WO2023185003A1 - 一种光伏组件及其制备工艺 - Google Patents

一种光伏组件及其制备工艺 Download PDF

Info

Publication number
WO2023185003A1
WO2023185003A1 PCT/CN2022/132509 CN2022132509W WO2023185003A1 WO 2023185003 A1 WO2023185003 A1 WO 2023185003A1 CN 2022132509 W CN2022132509 W CN 2022132509W WO 2023185003 A1 WO2023185003 A1 WO 2023185003A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
battery string
tape
strip
insulating isolation
Prior art date
Application number
PCT/CN2022/132509
Other languages
English (en)
French (fr)
Inventor
武宇涛
Original Assignee
武宇涛
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武宇涛 filed Critical 武宇涛
Publication of WO2023185003A1 publication Critical patent/WO2023185003A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the technical field of photovoltaic cells, and in particular to a photovoltaic component and its preparation process.
  • Conventional photovoltaic modules are composed of photovoltaic cell units connected in series into battery strings through interconnecting welding strips, and then the battery strings are upgraded through series and parallel connection through bus strips into larger cell unit arrays, such as 6*10, 6* 12, 6*13, 5*11 arrays, or other cell array structures such as 6*10*2, 6*12*2, 6*13*2, 5*11*2, etc., to form a component with a certain power.
  • the interconnection ribbon is generally welded to the bus electrodes on the front and back sides of two adjacent cells. It generally carries a relatively small current, so the cross-sectional area is also very small, generally no more than 0.1mm 2 .
  • the bus strips of conventional photovoltaic modules will occupy more of the size of the photovoltaic modules, making the photovoltaic modules larger in size, thicker, poor in appearance, consuming a lot of materials, and high in cost.
  • the present invention provides a photovoltaic module and its preparation process. By changing the structure and preparation process of the photovoltaic module, it can reduce the size of the photovoltaic module, save component materials, and improve Photovoltaic module power generation efficiency, beautify the appearance of photovoltaic modules.
  • the present invention provides a photovoltaic module, including: a battery string, a back welding strip provided on one side of the back side of the battery string, a front welding strip provided on the front side of the battery string, a second bus bar, a first bus bar and Insulating isolation tape, in which: the first bus bar is located on one side of the back of the battery string and connected to the back welding tape; the insulating isolation tape is located on the other side of the back of the battery string, and the front welding tape extends beyond the surface of the insulating isolation tape on the other side of the front side of the battery string Above; the surface of the second bus bar insulation strip is connected to the front solder strip.
  • This structure reduces the volume occupied by photovoltaic modules, saves materials, and due to the thinner thickness, it is not easy to break during the lamination process, and the manufacturing yield is high; the reduction of materials reduces the energy consumption during the working process of photovoltaic modules. This further improves the power generation efficiency of photovoltaic modules.
  • the insulating isolation tape is in contact with the other side of the back side of the battery string, or part or all of the insulating isolation tape is located on the other side of the back side of the battery string. If part of the insulation strip is located on the other side of the back of the battery string, and the other part is located on the part of the front welding strip beyond the other side of the front of the battery string, so that after the front welding strip is bent to the other side of the back of the battery string, it is in contact with the battery string.
  • the backside, as well as the backside of the second bus bar and battery string, are kept insulated to prevent short circuits.
  • the width and length of the insulation strip are respectively greater than the width and length of the second bus bar, or the length of the second bus bar is less than the width of the battery string, or the length of the first bus bar Less than the width of the battery string. This keeps the front soldering strip and the second bus bar insulated from the back of the battery string to prevent short circuits.
  • the length of the front welding strip beyond the other side of the front side of the battery string is 5-15mm. Used to bend to the back of the battery string.
  • the portions of some of the front welding strips that protrude from the other side of the front side of the battery string are connected to the surface of the insulating isolation strip after being bent. Keep it insulated from the back of the battery string to prevent short circuits.
  • the distance between the edge of the insulation strip and the other side of the back of the battery string is 0.5-5mm.
  • the second bus bar and the first bus bar are made of tinned copper flat strips or tinned copper mesh strips.
  • the thickness of the insulating isolation tape does not exceed 0.3mm, and the width does not exceed 10mm. Increases busbar flexibility to prevent splinters and bulges.
  • the photovoltaic module includes multiple battery strings
  • the battery strings are connected in series and parallel through the first bus bar and the second bus bar.
  • the same bus bar can be shared.
  • the same bus bar can be shared; or, all battery strings are provided with independent bus bars. Save materials, reduce costs, and increase reliability and stability.
  • the present invention provides a manufacturing process for photovoltaic modules, which includes: preparing a battery string of a specified length.
  • the back welding ribbon located on one side of the back side of the battery string does not extend beyond the edge of the battery string, and the front welding ribbon on the other side of the battery string extends beyond the edge of the battery string. out of the edge of the battery string; weld the first bus bar on the back welding tape on one side of the back side of the battery string, and the part of the front welding tape that extends beyond the other side of the front side of the battery string will be bent to the other side of the back side of the battery string, and is connected to the other side of the back side of the battery string.
  • a larger battery string array is formed through further series and parallel connection between the battery strings; and then the preparation of the entire photovoltaic module is completed through conventional processes such as lamination; not only does it make Photovoltaic modules use less material, reduce manufacturing costs, and can improve photovoltaic module processing and preparation efficiency, stability and reliability.
  • an insulating isolation tape is provided on the other side of the back of the battery string, a second bus bar is welded on the front soldering tape that exceeds the edge of the battery string, and the second bus bar with the front soldering tape welded is bent to the insulation on the back of the battery string. On the isolation belt.
  • an insulating isolation tape is provided on the other side of the back of the battery string, a second bus bar is arranged on the insulating isolation tape, and the front welding tape is bent and welded to the second bus bar.
  • an insulating isolation tape is provided on the other side of the back of the battery string, the front welding tape is bent onto the insulating isolation tape, and the second bus bar is welded on the insulating isolation tape and the front welding tape.
  • an insulating isolation tape is provided on both the front welding tape that extends beyond the other side of the front side of the battery string and the other side of the back side of the battery string, and the front welding tape with the insulating isolation tape is bent to the insulating isolation tape on the other side of the back side of the battery string.
  • an insulating isolation strip is provided on both the side of the front welding strip that extends beyond the other side of the front side of the battery string and the other side of the back side of the battery string, and a second bus bar is set on the other side of the front side welding strip that extends beyond the other side of the front side of the battery string.
  • the front solder tape with the insulation tape and the second bus bar is bent to the insulation tape on the other side of the back of the battery string.
  • an insulating isolation tape is provided on the front welding tape that extends beyond the other side of the front side of the battery string, the front welding tape with the insulating isolation tape is bent to the other side of the back side of the battery string, and the insulating isolation tape and the front welding tape are welded.
  • Second bus bar Second bus bar.
  • a second bus bar is welded on the front welding strip that extends beyond the other side of the front of the battery string, an insulating isolation strip is provided on the second bus bar, and the insulating isolation strip is bent together with the second bus bar with the front welding strip welded. to the back of the battery string.
  • the width of the insulating isolation strip is larger than that of the second bus bar.
  • the battery strings are connected in series and parallel through the first bus bar and the second bus bar.
  • the bus bar current polarities of adjacent parallel battery strings are the same, , can share the same bus bar.
  • the bus bar current polarities of adjacent battery strings connected in series are different, they can share the same bus bar. Save materials and reduce costs. Or, all battery strings are provided with independent bus bars.
  • the invention transforms the bus bars from both ends and the middle of the battery string to the back of the battery string.
