WO2016188146A1 - 一种太阳能电池片单元制备方法及太阳能电池组件 - Google Patents

一种太阳能电池片单元制备方法及太阳能电池组件 Download PDF

Info

Publication number
WO2016188146A1
WO2016188146A1 PCT/CN2016/073452 CN2016073452W WO2016188146A1 WO 2016188146 A1 WO2016188146 A1 WO 2016188146A1 CN 2016073452 W CN2016073452 W CN 2016073452W WO 2016188146 A1 WO2016188146 A1 WO 2016188146A1
Authority
WO
WIPO (PCT)
Prior art keywords
main gate
gate line
line
reverse
solar cell
Prior art date
Application number
PCT/CN2016/073452
Other languages
English (en)
French (fr)
Inventor
鲁乾坤
Original Assignee
苏州沃特维自动化系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州沃特维自动化系统有限公司 filed Critical 苏州沃特维自动化系统有限公司
Priority to SG11201709321RA priority Critical patent/SG11201709321RA/en
Priority to AU2016269044A priority patent/AU2016269044B2/en
Priority to US15/573,000 priority patent/US20180122975A1/en
Priority to EP16799035.7A priority patent/EP3297037A4/en
Priority to JP2017559694A priority patent/JP2018515934A/ja
Publication of WO2016188146A1 publication Critical patent/WO2016188146A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to the field of solar cell modules, and in particular to a solar cell unit manufacturing method and a solar cell module.
  • each of the battery sheets is provided with a soldering strip, the illumination area of the battery sheet is greatly reduced, thereby reducing the effective power generation area; further, there is a gap between the battery sheet and the battery sheet on the serially connected battery strings. , also reduces the light area or power generation area; the above two reasons lead to low power generation of the battery components.
  • an object of the present invention is to provide a solar cell module that increases an effective light receiving area, an output power, and a power generation efficiency, and a manufacturing process thereof.
  • a solar cell module comprising at least one series of longitudinally or laterally arranged cell unit groups, each string of cell unit groups comprising at least two cell units, the same string of cell units being sequentially partially overlapped, said
  • the battery cell unit includes a front surface and a reverse surface, and the front surface is provided with a power generation area and a front main gate line disposed at one side edge of the power generation area, and the power generation area is provided with a plurality of fine gate lines, and the fine grid line
  • the front main gate lines are connected;
  • the back surface is provided with a reverse main gate line and an aluminum back field, and the front main gate line and the reverse main gate line are respectively located on opposite sides of the cell unit; each of the cell unit
  • the front main gate line and the reverse main gate line respectively electrically connect the opposite main gate lines of one of the adjacent two different sheets, and the front main gate line of the other of the cell units.
  • the front side of the solar cell module does not show the main gate line, and no main gate line occupies the effective space.
  • the effective power generation area of the entire solar cell module is increased, and the use of the ribbon connection is no longer required, and the disadvantages of increased process, increased cost, and occupying an effective power generation area due to the connection of the ribbon are eliminated.
  • the solar cell module includes at least two bonded cell unit, the cell unit including a front side and a back side, the front side being provided with a power generating area and a front main gate line disposed at one side edge of the power generating area a plurality of fine gate lines disposed on the power generation region, the fine gate lines being connected to the front main gate lines; the reverse surface being provided with a reverse main gate line and an aluminum back field, and the front main gate lines and the reverse front main The gate lines are respectively located on opposite sides of the cell unit; wherein a back main gate line of one of the cell units is bonded and electrically connected to another front main gate line.
  • the front main gate line is connected to one end of the fine gate line.
  • each cell unit overlaps with the opposite main gate line of the adjacent cell unit, and the adjacent two cell units overlap and have a width of 1.2-2.5 mm.
  • At least two battery cell units are overlapped end to end into a series of battery cell units, and the solar cell module includes at least one string of cell unit groups, and each string of cell unit groups includes 2-80 cell units.
  • the battery cell unit group is at least two strings, and a bus bar is disposed between the battery cell unit groups, and the battery cell unit groups are connected in series, parallel, partially parallel, then connected in series or partially in series, and then connected in parallel.
  • a lead line is disposed between the bus bar and the cell unit group, and a part of the lead line is electrically connected to a front main gate line or a reverse main gate line of one of the outermost cell unit of the cell unit group, and the other part It extends away from the outside of the cell unit group and is electrically connected to the bus bar.
  • connection width between the bus bar and the main grid line of the cell unit is 1--8 mm.
  • bus bar is folded as a portion of the lead wire on the back surface of the cell sheet unit group, and is provided with an insulating layer to isolate it from the back surface of the cell sheet.
  • the bus bar is provided with a connecting portion and a lead portion, and the connecting portion is connected thereto
  • the front or back main grid lines are connected in the same direction, and the lead portions are perpendicular or at an obtuse or acute angle to the connecting portion.
  • connection portions of the lead cell unit group connected to the front main gate line or the lead lines of the reverse main gate line are connected, and the lead portion is further connected to the same lead main line.
  • the polarity of the main gate lines of the outermost ends on the same side of the adjacent cell group is different, that is, the front main gate lines and the reverse main gate lines are arranged at intervals, and all the front main gate lines and the reverse main gate lines on one side are arranged. Connected to the same lead-out main line, and all front main gate lines on the other side are connected to one front main gate line to lead out the main line, all the reverse main gate lines are connected to one reverse main gate line to lead out the main line, and the front main gate line leads to the main line and the reverse side
  • the main gate line leads the main line as the total output lead of the solar cell module.
  • the lead line of the cell sheet unit group connected to the front main gate line or the lead line of the reverse main gate line is folded and folded and placed on the back side of the cell sheet unit group, and the front main gate line leads to the main line and the reverse side.
  • the main gate line lead-out main line is also disposed on the back side of the cell sheet unit group, and an insulating isolation member is disposed between the lead line and the front main gate line lead-out main line, the reverse main-line line lead-out main line, and the back surface of the cell sheet unit group.
  • the invention also discloses a manufacturing process of the battery sheet unit, and the manufacturing of the above-mentioned battery sheet unit comprises the following steps:
  • Printing correspondingly printing a front screen pattern and a reverse screen pattern on the front and back surfaces of the silicon wafer, the front screen pattern comprising a fine grid line and a front main gate line perpendicular to the fine grid line,
  • the front main gate lines are evenly spaced, and along the length direction of the thin grid lines, one side edge of the front screen pattern is provided with a front edge main gate line;
  • the reverse mesh pattern includes a reverse main gate line and an aluminum back field, the reverse main gate line is in the same direction as the front main gate line, and is evenly spaced, and an edge of one side of the reverse screen pattern is provided a reverse edge main gate line, the front edge main gate line and the reverse edge main gate line are respectively located on opposite sides of the silicon wafer;
  • cutting line coincides with an edge of the front main gate line
  • the front main gate line of the first cell unit is coated with a conductive bonding material, and the reverse main gate line of the second cell unit is pasted on the front main gate of the first cell unit.
  • the bonding of the two cell units is completed; then the third cell unit and the second film are bonded in the same manner as the first and second sheets, and so on, until all the cell units are bonded. After the bonding is completed, the solar cell sheet is completed.
  • the conductive bonding material in the third step is a conductive adhesive or a solder paste.
  • the cutting lines are all located on the same side of the front main gate line and coincide with the outer edge of the front edge main gate line.
  • the solar cell module and the cell sheet unit of the invention are related to a solar cell sheet comprising an aluminum back field coating, a silicon wafer layer and a fine grid line, the solar cell sheet being separated by at least two independent regions, each region At least one front main gate line is disposed at or adjacent to one of the edges, and all of the thin gate lines on the front side of the area are electrically connected to the front main gate line of the area.
  • the separate area here is a cell unit that can be cut to be used independently or without cutting, using wires (or lead wires) for series-parallel connection between cell units.
  • the solar cell sheet mentioned here is an essential component for preparing a solar cell module.
  • the solar cell sheet includes a silicon wafer, an aluminum back field coating, a front fine grid line, three or four strips.
  • the longitudinal main gate line needs to be soldered to connect the main grid lines of the plurality of solar cells in series when the solar cell module is prepared, and usually the energy conversion unit on the existing solar cell sheet is composed of fine grid lines.
  • the main gate lines are connected as a whole, and each of the main grid lines simultaneously collects currents of the energy conversion units on the left and right sides.
  • the main gate line on the solar cell sheet of the present invention is laterally disposed, and the solar cell sheet is divided into at least two regions independent of each other, and each region is provided with only one front main gate line, and each main gate line only collects the region. (On the side of the front main gate line only)
  • the current of the energy conversion unit in order to improve the energy conversion efficiency, the smaller the area, the shorter the path of the fine gate line to the main gate line, and the efficiency of collection and conversion
  • the higher the process, the cost and the cost it is preferable to select between 2-6 independent regions, and the solar cell sheets of 7 or more regions can be prepared according to actual needs.
  • the solar cell sheet of the invention has higher flexibility in the preparation of the solar module, for example as follows: In order to cut each area into individual solar cell sheets, the connections between the solar cell sheets can be connected in series by serial arrangement and end-to-end interleaving, such as placing the main grid lines of each solar cell sheet. Above the entire solar cell unit, the individual chips are arranged in order from top to bottom, and the lower edge of the upper piece just sits on the upper edge of the next die, and just covers the main gate line of the next die, and The main gate line of the next die is electrically connected to the back positive electrode of the previous die, and so on, all the die are connected in series, so that the front surface of the solar cell module does not reveal the main gate line, and no main gate line occupies effective position.
  • the front main gate line of one area can be connected with the back surface electrode of another area by using a connecting line, so that the cells above the solar cell can be connected in series or in parallel or in series or in parallel without cutting the cell. Connected, then connect multiple solar cells in series, and finally complete the installation of a solar module.
  • the back surface of the solar cell sheet corresponds to the front surface region, and the other side edge of the main gate line opposite to the corresponding area of the front surface of the solar cell sheet is disposed adjacent to or adjacent to the edge, and the back main gate line is disposed.
  • the back electrode of the corresponding area solar cell is electrically connected.
  • an isolation strip is disposed between the front surfaces of the solar cell sheets to electrically isolate adjacent regions.
  • an aluminum back field coating is not disposed on a portion of the back surface of the solar cell sheet corresponding to the position of the front side spacer.
  • a strip line or a line-shaped dividing line not provided with an aluminum back field coating is disposed on a surface of the solar cell sheet corresponding to a position between the front surface regions.
  • front main gate lines of the two outermost regions on the front side of the solar cell sheet are disposed at or near the outermost edge of the solar cell sheet.
  • the front main gate line includes a soldering portion and a connecting portion, the soldering portion has a width larger than a width of the connecting portion, and the soldering portions are connected by a connecting portion, and the front main gate line is a single through hole.
  • a lateral fine gate line perpendicular to the fine gate line and connecting the adjacent fine gate lines is further disposed between the fine gate lines.
  • the invention also provides a method for preparing a solar cell sheet, the solar cell sheet according to claim 1 or 2, comprising the following steps:
  • (1) printing a front electrode correspondingly printing a front screen pattern on a front surface of the silicon wafer, the front screen pattern separating the battery sheet into at least two regions, each region including a fine grid line and the fine grid a front main gate line in which the lines are connected, and a front main gate line of different areas are arranged in parallel, wherein the front main gate lines of the two areas located at the edge of the cell are respectively disposed at or near the edge of the cell;
  • the present invention also provides a solar cell module comprising at least two bonded cell unit, the cell unit comprising a front side and a back side, the front side being provided with a power generating area and disposed in the power generating area a front main gate line on one side edge, the power generation area a plurality of fine gate lines are disposed thereon, the fine gate lines are connected to the front main gate lines; the reverse surface is provided with a reverse main gate line and an aluminum back field, and the front main gate line and the reverse main gate line are respectively located The opposite sides of the cell unit; wherein a back main gate line of one of the cell units is bonded and electrically connected to the other front main gate line.
  • the cell unit is formed by independently cutting each region from the above solar cell sheet.
  • the front main gate line is connected to one end of the fine gate line.
  • the invention also provides a manufacturing process of the battery cell unit, and the above-mentioned battery cell unit is characterized in that it comprises the following steps:
  • Printing correspondingly printing a front screen pattern and a reverse screen pattern on the front and back surfaces of the silicon wafer, the front screen pattern comprising a fine grid line and a front main gate line perpendicular to the fine grid line,
  • the front main gate lines are evenly spaced, and along the length direction of the thin grid lines, one side edge of the front screen pattern is provided with a front edge main gate line;
  • the reverse mesh pattern includes a reverse main gate line and an aluminum back field, the reverse main gate line is in the same direction as the front main gate line, and is evenly spaced, and an edge of one side of the reverse screen pattern is provided a reverse edge main gate line, the front edge main gate line and the reverse edge main gate line are respectively located on opposite sides of the silicon wafer;
  • the cutting line is used for cutting a silicon wafer into individual cell units
  • the front main gate line of the first cell unit is coated with a conductive bonding material, and the reverse main gate line of the second cell unit is pasted on the front main gate of the first cell unit.
  • the bonding of the two cell units is completed; then the third cell unit and the second film are bonded in the same manner as the first and second sheets, and so on, until all the cell units are bonded.
  • the solar cell module is completed.
  • the conductive bonding material in the third step is a conductive paste or a solder paste or a conductive tape or a solder ribbon.
  • the cutting lines are all located on the same side of the front main gate line and coincide with the outer edge of the front edge main gate line.
  • FIG. 1 is a schematic structural view of a front screen pattern in a solar cell sheet of the present invention
  • FIG. 2 is a schematic structural view of a reverse mesh screen pattern in a solar cell sheet of the present invention
  • FIG. 3 is a schematic view showing the cutting process of the solar cell sheet of the present invention.
  • FIG. 4 is a schematic structural view of a front surface of a cell unit in a solar cell sheet of the present invention.
  • FIG. 5 is a schematic structural view of a reverse side of a cell sheet unit in a solar cell sheet of the present invention.
  • FIG. 6 is a schematic view showing the pasting process of the manufacturing process of the solar cell sheet of the present invention.
  • FIG. 7 is a second schematic diagram of the process of fabricating the solar cell sheet of the present invention.
  • FIG. 9 is a schematic structural view of a solar cell sheet of the present invention.
  • Figure 10 is a schematic structural view of a solar cell module
  • Figure 11 is a second schematic structural view of a solar cell module
  • FIG. 12 is a schematic view of a lead line and a connection diagram of a lead line and a main gate line;
  • Figure 13 is a schematic diagram showing the connection relationship between the lead wire and the bus bar
  • Figure 14 is a schematic view showing the lead wire and the bus bar folded over the back surface of the solar cell module
  • Fig. 15 is an example of a connection mode between battery cell unit groups.
  • a solar cell module includes at least one string of battery cell units arranged in a longitudinal or lateral direction, each string cell unit group including at least two cell unit, and the same string of cell units in turn Partially overlapping, the cell unit includes a front side and a back side, and the front side is provided with a power generating area and a front main gate line disposed at one side edge of the power generating area, and the power generating area is provided with a plurality of fine grid lines.
  • the fine gate line is connected to the front main gate line; the reverse surface is provided with a reverse main gate line and an aluminum back field, and the front main gate line and the reverse main gate line are respectively located on opposite sides of the cell unit
  • the front main gate line and the reverse main gate line of each cell unit are respectively electrically connected to opposite main gate lines of one of the adjacent two different pieces, and the front main gate of the other of the cell units line.
  • the front surface of the cell unit 1 shown in FIG. 4 includes a thin gate line 4 and a front main gate line 3 perpendicular to the fine gate line 4, and the front main gate line 3 is disposed on the cell sheet.
  • the reverse side of the cell unit 1 shown in FIG. 5 includes a reverse main gate line 5 and an aluminum back field 6, and the reverse main gate line 5 is aligned with the front main gate line 3, but is disposed on the opposite side of the opposite side of the front main gate line. At the edge.
  • Figure 6 is a diagram showing two sheets of cells that are to be connected in series.
  • the lower edge of the upper cell unit is provided with a conductive bonding material 10 on the front main gate line 3, and then the upper edge of the next cell unit is overlapped on the upper cell.
  • the lower edge of the cell is such that the reverse main gate line of the next cell unit is electrically and electrically bonded to the front main gate line of the previous cell unit, thereby realizing the series connection of the upper and lower cell units, as shown in FIG. 7 and Fig. 8 shows a case where two battery cell units are connected in series, and the case where a plurality of battery cell units are connected in series is as shown in Fig. 9.
  • the five battery cell units are sequentially arranged in series from top to bottom, and the reverse main gate line of each cell unit is located on the upper side edge and is located on the back side of the figure, and the front main gate line is located.
  • the lower side of each cell unit, the next battery The upper edge of the chip unit is overlapped on the lower edge of the previous cell unit, so that the reverse main gate line of the next cell unit is electrically and electrically bonded to the front main gate line of the previous cell unit, thereby realizing multiple upper and lower pieces.
  • the series connection of the cell units finally forms a series of cell unit groups, and the number of cell units included in each cell group can be freely selected, generally 2-80.
  • the reverse main gate line of the uppermost one of each string cell group and the front main gate line of the lowermost cell unit become the positive and negative poles of the entire series of cell units, where the lead wires and the bus bars can be electrically connected. It can be connected in series and parallel with other cell unit groups to finally form the required solar cell modules.
  • the solar cell module includes at least two sheets of bonded cell sheets, the cell unit including a front side and a back side, the front side being provided with a power generating area and a front main grid disposed at one side edge of the power generating area a plurality of fine gate lines disposed on the power generation region, the fine gate lines being connected to the front main gate lines; the reverse surface being provided with a reverse main gate line and an aluminum back field, and the front main gate lines and the reverse side
  • the main gate lines are respectively located on opposite sides of the cell unit; wherein a back main gate line of one of the cell units is bonded and electrically connected to another front main gate line.
  • the electrical connection between the front and back main gate lines and the cell unit groups may also be performed by soldering or other electrical connection.
  • the front main gate line is connected to one end of the fine gate line.
  • the fine grid lines are arranged to fill the effective area of the entire cell unit, and the arrangement pattern is based on the principle of increasing the collection efficiency and reducing the occupation of the front surface area, and sometimes setting the fine grid lines in both the vertical and horizontal directions to prevent a certain fine grid line from breaking.
  • the effective power generation area is reduced, and after the fine grid line collects the current, the front main gate line output at the edge of the cell unit is connected.
