WO2019214627A1 - 太阳能电池串、串组、组件及其制备方法 - Google Patents

太阳能电池串、串组、组件及其制备方法 Download PDF

Info

Publication number
WO2019214627A1
WO2019214627A1 PCT/CN2019/085895 CN2019085895W WO2019214627A1 WO 2019214627 A1 WO2019214627 A1 WO 2019214627A1 CN 2019085895 W CN2019085895 W CN 2019085895W WO 2019214627 A1 WO2019214627 A1 WO 2019214627A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
type
sheet
electrode
cell
Prior art date
Application number
PCT/CN2019/085895
Other languages
English (en)
French (fr)
Inventor
陈宏月
周艳方
Original Assignee
晶澳太阳能有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶澳太阳能有限公司 filed Critical 晶澳太阳能有限公司
Priority to US16/980,143 priority Critical patent/US11469340B2/en
Priority to EP19799049.2A priority patent/EP3751625B1/en
Publication of WO2019214627A1 publication Critical patent/WO2019214627A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/044PV modules or arrays of single PV cells including bypass diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • H02S20/25Roof tile elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • H02S50/15Testing of PV devices, e.g. of PV modules or single PV cells using optical means, e.g. using electroluminescence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention belongs to the technical field of solar cells, and in particular relates to a solar battery string, a string set, a component and a preparation method thereof.
  • the power loss from battery to component is mainly divided into optical loss and electrical loss.
  • the optical loss is mainly related to the absorption and reflection of materials such as glass and EVA, while the electrical loss is mainly from the inside of the battery, interconnection strip, bus bar and junction box. And the loss of the cable, etc., if the internal resistance of these connecting materials cannot be effectively reduced, most of the energy will be lost in the form of heat instead of being converted into electrical energy.
  • the shingle connection method (cutting the battery into small cells, using a conductive material such as a conductive paste without using a soldering tape to superimpose one of the electrodes of the small cell on the electrode of the adjacent one) It is increasingly being used in the production of high-efficiency battery modules.
  • the conventional shingle components are mostly 60P or 72P versions, and most of them adopt a horizontal layout, so that the number of batteries per string is smaller than that of the vertical row. After incorporating the diode, the component has excellent heat spot resistance. .
  • vertical installation is still selected.
  • Such a component requires a longer cable, or the cable will inevitably need to be crossed, or the assembly direction needs to be adjusted, etc., and the installation is inconvenient; in addition, the width of such components is larger than the conventional component width, and the installation cost is also the same. It is higher than conventional components; the length and width of raw materials such as glass, backsheet and packaging materials required for the components are changed, and the cost of raw materials is also greatly increased.
  • the vertical stacking tile assembly with the same specifications as the conventional components is the new product that most component companies need to develop.
  • Vertical assembly, the length of the 60P component is about 1650mm, and the length of the 72P component is about 1980mm. If the same size of the cut-off battery is used, the number of each battery is 1.5 ⁇ 2 of the number of batteries per horizontal component. Times. If the vertical assembly is to have the same hot spot resistance as the horizontal assembly, a parallel diode is also required in the middle of each string of batteries.
  • a common method currently used is to separate the battery strings at the required length, solder using a bus bar and incorporate diodes.
  • An important advantage of the tile assembly is to remove the gap between the batteries and increase the area usage of the component. This method increases the busbar, increases the gap between the cells at the connector, and increases the fragmentation rate. effectiveness. As the length of such components increases, the efficiency of the components also decreases.
  • a first object of the present invention is to provide a solar battery string which is connected by a battery sheet of two structures, which can draw a current deriving unit from the back surface of the battery sheet and can be reduced in the assembly of the battery assembly.
  • the difficulty of the diode, without increasing the area of the component, can also reduce the fragmentation rate of the solar cell, thereby improving component yield and component efficiency.
  • a second object of the present invention is to provide a solar battery string formed by the above solar battery string.
  • a third object of the present invention is to provide a solar cell module having the above solar cell string.
  • a fourth object of the present invention is to provide a method for producing the above solar cell module, which is capable of increasing the power generation efficiency of the module and reducing the power generation cost of the module.
  • a solar battery string formed by connecting a plurality of first battery sheets and at least one second battery sheet, wherein the plurality of the first The polarity of the front electrodes of the battery sheets is the same, the polarities of the back electrodes of the plurality of first battery sheets are also the same, and the polarities of the front and back electrodes of the plurality of first battery sheets in contrast,
  • the back electrode on the back surface of the second cell sheet includes a positive electrode and a negative electrode.
  • the first cell is a conventional solar cell and the second cell (801) is a back contact solar cell.
  • the busbars welding strips
  • the busbars welding strips
  • the speed and efficiency of production can be effectively improved at the component end, and the component production process can be reduced. Fragmentation rate in .
  • the effective utilization ratio of the component area is improved, and the power generation efficiency of the component is increased.
  • the parallel connection between the battery strings is facilitated.
  • the strip can be drawn all the way from the back side, making the structure of the assembly simpler.
  • the first type of battery includes one or more of an AI type battery sheet, an A-II type battery sheet, and an A-III type battery sheet, each of which includes one or more, wherein
  • the front electrode and the back electrode are each one and are respectively formed on opposite edges of the first type of battery;
  • the A-II type battery there are two a back electrode, one of the back electrodes is located at an edge of a back surface of the A-II type battery sheet, and the other of the back electrodes is located at a middle portion of a back surface of the A-II type battery sheet;
  • the A-III type battery In the sheet there are two of the front electrodes and are respectively located at opposite side edges of the front surface of the first type of battery sheet (701), and the back surface electrodes are one and located at the center of the back surface.
  • the second battery sheet (801) may include one or more of a BI type battery sheet, a B-II type battery sheet, a B-III type battery sheet, and a B-IV type battery sheet, each of which includes One or more, wherein the back surface of the BI-based battery sheet comprises two negative electrodes and one positive electrode located in the middle portion, wherein one negative electrode is located at the edge portion and one negative electrode is located at the middle portion; and the B-II type battery sheet is The back surface includes 1 positive electrode and 1 negative electrode, the negative electrode is located at the edge portion and the positive electrode is located at the middle portion or the edge; the back of the B-III type battery sheet includes 2 positive electrodes and 1 negative electrode, wherein the negative electrode is located at the edge portion, and one positive electrode is located at the edge portion. The edge of the opposite side and the other positive electrode are located in the middle; the back of the B-IV type battery sheet includes two positive electrodes and one negative electrode, wherein two positive electrodes are located at the edge portion and one negative electrode is located at
  • the layout can be designed as needed, and a battery string of any length can be fabricated by combining different types of the first type of battery sheets (701) and the second type of battery sheets (801).
  • the second type of battery may be a back contact battery.
  • the front surface of the second type of cell may be provided with a front electrode (for example, an MWT structure) or a front electrode (for example, an IBC structure).
  • a front electrode for example, an MWT structure
  • a front electrode for example, an IBC structure
  • the second type of battery can be applied in the middle of the battery string, and the first type of battery piece is connected in series on both sides, thereby meeting the needs of more design layouts.
  • a plurality of the first type of battery sheets (701) have the same structure, and the structure of the plurality of the second type of battery sheets is the same when a plurality of the second type of battery sheets (801) are included. That is, preferably, the first type of battery piece is formed by cutting a whole piece of the battery piece, and the second type of battery piece is also formed by cutting the entire piece of the battery piece. The first type of cell and/or the second type of cell formed after cutting, the current is reduced compared to the entire cell, and the power consumed in the device is reduced.
  • the first type of battery and the second type of battery are p-type and/or n-type solar cells. These solar cells are as uniform as possible in terms of electrical performance. The maximum power point current error fluctuation range is as small as possible, at least within 0.2A. These battery metallization versions are also designed differently depending on the type of battery.
  • a solar cell string is formed by connecting a plurality of said first cell sheets in series with each other and then connecting one of said second cell sheets; or a plurality of said first cell sheets are connected in series with each other The second cell sheet is then connected and continues to be formed in series/parallel with the first type of cell; or alternately connected by a plurality of the first cell and the second cell.
  • the alternate connection referred to herein includes not only one first type of battery piece, one second type of battery piece, but also one piece of the first type of battery piece, and one piece of the second type of battery piece, which are alternately repeated, and include any After the first type of battery is connected, one piece of the second type of battery is connected, and then the first type of the first piece of the battery is connected, and thus alternately repeated.
  • the plurality of first type of battery sheets (701) are connected in series with each other: a back electrode of one of the first type of battery sheets covers a front surface electrode of an adjacent one of the first type of battery sheets (701) a conductive material is disposed between the back surface electrode and the front surface electrode; and further, the connection between the first type of battery sheet and the second type of battery sheet is: a front surface of the first type of battery sheet
  • the electrodes are connected to the positive electrode or the negative electrode of the back electrode of the second cell sheet to form parallel or series, respectively, and a conductive material is disposed between the connected front electrode and the back electrode.
  • the back electrode of one of the first type of battery sheets covers the front side electrode of the adjacent one of the first type of battery sheets, and between the back surface electrodes and the front side electrodes A conductive material is provided, and the electrodes are in good contact with each other through the conductive material, so that the battery sheets are alternately formed alternately.
  • connection between the first type of cell and the second type of cell is such that the front electrode of the first cell is connected to the back electrode of the second cell, and the conductive material is provided between the connected front electrode and the back electrode.
  • the electrodes also form good contact between the conductive materials.
  • connection between the first type of battery and the second type of battery may be connected in series or in parallel according to circuit design, and a combination of series connection and parallel connection may be included in the same series of battery strings.
  • connection between the first type of cell and the second cell is in series or in parallel, when the first cell and the second cell have the same polarity of the connection electrode,
  • connection between the first type of battery piece and the second type of battery piece is connected in parallel, and when the polarity of the connection electrode of the first type of battery piece and the second type of battery piece is opposite, the first type
  • the connection between the battery chip and the second battery chip is a series connection.
  • the solar cell string according to an embodiment of the present invention is connected by a tile.
  • the adjacent two battery pieces in the battery string are connected in a shingling manner, which can lead the current deriving unit from the back surface of the battery sheet, reduce the difficulty of incorporating the diode, increase the area of the component, and reduce the solar cell sheet. Fragmentation rate, which in turn increases component yield and component efficiency.
  • the conductive material is preferably one or more of a conventional conductive tape, a conductive paste, a conductive film, a conductive paste, and a solder paste.
  • At least one of the first type of battery sheets has a first current deriving unit on a back side thereof, and the second current is discharged on a back side of at least one of the second type of battery sheets unit.
  • the first current deriving unit and the second current deriving unit are soldering strips, and the soldering strips are all drawn from the back surface of the first type of battery sheet and the second type of battery sheet and are provided with lead wires. .
  • the first current deriving unit and the second current deriving unit of the present invention are preferably solder ribbons (which may also be called bus bars), all of which are from the back of the first type of battery and the second type of battery Lead and reserve the leader line.
  • the reserved lead wire is bonded to the first type of battery piece and the second type of battery piece by soldering or a conductive material.
  • the solder ribbon may be an ordinary solder ribbon or a solder ribbon having a specific insulation pattern.
  • the soldering between the solder ribbon and the battery may be high temperature soldering or bonding using a conductive material; the conductive material may be a metal solder ribbon One or more of conductive tape, conductive paste, conductive film, conductive paste and solder paste.
  • the positive electrode and the negative electrode on the back surface of the second type of cell sheet are insulated from each other.
  • the front surface of the second type of battery sheet may be provided with electrodes or no electrodes. When an electrode is provided, the electrodes are led to the back surface of the second type of battery sheet by perforation to form the same polarity as the front surface. electrode.
  • the front electrode or the back electrode of the first type of battery cell and the second type of battery cell of the present invention may be a continuous main gate line or a discontinuous point main grid or may be discontinuous. Line segment type main grid line.
  • the back main gate of the first type of cell may be a main gate located at a position of the back side thereof near the side edge.
  • the back main gate of the first type of cell may further include a back side near the side edge thereof.
  • the back main gate of the second cell may also be a main gate located at a position opposite to the side edge thereof, or the back main gate of the second cell may also be included
  • a solar battery string comprising a plurality of solar battery strings as described in any one of the above.
  • multiple solar cell strings can be connected in series or in parallel.
  • a solar cell module comprising: a cover plate, a first encapsulation film, a solar cell string, a second encapsulation film, a backing material, and the solar cell string in sequence, in order from the light-receiving surface to the backlight surface It is the above solar battery string.
  • the cover plate in the solar cell module of the present invention is usually glass, and the first encapsulant film and the second encapsulation film are usually EVA, POE, PVB, ion-crosslinked film, etc., and the back plate is usually a fluorine-containing back plate, a fluorine film material.
  • the back plate is usually a fluorine-containing back plate, a fluorine film material.
  • PVF PVDF
  • ETFE etc.
  • Common backsheets include TPT, TPE, KPK, KPE and non-fluorine-containing backsheets such as PET, PA and glass.
  • EVA is an ethylene-vinyl acetate copolymer, and the full name of the English is ethylene-vinyl acetate copolymer.
  • POE is a copolymer of ethylene and octene, the English full name is Polyolefin Elastomer.
  • PVB polyvinyl butyral
  • English name is PolyVinyl Butyral Film
  • TPT polyvinyl fluoride composite film
  • the two-sided fluorine-containing material is TEDLAR polyvinyl fluoride polymer PVF produced by DuPont of the United States, and PET (polyethylene terephthalate, English polyethylene terephthalate) is passed through the adhesive. Compounded together; TEDLAR+PET+TEDLAR, hence the name TPT.
  • TPE is an abbreviation for monofluoromembrane + PET + EVA film.
  • KPK is also a double-sided fluorine-containing backsheet. Unlike TPT, its fluorine material manufacturer is Kynar polyvinylidene fluoride PVDF produced by Arkema, France.
  • KPE is the abbreviation of monofluoro film + PET + EVA film.
  • PA is a commonly known nylon (Nylon), the English name Polyamid eP, which is a general term for polymers containing amide groups in the repeating unit of the macromolecular backbone.
  • the method for preparing the above solar cell module comprising the following steps:
  • the polarity of the front electrode of the first type of cell is the same, and the polarity of the back electrode of the first type of cell is also the same
  • the front side electrode of the first type of cell sheet is opposite in polarity to the back side electrode, and the back side electrode on the back side of the second type of cell sheet includes a positive electrode and a negative electrode;
  • junction box and the diode are soldered at each of the reserved lead wires to obtain the solar cell module.
  • the present invention has the following advantages:
  • the method of the present invention can form a battery string by using a battery of two different structures at the same time, and then forming a battery string by using a tile connection, and then performing parallel assembly to reduce the internal transmission loss of the component, thereby enhancing the heat spot resistance of the component. It is not necessary to increase the component area, and even on the basis of reducing the component area, all the battery sheets can form a series-parallel circuit;
  • the method of the invention makes a battery string by arranging batteries of different structures, and the parallel connection between the battery strings can be easily realized by the second type of battery, so that the parallel process between the battery strings can be simplified, and the diode is reduced. Difficulty, thereby reducing the fragmentation rate of solar cells, improving component yield, component efficiency and resistance to hot spot;
  • the method of the present invention can continue to reduce the area of the cell by optimizing the interconnection mode between the cells, and at the same time can manufacture a battery string of any length, and the method of the invention can reduce the size of the component to the glass compared to the conventional tile assembly. Requirements to increase component efficiency and reduce installation costs.
  • FIG. 1 is a schematic structural view of a solar cell module according to an embodiment of the present invention.