  • a larger scale can be formed through further series and parallel connection between the battery strings.
  • photovoltaic module structure and then complete the preparation of the entire photovoltaic module through conventional processes such as lamination; which not only reduces the use of photovoltaic modules and reduces manufacturing costs, but also improves the efficiency, stability, reliability and aesthetics of photovoltaic module processing and preparation.
  • FIG. 1 is a schematic structural diagram of a photovoltaic module in a state of a photovoltaic module preparation process proposed by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a photovoltaic module in the second state of the photovoltaic module preparation process proposed by the embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a partial structure of a photovoltaic module proposed by an embodiment of the present invention.
  • Figure 4 is a second partial structural schematic diagram of a photovoltaic module proposed by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a common bus bar for battery strings connected in parallel up and down according to an embodiment of the present invention.
  • Figure 6 is a schematic diagram of a common bus bar for left and right parallel-connected battery strings according to an embodiment of the present invention.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, It can also be an electrical connection; it can be a direct connection, or it can be an indirect connection through an intermediate medium, or it can be an internal connection between two components.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, It can also be an electrical connection; it can be a direct connection, or it can be an indirect connection through an intermediate medium, or it can be an internal connection between two components.
  • This embodiment provides a photovoltaic component, including: a battery string, a back welding strip 21 provided on one side 31 of the back side of the battery string, as shown in Figure 1, and a front welding strip 11 provided on the other side of the front face 4 of the battery string,
  • the portion of the first bus bar 22 that extends beyond the back surface 3 of the battery string serves as a first bus bar lead, and the portion of the second bus bar 13 that extends beyond the back surface 3 of the battery string serves as a second bus bar lead.
  • the insulating isolation tape 12 is in contact with the other side 32 of the back side of the battery string, or part or all of the insulating isolation tape 12 is located on the other side 32 of the back side of the battery string. If part of the insulation strip 12 is located on the other side 32 of the back of the battery string, and the other part is located on the part of the front welding strip 11 beyond the other side of the front 4 of the battery string, so that the front welding strip 11 is bent to the other side 32 of the back of the battery string. After being installed, it is kept insulated from the back side 3 of the battery string and the second bus bar 13 from the back side 3 of the battery string to prevent short circuit.
  • the width and length of the insulation strip 12 are correspondingly larger than the width and length of the second bus bar 13, or the length of the second bus bar 13 is smaller than the width of the battery string to maintain insulation and prevent short circuit.
  • the length of the first bus bar 12 is smaller than the width of the battery string.
  • the battery string is a full-cell, half-cell, or 1/N-cell battery string type, where N is an integer value such as 3, 4, 5 or 6. It can be promoted and used on various types of battery strings.
  • the length of the front welding strip 11 extending beyond the other side of the front face 4 of the battery string is 15-35 mm. For specific applications, it can be 15mm, 35mm, 18mm, 30mm and other values, which can be selected and set according to process processing needs.
  • the portions of some of the front welding strips 11 that protrude from the other side of the front face 4 of the battery string are connected to the surface of the insulating isolation strip 12 after being bent to prevent short circuits.
  • the distance between the edge of the insulation strip 12 and the other side of the backside 3 of the battery string is 0.5-5mm. In specific applications, it can be 0.5mm, 5mm, 1mm, 3mm and other values, which can be selected and set according to the needs of process processing.
  • the second bus bar 13 and the second bus bar lead or the first bus bar 22 and the first bus bar lead are made of tinned copper flat strip or tinned copper mesh strip; increasing the flexibility of the bus bar can prevent splintering and the occurrence of bulges.
  • the second bus bar 13 and the first bus bar 22 are both provided with a lead-tin alloy solder layer; or the thickness of the insulation isolation strip 12 does not exceed 0.3mm and the width does not exceed 10mm; on the one hand, it can ensure that the insulation is maintained , to prevent short circuit; on the other hand, it makes the thickness of the battery array thinner and prevents cracks from occurring during lamination.
  • the soft nature of the bus bar makes it easy to bend and connect to the junction box. It also increases the flexibility of the location of the junction box and reserves a lot of flexible space for the junction box setup.
  • adjacent battery strings include upper and lower adjacent battery strings, and also include left and right adjacent battery strings; or, all battery strings are provided with independent bus bars.
  • adjacent battery strings are connected in parallel, and the bus bar current polarity of the adjacent battery strings is the same, they can share the same bus bar.
  • the adjacent battery strings include The upper and lower adjacent battery strings, including the left and right adjacent battery strings, can further reduce the size of the battery assembly.
  • the first bus bar lead and the second bus bar lead are both parallel to the battery string, preventing cracks from occurring during the lamination and lamination process, and improving the yield rate of photovoltaic modules.
  • bus bar lead wires For conventional half-chip modules, after the upper and lower battery strings are connected in parallel, three sets of bus bar lead wires will be drawn from the middle. The corresponding bus bar lead wires will be used for welding to the junction box after subsequent lamination. These three sets of bus bar lead wires are When stacked, they are folded at 90° to stand on the plane of the module. Each set of lead wires, one on the left and one on the left, are connected to the positive and negative electrodes of the battery cells respectively. Both lead wires are folded and vertically erected on the plane of the module. These two lead wires are on the Before the components enter the laminator, they must be bent and flattened again to be parallel to the plane of the component. Otherwise, the upright bus bars will easily cause fragments inside the laminator; especially for general bus bars with a thickness above 0.3mm. More likely to cause splintering.
  • the technical solution of this embodiment by arranging the first bus bar 22 and the second bus bar 13 parallel to the battery strings, cracks are not easily generated during the stacking and lamination process, which greatly improves the yield of finished products.
  • the technical solution of this embodiment only has two sets of bus bar lead wires, and they are both located on the back 3 of the battery. Firstly, it reduces It eliminates the use of bus bar materials, reduces the consumables required for the preparation of photovoltaic modules, and reduces processing and manufacturing costs.
  • the two sets of busbar leads are located on the same side of the back 3 of the battery string, it is also convenient to install the junction box.
  • the location of the junction box is flexible and does not have to be limited to the existing specific position in the middle of the photovoltaic module.
  • the back side is on the same side as 3, so there is no need for long bus bar lead wires to be connected to the junction box, further reducing the bus bar material.
  • the modification technical plan made in this embodiment fully considers the safety, stability and yield rate of photovoltaic modules. Since the polarity of the back side 3 of the battery string and the front side 4 of the battery string are opposite, the front welding strip 11 is bent. Before reaching the back side 3 of the battery string, in order to prevent short circuit, isolation treatment is required.
  • the first method is to set an insulating isolation tape 12 on the edge of the other side 32 on the back side of the battery string and in contact with the other side 32 on the back side of the battery string.
  • the insulating isolation tape 12 should be parallel to the backside 3 of the battery string, or in the same plane as the backside 3 of the battery string.
  • the front welding tape 11 After the insulating isolation tape 12 is fixed, bend the front welding tape 11 to the surface of the insulating isolation tape 12. To prevent short circuit, the front welding tape 11 should be bent to the surface of the insulating isolation tape 12. The part of the strip 11 located on the surface of the insulating isolation strip 12 cannot exceed the insulating isolation strip 12 and does not contact the metal layer on the back 3 of the battery string. Weld the second bus bar 13 and the front welding strip 11 to connect. Similarly, in order to prevent short circuit, the second bus bar 13 is connected to the front welding strip 11. The width of the second bus bar 13 and the second bus bar lead does not exceed the insulating isolation tape 12 and does not contact the metal layer on the back side 3 of the battery string.
  • the second method is: a part of the insulating isolation tape 12 covers the other side 32 of the battery string backside, and the other part of the insulating isolation tape 12 extends beyond the edge of the other side 32 of the battery string backside.