  • the main gate line no longer occupies the effective power generation area of the front cell assembly, and greatly improves The production efficiency, at the same time no longer need welding tape welding, greatly saving production processes and costs.
  • the front main gate line of each cell unit overlaps with the opposite main gate line of the adjacent cell unit, and the width of the adjacent two cell units overlaps. 1.2-2.5mm.
  • the lamination width definition includes the sum of the main gate line width and the width of one side of each side of the main gate line.
  • the width of the laminated piece is 2 mm.
  • the typical design is that the width of the main grid line is 1 mm, and the isolation areas on both sides are 0.5 mm. The isolation is divided into two small cells.
  • a reasonable dispensing aperture of 0.3 to 0.5 mm is applied to the main grid line of 1 mm width. After high-temperature soldering, the conductive paste or solder paste components are all diffused and applied to the main gate line region, and the isolation region prevents diffusion and overflow. Considering the mutual constraint relationship between dispensing accuracy and speed, the dispensing aperture is thinner and affects the dispensing speed and stability.
  • the current minimum aperture is 0.3 mm.
  • the offset of the center line of the dispensing is +/-0.05 mm, and the width of the main grid line is not less than 0.6 mm.
  • the centerline offset of the laser slice is +/-0.1mm, and the width of the isolation zone for cutting is not less than 0.6mm.
  • the total laminated area width should be greater than or equal to 1.2mm.
  • the current technology of the laminated area width can achieve stable production of 2mm, and the magnification is increased to 2.5mm. If it is large, it is meaningless, but the battery is wasted.
  • each cell unit is overlapped end to end into a series of cell unit groups, and the solar cell module includes at least one string of cell unit groups (generally each component includes a parallel three to six string cell unit group). ), each string of cell units includes 2-50 cell units.
  • the battery cell unit group is at least two strings, and a bus bar is disposed between the battery cell unit groups, and the battery cell unit groups are connected in series, parallel, partially parallel, then connected in series or partially in series, and then connected in parallel.
  • a lead line is disposed between the bus bar and the cell unit group, such as a portion of the lead line shown in FIG. 12 and a front main gate line 3 of one of the outermost cell unit of the cell unit group or
  • the reverse main gate line is electrically connected (the portion of reference numeral 3011 in the figure is the connection portion where the lead line is connected to the front main gate line or the reverse main gate line), and the other portion extends away from the outside of the cell unit group (labeled 3012 in the figure)
  • the part is an extension, the extension is for connecting with the bus bar, and in some cases, the extension can be used as a bus bar, or the bus bar and the lead wire are integrally formed, and electrically connected to the bus bar.
  • the bus bar is provided with a connecting portion (ie, a portion shown by 3011) and a lead portion (ie, a portion shown by 3012).
  • the connecting portion is in the same direction as the front or back main grid line to which it is connected, and the lead portion is perpendicular or at an obtuse or acute angle to the connecting portion.
  • the connection width between the bus bar and the main gate line of the cell unit is 1--8 mm.
  • the connection width between the lead line and the main gate line of the cell unit It is 1--8mm.
  • This width means that the bus bar or the lead wire covers the width of the positive and negative main gate lines in the length direction.
  • one, two, three or more lead wires or bus bar connection points can be arranged on the same front main gate line or the reverse main gate line to ensure sufficient current carrying capacity while reducing bus bars or lead-out The area and usage of the line saves costs.
  • FIG. 13 between the bus bar 302 and the front main gate line 3, five lead lines 301 are provided, and 4 is a fine grid line.
  • the bus bar when the bus bar is integrally formed with the lead wire, the bus bar is folded as a portion of the lead wire on the back side of the cell sheet unit group, and is provided with a layer to isolate it from the back surface of the cell sheet.
  • the bus bar and the lead wire are separately prepared, as shown in FIG. 14, one outermost main gate line 3 of the cell unit group 101 is connected to the lead line 301 (here, the front side of the cell group is placed below the figure) The reverse side is on the upper side only for the convenience of drawing.
  • the lead wire 301 is connected to the bus bar 302. In actual preparation, the lead wire 301 is connected to the bus bar 302 and folded to the opposite side of the cell unit group (that is, the back side).
  • insulating layer 304 to isolate it from the back side of the battery sheet. This can reduce the lead-out line and the bus bar occupying the area of the front side of the component, and reduce the size of the solar cell module, and is also more beautiful.
  • connection portions of the lead cell unit group connected to the front main gate line or the lead lines of the reverse main gate line are connected, and the lead portions are connected to the same main lead line.
  • the connecting portion is five.
  • the polarity of the main gate line of the outermost end of the same side of the adjacent cell group is different, that is, the front main gate line and the reverse main gate line are arranged at intervals, which is equivalent to Adjacent cell unit groups are arranged in an inverted arrangement, similar to inverting the polarity of the dry cells in parallel, wherein all the front main gate lines on one side and the opposite main gate lines are connected to the same main lead line, and the other side is All front main gate lines are connected to one front main gate line to lead out the main line, all the reverse main gate lines are connected to one reverse main gate line to lead out the main line, and the front main gate line leads the main line and the reverse main line line to lead out the main line as the total output of the solar cell module.
  • the battery cell unit groups (ie, the battery strings) 101 are arranged in reverse polarity, and the example is a six-string battery cell unit group 101, and the leftmost string of cell chip unit groups 101.
  • the upper end output is the reverse main gate line 5, and the lower end is the front main gate line 3,
  • the adjacent cell unit group on the right side is placed in reverse polarity, the upper end is the front main gate line, the lower end is the reverse main gate line, and so on, the front main gate line and the reverse main gate line arranged at the upper end are electrically connected Together, the front main gate line arranged at the lower end is electrically connected via the lead line 301 and the return line 302 as one of the electrodes of the solar cell module output, and the reverse main line line arranged at the lower end is also subjected to another
  • the lead wires and the bus bars are electrically connected together as another electrode of the solar cell module output.
  • the example of Fig. 15 is only one of a series-parallel connection between a plurality of battery
  • the lead line of the cell sheet unit group connected to the front main gate line or the lead line of the reverse main gate line may be folded and folded and placed on the back surface of the cell sheet unit group, and the front main gate line leads to the main line and
  • the main line of the reverse main gate line is also disposed on the back side of the cell unit group, and an insulating isolation member is disposed between the lead line and the main line of the front main gate line, the main line of the reverse main line, and the back of the cell unit group.
  • the invention also discloses a manufacturing process of the battery sheet unit, and the manufacturing of the above-mentioned battery sheet unit comprises the following steps:
  • Printing correspondingly printing a front screen pattern and a reverse screen pattern on the front and back surfaces of the silicon wafer, the front screen pattern comprising a fine grid line and a front main gate line perpendicular to the fine grid line,
  • the front main gate lines are evenly spaced, and along the length direction of the thin grid lines, one side edge of the front screen pattern is provided with a front edge main gate line;
  • the reverse mesh pattern includes a reverse main gate line and an aluminum back field, the reverse main gate line is in the same direction as the front main gate line, and is evenly spaced, and an edge of one side of the reverse screen pattern is provided a reverse edge main gate line, the front edge main gate line and the reverse edge main gate line are respectively located on opposite sides of the silicon wafer;
  • the cutting line is used for cutting a silicon wafer into individual cell units
  • the front main gate line of the first cell unit is coated with a conductive bonding material, and the reverse main gate line of the second cell unit is pasted on the front main gate of the first cell unit.
  • the third cell unit and the third The bonding method of the two sheets is the same as that of the first sheet and the second sheet, and so on, until all the cell sheets are bonded, and the solar cell sheet is completed.
  • the conductive bonding material in the third step is a conductive paste or a solder paste or a conductive tape or a solder ribbon.
  • the cutting lines are all located on the same side of the front main gate line and coincide with the outer edge of the front edge main gate line.
  • the solar cell module and the cell sheet unit of the invention are related to a solar cell sheet comprising an aluminum back field coating, a silicon wafer layer and a fine grid line, the solar cell sheet being separated by at least two independent regions, each region At least one front main gate line is disposed at or adjacent to one of the edges, and all of the thin gate lines on the front side of the area are electrically connected to the front main gate line of the area.
  • the separate area here is a cell unit that can be cut to be used independently or without cutting, using wires (or lead wires) for series-parallel connection between cell units.
  • the solar cell sheet mentioned here is an essential component for preparing a solar cell module.
  • the solar cell sheet includes a silicon wafer, an aluminum back field coating, a front fine grid line, three or four strips.
  • the longitudinal main gate line needs to be soldered to connect the main grid lines of the plurality of solar cells in series when the solar cell module is prepared, and usually the energy conversion unit on the existing solar cell sheet is composed of fine grid lines.
  • the main gate lines are connected as a whole, and each of the main grid lines simultaneously collects currents of the energy conversion units on the left and right sides.
  • the main gate line on the solar cell sheet of the present invention is laterally disposed, and the solar cell sheet is divided into at least two regions independent of each other, and each region is provided with only one front main gate line, and each main gate line only collects the region. (On the side of the front main gate line only)
  • the current of the energy conversion unit in order to improve the energy conversion efficiency, the smaller the area, the shorter the path of the fine gate line to the main gate line, and the efficiency of collection and conversion
  • the higher the process, the cost and the cost it is preferable to select between 2-6 independent regions, and the solar cell sheets of 7 or more regions can be prepared according to actual needs.
  • the solar cell sheet of the invention has higher flexibility in the preparation of the solar module, for example as follows: 1.
  • the regions can be cut into individual solar cell sheets, and the connections between the solar cell sheets. It can be connected in series by serial arrangement, end-to-end interleaving, such as A main grid line of a solar cell sheet is placed above the entire solar cell unit, and the respective chips are arranged in order from top to bottom, and the lower edge of the upper piece is placed on the upper edge of the next piece, and just covers The main gate line of the next die, and the main gate line of the next die is electrically connected to the back positive electrode of the previous die, and so on, all the die are connected in series, so that the front side of the solar cell module is not exposed.
  • the main gate line does not occupy the effective space of the main gate line, so that the effective power generation area of the entire solar cell module is increased, and the use of the ribbon connection is no longer required, and the process of adding the ribbon connection is increased, the cost is increased, and the effective power generation area is occupied.
  • the drawbacks. Staggered stacking as described above, but the front main gate line is insulated from the back positive electrode of the previous piece, and the front main gate lines of all the chips are connected together on the side or the back, and the back positive electrodes of all the units are also connected. Together, they are finally taken out, that is, the component structure of the parallel structure is formed. As shown in Figure 3. This brings more combinations of choices to the circuit structure of the entire component. 3.
  • connection methods can obtain a more abundant component circuit form. 4.
  • the front main gate line of one area can be connected with the back surface electrode of another area by using a connecting line, so that the cells above the solar cell can be connected in series or in parallel or in series or in parallel without cutting the cell. Connected, then connect multiple solar cells in series, and finally complete the installation of a solar module.
  • the back surface of the solar cell sheet corresponds to the front surface region, and the other side edge of the main gate line opposite to the corresponding area of the front surface of the solar cell sheet is disposed adjacent to or adjacent to the edge, and the back main gate line is disposed.
  • the back electrode of the corresponding area solar cell is electrically connected.
  • an isolation strip is disposed between the front surfaces of the solar cell sheets to electrically isolate adjacent regions.
  • an aluminum back field coating is not disposed on a portion of the back surface of the solar cell sheet corresponding to the position of the front side spacer.
  • a strip line or a line-shaped dividing line not provided with an aluminum back field coating is disposed on a surface of the solar cell sheet corresponding to a position between the front surface regions.
  • front main gate lines of the two outermost regions on the front side of the solar cell sheet are disposed at or near the outermost edge of the solar cell sheet.
  • the front main gate line includes a soldering portion and a connecting portion, the soldering portion has a width larger than a width of the connecting portion, and the soldering portions are connected by a connecting portion, and the front main gate line is a single through hole.
  • a lateral fine gate line perpendicular to the fine gate line and connecting the adjacent fine gate lines is further disposed between the fine gate lines.
  • the above silicon wafer is a semi-finished component, which can be directly purchased, and generally its preparation process includes the following steps:
  • the preparation of the front main gate line and the reverse main gate line (or referred to as the back main gate line) and the front side fine gate line are then involved.
  • the design requirements according to the invention include the following steps:
  • (1) printing a front electrode correspondingly printing a front screen pattern on a front surface of the silicon wafer, the front screen pattern separating the battery sheet into at least two regions, each region including a fine grid line and the fine grid a front main gate line in which the lines are connected, and a front main gate line of different areas are arranged in parallel, wherein the front main gate lines of the two areas located at the edge of the cell are respectively disposed at or near the edge of the cell;
  • the solar cell sheet of the present invention comprises at least two bonded cell unit 1 including a front side and a back side, and a power generating unit on the front side.
  • a region 2 and a front main gate line 3 disposed at one edge of the power generation region 2 the power generation region 2 is provided with a plurality of fine gate lines 4, and the fine gate lines 4 are connected to the front main gate lines 3;
  • the reverse side is provided with a reverse main gate line 5 and an aluminum back field 6, and the front main gate line 3 and the reverse main gate line 5 are respectively located on opposite sides of the cell unit 1; wherein the reverse main gate line 5 of one of the cell units 1 is adhered
  • the front main gate line 3 is connected and electrically connected to each other, that is, when the two cell sheets 1 are bonded, only one front main gate line 3 and the other reverse main gate line 5 are bonded.
  • the number of battery cell units in the present embodiment is five, and of course, three or more may be used, and is not limited herein.
  • the solar cell module includes at least two bonded cell unit, the cell unit including a front side and a back side, the front side being provided with a power generating area and a front main gate line disposed at one side edge of the power generating area a plurality of fine gate lines disposed on the power generation region, the fine gate lines being connected to the front main gate lines; the reverse surface being provided with a reverse main gate line and an aluminum back field, and the front main gate lines and the reverse front main The gate lines are respectively located on opposite sides of the cell unit; wherein a back main gate line of one of the cell units is bonded and electrically connected to another front main gate line.
  • the front main gate line is connected to one end of the fine gate line.
  • each cell unit overlaps with the opposite main gate line of the adjacent cell unit, and the adjacent two cell units overlap and have a width of 1.2-2.5 mm.
  • At least two battery cell units are overlapped end to end into a series of battery cell units, and the solar cell module includes at least one string of cell unit groups, and each string of cell unit groups includes 2-50 cell units.
  • the battery cell unit group is at least two strings, and a bus bar is disposed between the battery cell unit groups, and the battery cell unit groups are connected in series, parallel, partially parallel, then connected in series or partially in series, and then connected in parallel.
  • a lead line is disposed between the bus bar and the cell unit group, and a part of the lead line is electrically connected to a front main gate line or a reverse main gate line of one of the outermost cell unit of the cell unit group, and the other part It extends away from the outside of the cell unit group and is electrically connected to the bus bar.
  • connection width between the bus bar and the main gate line of the cell unit is 1--8mm.
  • bus bar is folded as a portion of the lead wire on the back surface of the cell sheet unit group, and is provided with an insulating layer to isolate it from the back surface of the cell sheet.
  • the bus bar is provided with a connecting portion and a lead portion, the connecting portion is in the same direction as the front or back main gate line connected thereto, and the lead portion is perpendicular or at an obtuse angle or an acute angle with the connecting portion.
  • connection portions of the lead cell unit group connected to the front main gate line or the lead lines of the reverse main gate line are connected, and the lead portion is further connected to the same lead main line.
  • the polarity of the main gate lines of the outermost ends on the same side of the adjacent cell group is different, that is, the front main gate lines and the reverse main gate lines are arranged at intervals, and all the front main gate lines and the reverse main gate lines on one side are arranged. Connected to the same lead-out main line, and all front main gate lines on the other side are connected to one front main gate line to lead out the main line, all the reverse main gate lines are connected to one reverse main gate line to lead out the main line, and the front main gate line leads to the main line and the reverse side
  • the main gate line leads the main line as the total output lead of the solar cell module.
  • the lead line of the cell sheet unit group connected to the front main gate line or the lead line of the reverse main gate line is folded and folded and placed on the back side of the cell sheet unit group, and the front main gate line leads to the main line and the reverse side.
  • the main gate line lead-out main line is also disposed on the back side of the cell sheet unit group, and an insulating isolation member is disposed between the lead line and the front main gate line lead-out main line, the reverse main-line line lead-out main line, and the back surface of the cell sheet unit group.
  • the invention also discloses a manufacturing process of the battery sheet unit, and the manufacturing of the above-mentioned battery sheet unit comprises the following steps:
  • Printing correspondingly printing a front screen pattern and a reverse screen pattern on the front and back surfaces of the silicon wafer, the front screen pattern comprising a fine grid line and a front main gate line perpendicular to the fine grid line,
  • the front main gate lines are evenly spaced, and along the length direction of the thin grid lines, one side edge of the front screen pattern is provided with a front edge main gate line;
  • the reverse mesh pattern includes a reverse main gate line and an aluminum back field, the reverse main gate line is in the same direction as the front main gate line, and is evenly spaced, and an edge of one side of the reverse screen pattern is provided a reverse edge main gate line, the front edge main gate line and the reverse edge main Gate lines are respectively located on opposite sides of the silicon wafer;
  • cutting line coincides with an edge of the front main gate line
  • the front main gate line of the first cell unit is coated with a conductive bonding material, and the reverse main gate line of the second cell unit is pasted on the front main gate of the first cell unit.
  • the bonding of the two cell units is completed; then the third cell unit and the second film are bonded in the same manner as the first and second sheets, and so on, until all the cell units are bonded. After the bonding is completed, the solar cell sheet is completed.
  • the conductive bonding material in the third step is a conductive adhesive or a solder paste.
  • the cutting lines are all located on the same side of the front main gate line and coincide with the outer edge of the front edge main gate line.
  • the solar cell module and the cell sheet unit of the invention are related to a solar cell sheet comprising an aluminum back field coating, a silicon wafer layer and a fine grid line, the solar cell sheet being separated by at least two independent regions, each region At least one front main gate line is disposed at or adjacent to one of the edges, and all of the thin gate lines on the front side of the area are electrically connected to the front main gate line of the area.
  • the separate area here is a cell unit that can be cut to be used independently or without cutting, using wires (or lead wires) for series-parallel connection between cell units.
  • the solar cell sheet mentioned here is an essential component for preparing a solar cell module.
