WO2016185633A1 - 複合体 - Google Patents

複合体 Download PDF

Info

Publication number
WO2016185633A1
WO2016185633A1 PCT/JP2015/084811 JP2015084811W WO2016185633A1 WO 2016185633 A1 WO2016185633 A1 WO 2016185633A1 JP 2015084811 W JP2015084811 W JP 2015084811W WO 2016185633 A1 WO2016185633 A1 WO 2016185633A1
Authority
WO
WIPO (PCT)
Prior art keywords
cermet
intermediate layer
metal
phase
mass
Prior art date
Application number
PCT/JP2015/084811
Other languages
English (en)
French (fr)
Inventor
遼馬 中澤
和宏 吉留
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to US15/575,587 priority Critical patent/US11001933B2/en
Priority to JP2017518722A priority patent/JP6620807B2/ja
Priority to CN201580080123.3A priority patent/CN107530780B/zh
Publication of WO2016185633A1 publication Critical patent/WO2016185633A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • C25C7/025Electrodes; Connections thereof used in cells for the electrolysis of melts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F7/064Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using an intermediate powder layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/16Layered products comprising a layer of metal next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/30Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2207/00Aspects of the compositions, gradients
    • B22F2207/01Composition gradients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2207/00Aspects of the compositions, gradients
    • B22F2207/01Composition gradients
    • B22F2207/03Composition gradients of the metallic binder phase in cermets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/044 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/025Particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/12Mixture of at least two particles made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/22Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/02Ceramics

Definitions

  • the present invention relates to a composite through an intermediate layer of a cermet member and a metal member.
  • Chloride electrolysis and oxide electrolysis are used in the refining of rare earth metals.
  • a large amount of chlorine gas is generated in the chloride electrolysis method.
  • the gas generated in the oxide electrolysis method using an oxide is mostly carbon monoxide (CO) or carbon dioxide (CO 2 ) derived from carbon as an anode.
  • the generation of carbon monoxide and carbon dioxide is preferable in terms of the environment compared to the generation of chlorine gas (Non-patent Document 1).
  • an electrode in which a ferrite member and a metal member are joined has been developed.
  • the electrode can have a lower electrical resistance than an electrode using a ferrite member alone, and can reduce power consumption such as electrolytic refining (Patent Document 2).
  • Patent Document 2 when a cermet member is used as an alternative material for the ferrite member of the electrode, the thermal expansion coefficient differs greatly between the cermet member and the metal member, so that the bonding strength between the cermet member and the metal member is lowered.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a composite of a metal member and a cermet member having sufficient bonding strength.
  • the complex of the present invention comprises: A composite having a cermet member, a metal member, and an intermediate layer,
  • the cermet member includes a cermet oxide phase and a cermet metal phase,
  • the cermet oxide phase includes an oxide containing Ni or an oxide containing Fe;
  • the cermet metal phase comprises Ni;
  • the intermediate layer includes Cu; C10, C50, C100, C1000 (mass%), the mass ratio of Cu in the metal phase at the point of 10, 50, 100, 1000 ⁇ m away from the interface between the cermet member and the intermediate layer on the cermet member side,
  • the mass ratio of Cu in the oxide phase at a point 10 and 100 ⁇ m away from the interface toward the cermet member is M10 and M100 (mass%), the following formulas 1 and 2 are satisfied at the same time.
  • the mass ratio of Cu in the cermet metal phase in the cermet member gradually decreases as the distance from the interface between the intermediate layer and the cermet member increases toward the cermet member side.
  • the residual stress is distributed while being inclined in the cermet member.
  • the thermal expansion difference of the cermet member is relatively low in the vicinity of the interface between the intermediate layer and the cermet member. Can be controlled.
  • the metal member is Ni or an alloy containing Ni.
  • Ni can be supplied also from the metal member to the intermediate layer, so that the bonding strength is further improved.
  • Ni has a low solubility in molten salt, durability when performing molten salt electrolysis or the like is improved by selecting Ni or an alloy containing Ni as a metal used for the metal member.
  • Ni 10 ⁇ Ni ⁇ 70 (mass%) and Cu is 30 ⁇ Cu ⁇ 90 (mass%). Is desirable. As a result, the diffusion of Cu into the cermet metal phase in the cermet member is improved, and the bonding strength is further improved.
  • the intermediate layer has at least a first intermediate layer and a second intermediate layer;
  • the first intermediate layer is joined to the cermet member,
  • the first intermediate layer includes at least a first metal Cu;
  • the second intermediate layer includes at least a second metal M2.
  • the melting point of the first metal Cu is lower than the melting point of the second metal M2,
  • the mass concentration of Cu in the first intermediate layer is higher than the mass concentration of Cu in the second intermediate layer;
  • the mass concentration of M2 in the second intermediate layer may be higher than the mass concentration of M2 in the first intermediate layer.
  • first intermediate layer may be bonded to the second intermediate layer.
  • the second intermediate layer may be bonded to the metal member.
  • the mass ratio (Cu / M2) between Cu and M2 in the first intermediate layer is within the range of the following formula 3. 40/60 ⁇ Cu / M2 ⁇ 90/10: (Formula 3)
  • M2 is Ni.
  • the intermediate layer has a third intermediate layer in addition to the first intermediate layer and the second intermediate layer,
  • the third intermediate layer may be joined to the metal member.
  • the mass concentration of Cu in the third intermediate layer is higher than the mass concentration of Cu in the second intermediate layer
  • the mass concentration of M2 in the third intermediate layer is preferably lower than the mass concentration of M2 in the second intermediate layer.
  • the second intermediate layer may be bonded to the first intermediate layer and the third intermediate layer.
  • the cermet oxide phase contained in the cermet member contains at least a Ni oxide.
  • At least a part of the cermet oxide phase contained in the cermet member is made of nickel ferrite.
  • the intermediate layer includes an intermediate oxide phase and an intermediate metal phase
  • the intermediate oxide phase preferably contains at least one metal oxide.
  • the at least one metal oxide is selected from metal oxides contained in the cermet oxide phase.
  • the area occupied by the intermediate oxide phase in the region where the intermediate oxide phase is present and the intermediate metal phase is preferably 10% to 50%.
  • the area ratio of voids in the entire intermediate layer is preferably 30% or less.
  • the area of the cermet oxide phase in the cross section of the cermet member is S o
  • the area of the cermet metal phase is S m
  • the area ratio of the cermet oxide phase to the cermet metal phase is S o / S m
  • S o / S m satisfy the following formula 4. 60/40 ⁇ S o / S m ⁇ 90/10: (Formula 4)
  • the content of the spinel ferrite phase is 40 to 80% by mass
  • the content of the nickel oxide phase is 0 to 10% by mass (including 0% by mass)
  • the content of the cermet metal phase is preferably 15 to 45% by mass.
  • the average composition of the spinel ferrite phase contained in the cermet member is a composition formula Ni x1 Fe y1 M z1 O 4 (0.60 ⁇ x1 ⁇ 0.90, 1.90 ⁇ y1 ⁇ 2.40, 0.00 ⁇ z1 ⁇ 0.20) is preferable.
  • the cermet member contains the nickel oxide phase, and an average composition of the nickel oxide phase is represented by a composition formula Ni x′1 Fe 1 ⁇ x′1 O (0.70 ⁇ x′1 ⁇ 1.00). It is preferred that
  • the composite of the cermet member and the metal member having the above structure has a higher bonding strength than before. That is, according to the present invention, it is possible to provide a composite of a cermet member and a metal member that has higher bonding strength than conventional ones.
  • FIG. 1A is a schematic view of a state in which an intermediate member is sandwiched between a cermet member and a metal member and heat treatment is prepared in order to obtain a composite according to an embodiment of the present invention.
  • FIG. 1B is a schematic view of a composite of a cermet member and a metal member through an intermediate layer according to an embodiment of the present invention.
  • FIG. 2A is an enlarged schematic view showing a part of a sectional view of a cermet member constituting one embodiment of the present invention.
  • FIG. 2B is a schematic view showing an enlarged part of a cross-sectional view of a cermet member constituting one embodiment of the present invention.
  • FIG. 1A is a schematic view of a state in which an intermediate member is sandwiched between a cermet member and a metal member and heat treatment is prepared in order to obtain a composite according to an embodiment of the present invention.