  • the insulating isolation tape 12 and the battery string backside 32 Keep them parallel. After the insulating isolation tape 12 is fixed, bend the front welding tape 11 to the surface of the insulating isolation tape 12. To prevent short circuit, the part of the front welding tape 11 located on the surface of the insulating isolation tape 12 cannot exceed the insulating isolation tape 12. , not in contact with the metal layer on the back 3 of the battery string, welding the second bus bar 13 and the front soldering strip 11.
  • the width of the second bus bar 13 and the second bus bar lead shall not exceed the insulation isolation Band 12 does not contact the metal layer on the backside 3 of the battery string.
  • the third method is: the insulating isolation tape 12 is completely covered and arranged on the other side 32 on the back side of the battery string. The insulating isolation tape 12 and the edge of the other side 32 on the back side of the battery string are kept flush or slightly beyond. The insulating isolation tape 12 and the battery Keep the back side 3 of the string parallel. After the insulating isolation tape 12 is fixed, bend the front welding tape 11 to the surface of the insulating isolation tape 12. To prevent short circuit, the part of the front welding tape 11 located on the surface of the insulating isolation tape 12 cannot exceed the insulation.
  • the isolation strip 12 is not in contact with the metal layer on the back side 3 of the battery string, and is connected by welding the second bus bar 13 to the front welding strip 11. Similarly, in order to prevent short circuit, the width of the second bus bar 13 and the second bus bar lead does not matter. It exceeds the insulating isolation strip 12 and does not contact the metal layer on the back side 3 of the battery string. After the above three processing methods, it can be ensured that the final photovoltaic module has high safety, strong stability, and high finished product yield.
  • This embodiment proposes a preparation process for photovoltaic modules, which includes: preparing a battery string of a specified length.
  • the back welding ribbon 21 located on one side of the back side of the battery string does not protrude from the edge of the battery string, and the front welding ribbon 11 on the other side of the battery string protrudes. battery string edge;
  • the first bus bar 22 is welded to the back welding strip 21 on the back side 31 of the battery string; the front welding strip 11 on the other side of the front face 4 of the battery string extends beyond the other side of the front face 4 of the battery string; the front welding strip 11 extends beyond the other side of the front face 4 of the battery string.
  • the part that will be bent to the other side 32 of the back of the battery string is provided with an insulating isolation tape 12 between the part to be bent to the other side 32 of the back of the battery string; the front welding ribbon 11 is bent to the other side 32 of the back of the battery string; the insulating isolation tape 12 Weld the second bus bar 13 to the front welding strip 11 to form a battery string array; according to the structure of the photovoltaic module, stack the battery string array, glass, adhesive material and backplane in sequence, and use isolation materials to connect the adhesive material and The second bus bar lead is isolated from the first bus bar lead; put into the laminator for lamination; remove the isolation material. When in use, further install junction boxes and accessories.
  • One of the implementation methods is to fix the insulating isolation tape 12 on the part of the front welding strip 11 that exceeds the other side of the front face 4 of the battery string.
  • the part of the front welding strip 11 that exceeds the other side of the front face 4 of the battery string can be pasted with high-temperature tape for insulation and isolation.
  • Tape 12 the size of the high-temperature tape is not limited, just stick the insulation tape 12 on it.
  • the front soldering strip 12 must avoid contacting the metalized part of the back side 3 of the battery string when bending.
  • a second bus bar 13 with a width smaller than that of the insulating isolation tape 12 is welded on the front welding tape 11 of the insulating isolation tape 12, as shown in Figure 2; the portion of the first bus bar 22 that extends beyond the back surface 3 of the battery string and The battery strings are parallel to form the first bus bar lead, and the part of the second bus bar 13 beyond the back 3 of the battery string is parallel to the battery string to form the second bus bar lead.
  • the first bus bar lead and the second bus bar lead are located outside the same side of the battery string to facilitate installation of the junction box.
  • photovoltaic modules also include components such as glass and backsheets, which are stacked in accordance with the structural order of the photovoltaic modules.
  • An isolation material is used to isolate the adhesive material from the second bus bar lead and the first bus bar lead to prevent the second bus bar lead and the first bus bar lead from sticking together with the adhesive material during the lamination process.
  • the battery string can be composed of only one battery piece; generally, the battery string consists of several series and parallel battery pieces connected by the front welding strip 11 and the back welding strip 21, located on the back side 31 of the battery string.
  • a number of front welding strips 11 are used to connect to the first bus bar 22.
  • a number of back welding strips 21 located on the other side of the front face 4 of the battery string are bent to the other side 32 of the back side of the battery string.
  • the second bus bar 13 is welded thereon, as shown in Figure 2.
  • One of the methods for bending the front welding strip 11 is to set an insulating isolation strip on the front welding strip 11 that extends beyond the other side of the front face 4 of the battery string, and bend the front welding strip 11 to the other side 32 of the back side of the battery string.
  • the second bus bar 13 is welded on the insulating isolation tape 12 and the front soldering tape 11 .
  • the second method is to weld the insulating isolation tape 12 on the other side 32 of the back of the battery string, bend the front welding tape 11 to the insulating isolation tape 12, and weld the second bus bar 13 on the insulating isolation tape 12 and the front welding tape 11.
  • the third method is to provide an insulating isolation tape 12 on both the front welding tape 11 that extends beyond the other side of the front 4 of the battery string and the other side 32 on the back of the battery string. Bend the front welding tape 11 to the insulating isolation tape 12, and place it on the insulating isolation tape. 12 and the front welding strip 11 are welded to the second bus bar 13.
  • the width of the insulation strip 12 is larger than that of the second bus bar 13 .
  • the photovoltaic module includes a series-parallel structure of multiple battery strings
  • the multiple battery strings are connected in series and parallel through the first bus bar 22 and the second bus bar 13, taking into account the saving of materials, space, and process.
  • Simplification if adjacent battery strings are connected in series and the bus bar current polarities of adjacent battery strings are different, they can share the same bus bar.
  • Adjacent battery strings include upper and lower adjacent battery strings, as well as left and right phase adjacent battery strings; or, all battery strings are provided with independent bus bars.
  • adjacent battery strings are connected in parallel, as shown in Figures 5 and 6, when the bus bar current polarities of adjacent battery strings are the same, they can share the same bus bar.
  • adjacent battery strings include upper and lower adjacent battery strings, and also include left and right adjacent battery strings.
  • the first bus bar 22 or the second bus bar 13 is preferably a tinned copper flat belt or a tinned copper mesh belt. If a tinned copper mesh belt is selected, the tinned copper mesh belt will be used.
  • the diameter of the braided copper wire of the mesh belt is less than 0.1mm.
  • the dimensions of the first bus bar 22 or the second bus bar 13 are: thickness less than 0.2mm, width greater than 5mm; the first bus bar 22 or the surface of the second bus bar 13 is provided with a lead-tin alloy solder layer.
  • the insulating isolation tape 12 can be made of polymer materials such as PET, PVDF, nylon, or composite coating materials based on these polymer materials; essentially, as long as it has insulation isolation properties, it is preferably not connected to the battery string.
  • the material has a long-term and chronic chemical reaction between the surface and the surface of the second bus bar 13, which reduces the insulation performance; the width of the insulation strip 12 is greater than the width of the second bus bar 13 to prevent short circuit.
  • the thickness of the insulation strip 12 shall not exceed 0.3 mm and the width shall not exceed 10 mm.
  • the process method of this embodiment only processes and forms two bus bars, which reduces the preparation process steps and improves the processing and manufacturing efficiency of photovoltaic modules. Moreover, due to the reduction of components and materials, it not only reduces the cost Processing and manufacturing costs are reduced, and one less bus bar is equivalent to one less component, which also increases the overall reliability and stability of the photovoltaic module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种光伏组件及其制备工艺,涉及光伏电池技术领域,包括:电池串,设于电池串背面一边上的背面焊带,设于电池串正面另一边上的正面焊带,第二汇流条,第一汇流条和绝缘隔离带,其中:第一汇流条位于电池串背面一边上,与背面焊带连接;绝缘隔离带设于电池串背面另一边上,正面焊带超出电池串正面另一边的部分设于绝缘隔离带表面上;第二汇流条位于绝缘隔离带表面的正面焊带上。针对光伏组件尺寸较大导致浪费材料的技术问题,它通过改变光伏组件的构造和制备工艺,可以减小光伏组件的尺寸,节省组件材料。