  • the solar cell sheet includes a silicon wafer, an aluminum back field coating, a front fine grid line, three or four strips.
  • the longitudinal main gate line needs to be soldered to connect the main grid lines of the plurality of solar cells in series when the solar cell module is prepared, and usually the energy conversion unit on the existing solar cell sheet is composed of fine grid lines.
  • the main gate lines are connected as a whole, and each of the main grid lines simultaneously collects currents of the energy conversion units on the left and right sides.
  • the main gate line on the solar cell sheet of the present invention is laterally disposed, and the solar cell sheet is divided into at least two regions independent of each other, and each region is provided with only one front main gate line, and each main gate line only collects the region. (On the side of the front main gate line only)
  • the current of the energy conversion unit in order to improve the energy conversion efficiency, the smaller the area, the better.
  • the shorter the path of the fine gate line to the main gate line the higher the efficiency of collection and conversion. Due to the limitation of process and cost, it is preferable to select between 2-6 independent regions, or 7 according to actual needs. And solar cells in the above areas.
  • the solar cell sheet of the invention has higher flexibility in the preparation of the solar module, for example as follows: 1.
  • the regions can be cut into individual solar cell sheets, and the connections between the solar cell sheets. It can be connected in series by serial arrangement and end-to-end interleaving.
  • the main grid line of each solar cell sheet is placed above the entire solar cell unit, and the respective chips are arranged in order from top to bottom.
  • the lower edge just sits on the upper edge of the next die, and just covers the main gate line of the next die, and makes the main gate line of the next die electrically connected to the back positive of the previous die, and so on.
  • All the chips are connected in series, so that the front surface of the solar cell module does not reveal the main gate line, and no main gate line occupies an effective space, so that the effective power generation area of the entire solar cell module is increased, and the use of the ribbon connection is no longer needed, and the abandonment is eliminated.
  • the back surface of the solar cell sheet corresponds to the front surface region, and the other side edge of the main gate line opposite to the corresponding area of the front surface of the solar cell sheet is disposed adjacent to or adjacent to the edge, and the back main gate line is disposed.
  • the back electrode of the corresponding area solar cell is electrically connected.
  • an isolation strip is disposed between the front surfaces of the solar cell sheets to electrically isolate adjacent regions.
  • an aluminum back field coating is not disposed on a portion of the back surface of the solar cell sheet corresponding to the position of the front side spacer.
  • a strip line or a line-shaped dividing line not provided with an aluminum back field coating is disposed on a surface of the solar cell sheet corresponding to a position between the front surface regions.
  • front main gate lines of the two outermost regions on the front side of the solar cell sheet are disposed at or near the outermost edge of the solar cell sheet.
  • the front main gate line includes a soldering portion and a connecting portion, the soldering portion has a width larger than a width of the connecting portion, and the soldering portions are connected by a connecting portion, and the front main gate line is a single through hole.
  • a lateral fine gate line perpendicular to the fine gate line and connecting the adjacent fine gate lines is further disposed between the fine gate lines.
  • the invention also provides a method for preparing a solar cell sheet, the solar cell sheet according to claim 1 or 2, comprising the following steps:
  • (1) printing a front electrode correspondingly printing a front screen pattern on a front surface of the silicon wafer, the front screen pattern separating the battery sheet into at least two regions, each region including a fine grid line and the fine grid a front main gate line in which the lines are connected, and a front main gate line of different areas are arranged in parallel, wherein the front main gate lines of the two areas located at the edge of the cell are respectively disposed at or near the edge of the cell;
  • the solar cell sheet of the present invention comprises at least two bonded cell unit 1 including a front side and a back side, and a power generating unit on the front side.
  • a region 2 and a front main gate line 3 disposed at one edge of the power generation region 2 the power generation region 2 is provided with a plurality of fine gate lines 4, the fine gate lines 4 are connected to the front main gate lines 3; and the reverse side is provided with a reverse main gate line 5 and aluminum back field 6, and the front main gate line 3 and the reverse main gate line 5 are respectively located on opposite sides of the cell unit 1; wherein the reverse main gate line 5 of one of the cell unit 1 is bonded and electrically connected to another piece
  • the number of battery cell units in the present embodiment is five, and of course, three or more may be used, and is not limited herein.
  • the technical solution of the present invention has the beneficial effects that since the battery piece is bonded by the plurality of battery piece units 1, the front surface of the battery piece does not have the main grid line structure of the welding ribbon, and therefore there is no welding.
  • the light shielding area greatly improves the light receiving area and power generation efficiency of the battery sheet; the battery sheets bonded by the plurality of battery unit 1 are beneficial for reducing the short circuit current and the filling factor loss, and improving the output power;
  • the number of cell unit 1 of the junction is sufficient, for example, 20 or more, the battery string can be directly formed, and no additional welding tape is needed for welding, which greatly improves the production efficiency and overcomes the conventional battery string welding.
  • the front main gate line 3 is connected to one end of the thin gate line 4.
  • the fine gate lines 4 can be converged at one end to facilitate bonding with different cell units 1.
  • the solar cell sheet described above that is, the battery sheet including the five battery cell units 1, specifically includes the following steps:
  • the front side screen pattern and the reverse side screen pattern are respectively printed on the front and back sides of the silicon wafer, and the front screen pattern includes the fine grid line 4 and the thin grid line 4 a vertical front main gate line 3, the front main gate line 3 is evenly spaced, and along the length of the thin grid line 4, the edge of one side of the front screen pattern is provided with a front edge main gate line 7;
  • the reverse mesh pattern includes a reverse main gate line 5 and an aluminum back field 6, the reverse main gate line 5 is aligned with the front main gate line 3, and is evenly spaced, and the opposite side of the screen pattern is provided with a reverse edge main grid Line 8, the front edge main gate line 7 and the reverse edge main gate line 8 are respectively located on opposite sides of the silicon wafer;
  • the cutting line 9 coincides with the edge of the front main gate line 3, and the cutting device is a laser cutting machine or other cutting instrument;
  • Bonding As shown in FIG. 6 and FIG. 7, the front main gate line 3 of the first cell unit 1 is coated with a conductive bonding material 10, and the reverse main gate line 5 of the second cell unit 1 is applied. Attached to the front main gate line 3 of the first cell unit 1, complete the bonding of the two cell units, as shown in FIG. 8; then the bonding method of the third cell unit and the second piece is The first sheet and the second sheet are bonded in the same manner, and so on, until the five sheet unit 1 is bonded, and the solar cell sheet is completed, as shown in FIG.
  • the technical solution of the present invention has the beneficial effects that the screen pattern of the plurality of battery cell units 1 is printed on the silicon wafer, and then the cutting is performed to form a plurality of battery cell units 1, and finally a plurality of cells are formed.
  • the sheet unit 1 is bonded, which greatly improves the production efficiency; at the same time, the effective light-receiving area of the battery sheet produced by the process is greatly increased, thereby improving the power generation efficiency of the battery sheet.
  • the conductive bonding material 10 in the third step is a conductive paste or a solder paste.
  • welding is required by means of infrared welding equipment, wave soldering equipment or reflow soldering equipment.
  • bonding different cell units by conductive paste or solder paste not only ensures the connection force between the two battery cell units but also ensures the electrical conductivity.
  • the cutting lines 9 are all located on the same side of the front main gate line 3, and the front side.
  • the outer edges of the edge main gate lines 71 are identical.
  • the cutting lines 9 are all located at the lower edge of the front main gate line 3 and coincide with the outer edge of the front edge main gate line 71.
  • the above preferred solution is advantageous for rapid cutting work and high production efficiency; at the same time, no waste products are produced due to miscutting, and the utilization rate of the raw materials for production is improved.
  • the battery piece is bonded by a plurality of battery cell units, when the number of battery cell units is sufficient for one battery string, the battery string is completed correspondingly, and the specifications of the battery string are also flexible, so that different battery strings can be connected in series. Or forming different cell components in parallel, as shown in FIG. 10 and FIG. 11, corresponding to different power output parameters, the applicability is stronger.
  • the preparation of the above-mentioned cell sheet unit requires that the conventional rectangular silicon wafer is first prepared according to the design of the present invention, and then cut into a cell sheet unit, and the specific process is repeated as follows:
  • the solar cell sheet involved includes an aluminum back field coating, a silicon wafer layer and a fine grid line, wherein the front surface of the solar cell sheet is separated into at least two independent regions, one side edge of each region or At least one front main gate line is disposed adjacent to the edge, and all of the thin gate lines on the front side of the area are electrically connected to the front main gate line of the area.
  • the solar cell sheet mentioned here is an essential component for preparing a solar cell module.
  • the solar cell sheet includes a silicon wafer, an aluminum back field coating, a front fine grid line, three or four strips.
  • the longitudinal main gate line needs to be soldered to connect the main grid lines of the plurality of solar cells in series when the solar cell module is prepared, and usually the energy conversion unit on the existing solar cell sheet is composed of fine grid lines.
  • the main gate lines are connected as a whole, and each of the main grid lines simultaneously collects currents of the energy conversion units on the left and right sides.
  • the main grid lines on the solar cell sheet of the present invention are laterally disposed, and the solar cell sheets are separated into at least two regions independent of each other, and only one front side is provided in each region.
  • each main gate line only collects the current of the energy conversion unit of the region (only on one side of the front main gate line), in order to improve the energy conversion efficiency, the smaller the region, the finer the grid
  • the shorter the path of the main grid line the higher the efficiency of collection and conversion. Due to the limitation of process and cost, it is preferable to select between 2-6 independent regions. It is also possible to prepare solar energy in 7 or more areas according to actual needs.
  • Cell The solar cell sheet of the invention has higher flexibility in the preparation of the solar module, for example as follows: 1. The regions can be cut into individual solar cell sheets, and the connections between the solar cell sheets. It can be connected in series by serial arrangement and end-to-end interleaving.
  • the main grid line of each solar cell sheet is placed above the entire solar cell unit, and the respective chips are arranged in order from top to bottom.
  • the lower edge just sits on the upper edge of the next die, and just covers the main gate line of the next die, and makes the main gate line of the next die electrically connected to the back positive of the previous die, and so on. All the chips are connected in series, so that the front surface of the solar cell module does not reveal the main gate line, and no main gate line occupies an effective space, so that the effective power generation area of the entire solar cell module is increased, and the use of the ribbon connection is no longer needed, and the abandonment is eliminated.
  • the front main gate line of one area can be connected with the back surface electrode of another area by using a connecting line, so that the cells above the solar cell can be connected in series or in parallel or in series or in parallel without cutting the cell. Connected, then connect multiple solar cells in series, and finally complete the installation of a solar module.
  • the solar cell sheet is cut into individual pieces of cell sheets according to regions, and in specific applications, each component includes at least Two sheets of bonded cell unit 1, the cell unit 1 includes a front side and a back side, and a power generating area 2 is disposed on the front side and a side of the power generating area 2 is disposed
  • the front main gate line 3 of the edge, the power generation area 2 is provided with a plurality of fine gate lines 4, the fine gate lines 4 are connected with the front main gate lines 3;
  • the reverse side is provided with a reverse main gate line 5 and an aluminum back field 6, and the front main
  • the gate line 3 and the reverse main gate line 5 are respectively located on opposite sides of the cell unit 1; wherein the reverse main gate line 5 of one of the cell unit 1 is bonded and electrically connected to the other front main gate line 3, that is, every two pieces When the cell unit 1 is bonded, only one front main gate line 3 and the other reverse main gate line 5 are bonded.
  • the technical solution of the present invention has the beneficial effects that since the battery sheet is bonded by the plurality of battery sheet units 1, the front surface of the battery sheet does not have the main grid line structure of the solder ribbon, and therefore there is no solder ribbon. Covering the light, greatly improving the light-receiving area and power generation efficiency of the battery; the battery sheets bonded by the plurality of battery cells 1 are beneficial for reducing the short-circuit current and the filling factor loss, and improving the output power;
  • the number of cell units 1 is sufficient, such as 20 or more, the battery string can be directly formed, and no additional welding tape is needed for welding, which greatly improves the production efficiency and overcomes the traditional battery string welding.
  • the front main gate line 3 is connected to one end of the thin gate line 4.
  • the fine gate lines 4 can be converged at one end to facilitate bonding with different cell units 1.
  • the solar cell sheet described above that is, the battery sheet including the five battery cell units 1, specifically includes the following steps:
  • the front side screen pattern and the reverse side screen pattern are respectively printed on the front and back sides of the silicon wafer, and the front screen pattern includes the fine grid line 4 and the thin grid line 4
  • the front screen pattern includes the fine grid line 4 and the thin grid line 4
  • Vertical front main gate lines 3 front main gate lines 3 are evenly spaced, and along the length direction of the thin grid lines 4, one side of the front screen pattern is provided with a front edge main grid Line 7;
  • the reverse mesh pattern includes a reverse main gate line 5 and an aluminum back field 6, the reverse main gate line 5 is aligned with the front main gate line 3, and is evenly spaced, and the opposite side of the screen pattern is provided with a reverse edge main grid Line 8, the front edge main gate line 7 and the reverse edge main gate line 8 are respectively located on opposite sides of the silicon wafer;
  • the cutting line 9 coincides with the edge of the front main gate line 3, and the cutting device is a laser cutting machine or other cutting instrument;
  • Bonding As shown in FIG. 6 and FIG. 7, the front main gate line 3 of the first cell unit 1 is coated with a conductive bonding material 10, and the reverse main gate line 5 of the second cell unit 1 is applied. Attached to the front main gate line 3 of the first cell unit 1, complete the bonding of the two cell units, as shown in FIG. 8; then the bonding method of the third cell unit and the second piece is The first sheet and the second sheet are bonded in the same manner, and so on, until the five sheet unit 1 is bonded, and the solar cell sheet is completed, as shown in FIG.
  • the technical solution of the present invention has the beneficial effects that the screen pattern of the plurality of battery cell units 1 is printed on the silicon wafer, and then the cutting is performed to form a plurality of battery cell units 1, and finally a plurality of cells are formed.
  • the sheet unit 1 is bonded, which greatly improves the production efficiency; at the same time, the effective light-receiving area of the battery sheet produced by the process is greatly increased, thereby improving the power generation efficiency of the battery sheet.
  • the conductive bonding material 10 in the third step is a conductive paste or a solder paste.
  • welding is required by means of infrared welding equipment, wave soldering equipment or reflow soldering equipment.
  • bonding different cell units by conductive paste or solder paste not only ensures the connection force between the two battery cell units but also ensures the electrical conductivity.
  • the cutting lines 9 are all located on the same side of the front main gate line 3 and coincide with the outer edge of the front edge main gate line 71. As shown in the figure, the cutting lines 9 are all located at the lower edge of the front main gate line 3 and coincide with the outer edge of the front edge main gate line 71.
  • the above preferred solution is advantageous for rapid cutting work and high production efficiency; at the same time, no waste products are produced due to miscutting, and the utilization rate of the raw materials for production is improved.
  • the battery piece is bonded by a plurality of battery cell units, when the number of battery cell units is sufficient for one battery string, the battery string is completed correspondingly, and the specifications of the battery string are also flexible, so that different battery strings can be connected in series. Or forming different cell components in parallel, as shown in FIG. 10 and FIG. 11, corresponding to different power output parameters, the applicability is stronger.
  • the back surface of the solar cell corresponds to the front side region, and the other side edge of the main gate line opposite to the corresponding area of the front surface of the solar cell sheet is disposed adjacent to or adjacent to the edge.
  • the gate line is electrically connected to the back electrode of the corresponding area solar cell. This is designed to facilitate the connection to the back electrode. Whether the regions are cut into cell sheets and then connected, or the wires are not cut, the special back main gate lines are easier to solder and prevent poor connections.
  • an isolation strip is provided between the regions on the front side of the solar cell sheet to electrically isolate adjacent regions. In this way, each area can be effectively electrically isolated, and the other function is to facilitate cutting along the isolation line when cutting is required.
  • an aluminum back field coating is not disposed on a portion of the back surface of the solar cell sheet corresponding to the position of the front side spacer. This design is to isolate the back electrodes of each area, and truly separate the areas. This is convenient for constructing the series or parallel structure of each area in the non-cutting application.
  • the spacer tape is not coated with an aluminum back field, so that metal burrs are not generated during cutting, which reduces grinding time and provides production efficiency.
  • a strip line or a line-shaped dividing line not provided with an aluminum back field coating is disposed on a surface of the solar cell sheet corresponding to a position between the front surface regions. Print such a dividing line to facilitate cutting. Avoid cutting the wrong position and causing waste.
  • the front main gate of the two outermost regions of the solar cell front side The wire is disposed at or near the outermost edge of the solar cell. Due to the manufacturing process of the battery sheet, the four corners of the solar cell sheet may have a circular arc or a straight line chamfer. After the solar cell sheet is divided into regions, the cell unit formed by the two end regions has two chamfers, and the middle region has The cell unit is a rectangular rectangle. If the back main gate line is made at the chamfered edge, when the lamination is connected in series, the chamfer will be stacked on top of the other piece, so that the chamfer is exposed to the outside, so that the chamfer will appear on the front of the entire battery assembly. Occasionally, not beautiful, not coordinated. After the implementation of the scheme, all the chamfered sides are always covered by the side of the other cell unit having a right angle, so that the entire solar cell module is completely harmonious and beautiful, and has consistency.
  • the front main gate line includes a soldering portion and a connecting portion, the soldering portion has a width larger than a width of the connecting portion, and the soldering portions are connected by a connecting portion, and the front main gate line is a single through hole.
  • a lateral fine gate line perpendicular to the fine gate line and connecting the adjacent fine gate lines is further disposed between the fine gate lines.
  • the invention also provides a method for preparing a solar cell sheet, which comprises the following steps:
  • (1) printing a front electrode correspondingly printing a front screen pattern on a front surface of the silicon wafer, the front screen pattern separating the battery sheet into at least two regions, each region including a fine grid line and the fine grid a front main gate line connected by a line, and a front main gate line of different areas are arranged in parallel, wherein the front main gate lines of the two areas located at the edge of the cell are respectively disposed on The edge of the cell or near the edge;
  • the solar cell sheets mentioned in the above embodiments can be prepared by the preparation method, and the solar cell sheets prepared by the above methods can be used for cutting the cell unit, or directly connecting the regions by using a connecting line or other connection manner. After the front main gate line and the back electrode, the solar cells are connected to form a solar cell module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