  • Figure 2 is a schematic view of the first solar cell full sheet A before and after cutting in Examples 1-4, wherein (a): A front face before cutting, (b): A front face before cutting, (c): a (AI after cutting) Cell type) front side, (d): the back side of a after cutting;
  • Figure 3 is a front and rear view of the first solar cell full sheet A' before and after cutting in the embodiment 1-4 with two main grids, wherein (a): A' before cutting the front side, (b): A' cutting the front side, (c): a' front side after cutting (A-II type battery piece), (d): the back side of a' after cutting;
  • Example 4 is a front view of the back contact battery full sheet B before and after cutting in Example 1, wherein (a): front surface before B cutting, (b): front side of B cutting, (c): b after cutting (BI type battery sheet) Front, (d): the back of b after cutting;
  • Figure 5 is a schematic view showing the series connection of the battery sheets in Embodiment 1-4;
  • Figure 6 is a circuit diagram of the components of Embodiment 1-2;
  • Figure 7 is a schematic view showing the back structure and connection of the battery string in Embodiment 1;
  • Figure 8a is a front and rear view of the back-contact cell full sheet B' of the back side of the embodiment 2 and 4 having the same electrode on the front side and the electrode in the middle of the back side, wherein (a): B' front face before cutting, (b): B' cut front back, (c): front side of b' (B-II type cell) after cutting, (d): back side of b' after cutting;
  • Figure 8b is a front and rear view of the back-contact cell full sheet B' of the back side of the embodiment 2 and 4 having the same electrode as the front surface and the electrode at the back edge, wherein (a): B' before cutting the front side, (b): B' cut front back, (c): front side of b' (B-II type cell) after cutting, (d): back side of b' after cutting;
  • Figure 9 is a schematic view showing the back structure and connection of the battery string in the second embodiment.
  • Figure 10 is a front and rear view of the back contact battery full sheet B" in Example 3, wherein (a): B" front face before cutting, (b): B" front back face, (c): b" after cutting (B- The front side of the class III battery, (d): the back of the b" after cutting;
  • FIG 11 is a schematic diagram of parallel connection of batteries in Embodiment 3.
  • Figure 12 is a circuit diagram of the components of Embodiment 3.
  • Figure 13 is a schematic view showing a large-area slitting battery sheet of Embodiment 4, wherein (a): the front surface of the conventional battery sheet 2a" (A-III type battery sheet), (b) the back surface of the conventional battery sheet 2a", (c): the front side of the back contact battery 2b" (B-IV type battery piece), (d): the back side of the back contact battery 2b";
  • Figure 14 is a schematic diagram showing the parallel connection of the battery in which the intermediate battery is taken out from the positive electrode in the fourth embodiment
  • FIG. 15 is a schematic diagram of a parallel connection of batteries in which the intermediate battery is taken out as a negative electrode in Embodiment 4;
  • Figure 16 is a circuit diagram of the assembly of Embodiment 4.
  • Figure 17 is a schematic view of a bus bar in Embodiment 1 and Embodiment 4;
  • 101 cover material; 201, first package film; 301, battery string set; 401, second package film; 501, back sheet material; 601, battery string; 701, first type of battery; 801, Two kinds of battery sheets; 901, a first current deriving unit; 902, and a second current deriving unit.
  • the front main grid of the first type of cell a (the type AI cell); the back main gate of the first cell a; the front main gate of the second cell b; a back surface main grid of the battery sheet b (BI type battery sheet); 5, an electrode of the same polarity on the back surface of the second battery sheet b and the front surface electrode; 6.
  • a front middle main grid of the second battery sheet b a belt (bus bar); 10, a front main grid of the first type of cell a' (A-II type cell); 11, a back main grid of the first type of cell a'; 12, the first type of cell a 'The back middle main grid; 13, the second cell b' (B-II cell) back main gate; 14, the second cell b''s back middle main gate; 15, the second battery a sheet b" (B-III type battery) having a rear main grid of the same polarity as the back side of the battery; 16, a second type of battery sheet b" having a rear central main grid of the same polarity as the front surface of the battery; 17, a second type of battery b" the back main grid of the same polarity as the front side of the battery; 18, the two front main grids of the first type of slitting battery 2a'; 19, the back of the first type of slitting battery 2a' (A-III type cell) Main grid; 20, back contact
  • FIG. 1 is a schematic structural view of a solar cell module in Embodiment 1 of the present invention.
  • the solar cell module provided in this embodiment includes, in order from the light-receiving surface toward the backlight surface (from bottom to top in FIG. 1 ), a cover plate 101 , a first encapsulating film 201 , and a battery string group 301 .
  • the second encapsulation film 401 and the back plate 501 are also referred to as the front side, and the backlight surface is also referred to as the back side.
  • the battery string group 301 is formed by connecting a plurality of battery strings 601. As a whole, the battery string group 301 includes a plurality of array type battery sheets. Each of the battery strings 601 includes a plurality of first type of battery sheets 701, a second type of battery sheets 801, and a plurality of first type of battery sheets 701 which are sequentially electrically connected in series. More specifically, in FIG. 1, the battery string group 301 is formed by connecting six battery strings 601, and each battery string 601 includes six or more first battery sheets 701 and one electrically connected in series in series. The second battery chip 801 and the six or more first battery chips 701.
  • each battery string 601 is formed by connecting a plurality of first battery sheets 701 and a second battery sheet 801, wherein a plurality of first battery sheets
  • the polarities of the front electrodes of 701 are identical, and the polarities of the back electrodes of the plurality of first type of battery sheets 701 are also coincident, and the front electrodes of the plurality of first type of battery sheets 701 and the plurality of first type of battery sheets 701
  • the polarity of the back electrode is reversed, and the back electrode on the back side of the second cell 801 includes a positive electrode and a negative electrode.
  • a first first type of battery sheet 701 (for example, the first type of battery in the lower left corner of the battery string group in the form of an array)
  • the back electrode of the sheet 701) is a positive electrode
  • the front electrode of the first first type of battery sheet 701 is a negative electrode
  • the back electrodes (positive electrodes) are connected in a stacked manner
  • the front electrode (negative electrode) of the second first type of cell sheet 701 and the back electrode (positive electrode) of the third first type of cell sheet 701 are stacked in a tile manner. Connecting, ...
  • the front electrode (negative electrode) of the n-1th first type of cell sheet 701 and the back electrode (positive electrode) of the nth first type of cell sheet 701 are connected in a stacked manner...
  • a shingled battery string structure is formed, and a front electrode (negative electrode) of a first type of cell sheet 701 before the second cell sheet 801 is connected to a back electrode (positive electrode) of the second type of cell sheet 801.
  • the other back electrode (negative electrode) of the second battery chip 801 is connected to the front electrode (positive electrode) of the other first type of battery cell 701 in a shingled manner, and then the back electrode of the other first type of battery cell 701 (negative electrode)
  • the front electrode (positive electrode) of the next first type of battery sheet 701 is connected in a shingled manner... sequentially, and the negative electrode of the back surface of the last first type of battery sheet 701 is exposed.
  • the battery string 601 includes six or more first battery sheets 701, one second battery sheet 801, and six or more first battery sheets 701 that are sequentially electrically connected in series.
  • the battery strings 601 formed above are in the form of electrical connections in series.
  • the positive poles of all the first first battery sheets 701 of the six side-by-side battery strings 601 can be led out from the back side to the side of the solar battery module by the first current deriving unit 901
  • the negative poles of all the last first battery sheets 701 of the six side-by-side battery strings 601 are led out from the back side to the side of the solar battery module by the second current deriving unit 902 while all of the six side-by-side battery strings 601 are
  • the positive and negative electrodes of the second intermediate cell 801 are led out from the back side to the side of the solar cell module by the first current deriving unit 901 and the second current deriving unit 902.
  • the positive and negative main gates for extracting current on the back surface of the second battery chip 801 may be located at the middle portion of the back surface of the second battery sheet 801 or the side portion of the back surface. It can be seen that in the present embodiment, both the first current deriving unit 901 and the second current deriving unit 902 are taken out from the back side of the solar cell module, for example, when the first current deriving unit 901 and the second current deriving unit 902 are When the ribbon or bus bar is soldered, it does not form an obstruction to the front side of the battery of the solar cell module.
  • first current deriving unit 901 and the second current deriving unit 902 are both located below the solar cell sheet and do not protrude outside the solar cell sheet (solar cell string), so that the mounting area of the solar cell module can also be saved. Thereby more solar cells are arranged in a limited area.
  • the battery strings 601 formed above may be electrically connected in parallel by adjusting the arrangement and arrangement of the positive and negative electrodes of the first type of the battery 701 and the second type of the battery 801.
  • the first type of battery piece 701 and the second type of battery piece 801 are elongated battery pieces, usually rectangular battery pieces, which can be made, for example, by a square-shaped battery piece (made in The battery piece was previously called a silicon wafer. It was realized by two-division cutting, three-division cutting, four-division cutting, five-division cutting, and six-division cutting. In the present embodiment, the commonly used cutting method is a five-division cutting.
  • FIG. 2 is a schematic view of the first solar cell full sheet A (square) before and after cutting in the first embodiment, wherein (a): the first solar cell full sheet A front front surface, (b): The first type of solar cell full sheet A cut front back, (c): the first type of solar cell full sheet A after cutting a (AI type cell sheet) front side, (d): the first type of solar cell full sheet A after cutting a The back.
  • a (A-I type battery sheet) after cutting has the front main grid 1 of the first type of cell a and the back main grid 2 of the first type of cell a.
  • the front main grid 1 of the first type of cell sheet a is a negative electrode
  • the back main grid 2 of the first type of cell sheet a is a positive electrode
  • the first type of battery piece a is a conventional battery piece, that is, the positive electrode and the negative electrode are respectively located on the front and back sides of the battery.
  • the second type of battery can be a back contact battery.
  • the front surface of the second type of cell may be provided with a front electrode (for example, an MWT structure) or a front electrode (for example, an IBC structure).
  • FIG. 4 is a front and rear view of the back contact battery full sheet B in the first embodiment, wherein (a): the back contact battery full sheet B front front face, (b): the back contact battery full piece B cut front back (c): the front side of the back-contact battery full sheet B after cutting b (BI type battery sheet), (d): the back side of the back sheet of the battery full sheet B after cutting.
  • the second type of battery sheet includes a front main grid 3 of a second type of battery sheet b, a rear main grid 4 of a second type of battery sheet b (BI type battery sheet), and a second type of battery sheet b
  • the back side of the electrode 5 having the same polarity as the front side electrode and the back side main grid 6 of the second type of cell sheet b.
  • two current deriving units can be drawn from the electrodes or the main grid on the back side by means of solder ribbons or bus bars.
  • FIG. 5 is a series diagram of a segment of a battery string in Embodiment 1.
  • the first type of battery sheets a (A-I type battery sheets) are connected in series, and then connected in series with the second type of battery sheets b, and then the second type of battery sheets b are connected in series with the first type of battery sheets a (A-I type battery sheets).
  • the first type of cell may comprise a plurality of Class A-I cells a, and at least one Class A-II cell a' (shown in Figure 3).
  • the A-II type cell sheet a' has two of the back electrodes, one of the back electrodes is located at the edge of the back side of the A-II type cell sheet, and the other of the back electrodes is located in the A-II type
  • the middle portion of the back surface of the battery sheet as described in the preparation method described later, both the positive electrode and the negative electrode can be taken out from the back surface of the battery. Specifically, as shown in FIG.
  • the first type of battery piece a' (A-II type battery piece) includes a front main gate 10 of the first type of battery piece a', and a back surface of the first type of battery piece a' The main gate 11, and the back side main gate 12 of the first type of cell a'.
  • At least one of the plurality of first types of battery cells 701 has a first current deriving unit 901 on the back side thereof, and at least one second battery strip 801 has a second current deriving unit on the back side thereof. 902.
  • the bus bar solddering tape
  • the bus bar can be used to simultaneously connect the front and back sides of the adjacent two cell sheets, and the production speed can be effectively improved at the component end.
  • Efficiency reducing fragmentation rates during component manufacturing.
  • the effective utilization ratio of the component area is improved, and the power generation efficiency of the component is increased.
  • a front gate and a back surface of the first battery sheet before the cutting of the first type of battery are respectively provided with a main grid, and the whole battery sheet is cut near a reserved position of the main grid to form a plurality of first batteries.
  • the main grid is distributed on the long side of the first type of cell and perpendicular to the short side of the first type of cell.
  • the first type of battery can also have another structure. As shown in FIG. 3, the front and back sides of the whole piece before the cutting of the first type of battery are respectively provided with a main grid, and the whole piece of the battery is adjacent to the main grid.
  • the cutting position is cut to form a plurality of first type of cells, and the main grid is distributed on the long side of the first type of cell, and is perpendicular to the short side of the first type of cell, and has two types of mains on the back side.
  • the gate wherein one main gate is a continuous line segment structure, and the other main gate is a discontinuous line segment structure.
  • the front side and the back side of the whole piece before the cutting of the second type of cell are respectively provided with a main grid, and the main grid of the positive and negative electrodes at the same time on the back side, and the whole piece of the cell piece is located near the front main gate.
  • the second cell has a main grid on the upper side of the front side and the back side, and other positive and negative electrodes on the back side of the second cell, the electrodes are The short side of the cell is vertical.
  • a conductive material for example, a conductive paste
  • the back main gate is in contact with the front main gate.
  • FIG. 6 is a circuit diagram of the components of Embodiment 1.
  • a second type of battery piece is connected in series, and when the second type of battery piece and the first type of battery piece are connected in series with each other, between two adjacent battery pieces
  • the connections are connected in series by shingling, wherein the back side of the second cell of one of the chips is disposed on the front main gate of the adjacent first cell. Then continue to connect the first type of battery to the battery string of the second type of battery.
  • connection between two adjacent cells is also connected in series by lamination, wherein the back main gate of the first small cell Set on the main grid of the front side of the adjacent small piece of the second small cell, and then connect a certain number of the first small cells (0 to 40 pieces), and then string the second small battery as needed.
  • the film is cycled to get the desired battery string.
  • a conductive material is disposed at a position where the back main gate is in contact with the front main gate.
  • Fig. 7 is a schematic view showing the back structure and connection of the battery string in the first embodiment.
  • the second type of cells are connected in parallel and leave the leads.
  • the bus bar can be provided with an insulation pattern depending on the specific condition of the battery main grid.
  • the second battery back electrode can be point, elliptical, rectangular, or a continuous grid line.
  • the welding method may also be heat welding or a double-sided conductive material for welding.
  • the method for preparing the solar cell module described above may include the following steps.
  • a first type of battery sheet (conventional solar cell) and a second type of battery sheet (back contact solar cell) are combined to form a component, and the two types of battery sheets are cut into a string by using a laminated piece, and the battery string is used.
  • the segments are connected in parallel on the back side of the back contact battery to form a series-parallel circuit, and the diodes are connected in parallel at appropriate positions in the circuit to form a component.
  • FIG. 2 (a), (b), (c), (d) are the first type of battery sheets before and after cutting. Schematic diagram, wherein (a) is the front side of the battery sheet before cutting, (b) the back side of the battery sheet before cutting, (c) the front side of the battery sheet after cutting, and (d) the back side of the battery sheet after cutting;
  • Welding the solar cell string take a piece of the first type of cell a', check the appearance of the battery, place the conductive paste on the front main grid 10 of the first type of cell a', and then take a piece of the first type of cell a also check the appearance of the battery.
  • the conductive paste is applied to the front main grid 1 of the first type of cell a, and the front main gate 2 of the first type of cell a and the front main gate 10 of the first type of cell a' having a conductive paste. Overlap, heat welding, the entire welding process can be done in an automatic string welding machine;
  • the second battery sheet b After cutting the plurality of first battery sheets a are connected in series to 30p, the second battery sheet b is added, and the second battery sheet b checks the appearance, and conducts electricity on the front main grid 3 of the second battery sheet b.
  • a glue the back main grid 4 of the second battery sheet b is overlapped with the front main grid 1 of the first battery sheet a having the conductive paste in the battery string, heated and welded, and then the first type of battery sheet a is continuously connected, the first type The back main grid 2 of the battery sheet a overlaps with the front main grid 3 of the second battery sheet b in the battery string, and is heat-welded, so as to form a required battery string including a plurality of ( ⁇ 1) back contact batteries, and then Multiple battery strings are connected to form a battery string set;
  • a plurality of battery strings are connected in parallel, and the back side middle main gate 12 of the first battery piece a' of the six battery strings is connected by using the bus bar 7 and the lead wires are left, and the bus bar 7 with the insulating group is used.