Description

一种光伏组件及其制备工艺 技术领域
本发明涉及光伏电池技术领域,具体涉及一种光伏组件及其制备工艺。
背景技术
常规光伏组件都是由光伏电池片单元经过互联焊带串联成电池串,然后再通过汇流带把电池串再经过串联和并联升级成更大的电池片单元阵列,比如按照6*10、6*12、6*13、5*11的阵列,或者6*10*2、6*12*2、6*13*2、5*11*2等其他电池片阵列结构,形成具有一定功率的组件。互联焊带一般焊接在相邻两片电池片的正反两面的汇流电极上,一般承载的电流比较小,所以截面积也很小,一般不超过0.1mm 2。常规光伏组件的汇流带会额外占用光伏组件较多的尺寸,使得光伏组件体积大,厚度大,外形观感不佳,且耗费材料多,成本高。
发明内容
1、发明要解决的技术问题
针对光伏组件尺寸较大导致浪费材料的技术问题,本发明提供了一种光伏组件及其制备工艺,它通过改变光伏组件的构造和制备工艺,可以减小光伏组件的尺寸,节省组件材料,提高光伏组件发电效率,美化光伏组件外观。
2、技术方案
为解决上述问题,本发明提供的技术方案为:
第一方面,本发明提供了一种光伏组件,包括:电池串,设于电池串背面一边上的背面焊带,设于电池串正面的正面焊带,第二汇流条,第一汇流条和绝缘隔离带,其中:第一汇流条位于电池串背面一边上,与背面焊带连接;绝缘隔离带设于电池串背面另一边上,正面焊带超出电池串正面另一边的部分绝缘隔离带表面上;第二汇流条绝缘隔离带表面,与正面焊带连接。这种构造减少了光伏组件所占体积,节省材料,且因厚度变薄,层压过程中不易碎裂,生产制造的良率高;用材的减少,使得光伏组件工作过程中的能耗降低,进而提高了光伏组件的发电效率。
进一步的,所述绝缘隔离带与电池串背面另一边接触连接,或,所述绝缘隔离带部分或全部位于电池串背面另一边上。若所述绝缘隔离带一部分位于电池串背面另一边上,另一部分则位于正面焊带超出电池串正面另一边的部分上,以便正面焊带弯折到电池串背面另一边上后,与电池串背面,以及第二汇流条与电池串背面均保持绝缘,防止短路。
进一步的,所述绝缘隔离带的宽度和长度对应均大于第二汇流条的宽度和长度,或者,所述第二汇流条的长度小于电池串的宽度,或者,所述第一汇流条的长度小于电池串的宽度。 使得正面焊带和第二汇流条均与电池串背面保持绝缘,防止短路。
进一步的,正面焊带超出电池串正面另一边的部分长度为5-15mm。用以弯折到电池串背面使用。
进一步的,若干所述正面焊带伸出电池串正面另一边的部分经折弯后,均连接于绝缘隔离带的表面上。保持与电池串背面绝缘,防止短路。
进一步的,所述绝缘隔离带边缘距离电池串背面的另一边的距离为0.5-5mm
进一步的,所述第二汇流条和第一汇流条的材质为镀锡铜扁带或镀锡铜网带。
进一步的,所述绝缘隔离带的厚度不超过0.3mm,宽度不超过10mm。增加汇流条的柔软性,可防止裂片和凸起鼓包的发生。
进一步的,若所述光伏组件包含多个电池串时,所述电池串之间通过第一汇流条和第二汇流条进行串联和并联,并联的相邻电池串的汇流条电流极性相同时,可以共用同一汇流条,串联的相邻电池串的汇流条电流极性不相同时,可以共用同一汇流条;或,所有电池串均设置独立的汇流条。节省用材,降低成本,且增加可靠性和稳定性。
第二方面,本发明提供了一种光伏组件的制备工艺,包括:制备指定长度的电池串,位于电池串背面一边的背面焊带不伸出电池串边缘,电池串另一边的正面焊带伸出电池串边缘;在电池串背面一边的背面焊带上焊接第一汇流条,在超出电池串正面另一边的正面焊带将要弯折到电池串背面另一边上的部分,与电池串背面另一边之间设置绝缘隔离带;将正面焊带弯折到电池串背面另一边;在绝缘隔离带和正面焊带上焊接第二汇流条,形成电池串阵列;按照光伏组件的构造,将电池串阵列、玻璃、胶联材料和背板依次叠层,采用隔离材料将胶联材料与第二汇流条引线和第一汇流条引线隔离;放入层压机层压;取下隔离材料。通过对电池串背面上的两根汇流条的加工处理,经电池串之间的进一步串联和并联形成更大规模的电池串阵列;再通过层压等常规工艺完成整个光伏组件的制备;不仅使得光伏组件用材少,降低制造成本,并且可以提高光伏组件加工制备效率、稳定性和可靠性。
进一步的,在电池串背面另一边上设置绝缘隔离带,在超出电池串边缘的正面焊带上焊接第二汇流条,将焊接好正面焊带的第二汇流条弯折到电池串背面的绝缘隔离带上。
进一步的,在电池串背面另一边上设置绝缘隔离带,在绝缘隔离带上设置第二汇流条,将正面焊带弯折并焊接到第二汇流条上。
进一步的,在电池串背面另一边上设置绝缘隔离带,将正面焊带弯折到绝缘隔离带上,在绝缘隔离带和正面焊带上焊接第二汇流条。
进一步的,在超出电池串正面另一边的正面焊带和电池串背面另一边上均设置绝缘隔离带,将带有绝缘隔离带的正面焊带弯折到电池串背面另一边上的绝缘隔离带上,在绝缘隔离 带和正面焊带上焊接第二汇流条。
进一步的,在超出电池串正面另一边的正面焊带一侧和电池串背面另一边上均设置绝缘隔离带,在超出电池串正面另一边的正面焊带另一侧设置第二汇流条,将带有绝缘隔离带和第二汇流条的正面焊带弯折到电池串背面另一边上的绝缘隔离带上。
进一步的,在超出电池串正面另一边的正面焊带上设置绝缘隔离带,将带有绝缘隔离带的正面焊带弯折到电池串背面另一边上,在绝缘隔离带和正面焊带上焊接第二汇流条。
进一步的,在超出电池串正面另一边的正面焊带上焊接第二汇流条,在第二汇流条上设置绝缘隔离带,将绝缘隔离带连同焊接了正面焊带的第二汇流条一起折弯到电池串背面。
进一步的,所述绝缘隔离带宽度大于第二汇流条。以上实现方式均起到绝缘隔离的作用,防止短路,在具体加工制造过程中,可根据时间、成本、工艺流程实施的便捷性等因素综合考虑进行选择。
进一步的,若所述光伏组件包含多个电池串时,所述电池串之间通过第一汇流条和第二汇流条进行串联和并联,并联的相邻电池串的汇流条电流极性相同时,可以共用同一汇流条,串联的相邻电池串的汇流条电流极性不相同时,可以共用同一汇流条。节省用材,降低成本。或,所有电池串均设置独立的汇流条。
3、有益效果
采用本发明提供的技术方案,与现有技术相比,具有如下有益效果:
本发明将汇流条从电池串的两端和中间,改造到电池串的背面,通过对电池串背面上的两根汇流条的加工处理,经电池串之间的进一步串联和并联形成更大规模的光伏组件构造;再通过层压等常规工艺完成整个光伏组件的制备;不仅使得光伏组件用材少,降低制造成本,并且可以提高光伏组件加工制备效率、稳定性、可靠性和美观度。
附图说明
图1为本发明实施例提出的一种光伏组件制备工艺状态一时的光伏组件结构示意图。
图2为本发明实施例提出的一种光伏组件制备工艺状态二时的光伏组件结构示意图。
图3为本发明实施例提出的一种光伏组件部分结构示意图之一。
图4为本发明实施例提出的一种光伏组件部分结构示意图之二。
图5为本发明实施例上下并联的电池串共用汇流条的示意图。
图6为本发明实施例左右并联的电池串共用汇流条的示意图。
具体实施方式
为进一步了解本发明的内容,结合附图及实施例对本发明作详细描述。