提供了一种太阳能电池组件及电池片单元的制备方法。包括至少一串太阳能电池片单元组,每串电池片单元组包括至少两片相粘接的电池片单元(1),电池片单元包括正面和反面,正面设置有发电区(2)和设置于发电区一侧边缘的正面主栅线(3),发电区上设置有若干细栅线(4),细栅线与正面主栅线相连接;反面设置有反面主栅线(5)和铝背场(6),且正面主栅线和反面主栅线分别位于电池片单元的相对两侧;其中一片电池片单元的反面主栅线粘结并导电连接另外一片的正面主栅线。该电池组件不需要传统的正面多条纵向主栅线,不再需要焊带连接工艺,减少了主栅线覆盖的面积,节约了生产成本,提高了太阳能电池组件的效率。

Description

一种太阳能电池片单元制备方法及太阳能电池组件 技术领域
本发明涉及太阳能电池组件领域,具体的说,是涉及一种太阳能电池片单元制备方法及太阳能电池组件。
背景技术
随着太阳能的广泛应用,太阳能光伏板产业也蓬勃发展。传统的,太阳能电池板在生产时,由于电池片结构的特性,均需要将多块电池片和焊带焊接成电池串,再将多串电池串用焊带串联成组件。
由于每片电池片上均设置有焊带,大大减少了电池片的光照面积,从而减少了有效的发电面积;再者,串接而成的电池串上,电池片与电池片之间也存在间距,同样减少了光照面积或发电面积;以上两个原因导致电池组件的发电功率偏低。
发明内容
为解决上述技术问题,本发明的目的在于提供一种增大有效受光面积、输出功率和发电效率高的太阳能电池组件及其制作工艺。
为达到上述目的,本发明的技术方案如下:
一种太阳能电池组件,包括至少一串纵向或横向排布的电池片单元组,每串电池片单元组包括至少两片电池片单元,同一串的电池片单元本体依次局部重叠排布,所述电池片单元包括正面和反面,所述正面设置有发电区和设置于所述发电区一侧边缘的正面主栅线,所述发电区上设置有若干细栅线,所述细栅线与所述正面主栅线相连接;所述反面设置有反面主栅线和铝背场,且正面主栅线和反面主栅线分别位于所述电池片单元的相对两侧;每一片电池片单元的正面主栅线和反面主栅线分别导电连接相邻且不同的另外两片中其中一片电池片单元的反面主栅线,以及其中另一片电池片单元的正面主栅线。
太阳能电池组件的正面没有显露主栅线,没有主栅线占据有效空 间,使得整个太阳能电池组件的有效发电面积增加,并且不再需要使用焊带连接,摒弃了焊带连接带来的工序增加、成本增加、占用有效发电面积的弊端。
进一步的,太阳能电池组件包括至少两片相粘接的电池片单元,所述电池片单元包括正面和反面,所述正面设置有发电区和设置于所述发电区一侧边缘的正面主栅线,所述发电区上设置有若干细栅线,所述细栅线与所述正面主栅线相连接;所述反面设置有反面主栅线和铝背场,且正面主栅线和反面主栅线分别位于所述电池片单元的相对两侧;其中一片所述电池片单元的反面主栅线粘结并导电连接另外一片的正面主栅线。
进一步的,所述正面主栅线连接所述细栅线的一端。
进一步的,每一片电池片单元的正面主栅线与相邻电池片单元的反面主栅线重合叠放,相邻两片电池片单元重合叠加的宽度为1.2-2.5mm。
进一步的,至少两片电池片单元首尾重合叠加成一串电池片单元组,所述太阳能电池组件包括至少一串电池片单元组,每串电池片单元组包括2-80片电池片单元。
进一步的,所述电池片单元组为至少两串,电池片单元组之间设有汇流条将电池片单元组进行串联、并联、部分并联后再串联或部分串联后再并联。
进一步的,在汇流条与电池片单元组之间设置引出线,引出线的一部分与所述电池片单元组最外侧的一片电池片单元的正面主栅线或反面主栅线电连接,另一部分向远离电池片单元组的外侧延伸,并与汇流条电连接。
进一步的,汇流条与电池片单元主栅线之间的连接宽度为1--8mm。
进一步的,汇流条作为引出线的部分折叠于电池片单元组的背面,并设置有绝缘层将其与电池片背面进行隔离。
进一步的,所述汇流条设有连接部和引出部,所述连接部与其连 接的正面或反面主栅线同一走向,所述引出部与所述连接部垂直或成一钝角或锐角。
进一步的,所述每一串电池片单元组的与正面主栅线连接的引出线或与反面主栅线的引出线的连接部至少为两个,引出部再连接于同一条引出主线。
进一步的,相邻电池片单元组同一侧的最外端的主栅线极性不同,即正面主栅线和反面主栅线间隔排布,其中一侧的所有正面主栅线与反面主栅线连接于同一条引出主线,而另一侧的所有正面主栅线连接于一条正面主栅线引出主线,所有反面主栅线连接于一条反面主栅线引出主线,正面主栅线引出主线与反面主栅线引出主线作为太阳能电池组件的总输出引出线。
进一步的,所述电池片单元组的与正面主栅线连接的引出线或与反面主栅线的引出线弯折折叠放置于电池片单元组的背面,所述正面主栅线引出主线与反面主栅线引出主线也设置于电池片单元组的背面,并在引出线以及正面主栅线引出主线、反面主栅线引出主线和电池片单元组的背面之间设置绝缘隔离部件。
本发明还公开了一种电池片单元的制作工艺,制作上述的电池片单元,具体包括以下步骤:
一、印刷:在硅片的正、反面上分别对应印刷正面丝网图形和反面丝网图形,所述正面丝网图形包括细栅线和与所述细栅线相垂直的正面主栅线,所述正面主栅线均匀间隔设置,且沿所述细栅线的长度方向,所述正面丝网图形的一侧的边缘设置有正面边缘主栅线;
所述反面丝网图形包括反面主栅线和铝背场,所述反面主栅线与所述正面主栅线方向一致,且均匀间隔设置,所述反面丝网图形的一侧的边缘设置有反面边缘主栅线,所述正面边缘主栅线和反面边缘主栅线分别位于所述硅片的相对两侧;
二、切割:使用切割设备沿着切割线进行切割,形成多片所述电池片单元;
其中,所述切割线与所述正面主栅线的边缘相重合;
三、粘接:将第一片电池片单元的正面主栅线涂上导电粘接材料,将第二片电池片单元的反面主栅线贴覆于第一片电池片单元的正面主栅线上,完成两片电池片单元的粘结;之后第三片电池片单元和第二片的粘接方式与第一片和第二片的粘接方式相同,以此类推,直至所有电池片单元粘接完毕,完成太阳能电池片的制作。
进一步的,所述步骤三中的导电粘接材料为导电胶或焊锡膏。
进一步的,所述步骤二中,所述切割线均位于所述正面主栅线的同一侧,且与所述正面边缘主栅线的外边缘相一致。
制作本发明太阳能电池组件以及电池片单元涉及一种太阳能电池片,包括铝背场涂层、硅片层和细栅线,所述太阳能电池片正面分隔为至少两个独立的区域,每个区域的其中一侧边沿或邻近该边沿处设有至少一条正面主栅线,该区域的正面所有的细栅线都与该区域的正面主栅线对应电连接。这里的独立区域即是一个电池片单元,它可以切割下来独立使用,也可以不切割,利用导线(或引出线)进行电池片单元之间的串并联。
这里所说的太阳能电池片,是用于制备太阳能电池组件的一个必备部件,在传统的生产工艺中,这个太阳能电池片包括硅片、铝背场涂层、正面细栅线、三条或四条纵向的主栅线,在制备太阳能电池组件时,需要用焊带将多个太阳能电池片的主栅线焊接串联了起来,并且通常现有的太阳能电池片上的各能量转换单元是由细栅线和主栅线连接为一个整体的,每条主栅线同时收集左右两侧能量转换单元的电流。本发明的太阳能电池片上的主栅线是横向设置的,并且将太阳能电池片分隔为相互独立的至少两个区域,每个区域只设置一条正面主栅线,每条主栅线只收集本区域(仅位于该正面主栅线的一侧)能量转换单元的电流,为了提高能量的转换效率,这个区域越小越好,这样细栅线到主栅线的路径就越短,收集转换的效率就越高,受工艺及成本限制,优选在2-6个独立区域之间进行选择,也可以根据实际需要,制备7个及以上区域的太阳能电池片。本发明的太阳能电池片在太阳能组件的制备应用中,具有更高的灵活性,举例如下:1、可 以将各区域切割为一个个独立的太阳能电池单元片,各太阳能电池单元片之间的连接可采用串行排列、首尾交错叠加的方式串联,如将每一片太阳能电池单元片的主栅线置于整个太阳能电池片单元的上方,将各单元片从上到下依次排布,上一片的下沿正好搭在下一单元片的上沿,且正好遮住下一单元片的主栅线,并使得下一单元片的主栅线与上一单元片的背面正极电连接,依次类推,将所有的单元片串联起来,这样,太阳能电池组件的正面没有显露主栅线,没有主栅线占据有效空间,使得整个太阳能电池组件的有效发电面积增加,并且不再需要使用焊带连接,摒弃了焊带连接带来的工序增加、成本增加、占用有效发电面积的弊端。2、如上述方式交错叠加排布,但是正面主栅线与上一片的背面正电极绝缘隔离,所有单元片的正面主栅线在侧面或背面全部连接在一起,所有单元的背面正电极也连接在一起,最后分别引出,即形成并联结构的组件结构。如图3所示。这样为整个组件的电路结构带来更多的组合选择。3、将上述两种连接方式进行任意组合,可以得到更加丰富的组件电路形式。4、可以利用连接线将某一区域的正面主栅线与另一区域的背面电极连接起来,这样,可以不用切割电池片,先将一片太阳能电池片上面各区域串联或并联或串联、并联混合连接起来,然后再将多片太阳能电池片进行串联,最后完成一个太阳能电池组件的安装。
进一步的,所述太阳能电池片背面对应于正面区域、且位于太阳能电池片正面对应区域的主栅线相对的另一侧边沿或邻近该边沿处设有背面主栅线,该背面主栅线与对应区域太阳能电池片的背面电极电连接。
进一步的,所述太阳能电池片正面各区域之间设有一条使相邻区域之间电气隔离的隔离带。
进一步的,在所述太阳能电池片的背面对应于所述正面隔离带位置的部分不设置铝背场涂层。
进一步的,在所述太阳能电池片的背面对应于所述正面各区域之间的位置,设置条状或线状的不设置铝背场涂层的分割线。
进一步的,所述太阳能电池片正面最外侧的两个区域的正面主栅线,设置于太阳能电池片最外侧边沿处或靠近最外侧边沿处。
进一步的,所述正面主栅线包括焊接部和连接部,所述焊接部的宽度大于连接部的宽度,所述焊接部之间由连接部连接,所述正面主栅线为一贯通的单一栅线或两条或多条相互分离的栅线。
进一步的,所述细栅线之间还设有垂直于细栅线并将相邻细栅线连通的横向细栅线。
本发明还提供一种太阳能电池片的制备方法,制备如权利要求1或2所述的太阳能电池片,具体包括以下步骤:
一、硅片检测;
二、表面制绒;
三、扩散制结;
四、去磷硅玻璃;
五、去除电池边沿PN结;
六、制备减反射膜;
七、制备正、负电极,包括以下步骤:
(一)、印刷正面电极:在硅片的正面上对应印刷正面丝网图形,所述正面丝网图形将电池片分隔为至少两个区域,每个区域包括细栅线和与所述细栅线相连通的正面主栅线,不同区域的正面主栅线平行间隔设置,其中位于电池片边沿的两个区域的正面主栅线分别设置于电池片的边沿或靠近边沿处;
(二)、印刷背面铝背场:在硅片的背面对应印刷反面丝网图形,包括反面主栅线和铝背场,所述反面主栅线与所述正面主栅线平行,对应正面的每一个区域均设置一条背面主栅线,且背面主栅线位于该区域远离正面主栅线的一侧;
八、烧结。
本发明还提供一种太阳能电池组件,其特征在于,包括至少两片相粘接的电池片单元,所述电池片单元包括正面和反面,所述正面设置有发电区和设置于所述发电区一侧边缘的正面主栅线,所述发电区 上设置有若干细栅线,所述细栅线与所述正面主栅线相连接;所述反面设置有反面主栅线和铝背场,且正面主栅线和反面主栅线分别位于所述电池片单元的相对两侧;其中一片所述电池片单元的反面主栅线粘结并导电连接另外一片的正面主栅线。所述电池片单元即由上述太阳能电池片将各区域独立切割而成。
进一步的,所述正面主栅线连接所述细栅线的一端。
本发明还提供一种电池片单元的制作工艺,制作上述的电池片单元,其特征在于,具体包括以下步骤:
一、印刷:在硅片的正、反面上分别对应印刷正面丝网图形和反面丝网图形,所述正面丝网图形包括细栅线和与所述细栅线相垂直的正面主栅线,所述正面主栅线均匀间隔设置,且沿所述细栅线的长度方向,所述正面丝网图形的一侧的边缘设置有正面边缘主栅线;
所述反面丝网图形包括反面主栅线和铝背场,所述反面主栅线与所述正面主栅线方向一致,且均匀间隔设置,所述反面丝网图形的一侧的边缘设置有反面边缘主栅线,所述正面边缘主栅线和反面边缘主栅线分别位于所述硅片的相对两侧;
二、切割:使用切割设备沿着切割线进行切割,形成多片所述电池片单元;
其中,所述切割线用于将硅片切割成独立的电池片单元;
三、粘接:将第一片电池片单元的正面主栅线涂上导电粘接材料,将第二片电池片单元的反面主栅线贴覆于第一片电池片单元的正面主栅线上,完成两片电池片单元的粘结;之后第三片电池片单元和第二片的粘接方式与第一片和第二片的粘接方式相同,以此类推,直至所有电池片单元粘接完毕,完成太阳能电池组件的制作。
进一步的,所述步骤三中的导电粘接材料为导电胶或焊锡膏或导电胶带或焊带。
进一步的,所述步骤二中,所述切割线均位于所述正面主栅线的同一侧,且与所述正面边缘主栅线的外边缘相一致。
附图说明
为了更清楚地说明本发明实施例技术中的技术方案,下面将对实施例技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明太阳能电池片中正面丝网图形的的结构示意图;
图2为本发明太阳能电池片中反面丝网图形的的结构示意图;
图3为本发明太阳能电池片的制作工艺的切割示意图;
图4为本发明太阳能电池片中电池片单元正面的结构示意图;
图5为本发明太阳能电池片中电池片单元反面的结构示意图;
图6为本发明太阳能电池片的制作工艺的粘贴示意图之一;
图7为本发明太阳能电池片的制作工艺的粘贴示意图之二;
图8为本发明太阳能电池片的制作工艺中两片电池片单元粘贴后的成品图;
图9为本发明太阳能电池片的结构示意图;
图10为太阳能电池片组件的结构示意图之一;
图11为太阳能电池片组件的结构示意图之二;
图12为引出线的示意图及引出线与主栅线的连接示意图;
图13为引出线和汇流条连接关系示意图;
图14为引出线及汇流条翻折于太阳能电池组件背面的示意图;
图15为电池片单元组之间连接方式的一种示例。
其中,1、电池片单元,2、发电区,3、正面主栅线,4、细栅线,5、反面主栅线,6、铝背场,7、正面边缘主栅线,8、反面边缘主栅线,9、切割线,10、导电粘接材料,101、电池片单元组,301、引出线,302、汇流条,304、绝缘层,3011、连接部,3012、延伸部。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方 案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了达到本发明的目的,一种太阳能电池组件,包括至少一串纵向或横向排布的电池片单元组,每串电池片单元组包括至少两片电池片单元,同一串的电池片单元本体依次局部重叠排布,所述电池片单元包括正面和反面,所述正面设置有发电区和设置于所述发电区一侧边缘的正面主栅线,所述发电区上设置有若干细栅线,所述细栅线与所述正面主栅线相连接;所述反面设置有反面主栅线和铝背场,且正面主栅线和反面主栅线分别位于所述电池片单元的相对两侧;每一片电池片单元的正面主栅线和反面主栅线分别导电连接相邻且不同的另外两片中其中一片电池片单元的反面主栅线,以及其中另一片电池片单元的正面主栅线。
电池片单元如图4和图5所示,图4所示电池片单元1正面包括细栅线4和与细栅线4相垂直的正面主栅线3,正面主栅线3设置于电池片单元的一侧边沿处。
图5所示电池片单元1反面包括反面主栅线5和铝背场6,反面主栅线5与正面主栅线3方向一致,但其设置于与正面主栅线相对的另一侧反面边沿处。
图6是显示两片准备进行串联的电池片单元,上面一片电池片单元的下边沿正面主栅线3上设置导电粘接材料10,然后将下一片电池片单元上边沿重叠在上一片电池片单元的下边沿上,使得下一片电池片单元的反面主栅线与上一片电池片单元的正面主栅线重合导电粘接在一起,从而实现上下两片电池片单元的串联,如图7和图8所示,是两片电池片单元串联的情形,多片电池片单元串联后的情形如图9所示。图9中,显示的5片电池片单元依次由上到下重叠排布串联,每片电池片单元的反面主栅线位于上方一侧边缘,并位于图示的背面,而正面主栅线位于每片电池片单元的下方一侧边缘,下一片电池 片单元上边沿重叠在上一片电池片单元的下边沿上,使得下一片电池片单元的反面主栅线与上一片电池片单元的正面主栅线重合导电粘接在一起,从而实现上下多片电池片单元的串联,最终形成一串电池片单元组,每串电池片单元组包含的电池片单元的数量可以自由选择,一般选择2-80片。每串电池片单元组最上方一片的反面主栅线以及最下方一片电池片单元的正面主栅线成为整串电池片单元组的正负两极,可以在这里电连接引出线和汇流条,也可以与其它电池片单元组进行串并联,最终组成需要的太阳能电池组件。
如上所述,太阳能电池组件包括至少两片相粘接的电池片单元,所述电池片单元包括正面和反面,所述正面设置有发电区和设置于所述发电区一侧边缘的正面主栅线,所述发电区上设置有若干细栅线,所述细栅线与所述正面主栅线相连接;所述反面设置有反面主栅线和铝背场,且正面主栅线和反面主栅线分别位于所述电池片单元的相对两侧;其中一片所述电池片单元的反面主栅线粘结并导电连接另外一片的正面主栅线。在实际应用中,也可以采用焊接或其它电连接方式进行正反主栅线以及电池片单元组之间的电连接。
一般情形下,所述正面主栅线连接所述细栅线的一端。细栅线排布满整个电池片单元的有效面积,其排布图案以加大收集效率和减少占用正面面积为原则,有时同时设置纵横两个方向的细栅线,防止某条细栅线断裂造成有效发电面积减少,细栅线收集电流后,连接位于电池片单元边沿的正面主栅线输出,采用上述叠加的排布方式,主栅线不再占用正面电池片组件有效发电面积,大大提高了生产效率,同时不再需要焊带焊接,大大节约了生产工序和成本。
为了进一步满足电气连接性能要求及减少面积占比,每一片电池片单元的正面主栅线与相邻电池片单元的反面主栅线重合叠放,相邻两片电池片单元重合叠加的宽度为1.2-2.5mm。