  • FIG. 1B is a schematic view of a composite of a cermet member and
  • FIG. 3 is a schematic diagram showing sites of a cermet metal phase and a cermet oxide phase for performing SEM-EDS point analysis in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the shape of a sample used when performing strength measurement by four-point bending.
  • FIG. 5 is a diagram showing the relationship between the distance from the interface between the intermediate layer and the cermet member and the mass ratio of Cu to the entire cermet metal phase.
  • FIG. 6 is a schematic cross-sectional view of a composite according to an embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view of a composite according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a line analysis result showing a method for determining an interface between layers and an element concentration of each layer.
  • FIG. 9 is a schematic cross-sectional view of a composite according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing a state in which strength measurement is performed by four-
  • the process for obtaining the composite of the cermet member-metal member of this embodiment includes a step of obtaining Ni-based ferrite from Fe 2 O 3 and NiO, a step of obtaining a cermet member from Ni-based ferrite and metal powder, a cermet member, an intermediate member, and a metal member. It is roughly divided into three steps: a step of obtaining a cermet-metal composite. Among these, in the step of obtaining the cermet-metal composite from the cermet member, the intermediate member and the metal member, the intermediate member 2 containing Cu is sandwiched between the metal member 1 and the cermet member 3 as shown in FIG. Thereby, as shown in FIG.
  • the intermediate member 2 is changed to the intermediate layer 4, and the metal member 1 and the cermet member 3 are joined via the intermediate layer 4.
  • the cermet-metal composite of this embodiment is obtained.
  • the cermet-metal composite may be simply referred to as a composite.
  • the metal member 1 and the cermet member 3 are bonded via the intermediate layer 4.
  • the intermediate layer 4 there is no restriction
  • FIG. 2A is a schematic diagram showing an enlarged cross section of the cermet member 3 in FIG. 1B.
  • the cermet member according to one embodiment of the present embodiment includes a cermet oxide phase 5 and a cermet metal phase 6.
  • the cermet oxide phase 5 may not be a single phase, and a plurality of oxide phases may be mixed. That is, you may have a some composition area
  • the cermet oxide phase 5 in FIG. 2A only needs to contain an oxide containing Fe or Ni, but it is desirable that Ni-based ferrite having a spinel structure is a main component. Since Ni-based ferrite has low solubility in molten salt, it exhibits good durability when used as an electrode for molten salt electrolysis. From the viewpoint of sinterability with the cermet metal phase 6, other oxide phases (for example, NiO, Fe 2 O 3, etc.) may be mixed.
  • the cermet metal phase 6 is Ni or an alloy containing Ni.
  • the cermet metal phase 6 serves to increase the conductivity of the cermet member 3.
  • the cermet oxide phase 5 is made of nickel ferrite from the viewpoint of improving conductivity and corrosion resistance, and it is more preferable that the cermet oxide phase 5 is mainly made of nickel ferrite.
  • the cermet oxide phase 5 is mainly composed of nickel ferrite” means that the content of nickel ferrite is 70% by mass or more when the entire oxide of Ni in the cermet oxide phase 5 is 100% by mass. Means that.
  • the area of the cermet oxide phase 5 S o, the area of the cermet metallic phase 6 and S m, the area ratio of the cermet oxide phase 5 and cermet metallic phase 6 in the case of the S o / S m, S o / S m is preferable to satisfy the 60/40 ⁇ S o / S m ⁇ 90/10. It is preferable that S o / S m is within the above-mentioned range.
  • the cermet metal phase 6 preferably contains at least one metal of Ni and Cu.
  • the Ni content is 20 to 90% by mass, and Cu
  • the content of is more preferably 10 to 80% by mass.
  • the configuration of the cermet metal phase 6 is preferable because the corrosion resistance of the cermet member 3 can be improved.
  • the area ratio between the cermet oxide phase 5 and the cermet metal phase 6 is calculated by observing the cut surface of the cermet member 3 at a magnification of 300 to 1000 using a backscattered electron beam image (BEI) with an electron microscope. To do.
  • BEI backscattered electron beam image
  • FIG. 2B is a schematic diagram in which the schematic diagram of FIG. 2A is further brought closer to the actual cermet member 3.
  • the cermet oxide phase 5 may have a spinel ferrite phase 5a and a nickel oxide phase 5b.
  • the nickel oxide phase 5b contains nickel oxide represented by the composition formula Ni x ′ Fe 1-x ′ O (x ′ ⁇ 0).
  • the cermet oxide phase 5 preferably has at least a spinel ferrite phase 5a.
  • the cermet metal phase 6 is dispersed in the cermet oxide phase 5 and is preferably dispersed mainly in the spinel ferrite phase 5a. In other words, it is preferable that most of the cermet metal phase 6 is confined in the spinel ferrite phase 5a. Further, since the cermet member 3 is a sintered body, it has a small amount of pores (not shown) in the spinel ferrite phase 5a, the nickel oxide phase 5b, and / or the boundary between the phases.
  • the content of the spinel ferrite phase 5a is 40 to 80% by mass, and the content of the nickel oxide phase 5b is 0 to 10% by mass (including 0% by mass).
  • the content of the cermet metal phase 6 is preferably 15 to 45% by mass. It is preferable that the content of each phase is within the above range to minimize the dissolution of the cermet member 3 in the molten salt during molten salt electrolysis and to improve electrolysis efficiency because it has conductivity. This is because it can.
  • the average composition of all the spinel ferrite phases 5a contained in the cermet member 3 is the composition formula Ni x1 Fe y1 M z1 O 4 (0.60 ⁇ x1 ⁇ 0.90, 1.90 ⁇ y1 ⁇ 2.40, 0.00 ⁇ z1 ⁇ 0.20) is preferable.
  • the reason why the average composition of the spinel ferrite phase 5a is preferably within the above range is that it is possible to achieve both good conductivity and good corrosion resistance.
  • the cermet member 3 preferably contains the nickel oxide phase 5b, and the average composition of all the nickel oxide phases 5b contained in the cermet member 3 is expressed by the composition formula Ni x′1 Fe 1-x′1 O (0.70 ⁇ x ′). It is more preferable that it is within the range represented by 1 ⁇ 1.00). Because of the chemical balance between the other phases (spinel ferrite phase 5a and cermet metal phase 6), the average composition of nickel oxide phase 5b is preferably within the above range.
  • FIG. 3 is a schematic view of the vicinity of the interface where the cermet member 3 and the metal member 1 are joined.
  • the cermet metal phases 8 to 11 in the cermet member 3 existing at 10 ⁇ m, 50 ⁇ m, 100 ⁇ m, and 1000 ⁇ m from the interface between the cermet member 3 and the intermediate layer 4 in FIG.
  • the mass ratio of Cu to the entire cermet metal phase is C10 (mass%), C50 (mass%), C100 (mass%), and C1000 (mass%) with respect to the cermet metal phases 8 to 11 that are each a fixed distance away from the interface. ) And defined the relationship.
  • the cermet oxide phases 12 and 13 attention was paid to the cermet oxide phases 12 and 13 in the cermet members existing at 10 ⁇ m and 100 ⁇ m away from the interface between the cermet member 3 and the intermediate layer 4, respectively.
  • the mass ratio of Cu to the entire cermet oxide phase was defined as M10 (mass%) and M100 (mass%) with respect to the cermet oxide phases 12 and 13 separated from each other by a fixed distance, and the relationship was defined.
  • the above formula 1 means that the mass ratio of Cu to the entire cermet metal phase in the cermet metal phase 6 decreases stepwise as the distance from the interface increases. This suggests that Cu is diffusing from the intermediate layer 4 to the cermet metal phase 6.
  • the said Formula 2 has shown that the mass ratio in the cermet oxide phase 5 of Cu is a substantially constant value irrespective of the distance from an interface. In other words, it means that there is almost no diffusion of Cu from the intermediate layer 4 to the cermet oxide phase 5.
  • the composite according to this embodiment is characterized in that the above formula 1 and the above formula 2 are satisfied.
  • the composite according to the present embodiment satisfying the above formula 1 and the above formula 2 has few cracks and good bonding strength.
  • the thermal expansion coefficient of the cermet member 3 changes in a stepwise manner as it moves away from the interface between the intermediate layer 4 and the cermet member 3 toward the cermet member 3 side. Therefore, the residual stress is distributed in the cermet member 3 while being inclined without increasing the stress locally. From this, it is considered that the occurrence of cracks was suppressed and good bonding strength was obtained.
