ mol/Lになるように次亜塩素酸 ナトリウムを添加し、パーォキシナイトライトとの反応性を観察する場合は、最終濃度 が 0 μ mol/L, 0.24 μ mol/L, 0.40 μ mol/L, 0.60 ^ mol/L, 1.2 ^ mol/L, 2.4 ^ mol /L、4.0 ^ mol/L, 6.0 mol/Lになるように硝酸ナトリウム溶液を添カ卩し、ヒドロキシ ルラジカルとの反応性を観察する場合は、最終濃度 1 mmol/Lの過酸ィ匕水素に対し て過塩素酸鉄を最終濃度 0 μ mol/L, 4 μ mol/L, 8 μ mol/L, 12 μ mol/L, 20 μ mo 1/L、40 ^ mol/L, 80 ^ mol/L, 120 ^ mol/L, 160 mol/Lになるように添カロした。化 合物 8と各種活性酸素種を反応させた後、プレートに 0.1 mol/Lナトリウムリン酸緩衝 液(pH 7.7、 5 mmol/L硫酸マグネシウムおよび 300 ng/mLホタルルシフェラーゼ含 有、いずれも濃度は最終濃度)を分注し、該ゥエルに対し先のキュベット中から最終 濃度 1.8 mol/L (反応開始時の化合物 8の濃度として)となるように反応液を加え 測定を開始した。測定開始後 5秒後に 2.6 mmol/L ATP (最終濃度)を添加し、添加後 の 5秒間の発光量を積算し、各活性酸素種の濃度に対してプロットした。測定は室温 にて行った。測定はプレートとして Microlite (IWAKI)を用いて Perkin- Elmer Envisio n 2103 Multilabel readerで行った。結果を図 9、図 10、図 11〖こ示す。いずれの活性 酸素種についても化合物 8を用いて定量的に検出できることが確認された。
[0060] 例 9 HRPと ALPの同時検出
化合物 8と自製したアルカリフォスファターゼ (ALP)検出発光プローブ Luphos (Toya , Y. et. al" Bulletin of the Chemical Society of Japan, 65, pp.2604— 2610, 1992)とを 用いて、 HRPと ALPの同時活性検出を行った。
キュベット中に 30 mmol/L HEPES緩衝液(pH 7.7)を用意し化合物 8と Luphosをそれ ぞれ 12 μ mol/L (最終濃度)加え、そこに HRPと ALPを、 HRP濃度が 0 nU/mLのと き ALP濃度 0 μ U/mL、 HRP濃度が 0.13 nU/mLのときALP濃度2.2 μ U/mL、 HRP濃 度が 0.22 nU/mLのときALP濃度5.4 μ U/mL、 HRP濃度が 0.43 nU/mLのとき ALP濃 度 11 μ U/mL、 HRP濃度が 0.86 nU/mLのとき ALP濃度 22 μ U/mL、 HRP濃度が 1.3 nU/mLのとき ALP濃度 54 μ U/mL、 HRP濃度が 2.2 nU/mLのとき ALP濃度 110 μ U/ mL (いずれも最終濃度)になるように添加し 10分反応させた。