WO2016185789A1 - 逆浸透膜の洗浄剤、洗浄液、および洗浄方法 - Google Patents
逆浸透膜の洗浄剤、洗浄液、および洗浄方法 Download PDFInfo
- Publication number
- WO2016185789A1 WO2016185789A1 PCT/JP2016/059146 JP2016059146W WO2016185789A1 WO 2016185789 A1 WO2016185789 A1 WO 2016185789A1 JP 2016059146 W JP2016059146 W JP 2016059146W WO 2016185789 A1 WO2016185789 A1 WO 2016185789A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cleaning
- agent
- membrane
- reverse osmosis
- osmosis membrane
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
- B01D65/06—Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/10—Accessories; Auxiliary operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/56—Polyamides, e.g. polyester-amides
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0008—Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/08—Liquid soap, e.g. for dispensers; capsuled
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/02—Inorganic compounds
- C11D7/04—Water-soluble compounds
- C11D7/06—Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/32—Organic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/32—Organic compounds containing nitrogen
- C11D7/3245—Aminoacids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/16—Use of chemical agents
- B01D2321/162—Use of acids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/16—Use of chemical agents
- B01D2321/166—Use of enzymatic agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/16—Use of chemical agents
- B01D2321/168—Use of other chemical agents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Definitions
- the present invention relates to a cleaning agent for recovering the performance of a reverse osmosis (RO) membrane used in the field of water treatment when it is contaminated with organic matter or inorganic matter and the performance such as the amount of permeated water or the desalination rate is reduced. Further, the present invention relates to a cleaning liquid and a cleaning liquid that have an effect of suppressing a decrease in the rejection rate of the film accompanying cleaning. The present invention also relates to a method for cleaning an RO membrane using this cleaning liquid.
- RO reverse osmosis
- Separation and purification by RO membrane system is an energy-saving process compared to systems using evaporation and electrodialysis, and is widely used for desalination of seawater and brine, production of industrial water and ultrapure water, wastewater recovery, etc. ing.
- Cleaning agents used for RO membranes include acids (oxalic acid, citric acid, etc.), alkalis (sodium hydroxide, etc.), surfactants (sodium dodecyl sulfate, dodecylbenzene) depending on the nature of the membrane contaminants. Examples thereof include sodium sulfonate), chelating agents (EDTA, etc.), bound chlorine agents, oxidizing agents, and the like (Non-Patent Document 1).
- RO materials are roughly classified into aromatic polyamide and cellulose acetate.
- the aromatic polyamide RO membrane has low resistance to an oxidizing agent, but has high resistance to alkali, and can be cleaned under alkaline conditions of pH 10 or higher.
- Cellulose acetate-based RO membranes are more resistant to oxidizing agents (such as chlorine) than aromatic polyamide-based RO membranes, but are less resistant to alkali, and cannot be washed under alkaline conditions of pH 9 or higher.
- Polylysine used in the present invention is known as a cleaning agent for ultrafiltration membranes or microfiltration membranes (Patent Document 1), but is not known to be used as a cleaning agent for RO membranes.
- Polylysine is known as a bactericidal agent, and there are examples of using it as a cleaning agent in anticipation of a bactericidal effect, but it is not known about the effect of suppressing the reduction of the blocking rate of the membrane accompanying cleaning when cleaning the RO membrane .
- Patent Document 2 Most amino acid compounds are used as a bactericidal agent (Patent Document 2), but the bactericidal agent and a cleaning agent that peels or decomposes contaminants are completely different in function and action mechanism. The sterilizing effect is completely different from the effect of suppressing the deterioration of the RO membrane during cleaning.
- Amino acids are also known as agents that form chloramine (bonded chlorine) (Patent Documents 3 to 5). Any amino acid may be used for the formation of chloramine, but the protective effect of the RO membrane according to the present invention cannot be obtained with acidic or hydrophilic amino acids such as glycine and glutamic acid, and is unique to basic amino acids and hydrophobic amino acids. belongs to. That is, the effect of the present invention is not due to the formation of bound chlorine by chloramine.
- An amino acid compound is known as a compounding component of an RO membrane rejection rate improver (Patent Document 6).
- the rejection rate improving agent improves the rejection rate by remaining on the film surface. After the rejection rate improving treatment, the flux of the film is lower than that before the treatment.
- the protective agent for the film cleaning agent does not remain on the film surface and does not necessarily improve the blocking rate.
- the membrane flux is improved as compared with that before the cleaning treatment.
- the cleaning agent Although the purpose of using the cleaning agent is to restore the water permeability of the RO membrane, the blocking performance of the RO membrane often decreases due to the cleaning. For example, when an aromatic polyamide RO membrane is cleaned using a cleaning solution having a high pH, a higher cleaning effect can be expected as the pH of the cleaning solution increases, but on the other hand, there is an increased risk that the blocking rate of the RO membrane decreases.
- Non-Patent Document 1 there is a report on a component of a cleaning agent for enhancing the cleaning effect of the RO membrane, but the reduction of the RO membrane rejection rate due to cleaning is suppressed, that is, the RO membrane.
- the component of the cleaning agent which protects is not examined.
- An object of the present invention is to provide a cleaning agent, a cleaning liquid, and a cleaning method of the RO film using the cleaning liquid, which have an effect of suppressing a reduction in the blocking rate of the RO film due to cleaning.
- the present inventor has studied the phenomenon that the blocking performance of the RO membrane is reduced by cleaning, and obtained the following knowledge.
- the demineralization rate of the RO membrane and the silica rejection rate, particularly the IPA (isopropyl alcohol) rejection rate, which is a neutral solute, is reduced by washing.
- the condition of the cleaning liquid that causes a decrease in the rejection rate is an alkaline condition of pH 10 or higher, and the effect becomes stronger as the pH increases. Combined chlorine and oxidizing agents also cause a reduction in the rejection rate.
- the present inventor has added a basic amino acid, a hydrophobic amino acid, or a peptide containing these as a constituent amino acid as a component of the cleaning agent, so that the RO membrane by cleaning can be obtained. It was found that the decrease in the rejection rate can be suppressed.
- the gist of the present invention is as follows.
- a reverse osmosis membrane cleaning agent comprising a basic or hydrophobic amino acid, a peptide containing these amino acids as constituent amino acids, or a derivative thereof as a membrane protective agent.
- a reverse osmosis membrane cleaning solution which is an aqueous solution obtained by diluting the cleaning agent according to any one of [1] to [3].
- a basic or hydrophobic amino acid a peptide containing these amino acids as constituent amino acids or a derivative thereof as a membrane protecting agent, and one or two selected from the group consisting of an alkaline agent, a combined chlorine agent and an oxidizing agent
- a reverse osmosis membrane cleaning solution comprising more than a seed.
- a method for cleaning a reverse osmosis membrane comprising bringing the reverse osmosis membrane into contact with the cleaning liquid according to any one of [4] to [6].