  • the back surface of the second battery piece b between the different strings is connected in parallel with the main gate 5 of the same polarity of the front electrode and the lead wire is left, and the second battery piece b of the six battery strings is used on the back side using the conventional bus bar 7
  • the back main gate 6 is connected and left with leads, as shown in FIG. 7;
  • Figure 6 is a circuit diagram of the assembly
  • Figure 17 is a form of the busbar 7
  • the white is in contact with the negative electrode on the back of the battery
  • the black insulating portion is in contact with the back of the battery;
  • a shingled solar cell module can be fabricated by soldering a junction box with a diode according to a circuit diagram between the lead ends.
  • the structure of the solar cell module provided in this embodiment is the same as that in the first embodiment, as shown in FIG.
  • the first type of battery is a conventional battery, and the conventional battery is the same as that in Embodiment 1.
  • the front and back sides of the first type of battery are respectively provided with a main grid, and the entire solar energy before cutting The cell is cut adjacent to the reserved position of the main gate to form a plurality of first cells, and the main grid is distributed on the long side of the first cell and perpendicular to the short side of the first cell.
  • the second type of cell is a back contact cell
  • the front side of the back contact cell is not provided with an electrode
  • the positive and negative electrodes of the back contact cell are disposed on the back side of the back contact cell.
  • the entire back contact cell sheet before cutting is cut near the reserved position of the back main gate to form a plurality of second battery sheets b', and the second battery sheet b' has a main grid on the upper side of the back side.
  • the middle portion has the same main gate distribution as the front polarity, and all the main gates are perpendicular to the short sides of the second cell.
  • a conventional solar cell and a back contact solar cell are combined to fabricate a component.
  • the two strings are serially welded into a string by means of lamination, and the segments between the battery strings are connected in parallel on the back side of the back contact battery to form a string and a string.
  • the circuit, and the diodes in parallel with the appropriate positions in the circuit, are made into components. The specific steps are as follows:
  • FIG. a schematic diagram before and after cutting the battery
  • the first type of battery piece a' is added, and the back main gate 11 of the first type of battery piece a' and the first conductive paste in the battery string are first.
  • the front main grid 1 of the battery sheet a is overlapped and heat-welded; the first type of battery piece a' is continued, and the back main grid 11 of the first type of battery piece a' and the first type of battery piece a' are made of conductive adhesive.
  • the front main gates 10 are overlapped, heated and then continue to be connected in series with the first type of cell a; thus cycled to the desired length and then inserted into the second type of battery piece b', the back side main grid 13 of the second type of battery piece b' and the battery string
  • the front main grid 1 of the first type of cell sheet a having the conductive paste is overlapped and heat-welded, so as to form a battery string including the back contact battery;
  • a plurality of batteries are connected in series, and the back side middle main gate 12 of the first one of the six battery strings is connected and left with a lead wire on the back side using a conventional bus bar 7; a bus bar having an insulating pattern is used. 7 on the back side of the second cell between the different strings b' of the main grid 14 - the middle main grid (the second cell shown in Figure 8a) or the back main gate 14 - the edge of the main grid ( Figure 8b) The second type of cell) is connected in parallel and leaving the lead, as shown in Figure 9;
  • a shingle solar module can be fabricated by soldering a junction box with a diode according to the circuit diagram between the lead ends.
  • the structure of the solar cell module provided in this embodiment is the same as that in the first embodiment.
  • the front surface and the back surface of the first type of battery sheet are respectively provided with a main grid, and the first type of battery sheet is cut near a reserved position of the main grid to form a plurality of first type of cells, and the main grid is distributed.
  • the first type of cell has a long side that is perpendicular to the short side of the first cell.
  • the second battery piece is a back contact battery piece
  • the front surface of the back contact cell piece is not provided with an electrode
  • the positive and negative electrodes of the back contact cell piece are disposed on the back side of the back contact cell piece
  • the back contact is
  • the battery chip is cut near a reserved position of the back main gate to form a plurality of second battery sheets b"
  • the second battery sheet b" has a main grid on the upper side of the back side, and the middle portion and the other side have
  • the main gate distribution is the same as the front polarity, and all the main gates are perpendicular to the short sides of the second cell.
  • the connection between two adjacent battery sheets is connected in series by a tile method, and the back main grid of one of the battery sheets is disposed on an adjacent battery.
  • a conductive material is disposed at a position where the back main gate is in contact with the front main gate.
  • the first small string of battery strings is stopped; after the first type of cells are connected in series to a certain number, a second battery piece is serially connected to form a second small string of battery strings.
  • the battery string is provided with conductive materials at the contact positions of all the electrodes, as shown in FIG.
  • the method for preparing the shingle solar cell module comprises the following steps.
  • a conventional solar cell and a back contact solar cell are combined to fabricate a component.
  • the two cells are serially welded into a string by using a shingle, and the segments are connected in series on the back side of the back contact battery, and the appropriate position in the circuit.
  • Parallel diodes are fabricated into components. The specific steps are as follows:
  • FIG. 2 are schematic diagrams before and after the battery is cut, wherein a) The picture shows the front side of the battery piece before cutting, (b) the back side of the battery piece before cutting, (c) the front side of the battery piece after cutting, and (d) the back side of the battery piece after cutting;
  • FIG. 3 are schematic diagrams before and after the battery is cut.
  • (a) is the front side of the battery sheet before cutting
  • (b) is the back side of the battery sheet before cutting
  • (c) is the front side of the battery sheet after cutting
  • (d) is the back side of the battery sheet after cutting;
  • Welding solar cell string C Take a piece of the first type of battery a', check the appearance of the battery, place conductive paste on the front main grid 10 of the first type of battery a', and then take a piece of the first type of battery a Checking the appearance of the battery, the conductive paste is spotted on the front main grid 1 of the first type of cell a, and the front main gate 2 of the first type of cell a and the front main gate 10 of the other type of the first cell a' having a conductive paste Overlap, heat welding, the entire welding process can be completed in the automatic string welding machine, the plurality of cut battery pieces a are connected in series to 30p and then stop forming the battery string C;
  • Soldering the solar cell string D taking a piece of the first type of battery a', checking the appearance of the battery, placing a conductive paste on the front main grid 10 of the first type of battery a', and then taking a piece of the first type of battery a Checking the appearance of the battery. Point the conductive paste on the front main grid 1 of the first type of battery, and overlap the back main grid 2 of the first type battery a with the front main grid 10 of the first type of the battery sheet a' having the conductive paste, and heat.
  • the entire welding process can be completed in the automatic string welding machine, the plurality of cut battery pieces a are connected in series to 29p and then stopped, the second battery piece b" is added, and the second battery piece b" is inspected. Appearance, the second battery piece b" and the rear side of the battery the same polarity of the back main grid 15 and the battery string in the battery string of the first type of battery a front super-gate 1 overlap, heat welding to form a battery string D;
  • a shingle solar module can be fabricated by soldering a junction box with a diode according to a circuit diagram between the lead ends.
  • the structural schematic diagram of the solar cell module provided in this embodiment is the same as that in the first embodiment.
  • the two small strings of batteries are all connected in series by the same number of the first type of cells and/or the second type of cells.
  • the area of the battery in parallel is larger than that of other batteries, and the power and current are twice as large as other batteries.
  • there are two kinds of battery strings one is that the intermediate battery is taken out as a positive electrode, and the other is that the intermediate battery is taken out as a negative electrode.
  • Each battery string is mainly composed of two small strings of two batteries connected in series using a large-area slitting battery.
  • the intermediate battery is a series of battery strings drawn from the positive electrode and is connected in such a manner that the electrodes on both sides of the back side of a large-area slitting battery 2a' are covered by two strings of the same number of battery strings including two types of series in series.
  • On the front electrode of the conventional battery two strings of batteries are connected in parallel, and the last battery of the two series of series strings is a back contact battery, and a conductive material is disposed between all the front electrodes and the back electrodes.
  • the intermediate battery is a series of battery strings drawn from the negative electrode and is connected in such a manner that the electrodes on both sides of the back side of a large-area slitting battery 2b" are covered by two strings of the same number of battery strings including two types of series in series.
  • two strings of cells are connected in parallel, and a conductive material is disposed between all the front electrodes and the back electrodes.
  • a p-type crystalline silicon battery is taken as an example.
  • the front electrode of the battery is a negative electrode
  • the back electrode is a positive electrode
  • the front electrode of the back contact battery is a negative electrode
  • the positive electrode on the back side has a positive electrode
  • the positive electrode and the negative electrode in the middle portion is taken as an example.
  • a front gate and a back surface of the cell sheet before cutting are respectively provided with a main grid, and the solar cell sheet is cut near a reserved position of the main grid to form a plurality of first type of cells, and the main grid is distributed in the first type.
  • the long side of the cell is perpendicular to the short side of the cell.
  • the cell sheet before cutting is a back contact cell sheet
  • the front surface of the back contact cell sheet is not provided with an electrode
  • the positive and negative electrodes of the back contact cell sheet are disposed on the back surface of the back contact cell sheet.
  • the solar cell sheet is cut near a reserved position of the front main grid to form a plurality of second battery sheets b'.
  • the second battery sheet has a main grid on the other side of the back side, and the middle portion has the same polarity as the front surface.
  • the main gate is distributed, and all the main gates are perpendicular to the short sides of the second cell.
  • the large-area conventional slitting battery area is about twice that of other batteries, and the current and power are about twice that of other batteries.
  • the main grid has a main gate with the same polarity as the front side in the middle.
  • the connection between the adjacent two battery sheets is connected in series by a tile method, and the back main grid of one of the battery sheets is disposed on an adjacent battery.
  • a conductive material is disposed at a position where the back main gate is in contact with the front main gate.
  • the method for preparing the shingle solar cell module comprises the following steps.
  • a conventional solar cell back contact solar cell is used to combine the components, and the two batteries are serially welded into a string by using a shingle, and the segments are connected in series on the back side of the back contact battery, and the circuit is connected in parallel at an appropriate position. Diodes, made into components, the specific steps are as follows:
  • FIG. 2 are schematic diagrams before and after battery cutting, wherein (a The picture shows the front side of the cell before cutting, (b) the back of the cell before cutting, (c) the front of the cell after cutting, and (d) the back of the cell after cutting;
  • FIG. 3 are schematic diagrams before and after battery cutting, wherein (a) The figure shows the front side of the battery sheet before cutting, (b) the back side of the battery sheet before cutting, (c) the front side of the battery sheet after cutting, and (d) the back side of the battery sheet after cutting;
  • Welding solar cell string E Take a piece of battery a, check the appearance of the battery, conductive glue on the front main grid 1 of the battery a, and then take a battery a. Also check the appearance of the battery on the front main grid of the battery. The glue overlaps the back main grid 2 of the battery a with the other front main grid 1 with conductive paste, and heats the welding. The entire soldering process can be completed in an automatic string welding machine. The plurality of cut battery pieces a are connected in series to 29 p and then stopped. Adding the battery b', the battery b' check the appearance, the back main grid 13 of the battery b' and the front side main grid 1 of the battery a with the conductive paste in the battery string, and heat welding to form the battery string E;
  • Parallel solar cell string E Take a large area of the first type of slitting battery 2a', as shown in Fig. 13 (a), (b), the first type of the first type of slitting battery 2a'
  • the conductive glue at the 18th point of the grid overlaps with the back main gate 2 of the first battery a of the two strings of battery strings E, and is heated and welded to form a battery string G in parallel;
  • Soldering solar cell string F Take a piece of battery a', check the appearance of the battery, place conductive paste on the front main grid 10 of the battery a', and then take a piece of battery a. Also check the appearance of the battery on the front of the battery.
  • the upper conductive paste is superimposed on the back main gate 11 of the battery a' and the other front main grid 1 having the conductive paste, and the whole soldering process can be completed in the automatic string welding machine.
  • the plurality of cut battery pieces a are connected in series to 30p and then stopped to form a battery string F;
  • Parallel solar cell string F Take a large area of back contact slitting battery 2b", as shown in Fig. 13 (c), (d), the back side of the battery is back-contacted to cut the back main grid of the battery 2b" 20 respectively overlap with the front main grid 1 of the last battery a of the two series of battery strings F, the front main grid 1 is placed on the conductive paste, heat welding, parallel to form the battery string H;
  • Welding solar cell string group According to the circuit diagram shown in Fig. 16, three battery strings G, three battery strings H are arranged from left to right; the back side of the battery cells b' of the three battery strings G are used by using the bus bar
  • the middle main gate 14 is connected to the back middle main gate 12 of the battery a' at the upper end of the three battery strings H; the lower end battery of the six battery strings is also connected using the bus bar 7 with an insulating pattern; in addition, the conventional bus bar 7 is used.
  • the main gate 19 on the back of the first type of slitting battery 2a' of the large area in the middle of the three battery strings G is connected, leaving the lead as the positive electrode, as shown in FIG.
  • Fig. 15 using the busbar 7 with the insulating pattern to connect the three batteries
  • the large-area back contact slitting battery 2b" in the middle of the string H is connected to the back middle main grid 21, and the outflow lead is a negative electrode, as shown in Fig. 15.
  • Fig. 17 shows one form of the bus bar 7, white is the negative electrode on the back of the battery Contact, black insulation is in contact with the back of the battery;
  • a shingle solar module can be fabricated by soldering a junction box with a diode according to a circuit diagram between the lead ends.
  • a solar cell module comprising a cover material (101), a first encapsulation film (201), a battery string (301), a second encapsulation film (401), and a back in order from bottom to top.
  • the board material (501) is formed by connecting a plurality of battery strings (601), wherein each of the battery strings (601) is composed of a plurality of first battery sheets (701).
  • the polarity of the back electrode is also uniform, and the front electrodes of the plurality of first battery sheets (701) and the back electrodes of the plurality of first battery sheets (701) have opposite polarities,
  • the two types of cells (801) have a positive electrode and a negative electrode on the back surface;
  • At least one of the plurality of first type of battery sheets (701) has a first current deriving unit (901) on the back side
  • the second side of the at least one second type of battery sheet (801) has a second side Current derivation unit (902).
  • each of the battery strings (601) is connected in series by a plurality of first battery sheets (701), and then connected to a second battery sheet (801). Or each of the battery strings (601) is connected in series with a plurality of first pool sheets (701), and then connected to the second battery sheet (801) to continue to connect/parallel the first type of battery sheets (701). Connected; or each of the battery strings (601) is formed by alternately connecting a plurality of first battery sheets (701) and a second battery sheet (801).
  • the front electrode of the battery cell (701) is connected to the back electrode of the second cell sheet (801), and a conductive material is disposed between the connected front electrode and the back electrode.
  • An electrode of the same polarity as the front surface, the positive electrode and the negative electrode on the back surface of the second cell sheet are insulated.
  • Scheme 9 a method for preparing a solar cell module, comprising the steps of:
  • junction box and the diode are soldered at each of the reserved lead wires to obtain a solar cell module.
  • a solar cell module comprising a cover material (101), a first encapsulation film (201), a battery string (301), a second encapsulation film (401), and a back in order from bottom to top.
  • the board material (501) is formed by connecting a plurality of battery strings (601), wherein each of the battery strings (601) is composed of a plurality of first battery sheets (701).
  • the polarity of the back electrode is also uniform, and the front electrodes of the plurality of first battery sheets (701) and the back electrodes of the plurality of first battery sheets (701) have opposite polarities,
  • the two types of cells (801) have a positive electrode and a negative electrode on the back surface;
  • a current deriving unit is disposed on the back surface of the battery sheets at both ends of the battery string (601).
  • a first current deriving unit (901) is disposed on the back side of the first type of battery sheet (701), and a second current deriving unit (902) is disposed on the back side of the second type of battery sheet (801).
  • a first current deriving unit (901) is disposed on the back side of the first type of battery chip (701).