過酸化水素濃度は、 10 0 mol/L (最終濃度)である。その後、プレートの各ゥエルに 0.1 mol/Lナトリウムリン 酸緩衝液(pH 7.7、 5 mmol/L硫酸マグネシウムおよび 300 ng/mLホタルルシフェラ ーゼ含有、いずれも濃度は最終濃度)を分注し、該ゥエルに対し先のキュベット中か ら最終濃度 1.8 mol/L (反応開始時の化合物 8及び Luphosの濃度として) となるよう に反応液を加え測定を開始した。測定開始後 5秒後に 2.6 mmol/L ATP (最終濃度) を添カ卩した。添加後の 10秒間の発光量を測定した。 HRPと ALPの反応は 37 ° じで 行い、発光の測定は室温にて行った。測定はプレートとして Microlite (IWAKI)を用 いて Perkin- Elmer Envision 2103 Multilabel readerで行った。フィルタ一として 615 n m/8.5 nmと 545 nm/7 nm (Perkin- Elmer)を使用し、解析においては以下の行列式を 用いた。
[数 1]
Figure imgf000028_0001
F 、F はそれぞれのフィルターを用いたときの実測値、 κ 、 κ 、 κ 、 κ
615 545 615X 615Y 545Χ 545Υ はそれぞれのフィルターを用いた時のホタルルシフェリンとヒドロキシェチルアミノル シフェリンの発光の透過度で κ = 0.062、 κ = 0.028、 κ = 0.0041、 κ =
545Χ 615X 545Υ 615Y
0.072を用いた。 X(Luphos)は Luphosを用いた時の 10秒間の積算発光強度、 Y (ィ匕合 物 8)は化合物 8を用いた時の 10秒間の積算発光強度である。この式を解いて得られ た発光量をそれぞれ HRP、 ALPの濃度に対してプロットした結果を図 12、図 13に示 す。 HRPと ALPの同時検出系においても、化合物 8を用いて HRPを、 Luphosを用いて ALPをそれぞれ定量的に検出できることが確認された。
産業上の利用可能性
上記一般式 (I)で表される化合物又はその塩は、ルシフ ラーゼの基質としての性 質を有しているものの、基質となって反応しても無発光性である力 一方、ヒドロキシ ラジカルやパーォキシナイトライト、次亜塩素酸イオンなどの極めて酸ィ匕力の強い活 性酸素種と接触して脱ァリールイ匕を起こして上記一般式 (II)で表される化合物又はそ の塩を生じる。該上記一般式 (II)で表される化合物又はその塩は、ルシフェラーゼの 基質としての性質を保持しつつ、かつ基質となって反応すると発光性の化合物を生 じることから、ヒドロキシラジカルやパーォキシナイトライト、次亜塩素酸イオン、及び H RP/過酸ィ匕水素系などの極めて酸ィ匕力の強 ヽ活性酸素種と一酸化窒素、過酸化水 素、スーパーオキサイドァ-オン、及び一重項酸素などの活性酸素種を区別して測 定する活性酸素測定試薬として極めて有用である。