- the present invention it is possible to suppress a decrease in the RO membrane blocking performance due to high alkali conditions, a combined chlorine agent, an oxidizing agent, and the like in the cleaning of the RO membrane. For this reason, although it is easy to cause the fall of the blocking performance of RO membrane
- FIG. 4 is a system diagram showing a test apparatus used in Experiments I to IV.
- FIG. 4 is a system diagram showing a test apparatus used in Experiments I to IV.
- the operation mechanism according to the present invention is as follows. Amino acids and peptides have a structure close to the amide bond of the aromatic polyamide RO membrane, have an affinity for the amide bond portion, and basic amino acids have a particularly high affinity for the negatively charged membrane surface. Hydrophobic amino acids also have a high affinity for the aromatic ring portion of the membrane. It is considered that these substances adsorb on the RO membrane to suppress the amide bond cleavage by the cleaning solution.
- the mechanism of action according to the present invention is to reduce damage to the membrane by the cleaning agent by adsorbing amino acids, peptides, etc. on the membrane surface while washing the membrane surface. It is limited to hydrophobic or basic amino acids with high affinity for. Acidic or hydrophilic amino acids have low affinity and adsorption to the membrane, and cannot provide a protective effect during washing.
- amino acids are small molecules, after flushing the washing solution, they are removed without remaining adsorbed on the membrane.
- the remaining in the membrane can be reduced by selecting an appropriate molecular weight and use concentration.
- the RO membrane to be cleaned may be an aromatic polyamide RO membrane or a cellulose acetate RO membrane.
- the present invention is particularly effective for cleaning an aromatic polyamide RO membrane in terms of the affinity of amino acids and peptides to the amide bond portion of the aromatic polyamide RO membrane.
- the cleaning agent of the present invention comprises a basic or hydrophobic amino acid, a peptide containing these amino acids as constituent amino acids or a derivative thereof (hereinafter referred to as “protective agent component”) as a membrane protective agent or degradation inhibitor. It is characterized by including.
- the cleaning agent of the present invention is usually prepared by dissolving a protective agent component and an alkali agent, a combined chlorine agent, other agents, and the like used as necessary in water.
- the “cleaning agent” means a product prepared by setting the drug concentration higher than that at the time of use for the distribution and storage of the product.
- the “cleaning solution” refers to a solution obtained by diluting this cleaning agent with water and adjusting the concentration to actually clean the film surface.
- basic amino acids include arginine, lysine, histidine and the like.
- hydrophobic amino acids include phenylalanine and tryptophan.
- Peptides containing these amino acids as constituent amino acids include aspartame, which is a peptide of phenylalanine and aspartic acid and the phenylalanine moiety is methyl esterified, and polylysine ( ⁇ -polylysine), which is a homopolypeptide of lysine.
- Examples of derivatives of these amino acids and peptides include amino acid benzyl ester and amino acid butyl ester having a hydrophobic group bonded to the C-terminal of a hydrophilic amino acid, and Z-amino acid derivatives having a hydrophobic group bonded to the N-terminal.
- a protective agent component may be used individually by 1 type, and 2 or more types may be mixed and used for it.
- arginine, lysine, and phenylalanine are particularly preferable in terms of RO membrane protective effect, solubility, and availability.
- the molecular weight of the peptide and its derivative is preferably 10,000 or less.
- the cleaning agent of the present invention may contain an alkali agent, a combined chlorine agent, an oxidizing agent, other chemicals and a solvent other than water, which are necessary for cleaning the RO membrane.
- alkali agent used in the cleaning agent of the present invention examples include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide.
- Examples of the combined chlorine agent include chloramine compounds.
- the chloramine compound is a compound having a primary amino group, ammonia, or an ammonium salt (hereinafter referred to as “NH 2 -based compound”), hypochlorous acid and / or hypochlorite, It is preferable to produce
- Examples of the compound having a primary amino group include aliphatic amines, aromatic amines, sulfamic acids, sulfanilic acids, sulfamoylbenzoic acids, and amino acids.
- Examples of ammonium salts include ammonium chloride and ammonium sulfate. These may be used alone or in combination of two or more.
- sulfamic acid NH 2 SO 2 OH
- monochlororosulfamine is produced using sulfamic acid, it becomes a stable chloramine compound. Since sulfamic acid does not contain carbon, it does not increase the TOC value of the cleaning agent. By using sulfamic acid and an alkaline agent in combination, a very effective cleaning agent is obtained.
- Hypochlorite to be reacted with the NH 2 -based compound includes alkali metal salts of hypochlorous acid such as sodium hypochlorite, alkaline earth metal salts of hypochlorous acid such as calcium hypochlorite, and the like. Can be mentioned. These may be used alone or in combination of two or more.
- the Cl 2 / N molar ratio which is the molar ratio between the effective chlorine (Cl 2 ) derived from chloric acid and / or hypochlorite and the nitrogen atom N derived from the NH 2 -based compound, is 0.1 to 1. It is preferable to use the chloramine in view of the production efficiency and stability of chloramine.
- the Cl 2 / N molar ratio is larger than the above upper limit, free chlorine may be generated.
- the Cl 2 / N molar ratio is smaller than the above lower limit, the production efficiency of chloramine is lowered with respect to the NH 2 -based compound used.
- the amount of hypochlorous acid and / or hypochlorite is the amount of chloramine compound in the cleaning agent.
- Oxidizing agents include hydrogen peroxide, peracetic acid, percarbonate, halogen oxoacids such as hypochlorous acid and their salts (eg, alkali metal salts, alkaline earth metal salts), peroxides, chlorine, bromine, 1 type, or 2 or more types, such as halogens, such as iodine, are mentioned.
- halogen oxoacids such as hypochlorous acid and their salts (eg, alkali metal salts, alkaline earth metal salts), peroxides, chlorine, bromine, 1 type, or 2 or more types, such as halogens, such as iodine, are mentioned.
- Solvents include alcohols such as ethanol, polyols such as ethylene glycol, propylene glycol and butanediol, amines such as monoethanolamine, diethanolamine and triethanolamine, ketones such as acetone, dimethyl ether, diethyl ether and diethylene glycol monomethyl. And ethers such as ether.
- surfactants include surfactants and dispersants.
- Surfactants include anionic surfactants such as alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, alkyl sulfates such as sodium dodecyl sulfate, and nonionic interfaces such as polyalkylene glycol monoalkyl ethers such as diethylene glycol monomethyl ether. An active agent etc. are mentioned. Among these, an anionic surfactant is particularly preferable in terms of dispersion effect.
- Dispersants include ethylenediaminetetraacetic acid (EDTA), glycol etherdiaminetetraacetic acid (EGTA), polyphosphoric acid, phosphonobutanetricarboxylic acid (PBTC), phosphonic acid, polymaleic acid, citric acid, oxalic acid, gluconic acid, and the like Of the salt.