  • Cu is diffused in the cermet metal phase 6 in the cermet member 3, so that Cu does not concentrate locally near the interface between the intermediate layer 4 and the cermet member 3. In the vicinity of the interface between the intermediate layer 4 and the cermet member 3, the thermal expansion difference between the cermet member 3 and the intermediate layer 4 is alleviated.
  • a composite with good bonding strength can be obtained.
  • a composite having a joint strength of 50 MPa or more can be obtained.
  • metal used for the metal member 1 in FIG. 1B There is no limitation on the metal used for the metal member 1 in FIG. 1B.
  • the metal member 1 in FIG. 1B For example, what is used for structures, such as stainless steel, should just be selected according to a use.
  • the metal member 1 in the composite becomes a part of the current path when used as an electrode.
  • Ni-based alloys consisting of Ni, Ni, Cr, and Fe when used in molten salt electrolysis, it is possible to form a good composite electrode with high heat resistance and oxidation resistance and low solubility in molten salt. it can.
  • the intermediate layer 4 is formed by heat treatment in a state where the intermediate member 2 made of Cu or an alloy containing Cu is sandwiched between the metal member 1 and the cermet member 3.
  • Cu is selectively diffused from the intermediate layer 4 to the cermet metal phase 6 in the cermet member 3. This is because Cu contained in the intermediate member 2 diffuses into the cermet member 3 during the heat treatment for bonding.
  • Ni in the cermet member 3 diffuses into the intermediate member 2, it is preferable to use an alloy of Ni and Cu or a mixture of Ni and Cu as the intermediate member 2.
  • Bonding is possible by selecting an appropriate bonding temperature and an appropriate firing time.
  • Ni 10 ⁇ Ni ⁇ 70 (mass%) and Cu is 30 ⁇ Cu ⁇ 90 (mass%).
  • the intermediate layer 4 of the present embodiment may have two or more intermediate layers. That is, the intermediate layer 4 may have a multilayer structure of two or more layers.
  • the intermediate layer 4 may include a first intermediate layer 41 and a second intermediate layer 42.
  • the first intermediate layer 41 and the second intermediate layer 42 are sequentially formed from the side closer to the cermet member 3.
  • N0 is the interface between the cermet member 3 and the first intermediate layer 41
  • N1 is the interface between the first intermediate layer 41 and the second intermediate layer 42
  • N2 is the second intermediate layer 42 and the metal member. The position of the interface with 1.
  • the concentration of each element in each intermediate layer is the maximum value or the minimum value when the concentration of the element in the intermediate layer has a maximum value or a minimum value.
  • the concentration of the first intermediate layer 41 in FIG. 8 is a maximum value C1.
  • the concentration of the element in the intermediate layer does not have the maximum value and the minimum value, the concentration of the element is set at the midpoint between the two interfaces.
  • the concentration of the second intermediate layer 42 in FIG. 8 is the concentration in the interface N1 between the first intermediate layer 41 and the second intermediate layer 42 and the interface N2 between the second intermediate layer 42 and the metal member 1.
  • the density C2 at a point (not shown).
  • the intermediate layer 4 may contain at least two kinds of metal elements Cu and M2. There is no particular limitation on the type of M2, except that the melting point of M2 is higher than the melting point of Cu.
  • the first intermediate layer 41 may contain at least Cu
  • the second intermediate layer 42 may contain at least M2.
  • the concentration of Cu is preferably higher in the first intermediate layer 41 than in the second intermediate layer 42, and the concentration of M2 is higher in the second intermediate layer 42 than in the first intermediate layer 41. .
  • FIG. 7 is a schematic view of a composite in which the intermediate layer 4 has a three-layer structure.
  • the third intermediate layer 43 is present between the second intermediate layer 42 and the metal member 1, except that the second intermediate layer 42 and the metal member 1 are joined. All are composites similar to the composite of FIG.
  • the determination method of the concentration and interface of each element in the third intermediate layer 43 is the same as the determination method of the concentration and interface of each element in the first intermediate layer 41 and the second intermediate layer 42 described above.
  • the third intermediate layer 43 may be mainly composed of Cu and / or M2 like the first intermediate layer 41 and the second intermediate layer 42, for example, and is not limited to these configurations.
  • the mass concentration of Cu in the third intermediate layer 43 is the second intermediate layer 43. It is preferable that the mass concentration of Cu in the intermediate layer 42 is higher and the mass concentration of M2 in the third intermediate layer 43 is lower than the mass concentration of M2 in the second intermediate layer 42.
  • the intermediate layer 4 may have a four-layer structure or more.
  • the lower limit of the thickness per intermediate layer is 10 ⁇ m.
  • the thickness per intermediate layer is preferably 20 to 2000 ⁇ m, and the total thickness of the intermediate layer 4 is preferably 20 to 3000 ⁇ m.
  • Ni As M2.
  • the above configuration is preferable because the bonding strength between the cermet member 3 and the metal member 1 can be improved.
  • middle layer 4 which concerns on this embodiment may join the cermet member 3 and the metal member 1, and may have the intermediate metal phase 46 and the intermediate oxide phase 48, as FIG. 9 shows. .
  • the intermediate layer 4 of the composite shown in FIG. 9 has at least one metal oxide
  • voids generated in the intermediate layer 4 by the oxide can be limited.
  • the volume of voids generated by the solidification shrinkage of the metal is limited by the intermediate oxide phase 48 having the metal oxide.
  • the presence of the intermediate oxide phase 48 in the intermediate layer 4 can significantly reduce the proportion of voids present in the intermediate layer 4.
  • the bonding strength of the composite can be increased by reducing the amount of voids.
  • the bonding strength of the composite can be increased by reducing the amount of voids.
  • At least one of the oxides included in the intermediate oxide phase 48 is an oxide included in the cermet oxide phase 5.
  • the intermediate metal phase 46 may be composed only of Cu or may be composed of a plurality of metal elements including Cu.
  • the intermediate metal phase 46 preferably contains at least one of Ni and Fe in addition to Cu.
  • the intermediate oxide phase 48 existing at the position farthest from the interface between the cermet member 3 and the intermediate member 4 in the perpendicular direction.
  • the distance to is d.
  • the range from the interface to the distance d is the measurement range.
  • the area ratio occupied by the intermediate oxide phase 48 is 10% to 50%. Is preferred.
  • the voids in the intermediate layer 4 are sufficiently filled with the metal oxide to prevent cracks and improve the bonding strength.
  • the interface between the cermet member 3 and the intermediate layer 4 and the interface between the intermediate layer 4 and the metal member 1 are determined by visual observation with respect to the cross section using an optical microscope. It is possible. It is also possible to determine by observing a BEI (reflected electron) image obtained using a scanning electron microscope.
  • the intermediate oxide phase 48 is a gray portion in the intermediate layer 4 in a BEI (reflected electron) image obtained using a scanning electron microscope.
  • the metal contained in the intermediate layer 4 is composed only of Cu and Ni.
  • the above configuration is preferable because the bonding strength between the cermet member 3 and the metal member 1 can be improved.
  • complex of this embodiment is the mixing process which mixes a ferrite oxide powder and a metal powder, and obtains mixed powder, The shaping
  • a ferrite raw material powder containing iron oxide (for example, Fe 2 O 3 ) and a metal oxide (for example, NiO) in a desired molar ratio is prepared.
  • the ferrite raw material powder is calcined and pulverized to obtain a ferrite oxide powder.
  • the finally obtained cermet member contains Ni, so that compared with the case where Ni is not contained, molten salt (particularly fluoride) ) Can be reduced.
  • a metal powder is prepared separately from the ferrite oxide powder.
  • a powder of a simple metal for example, a powder of a simple Ni metal, or a metal powder in which two or more kinds of metal powders, for example, a Ni metal powder and a Cu metal powder are mixed in a specific weight ratio may be used.
  • an alloy powder obtained by melting and alloying two or more kinds of metal powders may be used as the metal powder.
  • the ferrite oxide powder and the metal powder are mixed to obtain a mixed powder.
  • the normal mixing method by a ball mill etc. can be used.
  • the mixing method may be a wet method or a dry method, as long as the ferrite oxide powder and the metal powder can be uniformly mixed.
  • the average primary particle size of the mixed powder obtained by the mixing step is not particularly limited, but usually a mixed powder having an average primary particle size of 1 to 30 ⁇ m is obtained.
  • the mixed powder is molded to produce a molded body.
