WO2020088027A1 - 双发电单元叠瓦光伏组件 - Google Patents

双发电单元叠瓦光伏组件 Download PDF

Info

Publication number
WO2020088027A1
WO2020088027A1 PCT/CN2019/099663 CN2019099663W WO2020088027A1 WO 2020088027 A1 WO2020088027 A1 WO 2020088027A1 CN 2019099663 W CN2019099663 W CN 2019099663W WO 2020088027 A1 WO2020088027 A1 WO 2020088027A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery strings
power generation
row
photovoltaic module
Prior art date
Application number
PCT/CN2019/099663
Other languages
English (en)
French (fr)
Inventor
王刚
李俊斐
何胜
周盛永
黄海燕
陆川
Original Assignee
浙江正泰太阳能科技有限公司
浙江正泰新能源开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江正泰太阳能科技有限公司, 浙江正泰新能源开发有限公司 filed Critical 浙江正泰太阳能科技有限公司
Priority to JP2021514469A priority Critical patent/JP2021523581A/ja
Priority to EP19880743.0A priority patent/EP3783670A4/en
Publication of WO2020088027A1 publication Critical patent/WO2020088027A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/044PV modules or arrays of single PV cells including bypass diodes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the field of photovoltaic module production and manufacturing, in particular to a dual-power unit shingled photovoltaic module.
  • the device is composed of a glass and a backplane structure sandwiched by glue, and the middle composite crystalline silicon solar cell array forms a composite layer.
  • the device that converts light energy into electrical energy through the photovoltaic effect is called a photovoltaic module.
  • shingled photovoltaic modules directly bond cells in twos in series, avoiding the use of welding tape, reducing electrical and optical losses caused by welding tape, and increasing the utilization of space area; With higher module conversion efficiency, it can increase the power generation by more than 7% compared with conventional photovoltaic modules.
  • the invention provides a dual-power generating unit shingled photovoltaic module with high working reliability and low power loss when the hot spot effect occurs.
  • the photovoltaic module includes an upper layer glass, an upper layer encapsulation film, and a battery arranged in order from top to bottom The chip array layer, the lower encapsulation film, the backplane, and the junction box provided outside the backplane, wherein:
  • the cell array layer includes two power generating units connected in parallel between the positive electrode and the negative electrode of the junction box, and the two power generating units are arranged axisymmetrically on both sides of the center line of the cell array layer;
  • the power generation unit includes a plurality of large series battery strings connected in series, and two large series battery strings arranged symmetrically on each axis are connected in parallel to the same bypass diode;
  • the large-row battery string includes a plurality of single-row battery strings, and the single-row battery string is composed of a plurality of battery sheets stacked in series.
  • the large-row battery strings include a plurality of single-row battery strings connected in parallel.
  • each of the bypass diodes is provided in an integral junction box or each of the bypass diodes is provided in each sub junction box of a split junction box.
  • a plurality of the large battery strings in the power generation unit are arranged side by side and the polarities of the two adjacent large battery strings are opposite.
  • the single-row battery strings in the large-row battery strings are arranged side by side and have the same polarity.
  • the battery slice is a quarter slice battery, a sixth slice battery or a tenth slice battery.
  • the power generation unit includes two large battery strings, the large battery strings include three single-row battery strings, and the single-row battery strings include thirty one-sixth slice batteries.
  • the power generation unit includes four large-row battery strings, the large-row battery strings include three single-row battery strings, and the single-row battery strings include eighteen one-sixth slice batteries.
  • the power generation unit includes six of the large-row battery strings, the large-row battery strings include two single-row battery strings, and the single-row battery strings include twelve quarter slice batteries.
  • the power generation unit includes two large battery strings, the large battery strings include five single-row battery strings, and the single-row battery strings include thirty one-tenth sliced batteries.
  • a plurality of the battery sheets are connected in series through conductive rubber shingles to form the single-row battery string.
  • a plurality of the large battery strings are connected in series through a bus bar to form the power generation unit.
  • an insulating separation film is further provided between the bus bar and the battery sheet.
  • the dual-generation unit shingled photovoltaic module includes an upper glass, an upper encapsulating adhesive film, a cell array layer, a lower encapsulating adhesive film, a backplane, and a junction box outside the backplane, which are arranged in order from top to bottom.
  • the chip array layer includes two power generating units connected in parallel between the positive and negative electrodes of the junction box.
  • the two power generating units are arranged axisymmetrically on both sides of the center line of the battery chip array layer;
  • the column battery strings are connected in parallel to the same bypass diode; each column battery string includes a plurality of single column battery strings composed of battery tiles stacked in series.
  • the module has two power generating units, and the current flowing through each power generating unit is only half of the entire module, which can effectively reduce the power loss of the module caused by the hot spot effect; at the same time, the bypass diode in the module is relatively compared to the conventional shingled module
  • the parallel circuit voltage is low, which can effectively prevent the bypass diode from being broken down by an excessively high load voltage, and the working stability is high; in addition, the two power generation units share the bypass diode, which can greatly reduce production costs.
  • FIG. 1 is a schematic cross-sectional structure diagram of a dual-power unit shingled photovoltaic module according to a specific embodiment of the present invention
  • FIG. 2 is a schematic diagram of a circuit structure in which an array layer of a one-sixth slice battery is vertically arranged according to a specific embodiment of the present invention
  • FIG. 3 is a schematic front view of an array layer in which a one-sixth slice battery is vertically arranged according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of the back of a longitudinally-arranged component of a one-sixth slice battery according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a circuit structure in which an array layer of a one-sixth slice battery is horizontally arranged according to a specific embodiment of the present invention
  • FIG. 6 is a schematic front view of an array layer in which one-sixth slice battery is horizontally arranged according to a specific embodiment of the present invention
  • FIG. 7 is a schematic view of the back of the horizontally-arranged assembly of one-sixth sliced battery according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a circuit structure in which a quarter slice battery is horizontally arranged in an array layer according to an embodiment of the present invention
  • FIG. 9 is a schematic front view of an array layer in which a quarter slice battery is horizontally arranged according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the back of a quarter-slice battery horizontal arrangement component according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a circuit structure in which one-tenth sliced battery horizontally arranges array layers according to a specific embodiment of the present invention.
  • FIG. 12 is a schematic front view of an array layer in which one-tenth sliced cells are arranged laterally according to a specific embodiment of the present invention
  • FIG. 13 is a schematic back view of a one-tenth sliced battery horizontal arrangement component according to an embodiment of the present invention.