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具 体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与发明相关的部分。本发明中所述的第一、第二等词语,是为了描述本发明的技术方案方便而设置,并没有特定的限定作用,均为泛指,对本发明的技术方案不构成限定作用。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。同一实施例中的多个技术方案,以及不同实施例的多个技术方案之间,可进行排列组合形成新的不存在矛盾或冲突的技术方案,均在本发明要求保护的范围内。
实施例1
本实施例提供了一种光伏组件,包括:电池串,设于电池串背面一边31上的背面焊带21,如图1所示,设于电池串正面4另一边上的正面焊带11,第二汇流条13,第一汇流条22和绝缘隔离带12,其中:第一汇流条22位于电池串背面一边31上,如图2和3所示,与背面焊带21连接,如图2所示;如图1所示,绝缘隔离带12设于电池串背面另一边32上,正面焊带11超出电池串正面4另一边的部分经加工,如折弯,弯折等操作,设于绝缘隔离带12表面上;第二汇流条13与经加工,如折弯,弯折等操作过来的正面焊带11焊接于绝缘隔离带12的表面,即:第二汇流条13位于绝缘隔离带12表面的正面焊带11上,如图4所示。
第一汇流条22超出电池串背面3的部分作为第一汇流条引线,第二汇流条13超出电池串背面3的部分作为第二汇流条引线。
所述绝缘隔离带12与电池串背面另一边32接触连接,或,所述绝缘隔离带12部分或全部位于电池串背面另一边32上。若所述绝缘隔离带12一部分位于电池串背面另一边32上,另一部分则位于正面焊带11超出电池串正面4另一边的部分上,以便正面焊带11弯折到电池串背面另一边32上后,与电池串背面3,以及第二汇流条13与电池串背面3均保持绝缘,防止短路。
所述绝缘隔离带12的宽度和长度对应均大于第二汇流条13的宽度和长度,或者,所述 第二汇流条13的长度小于电池串的宽度,保持绝缘,防止短路。或者,所述第一汇流条12的长度小于电池串的宽度。
所述的电池串为全片、半片、或1/N片电池串型,其中N为3、4、5或6等整数数值。可在各类型号的电池串上推广使用。
正面焊带11超出电池串正面4另一边的部分长度为15-35mm。具体应用时,可以为15mm、35mm、18mm、30mm等数值,可根据工艺加工需要进行选择设定。若干所述正面焊带11伸出电池串正面4另一边的部分经折弯后,均连接于绝缘隔离带12的表面上,经此处理,防止短路。
所述绝缘隔离带12边缘距离电池串背面3的另一边的距离为0.5-5mm。具体应用时,可以为0.5mm、5mm、1mm、3mm等数值,可根据工艺加工需要进行选择设定。
所述第二汇流条13和第二汇流条引线或第一汇流条22和第一汇流条引线的材质为镀锡铜扁带或镀锡铜网带;增加汇流条的柔软性,可防止裂片和凸起的发生。或者,所述第二汇流条13和第一汇流条22均设有铅锡合金焊料层;或者,所述绝缘隔离带12的厚度不超过0.3mm,宽度不超过10mm;一方面可确保保持绝缘,防止短路;另一方面,使得电池阵列的厚度变薄,层压时防止裂片产生。汇流条柔软的特性,方便折弯与接线盒连接,也增大了接线盒设置位置的灵活性,可为接线盒设置预留了很大的灵活空间。
若所述光伏组件包含多个电池串时,考虑到节省材料和空间,以及工艺简化,相邻电池串之间若为串联关系时,相邻电池串的汇流条电流极性不相同时,可以共用同一汇流条,相邻电池串包括上下相邻的电池串,也包括左右相邻的电池串;或,所有电池串均设置独立的汇流条。
同样出于考虑到节省材料和空间,以及工艺简化,相邻电池串之间若为并联关系时,相邻电池串的汇流条电流极性相同时,可以共用同一汇流条,相邻电池串包括上下相邻的电池串,也包括左右相邻的电池串,可进一步减小电池组件体积大小。第一汇流条引线和第二汇流条引线均和电池串平行,防止叠层和层压过程中产生裂片,提高光伏组件的成品良率。
常规的半片组件,上下两个电池串在完成并联后,会从中间引出三组汇流条引出线,对应的在后续层压后用于和接线盒进行焊接,这三组汇流条引出线,在叠层时被折叠成90°竖立于组件平面的,每组引出线左右各一个,分别连接于电池片的正负极,两根引出线都折叠垂直竖立于组件所在的平面,这两根引出线在组件进入层压机之前,都要被再次折弯压平,与组件平面平行,否则竖立的汇流条在层压机内部很容易造成碎片;尤其是对于一般的汇流条厚度都在0.3mm以上,更容易造成裂片。
对于本实施例的技术方案,通过将第一汇流条22和第二汇流条13平行于电池串设置, 在叠层和层压的过程中,不容易产生裂片,极大地提高了成品良率。此外,相比于现有技术中的光伏组件采用三组汇流条引出线的方式,本实施例的技术方案仅有两组汇流条引出线,且均位于电池背面3上,第一方面,减少了汇流条的用材,减少了光伏组件制备所需耗材,降低了加工制造成本。
第二方面,由于两组汇流条引出线均位于电池串背面3的同一侧,也方便了安装接线盒,接线盒位置灵活,不必局限于现有的设置于光伏组件中间位置上这一特定位置的限定方式,但在实际应用过程中,优选综合考虑了节省用材,降低成本,确保安全性和稳定性的接线盒设置位置方式;因仅使用两组汇流条引出线,且均设置于电池串背面3的同一侧,故无需过长的汇流条引出线和接线盒连接,进一步减少了汇流条用材。
第三方面,本实施例作出的改造技术方案,充分考虑了光伏组件的安全性、稳定性和成品良率问题,因电池串背面3和电池正面4的极性相反,正面焊带11弯折到电池串背面3之前,为防止短路,需要进行隔离处理,第一种方式为:在电池串背面另一边32的边缘处,和电池串背面另一边32接触设置绝缘隔离带12,绝缘隔离带12和电池串背面3保持平行,或者与电池串背面3位于同一平面内,待绝缘隔离带12固定好后,将正面焊带11弯折到绝缘隔离带12表面上,为防止短路,正面焊带11位于绝缘隔离带12表面上的部分不能超出绝缘隔离带12,不与电池串背面3的金属层接触,焊接第二汇流条13和正面焊带11连接,同样的,为防止短路,第二汇流条13及第二汇流条引线的宽度,不超过绝缘隔离带12,不与电池串背面3的金属层接触。第二种方式为:绝缘隔离带12的一部分覆盖设置于电池串背面另一边32上,绝缘隔离带12的另一部分超出电池串背面另一边32的边缘处,绝缘隔离带12和电池串背面3保持平行,待绝缘隔离带12固定好后,将正面焊带11弯折到绝缘隔离带12表面上,为防止短路,正面焊带11位于绝缘隔离带12表面上的部分不能超出绝缘隔离带12,不与电池串背面3的金属层接触,焊接第二汇流条13和正面焊带11连接,同样的,为防止短路,第二汇流条13及第二汇流条引线的宽度,不超过绝缘隔离带12,不与电池串背面3的金属层接触。第三种方式为:绝缘隔离带12全部覆盖设置于电池串背面另一边32上,绝缘隔离带12和电池串背面另一边32的边缘处保持平齐或稍微超出一些,绝缘隔离带12和电池串背面3保持平行,待绝缘隔离带12固定好后,将正面焊带11弯折到绝缘隔离带12表面上,为防止短路,正面焊带11位于绝缘隔离带12表面上的部分不能超出绝缘隔离带12,不与电池串背面3的金属层接触,焊接第二汇流条13和正面焊带11连接,同样的,为防止短路,第二汇流条13及第二汇流条引线的宽度,不超过绝缘隔离带12,不与电池串背面3的金属层接触。经过以上三种处理方式,可确保最终成型的光伏组件安全性高,稳定性强,且成品良率高。