  • a molded object can be produced by normal dry shaping
  • the mixed powder to which a binder has been added is filled in a normal mold and press molded to produce a molded body.
  • a binder used in normal molding can be used. From the viewpoint of obtaining good moldability, it is preferable to use polyvinyl alcohol (PVA) as the binder.
  • PVA polyvinyl alcohol
  • the molding method is not limited to dry molding, and may be wet molding in which a slurry containing a mixed powder and a solvent is pressure-molded while removing the solvent, or may be other molding methods. good.
  • the calcination step can be performed in an atmosphere of an active gas, but is preferably performed in an atmosphere of an inert gas such as nitrogen gas or argon gas.
  • an inert gas such as nitrogen gas or argon gas.
  • the firing temperature and firing time in the firing step are not particularly limited, and can be appropriately adjusted depending on the ferrite oxide powder and metal powder used as raw materials.
  • the temperature is raised in a firing atmosphere of nitrogen gas or argon gas, preferably at a firing temperature of 1200 to 1450 ° C., more preferably 1300 to 1400 ° C., preferably 1 to 10 hours, more preferably 2 to 6 hours.
  • a sintered body can be obtained.
  • the firing temperature is preferably 1450 ° C. or lower.
  • the rate of temperature rise in the firing step is preferably 30 to 500 ° C./hour, more preferably 50 to 350 ° C./hour.
  • the heating rate is preferably 30 to 500 ° C./hour, more preferably 50 to 350 ° C./hour.
  • the temperature lowering rate in the firing step is preferably 10 to 500 ° C./hour, and more preferably 30 to 350 ° C./hour.
  • the temperature lowering rate is preferably 10 to 500 ° C./hour, and more preferably 30 to 350 ° C./hour.
  • the sintered body obtained by the firing step may be used as it is as the cermet member 3 without being processed, or may be processed to obtain a cermet member 3 having a desired shape.
  • the metal used for the metal member 1 There is no limitation on the metal used for the metal member 1. For example, you may select what is used for structures, such as stainless steel.
  • a Ni-based alloy such as a Ni—Fe alloy
  • the molten salt (particularly, the heat resistance and oxidation resistance are high). Fluoride) is preferred because of its low solubility.
  • the cermet member 3 loses iron during electrolysis and the iron in a metal member is replenished, it is preferable that the metal member 1 contains iron.
  • the presence of Ni in the intermediate member 2 can advantageously adjust the movement of iron from the metal member 1 to the cermet member 3. It is also possible to select from commercially available alloys containing these elements.
  • Cu is a metal that melts during heat treatment during bonding.
  • another metal may be further contained.
  • a metal that melts at a relatively low temperature such as an alloy of Cu and Ni may be selected.
  • the intermediate member 2 of the present embodiment only Cu powder may be used, or an alloy of Ni and Cu or a mixture of Ni powder and Cu powder may be used. Further, the shape is not particularly limited, such as a powder compact, foil, plate and the like. As described above, the mass ratio of Ni and Cu in the intermediate member 2 is not particularly limited as long as Cu is included. Regardless of the composition of the intermediate member 2, if an appropriate firing temperature and firing time are selected, joining is possible.
  • a metal powder is used for the intermediate member 2, a compact may be formed by pressing. In that case, pressure molding is performed so that the thickness becomes 0.01 to 0.1 cm, preferably 0.015 to 0.025 cm.
  • a good intermediate layer 4 can be provided in the heat treatment process of the cermet member 3 and the metal member 1.
  • the thickness is less than 0.01 cm
  • the amount of the intermediate member 2 forming the intermediate layer 4 is insufficient and sufficient bonding strength cannot be obtained. Deformation during firing cannot be ignored.
  • the molding pressure is 140 MPa or more, preferably 200 MPa or more. When the molding pressure is less than 140 MPa, the mixed molded body cannot have a suitable thickness due to insufficient pressure.
  • the intermediate member 2 is sandwiched between the cermet member 3 and the metal member 1 to complete the preparation for the heat treatment process.
  • the composite in which the intermediate layer 4 is composed of a plurality of intermediate layers is, for example, between the cermet member 3 and the metal member 1. It can be obtained by inserting a plurality of intermediate members and heating them while applying pressure.
  • the plurality of intermediate members are referred to as a first intermediate member and a second intermediate member from the cermet member 3 toward the metal member 1.
  • the first intermediate member includes at least Cu
  • the second intermediate member includes at least the second metal M2.
  • the type of the second metal M2 is not particularly limited, but the melting point of M2 is preferably higher than the melting point of Cu. Furthermore, it is preferable that the heating temperature in the bonding step is higher than the melting point of Cu and lower than the melting point of M2. By heating at a temperature higher than the melting point of Cu, the first intermediate member is melted, and liquid phase diffusion bonding can be performed on the cermet member 3 and the second intermediate member, and the first intermediate member in contact with the cermet member 3 Compared with the case where a member does not fuse
  • the second intermediate member does not melt, and the metal in the cermet member 3 does not pass through the first intermediate member and the second intermediate member and diffuse to the metal member 1.
  • the reaction can be suppressed.
  • the Cu concentration of the first intermediate member is made higher than the Cu concentration of the second intermediate member, and the M2 concentration of the second intermediate member is made higher than the M2 concentration of the first intermediate member.
  • the Cu concentration of the first intermediate member When the Cu concentration of the first intermediate member is higher than the Cu concentration of the second intermediate member, the Cu concentration of the first intermediate layer 41 in the composite shown in FIG. 6 becomes higher than the Cu concentration of the second intermediate layer 42. Further, since the M2 concentration of the second intermediate member is higher than the M2 concentration of the first intermediate member, the M2 concentration of the second intermediate layer 42 becomes higher than the M2 concentration of the first intermediate layer 41.
  • the configuration using the plurality of intermediate members described above makes it difficult for voids to occur near the interface between the cermet member 3 and the intermediate layer 4, and the bonding strength is further improved.
  • the melting point of the first metal Cu is 1083 ° C.
  • the second metal M2 is preferably Ni (melting point: 1455 ° C.).
  • the metal member 1 contains Ni, Ni and Cu components in the intermediate layer 4, particularly, Ni and Cu components in the second intermediate layer 42 in contact with the metal member 1 diffuse into the metal member 1. This increases the bonding strength.
  • the amount of Ni is 10 to 60
  • the amount of Cu is 90 to 40
  • the second intermediate layer 42 From the viewpoint of improving the bonding strength, it is preferable that the amount of Ni is 100 to 70 and the amount of Cu is 0 to 30 when the total weight of Ni and Cu is 100.
  • the composite shown in FIG. 7 can be formed by increasing the number of intermediate members to three.
  • the intermediate member closest to the metal member 1 is defined as a third intermediate member.
  • the third intermediate member contains at least the first metal Cu.
  • the Cu concentration of the third intermediate member is preferably higher than the Cu concentration of the second intermediate member, and the M2 concentration of the second intermediate member is preferably higher than the M2 concentration of the third intermediate member.
  • the third intermediate member is melted by heating at a temperature higher than the melting point of Cu and lower than the melting point of M2, and liquid phase diffusion bonding is performed with the second intermediate member and the metal member 1.
  • the second intermediate member in contact with the metal member 1 does not melt, so the bonding between the metal member 1 and the second intermediate member is solid phase diffusion bonding.
  • the bonding between the metal member 50 and the third intermediate member is the liquid phase diffusion bonding. That is, when the first intermediate member is melted, the third intermediate member can also be melted to perform liquid phase diffusion bonding, exhibiting a good liquid phase diffusion reaction with respect to the second intermediate member and the metal member 1, and bonding strength. Will improve.
  • the third intermediate member when using the third intermediate member, it is possible to reduce voids formed between the second intermediate layer 42 and the metal member 1 in the finally obtained composite.
  • By reducing the voids when the composite according to the present embodiment is used as an electrode for electrolysis, there is an effect that a high and uniform current density distribution can be obtained.
  • the total of Ni and Cu in the first intermediate layer 41 and / or the third intermediate layer 43 is obtained.
  • the amount of Ni in the intermediate layer is preferably 10 to 60, and the amount of Cu is preferably 90 to 40.
  • the metal constituting the intermediate member 4 in the composite shown in FIG. 9 it is preferable to select a metal that melts when performing the heat treatment during bonding.
  • a metal that melts at a relatively low temperature such as an alloy of Cu and Ni.