  • the present invention provides a dual power generating unit 301 shingled photovoltaic module with high working reliability and low power loss when the hot spot effect occurs.
  • the photovoltaic module includes The upper glass 100, the upper encapsulation film 200, the cell array layer 300, the lower encapsulation film 400, the backplane 500, and the junction box 600 provided outside the backplane 500 are provided in this order, wherein:
  • the cell array layer 300 includes two power generating units 301 connected in parallel between the positive and negative electrodes of the junction box 600, and the two power generating units 301 are disposed axisymmetrically on both sides of the center line of the cell array layer 300;
  • the power generation unit 301 includes a plurality of large series battery strings 302 connected in series, and two large series battery strings 302 arranged symmetrically on each axis are connected in parallel to the same bypass diode;
  • the large-row battery string 302 includes a plurality of single-row battery strings 303, and the single-row battery string 303 is composed of a plurality of battery sheets 304 stacked in series.
  • the arrangement of the large battery string 302 may have various implementations.
  • the large-row battery strings 302 may include a plurality of single-row battery strings 303 connected in parallel.
  • the junction box 600 may be an integral junction box, and each of the bypass diodes may be disposed inside the integral junction box. Further, in order to align the connection lines between the bypass diodes inside and the large battery strings 302, the integrated junction box may be disposed in the middle of the backplane 500, taking into account multiple bypass diodes and the two power generation units 301 at the same time Connection of multiple large battery strings 302.
  • the junction box 600 may also be a split junction box, and each of the bypass diodes may be respectively disposed inside a plurality of sub junction boxes of the split junction box.
  • the number of sub-junction boxes matches the number of bypassable diodes
  • the position of each sub-junction box matches the positions of two large columns of battery strings 302 arranged symmetrically on each axis of the two power generating units 301.
  • the split junction box can be set freely because of the position of each sub-junction box, so each bypass diode is closer to the large column battery string 302, that is, the connection circuit used is also shorter, in mass production Help to reduce production costs.
  • the split junction box may include three sub junction boxes with bypass diodes, one of the sub junction boxes is located in the middle of the backplane 500, the other two sub junction boxes are located on both sides of the backplane 500, and the sub junction boxes on both sides are the components.
  • the split junction box may further include two sub-junction boxes provided with bypass diodes.
  • the two sub-junction boxes are located at both ends of the backplane 500 and are respectively provided with lead-out ends of the positive and negative components of the assembly.
  • the plurality of large-row battery strings 302 in the power generation unit 301 may have multiple arrangements.
  • a plurality of the large series of battery strings 302 may be in an “S” shape Arrangement, that is, the polarity of each large battery string 302 is opposite to the adjacent large battery string 302, a plurality of large battery strings 302 are connected end to end, and the large battery strings 302 at both ends are respectively connected to the positive electrode of the junction box 600 and The negative electrodes are connected so that the battery cell array layer 300 is connected in series between the positive and negative electrodes of the junction box 600.
  • the arrangement of multiple single-row battery strings 303 in each large-row battery string 302 may have various implementations.
  • each of the single-row battery strings 303 may be arranged side by side with the same polarity At this time, not only the layout is neat, but also the least conductive medium is used, and the production cost is low.
  • the battery sheet 304 may be a quarter slice battery, a sixth slice battery, or a tenth slice battery.
  • the arrangement of the battery cells 304 in the battery cell array layer 300 may have various embodiments.
  • the power generation unit 301 may include 2 large columns A battery string 302, the large-row battery string 302 includes three single-row battery strings 303, and the single-row battery string 303 includes 30 one-sixth slice batteries.
  • each single-row battery string 303 has the same number of one-six slices battery.
  • every three rows of single-row battery strings 303 are connected in parallel to form a large-row battery string 302, a total of 4 large-row battery strings 302, and every two large-row battery strings 302 are connected in series to form a power generation unit 301, a total of two, located in the entire photovoltaic
  • the upper and lower parts of the module are connected in parallel with each other.
  • the positive and negative bus bars can be drawn from the middle of the module.
  • the four large battery strings 302 are all connected in parallel with bypass diodes, and the large battery strings 302 in the same longitudinal direction share one bypass diode, and only two bypass diodes are needed for the entire assembly.
  • the length of the sixth-slice battery may be 156.75 mm and the width may be 26.125 mm in order to make the appearance of the component the same as the conventional component.
  • the photovoltaic module composed of one-sixth sliced cell of this size has the same external dimensions as the conventional module.
  • the conventional fixed frame can be applied during installation, which can effectively reduce the adaptation problems caused by the upgrade of the module and avoid renewal
  • the design and production of fixed frames can make this photovoltaic module popularized and applied quickly.
  • the power generation unit 301 may include four of the large battery strings 302, the large batteries
  • the string 302 includes three single-row battery strings 303 that include 18 one-sixth sliced batteries.
  • the battery cell array layer 300 is provided, on the basis of the assembly of 72 cells arranged horizontally, one-six sliced cells are bonded in series to form a single row of battery strings 303, a total of 24 rows, each single row of battery strings 303 Have the same number of six-sixthslice slice batteries.
  • every three single-row battery strings 303 are connected in parallel to form a large-row battery string 302, a total of 8 large-row battery strings 302, and every four large-row battery strings 302 are connected in series to form a power generation unit 301, which has a total of two power generation units 301, respectively Located in the upper and lower parts of the entire photovoltaic module, and in parallel with each other, the positive and negative bus bars are led out from the middle of the module.
  • each series unit is connected with a bypass diode in parallel for protection.
  • the eight large battery strings 302 all have bypass diodes in parallel, and the series units located in the same longitudinal direction (axisymmetric arrangement) share one diode. Four bypass diodes are used for the entire module.
  • the power generation unit 301 may include six of the large battery strings 302, the large batteries
  • the string 302 includes 2 single-row battery strings 303 that include 12 quarter-slice batteries.
  • the battery cell array layer 300 is provided, on the basis of the assembly of 72 cells arranged horizontally, quarter slice cells are bonded in series to form a single row of battery strings 303, a total of 24 columns, each column has the same number (12 A) quarter slice battery.
  • every two rows of single-row battery strings 303 are connected in parallel to form a large row of battery strings 302, a total of 12 large-row battery strings 302, and every six large-row battery strings 302 are connected in series to form a power generation unit 301, a total of two, located in the entire photovoltaic