- EDTA ethylenediaminetetraacetic acid
- EGTA glycol etherdiaminetetraacetic acid
- PBTC phosphonobutanetricarboxylic acid
- phosphonic acid polymaleic acid
- citric acid citric acid
- oxalic acid gluconic acid
- the cleaning agent may be a one-agent type in which a protective agent component, an alkali agent, a combined chlorine agent, an oxidizing agent, other chemicals, a solvent, and the like are mixed in advance, and a part of these is supplied as a separate chemical. 2 dosage forms or more dosage forms.
- the cleaning solution of the present invention prepared by diluting the cleaning agent of the present invention with water may also be a one-part type, a two-part type, or more.
- the RO membrane may be washed with a cleaning solution containing a protective agent component, and then washed with a cleaning solution containing another drug such as an acid.
- the cleaning agent of the present invention has a concentration of each drug so that the concentration of each drug is suitable for the cleaning solution of the present invention described later when diluted to about 5 to 100 times by weight with water, preferably pure water. It is prepared to be about 5 to 100 times the drug concentration in
- the cleaning liquid of the present invention is an aqueous solution obtained by diluting the cleaning agent of the present invention with water.
- the cleaning solution of the present invention is adjusted to a predetermined concentration by diluting the cleaning agent of the present invention with water and, if necessary, adding an alkali agent, a combined chlorine agent, an oxidizing agent, other chemicals, a solvent, etc. It may be what you did.
- the cleaning liquid of the present invention may be prepared directly at a predetermined drug concentration without going through the cleaning agent of the present invention.
- the concentration of the protective agent component in the cleaning liquid of the present invention varies depending on the type of protective agent component used, the pH of the cleaning liquid, the type and concentration of other cleaning chemicals, etc., but the protective agent component may be a basic amino acid or hydrophobic. In the case of amino acids and derivatives thereof, it is preferably about 0.01 to 10% by weight.
- the concentration of the protective agent component is preferably about 0.00001 to 1% by weight.
- the concentration of the protective agent component is about 0.001 to 0.1% by weight when a combined chlorine agent is used together, and 0.00001 to 0.001% by weight when a combined chlorine agent is not used together.
- the concentration of the protective agent component is lower than the above lower limit, the protective effect of the RO membrane due to the use of the protective agent component cannot be sufficiently obtained, and there is a possibility that the rejection rate is reduced by the cleaning. If the concentration of the protective agent component is higher than the above upper limit, the cleaning effect may be reduced, and the nitrogen content of the cleaning waste liquid is unnecessarily increased.
- the pH of the cleaning liquid of the present invention is preferably 10 to 14 in terms of its cleaning effect.
- the membrane permeability may not be sufficiently recovered by cleaning.
- the pH of the cleaning liquid is preferably 14 or less, more preferably 11 or more and 13 or less.
- the cleaning liquid of the present invention is prepared to have the above-mentioned preferable pH by adding an alkaline agent.
- the concentration in the cleaning liquid of the present invention is 0.003 to 0.15 M (0.04 to 2 wt%). In particular, 0.003 to 0.03 M (0.04 to 0.4 wt%) is preferable. If the combined chlorine concentration of the cleaning liquid is too low, a sufficient cleaning effect cannot be obtained. If the concentration of the chlorinated agent in the cleaning liquid is too high, the RO membrane may be deteriorated.
- the combined chlorine agent concentration of 0.003 to 0.15 M is a concentration corresponding to a total chlorine concentration of 210 to 11,000 mg-Cl 2 / L. The total chlorine concentration can be measured by the DPD method defined in JIS K0400-33-10.1999.
- the oxidizing agent concentration in the cleaning liquid of the present invention is preferably 0.000001 to 10% by weight, particularly 0.00001 to 1% by weight. If the oxidizing agent concentration in the cleaning liquid is too low, a sufficient cleaning effect cannot be obtained. If the oxidant concentration in the cleaning liquid is too high, the RO membrane may be deteriorated.
- the surfactant concentration in the cleaning liquid of the present invention is preferably 0.005 to 2% by weight, particularly 0.02 to 0.5% by weight. Is preferred. If the surfactant concentration is too low, the dispersion effect by the surfactant and the effect of improving the cleaning action cannot be sufficiently obtained. If the surfactant concentration in the cleaning liquid is too high, the association of the surfactant is rather strong and the cleaning effect may be reduced.
- the concentration of the dispersing agent in the cleaning liquid of the present invention is preferably 0.01 to 5% by weight, particularly preferably 0.1 to 2% by weight. If the dispersant concentration is too low, the dispersion effect by the dispersant cannot be sufficiently obtained. If the concentration of the dispersant in the cleaning liquid is too high, the cleaning effect does not increase with respect to the concentration.
- the cleaning agent of the present invention is prepared by mixing a protective agent component with water and an alkali agent, a combined chlorine agent, an oxidizing agent, other agents, a solvent, and the like, which are blended as necessary.
- an NH 2 -based compound such as sulfamic acid is added to an aqueous solution of an alkaline agent and dissolved, and hypochlorous acid and / or hypochlorous acid is added to the resulting NH 2 -based compound aqueous solution. It can be prepared by adding and mixing chlorate. In the aqueous solution of the alkaline agent, the amount of water is preferably 50 to 90% by weight.
- the surfactant may be added in any of the detergent preparation steps. The surfactant may be previously contained in the aqueous solution of the alkali agent.
- the surfactant may be added when hypochlorous acid and / or hypochlorite is added to the NH 2 -based compound aqueous solution.
- the surfactant may be added before or after the addition of hypochlorous acid and / or hypochlorite.
- the surfactant is added after the addition of hypochlorous acid and / or hypochlorite.
- a compound having a primary amino group such as sulfamic acid may be added in the form of a salt.
- the salt include those that are soluble when used in the cleaning liquid of the present invention, and sodium sulfamate, potassium sulfamate, ammonium sulfamate, and the like can be used.
- the NH 2 -based compound is added so that the concentration of the chloramine compound in the cleaning liquid of the present invention obtained by diluting the cleaning agent of the present invention becomes the above concentration.
- Amount of NH 2 compound, the content ratio of the alkaline agent and the NH 2 compound is preferably 0.5 to 0.7 N / alkali metal (molar ratio).
- the NH 2 -based compound can be added in a powder state or in an aqueous solution state.
- a sulfamate as the NH 2 -based compound
- the amount of alkali metal contained in the sulfamate is added as an alkali.
- an aqueous solution the amount of water contained in the aqueous solution is added as the amount of water in the alkaline aqueous solution.
- Hypochlorous acid and / or hypochlorite is preferably added as an aqueous solution having an effective chlorine (Cl 2 ) concentration of 5 to 20% by weight, preferably 10 to 15% by weight.