实施例2
本实施例提出了一种光伏组件的制备工艺,包括:制备指定长度的电池串,位于电池串背面一边的背面焊带21不伸出电池串边缘,电池串另一边的正面焊带11伸出电池串边缘;
电池串背面一边31的背面焊带21上焊接第一汇流条22;电池串正面4另一边的正面焊带11超出电池串正面4另一边;在超出电池串正面4另一边的正面焊带11将要弯折到电池串背面另一边32上的部分,与电池串背面另一边32之间设置绝缘隔离带12;将正面焊带11带弯折到电池串背面另一边32;在绝缘隔离带12和正面焊带11上焊接第二汇流条13,形成电池串阵列;按照光伏组件的构造,将电池串阵列、玻璃、胶联材料和背板依次叠层,采用隔离材料将胶联材料,与第二汇流条引线和第一汇流条引线隔离;放入层压机层压;取下隔离材料。在使用时,进一步的,安装接线盒和附件。
实施方式之一为:正面焊带11超出电池串正面4另一边的部分上固定绝缘隔离带12,如所述正面焊带11超出电池串正面4另一边的部分上可以采用高温胶带粘贴绝缘隔离带12,高温胶带的尺寸不受限制,可将绝缘隔离带12粘贴住即可。如图1所示;为了防止短路,正面焊带12在折弯时,一定要避免接触到电池串背面3的金属化部分。为了防止短路,在绝缘隔离带12的正面焊带11上焊接宽度小于所述绝缘隔离带12的第二汇流条13,如图2所示;第一汇流条22超出电池串背面3的部分和电池串平行,形成第一汇流条引线,第二汇流条13超出电池串背面3的部分和电池串平行,形成第二汇流条引线.
第一汇流条引线和第二汇流条引线位于电池串的同一边外侧,方便安装接线盒。按照光伏组件结构将包括电池串和胶联材料等在内的构造顺序叠层:除了电池串和胶联材料外,光伏组件还包括玻璃和背板等部件,按照光伏组件的构造顺序叠层,并采用隔离材料将胶联材料,与第二汇流条引线和第一汇流条引线隔离,防止在层压过程中第二汇流条引线和第一汇流条引线与胶联材料粘到一起。
放入层压机层压,层压完成后取下隔离材料;安装接线盒:将第二汇流条引线和第一汇流条引线折弯竖立起来后,安装到接线盒的汇流条通孔内;安装附件:在光伏组件上安装边框等其他附件,完成光伏组件的制备过程。
其中,极端情况下,电池串可以仅有一个电池片构成;一般情况下,电池串包括由正面焊带11和背面焊带21连接起来的串并联的若干电池片构成,位于电池串背面一边31上的若干正面焊带11,用于和第一汇流条22连接,如图1所示,位于电池串正面4另一边上的若干背面焊带21,弯折到电池串背面另一边32上的绝缘隔离带12上,在其上焊接第二汇流条13,如图2所示。
对正面焊带11弯折的加工工艺,方式之一,在超出电池串正面4另一边的正面焊带11 上设置绝缘隔离带,将正面焊带11弯折到电池串背面另一边32上,在绝缘隔离带12和正面焊带11上焊接第二汇流条13。
方式之二,在电池串背面另一边32上焊接绝缘隔离带12,将正面焊带11弯折到绝缘隔离带12上,在绝缘隔离带12和正面焊带11上焊接第二汇流条13。
方式之三,在超出电池串正面4另一边的正面焊带11和电池串背面另一边32上均设置绝缘隔离带12,将正面焊带11弯折到绝缘隔离带12上,在绝缘隔离带12和正面焊带11上焊接第二汇流条13。
此外,以下方式也均可实现将正面焊带和第二汇流条13设置于电池串背面另一边上的技术效果:
1、在电池串背面另一边上设置绝缘隔离带12,在超出电池串边缘的正面焊带11上焊接第二汇流条13,将焊接好正面焊带11的第二汇流条13弯折到电池串背面的绝缘隔离带12上。
2、在电池串背面另一边上设置绝缘隔离带12,在绝缘隔离带12上设置第二汇流条13,将正面焊带11弯折并焊接到第二汇流条13上。
3、在电池串背面另一边上设置绝缘隔离带12,将正面焊带11弯折到绝缘隔离带12上,在绝缘隔离带12和正面焊带11上焊接第二汇流条13。
4、在超出电池串正面另一边的正面焊带11和电池串背面另一边上均设置绝缘隔离带12,将带有绝缘隔离带12的正面焊带11弯折到电池串背面另一边上的绝缘隔离带12上,在绝缘隔离带12和正面焊带11上焊接第二汇流条13。
5、在超出电池串正面另一边的正面焊带11一侧和电池串背面另一边上均设置绝缘隔离带12,在超出电池串正面另一边的正面焊带11另一侧设置第二汇流条13,将带有绝缘隔离带12和第二汇流条13的正面焊带11弯折到电池串背面另一边上的绝缘隔离带12上。
6、在超出电池串正面另一边的正面焊带上设置绝缘隔离带12,将带有绝缘隔离带12的正面焊带11弯折到电池串背面另一边上,在绝缘隔离带12和正面焊带11上焊接第二汇流条13。
7、在超出电池串正面另一边的正面焊带11上焊接第二汇流条13,在第二汇流条13上设置绝缘隔离带12,将绝缘隔离带12连同焊接了正面焊带11的第二汇流条13一起折弯到电池串背面。
其中,所述绝缘隔离带12宽度大于第二汇流条13。以上实现方式均起到绝缘隔离的作用,防止短路,在具体加工制造过程中,可根据时间、成本、工艺流程实施的便捷性等因素综合考虑进行选择。
此外,若所述光伏组件包含多个电池串的串并联构造时,多个电池串之间通过第一汇流条22和第二汇流条13进行串联和并联,考虑到节省材料和空间,以及工艺简化,相邻电池串之间若为串联关系时,相邻电池串的汇流条电流极性不相同时,可以共用同一汇流条,相邻电池串包括上下相邻的电池串,也包括左右相邻的电池串;或,所有电池串均设置独立的汇流条。
同样出于考虑到节省材料和空间,以及工艺简化,相邻电池串之间若为并联关系时,如图5和6,相邻电池串的汇流条电流极性相同时,可以共用同一汇流条,相邻电池串包括上下相邻的电池串,也包括左右相邻的电池串。
将上述串并联构造完成后,需要注意保留焊接或形成第一汇流条引线和第二汇流条引线,以方便在完成层压后安装接线盒。
为了减少裂片,使得汇流条柔软,所述第一汇流条22或第二汇流条13优选采用镀锡铜扁带或镀锡铜网带,其中,若选用镀锡铜网带,则镀锡铜网带的编织铜丝的直径小于0.1mm。进一步的,为了减少耗材和裂片及占用空间,使得汇流条更加柔软,所述第一汇流条22或第二汇流条13的尺寸为:厚度小于0.2mm,宽度大于5mm;所述第一汇流条22或第二汇流条13的表面设有铅锡合金焊料层。
绝缘隔离带12可以是以pet、pvdf、尼龙、等高分子材料或以这些高分子材料为基材的复合涂敷材料等;本质上,只要具有绝缘隔离性能即可,优选不会与电池串表面和第二汇流条13表面发生长期慢性的化学反应,降低绝缘隔离性能的材料;绝缘隔离带12的宽度大于第二汇流条13的宽度,防止短路。为了减少背板的凸起或者裂片,绝缘隔离带12的厚度不超过0.3mm,宽度不大于10mm。
将正面焊带11弯折到电池串背面另一边32上,绝缘隔离带12与电池串背面另一边32的边缘处接触连接;或,将正面焊带11弯折到电池串背面另一边32上,绝缘隔离带12部分或全部贴设于电池串背面另一边32上。
相比与传统的光伏组件制备工艺,本实施例的工艺方法,仅处理形成两根汇流条,减少了制备工艺步骤,提高了光伏组件的加工制造效率,且因减少部件和用材,不仅降低了加工制造成本,而且少了一根汇流条,相当于少了一个部件也增加了光伏组件整体的可靠性和稳定性。
以上示意性的对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (18)