  • the upper and lower parts of the module are connected in parallel with each other, and the positive and negative bus bars are led out from the middle of the module.
  • the twelve large battery strings 302 are all connected with bypass diodes in parallel, and the large battery strings 302 located in the same longitudinal direction (axisymmetric arrangement) share a bypass diode. Bypass diodes.
  • the power generation unit 301 may include two large battery strings 302, the large batteries
  • the string 302 includes five single-row battery strings 303, which include 30 tenth slice batteries.
  • the battery cell array layer 300 is provided, on the basis of the components of 60 cells arranged horizontally, one tenth of the sliced cells are bonded and connected in series to form a single row of battery strings 303, a total of 20 rows, each row of single row battery strings 303 has One tenth of the same number of sliced batteries.
  • every five rows of single-row battery strings 303 are connected in parallel to form a large row of battery strings 302, a total of four large-row battery strings 302, and every two large-row battery strings 302 are connected in series to form a power generation unit 301, a total of two, located in the entire photovoltaic
  • the upper and lower parts of the module are connected in parallel with each other, and the positive and negative bus bars are led out from the middle of the module.
  • the series units located in the same longitudinal share a bypass diode, and only two bypass diodes are needed for the entire module.
  • the battery sheet 304 may be connected in series to form a single-row battery string 303 through a variety of conductive media.
  • conductive media For example, since connecting the battery sheets 304 with conductive adhesive can avoid the use of welding tape and avoid the electrical and chemical losses of the photovoltaic module due to the welding tape, multiple battery slices 304 in the single-row battery string 303 can be connected in series through the conductive adhesive tile Constitute a single row of battery strings 303.
  • a variety of conductive media can be selected for the parallel connection of the single-row battery strings 303 and the series connection of the large-row battery strings 302.
  • the bus bar has excellent characteristics such as low inductance resistance, anti-interference, high-frequency filtering effect, high reliability, space saving, simple and fast assembly, etc.
  • each of the single-row battery strings 303 can be connected in parallel by the bus bar to form the large A series of battery strings 302.
  • a plurality of large series of battery strings 302 may be connected in series to form the battery cell array layer 300 through a bus bar.
  • the bus bar in contact with the battery plate 304 generates heat during operation, and has a drainage effect on the battery plate 304, which has an adverse effect on the power generation of the component.
  • an isolation device may also be provided between the bus bar and the battery plate 304.
  • isolation devices there are various implementation options for the selection of isolation devices. For example, due to the low cost of the insulation isolation film and its strong insulation effect, an insulation isolation film may also be provided between the bus bar and the battery sheet 304.
  • the upper glass 100 can be selected in various embodiments.
  • the upper glass 100 may be an ultra-white cloth tempered upper glass.
  • the backplane 500 may be a polymer backplane or a glass backplane.
  • the polymer backplane may be a TPT backplane, TPE backplane, TPC backplane, KPK backplane, KPE backplane, KPF backplane FEVE fluorocarbon coating backplane, PET backplane or polyamide backplane.
  • the upper encapsulation adhesive film 200 and the lower encapsulation adhesive film 400 may be EVA adhesive films.
  • the manufacturing method of the photovoltaic module in the present invention is as follows (taking a longitudinally arranged one-sixth slice battery array layer as an example):
  • Step one one-sixth sliced battery is connected in series to form a single row of battery strings 303 through conductive rubber shingles;
  • each shingled photovoltaic module requires a total of 360 one-six sliced cells, welded into 12 single-row battery strings 303, and each single-row battery string 303 is provided with 30 one-sixth sliced batteries.
  • Step 2 Lay the upper glass 100 and the upper encapsulating adhesive film 200.
  • Step 3 Lay the welded 12 single-row battery strings 303 in the photovoltaic module; when laying, divide them into 4 groups (large-row battery strings 302) on average, and each group of large-row battery strings 302 contains 3 single-row batteries
  • the strings 303 are arranged in parallel, and each two large columns of battery strings 302 with opposite polarities are a power generating unit 301, and the two power generating units 301 are respectively disposed on the upper and lower parts of the module (axisymmetrically arranged on both sides of the mountain line of the module).
  • Step 4 Weld the bus bars and lead wires of each single-row battery string 303 to form two parallel power generation units 301; among them, firstly, the three single-row battery strings 303 of each large-row battery string 302 are connected through the bus bar Carry out parallel welding, that is, use two bus bars to weld the head and tail of each single row of battery strings 303 to form a large row of battery strings 302 (at the same time, each bus bar leads to a bus bar at the head and tail of each large row of battery strings 302, and two bus bars
  • the bar can be a bus bar (same-potential bus bar), which is directly connected in series with the bypass diode in the junction box 600, and then the line is connected in parallel with the battery string to protect the circuit between the drawn bus bar and the battery chip 304 Insulation and separation films are separated); then two large battery strings 302 are connected end to end, and are welded in series to form a power generation unit 301, and the bus bars at the head and end of the power generation unit 301 are
  • Step 5 Lay the lower encapsulating adhesive film 400 and the back plate 500, and lead the lead wires through the opening of the back plate 500.
  • Step 6 Lamination.
  • Step 7 Edge trimming, framing the photovoltaic module, and installing the junction box 600 outside the backplane 500.
  • the dual-generating unit shingled photovoltaic module includes an upper glass, an upper encapsulating adhesive film, a cell array layer, a lower encapsulating adhesive film, a backplane, and an outer part of the backplane that are arranged in order from top to bottom.
  • the junction box, the battery array layer includes two power generation units connected in parallel between the positive and negative poles of the junction box, the two power generation units are arranged axisymmetrically on both sides of the center line of the battery array layer; each axis in the two power generation units is symmetric
  • the two large-row battery strings are connected in parallel to the same bypass diode; each large-row battery string includes a plurality of single-row battery strings that are composed of battery sheets stacked in series.
  • the module has two power generating units, and the current flowing through each power generating unit is only half of the entire module, which can effectively reduce the power loss of the module caused by the hot spot effect; at the same time, the bypass diode in the module is relatively compared to the conventional shingled module
  • the parallel circuit voltage is low, which can effectively prevent the bypass diode from being broken down by an excessively high load voltage, and the working stability is high; in addition, the two power generation units share the bypass diode, which can greatly reduce production costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种双发电单元叠瓦光伏组件,该组件包括由上至下依次设置的上层玻璃(100)、上层封装胶膜(200)、电池片阵列层(300)、下层封装胶膜(400)、背板(500)以及接线盒(600):电池片阵列层(300)包括两个并联的发电单元(301),两个发电单元(301)轴对称设置;发电单元(301)包括多个串联的大列电池串(302),各轴对称设置的两个大列电池串(302)并联于同一旁路二极管;大列电池串(302)包括多个由电池片(304)叠瓦串联组成的单列电池串(303)。该组件具有两个发电单元(301),流经各发电单元(301)的电流仅为整个组件的一半,可以有效降低热斑效应所造成的组件功率损失;同时,该组件中的旁路二极管相对于常规叠瓦组件所并联的电路电压较低,可以有效避免旁路二极管被过高的负载电压击穿,工作稳定性高;此外,两个发电单元(301)共用旁路二极管,可以大幅度降低生产成本。