Abstract

本发明公开了一种太阳能电池串、串组、组件及其制备方法,太阳能电池串由多个第一种电池片和至少一个第二种电池片连接而成,其中多个所述第一种电池片(701)的正面电极的极性相一致,多个所述第一种电池片(701)的背面电极的极性也相一致,且多个所述第一种电池片(701)的正面电极与背面电极的极性相反,所述第二种电池片(801)的背面上的背面电极包括正极和负极。该太阳能电池串采用两种结构的电池片进行叠瓦连接,可以将电流导出单元从电池片背面引出,并降低并入二极管的难度,也不增加组件的面积,还可以降低太阳能电池片的碎片率,进而提升组件良品率和组件效率。本发明还公开了上述太阳能电池串形成的串组、组件、及其制备方法。

Description

太阳能电池串、串组、组件及其制备方法 技术领域
本发明属于太阳能电池技术领域,具体涉及一种太阳能电池串、串组、组件及其制备方法。
背景技术
随着社会的不断发展,人类越来越重视可再生能源的利用,而太阳能是我们人类能够最容易获得能源,如何利用太阳能一直是人类的研究的课题,其中太阳能电池是将太阳能转换为电能的最有效方式之一。
近几年来,太阳能电池世界产量以每年30~40%的速度增长,成为目前市场上发展最快的行业之一,其中晶体硅太阳能电池日渐发展成熟,占据了市场的主导地位。
随着晶体硅太阳能电池技术的发展,各种高效电池技术也逐渐成熟。与常规电池相比,这些高效电池正反两面皆有良好的钝化,电流电压较高,特别是双面电池由于正反两面都能吸收光线从而产生光生载流子,因而具有较高的短路电流。
在常规组件制作中,电池片之间的互连往往采用串联方式。电池的电流越高,组件功率在互连条上的传输损失越大。因此在利用这些高效双面电池制作组件时,如果仍然使用常规的焊带互连技术,势必可以想象从电池到组件的功率损失将会很高,电池端得到的高转换效率在组件端并不能得到完全体现,因此人们也在寻求各种方案以实现太阳能电池组件功率的提升。
电池到组件的功率损失主要分光学损失和电学损失两种,光学损失主要与玻璃、EVA等材料的吸收和反射有关,而电学损失则主要来源于电池内部,互连条、汇流条、接线盒及其线缆的损耗等,如果不能有效的降低这些连接材料的内阻,大部分能量将以热量的形式损耗掉而不是转化为电能。
在这种情况下,叠瓦连接方式(将电池切割成小电池片,不使用焊带而使用导电胶等导电材料将小电池片其中一片的电极叠加到相邻一片的电极上的连接方式)开始越来越多地应用在高效电池组件生产中。目前常规的叠瓦组件无论是60P还是72P的版型,大都采用横排的版型,如此每串的电池数量相对于竖排要小,并入二极管后,组件的抗热斑的性能较为优异。 但是横排组件实际安装时为了节约安装成本,还是会选择竖向安装。如此此类组件需要更长的电缆线,或者电缆线将不可避免的需要交叉,或者组件安装方向需要调整等等安装上的不便;另外此类组件的宽度比常规组件宽度大,安装成本同样也较常规组件高;组件所需玻璃,背板和封装材料等原材料的长度和宽度都有改变,原材料的成本也有很大的增加。
如此制作同常规组件规格相同的竖排叠瓦组件是目前大部分组件公司需要研发出的新产品。竖排组件,60P组件的长度是1650mm左右,72P组件的长度为1980mm左右,如果使用相同的尺寸的分切电池片,则每串电池片的数量是横排组件每串电池数量的1.5~2倍。竖排组件如果要具有与横排组件相同的抗热斑的性能,则在每串电池中间也需要并联二极管。
目前常用的方法是将电池串在需要的长度分开,使用汇流带进行焊接并且并入二极管。叠瓦组件的一个重要的优势就是去掉电池之间的间隙,增加组件面积的使用率,而使用该方法则增加了汇流带,增大接头处电池之间的间隙,同时增加了碎片率降低了效率。如此组件的长度增加,组件的效率也有所降低。
现有技术中竖排叠瓦组件制作时,如果需要并入二极管,则需要将电池串分段,然后再使用汇流带将电池串连接上,所以组件的面积不能全部利用,而且连接电池串必然增加碎片风险。此外,仅采用一种结构的电池片叠瓦连接时,无法做到将焊带全部从电池片的背面引出。
因此,需要继续研发新的太阳能组件及其制备方法,以提升组件的发电效率,降低组件的发电成本。
发明内容
本发明的第一目的在于提供一种太阳能电池串,该太阳能电池串采用两种结构的电池片进行叠瓦连接,可以从电池片背面引出电流导出单元,并在组装电池组件时能够降低并入二极管的难度,且不增加组件的面积,还可以降低太阳能电池片的碎片率,进而提升组件良品率和组件效率。
本发明的第二目的在于提供一种上述太阳能电池串形成的太阳能电池串组。
本发明的第三目的在于提供一种具有上述太阳能电池串组的太阳能电池组件。
本发明的第四目的在于提供上述太阳能电池组件的制备方法,该制备方法能够增加组件发电效率,降低组件的发电成本。
本发明的上述第一个目的是通过以下技术方案来实现的:一种太阳能电池串,由多个第一种电池片和至少一个第二种电池片连接而成,其中多个所述第一种电池片的正面电极的极 性相一致,多个所述第一种电池片的背面电极的极性也相一致,且多个所述第一种电池片的正面电极与背面电极的极性相反,
所述第二种电池片的背面上的背面电极包括正极和负极。
换言之,第一种电池片为常规太阳能电池片,第二种电池片(801)为背接触式太阳能电池片。这样设计,可以不用汇流带(焊带)同时连接相邻两个电池片的正反两面,在利用该电池串组装电池组件时,在组件端能有效提高生产的速度和效率,降低组件生产过程中的碎片率。同时在能保证组件抗热斑性能的基础上提高组件面积的有效利用率,增大组件的发电效率。此外,通过设置第二种电池片,使得电池串之间的并联变得容易。而且,可以将焊带全部从背面引出,使得组件的结构更加简单。
可选地,所述第一种电池片包括A-I类电池片、A-II类电池片、以及A-III类电池片中的一种或多种,每种包括1个或多个,其中,所述A-I类电池片中,所述正面电极、背面电极各为1个且分别形成于所述第一种电池片的对边边缘;所述A-II类电池片中,具有2个所述背面电极,其中一个所述背面电极位于所述A-II类电池片的背面的边缘,另一个所述背面电极位于所述A-II类电池片的背面的中部;所述A-III类电池片中,具有2个所述正面电极且分别位于所述第一种电池片(701)的正面的对边边缘,所述背面电极为1个且位于背面的中部。
另外,所述第二种电池片(801)可以包括B-I类电池片、B-II类电池片、B-III类电池片、B-IV类电池片中的一种或多种,每种包括1个或多个,其中,所述B-I类电池片的背面包括2个负极和1个位于中部的正极,其中1个负极位于边缘部1个负极位于中部;所述B-II类电池片的背面包括1个正极和1个负极,负极位于边缘部且正极位于中部或边缘;所述B-III类电池片的背部包括2个正极和1个负极,其中负极位于边缘部,1个正极位于对边的边缘部且另1个正极位于中部;所述B-IV类电池片的背部包括2个正极和1个负极,其中,2个正极位于边缘部,1个负极位于中部。
这样设计,可以根据需要,设计版式,通过将不同种类的第一种电池片(701)与第二种电池片(801)进行组合,能够制作任意长度的电池串。
进一步地,第二种电池片可以为背接触电池。例如第二种电池片的正面可以设有正面电极(例如MWT结构),也可以不设正面电极(例如IBC结构)。当所述第二种电池片在正面设有正面电极时,所述第二种电池片(801)的背面电极中的正极通过穿孔方式引至所述正面电极。
由此,可以将第二种电池片应用在电池串的中间,在其两侧均串联第一种电池片,从而能满足更多的设计版式的需要。
可选地,多个所述第一种电池片(701)的结构相同,当包括多个所述第二种电池片(801)时多个所述第二种电池片的结构也相同。也就是说,优选地,第一种电池片由整片电池片切割形成,第二种电池片也由整片电池片切割形成。切割后形成的第一种电池片和/或第二种电池片,相比于整片电池片而言,电流减小,组件内耗的电能减少。
其中,第一种电池片和第二种电池片为p型和/或n型太阳能电池。这些太阳能电池片在电学性能上尽量一致,最大功率点电流误差波动范围越小越好,至少在0.2A以内,这些电池金属化版型根据电池类型不同设计也有所不同。
根据本发明的一些实施例,太阳能电池串,由多个所述第一种电池片互相串联后再连接一片所述第二种电池片形成;或由多个所述第一种池片互相串联后连接所述第二种电池片并继续串联/并联所述第一种电池片形成;或由多个所述第一种电池片和第二种电池片交替连接而成。此处所说的交替连接,不仅包括1片第一种电池片、1片第二种电池片、再1片第一种电池片、再1片第二种电池片,如此反复交替,还包括任意片第一种电池片连接后,接着连接1片第二种电池片,再连接任意片的第一种电池片的,如此反复交替。
进一步地,所述多个第一种电池片(701)互相串联是:其中一片所述第一种电池片的背面电极覆盖在相邻一片所述第一种电池片(701)的正面电极上,相覆盖的背面电极与正面电极之间设有导电材料;更进一步地,所述第一种电池片与所述第二种电池片之间的连接是:所述第一种电池片的正面电极与所述第二种电池片的背面电极中的正极或负极相连接以分别形成并联或串联,相连接的正面电极与背面电极之间设有导电材料。
具体而言,第一种电池片之间的连接中,其中一个第一种电池片的背面电极覆盖在相邻一个第一种电池片的正面电极上,相覆盖的背面电极与正面电极之间设置有导电材料,电极之间通过导电材料形成良好接触,如此反复交替形成电池片。
第一种电池片与第二种电池片之间的连接是第一种电池片的正面电极与第二种电池片的背面电极相连接,相连接的正面电极与背面电极之间设有导电材料;电极之间也通过导电材料形成良好接触。
第一种电池片和第二种电池片之间的连接根据电路设计可以为串联连接,也可以为并联连接,同一串电池串中可以有串联连接和并联连接的结合。
其中所述第一种电池片和所述第二种电池片之间的连接为串联或并联,所述第一种电池片与所述第二种电池片的连接电极极性相同时,所述第一种电池片和所述的第二种电池片之间的连接为并联连接,所述第一种电池片与所述第二种电池片的连接电极极性相反时,所述第一种电池片和所述的第二种电池片之间的连接为串联连接。
也就是说,根据本发明实施例的太阳能电池串,采用叠瓦连接。此时,电池串中相邻两电池片采用叠瓦方式连接,可以将电流导出单元从电池片背面引出,并降低并入二极管的难度,也不增加组件的面积,还可以降低太阳能电池片的碎片率,进而提升组件良品率和组件效率。
其中,所述导电材料优选为常规的导电胶带、导电胶、导电胶膜、导电浆料和焊膏中的一种或几种。
根据本发明的一些实施例,所述第一种电池片中的至少一者的背面上具有第一电流导出单元,且所述第二种电池片的至少一者的背面上具有第二电流导出单元。
可选地,所述第一电流导出单元和第二电流导出单元为焊带,所述焊带全部从所述第一种电池片和所述第二种电池片的背面引出并设有引出线。
本发明所述第一电流导出单元和第二电流导出单元优选为焊带(也可以叫做汇流带),所述焊带全部从所述第一种电池片和所述第二种电池片的背面引出并预留引出线。
所述预留引出线与所述第一种电池片和所述第二种电池片之间通过焊接或导电材料黏结。
焊带可以是普通的焊带,也可以是具有特定绝缘图案的焊带,焊带与电池之间的焊接可以为高温焊接,也可以为使用导电材料黏结;所述导电材料可以为金属焊带、导电胶带、导电胶、导电胶膜、导电浆料和焊膏等中的一种或几种。
其中,所述第二种电池片的背面上的正极和负极之间相绝缘。此外,所述第二种电池片的正面可以设有电极或不设电极,当设有电极时,所述电极通过穿孔方式引至所述第二种电池片的背面形成与正面相同极性的电极。
作为本发明的一种优选的实施方式,本发明第一种电池片和第二种电池片的正面电极或背面电极可以是连续的主栅线也可以是非连续的点式主栅或者是非连续的线段式的主栅线。
所述第一种电池片的背面主栅可以是位于其背面靠近侧边缘位置的主栅,也可以进一步的,所述第一种电池片的背面主栅还可以是包括位于其背面靠近侧边缘位置的主栅和位于其背面中部的中部主栅。
同样的,所述第二种电池片的背面主栅也可以是位于其背面靠近侧边缘位置的主栅,也可以进一步的,所述第二种电池片的背面主栅还可以是包括位于其背面靠近侧边缘位置的主栅和位于其背面中部的中部主栅。
本发明的上述第二个目的是通过以下技术方案来实现的:一种太阳能电池串组,由多个 如上述任一项所述的太阳能电池串连接而成。根据设计,多个太阳能电池串即可以串联,也可以并联。
本发明的上述第三个目的是通过以下技术方案来实现的:
一种太阳能电池组件,按照从受光面向背光面顺序依次包括层合有:盖板、第一封装胶膜、太阳能电池串组、第二封装胶膜、背板材料,所述的太阳能电池串组为上述太阳能电池组串。
本发明太阳能电池组件中的盖板通常是玻璃,第一封装胶膜和第二封装胶膜通常是EVA、POE、PVB、离子交联膜等,背板通常是含氟背板,氟膜材料有PVF、PVDF和ETFE等,常见背板有TPT、TPE、KPK、KPE以及不含氟的背板如PET、PA和玻璃等。