叠片宽度定义,包括主栅线宽度和主栅线两侧各有一边隔离区宽度的总和。实施例,以叠片宽度为2mm为例,典型的设计是主栅线宽度1mm,两侧隔离区都是0.5mm,隔离区分属于上下两个小电池片。 合理的点胶孔径是0.3~0.5mm,涂敷于1mm宽度的主栅线上。高温焊接后,导电胶或焊膏成分全部扩散涂敷于主栅线区域,隔离区防止其扩散外溢。考虑到点胶精度和速度的相互制约关系,点胶孔径变细时影响点胶速度和稳定性,目前最小孔径在0.3mm。点胶中心线偏移量为+/-0.05mm,主栅线宽度不宜小于0.6mm。激光切片中心线偏移量为+/-0.1mm,切割用的隔离区宽度不宜小于0.6mm。总计叠片区宽度应大于等于1.2mm。叠片区宽度目前的技术可以实现2mm稳定生产,放大余量至2.5mm,再大则没有意义,只是浪费电池片。
在实际应用中,至少两片电池片单元首尾重合叠加成一串电池片单元组,所述太阳能电池组件包括至少一串电池片单元组(通常每个组件包括并列的三到六串电池片单元组),每串电池片单元组包括2-50片电池片单元。
一般而言,所述电池片单元组为至少两串,电池片单元组之间设有汇流条将电池片单元组进行串联、并联、部分并联后再串联或部分串联后再并联。
在一些实施例中,在汇流条与电池片单元组之间设置引出线,如图12所示引出线的一部分与所述电池片单元组最外侧的一片电池片单元的正面主栅线3或反面主栅线电连接(图中标号3011的部分为引出线与正面主栅线或反面主栅线连接的连接部),另一部分向远离电池片单元组的外侧延伸(图中标号为3012的部分为延伸部,延伸部用于与汇流条连接,某些时候,延伸部可以作为汇流条使用,或汇流条与引出线是一体成型的),并与汇流条电连接。图12所示的实施例,也可以作为汇流条与引出线一体成型的一种范例,汇流条设有连接部(即3011所示的部分)和引出部(即3012所示的部分),所述连接部与其连接的正面或反面主栅线同一走向,所述引出部与所述连接部垂直或成一钝角或锐角。
在某些实施例中,汇流条直接与正、反主栅线连接时,汇流条与电池片单元主栅线之间的连接宽度为1--8mm。当在汇流条与电池片单元组之间设置引出线时,引出线与电池片单元主栅线之间的连接宽度 为1--8mm。这个宽度是是指汇流条或引出线覆盖正、反主栅线长度方向的宽度。这样,可以在同一个正面主栅线或反面主栅线上设置1个、2个、3个或多个引出线或汇流条连接点,保证足够的电流输送容量的同时,减少汇流条或引出线的面积及使用量,节约成本。如图13所示,汇流条302与正面主栅线3之间设有5条引出线301,4为细栅线。
在一些实施例中,当汇流条与引出线一体成型时,汇流条作为引出线的部分折叠于电池片单元组的背面,并设置有层将其与电池片背面进行隔离。当汇流条与引出线独立制备时,如图14所示,电池片单元组101最外侧的一条正面主栅线3与引出线301连接(这里将电池片单元组的正面放置在图示的下方,其反面在上方,仅仅是为了制图方便),引出线301再与汇流条302连接,在实际制备时,将引出线301连通汇流条302一起翻折到电池片单元组的反面(就是背面),并设置有绝缘层304将其与电池片背面进行隔离。这样可以减小引出线及汇流条占据组件正面的面积,缩小太阳能电池组件的尺寸,也更加美观。
一般而言,所述每一串电池片单元组的与正面主栅线连接的引出线或与反面主栅线的引出线的连接部至少为两个,引出部再连接于同一条引出主线。如图13中,连接部(标号301代表的部分)为5个。
在一些实施例中,进行太阳能电池组件的组装时,相邻电池片单元组同一侧的最外端的主栅线极性不同,即正面主栅线和反面主栅线间隔排布,相当于将相邻的电池片单元组倒置排布,类似于将干电池极性间隔倒置后平行排布,其中一侧的所有正面主栅线与反面主栅线连接于同一条引出主线,而另一侧的所有正面主栅线连接于一条正面主栅线引出主线,所有反面主栅线连接于一条反面主栅线引出主线,正面主栅线引出主线与反面主栅线引出主线作为太阳能电池组件的总输出引出线,如图15所示,电池片单元组(即电池串)101极性间隔倒置排布,图中示例为六串电池片单元组101,最左侧的一串电池片单元组101的上端输出为反面主栅线5,下端为正面主栅线3,其 右边相邻的电池片单元组则极性倒置放置,上端为正面主栅线,下端为反面主栅线,以此类推,排布在上端的正面主栅线和反面主栅线均电连接在一起,而排布在下端的正面主栅线经引出线301和回流线302电连接在一起,作为太阳能电池组件输出的电极之一,而排布在下端的反面主栅线也经另外的引出线及汇流条电连接在一起,作为太阳能电池组件输出的另一个电极。图15的示例仅仅是众多电池片单元组之间串并联方式中的一种,其余连接方式易于想到,不再赘述。
如上所述,可将电池片单元组的与正面主栅线连接的引出线或与反面主栅线的引出线弯折折叠放置于电池片单元组的背面,所述正面主栅线引出主线与反面主栅线引出主线也设置于电池片单元组的背面,并在引出线以及正面主栅线引出主线、反面主栅线引出主线和电池片单元组的背面之间设置绝缘隔离部件。以减少引出线及汇流条对太阳能电池组件正面面积的占用,减小组件尺寸。
本发明还公开了一种电池片单元的制作工艺,制作上述的电池片单元,具体包括以下步骤:
一、印刷:在硅片的正、反面上分别对应印刷正面丝网图形和反面丝网图形,所述正面丝网图形包括细栅线和与所述细栅线相垂直的正面主栅线,所述正面主栅线均匀间隔设置,且沿所述细栅线的长度方向,所述正面丝网图形的一侧的边缘设置有正面边缘主栅线;
所述反面丝网图形包括反面主栅线和铝背场,所述反面主栅线与所述正面主栅线方向一致,且均匀间隔设置,所述反面丝网图形的一侧的边缘设置有反面边缘主栅线,所述正面边缘主栅线和反面边缘主栅线分别位于所述硅片的相对两侧;
二、切割:使用切割设备沿着切割线进行切割,形成多片所述电池片单元;
其中,所述切割线用于将硅片切割成独立的电池片单元;
三、粘接:将第一片电池片单元的正面主栅线涂上导电粘接材料,将第二片电池片单元的反面主栅线贴覆于第一片电池片单元的正面主栅线上,完成两片电池片单元的粘结;之后第三片电池片单元和第 二片的粘接方式与第一片和第二片的粘接方式相同,以此类推,直至所有电池片单元粘接完毕,完成太阳能电池片的制作。
进一步的,所述步骤三中的导电粘接材料为导电胶或焊锡膏或导电胶带或焊带。
进一步的,所述步骤二中,所述切割线均位于所述正面主栅线的同一侧,且与所述正面边缘主栅线的外边缘相一致。
制作本发明太阳能电池组件以及电池片单元涉及一种太阳能电池片,包括铝背场涂层、硅片层和细栅线,所述太阳能电池片正面分隔为至少两个独立的区域,每个区域的其中一侧边沿或邻近该边沿处设有至少一条正面主栅线,该区域的正面所有的细栅线都与该区域的正面主栅线对应电连接。这里的独立区域即是一个电池片单元,它可以切割下来独立使用,也可以不切割,利用导线(或引出线)进行电池片单元之间的串并联。
这里所说的太阳能电池片,是用于制备太阳能电池组件的一个必备部件,在传统的生产工艺中,这个太阳能电池片包括硅片、铝背场涂层、正面细栅线、三条或四条纵向的主栅线,在制备太阳能电池组件时,需要用焊带将多个太阳能电池片的主栅线焊接串联了起来,并且通常现有的太阳能电池片上的各能量转换单元是由细栅线和主栅线连接为一个整体的,每条主栅线同时收集左右两侧能量转换单元的电流。本发明的太阳能电池片上的主栅线是横向设置的,并且将太阳能电池片分隔为相互独立的至少两个区域,每个区域只设置一条正面主栅线,每条主栅线只收集本区域(仅位于该正面主栅线的一侧)能量转换单元的电流,为了提高能量的转换效率,这个区域越小越好,这样细栅线到主栅线的路径就越短,收集转换的效率就越高,受工艺及成本限制,优选在2-6个独立区域之间进行选择,也可以根据实际需要,制备7个及以上区域的太阳能电池片。本发明的太阳能电池片在太阳能组件的制备应用中,具有更高的灵活性,举例如下:1、可以将各区域切割为一个个独立的太阳能电池单元片,各太阳能电池单元片之间的连接可采用串行排列、首尾交错叠加的方式串联,如将每 一片太阳能电池单元片的主栅线置于整个太阳能电池片单元的上方,将各单元片从上到下依次排布,上一片的下沿正好搭在下一单元片的上沿,且正好遮住下一单元片的主栅线,并使得下一单元片的主栅线与上一单元片的背面正极电连接,依次类推,将所有的单元片串联起来,这样,太阳能电池组件的正面没有显露主栅线,没有主栅线占据有效空间,使得整个太阳能电池组件的有效发电面积增加,并且不再需要使用焊带连接,摒弃了焊带连接带来的工序增加、成本增加、占用有效发电面积的弊端。2、如上述方式交错叠加排布,但是正面主栅线与上一片的背面正电极绝缘隔离,所有单元片的正面主栅线在侧面或背面全部连接在一起,所有单元的背面正电极也连接在一起,最后分别引出,即形成并联结构的组件结构。如图3所示。这样为整个组件的电路结构带来更多的组合选择。3、将上述两种连接方式进行任意组合,可以得到更加丰富的组件电路形式。4、可以利用连接线将某一区域的正面主栅线与另一区域的背面电极连接起来,这样,可以不用切割电池片,先将一片太阳能电池片上面各区域串联或并联或串联、并联混合连接起来,然后再将多片太阳能电池片进行串联,最后完成一个太阳能电池组件的安装。
进一步的,所述太阳能电池片背面对应于正面区域、且位于太阳能电池片正面对应区域的主栅线相对的另一侧边沿或邻近该边沿处设有背面主栅线,该背面主栅线与对应区域太阳能电池片的背面电极电连接。
进一步的,所述太阳能电池片正面各区域之间设有一条使相邻区域之间电气隔离的隔离带。
进一步的,在所述太阳能电池片的背面对应于所述正面隔离带位置的部分不设置铝背场涂层。
进一步的,在所述太阳能电池片的背面对应于所述正面各区域之间的位置,设置条状或线状的不设置铝背场涂层的分割线。
进一步的,所述太阳能电池片正面最外侧的两个区域的正面主栅线,设置于太阳能电池片最外侧边沿处或靠近最外侧边沿处。
进一步的,所述正面主栅线包括焊接部和连接部,所述焊接部的宽度大于连接部的宽度,所述焊接部之间由连接部连接,所述正面主栅线为一贯通的单一栅线或两条或多条相互分离的栅线。
进一步的,所述细栅线之间还设有垂直于细栅线并将相邻细栅线连通的横向细栅线。
上述硅片为一半成品部件,可以直接采购,一般其制备工艺,具体包括以下步骤:
一、硅片检测;
二、表面制绒;
三、扩散制结;
四、去磷硅玻璃;
五、去除电池边沿PN结;
六、制备减反射膜。
之后才涉及正面主栅线和反面主栅线(或称为背面主栅线)及正面细栅线的制备。根据本发明的设计要求包括以下步骤:
(一)、印刷正面电极:在硅片的正面上对应印刷正面丝网图形,所述正面丝网图形将电池片分隔为至少两个区域,每个区域包括细栅线和与所述细栅线相连通的正面主栅线,不同区域的正面主栅线平行间隔设置,其中位于电池片边沿的两个区域的正面主栅线分别设置于电池片的边沿或靠近边沿处;
(二)、印刷背面铝背场:在硅片的背面对应印刷反面丝网图形,包括反面主栅线和铝背场,所述反面主栅线与所述正面主栅线平行,对应正面的每一个区域均设置一条背面主栅线,且背面主栅线位于该区域远离正面主栅线的一侧;
八、烧结。
如图4-5和图9所示,在本发明太阳能电池片的一些实施方式中,其包括至少两片相粘接的电池片单元1,电池片单元1包括正面和反面,正面设置有发电区2和设置于发电区2一侧边缘的正面主栅线3,发电区2上设置有若干细栅线4,细栅线4与正面主栅线3相连接; 反面设置有反面主栅线5和铝背场6,且正面主栅线3和反面主栅线5分别位于电池片单元1的相对两侧;其中一片电池片单元1的反面主栅线5粘结并导电连接另外一片的正面主栅线3,即每两片电池片单元1粘接时,只能是一片的正面主栅线3和另外一片的反面主栅线5相粘接。本实施方式中的电池片单元为5个,当然也可以是3个或其它的多个,在此不做限制。
进一步的,太阳能电池组件包括至少两片相粘接的电池片单元,所述电池片单元包括正面和反面,所述正面设置有发电区和设置于所述发电区一侧边缘的正面主栅线,所述发电区上设置有若干细栅线,所述细栅线与所述正面主栅线相连接;所述反面设置有反面主栅线和铝背场,且正面主栅线和反面主栅线分别位于所述电池片单元的相对两侧;其中一片所述电池片单元的反面主栅线粘结并导电连接另外一片的正面主栅线。
进一步的,所述正面主栅线连接所述细栅线的一端。
进一步的,每一片电池片单元的正面主栅线与相邻电池片单元的反面主栅线重合叠放,相邻两片电池片单元重合叠加的宽度为1.2-2.5mm。
进一步的,至少两片电池片单元首尾重合叠加成一串电池片单元组,所述太阳能电池组件包括至少一串电池片单元组,每串电池片单元组包括2-50片电池片单元。
进一步的,所述电池片单元组为至少两串,电池片单元组之间设有汇流条将电池片单元组进行串联、并联、部分并联后再串联或部分串联后再并联。
进一步的,在汇流条与电池片单元组之间设置引出线,引出线的一部分与所述电池片单元组最外侧的一片电池片单元的正面主栅线或反面主栅线电连接,另一部分向远离电池片单元组的外侧延伸,并与汇流条电连接。
进一步的,汇流条与电池片单元主栅线之间的连接宽度为 1--8mm。
进一步的,汇流条作为引出线的部分折叠于电池片单元组的背面,并设置有绝缘层将其与电池片背面进行隔离。
进一步的,所述汇流条设有连接部和引出部,所述连接部与其连接的正面或反面主栅线同一走向,所述引出部与所述连接部垂直或成一钝角或锐角。
进一步的,所述每一串电池片单元组的与正面主栅线连接的引出线或与反面主栅线的引出线的连接部至少为两个,引出部再连接于同一条引出主线。
进一步的,相邻电池片单元组同一侧的最外端的主栅线极性不同,即正面主栅线和反面主栅线间隔排布,其中一侧的所有正面主栅线与反面主栅线连接于同一条引出主线,而另一侧的所有正面主栅线连接于一条正面主栅线引出主线,所有反面主栅线连接于一条反面主栅线引出主线,正面主栅线引出主线与反面主栅线引出主线作为太阳能电池组件的总输出引出线。
进一步的,所述电池片单元组的与正面主栅线连接的引出线或与反面主栅线的引出线弯折折叠放置于电池片单元组的背面,所述正面主栅线引出主线与反面主栅线引出主线也设置于电池片单元组的背面,并在引出线以及正面主栅线引出主线、反面主栅线引出主线和电池片单元组的背面之间设置绝缘隔离部件。
本发明还公开了一种电池片单元的制作工艺,制作上述的电池片单元,具体包括以下步骤:
一、印刷:在硅片的正、反面上分别对应印刷正面丝网图形和反面丝网图形,所述正面丝网图形包括细栅线和与所述细栅线相垂直的正面主栅线,所述正面主栅线均匀间隔设置,且沿所述细栅线的长度方向,所述正面丝网图形的一侧的边缘设置有正面边缘主栅线;
所述反面丝网图形包括反面主栅线和铝背场,所述反面主栅线与所述正面主栅线方向一致,且均匀间隔设置,所述反面丝网图形的一侧的边缘设置有反面边缘主栅线,所述正面边缘主栅线和反面边缘主 栅线分别位于所述硅片的相对两侧;
二、切割:使用切割设备沿着切割线进行切割,形成多片所述电池片单元;
其中,所述切割线与所述正面主栅线的边缘相重合;
三、粘接:将第一片电池片单元的正面主栅线涂上导电粘接材料,将第二片电池片单元的反面主栅线贴覆于第一片电池片单元的正面主栅线上,完成两片电池片单元的粘结;之后第三片电池片单元和第二片的粘接方式与第一片和第二片的粘接方式相同,以此类推,直至所有电池片单元粘接完毕,完成太阳能电池片的制作。
进一步的,所述步骤三中的导电粘接材料为导电胶或焊锡膏。
进一步的,所述步骤二中,所述切割线均位于所述正面主栅线的同一侧,且与所述正面边缘主栅线的外边缘相一致。
制作本发明太阳能电池组件以及电池片单元涉及一种太阳能电池片,包括铝背场涂层、硅片层和细栅线,所述太阳能电池片正面分隔为至少两个独立的区域,每个区域的其中一侧边沿或邻近该边沿处设有至少一条正面主栅线,该区域的正面所有的细栅线都与该区域的正面主栅线对应电连接。这里的独立区域即是一个电池片单元,它可以切割下来独立使用,也可以不切割,利用导线(或引出线)进行电池片单元之间的串并联。
这里所说的太阳能电池片,是用于制备太阳能电池组件的一个必备部件,在传统的生产工艺中,这个太阳能电池片包括硅片、铝背场涂层、正面细栅线、三条或四条纵向的主栅线,在制备太阳能电池组件时,需要用焊带将多个太阳能电池片的主栅线焊接串联了起来,并且通常现有的太阳能电池片上的各能量转换单元是由细栅线和主栅线连接为一个整体的,每条主栅线同时收集左右两侧能量转换单元的电流。本发明的太阳能电池片上的主栅线是横向设置的,并且将太阳能电池片分隔为相互独立的至少两个区域,每个区域只设置一条正面主栅线,每条主栅线只收集本区域(仅位于该正面主栅线的一侧)能量转换单元的电流,为了提高能量的转换效率,这个区域越小越好, 这样细栅线到主栅线的路径就越短,收集转换的效率就越高,受工艺及成本限制,优选在2-6个独立区域之间进行选择,也可以根据实际需要,制备7个及以上区域的太阳能电池片。本发明的太阳能电池片在太阳能组件的制备应用中,具有更高的灵活性,举例如下:1、可以将各区域切割为一个个独立的太阳能电池单元片,各太阳能电池单元片之间的连接可采用串行排列、首尾交错叠加的方式串联,如将每一片太阳能电池单元片的主栅线置于整个太阳能电池片单元的上方,将各单元片从上到下依次排布,上一片的下沿正好搭在下一单元片的上沿,且正好遮住下一单元片的主栅线,并使得下一单元片的主栅线与上一单元片的背面正极电连接,依次类推,将所有的单元片串联起来,这样,太阳能电池组件的正面没有显露主栅线,没有主栅线占据有效空间,使得整个太阳能电池组件的有效发电面积增加,并且不再需要使用焊带连接,摒弃了焊带连接带来的工序增加、成本增加、占用有效发电面积的弊端。2、如上述方式交错叠加排布,但是正面主栅线与上一片的背面正电极绝缘隔离,所有单元片的正面主栅线在侧面或背面全部连接在一起,所有单元的背面正电极也连接在一起,最后分别引出,即形成并联结构的组件结构。如图3所示。这样为整个组件的电路结构带来更多的组合选择。3、将上述两种连接方式进行任意组合,可以得到更加丰富的组件电路形式。4、可以利用连接线将某一区域的正面主栅线与另一区域的背面电极连接起来,这样,可以不用切割电池片,先将一片太阳能电池片上面各区域串联或并联或串联、并联混合连接起来,然后再将多片太阳能电池片进行串联,最后完成一个太阳能电池组件的安装。