Description

双发电单元叠瓦光伏组件 技术领域
本发明涉及光伏组件生产制造领域,特别是涉及一种双发电单元叠瓦光伏组件。
背景技术
由玻璃和背板结构夹胶封装,中间复合晶体硅太阳能电池片阵列组成复合层,通过光生伏特效应将光能转化为电能的装置,称之为光伏组件。随着国家政策的改变以及市场竞争的加剧,高转换效率以及高功率的光伏组件不可避免地成为了行业的发展方向,叠瓦光伏组件因其较高的面积利用率、低电阻损耗而成为较佳选择之一。
相对于常规光伏组件而言,叠瓦光伏组件直接将电池片两两粘接串联,避免了焊带的使用,减少焊带产生的电学及光学损失,同时增大对空间面积的利用率;其拥有较高的组件转换效率,与常规光伏组件相比并能够提升约7%以上的发电量。
现有的叠瓦光伏组件,以纵排组件为例,一般只是在接线盒的正负极之间并联有多个单列电池串,即电池片阵列层只具有一个发电单元,且在组件的正负极之间也只并联有一个旁路二极管,当光伏组件发生热斑效应时,不仅功率损耗较大,且旁路二极管可能被过高的负载电压所击穿,造成组件烧毁等严重后果。
发明内容
本发明提供了一种在发生热斑效应时工作可靠性高、功率损失低的双发电单元叠瓦光伏组件,所述光伏组件包括由上至下依次设置的上层玻璃、上层封装胶膜、电池片阵列层、下层封装胶膜、背板以及设置于所述背板外部的接线盒,其中:
所述电池片阵列层包括两个并联于所述接线盒正极与负极之间的发电单元,两个所述发电单元轴对称的设置于所述电池片阵列层中线两侧;
所述发电单元包括多个串联的大列电池串,各轴对称设置的两个所述大列电池串并联于同一旁路二极管;
所述大列电池串包括多个单列电池串,所述单列电池串由多个电池片叠瓦串联组。
具体实施中,所述大列电池串包括多个并联的单列电池串。
具体实施中,各所述旁路二极管均设置于一整体式接线盒内部或各所述旁路二极管分别设置于一分体式接线盒的各子接线盒内部。
具体实施中,所述发电单元内多个所述大列电池串并排设置且各相邻的两个所述大列电池串极性相反。
具体实施中,所述大列电池串内各所述单列电池串并排设置且极性相同。
具体实施中,所述电池片为四分之一切片电池、六分之一切片电池或十分之一切片电池。
具体实施中,所述发电单元包括两个所述大列电池串,所述大列电池串包括三个单列电池串,所述单列电池串包括三十个六分之一切片电池。
具体实施中,所述发电单元包括四个所述大列电池串,所述大列电池串包括三个单列电池串,所述单列电池串包括十八个六分之一切片电池。
具体实施中,所述发电单元包括六个所述大列电池串,所述大列电池串包括两个单列电池串,所述单列电池串包括十二个四分之一切片电池。
具体实施中,所述发电单元包括两个所述大列电池串,所述大列电池串包括五个单列电池串,所述单列电池串包括三十个十分之一切片电池。
具体实施中,多个所述电池片通过导电胶叠瓦串联组成所述单列电池串。
具体实施中,多个所述大列电池串通过汇流条串联组成所述发电单元。
具体实施中,所述汇流条与所述电池片之间还设置有绝缘隔离膜。
本发明提供的双发电单元叠瓦光伏组件,包括由上至下依次设置的上层玻璃、上层封装胶膜、电池片阵列层、下层封装胶膜、背板及背板外部的接线盒,该电池片阵列层包括两个并联于接线盒正负极之间的发电单元,两个发电单元轴对称的设置于电池片阵列层中线两侧;两个发电单元内的各轴 对称设置的两个大列电池串并联于同一旁路二极管;各大列电池串包括多个由电池片叠瓦串联组成的单列电池串。该组件具有两个发电单元,流经各发电单元的电流仅为整个组件的一半,可以有效降低热斑效应所造成的组件功率损失;同时,该组件中的旁路二极管相对于常规叠瓦组件所并联的电路电压较低,可以有效避免旁路二极管被过高的负载电压击穿,工作稳定性高;此外,两个发电单元共用旁路二极管,可以大幅度降低生产成本。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些具体实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是根据本发明一个具体实施方式中双发电单元叠瓦光伏组件的剖面结构示意图;
图2是根据本发明一个具体实施方式中六分之一切片电池纵向排列阵列层的电路结构示意图;
图3是根据本发明一个具体实施方式中六分之一切片电池纵向排列阵列层的正面示意图;
图4是根据本发明一个具体实施方式中六分之一切片电池纵向排列组件的背部示意图;
图5是根据本发明一个具体实施方式中六分之一切片电池横向排列阵列层的电路结构示意图;
图6是根据本发明一个具体实施方式中六分之一切片电池横向排列阵列层的正面示意图;
图7是根据本发明一个具体实施方式中六分之一切片电池横向排列组件的背部示意图;
图8是根据本发明一个具体实施方式中四分之一切片电池横向排列阵列层的电路结构示意图;
图9是根据本发明一个具体实施方式中四分之一切片电池横向排列阵列层的正面示意图;
图10是根据本发明一个具体实施方式中四分之一切片电池横向排列组件的背部示意图;
图11是根据本发明一个具体实施方式中十分之一切片电池横向排列阵列层的电路结构示意图;
图12是根据本发明一个具体实施方式中十分之一切片电池横向排列阵列层的正面示意图;
图13是根据本发明一个具体实施方式中十分之一切片电池横向排列组件的背部示意图。
具体实施方式
为使本发明具体实施方式的目的、技术方案和优点更加清楚明白,下面结合附图对本发明具体实施方式做进一步详细说明。在此,本发明的示意性具体实施方式及其说明用于解释本发明,但并不作为对本发明的限定。
如图1、图2及图4所示,本发明提供了一种在发生热斑效应时工作可靠性高、功率损失低的双发电单元301叠瓦光伏组件,所述光伏组件包括由上至下依次设置的上层玻璃100、上层封装胶膜200、电池片阵列层300、下层封装胶膜400、背板500以及设置于所述背板500外部的接线盒600,其中:
所述电池片阵列层300包括两个并联于所述接线盒600正极与负极之间的发电单元301,两个所述发电单元301轴对称的设置于所述电池片阵列层300中线两侧;
所述发电单元301包括多个串联的大列电池串302,各轴对称设置的两个所述大列电池串302并联于同一旁路二极管;
所述大列电池串302包括多个单列电池串303,所述单列电池串303由多个电池片304叠瓦串联组成。
具体实施中,大列电池串302的设置可以有多种实施方案。例如,如图2所示,为了保证电性与常规组件相同,所述大列电池串302可以包括多个 并联的单列电池串303。
具体实施中,接线盒600的选用可以有多种实施方案。例如,如图4、图13所示,所述接线盒600可以为整体式接线盒,各所述旁路二极管可以均设置于所述整体式接线盒内部。进一步的,为了使得内部的各旁路二极管与大列电池串302之间的连接线路走线整齐,整体式接线盒可以设置于背板500中间,同时兼顾多个旁路二极管与两发电单元301的多个大列电池串302的连接。再例如,如图7、图10所示,所述接线盒600还可以为分体式接线盒,各所述旁路二极管可以分别设置于所述分体式接线盒的多个子接线盒内部。进一步的,子接线盒的数量与可以旁路二极管的数量相匹配,各子接线盒的位置则与两发电单元301中的各轴对称设置的两个大列电池串302的位置相匹配,相比整体式接线盒,分体式接线盒因各子接线盒的位置可以自由设定,因而各旁路二极管距离大列电池串302较近,即其使用的连接线路也更短,在批量生产中有利于降低生产成本。分体式接线盒可以包括3个设置有旁路二极管的子接线盒,其中一子接线盒位于背板500中部,其余两子接线盒则位于背板500两边,位于两边的子接线盒是组件正负与负极的引出端。分体式接线盒还可以包括2个设置有旁路二极管的子接线盒,两子接线盒位于背板500两端,分别设置有组件正极与负极的引出端。