- Hypochlorous acid and / or hypochlorite is used so that the concentration of the chloramine compound in the cleaning liquid of the present invention obtained by diluting the cleaning agent of the present invention becomes the above concentration, and the NH 2 compound and the following hypochlorite. It is added so that the content ratio with chlorous acid and / or hypochlorite is the aforementioned Cl 2 / N molar ratio.
- the cleaning agent of this invention which consists of aqueous solution formulation excellent in reactivity, stability, handleability, a chlorine-free odor, etc. can be manufactured efficiently. Even in this case, it is preferable to gradually add and mix hypochlorous acid and / or hypochlorite.
- the cleaning solution of the present invention is prepared by diluting the cleaning agent of the present invention thus produced with water, preferably pure water, and if necessary, an alkaline agent, a combined chlorine agent, an oxidizing agent, other chemicals, a solvent, etc. It is manufactured by adding.
- the cleaning liquid of the present invention can also be produced directly by the same method as above without passing through the cleaning agent of the present invention.
- the method for cleaning the RO membrane using the cleaning liquid of the present invention is not particularly limited as long as the RO membrane is brought into contact with the cleaning liquid.
- immersion cleaning is performed in which a cleaning liquid is introduced to the raw water side of the RO membrane module and allowed to stand.
- the cleaning agent and the cleaning liquid of the present invention are in two or more types, they may be mixed and used for cleaning, or may be sequentially cleaned using different agents. For example, after washing with a cleaning solution containing a protective agent component, it may be washed with a cleaning solution containing an acid or other cleaning agent.
- cleaning with an alkaline aqueous solution not containing a protective agent component can be performed after cleaning with the cleaning liquid of the present invention.
- the alkaline agent of the alkaline aqueous solution those described above as the alkaline agent used in the cleaning liquid of the present invention can be used.
- the pH of the aqueous alkaline solution is preferably pH 10 or more, particularly pH 11 to 13 from the viewpoints of cleaning effect and handleability.
- acid cleaning effective for removing scales and metal colloids may be performed.
- an aqueous solution containing one or more acids such as hydrochloric acid, nitric acid, citric acid and oxalic acid can be used.
- the pH of the aqueous acid solution is preferably pH 4 or less, particularly pH 1 to 3 from the viewpoint of cleaning effect and handleability.
- the immersion cleaning time with the cleaning liquid of the present invention and other cleaning liquids is not particularly limited as long as the target film performance recovery rate can be obtained.
- the immersion cleaning time is usually about 2 to 24 hours.
- the cleaning procedure is not particularly limited.
- the acid cleaning with the acid aqueous solution is performed before the cleaning with the cleaning liquid of the present invention, it is effective for removing scale components.
- sodium chloride, sodium metasilicate nonahydrate (for silica solution preparation), hydrochloric acid, isopropyl alcohol (IPA), various amino acids, and sodium hydroxide are all Wako Pure Obtained from Yakuhin. Aspartame was obtained from Ajinomoto Healthy Supply. ⁇ -Polylysine (molecular weight 4,000 to 5,000) was obtained from JNC.
- Sodium dodecylbenzenesulfonate was obtained from Wako Pure Chemical Industries.
- Monochlororossulfamic acid was synthesized by the method described in the section ⁇ Method for producing detergent and cleaning liquid> using sulfamic acid (Wako Pure Chemical Industries, Ltd.), sodium hypochlorite (Asahi Glass Co., Ltd.) and sodium hydroxide.
- the increase in the pure water flux is suppressed in the immersion experiment in the cleaning liquid without the reduction rate being lowered. That is, since the flux increases due to the deterioration of the film by the cleaning liquid, it is not preferable that the flux increases after the immersion experiment. However, in the contaminated film, the flux is preferably increased after cleaning.
- ⁇ Cleaning agent> Cleaning agent (1): 20% by weight glycine, 0.4% by weight sodium hydroxide aqueous solution
- the RO membrane supply water is supplied from the pipe 11 to the raw water chamber 1A below the RO membrane cell 2 in which the RO membrane of the sealed container 1 is set by the high pressure pump 4.
- the raw water chamber 1 ⁇ / b> A below the RO membrane cell 2 is agitated by rotating the agitator 5 with a stirrer 3.
- the RO membrane permeated water is taken out from the pipe 12 through the permeated water chamber 1B on the upper side of the RO membrane cell 2.
- the concentrated water is taken out from the pipe 13.
- the pressure in the sealed container 1 is adjusted by a pressure gauge 6 provided in the water supply pipe 11 and a pressure adjusting valve 7 provided in the concentrated water outlet pipe 13.
- Flux [m / day] permeate flow rate [m 3 / day] / membrane area [m 2 ] ⁇ temperature conversion coefficient [ ⁇ ]
- Blocking rate [%] ⁇ 1 ⁇ (permeate concentration [mg / L] / concentrated water concentration [mg / L]) ⁇ ⁇ 100
- Example I-1 The above experiment was performed using a sodium hydroxide aqueous solution containing 2 wt% arginine having a pH of 12 prepared by diluting the cleaning agent (4) 10 times with pure water.
- Example I-2> The above experiment was conducted using a sodium hydroxide aqueous solution containing 2 wt% aspartame at pH 12 prepared by diluting the cleaning agent (5) 10 times with pure water.
- Example I-3> The above experiment was conducted using 0.0001 wt% ⁇ -polylysine-containing sodium hydroxide aqueous solution of pH 12 prepared by diluting the cleaning agent (6) 10 times with pure water.
- Example I-4> The above experiment was conducted using a 0.3 wt% phenylalanine-containing sodium hydroxide aqueous solution having a pH of 12 prepared by diluting the cleaning agent (7) 10 times with pure water. However, the immersion test was performed only once.
- Example I-1 the pH 12 sodium hydroxide aqueous solution containing arginine, which is the basic amino acid of Example I-1, suppresses a decrease in IPA rejection and an increase in pure water flux.
- the sodium hydroxide aqueous solution having a pH of 12 containing aspartame of Example I-2 the decrease in the rejection rate in the first and subsequent repeated washings is suppressed.
- Example I-3 is a case where polylysine is used. Even at a low concentration of 0.0001% by weight, the IPA blocking rate and the increase in pure water flux can be particularly suppressed.
- Example I-4 is the result of one-time washing using phenylalanine, but at a concentration of 0.3% by weight, a decrease in IPA rejection and an increase in pure water flux can be suppressed.
- ⁇ RO membrane> (1) New membrane: aromatic polyamide RO membrane “ES20” (manufactured by Nitto Denko) (2) Contaminated membrane: An aqueous solution containing a nonionic surfactant (200 mg / L semi-clean KG (Yokohama Yushi Kogyo Co., Ltd.) aqueous solution) was passed through the new membrane at 0.75 MPa for 3 days to lower the flux.