EVA是乙烯-醋酸乙烯共聚物,英文全称是ethylene-vinyl acetate copolymer。
POE是乙烯和辛烯的共聚物,英文全称为Polyolefin Elastomer。
PVB化学名是聚乙烯醇缩丁醛,英文名称为:PolyVinyl Butyral Film。
TPT(聚氟乙烯复合膜),两面含氟材料为美国杜邦公司生产的TEDLAR聚氟乙烯聚合物PVF,中间为PET(聚对苯二甲酸乙二醇酯,英文Polyethylene terephthalate),通过胶黏剂复合在一起;即TEDLAR+PET+TEDLAR,因此得名TPT。
TPE则是单氟膜+PET+EVA膜的简称。
KPK也属于双面含氟背板,与TPT不同的是,它的氟材料厂家是法国阿科玛公司生产的Kynar聚偏二氟乙烯PVDF。
KPE则是单氟膜+PET+EVA膜的简称。
PA为聚酰胺俗称尼龙(Nylon),英文名称Polyamid eP,它是大分子主链重复单元中含有酰胺基团的高聚物的总称。
本发明的上述第四个目的是通过以下技术方案来实现的:上述太阳能电池组件的制备方法,包括以下步骤:
(1)选取第一种电池片和第二种电池片,其中,所述第一种电池片的正面电极的极性相一致,所述第一种电池片的背面电极的极性也相一致,且所述第一种电池片的正面电极与背面电极的极性相反,所述第二种电池片的背面上的背面电极包括正极和负极;
(2)将多个第一种电池片之间进行串联,此后与所述第二种电池片相连接,形成电池串;
(3)使用第一电流导出单元在背面将不同电池串间的第一种电池片并联并预留引出线,使用第二电流导出单元在背面将不同电池串间的第二种电池片并联并预留引出线,由此将多个所述电池串相连接,形成电池串组;
(4)按照从受光面至背光面的顺序,以此铺设盖板、第一封装胶膜、电池串组、第二封装胶膜、背板;
(5)铺设完成后经包括EL测试、层压后处理工序处理;
(6)在各个预留引出线处焊接接线盒与二极管,得到所述太阳能电池组件。
与现有技术相比,本发明具有以下优点:
(1)本发明方法通过设计和同时采用两种不同的结构的电池,采用叠瓦连接形成电池串,再进行并联制成组件,能够降低组件内部传输损耗,使得组件抗热斑能力得到增强,不需要增加组件面积,甚至在减小组件面积的基础上使得所有电池片能够形成串并串并的电路;
(2)本发明方法通过搭配不同结构的电池来制作电池串,通过第二种电池片可以简单地实现电池串之间的并联连接,使得电池串之间的并联工艺得以简化,降低并入二极管的难度,从而降低太阳能电池片的碎片率,提升组件良品率,组件效率和抗热斑性能;
(3)本发明方法通过优化电池串间互连方式,能够可以继续降低电池片的面积,同时能够制作任意长度的电池串,相比常规叠瓦组件,本发明方法可以减小组件对玻璃尺寸的要求,增加组件的效率并降低安装成本。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是根据本发明实施例的太阳能电池组件的结构示意图;
图2是实施例1-4中的第一种太阳能电池全片A切割前后示意图,其中(a):A切割前正面,(b):A切割前背面,(c):切割后a(A-I类电池片)正面,(d):切割后a的背面;
图3是实施例1-4中背面有两根主栅的第一种太阳能电池全片A’切割前后示意图,其中(a):A’切割前正面,(b):A’切割前背面,(c):切割后a’正面(A-II类电池片),(d):切割后a’的背面;
图4是实施例1中背接触电池全片B切割前后示意图,其中(a):B切割前正面,(b):B切割前背面,(c):切割后b(B-I类电池片)的正面,(d):切割后b的背面;
图5是实施例1-4中电池片串联示意图;
图6是实施例1-2中组件的电路示意图;
图7是实施例1中电池串的背面结构以及连接示意图;
图8a是实施例2和4中背面只有一根与正面相同电极且该电极位于背面中部的背接触电 池全片B’切割前后示意图,其中(a):B’切割前正面,(b):B’切割前背面,(c):切割后b’(B-II类电池片)的正面,(d):切割后b’的背面;
图8b是实施例2和4中背面只有一根与正面相同电极且该电极位于背面边缘的背接触电池全片B’切割前后示意图,其中(a):B’切割前正面,(b):B’切割前背面,(c):切割后b’(B-II类电池片)的正面,(d):切割后b’的背面;
图9是实施例2中电池串的背面结构以及连接示意图;
图10是实施例3中背接触电池全片B”切割前后示意图,其中(a):B”切割前正面,(b):B”切割前背面,(c):切割后b”(B-III类电池片)的正面,(d):切割后b”的背面;
图11是实施例3中电池串并联示意图;
图12是实施例3中组件的电路示意图;
图13是实施例4中大面积的分切电池片的示意图,其中(a):常规电池片2a”(A-III类电池片)的正面,(b):常规电池片2a”的背面,(c):背接触电池2b”(B-IV类电池片)的正面,(d):背接触电池2b”的背面;
图14是实施例4中中间电池为正极引出的电池串并联示意图;
图15是实施例4中中间电池为负极引出的电池串并联示意图;
图16是实施例4的组件的电路示意图;
图17是实施例1和实施例4中汇流带的一种示意图;
图中的附图标记分别表示如下:
101、盖板材料;201、第一封装胶膜;301、电池串组;401、第二封装胶膜;501、背板材料;601、电池串;701、第一种电池片;801、第二种电池片;901、第一电流导出单元;902、第二电流导出单元。
1、第一种电池片a(A-I类电池片)的正面主栅;2、第一种电池片a的背面主栅;3、第二种电池片b的正面主栅;4、第二种电池片b(B-I类电池片)的背面主栅;5、第二种电池片b的背面与正面电极相同极性的电极;6、第二种电池片b的背面中部主栅;7、焊带(汇流带);10、第一种电池片a’(A-II类电池片)的正面主栅;11、第一种电池片a’的背面主栅;12、第一种电池片a’的背面中部主栅;13、第二种电池片b’(B-II类电池片)的背面主栅;14、第二种电池片b’的背面中部主栅;15、第二种电池片b”(B-III类电池片)与电池背面极性相同的背面主栅;16、第二种电池片b”与电池正面极性相同的背面中部主栅;17、第二种电池片b”与电池正面极性相同的背面主栅;18、第一种分切电池2a’的两根正面主栅;19、第一种分切电池2a’(A-III类电池片)的背面主栅;20、背接触分切电池2b”的背 面主栅;21、背接触分切电池2b”的背面中部主栅。
具体实施方式
以下列举具体实施例对本发明进行说明。
实施例1
图1为本发明实施例1中的太阳能电池组件的结构示意图。
如图1所示,本实施例提供的太阳能电池组件,按照从受光面向背光面(图1中的从下至上)的顺序依次包括:盖板101、第一封装胶膜201、电池串组301、第二封装胶膜401、背板501。需要说明的是,在本文中受光面也称为正面,背光面也称为背面。
电池串组301由多个电池串601连接而成,整体而言,电池串组301包括多个阵列式的电池片。每个电池串601包括依次以串联方式电连接的多个第一种电池片701、一个第二种电池片801、以及多个第一种电池片701。更具体而言,在图1中,电池串组301由6个电池串601连接而成,每个电池串601包括依次以串联方式电连接的6个以上的第一种电池片701、1个第二种电池片801、以及6个以上的第一种电池片701。
另外,请参见图1中的标号M所示的电池串组301的下半部分。在标号M所示的电池串组301的下半部分中,每个电池串601由多个第一种电池片701和一个第二种电池片801连接而成,其中多个第一种电池片701的正面电极的极性相一致,多个第一种电池片701的背面电极的极性也相一致,且多个第一种电池片701的正面电极和多个第一种电池片701的背面电极的极性相反,第二种电池片801的背面上的背面电极包括正极和负极。在标号M所示的电池串组301的下半部分中,对于每个电池串601而言,第一个第一种电池片701(例如阵列形式的电池串组的左下角的第一种电池片701)的背面电极为正极,第一个第一种电池片701的正面电极为负极,该第一个第一种电池片701的正面电极(负极)与第二个第一种电池片701的背面电极(正极)以叠瓦的方式连接,该第二个第一种电池片701的正面电极(负极)与第三个第一种电池片701的背面电极(正极)以叠瓦的方式连接,……该第n-1个第一种电池片701的正面电极(负极)与第n个第一种电池片701的背面电极(正极)以叠瓦的方式连接……依次进行,从而形成叠瓦式电池串结构,并且第二种电池片801之前的一个第一种电池片701的正面电极(负极)与第二种电池片801的一个背面电极(正极)连接。
然后,请参见图1中的电池串组301的上半部分,即与M所示的下半部分相反的上半部分。第二种电池片801的另一个背面电极(负极)与另一个第一种电池片701的正面电极(正极)以叠瓦方式连接、然后该另一个第一种电池片701的背面电极(负极)与下一个第一种电池片 701的正面电极(正极)以叠瓦方式连接……,依次进行,最后一个第一种电池片701的背面的负极暴露。
通过以上方式,形成了串联的一个电池串601。该电池串601包括依次以串联方式电连接的6个以上的第一种电池片701、1个第二种电池片801、以及6个以上的第一种电池片701。
上述形成的电池串601为串联的电连接形式。当需要将电流引出时,可以将6个并排的电池串601的所有的第一个第一种电池片701的正极利用第一电流导出单元901从背面导出至太阳能电池组件的侧方,同时将6个并排的电池串601的所有的最后一个第一种电池片701的负极利用第二电流导出单元902从背面导出至太阳能电池组件的侧方,同时将6个并排的电池串601的所有的中间的第二种电池片801的正极和负极利用第一电流导出单元901和第二电流导出单元902从背面导出至太阳能电池组件的侧方。此处,第二种电池片801的背面的用于引出电流的正极和负极主栅可以位于第二种电池片801的背面的中部或者背面的侧部。可以看出,在本实施例中,无论是第一电流导出单元901还是第二电流导出单元902均从太阳能电池组件的背面引出,例如当第一电流导出单元901和第二电流导出单元902为焊带或者汇流条时,其不会形成对太阳能电池组件的电池的正面形成遮挡。而且第一电流导出单元901和第二电流导出单元902均位于太阳能电池片的下方,并没有伸出至太阳能电池片(太阳能电池串)的外部,因此,也可以节约太阳能电池组件的安装面积,从而在有限的面积内排布更多的太阳能电池片。
需要说明的是,还可以通过调整第一种电池片701和第二种电池片801的正负极设置和排列方式,使上述形成的电池串601为并联的电连接形式。
在本发明中,第一种电池片701和第二种电池片801为长条形的电池片,通常为长方形的电池片,该长方形的电池片例如可以通过对正方形的电池片(在制成电池片之前叫做硅片)进行二等分切割、三等分切割、四等分切割、五等分切割、六等分切割等方式实现。在本实施例中,常用的切割方式是五等分切割。
请参见图2,图2是实施例1中的第一种太阳能电池全片A(正方形)切割前后的示意图,其中(a):第一种太阳能电池全片A切割前正面,(b):第一种太阳能电池全片A切割前背面,(c):第一种太阳能电池全片A切割后a(A-I类电池片)正面,(d):第一种太阳能电池全片A切割后a的背面。如图2(c)和图2(d)所示,切割后a(A-I类电池片)具有第一种电池片a的正面主栅1和第一种电池片a的背面主栅2。例如该第一种电池片a的正面主栅1为负极,第一种电池片a的背面主栅2为正极。该该第一种电池片a为常规的电池片,即正极和负极分别位于电池的正面和背面。
第二种电池片可以为背接触电池。例如,第二种电池片的正面可以设有正面电极(例如MWT结构),也可以不设正面电极(例如IBC结构)。请参见图4,图4是实施例1中背接触电池全片B切割前后示意图,其中(a):背接触电池全片B切割前正面,(b):背接触电池全片B切割前背面,(c):背接触电池全片B切割后b(B-I类电池片)的正面,(d):背接触电池全片B切割后b的背面。该种第二种电池片(B-I类电池片)包括第二种电池片b的正面主栅3、第二种电池片b(B-I类电池片)的背面主栅4、第二种电池片b的背面与正面电极相同极性的电极5、以及第二种电池片b的背面中部主栅6。在本实施例中,可以利用焊带或汇流条从背面的电极或主栅引出两条电流导出单元。
请参见图5,图5是实施例1中的一段电池串的串联示意图。首先,第一种电池片a(A-I类电池片)串联,然后与第二种电池片b串联,然后第二种电池片b再与第一种电池片a(A-I类电池片)串联。