  • the oxide constituting the intermediate layer 4 in the composite shown in FIG. 9 it is preferable to use an oxide that is partly or in common with the oxide constituting the cermet member 3.
  • the oxide contained in the cermet member 3 is composed of a mixture of Ni-based ferrite and NiO
  • the oxide constituting the intermediate layer 4 preferably includes Ni-based ferrite and / or NiO.
  • the metal constituting the intermediate layer 4 and the oxide are sufficiently mixed in a powder state before heat treatment.
  • the area ratio of the intermediate oxide phase 48 By setting the area ratio of the intermediate oxide phase 48 to 10% to 50%, it becomes easy to suppress the void generation rate in the intermediate layer, and the bonding strength in the composite is improved.
  • the mixed powder is pressed to form the intermediate member 2 as a molded body by pressing, but the intermediate member 2 is not limited to the molded body.
  • the intermediate member 2 may be a paint obtained by forming an organic solvent into the mixed powder.
  • the powder after mixing is pressure-molded so as to have a thickness of preferably 0.01 to 0.1 cm, more preferably 0.015 to 0.025 cm.
  • a sufficient amount of the intermediate layer 4 can be provided in the heat treatment step, and the joint strength of the finally obtained composite is increased, and the heat treatment step It is easy to suppress the deformation of the intermediate layer 4 to a size that can be ignored.
  • the molding pressure is preferably 140 MPa or more, more preferably 200 MPa or more. It becomes easy to make a molded object into suitable thickness by making a molding pressure into said range.
  • the obtained compact is used as the intermediate member 2 and sandwiched between the cermet member 3 and the metal member 1 to complete the preparation for the heat treatment step.
  • the heat treatment step is a step in which the intermediate member 2 is sandwiched between the cermet member 3 obtained in the above step and the selected metal member 1 to perform heat treatment.
  • the heat treatment step is performed in an inert gas atmosphere such as nitrogen gas or argon gas or in a vacuum atmosphere. By baking in an inert gas or a vacuum atmosphere, oxidation of the metal member 1 can be prevented.
  • the heat treatment temperature may be selected so that the diffusion proceeds sufficiently. Moreover, you may heat-process, performing moderate pressurization. If the heat treatment temperature is limited by the heat resistance of the metal member 1 and the cermet member 3, diffusion that satisfies the above-described expression 1 may be advanced by increasing the heat treatment time. Therefore, in this embodiment, the heat treatment temperature and the heat treatment time are not particularly limited, and can be appropriately adjusted according to the heat resistance of the metal member 1 and the cermet member 3 to be used.
  • the heat treatment temperature is preferably 1450 ° C. or less, more preferably 1300 ° C. or less.
  • the heat treatment temperature is 1050 ° C. to 1300 ° C.
  • the heat treatment time is preferably 0.1 to 100 hours, more preferably 1 to 75 hours to obtain a composite.
  • the heating rate in the heat treatment is 30 to 600 ° C. ⁇ h ⁇ 1 , preferably 50 to 350 ° C. ⁇ h ⁇ 1 .
  • the rate of temperature decrease is 10 to 600 ° C. ⁇ h ⁇ 1 , preferably 30 to 350 ° C. ⁇ h ⁇ 1 . If the temperature drop rate is faster than this condition, cracks tend to occur frequently, and if it is slow, the production cost will increase.
  • the obtained composite may be used as it is or may be processed according to the application. Moreover, although there is no limitation in the use of the obtained composite_body
  • the composite obtained in the above process was subjected to cross-sectional observation, composition analysis in the cermet metal phase 6 and cermet oxide phase 5 in the cermet member 3, and strength measurement by four-point bending.
  • the obtained composite is cut so that the part where the cermet member 3 and the metal member 1 are bonded via the intermediate layer 4 can be seen, and the cross section is exposed. After the section was mirror-polished, the metal member 1, the cermet member 3, the intermediate layer 4, and cracks were observed using an optical microscope.
  • void analysis was performed on the cross-sectional image observed by the optical microscope.
  • middle layer 4 was judged as a void, and the ratio was computed.
  • the composite intermediate layer 4 was subjected to line analysis at the maximum point where voids were calculated.
  • the length of the line was 3 mm, and the ratio of voids in the entire line was calculated.
  • the same measurement was performed on 10 samples, and the average value was calculated as the void ratio.
  • the number of samples to be measured is increased, and the total measurement range is 30 mm (for example, 20 pieces if the measurable length is 1.5 mm). Then, the void ratio was calculated.
  • a composite having a void ratio of less than 5% in the intermediate layer 4 was determined to be a good composite.
  • composition of the cermet metal phase 6 in the cermet member 3 was analyzed by point analysis using SEM-EDS.
  • Composition analysis was performed on the cermet metal phases 8 to 11 in FIG. 3 existing at a distance of 10, 50, 100, and 1000 ⁇ m in the vertical direction from the interface between the intermediate layer 4 and the cermet member 3.
  • the mass ratio of Cu to the elements constituting the cermet metal phase in each of the cermet metal phases 8 to 11 was calculated.
  • the calculated values were defined as C10, C50, C100, and C1000 (mass%), corresponding to the distance from the interface between the intermediate layer 4 and the cermet member 3, respectively.
  • composition of the cermet oxide phases 12 and 13 was analyzed by point analysis using SEM-EDS. Composition analysis of the cermet oxide phases 12 and 13 in FIG. 3 present at a distance of 10, 100 ⁇ m in the vertical direction from the interface between the intermediate layer 4 and the cermet member 3 was performed. From the results of the composition analysis, the mass ratio of Cu to the elements constituting the cermet oxide phases in the cermet oxide phases 12 and 13 was calculated. The calculated values were defined as M10 and M100 (mass%), corresponding to the distance from the interface between the intermediate layer 4 and the cermet member 3, respectively.
  • each composite sample was processed as shown in FIG.
  • the processed sample was subjected to 4-point bending to evaluate the bonding strength.
  • the cermet member 3 may include another phase different from the cermet oxide phase 5 and the cermet metal phase 6.
  • the material of the metal member 1 is not particularly limited. A diffusion bonding method with the aid of mechanical pressure may be applied from the viewpoint of further increasing the bonding strength. Further, the cermet member 3 may be physically laminated with a plurality of cermet members having different metal compositions so as to satisfy the above-described formula 1.
  • Example 1 (Examental example 1) (Examples 1 to 45 and Comparative Examples 1 to 24)
  • Commercially available NiO powder and Fe 2 O 3 powder were blended so that the molar ratio of NiO and Fe 2 O 3 was 70:30, and mixed using a ball mill.
  • the mixed powder obtained by mixing was calcined in the air at a temperature of 1000 ° C. for 3 hours.
  • the calcined powder obtained by calcining was pulverized with a ball mill to prepare a ferrite oxide powder.
  • Ni powder, mixed powder of Ni powder and Cu powder, mixed powder of Ni powder and Ag powder, and mixed powder of Ni powder, Cu powder and Ag powder were prepared as metal powder.
  • the mixed powder of Ni powder and Cu powder it was set as the mixing ratio with which the mass ratio of Ni and Cu satisfy
  • the blended powder was mixed by a ball mill, and 0.8 mass% of binder (PVA) was added to the obtained mixed powder. Thereafter, these were mixed by a ball mill to obtain a mixed powder.
  • the obtained mixed powder was press-molded to obtain a molded body having a rectangular parallelepiped shape.
  • This molded body was fired by holding at a temperature of 1300 ° C. for 3 hours in a nitrogen gas atmosphere, and then gradually cooled in nitrogen gas to obtain a sintered body as a cermet member.
  • One of the obtained sintered bodies was cut, and the cut surface was randomly observed at 30 fields and 500 times using a reflected electron beam image (BEI) by an electron microscope (Hitachi High Technology: S-2100). The area ratio (So / Sm) between the cermet oxide phase and the cermet metal phase was calculated.
  • BEI reflected electron beam image
  • the sintered body (cermet member) obtained as described above was processed into 1.5 cm ⁇ 1.5 cm ⁇ 2.0 cm and the composition was Ni 100 mass%, (Ni 72 mass% Cr 17 mass% Fe 10 mass%), (Ni 63 mass) % Cr25mass% Fe11mass% Al1mass%), (Ni65mass% Cu33mass% Fe2mass%), (Ni10mass% Cr20mass% Fe70mass%), and (Fe88mass% Cr11mass% Si1mass%) metal members of 1.5 cm ⁇ 1.5 cm ⁇ 2. What was processed into 0 cm was prepared.