  1. 一种光伏组件,其特征在于,包括:
    电池串,设于电池串背面一边上的背面焊带,设于电池串正面另一边上的正面焊带,第二汇流条,第一汇流条和绝缘隔离带,其中:
    第一汇流条位于电池串背面一边上,与背面焊带连接;
    绝缘隔离带设于电池串背面另一边上,正面焊带超出电池串正面另一边的部分设于绝缘隔离带表面上;
    第二汇流条位于绝缘隔离带表面,与正面焊带连接。
  2. 根据权利要求1所述的一种光伏组件,其特征在于,所述绝缘隔离带与电池串背面另一边接触连接,或,所述绝缘隔离带部分或全部位于电池串背面另一边上。
  3. 根据权利要求1所述的一种光伏组件,其特征在于,所述绝缘隔离带的宽度和长度对应均大于第二汇流条的宽度和长度,或者,所述第二汇流条的长度小于电池串的宽度,或者,所述第一汇流条的长度小于电池串的宽度。
  4. 根据权利要求1所述的一种光伏组件,其特征在于,正面焊带超出电池串正面边缘的部分长度为5-15mm。
  5. 根据权利要求1所述的一种光伏组件,其特征在于,若干所述正面焊带伸出电池串正面另一边的部分经折弯后,均连接于绝缘隔离带的表面上。
  6. 根据权利要求2所述的一种光伏组件,其特征在于,所述绝缘隔离带边缘距离电池串背面另一边的距离为0.5-5mm。
  7. 根据权利要求1所述的一种光伏组件,其特征在于,所述第二汇流条和第一汇流条的材质为镀锡铜扁带或镀锡铜网带。
  8. 根据权利要求1所述的一种光伏组件,其特征在于,
    所述绝缘隔离带的厚度不超过0.3mm,宽度不超过10mm。
  9. 根据权利要求1-8任一项所述的一种光伏组件,其特征在于,
    若所述光伏组件包含多个电池串时,所述电池串之间通过第一汇流条和第二汇流条进行 串联和并联,或,并联的相邻电池串的汇流条电流极性相同时,共用同一汇流条;或,串联的相邻电池串的汇流条电流极性不相同时,共用同一汇流条;或,所有电池串均设置独立的汇流条。
  10. 一种光伏组件的制备工艺,其特征在于,包括:
    制备指定长度的电池串,位于电池串背面一边的背面焊带不伸出电池串边缘,电池串另一边的正面焊带伸出电池串边缘;
    在电池串背面一边的背面焊带上焊接第一汇流条,
    在超出电池串正面另一边的正面焊带将要弯折到电池串背面另一边上的部分,与电池串背面另一边之间设置绝缘隔离带;将正面焊带弯折到电池串背面另一边;
    在绝缘隔离带和正面焊带上焊接第二汇流条,形成电池串阵列;
    按照光伏组件的构造,将电池串阵列、玻璃、胶联材料和背板依次叠层,采用隔离材料将胶联材料与第二汇流条引线和第一汇流条引线隔离;
    放入层压机层压;
    取下隔离材料。
  11. 根据权利要求10所述的一种光伏组件的制备工艺,其特征在于:
    在电池串背面另一边上设置绝缘隔离带,在超出电池串边缘的正面焊带上焊接第二汇流条,将焊接好正面焊带的第二汇流条弯折到电池串背面的绝缘隔离带上。
  12. 根据权利要求10所述的一种光伏组件的制备工艺,其特征在于:
    在电池串背面另一边上设置绝缘隔离带,在绝缘隔离带上设置第二汇流条,将正面焊带弯折并焊接到第二汇流条上。
  13. 根据权利要求10所述的一种光伏组件的制备工艺,其特征在于:
    在电池串背面另一边上设置绝缘隔离带,将正面焊带弯折到绝缘隔离带上,在绝缘隔离带和正面焊带上焊接第二汇流条。
  14. 根据权利要求10所述的一种光伏组件的制备工艺,其特征在于:
    在超出电池串正面另一边的正面焊带和电池串背面另一边上均设置绝缘隔离带,将带有绝缘隔离带的正面焊带弯折到电池串背面另一边上的绝缘隔离带上,在绝缘隔离带和正面焊带上焊接第二汇流条。
  15. 根据权利要求10所述的一种光伏组件的制备工艺,其特征在于:
    在超出电池串正面另一边的正面焊带一侧和电池串背面另一边上均设置绝缘隔离带,在超出电池串正面另一边的正面焊带另一侧设置第二汇流条,将带有绝缘隔离带和第二汇流条的正面焊带弯折到电池串背面另一边上的绝缘隔离带上。
  16. 根据权利要求10所述的一种光伏组件的制备工艺,其特征在于:
    在超出电池串正面另一边的正面焊带上设置绝缘隔离带,将带有绝缘隔离带的正面焊带弯折到电池串背面另一边上,在绝缘隔离带和正面焊带上焊接第二汇流条。
  17. 根据权利要求10所述的一种光伏组件的制备工艺,其特征在于:
    在超出电池串正面另一边的正面焊带上焊接第二汇流条,在第二汇流条上设置绝缘隔离带,将绝缘隔离带连同焊接了正面焊带的第二汇流条一起折弯到电池串背面。
  18. 根据权利要求10-17任一项所述的一种光伏组件的制备工艺,其特征在于:若所述光伏组件包含多个电池串时,所述电池串之间通过第一汇流条和第二汇流条进行串联和并联,或,并联的相邻电池串的汇流条电流极性相同时,共用同一汇流条;或,串联的相邻电池串的汇流条电流极性不相同时,共用同一汇流条;或,所有电池串均设置独立的汇流条。
PCT/CN2022/132509 2022-03-29 2022-11-17 一种光伏组件及其制备工艺 WO2023185003A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210317478.1 2022-03-29
CN202210317478.1A CN114649435A (zh) 2022-03-29 2022-03-29 一种光伏组件及其制备工艺