在一种实施方案中,如图5所示,第一种电池片可以包括多个A-I类电池片a,和至少一个A-II类电池片a’(如图3所示)。该A-II类电池片a’具有2个所述背面电极,其中一个所述背面电极位于所述A-II类电池片的背面的边缘,另一个所述背面电极位于所述A-II类电池片的背面的中部,如此,如后述制备方法中所描述的,正极和负极均可以从电池的背面引出。具体而言,如图3所示,该第一种电池片a’(A-II类电池片)包括的第一种电池片a’的正面主栅10、第一种电池片a’的背面主栅11、以及第一种电池片a’的背面中部主栅12。
请参见图1,相应地,多个第一种电池片701中的至少一者的背面上具有第一电流导出单元901,且至少一个第二种电池片801的背面上具有第二电流导出单元902。
这样设计,在相邻电池片之间使用例如导电胶进行电连接,则可以不用汇流带(焊带)同时连接相邻两个电池片的正反两面,在组件端能有效提高生产的速度和效率,降低组件生产过程中的碎片率。同时在能保证组件抗热斑性能的基础上提高组件面积的有效利用率,增大组件的发电效率。
如图2所示,第一种电池片切割前的整片电池片的正面和背面分别设有主栅,将整片电池片在靠近主栅预留位置处进行切割形成多个第一种电池片,主栅分布在第一种电池片的长边上,且与第一种电池片的短边相垂直。
其中第一种电池片还可以具有另外一种结构,如图3所示,第一种电池片切割前的整片的正面和背面分别设有主栅,将整片电池片在靠近主栅预留位置处进行切割形成多个第一种电池片,主栅分布在第一种电池片的长边上,且与第一种电池片的短边相垂直,其背面设有两种类型的主栅,其中一主栅为连续的线段结构,另一主栅为不连续的线段结构。
如图4所示,第二种电池片切割前的整片的正面和背面分别设有主栅,背面同时有正负极的主栅,将整片电池片在靠近正面主栅预留位置处进行切割形成多个第二种电池片,第二种电池片的正面和背面另一侧上边上有主栅分布,且在第二种电池片的背面还有其它正极和负极电极,电极均与电池片的短边相垂直。
如图5所示,将切割后的第一种电池片进行互相串联时,相邻两电池片之间的连接采用叠片方式进行串联,其中一片电池片的背面主栅设置在相邻一片电池片的正面主栅上,背面主栅与正面主栅相接触位置处设有导电材料(例如导电胶)。
如图6所示,图6是实施例1的组件的电路示意图。第一种电池片串联到一定数量(1~40pcs)后,再串入一片第二种电池片,将第二种电池片与第一种电池片进行互相串联时,相邻两电池片之间的连接采用叠瓦方式进行串联,其中一片的第二种电池片的背面边沿主栅设置在相邻一片第一种电池片的正面主栅上。然后继续串联第一种电池片到第二种电池片所在电池串上,串联时相邻两电池片之间的连接同样采用叠片方式进行串联,其中一片第一种小电池片的背面主栅设置在相邻一片第二种小电池片的正面长边边沿的主栅上,再串联一定数量的第一种小电池片(0~40片),然后根据需要再串入第二种小电池片,如此循环得到所需电池串。
背面主栅与正面主栅相接触位置处设有导电材料。
如图7所示,图7是实施例1中电池串的背面结构以及连接示意图。使用汇流带将所有电池串进行并联。然后使用一根汇流带与所有电池串中的第二种电池的背面的正极电极进行焊接,再使用一根汇流带将所有电池串中第二种电池的背面负极进行焊接,将不同串间的第二种电池并联并留出引线。
汇流带可以根据电池主栅具体情况设置有绝缘图案。
第二种电池背面电极可以是点状、椭圆形、矩形,或者是连续的一条栅线。焊接方式也可以是加热焊接,也可以是双面导电材料进行焊接。
具体而言,上述太阳能电池组件的制备方法,可以包括以下步骤。
本实施例采用第一种电池片(常规太阳能电池)和第二种电池片(背接触太阳能电池)结合制作组件,两种电池片分切后使用叠片的方式串焊成串,电池串之间分段在背接触电池背面并联,形成串并串并的电路,并且电路中适当位置并联二极管,制成组件,具体步骤如下:
(1)选取电池片A,将电池片A切割成5个第一种电池片a,图2中(a),(b),(c),(d)为第一种电池片切割前后的示意图,其中(a)图为切割前电池片正面,(b)图为切割前电池片背面,(c)图为切割后电池片正面,(d)图为切割后电池片背面;
(2)选取另外一种背面电极结构的电池片A’,将电池片A’切割成5个第一种电池片a’,图3中(a),(b),(c),(d)为电池切割前后的示意图,其中(a)图为切割前电池片正面,(b)图为切割前电池片背面,(c)图为切割后电池片正面,(d)图为切割后电池片背面;
(3)选取背接触太阳能电池片B,将背接触太阳能电池片B切割成5片第二种电池片b,图4中(a),(b),(c),(d)电池片切割前后的示意图,其中(a)图为切割前电池片正面,(b)图为切割前电池片背面,(c)图为切割后电池片正面,(d)图为切割后电池片背面;
(4)焊接太阳能电池串:取一片第一种电池片a’,检查电池的外观,在第一种电池片a’的正面主栅10点上导电胶,然后再取一片第一种电池片a同样检查电池外观在第一种电池片a的正面主栅1上点导电胶,将第一种电池片a的背面主栅2与第一种电池片a’有导电胶的正面主栅10重叠,加热焊接,整个焊接过程可以在自动串焊的机器中完成;
将切割后的多个第一种电池片a进行互相串联到30p后加入第二种电池片b,第二种电池片b检查外观,在第二种电池片b的正面主栅3上点导电胶,将第二种电池片b的背面主栅4与电池串中有导电胶的第一种电池片a正面主栅1重叠,加热焊接,然后继续串联第一种电池片a,第一种电池片a的背面主栅2与电池串中第二种电池片b正面主栅3重叠,加热焊接,如此制作形成需要的包含有多片(≥1片)背接触电池的电池串,再将多个电池串连接,形成电池串组;
(4)将多个电池串并联,使用汇流带7将6个电池串的第一种电池片a’的背面中部主栅12连接并留出引出线,使用带有绝缘团的汇流带7在背面将不同串间的第二种电池片b的背面与正面电极相同极性的主栅5并联并留出引线,使用常规汇流带7在背面将6个电池串中第二种电池片b的背面中部主栅6连接并留出引线,如图7所示;
图6为组件的电路图,图17为汇流带7的一种形式,白色为与电池背面的负极接触,黑色绝缘部分与电池背面接触;
(5)按照从上至下的顺序,将盖板材料、EVA和/或POE、电池串组、EVA和/或POE、背板材料铺设好;
(6)铺设完成后经包括EL测试、层压后处理工序处理;
(7)在引出线端之间按照电路图焊接带有二极管的接线盒即可制成叠瓦太阳能电池组件。
实施例2
本实施例提供的太阳能电池组件的结构,同实施例1,如图1所示。
第一种电池片为常规电池片,常规电池与实施例1中相同,如图2和图3所示,第一种电池片的正面和背面分别设有主栅,将切割前的整片太阳能电池片在靠近主栅预留位置处进行切割形成多个第一种电池片,主栅分布在第一种电池片的长边上,且与第一种电池片的短边相垂直。
如图8a和图8b所示,第二种电池片为背接触电池片,该背接触电池片的正面未设有电极,背接触电池片的正负电极均设置在背接触电池片的背面。
将切割前的整片背接触电池片在靠近背面主栅预留位置处进行切割形成多个第二种电池片b’,第二种电池片b’的背面另一侧上边上有主栅分布,中部有与正面极性相同的主栅分布,所有主栅均与第二种电池片的短边相垂直。
本实施例采用常规太阳能电池和背接触太阳能电池结合制作组件,两种电池分切后使用叠片的方式串焊成串,电池串之间分段在背接触电池背面并联,形成串并串并的电路,并且电路中适当位置并联二极管,制成组件,具体步骤如下:
(1)选取电池片A,将电池片A切割成5个第一种电池片a,图2中(a),(b),(c),(d)为电池切割前后的示意图;
(2)选取第一种电池片A',将第一种电池片A'切割成5个第一种电池片a’,图3中(a),(b),(c),(d)为电池切割前后的示意图;
(3)选取背接触太阳能电池片B’,将第二种电池片B’切割成5个第二种电池片b’,图8a和图8b中(a),(b),(c),(d)电池片切割前后的示意图;
(4)焊接太阳能电池串:取一片第一种电池a’,检查电池的外观,在第一种电池a’的正面主栅10点上导电胶,然后再取一片第一种电池a,将第一种电池a的背面主栅2与第一种电池片a’有导电胶的正面主栅10重叠,加热焊接,整个焊接过程可以在自动串焊的机器中完成;
将切割后的多个第一种电池片a进行互相串联到30p后加入第一种电池片a’,将第一种电池片a’的背面主栅11与电池串中有导电胶的第一种电池片a的正面主栅1重叠,加热焊接;继续串入第一种电池片a’,将第一种电池片a’的背面主栅11与第一种电池片a’有导电胶的正面主栅10重叠,加热焊接然后继续串联第一种电池片a;如此循环至理想长度后串入第二种电池片b’,将第二种电池片b’的背面主栅13与电池串中有导电胶的第一种电池片a的正面主栅1重叠,加热焊接,如此制作形成包含有背接触电池的电池串;
(5)将多个电池串并联,使用常规汇流带7在背面将6个电池串中的第一种电池片a’ 的背面中部主栅12连接并留出引线;使用有绝缘图案的汇流带7在背面将不同串间的第二种电池片b’的背面主栅14-中部主栅(图8a所示的第二种电池片)或背面主栅14-边缘主栅(图8b所示的第二种电池片)并联并留出引线,如图9所示;
(5)按照从下至上的顺序,将盖板材料、EVA和/或POE、电池串组、EVA和/或POE、背板材料铺设好;
(6)铺设完成后经包括EL测试、层压后处理工序处理;
(7)在引出线端之间,按照电路图焊接带有二极管的接线盒即可制成叠瓦太阳能组件。
实施例3
本实施例提供的太阳能电池组件的结构同实施例1。
如图2所示,第一种电池片的正面和背面分别设有主栅,将第一种电池片在靠近主栅预留位置处进行切割形成多个第一种电池片,主栅分布在第一种电池片的长边上,且与第一种电池片的短边相垂直。
如图10所示,第二种电池片为背接触电池片,该背接触电池片的正面未设有电极,背接触电池片的正负电极均设置在背接触电池片的背面,将背接触电池片在靠近背面主栅预留位置处进行切割形成多个第二种电池片b”,第二种电池片b”的背面另一侧上边上有主栅分布,中部和另一侧均有与正面极性相同的主栅分布,所有主栅均与第二种电池片的短边相垂直。
如图11所示,将切割后的第一种电池片进行互相串联时,相邻两电池片之间的连接采用叠瓦方式进行串联,其中一片电池片的背面主栅设置在相邻一片电池片的正面主栅上,背面主栅与正面主栅相接触位置处设有导电材料。
串联第一种电池到所需数量后停止形成第一小串电池串;第一种电池片串联到一定数量后,再串入一片第二种电池片形成第二小串电池串。
两小串电池串由相同数量的电池片串联而成,组件的电路图如图12所示。
然后将第二小串电池串最后一片第二种电池片的背面与正面极性相同的电极与第一小串电池串最后一片第二种电池片的正面电极采用叠瓦方式进行并联,如此得到所需电池串,所有电极相接触位置处设有导电材料,如图11所示。
该叠瓦太阳能电池组件的制备方法,包括以下步骤。
本实施例采用常规太阳能电池和背接触太阳能电池结合制作组件,两种电池分切后使用叠瓦的方式串焊成串,电池串之间分段在背接触电池背面串联,并且电路中适当位置并联二极管,制成组件,具体步骤如下:
(1)选取电池片A,将电池片A切割成5个第一种电池片a,图2中(a),(b),(c),(d)为电池切割前后的示意图,其中(a)图为切割前电池片正面,(b)图为切割前电池片背面,(c)图为切割后电池片正面,(d)图为切割后电池片背面;
(2)选取电池片A’,将电池片A’切割成5个第一种电池片a’,图3中(a),(b),(c),(d)为电池切割前后的示意图,其中(a)图为切割前电池片正面,(b)图为切割前电池片背面,(c)图为切割后电池片正面,(d)图为切割后电池片背面;
(3)选取电池片B”,将电池片B”切割成5个第二种电池片b”,图10中(a),(b),(c),(d)电池片切割前后的示意图,其中(a)图为切割前电池片正面,(b)图为切割前电池片背面,(c)图为切割后电池片正面,(d)图为切割后电池片背面;
(4)焊接太阳能电池串C:取一片第一种电池a’,检查电池的外观,在第一种电池a’的正面主栅10点上导电胶,然后再取一片第一种电池a同样检查电池外观在第一种电池片a的正面主栅1上点导电胶,将第一种电池片a的背面主栅2与另一片第一种电池片a’有导电胶的正面主栅10重叠,加热焊接,整个焊接过程可以在自动串焊的机器中完成,将切割后的多个电池片a进行互相串联到30p后停止形成电池串C;
(5)焊接太阳能电池串D:取一片第一种电池a’,检查电池的外观,在第一种电池a’的正面主栅10点上导电胶,然后再取一片第一种电池a同样检查电池外观在第一种电池片正面主栅1上点导电胶,将第一种电池a的背面主栅2与另一片第一种电池片a’有导电胶的正面主栅10重叠,加热焊接,整个焊接过程可以在自动串焊的机器中完成,将切割后的多个电池片a进行互相串联到29p后停止,加入第二种电池片片b”,第二种电池片b”检查外观,将第二种电池片b”与电池背面极性相同的背面主栅15与电池串中有导电胶的第一种电池片a正面主栅1重叠,加热焊接形成电池串D;