具体实施中,发电单元301中的多个大列电池串302可以有多种排布方案。例如,如图2、图3所示,为了使得发电单元301的排布工整,同时降低各大列电池串302之间导电介质用量,多个所述大列电池串302可以呈“S”型排布,即各大列电池串302的极性与相邻的大列电池串302相反,多个大列电池串302首尾相连,两端的大列电池串302则分别与接线盒600的正极和负极相连接,从而使得电池片阵列层300串联于接线盒600的正、负极之间。
具体实施中,各大列电池串302内的多个单列电池串303的排布可以有多种实施方案。例如,图2所示,由于各单列电池串303的首尾分别使用导电介质连接,为了使得大列电池串302内布局合理且节省导电介质,各所述单列电池串303可以并排设置且极性相同,此时不仅布局整齐,且使用的导电介质最少,生产成本低。
具体实施中,电池片304的选用可以有多种实施方案。例如,根据电 池片阵列层300的排布不同,所述电池片304可以为四分之一切片电池、六分之一切片电池或十分之一切片电池。
具体实施中,电池片阵列层300内电池片304的排布可以有多种实施方案。例如,如图2、图3所示,当沿组件的纵向排布六分之一切片电池时,为了保证其电性与常规组件相同,所述发电单元301可以包括2个所述大列电池串302,所述大列电池串302包括3个单列电池串303,所述单列电池串303包括30个六分之一切片电池。设置电池片304时,首先将六分之一切片电池两两粘接串联成单列电池串303,共计12个单列电池串303,每一单列电池串303具有相同数量的六分之一切片电池。其中,每三列单列电池串303并联形成一个大列电池串302,共4个大列电池串302,每两个大列电池串302串联形成一个发电单元301,共有两个,分别位于整个光伏组件的上下部分,且彼此并联,正负极的汇流条可以从组件中间部位引出。此外,为了保证组件的安全性,四个大列电池串302都并联旁路二极管,且位于同一纵向的大列电池串302共用一个旁路二极管,整个组件只需使用两个旁路二极管。切割六分之一切片电池时,为了使得该组件外观尺寸与常规组件相同,所述六分之一切片电池的长度可以为156.75mm,宽度可以为26.125mm。由本尺寸的六分之一切片电池组成的光伏组件,其外部尺寸与常规组件相同,在安装时可以应用常规的固定框架,因而可以有效减小组件升级所带来的适配问题,避免重新设计和生产固定框架,可以使得该光伏组件快速推广应用。
再例如,如图5、图6所示,当沿组件的横向排布六分之一切片电池时,所述发电单元301可以包括4个所述大列电池串302,所述大列电池串302包括3个单列电池串303,所述单列电池串303包括18个六分之一切片电池。设置电池片阵列层300时,在72片电池横向排布的组件的基础上,将六分之一切片电池两两粘接串联成单列电池串303,共计24列,每一个单列电池串303具有相同数量的六六分之一切片电池。其中,每三个单列电池串303并联形成一个大列电池串302,共8个大列电池串302,每四个大列电池串302串联形成一个发电单元301,共有两个发电单元301,分别位于整个光伏组件的上下部分,且彼此并联,正负极汇流条从组件中间部位引出。此外,每个串联单元都并联有旁路二极管进行保护。此外,为了保证组件的安全性,八个 大列电池串302都并联旁路二极管,且位于同一纵向(轴对称设置)的串联单元共用一个二极管,整个组件需使用四个旁路二极管。
再例如,如图8、图9所示,当沿组件的横向排布四分之一切片电池时,所述发电单元301可以包括6个所述大列电池串302,所述大列电池串302包括2个单列电池串303,所述单列电池串303包括12个四分之一切片电池。设置电池片阵列层300时,在72片电池横向排布的组件的基础上,四分之一切片电池两两粘接串联成单列电池串303,共计24列,每一列具有相同数量(12个)的四分之一切片电池。其中,每两列单列电池串303并联形成一个大列电池串302,共12个大列电池串302,每六个大列电池串302串联形成一个发电单元301,共有两个,分别位于整个光伏组件的上下部分,且彼此并联,正负极汇流条从组件中间部位引出。此外,为了保证组件的安全性,十二个大列电池串302都并联有旁路二极管,且位于同一纵向(轴对称设置)的大列电池串302共用一个旁路二极管,整个组件需使用六个旁路二极管。
再例如,如图11、图12所示,当沿组件的纵向排布十分之一切片电池时,所述发电单元301可以包括2个所述大列电池串302,所述大列电池串302包括5个单列电池串303,所述单列电池串303包括30个十分之一切片电池。设置电池片阵列层300时,在60片电池横向排布的组件的基础上,十分之一切片电池两两粘接串联成单列电池串303,共计20列,每一列单列电池串303具有相同数量的十分之一切片电池。其中,每五列单列电池串303并联形成一个大列电池串302,共四个大列电池串302,每两个大列电池串302串联形成一个发电单元301,共有两个,分别位于整个光伏组件的上下部分,且彼此并联,正负极汇流条从组件中间部位引出。此外,为了保证组件的安全性,位于同一纵向的串联单元共用一个旁路二极管,整个组件只需使用两个旁路二极管。
具体实施中,电池片304可以通过多种导电介质串联组成单列电池串303。例如,由于通过导电胶连接电池片304可以避免使用焊带,避免因焊带使光伏组件产生电学及化学损失,因而所述单列电池串303内的多个电池片304可以通过导电胶叠瓦串联组成单列电池串303。
具体实施中,各单列电池串303的并联以及各大列电池串302的串联 可以选用多种导电介质。例如,由于汇流条具有感抗低、抗干扰、高频滤波效果好、可靠性高、节省空间、装配简洁快捷等优异特点,因而各所述单列电池串303可以通过汇流条并联组成所述大列电池串302,同样的,多个所述大列电池串302可以通过汇流条串联组成所述电池片阵列层300。
具体实施中,由于与电池片304相接触的汇流条在工作中会产生热量,并对电池片304产生引流作用,对组件的发电功率造成不良影响,因而为了保证汇流条与电池片304的工作稳定性,还可以在汇流条与电池片304之间设置隔离装置。隔离装置的选用可以有多种实施方案。例如,由于绝缘隔离膜造价低廉且其绝缘效果较强,因而所述汇流条与所述电池片304之间还可以设置有绝缘隔离膜。
具体实施中,上层玻璃100的选用可以有多种实施方案。例如,为了保证上层玻璃100的透光性,提升光伏组件的光利用率,所述上层玻璃100可以为超白布纹钢化上层玻璃。
具体实施中,背板500的选用可以有多种实施方案。例如,所述背板500可以为高分子背板或玻璃背板。进一步的,所述高分子背板可以为TPT背板、TPE背板、TPC背板、KPK背板、KPE背板、KPF背板FEVE氟碳涂料背板、PET背板或聚酰胺背板。