  • the 1.5 cm ⁇ 1.5 cm surfaces of the cermet member and metal member obtained by the above production method were mirror-polished, and the mirror-treated surface was used as a bonding surface.
  • an intermediate member was prepared.
  • a mixed molded body was selected as the intermediate member.
  • the obtained mixed powder was pressurized at 195 MPa so as to have a thickness of 0.02 cm to produce a mixed molded body.
  • the produced mixed molded body having a thickness of 0.02 cm was placed on the cermet member, and the metal member was placed on the mixed molded body. At this time, the mixed molded body was sandwiched so that the mixed molded body was in contact with the mirror-treated surface of the cermet member and the metal member.
  • heat treatment was performed at a firing temperature of 900 to 1425 ° C. to obtain a composite.
  • the temperature rising rate and the temperature falling rate were 300 ° C. ⁇ h ⁇ 1 and the holding time was 0.1 to 100 hours.
  • the obtained composite was cut along a plane perpendicular to the mirror-polished surface of the cermet member to obtain a cross section.
  • the cross section was observed for cracks using an optical microscope.
  • line analysis for void analysis in the intermediate layer was performed.
  • the line analysis was performed so that the total measurement range was 30 mm, and the void ratio in the intermediate layer was used.
  • the “crack” column of Table 1 the presence or absence of cracks was described.
  • the “Void” column of Table 1 the case where the void ratio in the intermediate layer is less than 5% is indicated as “ ⁇ ”, the case where it is 5% or more and less than 10% is ⁇ , and the case where it is 10% or more is indicated as “X”.
  • the metal composition of the intermediate layer in the obtained composite was measured.
  • the metal composition of the intermediate layer was measured using EDS.
  • Table 1 shows only Ni and Cu.
  • composition analysis of the interface cross section between the intermediate layer and the cermet member was performed on the obtained composite.
  • the composition analysis of the cermet metal phase existing at a distance of 10, 50, 100, and 1000 ⁇ m in the vertical direction from the interface between the intermediate layer and the cermet member was performed.
  • the mass ratio of Cu to the entire metal phase in each cermet metal phase was calculated, and the calculated values were made to correspond to the distance from the interface between the intermediate layer and the cermet member, respectively, C10, C50, C100 , C1000 (mass%).
  • composition analysis was similarly performed for the cermet oxide phase present at a distance of 10, 100 ⁇ m in the vertical direction from the interface between the intermediate layer and the cermet member. From the result of the composition analysis, the mass ratio of Cu to the cermet oxide phase in each oxide phase is calculated, and the calculated values are respectively associated with the distance from the interface between the intermediate layer and the cermet member, and M10, M100 (mass %). The results obtained are shown in Table 2.
  • the bonding strength is 50 MPa or more.
  • Table 2 in these examples, the mass ratio of Cu in the cermet metal phase and the cermet oxide phase in the cermet member satisfies the relationship of the above-described formulas 1 and 2, and Cu is in the cermet member. It can be seen that it is selectively diffused into the cermet metal phase. This is because Cu in the intermediate layer is sufficiently diffused selectively into the cermet metal phase in the cermet member by selecting an appropriate heat treatment temperature and heat treatment time. In these examples, a composite with a bonding strength exceeding 50 MPa was obtained.
  • the thermal expansion coefficient changes in a stepwise manner as the distance from the interface between the intermediate layer and the cermet member increases.
  • the residual stress is also distributed while being inclined in the cermet member.
  • the portion where the residual stress is locally concentrated disappears in the cermet member. This is a factor, and even if there are few voids in the intermediate layer, the occurrence of cracks is suppressed.
  • the bonding strength will be described.
  • the bonding strength exceeded 50 MPa. This is considered to be due to the selective diffusion of Cu into the cermet metal phase described above, resulting in a decrease in the number of places where residual stress is locally concentrated.
  • FIG. 5 shows the relationship between the distance from the interface between the intermediate layer and the cermet member and the mass ratio of Cu to the cermet metal phase in the cermet member in the case of Example 7 and Comparative Example 7.
  • the mass ratio of Cu is distributed up to 1000 ⁇ m in the cermet member, whereas in Comparative Example 7, at 100 ⁇ m and 1000 ⁇ m in the cermet member. It can be seen that the mass ratio of Cu does not change and the diffusion of Cu does not proceed sufficiently.
  • Comparative Example 7 there is a residual stress due to a difference in thermal expansion in the cermet member, and it is considered that the bonding strength is reduced due to the occurrence of cracks.
  • Comparative Example 1 in which the mass ratio of Cu in the entire cermet metal phase did not satisfy Formula 1; Even in the case of 2, the diffusion of Cu into the cermet metal phase progresses with the increase of the heat treatment time, and it was found that the bonding strength increases when Equation 1 is satisfied. Specifically, in Example 10 in which the heat treatment time is 15 hours for Comparative Example 1 and in Example 11 in which the heat treatment time is 75 hours for Comparative Examples 2 and 3, the relationship of Equation 1 is satisfied. As a result, a good composite having a bonding strength of 50 MPa or more could be obtained. Also in these examples, Formula 2, which is a condition in the cermet oxide phase, was satisfied.
  • the heat treatment temperature and the heat treatment time are complementary, and joining can be performed by selecting appropriate conditions. Therefore, in the present invention, there is no particular limitation on the heat treatment temperature and the heat treatment time.
  • Table 1 and Table 2 Examples 4, 10 and Comparative Example 1, Examples 15, 16 and Comparative Example 11, Examples 17, 18 and Comparative Example in which the same metal member was used and heat treatment conditions were examined 12, Examples 19, 20 and Comparative Example 13, Examples 21, 22 and Comparative Example 14, Examples 23, 24 and Comparative Example 15 are compared. From these comparisons, it was found that if the appropriate heat treatment temperature and heat treatment time were selected, the relationship of the above-mentioned formulas 1 and 2 was satisfied regardless of the type of metal member. At this time, the bonding strength exceeded 50 MPa, and a good composite was obtained. Therefore, the present invention does not limit the metal member.
  • Examples 1 to 22 and 25 to 42 using Ni or an alloy containing Ni as a main component as a metal member the bonding strength was increased as compared with Examples 23 and 24 using an alloy containing no Ni. . This is due to the increase in strength due to diffusion of Ni from the metal member into the intermediate layer. Therefore, these examples are set as preferable examples of the present invention.
  • Examples 4, 10, 25 to 34 and Comparative Examples 1 and 16 to 20 show cases where the ratio of Ni and Cu in the cermet metal phase in the cermet member before joining was changed.
  • Table 1 Examples 4, 10 and Comparative Example 1, Examples 25 and 26, Comparative Example 16, and Examples 27 and 28 in which the composition of the cermet metal phase before bonding was the same and the heat treatment conditions were examined were examined.
  • Comparative Example 17, Examples 29, 30 and Comparative Example 18, Examples 31, 32 and Comparative Example 19, Examples 33, 34 and Comparative Example 20 are compared with each other, if an appropriate heat treatment temperature and heat treatment time are selected. Regardless of the ratio of Ni and Cu in the cermet metal phase before bonding, a good composite having a bonding strength of 50 MPa or more was obtained. Therefore, in this invention, there is no restriction
  • Examples 35 to 42 and Comparative Examples 21 to 24 show cases where metals other than Cu and Ni enter the cermet metal phase before bonding.
  • Table 1 the composition of the cermet metal phase before joining was made the same, and the heat treatment conditions were examined.
  • the bonding strength exceeded 50 MPa regardless of the composition of the intermediate layer. Therefore, these examples are included in the scope of the present invention.
  • Example 2 Examples 50 to 75
  • the mixing ratio of NiO powder and Fe 2 O 3 powder was such that the molar ratio of NiO and Fe 2 O 3 was 50:50.
  • the joining time was changed.
  • intermediate members of the materials shown in Table 2 (only the first intermediate member in Example 50, the first intermediate member and the second intermediate member in Examples 51 to 69, the first intermediate member and the second intermediate member in Examples 70 to 75).
  • a third intermediate member was prepared. The thickness of each intermediate member was 0.02 cm.
  • the first intermediate member is placed on the cermet member, the second intermediate member is placed on the first intermediate member, and the second intermediate member is placed.