(6)焊接太阳能电池串组:在电池串C最后一片第一种电池a的正面主栅1上点上导电胶,将电池串D最后一片第二种电池片b”的与电池正面极性相同的背面主栅17与第一串最后一片电池a的正面主栅1重叠,加热焊接,形成两串C和D并联的电池串组,整个焊接过程可以在可吸附的加热台上进行,如图11所示;
(7)将多个电池串并联,使用常规汇流带7将6个电池串首尾的电池a’的背面中部主栅连接并留出引出线,在组件的一侧使用汇流带将首尾的汇流带相连;使用带有绝缘图案的汇流带7在背面将不同串间的第二种电池片b”与电池正面极性相同的背面中部主栅16并联并留出引线,形成电池串组,图17为汇流带7的其中一种形式,白色为与电池背面的负极接触,黑色绝缘部分与电池背面接触;
(5)按照从下至上的顺序,将盖板材料、EVA和/或POE、电池串组、EVA和/或POE、背板材料铺设好;
(6)铺设完成后经包括EL测试、层压后处理工序处理;
(7)在引出线端之间按照电路图焊接带有二极管的接线盒即可制成叠瓦太阳能组件。
实施例4
本实施例提供的太阳能电池组件的结构示意图同实施例1。
两小串电池串均由相同数量的第一种电池片和/或第二种电池片串联而成,中间并联的电池面积较其他电池大,功率和电流为其他电池2倍。本实施例中有两种电池串,一种是中间电池为正极引出,一种是中间电池为负极引出。
每个电池串主要由两串叠瓦串联的包含两种电池的小电池串使用一片大面积的分切电池将其并联而成。
中间电池为正极引出的电池串串并联接的具体方式为:一片大面积的分切电池2a’的背面两侧的电极覆盖在两串数量相同的包含两种类型的串联的电池串的第一片常规电池的正面电极上,将两串电池并联联接,两串串联电池串的最后一片电池为背接触电池,所有正面电极与背面电极之间设有导电材料。
中间电池为负极引出的电池串串并联接的具体方式为:一片大面积的分切电池2b”的背面两侧的电极覆盖在两串数量相同的包含两种类型的串联的电池串的第一片常规的正面电极上,将两串电池并联联接,所有正面电极与背面电极之间设有导电材料。
具体为:
这里以p型晶硅电池为例,电池的正面电极为负极,背面电极为正极,背接触电池正面电极为负极,背面有边部的正极,以及中部的正极和负极。
如图1所示,切割前的电池片正面和背面分别设有主栅,将太阳能电池片在靠近主栅预留位置处进行切割形成多个第一种电池片,主栅分布在第一种电池片的长边上,且与电池片的短边相垂直。
如图8所示,切割前的电池片为背接触电池片,该背接触电池片的正面未设有电极,背接触电池片的正负电极均设置在背接触电池片的背面。将太阳能电池片在靠近正面主栅预留位置处进行切割形成多个第二种电池片b’,第二种电池片的背面另一侧上边上有主栅分布,中部有与正面极性相同的主栅分布,所有主栅均与第二种电池片的短边相垂直。
如图13所示,大面积的常规分切电池面积约为其他电池的2倍,电流和功率也约为其他 电池的两倍,正面长边两侧有两根主栅,背面中部有一根主栅;大面积的第二种背接触分切电池的面积同样约为其他电池的2倍,电流和功率也约为其他电池的两倍,正面没有主栅,背面长边两侧有两根背面主栅,中部有一根与正面极性相同的主栅。
如图14所示,将切割后的第一种电池片进行互相串联时,相邻两电池片之间的连接采用叠瓦方式进行串联,其中一片电池片的背面主栅设置在相邻一片电池片的正面主栅上,背面主栅与正面主栅相接触位置处设有导电材料。
该叠瓦太阳能电池组件的制备方法,包括以下步骤。
本实施例采用常规太阳能电池背接触太阳能电池结合制作组件,两种电池分切后使用叠瓦的方式串焊成串,电池串之间分段在背接触电池背面串联,并且电路中适当位置并联二极管,制成组件,具体步骤如下:
(1)选取太阳能电池片A,将太阳能电池片A切割成5个电池片a,图2中(a),(b),(c),(d)为电池切割前后的示意图,其中(a)图为切割前电池片正面,(b)图为切割前电池片背面,(c)图为切割后电池片正面,(d)图为切割后电池片背面;
(2)选取太阳能电池A’,将太阳能电池片A’切割成5个电池片a’,图3中(a),(b),(c),(d)为电池切割前后的示意图,其中(a)图为切割前电池片正面,(b)图为切割前电池片背面,(c)图为切割后电池片正面,(d)图为切割后电池片背面;
(3)选取背接触太阳能电池片B”,将太阳能电池片B”切割成5个电池片b”;图10中(a),(b),(c),(d)电池片切割前后的示意图,其中(a)图为切割前电池片正面,(b)图为切割前电池片背面,(c)图为切割后电池片正面,(d)图为切割后电池片背面;
(4)焊接太阳能电池串E:取一片电池a,检查电池的外观,在电池a的正面主栅1点上导电胶,然后再取一片电池a同样检查电池外观在电池正面主栅上点导电胶,将电池a的背面主栅2与另一片有导电胶的正面主栅1重叠,加热焊接,整个焊接过程可以在自动串焊的机器中完成。将切割后的多个电池片a进行互相串联到29p后停止。加入电池b’,电池b’检查外观,将电池b’的背面主栅13与电池串中有导电胶的电池a正面主栅1重叠,加热焊接形成电池串E;
(5)并联太阳能电池串E:取一片大面积的第一种分切电池2a’,如图13(a),(b)所示,将第一种分切电池2a’的两根正面主栅18点上导电胶分别与两串电池串E中的第一片电池a的背面主栅2重叠,加热焊接,并联形成电池串G;
(6)焊接太阳能电池串F:取一片电池a’,检查电池的外观,在电池a’的正面主栅10点上导电胶,然后再取一片电池a同样检查电池外观在电池正面主栅1上点导电胶,将电池a’的背面主栅11与另一片有导电胶的正面主栅1重叠,加热焊接,整个焊接过程可以在自动串焊的机 器中完成。将切割后的多个电池片a进行互相串联到30p后停止,形成电池串F;
(7)并联太阳能电池串F:取一片大面积的背接触分切电池2b”,如图13(c),(d)所示,将电池背面边沿背接触分切电池2b”的背面主栅20分别与与两串电池串F中的最后一片电池a的正面主栅1重叠,正面主栅1上点上导电胶,加热焊接,并联形成电池串H;
(8)焊接太阳能电池串组:根据图16所示电路图,按照从左到右排列3个电池串G,3个电池串H;使用汇流带将3个电池串G的上端电池b’的背面中部主栅14和3个电池串H上端的电池a’的背面中部主栅12连接;同样使用带有绝缘图案的汇流带7将6个电池串的下端电池连接;另外使用常规汇流带7将3个电池串G中部的大面积的第一种分切电池2a’背面的主栅19连接,留出引线为正极,如图15所示;使用带有绝缘图案的汇流带7将3个电池串H中部的大面积背接触分切电池2b”的背面中部主栅21连接,流出引线为负极,如图15所示。图17为汇流带7其中一种形式,白色为与电池背面的负极接触,黑色绝缘部分与电池背面接触;
(9)按照从下至上的顺序,将盖板材料、EVA和/或POE、电池串组、EVA和/或POE、背板材料铺设好;
(10)铺设完成后经包括EL测试、层压后处理工序处理;
(11)在引出线端之间按照电路图焊接带有二极管的接线盒即可制成叠瓦太阳能组件。
本文还提供以下方案:
方案1、一种太阳能电池组件,按照从下至上的顺序依次包括盖板材料(101)、第一封装胶膜(201)、电池串组(301)、第二封装胶膜(401)、背板材料(501),所述的电池串组(301)由多个电池串(601)连接而成,其特征是:每个所述电池串(601)由多个第一种电池片(701)和至少一个第二种电池片(801)连接而成,其中所述多个第一种电池片(701)的正面电极的极性相一致,所述多个第一种电池片(701)的背面电极的极性也相一致,且所述多个第一种电池片(701)的正面电极和多个第一种电池片(701)的所述背面电极的极性相反,所述第二种电池片(801)的背面上具有正极和负极;
而且所述多个第一种电池片(701)中的至少一者的背面上具有第一电流导出单元(901),且所述至少一个第二种电池片(801)的背面上具有第二电流导出单元(902)。
方案2、根据方案1所述的太阳能电池组件,其中,所述第一种电池片(701)由整片电池片切割而成,切割后形成的多个第一种电池片(701)的结构相同,所述第二种电池片(801)也由整片电池片切割而成,切割后形成的多个第二种电池片(801)的结构相同。
方案3、根据方案2所述的太阳能电池组件,其中,每个所述电池串(601)由多个第一种 电池片(701)互相串联后再加入一片第二种电池片(801)连接而成;或每个所述电池串(601)由多个第一种池片(701)互相串联后加入第二种电池片(801)连接后继续串联/并联第一种电池片(701)连接而成;或每个所述电池串(601)由多个第一种电池片(701)和第二种电池片(801)交替连接而成。
方案4、根据方案3所述的太阳能电池组件,其中,所述多个第一种电池片(701)互相串联是其中一第一种电池片的背面电极覆盖在相邻一第一种电池片的正面电极上,相覆盖的背面电极与正面电极之间设有导电材料;所述第一种电池片(701)与所述第二种电池片(801)之间的连接是所述第一种电池片(701)的正面电极与所述第二种电池片(801)的背面电极相连接,相连接的正面电极与背面电极之间设有导电材料。
方案5、根据方案4所述的太阳能电池组件,其中,所述第一种电池片(701)和所述第二种电池片(801)之间的连接为串联或并联,所述第一种电池片(701)与所述第二种电池片(801)的连接电极极性相同时,所述第一种电池片(701)和所述的第二种电池片(801)之间的连接为并联连接,所述第一种电池片(701)与所述第二种电池片(801)的连接电极极性相反时,所述第一种电池片(701)和所述的第二种电池片(801)之间的连接为串联连接。
方案6、根据方案2所述的太阳能电池组件,其中,所述第一电流导出单元(901)和第二电流导出单元(902)为焊带(7),所述焊带(7)全部从所述第一种电池片(701)和所述第二种电池片(801)的背面引出并预留引出线。
方案7、根据方案2所述的太阳能电池组件,其中,所述第二种电池片(801)的正面也设有电极,所述电极通过穿孔方式引至所述第二种电池片的背面形成与正面相同极性的电极,所述第二种电池片的背面上的正极和负极之间相绝缘。
方案8、根据方案2所述的太阳能电池组件,其中,所述第二种电池片(801)的正面未设有电极,所述第二种电池片的背面上的正极和负极之间相绝缘。
方案9、太阳能电池组件的制备方法,包括以下步骤:
(1)选取第一种电池片(701)和第二种电池片(801);
(2)将多个第一种电池片(701)和至少一个第二种电池片(801)相连接,形成电池串(601),再将多个电池串(601)相连接,形成电池串组(301);
(3)使用第一电流导出单元(901)在背面将不同电池串间的第一种电池片(701)并联并预留引出线,使用第二电流导出单元(902)在背面将不同电池串间的第二种电池片(801)并联并预留引出线;
(4)按照从下至上的顺序,将盖板材料(101)、第一封装胶膜(201)、电池串组(301)、 第二封装胶膜(401)、背板材料(501)铺设好;(5)铺设完成后经包括EL测试、层压后处理工序处理;
(6)在各个预留引出线处焊接接线盒与二极管,即制得太阳能电池组件。
方案11、一种太阳能电池组件,按照从下至上的顺序依次包括盖板材料(101)、第一封装胶膜(201)、电池串组(301)、第二封装胶膜(401)、背板材料(501),所述的电池串组(301)由多个电池串(601)连接而成,其特征是:每个所述电池串(601)由多个第一种电池片(701)和至少一个第二种电池片(801)连接而成,其中所述多个第一种电池片(701)的正面电极的极性相一致,所述多个第一种电池片(701)的背面电极的极性也相一致,且所述多个第一种电池片(701)的正面电极和多个第一种电池片(701)的所述背面电极的极性相反,所述第二种电池片(801)的背面上具有正极和负极;
所述电池串(601)两端的电池片的背面均设置有电流导出单元。
方案12、根据方案11所述的太阳能电池组件,其特征是,所述电池串(601)一端的电池片为第一种电池片(701),另一端的电池片为第二种电池片(801);
所述第一种电池片(701)背面设置第一电流导出单元(901),所述第二种电池片(801)背面设置第二电流导出单元(902)。
方案13、根据方案11所述的太阳能电池组件,其特征是,所述电池串(601)两端的电池片均为第一种电池片(701),所述第二种电池片(801)位于所述电池串(601)的中部;
所述第一种电池片(701)背面设置第一电流导出单元(901)。
方案14、根据方案13所述的太阳能电池组件,其特征是,在所述第二种电池片(801)的背面设置有第二电流导出单元(902)。
上面列举一部分具体实施例对本发明进行说明,有必要在此指出的是以上具体实施例只用于对本发明作进一步说明,不代表对本发明保护范围的限制。其他人根据本发明做出的一些非本质的修改和调整仍属于本发明的保护范围。