具体实施中,上层封装胶膜200和下层封装胶膜400的选用可以有多种实施方案。例如,由于EVA胶膜在粘着力、耐久性、光学特性等方面具有的优越性,所述上层封装胶膜200和下层封装胶膜400可以为EVA胶膜。
具体实施中,本发明中的光伏组件的制作方法如下(以纵向排布的六分之一切片电池阵列层为例):
步骤一:将六分之一切片电池通过导电胶叠瓦串联成单列电池串303;
其中,每个叠瓦光伏组件共需要360块六分之一切片电池,焊接成12个单列电池串303,每个单列电池串303内设置30个六分之一切片电池。
步骤二:敷设上层玻璃100和上层封装胶膜200。
步骤三:将焊接好的12个单列电池串303在光伏组件中进行铺设;铺设时,将其平均分为4组(大列电池串302),每组大列电池串302内3个单列电池串303平行排布,每两个极性相反的大列电池串302为一发电单元301, 两个发电单元301分别设置于组件的上部和下部(轴对称设置于组件中线的山下两侧)。
步骤四:对铺设好的各单列电池串303进行汇流条及引出导线的焊接,形成两个并联的发电单元301;其中,首先通过汇流条将各大列电池串302的3个单列电池串303进行并联焊接,即使用两根汇流条将各单列电池串303的首尾进行焊接,形成大列电池串302(同时在各大列电池串302首尾处汇流条各引出一根汇流条,两根汇流条可为一根汇流条(同电位汇流条),且直接与接线盒600中的旁路二极管相串联,然后该线路与电池串并联,保护电路,引出的汇流条与电池片304之间利用绝缘隔离膜相隔);然后再分别将两个大列电池串302首尾相连,串联焊接为一发电单元301,发电单元301首尾处的汇流条处分别焊接引出导线。
步骤五:敷设下层封装胶膜400和背板500,将引出导线从背板500的开孔处穿出。
步骤六:层压。
步骤七:对光伏组件进行削边、装框及在背板500外部安装接线盒600。
综上所述,本发明提供的双发电单元叠瓦光伏组件,包括由上至下依次设置的上层玻璃、上层封装胶膜、电池片阵列层、下层封装胶膜、背板及背板外部的接线盒,该电池片阵列层包括两个并联于接线盒正负极之间的发电单元,两个发电单元轴对称的设置于电池片阵列层中线两侧;两个发电单元内的各轴对称设置的两个大列电池串并联于同一旁路二极管;各大列电池串包括多个由电池片叠瓦串联组成的单列电池串。该组件具有两个发电单元,流经各发电单元的电流仅为整个组件的一半,可以有效降低热斑效应所造成的组件功率损失;同时,该组件中的旁路二极管相对于常规叠瓦组件所并联的电路电压较低,可以有效避免旁路二极管被过高的负载电压击穿,工作稳定性高;此外,两个发电单元共用旁路二极管,可以大幅度降低生产成本。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种双发电单元叠瓦光伏组件,所述光伏组件包括由上至下依次设置的上层玻璃(100)、上层封装胶膜(200)、电池片阵列层(300)、下层封装胶膜(400)、背板(500)以及设置于所述背板(500)外部的接线盒(600),其中:
    所述电池片阵列层(300)包括两个并联于所述接线盒(600)正极与负极之间的发电单元(301),两个所述发电单元(301)轴对称的设置于所述电池片阵列层(300)中线两侧;
    所述发电单元(301)包括多个串联的大列电池串(302),各轴对称设置的两个所述大列电池串(302)并联于同一旁路二极管;
    所述大列电池串(302)包括多个单列电池串(303),所述单列电池串(303)由多个电池片(304)叠瓦串联组成。
  2. 如权利要求1所述的双发电单元叠瓦光伏组件,其中,所述大列电池串(302)包括多个并联的单列电池串(303)。
  3. 如权利要求1所述的双发电单元叠瓦光伏组件,其中,各所述旁路二极管均设置于一整体式接线盒内部或各所述旁路二极管分别设置于一分体式接线盒的各子接线盒内部。
  4. 如权利要求1所述的双发电单元叠瓦光伏组件,其中,所述发电单元(301)内多个所述大列电池串(302)并排设置且各相邻的两个所述大列电池串(302)极性相反。
  5. 如权利要求1所述的双发电单元叠瓦光伏组件,其中,所述大列电池串(302)内各所述单列电池串(303)并排设置且极性相同。
  6. 如权利要求1所述的双发电单元叠瓦光伏组件,其中,所述电池片 (304)为四分之一切片电池、六分之一切片电池或十分之一切片电池。
  7. 如权利要求1所述的双发电单元叠瓦光伏组件,其中,所述发电单元(301)包括两个所述大列电池串(302),所述大列电池串(302)包括三个单列电池串(303),所述单列电池串(303)包括三十个六分之一切片电池。
  8. 如权利要求1所述的双发电单元叠瓦光伏组件,其中,所述发电单元(301)包括四个所述大列电池串(302),所述大列电池串(302)包括三个单列电池串(303),所述单列电池串(303)包括十八个六分之一切片电池。
  9. 如权利要求1所述的双发电单元叠瓦光伏组件,其中,所述发电单元(301)包括六个所述大列电池串(302),所述大列电池串(302)包括两个单列电池串(303),所述单列电池串(303)包括十二个四分之一切片电池。
  10. 如权利要求1所述的双发电单元叠瓦光伏组件,其中,所述发电单元(301)包括两个所述大列电池串(302),所述大列电池串(302)包括五个单列电池串(303),所述单列电池串(303)包括三十个十分之一切片电池。
  11. 如权利要求2所述的双发电单元叠瓦光伏组件,其中,多个所述电池片(304)通过导电胶叠瓦串联组成所述单列电池串(303)。
  12. 如权利要求1所述的双发电单元叠瓦光伏组件,其中,多个所述大列电池串(302)通过汇流条串联组成所述发电单元(301)。
  13. 如权利要求12所述的双发电单元叠瓦光伏组件,其中,所述汇流 条与所述电池片(304)之间还设置有绝缘隔离膜。
PCT/CN2019/099663 2018-10-31 2019-08-07 双发电单元叠瓦光伏组件 WO2020088027A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021514469A JP2021523581A (ja) 2018-10-31 2019-08-07 ダブル発電ユニットシングルセル式モジュール
EP19880743.0A EP3783670A4 (en) 2018-10-31 2019-08-07 SHINGING PHOTOVOLTAIC MODULE WITH DOUBLE ENERGY GENERATING UNITS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811286455.9A CN109285905A (zh) 2018-10-31 2018-10-31 双发电单元叠瓦光伏组件
CN201811286455.9 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020088027A1 true WO2020088027A1 (zh) 2020-05-07