- a nonionic surfactant 200 mg / L semi-clean KG (Yokohama Yushi Kogyo Co., Ltd.) aqueous solution
- the pure water flux of the new membrane is the pure water flux before contamination
- the pure water flux of the contaminated membrane is the pure water flux after contamination
- the pure water flux of the membrane after cleaning is the pure water flux after cleaning.
- the ratio (percentage) of the pure water flux after cleaning to the pure water flux before contamination was calculated as the recovery rate.
- Example III In Comparative Example III-1, the following cleaning liquid (1) was used, and in Example III-1, the following cleaning liquid (2) was used, respectively, in the same manner as in Experiment I (however, the number of immersions was set to 1), An immersion experiment using a cleaning solution was conducted, and an experiment was conducted to examine the effect of immersion in the cleaning solution on the rejection rate and pure water flux.
- Cleaning solution (1) Monochlororosulphamic acid 0.17% by weight, pH 12 sodium hydroxide aqueous solution
- Example IV In Comparative Example IV-1, the following cleaning liquid (1) was used, and in Example IV-1, the following cleaning liquid (2) was used to perform a cleaning experiment in the same manner as in Experiment II. An experiment was conducted to examine the effects on the
- Cleaning solution (1) Monochlororosulphamic acid 0.17% by weight, pH 12 sodium hydroxide aqueous solution
- Example VI-1 achieves a recovery rate equivalent to that of Comparative Example VI-1, and the detergency inhibition by using the protective agent component according to the present invention can be regarded as low. it can.
- the polylysine concentration exceeds 0.1% by weight, cleaning inhibition starts to appear, but a protective effect is observed.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Detergent Compositions (AREA)
Abstract
Description
(1)洗浄によって、RO膜の脱塩率やシリカ阻止率、特に中性溶質であるIPA(イソプロピルアルコール)阻止率が低下する。
(2)阻止率の低下を引き起こす洗浄液の条件は、pH10以上のアルカリ性条件であり、pHが高くなるほどその影響が強くなる。結合塩素剤や酸化剤によっても阻止率の低下が引き起こされる。
本発明による作用機構は以下の通りである。
アミノ酸やペプチドは、芳香族ポリアミド系RO膜のアミド結合に近い構造をしており、アミド結合部分との親和性があり、塩基性のアミノ酸は負電荷を有する膜表面に特に親和性が高い。疎水性アミノ酸も膜の芳香環の部分に対する親和性が高い。これらの物質がRO膜に吸着することで、洗浄液によるアミド結合の切断を抑制すると考えられる。
本発明において、洗浄対象となるRO膜は、芳香族ポリアミド系RO膜であってもよく、酢酸セルロース系RO膜であってもよい。本発明は、特に、芳香族ポリアミド系RO膜のアミド結合部分へのアミノ酸やペプチドの親和性の点において、芳香族ポリアミド系RO膜の洗浄に有効である。
本発明の洗浄剤は、塩基性もしくは疎水性アミノ酸、これらのアミノ酸を構成アミノ酸として含むペプチド又はその誘導体(以下、これらを「保護剤成分」と称す。)を膜の保護剤ないしは劣化抑制剤として含むことを特徴とするものである。本発明の洗浄剤は、通常、保護剤成分と、必要に応じて用いられるアルカリ剤、結合塩素剤、その他の薬剤等を水に溶解させて調製される。
本発明の洗浄剤に含まれる保護剤成分のうち、塩基性アミノ酸としては、アルギニン、リジン、ヒスチジン等が挙げられる。疎水性アミノ酸としては、フェニルアラニン、トリプトファン等が挙げられる。これらのアミノ酸を構成アミノ酸として含むペプチドとしては、フェニルアラニンとアスパラギン酸のペプチドでありフェニルアラニン部位がメチルエステル化されているアスパルテームや、リジンのホモポリペプチドであるポリリジン(ε-ポリリジン)などが挙げられる。これらのアミノ酸やペプチドの誘導体としては、親水性アミノ酸のC端に疎水基を結合させたアミノ酸ベンジルエステル、アミノ酸ブチルエステル、N端に疎水基を結合させたZ-アミノ酸誘導体等が挙げられる。保護剤成分は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
本発明の洗浄剤には、保護剤成分以外に、RO膜の洗浄に必要な、アルカリ剤、結合塩素剤、酸化剤、その他の薬剤や水以外の溶媒が含有されていてもよい。
この場合、次亜塩素酸及び/又は次亜塩素酸塩の量が洗浄剤中のクロラミン化合物量となる。
これらのうち、特に分散効果の面でアニオン系界面活性剤が好ましい。
本発明の洗浄液は、本発明の洗浄剤を水で希釈してなる水溶液である。本発明の洗浄液は、本発明の洗浄剤を水で希釈すると共に、更に、必要に応じて、アルカリ剤、結合塩素剤、酸化剤、その他の薬剤、溶媒等を添加して所定の濃度に調整したものであってもよい。
本発明の洗浄剤は、水に保護剤成分と、必要に応じて配合されるアルカリ剤、結合塩素剤、酸化剤、その他の薬剤、溶媒等を混合して調製される。
本発明の洗浄液を用いてRO膜を洗浄する方法としては、この洗浄液にRO膜を接触させればよく、特に制限はない。通常、RO膜モジュールの原水側に洗浄液を導入して静置する浸漬洗浄が行われる。
ただし、汚染膜においては、洗浄後にフラックスが増加することが好ましい。
以下の条件で、保護剤成分を含む洗浄液への浸漬回数が阻止率と純水フラックスに及ぼす影響を調べる実験を行った。
新膜:芳香族ポリアミド系RO膜「ES20」(日東電工社製)未使用品
洗浄剤(1):20重量%グリシン、0.4重量%水酸化ナトリウム水溶液
洗浄剤(2):20重量%アスパラギン、0.4重量%水酸化ナトリウム水溶液
洗浄剤(3):20重量%アスパラギン酸、0.4重量%水酸化ナトリウム水溶液
洗浄剤(4):20重量%アルギニン、0.4重量%水酸化ナトリウム水溶液
洗浄剤(5):20重量%アスパルテーム、0.4重量%水酸化ナトリウム水溶液
洗浄剤(6):0.001重量%ε-ポリリジン、0.4重量%水酸化ナトリウム水溶液
洗浄剤(7):3重量%フェニルアラニン、0.4重量%水酸化ナトリウム水溶液
図1に示す平膜試験装置を用いた。
フラックス[m/day]=透過水流量[m3/day]/膜面積[m2]×温度換算係数[-]
阻止率[%]={1-(透過水濃度[mg/L]/濃縮水濃度[mg/L])}×100