进一步的,所述太阳能电池片背面对应于正面区域、且位于太阳能电池片正面对应区域的主栅线相对的另一侧边沿或邻近该边沿处设有背面主栅线,该背面主栅线与对应区域太阳能电池片的背面电极电连接。
进一步的,所述太阳能电池片正面各区域之间设有一条使相邻区域之间电气隔离的隔离带。
进一步的,在所述太阳能电池片的背面对应于所述正面隔离带位置的部分不设置铝背场涂层。
进一步的,在所述太阳能电池片的背面对应于所述正面各区域之间的位置,设置条状或线状的不设置铝背场涂层的分割线。
进一步的,所述太阳能电池片正面最外侧的两个区域的正面主栅线,设置于太阳能电池片最外侧边沿处或靠近最外侧边沿处。
进一步的,所述正面主栅线包括焊接部和连接部,所述焊接部的宽度大于连接部的宽度,所述焊接部之间由连接部连接,所述正面主栅线为一贯通的单一栅线或两条或多条相互分离的栅线。
进一步的,所述细栅线之间还设有垂直于细栅线并将相邻细栅线连通的横向细栅线。
本发明还提供一种太阳能电池片的制备方法,制备如权利要求1或2所述的太阳能电池片,具体包括以下步骤:
一、硅片检测;
二、表面制绒;
三、扩散制结;
四、去磷硅玻璃;
五、去除电池边沿PN结;
六、制备减反射膜;
七、制备正、负电极,包括以下步骤:
(一)、印刷正面电极:在硅片的正面上对应印刷正面丝网图形,所述正面丝网图形将电池片分隔为至少两个区域,每个区域包括细栅线和与所述细栅线相连通的正面主栅线,不同区域的正面主栅线平行间隔设置,其中位于电池片边沿的两个区域的正面主栅线分别设置于电池片的边沿或靠近边沿处;
(二)、印刷背面铝背场:在硅片的背面对应印刷反面丝网图形,包括反面主栅线和铝背场,所述反面主栅线与所述正面主栅线平行,对应正面的每一个区域均设置一条背面主栅线,且背面主栅线位于该区域远离正面主栅线的一侧;
八、烧结。
如图4-5和图9所示,在本发明太阳能电池片的一些实施方式中,其包括至少两片相粘接的电池片单元1,电池片单元1包括正面和反面,正面设置有发电区2和设置于发电区2一侧边缘的正面主栅线3,发电区2上设置有若干细栅线4,细栅线4与正面主栅线3相连接;反面设置有反面主栅线5和铝背场6,且正面主栅线3和反面主栅线5分别位于电池片单元1的相对两侧;其中一片电池片单元1的反面主栅线5粘结并导电连接另外一片的正面主栅线3,即每两片电池片单元1粘接时,只能是一片的正面主栅线3和另外一片的反面主栅线5相粘接。本实施方式中的电池片单元为5个,当然也可以是3个或其它的多个,在此不做限制。
采用上述技术方案,本实用新型技术方案的有益效果是:由于电池片由多个电池片单元1粘接而成,电池片的正面不会有焊接焊带的主栅线结构,因此也没有焊带遮住光线,大大提高了电池片的受光面积和发电效率;多个电池片单元1粘接而成的电池片,有利于减少短路电流和填充因子的损耗,提升输出功率;另外,若粘结的电池片单元1数量够多,如20个或更多,则可以直接形成电池串,根本不需要另外使用焊带进行焊接,大大提升了生产效率,同时,克服了传统的电池串焊接时所导致的隐藏缺陷,如出现虚焊或焊接不牢等现象,大大提高了电池片和电池串的整体质量。
在上述技术方案的基础上,本实用新型还可作如下改进:
为了进一步地优化本发明的实施效果,如图4、图9所示,在本发明太阳能电池片的另外一些实施方式中,正面主栅线3连接细栅线4的一端。
采用上述优选的方案,能够将细栅线4在一端进行汇流,方便与不同电池片单元1的粘接。
为了达到本发明的目的,在本发明太阳能电池片的制作工艺的一些实施方式中,制作上述的太阳能电池片,即包括5个电池片单元1的电池片,具体包括以下步骤:
一、印刷:如图1、图2所示,在硅片的正、反面上分别对应印刷正面丝网图形和反面丝网图形,正面丝网图形包括细栅线4和与细栅线4相垂直的正面主栅线3,正面主栅线3均匀间隔设置,且沿细栅线4的长度方向,正面丝网图形的一侧的边缘设置有正面边缘主栅线7;
反面丝网图形包括反面主栅线5和铝背场6,反面主栅线5与正面主栅线3方向一致,且均匀间隔设置,反面丝网图形的一侧的边缘设置有反面边缘主栅线8,正面边缘主栅线7和反面边缘主栅线8分别位于硅片的相对两侧;
二、切割:如图3所示,使用切割设备沿着切割线9进行切割,形成多片电池片单元1,如图4和图5所示;
其中,切割线9与正面主栅线3的边缘相重合,切割设备为激光切割机或其它的切割仪器;
三、粘接:如图6和图7所示,将第一片电池片单元1的正面主栅线3涂上导电粘接材料10,将第二片电池片单元1的反面主栅线5贴覆于第一片电池片单元1的正面主栅线3上,完成两片电池片单元的粘结,如图8所示;之后第三片电池片单元和第二片的粘接方式与第一片和第二片的粘接方式相同,以此类推,直至5片电池片单元1粘接完毕,完成太阳能电池片的制作,如图9所示。
采用上述技术方案,本实用新型技术方案的有益效果是:在硅片上将多片电池片单元1的丝网图形印刷好,之后进行切割,形成多个电池片单元1,最终将多个电池片单元1进行粘接,大大提高了生产效率;同时使用该工艺制作出来的电池片的有效受光面积大幅度增加,从而提升了电池片的发电效率。
在上述技术方案的基础上,本实用新型还可作如下改进:
为了进一步地优化本发明的实施效果,如图6所示,在本发明太阳能电池片的另外一些实施方式中,步骤三中的导电粘接材料10为导电胶或焊锡膏。其中,粘接时需要采用红外焊接设备、波峰焊设备或回流焊设备进行焊接。
采用上述优选的方案,通过导电胶或者焊锡膏将不同电池片单元进行粘接,不仅能够确保相连两块电池片单元之间的连接力,同时能够确保其导电性能。
为了进一步地优化本发明的实施效果,如图3所示,在本发明太阳能电池片的另外一些实施方式中,步骤二中,切割线9均位于正面主栅线3的同一侧,且与正面边缘主栅线71的外边缘相一致。如图例所示,切割线9均位于正面主栅线3的下边缘,且与正面边缘主栅线71的外边缘一致。
采用上述优选的方案,有利于快速切割工作,提高生产效率;同时不会因误切而生产出废品,提高了生产原料的利用率。
由于电池片由多个电池片单元粘接而成,在电池片单元的数量足够一条电池串时,则对应完成电池串的制作,电池串的规格也比较灵活,因此可以对不同电池串进行串联或并联形成不同的电池片组件,如图10、图11所示,对应不同电力输出参数,适用性更强。
如上所述,制备上述电池片单元需要先将传统的矩形硅片按照本发明的设计进行正反面主栅线的制备,然后再切割成电池片单元,其具体过程再复述如下:
所涉及的太阳能电池片,包括铝背场涂层、硅片层和细栅线,其特征在于,所述太阳能电池片正面分隔为至少两个独立的区域,每个区域的其中一侧边沿或邻近该边沿处设有至少一条正面主栅线,该区域的正面所有的细栅线都与该区域的正面主栅线对应电连接。
这里所说的太阳能电池片,是用于制备太阳能电池组件的一个必备部件,在传统的生产工艺中,这个太阳能电池片包括硅片、铝背场涂层、正面细栅线、三条或四条纵向的主栅线,在制备太阳能电池组件时,需要用焊带将多个太阳能电池片的主栅线焊接串联了起来,并且通常现有的太阳能电池片上的各能量转换单元是由细栅线和主栅线连接为一个整体的,每条主栅线同时收集左右两侧能量转换单元的电流。本发明的太阳能电池片上的主栅线是横向设置的,并且将太阳能电池片分隔为相互独立的至少两个区域,每个区域只设置一条正面 主栅线,每条主栅线只收集本区域(仅位于该正面主栅线的一侧)能量转换单元的电流,为了提高能量的转换效率,这个区域越小越好,这样细栅线到主栅线的路径就越短,收集转换的效率就越高,受工艺及成本限制,优选在2-6个独立区域之间进行选择,也可以根据实际需要,制备7个及以上区域的太阳能电池片。本发明的太阳能电池片在太阳能组件的制备应用中,具有更高的灵活性,举例如下:1、可以将各区域切割为一个个独立的太阳能电池单元片,各太阳能电池单元片之间的连接可采用串行排列、首尾交错叠加的方式串联,如将每一片太阳能电池单元片的主栅线置于整个太阳能电池片单元的上方,将各单元片从上到下依次排布,上一片的下沿正好搭在下一单元片的上沿,且正好遮住下一单元片的主栅线,并使得下一单元片的主栅线与上一单元片的背面正极电连接,依次类推,将所有的单元片串联起来,这样,太阳能电池组件的正面没有显露主栅线,没有主栅线占据有效空间,使得整个太阳能电池组件的有效发电面积增加,并且不再需要使用焊带连接,摒弃了焊带连接带来的工序增加、成本增加、占用有效发电面积的弊端。2、如上述方式交错叠加排布,但是正面主栅线与上一片的背面正电极绝缘隔离,所有单元片的正面主栅线在侧面或背面全部连接在一起,所有单元的背面正电极也连接在一起,最后分别引出,即形成并联结构的组件结构。如图3所示。这样为整个组件的电路结构带来更多的组合选择。3、将上述两种连接方式进行任意组合,可以得到更加丰富的组件电路形式。4、可以利用连接线将某一区域的正面主栅线与另一区域的背面电极连接起来,这样,可以不用切割电池片,先将一片太阳能电池片上面各区域串联或并联或串联、并联混合连接起来,然后再将多片太阳能电池片进行串联,最后完成一个太阳能电池组件的安装。
如图4-5和图9所示,在本发明太阳能电池片的一些实施方式中,将太阳能电池片按照区域进行切割成一片片独立的电池片单元,在具体应用中,每个组件包括至少两片相粘接的电池片单元1,电池片单元1包括正面和反面,正面设置有发电区2和设置于发电区2一侧边 缘的正面主栅线3,发电区2上设置有若干细栅线4,细栅线4与正面主栅线3相连接;反面设置有反面主栅线5和铝背场6,且正面主栅线3和反面主栅线5分别位于电池片单元1的相对两侧;其中一片电池片单元1的反面主栅线5粘结并导电连接另外一片的正面主栅线3,即每两片电池片单元1粘接时,只能是一片的正面主栅线3和另外一片的反面主栅线5相粘接。本实施方式中的电池片单元为5个,当然也可以是3个或其它的多个,在此不做限制。
采用上述技术方案,本发明技术方案的有益效果是:由于电池片由多个电池片单元1粘接而成,电池片的正面不会有焊接焊带的主栅线结构,因此也没有焊带遮住光线,大大提高了电池片的受光面积和发电效率;多个电池片单元1粘接而成的电池片,有利于减少短路电流和填充因子的损耗,提升输出功率;另外,若粘结的电池片单元1数量够多,如20个或更多,则可以直接形成电池串,根本不需要另外使用焊带进行焊接,大大提升了生产效率,同时,克服了传统的电池串焊接时所导致的隐藏缺陷,如出现虚焊或焊接不牢等现象,大大提高了电池片和电池串的整体质量。
在上述技术方案的基础上,本实用新型还可作如下改进:
为了进一步地优化本发明的实施效果,如图4、图9所示,在本发明太阳能电池片的另外一些实施方式中,正面主栅线3连接细栅线4的一端。
采用上述优选的方案,能够将细栅线4在一端进行汇流,方便与不同电池片单元1的粘接。
为了达到本发明的目的,在本发明太阳能电池片的制作工艺的一些实施方式中,制作上述的太阳能电池片,即包括5个电池片单元1的电池片,具体包括以下步骤:
一、印刷:如图1、图2所示,在硅片的正、反面上分别对应印刷正面丝网图形和反面丝网图形,正面丝网图形包括细栅线4和与细栅线4相垂直的正面主栅线3,正面主栅线3均匀间隔设置,且沿细栅线4的长度方向,正面丝网图形的一侧的边缘设置有正面边缘主栅 线7;
反面丝网图形包括反面主栅线5和铝背场6,反面主栅线5与正面主栅线3方向一致,且均匀间隔设置,反面丝网图形的一侧的边缘设置有反面边缘主栅线8,正面边缘主栅线7和反面边缘主栅线8分别位于硅片的相对两侧;
二、切割:如图3所示,使用切割设备沿着切割线9进行切割,形成多片电池片单元1,如图4和图5所示;
其中,切割线9与正面主栅线3的边缘相重合,切割设备为激光切割机或其它的切割仪器;
三、粘接:如图6和图7所示,将第一片电池片单元1的正面主栅线3涂上导电粘接材料10,将第二片电池片单元1的反面主栅线5贴覆于第一片电池片单元1的正面主栅线3上,完成两片电池片单元的粘结,如图8所示;之后第三片电池片单元和第二片的粘接方式与第一片和第二片的粘接方式相同,以此类推,直至5片电池片单元1粘接完毕,完成太阳能电池片的制作,如图9所示。
采用上述技术方案,本实用新型技术方案的有益效果是:在硅片上将多片电池片单元1的丝网图形印刷好,之后进行切割,形成多个电池片单元1,最终将多个电池片单元1进行粘接,大大提高了生产效率;同时使用该工艺制作出来的电池片的有效受光面积大幅度增加,从而提升了电池片的发电效率。
在上述技术方案的基础上,本实用新型还可作如下改进:
为了进一步地优化本发明的实施效果,如图6所示,在本发明太阳能电池片的另外一些实施方式中,步骤三中的导电粘接材料10为导电胶或焊锡膏。其中,粘接时需要采用红外焊接设备、波峰焊设备或回流焊设备进行焊接。
采用上述优选的方案,通过导电胶或者焊锡膏将不同电池片单元进行粘接,不仅能够确保相连两块电池片单元之间的连接力,同时能够确保其导电性能。
为了进一步地优化本发明的实施效果,如图3所示,在本发明太 阳能电池片的另外一些实施方式中,步骤二中,切割线9均位于正面主栅线3的同一侧,且与正面边缘主栅线71的外边缘相一致。如图例所示,切割线9均位于正面主栅线3的下边缘,且与正面边缘主栅线71的外边缘一致。
采用上述优选的方案,有利于快速切割工作,提高生产效率;同时不会因误切而生产出废品,提高了生产原料的利用率。
由于电池片由多个电池片单元粘接而成,在电池片单元的数量足够一条电池串时,则对应完成电池串的制作,电池串的规格也比较灵活,因此可以对不同电池串进行串联或并联形成不同的电池片组件,如图10、图11所示,对应不同电力输出参数,适用性更强。
在一些实施例中,所述太阳能电池片背面对应于正面区域、且位于太阳能电池片正面对应区域的主栅线相对的另一侧边沿或邻近该边沿处设有背面主栅线,该背面主栅线与对应区域太阳能电池片的背面电极电连接。这样设计是为了便于对背面电极的连接。无论是将各区域进行切割成电池片单元后进行连接,还是不切割利用连接线连接,专门的背面主栅线更便于焊接,防止连接不良。
进一步的,在一些实施例中,所述太阳能电池片正面各区域之间设有一条使相邻区域之间电气隔离的隔离带。这样一是可以有效将各区域进行电气隔离,另一个作用就是如需要切割时方便沿隔离线对各区域进行切割。
进一步的,在所述太阳能电池片的背面对应于所述正面隔离带位置的部分不设置铝背场涂层。这样设计是对将各区域背部电极进行隔离,真正做到各区域完全隔离,这在不切割应用中,方便构建各区域的串联或并联结构。另外隔离带没有涂覆铝背场,那么在切割时就不会产生金属毛刺,减少打磨时间,提供生产效率。
进一步的,在所述太阳能电池片的背面对应于所述正面各区域之间的位置,设置条状或线状的不设置铝背场涂层的分割线。印刷好这样的分割线,便于切割。避免切错位置,造成废品。
进一步的,所述太阳能电池片正面最外侧的两个区域的正面主栅 线,设置于太阳能电池片最外侧边沿处或靠近最外侧边沿处。由于电池片制造工艺决定,太阳能电池片的四角会有圆弧或直线倒角,将太阳能电池片分区域切割后,其中两端的区域构成的电池片单元就有两个倒角,而中间区域的电池片单元则是直角的矩形。如果倒角边沿处制作背面主栅线,那么在进行叠片串联的时候,这个倒角就会叠在另一片的上面,使得倒角暴露在外面,这样,整个电池组件正面就会出现倒角偶尔出现,不美观,不协调。而按照本方案实施后,所有具有倒角的一边总是被另一片电池片单元具有直角的一侧覆盖,这样,整个太阳能电池组件就完全和谐美观,具有一致性。
进一步的,所述正面主栅线包括焊接部和连接部,所述焊接部的宽度大于连接部的宽度,所述焊接部之间由连接部连接,所述正面主栅线为一贯通的单一栅线或两条或多条相互分离的栅线。这样正面主栅线不用采用完全一样的宽度,可以节约成本。
进一步的,所述细栅线之间还设有垂直于细栅线并将相邻细栅线连通的横向细栅线。这样的结构可以防止某条细栅线断裂后,各电源单元的电流可以通过横向细栅线经相邻的细栅线被收集。
本发明还提供一种太阳能电池片的制备方法,制备上述的太阳能电池片,具体包括以下步骤:
一、硅片检测;
二、表面制绒;
三、扩散制结;
四、去磷硅玻璃;
五、去除电池边沿PN结;
六、制备减反射膜;
七、制备正、负电极,包括以下步骤:
(一)、印刷正面电极:在硅片的正面上对应印刷正面丝网图形,所述正面丝网图形将电池片分隔为至少两个区域,每个区域包括细栅线和与所述细栅线相连通的正面主栅线,不同区域的正面主栅线平行间隔设置,其中位于电池片边沿的两个区域的正面主栅线分别设置于 电池片的边沿或靠近边沿处;
(二)、印刷背面铝背场:在硅片的背面对应印刷反面丝网图形,包括反面主栅线和铝背场,所述反面主栅线与所述正面主栅线平行,对应正面的每一个区域均设置一条背面主栅线,且背面主栅线位于该区域远离正面主栅线的一侧;
八、烧结。
上述各实施方式中提及的太阳能电池片均可利用本制备方法制备,上述方法制备的太阳能电池片,既可以用于切割电池片单元,也可以直接利用连接线或其它连接方式连接各区域的正面主栅线和背面电极后再将各太阳能电池片连接起来组成太阳能电池片组件。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (15)