  • a metal member was placed on the top.
  • the first intermediate member and the second intermediate member were sandwiched so that the first intermediate member was in contact with the mirror-treated surface of the cermet member, and the second intermediate member was in contact with the mirror-treated surface of the metal member.
  • the first intermediate member was placed on the cermet member, and the metal member was placed on the first intermediate member. At this time, the first intermediate member was sandwiched so that the first intermediate member was in contact with the mirror-treated surface of the cermet member and the mirror-treated surface of the metal member.
  • the third intermediate member is the same except that the third intermediate member is placed on the second intermediate member and the metal member is placed on the third intermediate member. It is the same as the case of not using.
  • the first intermediate member is in contact with the mirror-treated surface of the cermet member, and the third intermediate member is in contact with the mirror-treated surface of the metal member.
  • Example 51 to 75 in Table 3 were produced in the same manner as in Example 6 of Experimental Example 1 except for the points described above and the conditions described in Table 3.
  • Example 50 was also fabricated in which only the joining time and the mixing ratio of NiO powder and Fe 2 O 3 powder were changed from the conditions of Example 6.
  • Various characteristics shown in Table 4 were measured for these samples. In all examples, no crack was generated, and the void ratio in the intermediate layer was less than 5%.
  • Examples 51 to 75 are more preferable examples of the present application.
  • Example 3 Examples 80 to 92
  • the mixing ratio of NiO powder and Fe 2 O 3 powder was such that the molar ratio of NiO and Fe 2 O 3 was 50:50.
  • the mixed molded body produced by the manufacturing method shown below was used as an intermediate member. Except for the points described above and the conditions described in Table 5, Examples 81 to 92 shown in Table 5 were obtained in the same manner as Example 50 of Experimental Example 2. Various characteristics shown in Table 5 and Table 6 were measured. In all examples, cracks did not occur, and the void ratio in the intermediate member was less than 5%.
  • the manufacturing method of the mixed molded body in Experimental Example 3 is as follows.
  • Cu powder was selected as a metal powder to be a raw material of the mixed molded body.
  • the mass ratio of Cu metal and NiO—NiFe 2 O 4 the area ratio of the intermediate metal phase and the intermediate oxide phase in the intermediate layer can be controlled to an arbitrary value.
  • the obtained mixed powder was pressurized at 195 MPa so as to have a thickness of 0.02 cm to produce a mixed molded body.
  • the calculation procedure includes a step of determining the measurement range in the BEI image of each sample, and a step of calculating the area ratio occupied by the intermediate oxide phase at the site determined to be the measurement range. Each process is described below.
  • a BEI image of an area where the cermet member and the metal member sandwiched the intermediate layer was observed at a magnification of 100 times.
  • the distance d from the interface between the cermet member and the intermediate member to the intermediate layer side and to the intermediate oxide phase (gray portion in the BEI image) present at the position farthest from the interface in the perpendicular direction. was measured.
  • the distance between the point farthest from the interface and the interface d was measured.
  • a region in the intermediate member whose distance from the interface is d or less was taken as a measurement range.
  • the contrast of the BEI image was analyzed, and the area ratio of the gray portion reflecting the intermediate oxide phase with respect to the entire BEI image was calculated. The same calculation was performed for 10 fields of view, and the average area ratio of the gray portion was calculated. The obtained value was defined as the area ratio of the intermediate oxide phase in the intermediate layer.
  • the composite of a cermet member and a metal member characterized in that Cu in the intermediate layer as in the present invention is selectively diffused into the cermet metal phase, exhibits a suitable bonding strength.
  • a hybrid electrode for electrolysis having the advantages of a cermet member and a metal member can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Powder Metallurgy (AREA)
  • Ceramic Products (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

十分な接合強度を有する金属部材とサーメット部材の複合体を提供する。解決手段は、サーメット部材と金属部材と中間層とを有する複合体である。サーメット部材はサーメット酸化物相とサーメット金属相とを含む。サーメット酸化物相はNiを含む酸化物またはFeを含む酸化物を含む。サーメット金属相はNiを含む。中間層はCuを含む。サーメット部材と中間層との界面からサーメット部材側に10、50、100、1000μm離れた点におけるサーメット金属相中のCuの質量比率をC10、C50、C100、C1000(mass%)とする。界面からサーメット部材側に10、100μm離れた点におけるサーメット酸化物相中のCuの質量比率をM10、M100(mass%)としたときに、C10>C50>C100>C1000かつ5>M10―M100>-5である。

Description

複合体
 本発明は、サーメット部材と金属部材の中間層を介した複合体に関する。
 希土類金属の精錬において塩化物電解法や酸化物電解法が用いられている。塩化物電解法では大量の塩素ガスが発生する。これに対し、酸化物を用いる酸化物電解法での発生ガスは、陽極である炭素に由来する一酸化炭素(CO)もしくは二酸化炭素(CO)が大部分である。一酸化炭素および二酸化炭素が発生することは塩素ガスが発生することと比べれば環境面で好ましい(非特許文献1)。