Claims

請求の範囲 下記の一般式 (I) :
[化 1]
Figure imgf000030_0001
[式中、 R1及び R2はそれぞれ独立に水素原子、置換基を有していてもよい C ル基、又は下記の式 (Α) :
[化 2]
Figure imgf000030_0002
〔式中、 X1は— N(R3)(R4) (式中、 R3及び R4はそれぞれ独立に水素原子、置換基を有し て 、てもよ 、C アルキル基を示す)、ヒドロキシ基、 C アルコキシ基、スルファ-ル
1-6 1-6
基又はアルキルスルファ-ル基で表される基を示し; X2はベンゼン環上に置換する水 素原子又は 1個ないし 3個の一価の置換基を示し; Yは- 0-又は- S-を示し; nは 1〜6 の整数を示す〕で表される基を示すが、 R1及び R2の少なくとも一つは式 (A)で表され る基を示す]で表される化合物又はその塩。
[2] R1及び R2がそれぞれ独立に水素原子、置換基を有していてもよい C アルキル基、
1-6
又は式 (A)〔式中、 X1が— N(R3)(R4) (式中、 R3及び R4がそれぞれ独立に水素原子、置 換基を有していてもよい C アルキル基を示す)、ヒドロキシ基、又は C アルコキシ基
1-6 1-6
を示し、 X2がベンゼン環上に置換する水素原子又は 1個な 、し 3個の一価の置換基 を示し、 Yカ 0-を示し、 nが 1〜6の整数を示す〕で表される基を示すが、 R1及び R2の 少なくとも一つは式 (A)で表される基である請求項 1に記載の化合物又はその塩。
[3] R1が水素原子であり、 R2が式 (A)〔式中、 X1は NHを示し、 X2は水素原子を示し、 Yは
2
- 0-を示し、 nは 2を示す〕である請求項 1又は 2に記載の化合物又はその塩。
[4] 請求項 1な!、し 3の!、ずれ力 1項に記載の化合物又はその塩力 なるルシフ ラーゼ
[5] 下記の一般式 (II) :
[化 3]
Figure imgf000031_0001
〔式中、 R11及び R12はそれぞれ独立に水素原子、置換基を有していてもよい C アル
1-6 キル基、又は— (CH ) —Ζ—Η (式中、 Ζは- 0-又は- S-を示し; mは 1〜6の整数を示
2 m
す)で表される基を示すが、 R11及び R12の少なくとも一つは— (CH ) — Z— Hで表され
2 m
る基を示す〕で表される化合物又はその塩。
[6] R11及び R12がそれぞれ独立に水素原子、置換基を有していてもよい C アルキル基、
1-6
又は— (CH ) —Z— H (式中、 Zは- 0-を示し; mは 1〜6の整数を示す)で表される基
2 m
を示すが、 R11及び R12の少なくとも一つは— (CH ) —Z—Hで表される基である請求項
2 m
5に記載の化合物又はその塩。
[7] R11が水素原子であり、 R12が— (CH ) — Z— H (式中、 Zは- 0-を示し; mは 1〜6の整数
2 m
を示す)である請求項 5又は 6に記載の化合物又はその塩。
[8] R11が水素原子であり、 R12がー (CH )— OHである請求項 5ないし 7のいずれ力 1項に
2 2
記載の化合物又はその塩。
[9] 請求項 5な!、し 8の!、ずれ力 1項に記載の化合物又はその塩力 なるルシフ ラーゼ
[10] 請求項 1な!、し 3の 、ずれ力 1項に記載の化合物又はその塩を含む活性酸素測定用
[11] 活性酸素の測定方法であって、下記の工程:
(A)請求項 1に記載の一般式 (I)で表される化合物又はその塩と活性酸素とを反応さ せる工程、及び (B)上記工程 (A)で生成した請求項 5に記載の一般式 (II)で表される化合物又はその 塩をルシファラーゼと反応させて生じる生物発光を測定する工程
を含む方法。
請求項 9に記載の活性酸素測定用試薬とルシフェラーゼとを要素として含む活性酸 素測定用キット。
PCT/JP2007/056558 2006-03-29 2007-03-28 活性酸素測定用試薬 WO2007111345A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008507512A JPWO2007111345A1 (ja) 2006-03-29 2007-03-28 活性酸素測定用試薬

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-089936 2006-03-29
JP2006089936 2006-03-29

Publications (1)

Publication Number Publication Date
WO2007111345A1 true WO2007111345A1 (ja) 2007-10-04

Family

ID=38541261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056558 WO2007111345A1 (ja) 2006-03-29 2007-03-28 活性酸素測定用試薬

Country Status (2)