  1. 一种太阳能电池组件,其特征在于,包括至少一串纵向或横向排布的电池片单元组,每串电池片单元组包括至少两片电池片单元,同一串的电池片单元本体依次局部重叠排布,所述电池片单元包括正面和反面,所述正面设置有发电区和设置于所述发电区一侧边缘的正面主栅线,所述发电区上设置有若干细栅线,所述细栅线与所述正面主栅线相连接;所述反面设置有反面主栅线和铝背场,且正面主栅线和反面主栅线分别位于所述电池片单元的相对两侧;每一片电池片单元的正面主栅线和反面主栅线分别导电连接相邻且不同的另外两片中其中一片电池片单元的反面主栅线,以及其中另一片电池片单元的正面主栅线。
  2. 根据权利要求1所述的太阳能电池组件,其特征在于,包括至少两片相粘接的电池片单元,所述电池片单元包括正面和反面,所述正面设置有发电区和设置于所述发电区一侧边缘的正面主栅线,所述发电区上设置有若干细栅线,所述细栅线与所述正面主栅线相连接;所述反面设置有反面主栅线和铝背场,且正面主栅线和反面主栅线分别位于所述电池片单元的相对两侧;其中一片所述电池片单元的反面主栅线粘结并导电连接另外一片的正面主栅线。
  3. 根据权利要求2所述的太阳能电池组件,其特征在于,所述正面主栅线连接所述细栅线的一端。
  4. 根据权利要求1所述的太阳能电池组件,其特征在于,每一片电池片单元的正面主栅线与相邻电池片单元的反面主栅线重合叠放,相邻两片电池片单元重合叠加的宽度为1.2-2.5mm。
  5. 根据权利要求4所述的太阳能电池组件,其特征在于,至少两片电池片单元首尾重合叠加成一串电池片单元组,所述太阳能电池组件包括至少一串电池片单元组,每串电池片单元组包括2-80片电池片单元。
  6. 根据权利要求5所述的太阳能电池组件,其特征在于,所述电池片单元组为至少两串,电池片单元组之间设有汇流条将电池片单元组进行串联、并联、部分并联后再串联或部分串联后再并联。
  7. 根据权利要求6所述的太阳能电池组件,其特征在于,在汇流条与电池片单元组之间设置引出线,引出线的一部分与所述电池片单元组 最外侧的一片电池片单元的正面主栅线或反面主栅线电连接,另一部分向远离电池片单元组的外侧延伸,并与汇流条电连接。
  8. 根据权利要求6所述的太阳能电池组件,其特征在于,汇流条与电池片单元主栅线之间的连接宽度为1--8mm。
  9. 根据权利要求7所述的太阳能电池组件,其特征在于,汇流条作为引出线的部分折叠于电池片单元组的背面,并设置有绝缘层将其与电池片背面进行隔离。
  10. 根据权利要求7所述的太阳能电池组件,其特征在于,所述汇流条设有连接部和引出部,所述连接部与其连接的正面或反面主栅线同一走向,所述引出部与所述连接部垂直或成一钝角或锐角。
  11. 根据权利要求10所述的太阳能电池组件,其特征在于,所述每一串电池片单元组的与正面主栅线连接的引出线或与反面主栅线的引出线的连接部至少为两个,引出部再连接于同一条引出主线。
  12. 根据权利要求11所述的太阳能电池组件,其特征在于,相邻电池片单元组同一侧的最外端的主栅线极性不同,即正面主栅线和反面主栅线间隔排布,其中一侧的所有正面主栅线与反面主栅线连接于同一条引出主线,而另一侧的所有正面主栅线连接于一条正面主栅线引出主线,所有反面主栅线连接于一条反面主栅线引出主线,正面主栅线引出主线与反面主栅线引出主线作为太阳能电池组件的总输出引出线。
  13. 根据权利要求12所述的太阳能电池组件,其特征在于,所述电池片单元组的与正面主栅线连接的引出线或与反面主栅线的引出线弯折折叠放置于电池片单元组的背面,所述正面主栅线引出主线与反面主栅线引出主线也设置于电池片单元组的背面,并在引出线以及正面主栅线引出主线、反面主栅线引出主线和电池片单元组的背面之间设置绝缘隔离部件。
  14. 一种电池片单元的制作工艺,制作如权利要求1到13任一所述的电池片单元,其特征在于,具体包括以下步骤:
    一、印刷:在硅片的正、反面上分别对应印刷正面丝网图形和反面丝网图形,所述正面丝网图形包括细栅线和与所述细栅线相垂直的正面 主栅线,所述正面主栅线均匀间隔设置,且沿所述细栅线的长度方向,所述正面丝网图形的一侧的边缘设置有正面边缘主栅线;
    所述反面丝网图形包括反面主栅线和铝背场,所述反面主栅线与所述正面主栅线方向一致,且均匀间隔设置,所述反面丝网图形的一侧的边缘设置有反面边缘主栅线,所述正面边缘主栅线和反面边缘主栅线分别位于所述硅片的相对两侧;
    二、切割:使用切割设备沿着切割线进行切割,形成多片所述电池片单元;
    其中,所述切割线用于将硅片切割成独立的电池片单元;
    三、粘接:将第一片电池片单元的正面主栅线涂上导电粘接材料,将第二片电池片单元的反面主栅线贴覆于第一片电池片单元的正面主栅线上,完成两片电池片单元的粘结;之后第三片电池片单元和第二片的粘接方式与第一片和第二片的粘接方式相同,以此类推,直至所有电池片单元粘接完毕,完成太阳能电池组件的制作。
  15. 根据权利要求14所述的电池片单元的制作工艺,其特征在于,所述步骤三中的导电粘接材料为导电胶或焊锡膏或导电胶带或焊带。
PCT/CN2016/073452 2015-05-22 2016-02-04 一种太阳能电池片单元制备方法及太阳能电池组件 WO2016188146A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201709321RA SG11201709321RA (en) 2015-05-22 2016-02-04 Preparation method for solar cell piece unit and solar cell module
AU2016269044A AU2016269044B2 (en) 2015-05-22 2016-02-04 Preparation method for solar cell piece unit and solar cell module
US15/573,000 US20180122975A1 (en) 2015-05-22 2016-02-04 Preparation method for solar cell piece unit and solar cell module
EP16799035.7A EP3297037A4 (en) 2015-05-22 2016-02-04 Preparation method for solar cell piece unit and solar cell module
JP2017559694A JP2018515934A (ja) 2015-05-22 2016-02-04 太陽電池セルユニットの製造方法及び太陽電池モジュール