(1) 新膜の純水フラックスを0.75MPa、25℃で測定した。また、阻止率測定用標準液(塩化ナトリウム、メタケイ酸ナトリウム9水和物およびIPAを水に混合して調製した500mg/L塩化ナトリウム、20mg/Lシリカ、15.7mg/L IPAの水溶液)を0.75MPa、25℃で通水して、塩化ナトリウム(NaCl)、シリカおよびIPAの阻止率を測定した。
(2) 洗浄液に、(1)の膜を15時間浸漬し、その後純水で2時間フラッシングを行った後、純水フラックスの測定と、阻止率測定用標準液による塩化ナトリウム(NaCl)、シリカおよびIPAの阻止率の測定を行った。
(3) (2)と同様、洗浄液に膜を15時間浸漬し、その後純水で2時間フラッシングを行う操作を繰り返し、4回目、8回目の浸漬、フラッシング操作の後に純水フラックスの測定と阻止率測定用標準液による塩化ナトリウム(NaCl)、シリカおよびIPAの阻止率測定を行った。この試験は、洗浄液への浸漬を繰り返すことにより、複数回の洗浄を想定した加速試験である。
pH12の水酸化ナトリウム水溶液を洗浄液として用い、上記の実験を行った。
洗浄剤(1)を純水で10倍に希釈して調製したpH12の2重量%グリシン含有水酸化ナトリウム水溶液を洗浄液として用い、上記の実験を行った。
洗浄剤(2)を純水で10倍に希釈して調製したpH12の2重量%アスパラギン含有水酸化ナトリウム水溶液を洗浄液として用い、上記の実験を行った。
洗浄剤(3)を純水で10倍に希釈して調製したpH12の2重量%アスパラギン酸含有水酸化ナトリウム水溶液を洗浄液として用い、上記の実験を行った。
洗浄剤(4)を純水で10倍に希釈して調製したpH12の2重量%アルギニン含有水酸化ナトリウム水溶液を洗浄液として用い、上記の実験を行った。
洗浄剤(5)を純水で10倍に希釈して調製したpH12の2重量%アスパルテーム含有水酸化ナトリウム水溶液を洗浄液として用い、上記の実験を行った。
洗浄剤(6)を純水で10倍に希釈して調製したpH12の0.0001重量%ε-ポリリジン含有水酸化ナトリウム水溶液を洗浄液として用い、上記の実験を行った。
洗浄剤(7)を純水で10倍に希釈して調製したpH12の0.3重量%フェニルアラニン含有水酸化ナトリウム水溶液を洗浄液として用い、上記の実験を行った。ただし、浸漬試験は1回のみ行った。
比較例I-1~I-4,実施例I-1~I-4の実験結果をそれぞれ表1a~1hに示す。
表1a~1hより明らかなように、比較例I-1では、NaCl、IPA、シリカ阻止率が低下し、純水フラックスが増加している。中性アミノ酸であるグリシンやアスパラギンを含むpH12の水酸化ナトリウム水溶液を洗浄液とした比較例I-2、I-3では阻止率の低下を抑制できていない。酸性アミノ酸であるアスパラギン酸を用いた比較例I-4でも同様である。
以下の条件で、保護剤成分の使用が、洗浄液の洗浄効果に及ぼす影響を調べる実験を行った。
(1) 新膜:芳香族ポリアミド系RO膜「ES20」(日東電工社製)未使用品
(2) 汚染膜:上記新膜に、非イオン性界面活性剤を含む水溶液(200mg/LセミクリーンKG(横浜油脂工業社製)水溶液)を0.75MPaで3日間通水してフラックスが低下した膜
比較例I-1、実施例I-1~I-4で使用した洗浄液に0.15重量%ドデシルベンゼンスルホン酸ナトリウムを添加したものを使用し、それぞれ、比較例II-1、実施例II-1~II-4とした。
実験Iと同一
新膜の純水フラックスを0.75MPa、25℃で測定した。また、上述の方法で汚染膜とし、汚染膜の純水フラックスを0.75MPa、25℃で測定した後、洗浄液に汚染膜を15時間浸漬し、その後純水で2時間フラッシングを行い、洗浄後の純水フラックスを0.75MPa、25℃で測定した。
比較例II-1、実施例II-1~II-4の実験結果を表2に示す。
表2より明らかなように、いずれの場合も80%以上の回復率を実現しており、洗浄後のフラックスの絶対値では、保護剤成分を用いた実施例II-1~II-4は、保護剤成分を用いていない比較例II-1に対して遜色無い結果となっている。したがって、本発明に係る保護剤成分を使用することによる洗浄性阻害は低いとみなすことができる。
比較例III-1では以下の洗浄液(1)を用い、実施例III-1では以下の洗浄液(2)を用いて、それぞれ、実験Iと同様に(ただし、浸漬回数は1回とした)、洗浄液による浸漬実験を行い、洗浄液への浸漬が阻止率と純水フラックスに及ぼす影響を調べる実験を行った。
洗浄液(1):モノクロロスルファミン酸0.17重量%、pH12水酸化ナトリウム水溶液
洗浄液(2):モノクロロスルファミン酸0.17重量%、ε-ポリリジン0.075重量%、pH12水酸化ナトリウム水溶液
比較例III-1、実施例III-1の実験結果をそれぞれ表3a,表3bに示す。
表3a,3bより明らかなように、比較例III-1では、NaCl、IPA、シリカ阻止率が低下し、純水フラックスが増加しているが、実施例III-1では、これが抑制されている。
比較例IV-1では以下の洗浄液(1)を用い、実施例IV-1では以下の洗浄液(2)を用いてそれぞれ、実験IIと同様に洗浄実験を行い、保護剤成分が洗浄液の洗浄性に及ぼす影響を調べる実験を行った。
洗浄液(1):モノクロロスルファミン酸0.17重量%、pH12水酸化ナトリウム水溶液
洗浄液(2):モノクロロスルファミン酸0.17重量%、ε-ポリリジン0.075重量%、pH12水酸化ナトリウム水溶液
比較例IV-1、実施例IV-1の実験結果を表4に示す。
表4に示される通り、実施例VI-1は比較例VI-1と同等の回復率を実現しており、本発明に係る保護剤成分を使用することによる洗浄性阻害は低いとみなすことができる。ポリリジン濃度が0.1重量%を超えると洗浄阻害性が現れはじめるが、保護効果は認められる。
本出願は、2015年5月20日付で出願された日本特許出願2015-102911に基づいており、その全体が引用により援用される。
2 RO膜セル
3 スターラー
4 高圧ポンプ
5 攪拌子
6 圧力計
7 圧力調整バルブ
Claims (8)
- 塩基性もしくは疎水性アミノ酸、これらのアミノ酸を構成アミノ酸として含むペプチド又はその誘導体を膜の保護剤として含むことを特徴とする逆浸透膜の洗浄剤。
- 前記アミノ酸が、アルギニン、リジン及びフェニルアラニンよりなる群から選ばれる1種又は2種以上である請求項1に記載の逆浸透膜の洗浄剤。
- 更に、アルカリ剤、結合塩素剤および酸化剤よりなる群から選ばれる1種又は2種以上を含むことを特徴とする請求項1又は2に記載の逆浸透膜の洗浄剤。
- 請求項1ないし3のいずれか1項の洗浄剤を希釈した水溶液であることを特徴とする逆浸透膜の洗浄液。
- 塩基性もしくは疎水性アミノ酸、これらのアミノ酸を構成アミノ酸として含むペプチド又はその誘導体を膜の保護剤として含むと共に、アルカリ剤、結合塩素剤および酸化剤よりなる群から選ばれる1種又は2種以上を含むことを特徴とする逆浸透膜の洗浄液。
- pHが10~14であることを特徴とする請求項4又は5に記載の逆浸透膜の洗浄液。
- 請求項4ないし6のいずれか1項に記載の洗浄液に逆浸透膜を接触させることを特徴とする逆浸透膜の洗浄方法。
- 前記逆浸透膜が芳香族ポリアミド系逆浸透膜であることを特徴とする請求項7に記載の逆浸透膜の洗浄方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680026707.7A CN107530637A (zh) | 2015-05-20 | 2016-03-23 | 反渗透膜的清洁剂、清洁液以及清洁方法 |
KR1020177033309A KR102293103B1 (ko) | 2015-05-20 | 2016-03-23 | 역침투막의 세정제, 세정액, 및 세정 방법 |
US15/573,027 US20180169585A1 (en) | 2015-05-20 | 2016-03-23 | Agent, liquid, and method for cleaning reverse osmosis membrane |
AU2016263761A AU2016263761B2 (en) | 2015-05-20 | 2016-03-23 | Reverse osmosis membrane cleaner, cleaning solution, and cleaning method |
EP16796183.8A EP3299081A4 (en) | 2015-05-20 | 2016-03-23 | REVERSE OSMOSEMBRANE CLEANER, CLEANING SOLUTION AND CLEANING PROCEDURE |
SG11201709147PA SG11201709147PA (en) | 2015-05-20 | 2016-03-23 | Agent, liquid, and method for cleaning reverse osmosis membrane |