Country Link
JP (1) JPWO2007111345A1 (ja)
WO (1) WO2007111345A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016189757A1 (ja) * 2015-05-22 2016-12-01 株式会社 東芝 空間殺菌装置及び空間除臭装置
CN107746396A (zh) * 2017-10-16 2018-03-02 河南交通职业技术学院 一种新型化合物6,6‑二甲基四氢吡喃‑2‑甲醇及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01502431A (ja) * 1987-01-14 1989-08-24 ガイガー,ラインハルト アミノルシフェリン誘導体、その製造方法、及び酵素活性測定への適用
JP2005530485A (ja) * 2002-02-01 2005-10-13 プロメガ コーポレイション 生物発光プロテアーゼ分析方法
JP2006508339A (ja) * 2002-09-20 2006-03-09 プロメガ コーポレイション シトクロムp450活性を測定するための発光を利用する方法およびプローブ
WO2006130551A2 (en) * 2005-05-31 2006-12-07 Promega Corporation Luminogenic and fluorogenic compounds and methods to detect molecules or conditions
JP2007091695A (ja) * 2005-09-30 2007-04-12 Univ Of Tokyo 新規ルシフェリン誘導体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01502431A (ja) * 1987-01-14 1989-08-24 ガイガー,ラインハルト アミノルシフェリン誘導体、その製造方法、及び酵素活性測定への適用
JP2005530485A (ja) * 2002-02-01 2005-10-13 プロメガ コーポレイション 生物発光プロテアーゼ分析方法
JP2006508339A (ja) * 2002-09-20 2006-03-09 プロメガ コーポレイション シトクロムp450活性を測定するための発光を利用する方法およびプローブ
WO2006130551A2 (en) * 2005-05-31 2006-12-07 Promega Corporation Luminogenic and fluorogenic compounds and methods to detect molecules or conditions
JP2007091695A (ja) * 2005-09-30 2007-04-12 Univ Of Tokyo 新規ルシフェリン誘導体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016189757A1 (ja) * 2015-05-22 2016-12-01 株式会社 東芝 空間殺菌装置及び空間除臭装置
JPWO2016189757A1 (ja) * 2015-05-22 2017-11-30 株式会社東芝 空間殺菌装置及び空間除臭装置
CN107746396A (zh) * 2017-10-16 2018-03-02 河南交通职业技术学院 一种新型化合物6,6‑二甲基四氢吡喃‑2‑甲醇及其制备方法
CN107746396B (zh) * 2017-10-16 2020-02-11 河南交通职业技术学院 一种新型化合物6,6-二甲基四氢吡喃-2-甲醇及其制备方法

Also Published As

Publication number Publication date
JPWO2007111345A1 (ja) 2009-08-13

Similar Documents

Publication Publication Date Title
JP4899046B2 (ja) 新規ルシフェリン誘導体
US8143069B2 (en) Fluorescent probe and method of measuring hypochlorite ion
JP5228190B2 (ja) パーオキシナイトライト蛍光プローブ
EP2942352A1 (en) ASYMMETRICAL Si RHODAMINE AND RHODOL SYNTHESIS
WO2012111818A1 (ja) 蛍光プローブ
CN105917234B (zh) 铁(ii)离子检测剂以及使用其的检测方法
WO2001064664A1 (fr) Reactifs destines au dosage de l'oxygene actif
JP5441882B2 (ja) 過酸化水素特異的蛍光プローブ
US7939330B2 (en) Fluorescent probe
US20050123478A1 (en) Agent for measurement of singlet oxygen
JP2006219453A (ja) キノリン環を母核とする金属識別型二波長性蛍光分子
JP3967943B2 (ja) 蛍光プローブ
JP5550035B2 (ja) 波長が制御されたルシフェラーゼの発光基質および製造方法
JP2010215795A5 (ja)
WO2007111345A1 (ja) 活性酸素測定用試薬
JP4522365B2 (ja) 蛍光プローブ
US20060211122A1 (en) Reagents for the measurement of peroxynitrites
WO2009139452A1 (ja) 活性酸素測定用試薬
WO2007013201A1 (ja) 亜鉛蛍光プローブ
JP2004101389A (ja) アルミニウムイオン及び/又は第二鉄イオン測定用プローブ
EP2903973B1 (fr) Nouveaux azotures, procédés de fabrication et leurs applications
FR2987622A1 (fr) Composes oxo-phenalenes, leur preparation et utilisation dans les domaines des materiaux et therapeutique
KR102324334B1 (ko) 황화수소 검출용 형광 프로브 및 이의 제조방법
JP5360609B2 (ja) 低酸素環境測定用試薬
WO2005023786A1 (ja) 水溶性テトラゾリウム化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739996

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008507512

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739996

Country of ref document: EP

Kind code of ref document: A1