Publications (1)

Publication Number Publication Date
WO2023185003A1 true WO2023185003A1 (zh) 2023-10-05

Family

ID=81995729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132509 WO2023185003A1 (zh) 2022-03-29 2022-11-17 一种光伏组件及其制备工艺

Country Status (2)

Country Link
CN (1) CN114649435A (zh)
WO (1) WO2023185003A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114649435A (zh) * 2022-03-29 2022-06-21 武宇涛 一种光伏组件及其制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180122975A1 (en) * 2015-05-22 2018-05-03 Suzhou Autoway System Co., Ltd. Preparation method for solar cell piece unit and solar cell module
CN207611781U (zh) * 2017-12-14 2018-07-13 阿特斯阳光电力集团有限公司 光伏组件
CN109980036A (zh) * 2017-12-27 2019-07-05 阿特斯阳光电力集团有限公司 光伏组件及其制造方法
CN114649435A (zh) * 2022-03-29 2022-06-21 武宇涛 一种光伏组件及其制备工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180122975A1 (en) * 2015-05-22 2018-05-03 Suzhou Autoway System Co., Ltd. Preparation method for solar cell piece unit and solar cell module
CN207611781U (zh) * 2017-12-14 2018-07-13 阿特斯阳光电力集团有限公司 光伏组件
CN109980036A (zh) * 2017-12-27 2019-07-05 阿特斯阳光电力集团有限公司 光伏组件及其制造方法
CN114649435A (zh) * 2022-03-29 2022-06-21 武宇涛 一种光伏组件及其制备工艺

Also Published As

Publication number Publication date
CN114649435A (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2016188145A1 (zh) 太阳能电池片、太阳能电池组件、电池片单元及其制备方法
WO2019214627A1 (zh) 太阳能电池串、串组、组件及其制备方法
CN109449229B (zh) 一种叠瓦光伏组件
TWI413266B (zh) 太陽能電池模組
CN107910396A (zh) 一种双面单晶叠片光伏组件及其制造方法
CN207602596U (zh) 一种双面单晶叠片光伏组件
CN107799615B (zh) 太阳能电池片单元、光伏电池模组及其制备工艺
CN102544167A (zh) 一种mwt太阳电池组件及其制作方法
CN210692545U (zh) 一种无主栅光伏组件
WO2024055674A1 (zh) 一种焊接方法及光伏组件
CN113611766B (zh) 太阳能电池组件及其制备方法
WO2023185003A1 (zh) 一种光伏组件及其制备工艺
WO2021037020A1 (zh) 无主栅太阳能电池片及无主栅太阳能光伏组件
WO2011130999A1 (zh) 光伏组件的电路叠层结构
CN102339901B (zh) 太阳能电池组件低电阻连接方式及其制作工艺
CN209071344U (zh) 一种叠瓦光伏组件
CN111554767B (zh) 导电胶带、叠瓦组件及其制备方法
WO2024012161A1 (zh) 无主栅ibc电池组件单元及制作方法、电池组件、电池组串
JP2017533597A (ja) 太陽電池アレイ、太陽電池モジュール、及びこれらの製造方法
CN211125667U (zh) 一种太阳能电池组件及装置
CN210123747U (zh) 一种光伏组件
WO2020103358A1 (zh) 一种太阳能电池片及太阳能电池组件
CN108258076A (zh) 一种采用异形焊带的太阳能电池组件
CN202758916U (zh) 一种epe隔离太阳能电池组件
CN210866217U (zh) 一种光伏组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934821

Country of ref document: EP

Kind code of ref document: A1