IL255360A IL255360B (en) | 2015-05-20 | 2017-10-31 | Material, liquid and method for cleaning a reverse osmosis membrane |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015102911A JP6090362B2 (ja) | 2015-05-20 | 2015-05-20 | ポリアミド系逆浸透膜の洗浄液、および洗浄方法 |
JP2015-102911 | 2015-05-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016185789A1 true WO2016185789A1 (ja) | 2016-11-24 |
Family
ID=57319808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/059146 WO2016185789A1 (ja) | 2015-05-20 | 2016-03-23 | 逆浸透膜の洗浄剤、洗浄液、および洗浄方法 |
Country Status (10)
Country | Link |
---|---|
US (1) | US20180169585A1 (ja) |
EP (1) | EP3299081A4 (ja) |
JP (1) | JP6090362B2 (ja) |
KR (1) | KR102293103B1 (ja) |
CN (1) | CN107530637A (ja) |
AU (1) | AU2016263761B2 (ja) |
IL (1) | IL255360B (ja) |
SG (1) | SG11201709147PA (ja) |
TW (1) | TWI704221B (ja) |
WO (1) | WO2016185789A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112299530A (zh) * | 2020-10-20 | 2021-02-02 | 天津理工大学 | 一种疏浚船用反渗透膜清洗方法 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6090377B2 (ja) * | 2015-07-27 | 2017-03-08 | 栗田工業株式会社 | 水処理用ポリアミド系逆浸透膜用洗浄剤、洗浄液、および洗浄方法 |
JP7144922B2 (ja) * | 2017-05-09 | 2022-09-30 | オルガノ株式会社 | 逆浸透膜の運転方法および逆浸透膜装置 |
WO2018168641A1 (ja) * | 2017-03-15 | 2018-09-20 | 栗田工業株式会社 | 接水部材の洗浄液、洗浄剤および洗浄方法 |
US11547972B2 (en) * | 2017-07-24 | 2023-01-10 | Northeastern University | Porous membranes comprising nanosheets and fabrication thereof |
CN110055139B (zh) * | 2019-04-08 | 2021-06-22 | 广东翔鹰化工有限公司 | 清洗组合物 |
KR102233760B1 (ko) * | 2019-06-03 | 2021-03-30 | (주)프라임 텍 인터내쇼날 | 아미노산을 이용한 결합염소 생성 및 이를 이용한 역삼투막의 바이오필름 생성 방지 및 제거 방법 |
CN110449033A (zh) * | 2019-08-27 | 2019-11-15 | 湖北中泉环保技术有限公司 | 超滤膜表面有机沉积物的清洗方法 |
US12036513B2 (en) | 2019-10-24 | 2024-07-16 | Mitsubishi Heavy Industries, Ltd. | Desalination performance restoration agent for cellulose acetate membrane and desalination performance restoration method for cellulose acetate membrane |
CN111249916A (zh) * | 2020-02-05 | 2020-06-09 | 润方(北京)生物医药研究院有限公司 | 一种应用于纯化血红蛋白的滤膜的清洁液 |
WO2023053504A1 (ja) * | 2021-09-29 | 2023-04-06 | 栗田工業株式会社 | 芳香族ポリアミド系逆浸透膜の洗浄剤、洗浄液及び洗浄方法 |
EP4410406A1 (en) * | 2021-09-29 | 2024-08-07 | Kurita Water Industries Ltd. | Cleaning agent, cleaning liquid and cleaning method for aromatic polyamide reverse osmosis membranes |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001507750A (ja) * | 1997-01-09 | 2001-06-12 | バイエル・アクチエンゲゼルシヤフト | 表面のクリーニング法 |
JP2008183510A (ja) * | 2007-01-30 | 2008-08-14 | Toray Ind Inc | 浄化水の製造方法およびその製造装置 |
WO2011040354A1 (ja) * | 2009-09-29 | 2011-04-07 | 栗田工業株式会社 | 透過膜の阻止率向上方法及び透過膜 |
WO2012057188A1 (ja) * | 2010-10-29 | 2012-05-03 | 東レ株式会社 | 造水方法および造水装置 |
JP2012187468A (ja) * | 2011-03-09 | 2012-10-04 | Kurita Water Ind Ltd | 透過膜の阻止率向上方法、阻止率向上処理剤及び透過膜 |
JP2012187469A (ja) * | 2011-03-09 | 2012-10-04 | Kurita Water Ind Ltd | 逆浸透膜の阻止率向上方法、阻止率向上処理剤及び逆浸透膜 |
WO2013179775A1 (ja) * | 2012-05-30 | 2013-12-05 | 栗田工業株式会社 | 透過膜の洗浄剤及び洗浄方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3785577A (en) | 1972-07-18 | 1974-01-15 | Improved Machinery Inc | Apparatus for the gaseous reaction of material |
JPS63100998A (ja) | 1986-10-17 | 1988-05-06 | Toray Ind Inc | 超純水の製造方法 |
US4992212A (en) * | 1988-10-18 | 1991-02-12 | Lever Brothers Company, Division Of Conopco, Inc. | Alkaline light duty liquid detergents that are non-staining to aluminum |
JPH08309164A (ja) | 1995-05-15 | 1996-11-26 | Toray Ind Inc | 分離膜の洗浄方法 |
JP2003144865A (ja) | 2001-11-19 | 2003-05-20 | Japan Organo Co Ltd | 膜分離方法 |
KR100635284B1 (ko) * | 2004-05-18 | 2006-10-17 | 주식회사 엘지화학 | (메타)아크릴산 및/또는 (메타)아크릴산 에스테르의제조를 위한 공장장치부용 세척액 및 이를 이용한 세척방법 |
EP2305785A1 (en) * | 2009-10-02 | 2011-04-06 | Unilever N.V. | Use of a carboxylic or amino compound as cleaning aid for hard surfaces and method of cleaning such hard surfaces |