Claims (14)

  1. 一种太阳能电池串(601),其特征在于,由多个第一种电池片(701)和至少一个第二种电池片(801)连接而成,其中多个所述第一种电池片(701)的正面电极的极性相一致,多个所述第一种电池片(701)的背面电极的极性也相一致,且多个所述第一种电池片(701)的正面电极与背面电极的极性相反,
    所述第二种电池片(801)的背面上的背面电极包括正极和负极。
  2. 根据权利要求1所述的太阳能电池串(601),其特征在于,所述第一种电池片(701)包括A-I类电池片、A-II类电池片、以及A-III类电池片中的一种或多种,每种包括1个或多个,其中,
    所述A-I类电池片中,所述正面电极、背面电极各为1个且分别形成于所述第一种电池片(701)的对边边缘;
    所述A-II类电池片中,具有2个所述背面电极,其中一个所述背面电极位于所述A-II类电池片的背面的边缘,另一个所述背面电极位于所述A-II类电池片的背面的中部;
    所述A-III类电池片中,具有2个所述正面电极且分别位于所述第一种电池片(701)的正面的对边边缘,所述背面电极为1个且位于背面的中部。
  3. 根据权利要求1所述的太阳能电池串,其特征在于,所述第二种电池片(801)为背接触式太阳能电池片,所述背接触式太阳能电池片的正面设有正面电极或不设正面电极。
  4. 根据权利要求3所述的太阳能电池串,其特征在于,所述第二种电池片(801)包括B-I类电池片、B-II类电池片、B-III类电池片、B-IV类电池片中的一种或多种,每种包括1个或多个,
    其中,所述B-I类电池片的背面包括2个负极和1个位于中部的正极,其中1个负极位于边缘部1个负极位于中部;
    所述B-II类电池片的背面包括1个正极和1个负极,负极位于边缘部且正极位于中部或边缘部;
    所述B-III类电池片的背部包括2个正极和1个负极,其中负极位于边缘部,1个正极位于对边的边缘部且另1个正极位于中部;
    所述B-IV类电池片的背部包括2个正极和1个负极,其中,2个正极位于边缘部,1个负极位于中部。
  5. 根据权利要求3所述的太阳能电池串,其特征在于,多个所述第一种电池片(701)的结构相同,当包括多个所述第二种电池片(801)时多个所述第二种电池片(801)的结构也相同。
  6. 根据权利要求1所述的太阳能电池串,其特征在于,
    由多个所述第一种电池片(701)互相串联后再连接一片所述第二种电池片(801)形成;
    或由多个所述第一种池片(701)互相串联后连接所述第二种电池片(801)并继续串联/并联所述第一种电池片(701)形成;
    或由多个所述第一种电池片(701)和第二种电池片(801)交替连接而成。
  7. 根据权利要求5所述的太阳能电池串,其特征在于,所述多个第一种电池片(701)互相串联是:其中一片所述第一种电池片(701)的背面电极覆盖在相邻一片所述第一种电池片(701)的正面电极上,相覆盖的背面电极与正面电极之间设有导电材料。
  8. 根据权利要求5所述的太阳能电池串,其特征在于,所述第一种电池片(701)与所述第二种电池片(801)之间的连接是:所述第一种电池片(701)的正面电极与所述第二种电池片(801)的背面电极中的正极或负极相连接以分别形成并联或串联,相连接的正面电极与背面电极之间设有导电材料。
  9. 根据权利要求1所述的太阳能电池串,其特征在于,所述第一种电池片(701)中的至少一者的背面上具有第一电流导出单元(901),且所述第二种电池片(801)的至少一者的背面上具有第二电流导出单元(902)。
  10. 根据权利要求9所述的太阳能电池串,其特征在于,所述第一电流导出单元(901)和第二电流导出单元(902)为焊带(7),所述焊带(7)从所述第一种电池片(701)和所述第二种电池片(801)的背面引出并设有引出线。
  11. 根据权利要求1所述的太阳能电池串,其特征在于,所述第一种电池片(701)与所述第二种电池片(801)之间的电流差异为2%以内。
  12. 一种太阳能电池串组(301),其特征在于,由多个如权利要求1至11任一项所述的太阳能电池串(601)连接而成。
  13. 一种太阳能电池组件,其特征在于,按照从受光面向背光面顺序依次层合有:盖板(101)、第一封装胶膜(201)、如权利要求11所述的太阳能电池串组(301)、第二封装胶膜(401)、以及背板(501)。
  14. 权利要求13所述的太阳能电池组件的制备方法,其特征在于,包括如下步骤:
    (1)选取第一种电池片(701)和第二种电池片(801),其中,所述第一种电池片(701)的正面电极的极性相一致,所述第一种电池片(701)的背面电极的极性也相一致,且所述第一种电池片(701)的正面电极与背面电极的极性相反,所述第二种电池片(801)的背面上的背面电极包括正极和负极;
    (2)将多个所述第一种电池片(701)之间进行串联,此后与所述第二种电池片(801)相连接,形成电池串(601);
    (3)使用第一电流导出单元(901)在背面将不同电池串间的第一种电池片(701)并联并预留引出线,使用第二电流导出单元(902)在背面将不同电池串间的第二种电池片(801)并联并预留引出线,由此将多个所述电池串(601)相连接,形成电池串组(301);
    (4)按照从受光面至背光面的顺序,依次铺设盖板材料(101)、第一封装胶膜(201)、电池串组(301)、第二封装胶膜(401)、背板材料(501);
    (5)铺设完成后经包括EL测试、层压后处理工序处理;
    (6)在各个预留引出线处焊接接线盒与二极管,得到所述太阳能电池组件。
PCT/CN2019/085895 2018-05-09 2019-05-07 太阳能电池串、串组、组件及其制备方法 WO2019214627A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/980,143 US11469340B2 (en) 2018-05-09 2019-05-07 Solar cell string, string group, module, and manufacturing method thereof
EP19799049.2A EP3751625B1 (en) 2018-05-09 2019-05-07 Solar cell string, string group, assembly, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810439187.3 2018-05-09
CN201810439187.3A CN108649087B (zh) 2018-05-09 2018-05-09 一种太阳能电池组件及其制备方法

Publications (1)

Publication Number Publication Date
WO2019214627A1 true WO2019214627A1 (zh) 2019-11-14

Family

ID=63753769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085895 WO2019214627A1 (zh) 2018-05-09 2019-05-07 太阳能电池串、串组、组件及其制备方法

Country Status (4)

Country Link
US (1) US11469340B2 (zh)
EP (1) EP3751625B1 (zh)
CN (1) CN108649087B (zh)
WO (1) WO2019214627A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114649443A (zh) * 2022-03-03 2022-06-21 浙江爱旭太阳能科技有限公司 背接触太阳能电池串及其制备方法、电池组件及光伏系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108649087B (zh) 2018-05-09 2020-11-13 晶澳太阳能有限公司 一种太阳能电池组件及其制备方法
CN109301019A (zh) * 2018-10-24 2019-02-01 锦州阳光锦懋光伏科技有限公司 低于36v的电池叠加串并联组件及其制作方法
CN109659381A (zh) * 2018-11-02 2019-04-19 苏州爱康光电科技有限公司 一种叠瓦组件
CN109378348A (zh) * 2018-11-19 2019-02-22 苏州捷运昇能源科技有限公司 一种太阳能电池片及太阳能电池组件
CN110034210B (zh) * 2019-04-12 2022-04-12 晶澳太阳能有限公司 叠瓦电池串及其制备方法以及叠瓦电池组件的制备方法
CN110112245A (zh) * 2019-05-28 2019-08-09 晶澳(扬州)太阳能科技有限公司 太阳能电池组件及其制备方法
CN110350047A (zh) * 2019-07-05 2019-10-18 晶澳(邢台)太阳能有限公司 叠瓦太阳能电池双玻组件及其制备方法
CN110649119A (zh) * 2019-09-12 2020-01-03 常州比太科技有限公司 一种基于晶硅的太阳能发电组件及其制备方法
CN111863994A (zh) * 2020-07-01 2020-10-30 珠海格力电器股份有限公司 具有透明导电带的光伏组件
CN114883495A (zh) * 2022-05-13 2022-08-09 武汉理工大学 一种平米级钙钛矿太阳能电池组件及其制备方法
CN116159726A (zh) * 2022-10-11 2023-05-26 常州市北达机械制造有限公司 一种新型焊带与电池片的串联焊接方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130146122A1 (en) * 2010-06-08 2013-06-13 Amerasia International Technology, Inc. Solar cell module and panel, and method
CN106784105A (zh) * 2017-02-13 2017-05-31 晶澳(扬州)太阳能科技有限公司 一种高抗机械载荷太阳能电池组件及其制作方法
CN108649087A (zh) * 2018-05-09 2018-10-12 晶澳(扬州)太阳能科技有限公司 一种太阳能电池组件及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030121228A1 (en) * 2001-12-31 2003-07-03 Stoehr Robert P. System and method for dendritic web solar cell shingling
JP2004103834A (ja) * 2002-09-10 2004-04-02 Matsushita Ecology Systems Co Ltd 太陽電池モジュール
JP2004193375A (ja) * 2002-12-12 2004-07-08 Canon Inc 太陽電池アレイ
DE112011105125T5 (de) * 2011-04-04 2014-01-02 Mitsubishi Electric Corp. Solarzelle und Verfahren zum Herstellen derselben, und Solarzellenmodul
CN203983309U (zh) * 2014-07-23 2014-12-03 湖南红太阳新能源科技有限公司 一种防止热斑的光伏组件
KR101658733B1 (ko) * 2015-07-08 2016-09-21 엘지전자 주식회사 태양 전지 모듈
US10084104B2 (en) * 2015-08-18 2018-09-25 Sunpower Corporation Solar panel
US20190013428A1 (en) * 2016-02-19 2019-01-10 Corner Star Limited Connection cells for photovoltaic modules
CN106098809B (zh) * 2016-08-19 2017-07-21 中山瑞科新能源有限公司 一种串并联式薄膜电池组件的制备方法
CN106298987A (zh) * 2016-09-30 2017-01-04 晶澳(扬州)太阳能科技有限公司 一种mwt太阳能电池组件
CN206524340U (zh) * 2017-07-18 2017-09-26 东方环晟光伏(江苏)有限公司 高效叠瓦组件
CN206992118U (zh) * 2017-08-07 2018-02-09 阿特斯阳光电力集团有限公司 太阳能电池组件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130146122A1 (en) * 2010-06-08 2013-06-13 Amerasia International Technology, Inc. Solar cell module and panel, and method
CN106784105A (zh) * 2017-02-13 2017-05-31 晶澳(扬州)太阳能科技有限公司 一种高抗机械载荷太阳能电池组件及其制作方法
CN108649087A (zh) * 2018-05-09 2018-10-12 晶澳(扬州)太阳能科技有限公司 一种太阳能电池组件及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114649443A (zh) * 2022-03-03 2022-06-21 浙江爱旭太阳能科技有限公司 背接触太阳能电池串及其制备方法、电池组件及光伏系统
CN114649443B (zh) * 2022-03-03 2024-04-16 浙江爱旭太阳能科技有限公司 背接触太阳能电池串及其制备方法、电池组件及光伏系统

Also Published As

Publication number Publication date
US20210257506A1 (en) 2021-08-19
CN108649087A (zh) 2018-10-12
EP3751625C0 (en) 2023-10-25
EP3751625B1 (en) 2023-10-25
CN108649087B (zh) 2020-11-13
EP3751625A1 (en) 2020-12-16
US11469340B2 (en) 2022-10-11
EP3751625A4 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
WO2019214627A1 (zh) 太阳能电池串、串组、组件及其制备方法
US9412884B2 (en) Module fabrication of solar cells with low resistivity electrodes
US9515214B2 (en) Solar battery module and manufacturing method thereof
WO2020088027A1 (zh) 双发电单元叠瓦光伏组件
CN105789359A (zh) 一种双面太阳能电池组件的制作方法
JP5714080B2 (ja) 太陽電池モジュール
WO2018090445A1 (zh) 一种带有旁路二极管的光伏叠片组件
CN202231045U (zh) 太阳能电池组件
KR101923658B1 (ko) 태양전지 모듈
JP2015070260A (ja) 太陽電池
CN109216478A (zh) 单面叠瓦太阳能电池组件及制备方法
JP3219129U (ja) ソーラーモジュール
CN110212051A (zh) 一种抗热斑单板块光伏组件
CN205609550U (zh) 一种双面太阳能电池组件
CN111106194B (zh) 一种双面太阳能电池片及光伏组件
CN109087961A (zh) 一种光伏组件及其制作方法
CN206480635U (zh) 一种切片电池光伏组件
CN209708987U (zh) 单面叠瓦太阳能电池组件
CN110649119A (zh) 一种基于晶硅的太阳能发电组件及其制备方法
CN111725335A (zh) Hbc高效太阳能电池背电极连接及封装一体化结构
CN209561427U (zh) 光伏组件
CN209708995U (zh) 双面叠瓦太阳能电池组件
CN214068739U (zh) 一种电池串直接并联的叠瓦光伏组件
CN210897313U (zh) 一种基于晶硅的太阳能发电组件
CN216902972U (zh) 一种单面二分片光伏组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019799049

Country of ref document: EP

Effective date: 20200911

NENP Non-entry into the national phase

Ref country code: DE