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510267213 2015-05-22
CN201510267213.5 2015-05-22
CN201511027965.0 2015-12-31
CN201511027965.0A CN106098803B (zh) 2015-05-22 2015-12-31 一种太阳能电池片单元制备方法及太阳能电池组件

Publications (1)

Publication Number Publication Date
WO2016188146A1 true WO2016188146A1 (zh) 2016-12-01

Family

ID=56470360

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2016/073451 WO2016188145A1 (zh) 2015-05-22 2016-02-04 太阳能电池片、太阳能电池组件、电池片单元及其制备方法
PCT/CN2016/073452 WO2016188146A1 (zh) 2015-05-22 2016-02-04 一种太阳能电池片单元制备方法及太阳能电池组件

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073451 WO2016188145A1 (zh) 2015-05-22 2016-02-04 太阳能电池片、太阳能电池组件、电池片单元及其制备方法

Country Status (7)

Country Link
US (2) US20180138342A1 (zh)
EP (2) EP3297039A4 (zh)
JP (4) JP2018515934A (zh)
CN (4) CN106098803B (zh)
AU (3) AU2016269043A1 (zh)
SG (2) SG11201709321RA (zh)
WO (2) WO2016188145A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113299799A (zh) * 2021-06-10 2021-08-24 苏州卓汇自动化设备有限公司 生产太阳能电池串的方法及其设备
EP3731282B1 (en) * 2018-01-25 2023-05-17 Kaneka Corporation Solar battery module

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129162A (zh) * 2016-07-29 2016-11-16 无锡嘉瑞光伏有限公司 一种太阳能电池片及组件及其制备工艺
CN106159019A (zh) * 2016-08-24 2016-11-23 天津英利新能源有限公司 一种可粘接光伏组件电池连接方式及其生产的组件
CN106229354A (zh) * 2016-08-26 2016-12-14 泰州中来光电科技有限公司 一种太阳能电池串及其制备方法和组件、系统
FR3062520B1 (fr) * 2017-01-31 2019-03-29 Stmicroelectronics (Tours) Sas Batterie a contacts en face avant et en face arriere
WO2018161286A1 (en) * 2017-03-09 2018-09-13 Flex, Ltd. Shingled array solar cells and methods of manufacturing solar modules including the same
CN107331722A (zh) * 2017-08-22 2017-11-07 合肥中南光电有限公司 太阳能电池片串联结构
CN107768454A (zh) * 2017-09-18 2018-03-06 成都晔凡科技有限公司 用于叠瓦组件的电池片及其测试方法
CN107768473A (zh) * 2017-09-27 2018-03-06 江阴艾能赛瑞能源科技有限公司 太阳能叠片电池及其焊接方法
CN107887477B (zh) * 2017-12-11 2024-03-01 无锡奥特维科技股份有限公司 一种电池片串焊机和电池片串焊方法
CN109980035A (zh) * 2017-12-14 2019-07-05 阿特斯阳光电力集团有限公司 光伏组件
CN107910396B (zh) * 2017-12-22 2023-08-04 泰州隆基乐叶光伏科技有限公司 一种双面单晶叠片光伏组件及其制造方法
CN109980036A (zh) * 2017-12-27 2019-07-05 阿特斯阳光电力集团有限公司 光伏组件及其制造方法
CN108022992A (zh) * 2017-12-29 2018-05-11 苏州阿特斯阳光电力科技有限公司 电池片及光伏组件
CN108258076A (zh) * 2018-02-12 2018-07-06 无锡嘉瑞光伏有限公司 一种采用异形焊带的太阳能电池组件
KR102524019B1 (ko) * 2018-03-26 2023-04-21 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양전지 및 이를 이용한 태양전지 모듈과 이의 제조 방법
CN110379877A (zh) * 2018-04-11 2019-10-25 苏州沃特维自动化系统有限公司 一种电池片单元、太阳能电池组件及其制备方法
CN110459635B (zh) * 2018-05-04 2024-06-25 阿特斯阳光电力集团股份有限公司 光伏组件及其制造方法
CN109273537A (zh) * 2018-08-15 2019-01-25 苏州太阳井新能源有限公司 一种互连栅线和制作方法,适用的太阳能电池及互连方式
CN109346554B (zh) * 2018-08-23 2020-06-12 晶澳(扬州)太阳能科技有限公司 一种光伏组件的制作方法
WO2020071062A1 (ja) * 2018-10-03 2020-04-09 株式会社カネカ 太陽電池セル、太陽電池ストリング、太陽電池モジュール
CN109285905A (zh) * 2018-10-31 2019-01-29 浙江正泰太阳能科技有限公司 双发电单元叠瓦光伏组件
KR102186560B1 (ko) * 2018-10-31 2020-12-03 한국생산기술연구원 도로 블록용 태양전지 모듈 및 그 제조방법
CN109473491A (zh) * 2018-11-22 2019-03-15 晶科能源科技(海宁)有限公司 一种叠瓦电池片
CN109786500A (zh) * 2018-12-06 2019-05-21 中建材浚鑫科技有限公司 一种高效率多主栅组件的制备工艺
CN109449229B (zh) * 2018-12-20 2023-12-15 苏州腾晖光伏技术有限公司 一种叠瓦光伏组件
CN109473509B (zh) * 2018-12-25 2023-12-08 无锡先导智能装备股份有限公司 不印胶尾片的放片装置及其方法
CN109698253B (zh) * 2018-12-25 2023-12-08 无锡先导智能装备股份有限公司 放片装置及其方法
CN109509806A (zh) * 2018-12-26 2019-03-22 苏州阿特斯阳光电力科技有限公司 太阳能电池组件及其加工该组件中汇流条的工装
CN109713054A (zh) * 2019-01-29 2019-05-03 苏州爱康光电科技有限公司 一种新型太阳能电池片
WO2020210683A1 (en) * 2019-04-12 2020-10-15 Solaria Corporation Solar module comprising interchangeable singulated strips
CN109979864B (zh) * 2019-04-23 2024-06-28 无锡奥特维科技股份有限公司 一种导电胶体处理装置
CN110010711A (zh) * 2019-04-24 2019-07-12 通威太阳能(成都)有限公司 一种正面无焊带的太阳能电池组件及其加工工艺
CN110379891B (zh) * 2019-08-02 2021-03-30 浙江晶科能源有限公司 一种光伏组件的制备方法
CN110797434B (zh) * 2019-09-24 2021-07-30 杭州瞩日能源科技有限公司 一种光伏电池模组的制备方法和光伏电池模组
WO2021072906A1 (zh) * 2019-10-16 2021-04-22 浙江晶科能源有限公司 一种光伏组件
CN112838141A (zh) * 2019-11-25 2021-05-25 福建金石能源有限公司 一种长条形柔性太阳能电池及其模组的制备方法
KR102384451B1 (ko) * 2020-01-02 2022-04-08 주식회사 신성이엔지 고효율 태양광 모듈 제조 방법 및 고효율 태양광 모듈 제조 장치
JP2021002659A (ja) * 2020-07-10 2021-01-07 アプライド マテリアルズ イタリア エス. アール. エル. 2つ以上の重なり合う太陽電池ピースを有する太陽電池構成の製造装置、太陽電池構成の製造システム、及び太陽電池構成の組立方法
CN111883616A (zh) * 2020-08-01 2020-11-03 苏州沃特维自动化系统有限公司 光伏电池高效组件制作工艺
EP4156310A1 (en) 2021-09-28 2023-03-29 Meyer Burger (Switzerland) AG Solar cell module
KR20230048715A (ko) 2021-10-05 2023-04-12 한국생산기술연구원 고출력 슁글드 태양전지 모듈 및 그의 제조방법
CN216015381U (zh) 2021-10-29 2022-03-11 晶科能源股份有限公司 电极结构、太阳能电池及光伏组件
CN114388652A (zh) * 2021-11-05 2022-04-22 中国华能集团清洁能源技术研究院有限公司 电池片组件的制作方法和叠瓦光伏组件
CN114309813B (zh) * 2021-12-27 2023-05-05 江苏小牛自动化设备有限公司 一种焊带切分装置、系统及方法
CN114284393B (zh) * 2022-01-04 2022-10-28 武汉美格科技股份有限公司 一种太阳能电池组件及其制备方法、太阳能装置
CN114388637B (zh) * 2022-03-23 2022-06-21 中国华能集团清洁能源技术研究院有限公司 光伏电池片及其制作方法和叠瓦组件
CN114649435A (zh) * 2022-03-29 2022-06-21 武宇涛 一种光伏组件及其制备工艺
FR3141285A1 (fr) * 2022-10-20 2024-04-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Augmentation de la densification de modules solaires par interconnexion superposée maximisée

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204348734U (zh) * 2015-02-07 2015-05-20 秦皇岛博硕光电设备股份有限公司 一种晶硅电池片及晶硅电池组件
CN104659122A (zh) * 2015-02-07 2015-05-27 秦皇岛博硕光电设备股份有限公司 一种晶硅电池片及晶硅电池组件及晶硅电池片的连接方法
CN204632768U (zh) * 2015-05-22 2015-09-09 苏州沃特维自动化系统有限公司 太阳能电池片
CN204651330U (zh) * 2015-06-17 2015-09-16 浙江晶科能源有限公司 一种太阳能电池结构
CN104934489A (zh) * 2015-06-17 2015-09-23 浙江晶科能源有限公司 一种太阳能电池结构

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195185A (ja) * 1986-02-21 1987-08-27 Sharp Corp アモルフアス太陽電池モジユ−ル
DE3708548A1 (de) * 1987-03-17 1988-09-29 Telefunken Electronic Gmbh Solarzellenmodul mit parallel und seriell angeordneten solarzellen
JP2004193586A (ja) * 2002-11-25 2004-07-08 Canon Inc 太陽光発電装置、その製造方法および太陽光発電システム
DE10348542A1 (de) * 2002-11-28 2004-06-17 Brose, Ursula Kontaktierungs- und Befestigungsverfahren von Zellen sowie Photovoltaikmodul
JP4275121B2 (ja) * 2005-09-05 2009-06-10 三菱重工業株式会社 太陽電池用ガラス基板の製造方法
CN101226968A (zh) * 2007-01-17 2008-07-23 易斌宣 降低聚光太阳能电池串联电阻阻值的方法及由该方法获得的聚光太阳能电池
JP2009043842A (ja) * 2007-08-07 2009-02-26 Sharp Corp 太陽電池モジュール
EP2356695B1 (en) * 2009-03-03 2018-11-21 LG Electronics Inc. Solar cell
CN201853714U (zh) * 2010-09-01 2011-06-01 江苏顺风光电科技有限公司 具有特殊电极的太阳能晶硅电池片
CN202231045U (zh) * 2011-10-17 2012-05-23 阿特斯(中国)投资有限公司 太阳能电池组件
US20140124014A1 (en) * 2012-11-08 2014-05-08 Cogenra Solar, Inc. High efficiency configuration for solar cell string
US9780253B2 (en) * 2014-05-27 2017-10-03 Sunpower Corporation Shingled solar cell module
US20140124013A1 (en) * 2012-11-08 2014-05-08 Cogenra Solar, Inc. High efficiency configuration for solar cell string
CN103840024B (zh) * 2012-11-23 2018-03-13 北京创昱科技有限公司 一种互联式柔性太阳能电池及其制作方法
CN202977436U (zh) * 2012-12-17 2013-06-05 中利腾晖光伏科技有限公司 防断式栅晶体硅太阳能电池
DE102013212845A1 (de) * 2013-07-02 2015-01-08 Solarworld Industries Sachsen Gmbh Photovoltaikmodul
CN104600141B (zh) * 2015-02-06 2018-04-03 协鑫集成科技股份有限公司 太阳能电池组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204348734U (zh) * 2015-02-07 2015-05-20 秦皇岛博硕光电设备股份有限公司 一种晶硅电池片及晶硅电池组件
CN104659122A (zh) * 2015-02-07 2015-05-27 秦皇岛博硕光电设备股份有限公司 一种晶硅电池片及晶硅电池组件及晶硅电池片的连接方法
CN204632768U (zh) * 2015-05-22 2015-09-09 苏州沃特维自动化系统有限公司 太阳能电池片
CN204651330U (zh) * 2015-06-17 2015-09-16 浙江晶科能源有限公司 一种太阳能电池结构
CN104934489A (zh) * 2015-06-17 2015-09-23 浙江晶科能源有限公司 一种太阳能电池结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3297037A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3731282B1 (en) * 2018-01-25 2023-05-17 Kaneka Corporation Solar battery module
CN113299799A (zh) * 2021-06-10 2021-08-24 苏州卓汇自动化设备有限公司 生产太阳能电池串的方法及其设备
CN113299799B (zh) * 2021-06-10 2023-04-18 苏州卓汇自动化设备有限公司 生产太阳能电池串的方法及其设备

Also Published As

Publication number Publication date
JP3223119U (ja) 2019-09-19
AU2016269043A1 (en) 2017-12-07
CN106098803B (zh) 2017-10-17
SG11201709282YA (en) 2017-12-28
WO2016188145A1 (zh) 2016-12-01
EP3297037A4 (en) 2018-05-23
EP3297039A1 (en) 2018-03-21
AU2016269044A1 (en) 2017-12-07
AU2019264608A1 (en) 2019-12-05
CN106098803A (zh) 2016-11-09
CN106098819A (zh) 2016-11-09
SG11201709321RA (en) 2017-12-28
CN205303477U (zh) 2016-06-08
JP3223120U (ja) 2019-09-19
AU2016269044B2 (en) 2019-08-15
EP3297039A4 (en) 2018-05-23
CN205810826U (zh) 2016-12-14
US20180138342A1 (en) 2018-05-17
JP2018515934A (ja) 2018-06-14
CN106098819B (zh) 2017-08-29
EP3297037A1 (en) 2018-03-21
US20180122975A1 (en) 2018-05-03
JP2018515935A (ja) 2018-06-14

Similar Documents

Publication Publication Date Title
WO2016188146A1 (zh) 一种太阳能电池片单元制备方法及太阳能电池组件
CN106206762B (zh) 太阳能电池片阵列、太阳能电池组件及其制备方法
WO2018018908A1 (zh) 一种太阳能电池片及组件及其制备工艺
JP6368714B2 (ja) 線状リボン型コネクタストリップを使用した背面接触太陽電池モジュールの製造方法及び各太陽電池モジュール
CN107799615B (zh) 太阳能电池片单元、光伏电池模组及其制备工艺
US20160126372A1 (en) Solar cell array, solar cell module and manufacturing method thereof
WO2018176527A1 (zh) 采用中心汇聚栅线电极的太阳能叠片组件
CN108172648A (zh) 一种太阳能电池组件及其制备工艺
WO2022247057A1 (zh) 一种背接触太阳能电池串及制备方法、组件及系统
CN110277460A (zh) 太阳能电池片及光伏组件
JP2012019094A (ja) 太陽電池モジュール
JP2017533597A (ja) 太陽電池アレイ、太陽電池モジュール、及びこれらの製造方法
CN116504875A (zh) 一种光伏组件制备方法和光伏组件
CN110071186B (zh) 一种薄膜光伏组件内联结构及生产工艺
CN214898458U (zh) 一种背接触太阳能电池串、组件及系统
CN208422930U (zh) 一种电池片单元及太阳能电池组件
WO2023185003A1 (zh) 一种光伏组件及其制备工艺
CN209104165U (zh) 太阳能电池片及太阳能电池组件
CN110649119A (zh) 一种基于晶硅的太阳能发电组件及其制备方法
CN204905263U (zh) 太阳能电池片阵列、太阳能电池组件
CN210897313U (zh) 一种基于晶硅的太阳能发电组件
WO2020093404A1 (zh) 光伏电池模组及其制备方法
WO2016065945A1 (en) Solar cell array, solar cell module and manufacturing method thereof
WO2016065953A1 (en) Solar cell module and manufacturing method thereof
WO2016065943A1 (en) Solar cell module and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799035

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15573000

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017559694

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201709321R

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016269044

Country of ref document: AU

Date of ref document: 20160204

Kind code of ref document: A