PL2684598T3 (pl) * | 2011-03-09 | 2019-09-30 | Kurita Water Industries Ltd. | Sposób poprawiania współczynnika zatrzymania membrany do odwróconej osmozy oraz zastosowanie środka do obróbki do poprawiania współczynnika zatrzymania membrany do odwróconej osmozy |
CN102553452B (zh) * | 2012-01-10 | 2014-07-23 | 蓝星环境工程有限公司 | 一种用于清洗反渗透膜的膜清洗剂及其使用方法 |
US20150068978A1 (en) * | 2012-03-15 | 2015-03-12 | Advanced Mem-Tch Ltd. | Enhancment of membrane robustness by treatment with ionic materials |
JP6251953B2 (ja) * | 2012-12-28 | 2017-12-27 | 栗田工業株式会社 | 逆浸透膜の阻止率向上方法 |
JP5750607B2 (ja) | 2013-06-27 | 2015-07-22 | 株式会社片山化学工業研究所 | 製紙工程水の殺菌装置 |
TWI515628B (zh) | 2014-06-17 | 2016-01-01 | 恆顥科技股份有限公司 | 觸控顯示器 |
-
2015
- 2015-05-20 JP JP2015102911A patent/JP6090362B2/ja not_active Expired - Fee Related
-
2016
- 2016-03-23 AU AU2016263761A patent/AU2016263761B2/en active Active
- 2016-03-23 SG SG11201709147PA patent/SG11201709147PA/en unknown
- 2016-03-23 US US15/573,027 patent/US20180169585A1/en not_active Abandoned
- 2016-03-23 CN CN201680026707.7A patent/CN107530637A/zh active Pending
- 2016-03-23 WO PCT/JP2016/059146 patent/WO2016185789A1/ja active Application Filing
- 2016-03-23 EP EP16796183.8A patent/EP3299081A4/en not_active Withdrawn
- 2016-03-23 KR KR1020177033309A patent/KR102293103B1/ko active IP Right Grant
- 2016-04-11 TW TW105111224A patent/TWI704221B/zh active
-
2017
- 2017-10-31 IL IL255360A patent/IL255360B/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001507750A (ja) * | 1997-01-09 | 2001-06-12 | バイエル・アクチエンゲゼルシヤフト | 表面のクリーニング法 |
JP2008183510A (ja) * | 2007-01-30 | 2008-08-14 | Toray Ind Inc | 浄化水の製造方法およびその製造装置 |
WO2011040354A1 (ja) * | 2009-09-29 | 2011-04-07 | 栗田工業株式会社 | 透過膜の阻止率向上方法及び透過膜 |
WO2012057188A1 (ja) * | 2010-10-29 | 2012-05-03 | 東レ株式会社 | 造水方法および造水装置 |
JP2012187468A (ja) * | 2011-03-09 | 2012-10-04 | Kurita Water Ind Ltd | 透過膜の阻止率向上方法、阻止率向上処理剤及び透過膜 |
JP2012187469A (ja) * | 2011-03-09 | 2012-10-04 | Kurita Water Ind Ltd | 逆浸透膜の阻止率向上方法、阻止率向上処理剤及び逆浸透膜 |
WO2013179775A1 (ja) * | 2012-05-30 | 2013-12-05 | 栗田工業株式会社 | 透過膜の洗浄剤及び洗浄方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3299081A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112299530A (zh) * | 2020-10-20 | 2021-02-02 | 天津理工大学 | 一种疏浚船用反渗透膜清洗方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107530637A (zh) | 2018-01-02 |
US20180169585A1 (en) | 2018-06-21 |
JP6090362B2 (ja) | 2017-03-08 |
IL255360A0 (en) | 2017-12-31 |
TWI704221B (zh) | 2020-09-11 |
KR20180008502A (ko) | 2018-01-24 |
KR102293103B1 (ko) | 2021-08-23 |
AU2016263761A1 (en) | 2017-11-30 |
SG11201709147PA (en) | 2017-12-28 |
AU2016263761B2 (en) | 2020-02-20 |
IL255360B (en) | 2021-10-31 |
EP3299081A1 (en) | 2018-03-28 |
EP3299081A4 (en) | 2019-01-23 |
JP2016215125A (ja) | 2016-12-22 |
TW201708530A (zh) | 2017-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6090362B2 (ja) | ポリアミド系逆浸透膜の洗浄液、および洗浄方法 | |
JP5910696B1 (ja) | 逆浸透膜の洗浄剤、洗浄液、および洗浄方法 | |
JP6459512B2 (ja) | 透過膜の洗浄方法 | |
JP6364751B2 (ja) | 芳香族ポリアミド系逆浸透膜の洗浄剤及び洗浄方法 | |
JP6090377B2 (ja) | 水処理用ポリアミド系逆浸透膜用洗浄剤、洗浄液、および洗浄方法 | |
WO2017017995A1 (ja) | 逆浸透膜用洗浄剤、洗浄液、および洗浄方法 | |
JP7136385B1 (ja) | 芳香族ポリアミド系逆浸透膜の洗浄剤、洗浄液及び洗浄方法 | |
JP6090376B2 (ja) | 水処理用ポリアミド系逆浸透膜用洗浄剤、洗浄液、および洗浄方法 | |
JP5839087B1 (ja) | 酢酸セルロース系逆浸透膜の洗浄液及びその製造方法 | |
WO2023053504A1 (ja) | 芳香族ポリアミド系逆浸透膜の洗浄剤、洗浄液及び洗浄方法 | |
JP7552743B2 (ja) | 芳香族ポリアミド系逆浸透膜の洗浄剤、洗浄液及び洗浄方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16796183 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 255360 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11201709147P Country of ref document: SG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15573027 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20177033309 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2016263761 Country of ref document: AU Date of ref document: 20160323 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016796183 Country of ref document: EP |