Family

ID=65174637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099663 WO2020088027A1 (zh) 2018-10-31 2019-08-07 双发电单元叠瓦光伏组件

Country Status (4)

Country Link
EP (1) EP3783670A4 (zh)
JP (1) JP2021523581A (zh)
CN (1) CN109285905A (zh)
WO (1) WO2020088027A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114068747A (zh) * 2020-07-31 2022-02-18 苏州腾晖光伏技术有限公司 晶硅电池组件和太阳能光伏电池板

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109285905A (zh) * 2018-10-31 2019-01-29 浙江正泰太阳能科技有限公司 双发电单元叠瓦光伏组件
CN109638095A (zh) * 2019-02-14 2019-04-16 浙江晶科能源有限公司 一种叠瓦光伏组件及光伏系统
CN109950362B (zh) * 2019-03-29 2021-02-05 苏州携创新能源科技有限公司 一种光伏组件的加工方法
CN110047963A (zh) * 2019-04-19 2019-07-23 泰州隆基乐叶光伏科技有限公司 光伏组件电路单元、光伏组件电路及光伏组件
CN110212050A (zh) * 2019-06-13 2019-09-06 天合光能股份有限公司 一种新型结构光伏电池组件
CN110491948A (zh) * 2019-09-18 2019-11-22 天合光能股份有限公司 一种切片光伏组件
CN110649127B (zh) * 2019-10-29 2024-05-14 中国华能集团有限公司 一种叠瓦光伏组件制造系统及其工作方法
JP7292407B2 (ja) * 2020-02-17 2023-06-16 横店集団東磁股▲ふん▼有限公司 太陽エネルギータイル構造
CN113659025B (zh) * 2021-07-22 2023-08-11 横店集团东磁股份有限公司 一种光伏组件排布结构及其实现方法
DE102021131977A1 (de) * 2021-12-03 2023-06-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Solarzellenmodul
CN116169207A (zh) * 2023-04-25 2023-05-26 华能新能源股份有限公司 叠层光伏组件和叠层光伏组件的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105097975A (zh) * 2015-09-06 2015-11-25 江苏东昇光伏科技有限公司 太阳能电池组件
US20160141435A1 (en) * 2013-07-05 2016-05-19 Rec Solar Pte. Ltd. Solar cell assembly
CN206099880U (zh) * 2016-08-17 2017-04-12 协鑫集成科技股份有限公司 光伏组件
CN206480635U (zh) * 2017-02-06 2017-09-08 浙江正泰太阳能科技有限公司 一种切片电池光伏组件
CN108493281A (zh) * 2018-04-17 2018-09-04 苏州爱康光电科技有限公司 一种太阳能光伏组件
CN108682700A (zh) * 2018-06-04 2018-10-19 浙江宝利特新能源股份有限公司 一种mbb多主栅电池片叠片组件及光伏组件
CN109285905A (zh) * 2018-10-31 2019-01-29 浙江正泰太阳能科技有限公司 双发电单元叠瓦光伏组件
CN208835082U (zh) * 2018-10-31 2019-05-07 浙江正泰太阳能科技有限公司 双发电单元叠瓦光伏组件

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640968B2 (ja) * 2011-12-26 2014-12-17 新日鐵住金株式会社 発電セルシステム回路及びこれを用いた発電システム
JP5759911B2 (ja) * 2012-01-30 2015-08-05 Jx日鉱日石エネルギー株式会社 太陽電池ユニット及び太陽電池モジュール
US9780253B2 (en) * 2014-05-27 2017-10-03 Sunpower Corporation Shingled solar cell module
US20150349176A1 (en) * 2014-05-27 2015-12-03 Cogenra Solar, Inc. High voltage solar panel
CN109346538B (zh) * 2014-05-27 2022-11-29 迈可晟太阳能有限公司 叠盖式太阳能电池模块
US20160226438A1 (en) * 2015-01-29 2016-08-04 Solaria Corporation Solar module with diode device for shading
CN205810826U (zh) * 2015-05-22 2016-12-14 苏州沃特维自动化系统有限公司 一种太阳能电池组件
CN204721306U (zh) * 2015-07-03 2015-10-21 阿特斯(中国)投资有限公司 光伏组件
US10833214B2 (en) * 2015-12-14 2020-11-10 Sunpower Corporation Solar panel
CN106449818B (zh) * 2016-11-21 2017-11-28 泰州隆基乐叶光伏科技有限公司 一种带有旁路二极管的光伏叠片组件
CN207624722U (zh) * 2017-08-15 2018-07-17 泰州隆基乐叶光伏科技有限公司 一种双二极管横版型双面叠片组件结构
CN207611781U (zh) * 2017-12-14 2018-07-13 阿特斯阳光电力集团有限公司 光伏组件
CN108281499B (zh) * 2018-03-09 2023-10-13 天合光能股份有限公司 一种新型电路设计的光伏电池组件
CN108566158A (zh) * 2018-03-09 2018-09-21 天合光能股份有限公司 一种光伏电池组件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160141435A1 (en) * 2013-07-05 2016-05-19 Rec Solar Pte. Ltd. Solar cell assembly
CN105097975A (zh) * 2015-09-06 2015-11-25 江苏东昇光伏科技有限公司 太阳能电池组件
CN206099880U (zh) * 2016-08-17 2017-04-12 协鑫集成科技股份有限公司 光伏组件
CN206480635U (zh) * 2017-02-06 2017-09-08 浙江正泰太阳能科技有限公司 一种切片电池光伏组件
CN108493281A (zh) * 2018-04-17 2018-09-04 苏州爱康光电科技有限公司 一种太阳能光伏组件
CN108682700A (zh) * 2018-06-04 2018-10-19 浙江宝利特新能源股份有限公司 一种mbb多主栅电池片叠片组件及光伏组件
CN109285905A (zh) * 2018-10-31 2019-01-29 浙江正泰太阳能科技有限公司 双发电单元叠瓦光伏组件
CN208835082U (zh) * 2018-10-31 2019-05-07 浙江正泰太阳能科技有限公司 双发电单元叠瓦光伏组件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3783670A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114068747A (zh) * 2020-07-31 2022-02-18 苏州腾晖光伏技术有限公司 晶硅电池组件和太阳能光伏电池板

Also Published As

Publication number Publication date
JP2021523581A (ja) 2021-09-02
EP3783670A4 (en) 2021-07-21
EP3783670A1 (en) 2021-02-24
CN109285905A (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
WO2020088027A1 (zh) 双发电单元叠瓦光伏组件
WO2019214627A1 (zh) 太阳能电池串、串组、组件及其制备方法
CN202231045U (zh) 太阳能电池组件
US20120060895A1 (en) Photovoltaic module string arrangement and shading protection therefor
WO2018090445A1 (zh) 一种带有旁路二极管的光伏叠片组件
CN211480059U (zh) 光伏组件
CN111613683B (zh) 光伏组件
WO2021008474A1 (zh) 太阳能电池片及光伏组件
CN208835082U (zh) 双发电单元叠瓦光伏组件
JP3219129U (ja) ソーラーモジュール
WO2021008573A1 (zh) 一种抗热斑单板块光伏组件
CN104980103A (zh) 一种光伏组件及其制作方法
CN112563358A (zh) 一种双玻叠瓦光伏组件
WO2011130999A1 (zh) 光伏组件的电路叠层结构
CN211480058U (zh) 绝缘汇流条和具有其的光伏组件
WO2021135733A1 (zh) 光伏组件
CN210182396U (zh) 太阳能电池片及光伏组件
CN209822663U (zh) 一种抗热斑单板块光伏组件
CN114927591A (zh) 光伏组件
CN209561427U (zh) 光伏组件
CN114429995A (zh) 一种叠层结构的太阳能电池组件
CN112234111A (zh) 一种内接式串并半片组件
CN117295349B (zh) 薄膜电池组件、钙钛矿电池组件及光伏系统
CN216213494U (zh) 光伏组件
CN214705944U (zh) 一种光伏组件及光伏系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880743

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514469

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019880743

Country of ref document: EP

Effective date: 20201120

NENP Non-entry into the national phase

Ref country code: DE