 近年、地球温暖化の観点から、さらにCO, COガスを削減することが求められており、CO, COガスを発生しない不活性陽極が求められている。そこで、セラミックの導電性を向上させる観点からセラミック中に金属を添加するサーメット(Cermet)材料が開発されている(特許文献1)。しかしながら、サーメット材料からなる電極は、炭素電極に対して導電率が低い。
 また、フェライト部材と金属部材とが接合した電極が開発されている。当該電極は、フェライト部材を単独で用いた電極よりも電気抵抗を低くすることができ、電解精錬等の電力消費を低減することができる(特許文献2)。しかしながら、当該電極のフェライト部材の代替材としてサーメット部材を使用した場合、サーメット部材と金属部材とで熱膨張係数が大きく異なるため、サーメット部材と金属部材との接合強度が低下してしまう。
希土類の材料技術ハンドブック(NTS)
特表2011-514931号公報 実開昭54-31036号公報
 本発明は、このような実状に鑑みてなされ、十分な接合強度を有する金属部材とサーメット部材との複合体を提供することを目的とする。
 本目的を達成するためには、本発明の複合体は、
 サーメット部材と金属部材と中間層とを有する複合体であって、
 前記サーメット部材はサーメット酸化物相とサーメット金属相とを含み、
 前記サーメット酸化物相はNiを含む酸化物またはFeを含む酸化物を含み、
 前記サーメット金属相はNiを含み、
 前記中間層はCuを含み、
 前記サーメット部材と前記中間層との界面から前記サーメット部材側に10、50、100、1000μm離れた点における前記金属相中のCuの質量比率をC10、C50、C100、C1000(mass%)とし、
 前記界面から前記サーメット部材側に10、100μm離れた点における前記酸化物相中のCuの質量比率をM10、M100(mass%)としたときに、下記式1、式2を同時に満たすことを特徴とする。
 
 C10>C50>C100>C1000(mass%):(式1)
 
 5>M10―M100>-5(mass%):(式2)
 このような特徴を持つ複合体では、中間層中のCuが、サーメット部材中のサーメット金属相へと選択的に拡散している。そのため、複合体においては、中間層とサーメット部材との界面からサーメット部材側へ離れるにつれて、サーメット部材中のサーメット金属相におけるCuの質量比率が傾斜的に低下している。このことにより、サーメット部材内において、残留応力が傾斜を成しながら分布する。その結果、サーメット部材において、局所的に残留応力が集中する箇所がなくなり、クラックの発生が抑制される。
 また、サーメット部材中のサーメット酸化物相およびサーメット金属相にNiを用いることで中間層にNiが拡散するため、中間層とサーメット部材の界面近傍において、サーメット部材の熱膨張差を比較的低い値に制御できる。
 さらに前記複合体において、金属部材がNiまたはNiを含む合金であることが望ましい。このことにより、中間層へ金属部材からもNiを供給することができるため、接合強度がさらに良好になる。また、Niは溶融塩への溶解度が低いため、金属部材に用いられる金属としてNiまたはNiを含む合金を選択することによって、溶融塩電解等を行う際の耐久度が向上する。
 次に前記複合体の中間層において、NiとCuの質量比率を百分率で表したときに、Niが10<Ni<70(mass%)、Cuが30<Cu<90(mass%)であることが望ましい。このことにより、サーメット部材中のサーメット金属相へのCuの拡散が良好となり、接合強度がさらに良好となる。
 また、前記複合体においては、
 前記中間層は少なくとも第1の中間層および第2の中間層を有し、
 前記第1の中間層は、前記サーメット部材と接合しており、
 前記第1の中間層は少なくとも第1金属Cuを含み、
 前記第2の中間層は少なくとも第2金属M2を含み、
 前記第1金属Cuの融点が前記第2金属M2の融点よりも低く、
 前記第1の中間層におけるCuの質量濃度が前記第2の中間層におけるCuの質量濃度よりも高く、
 前記第2の中間層におけるM2の質量濃度が前記第1の中間層におけるM2の質量濃度よりも高くてもよい。
 さらに、前記第1の中間層が、前記第2の中間層とも接合していてもよい。
 さらに、前記第2の中間層が、前記金属部材と接合していてもよい。
 さらに、前記第1の中間層におけるCuとM2との質量比(Cu/M2)が下記の式3の範囲内であることが好ましい。
 
 40/60≦Cu/M2≦90/10:(式3)
 
 さらに、M2がNiであることが好ましい。
 また、前記中間層は、前記第1の中間層、前記第2の中間層に加えて第3の中間層を有し、
 前記第3の中間層は、前記金属部材と接合してもよい。
 さらに、前記第3の中間層におけるCuの質量濃度が前記第2の中間層におけるCuの質量濃度より高く、
 前記第3の中間層におけるM2の質量濃度が前記第2に中間層におけるM2の質量濃度よりも低いことが好ましい。
 さらに、前記第2の中間層が、前記第1の中間層および前記第3の中間層と接合していてもよい。
 さらに、前記サーメット部材に含まれる前記サーメット酸化物相は、少なくともNiの酸化物を含むことが好ましい。
 さらに、前記サーメット部材に含まれる前記サーメット酸化物相のうち少なくとも一部はニッケルフェライトからなることが好ましい。
 さらに、前記中間層は中間酸化物相と中間金属相とを含み、
 前記中間酸化物相は少なくとも一種以上の金属の酸化物を含むことが好ましい。
 さらに、前記少なくとも一種以上の金属の酸化物はサーメット酸化物相に含まれる金属の酸化物から選択されることが好ましい。
 さらに、前記サーメット部材と前記中間層との界面に対して垂直に前記複合体を切断した切断面において、前記中間酸化物相が存在する領域における前記中間酸化物相が占める面積と前記中間金属相が占める面積との合計を100%とする場合に、前記中間酸化物相が占める面積比率が、10%~50%であることが好ましい。
 さらに、前記中間層全体に占めるボイドの面積比率が30%以下であることが好ましい。
 また、前記サーメット部材の断面における前記サーメット酸化物相の面積をS、前記サーメット金属相の面積をSとし、前記サーメット酸化物相と前記サーメット金属相との面積比をS/Sとする場合に、S/Sが下記の式4を満たすことが好ましい。
 
   60/40≦S/S≦90/10:(式4)
 
 さらに、前記サーメット酸化物相が、
 組成式NiFe(x+y+z=3、x≠0、y≠0、MはAl、Co、Cr、Mn、Ti、Zr、Sn、V、Nb、Ta、Hfからなる群から選択される少なくとも1種以上)で表されるスピネルフェライト相と、
 組成式Nix’Fe1-x’O(x’≠0)で表される酸化ニッケル相と、を有し、
 前記サーメット酸化物相と前記サーメット金属相とを含む前記サーメット部材全体を100質量%とする場合において、
 前記スピネルフェライト相の含有率が40~80質量%であり、
 前記酸化ニッケル相の含有率が0~10質量%(0質量%を含む)であり、
 前記サーメット金属相の含有率が15~45質量%であることが好ましい。
 さらに、前記サーメット部材に含まれる前記スピネルフェライト相の平均組成が組成式Nix1Fey1z1(0.60≦x1≦0.90、1.90≦y1≦2.40、0.00≦z1≦0.20)で表されることが好ましい。
 さらに、前記サーメット部材に前記酸化ニッケル相が含まれ、前記酸化ニッケル相の平均組成が組成式Nix’1Fe1-x’1O(0.70≦x’1≦1.00)で表されることが好ましい。
 上記の構造を有するサーメット部材と金属部材の複合体は、従来よりも接合強度が高くなる。すなわち、本願発明により、従来よりも接合強度が高いサーメット部材と金属部材の複合体を提供することができる。
図1Aは、本発明の一実施形態に係る複合体を得るために、サーメット部材と金属部材によって中間部材を挟み、熱処理の準備をした状態の模式図である。 図1Bは、本発明の一実施形態に係る中間層を介したサーメット部材と金属部材の複合体の模式図である。 図2Aは、本発明の一実施形態を構成するサーメット部材の断面図の一部を拡大して示す模式図である。 図2Bは、本発明の一実施形態を構成するサーメット部材の断面図の一部を拡大して示す模式図である。 図3は、本発明の一実施形態においてSEM-EDSの点分析を行うサーメット金属相およびサーメット酸化物相の部位を示す模式図である。 図4は、4点曲げによる強度測定を行う際に用いるサンプルの形状を示す模式図である。 図5は、中間層とサーメット部材との界面からの距離とCuのサーメット金属相全体に対する質量比率の関係性を示す図である。 図6は、本発明の一実施形態に係る複合体の断面の模式図である。 図7は、本発明の一実施形態に係る複合体の断面の模式図である。 図8は、各層間の界面および各層の元素濃度を決定する方法を示すライン分析結果の模式図である。 図9は、本発明の一実施形態に係る複合体の断面の模式図である。 図10は、4点曲げによる強度測定を行う状態を示す模式図である。
 本発明の実施形態につき、図面を参照し説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。
 本実施形態のサーメット部材―金属部材の複合体を得るための工程を説明する。本実施形態に係る複合体の作製工程は、FeとNiOよりNi系フェライトを得る工程と、Ni系フェライトと金属粉末よりサーメット部材を得る工程と、サーメット部材、中間部材および金属部材よりサーメット―金属複合体を得る工程との三つの工程に大別される。このうちサーメット部材、中間部材および金属部材よりサーメット―金属複合体を得る工程では、図1Aのように、Cuを含む中間部材2を、金属部材1およびサーメット部材3により挟みこんで熱処理を行う。このことにより、図1Bに示したように、中間部材2が中間層4に変化し、前記中間層4を介して金属部材1とサーメット部材3とが接合する。その結果、本実施形態のサーメット―金属複合体が得られる。なお、以下の記載では、サーメット―金属複合体を単に複合体と呼ぶ場合がある。
 図1Bに示すように、本実施形態の一実施形態に係る中間層を介したサーメット部材と金属部材の複合体は、金属部材1とサーメット部材3が中間層4を介して接合している。また、金属部材1、サーメット部材3および中間層4について、その寸法に特に制限はなく、用途に応じて適当な寸法とすればよい。
 図2Aは、図1B中のサーメット部材3について、その断面を拡大した模式図である。本実施形態の一実施形態に係るサーメット部材は、サーメット酸化物相5およびサーメット金属相6より構成される。ただしサーメット酸化物相5は単相でなくてもよく、複数の酸化物相が混在していても良い。すなわち、複数の組成領域を有していても良い。
 図2A中のサーメット酸化物相5は、FeまたはNiを含む酸化物を含んでいれば良いが、スピネル構造を有するNi系フェライトが主成分であることが望ましい。Ni系フェライトは、溶融塩への溶解度が低いため、溶融塩電解用の電極として利用する際、良好な耐久性を示す。サーメット金属相6との焼結性の観点から他の酸化物相(例えばNiO、Feなど)が混在していても良い。サーメット金属相6は、NiまたはNiを含む合金である。サーメット金属相6は前記サーメット部材3の導電率を高める働きをしている。
 また、サーメット酸化物相5の少なくとも一部はニッケルフェライトからなることが導電性および耐食性の向上の観点から好ましく、サーメット酸化物相5が主にニッケルフェライトからなることがより好ましい。
 「サーメット酸化物相5が主にニッケルフェライトからなる」とは、サーメット酸化物相5に占めるNiの酸化物全体を100質量%とした場合に、ニッケルフェライトの含有率が70質量%以上であることを意味する。
 サーメット酸化物相5の面積をS、サーメット金属相6の面積をSとし、サーメット酸化物相5とサーメット金属相6との面積比をS/Sとする場合に、S/Sが 60/40≦S/S≦90/10を満たすこと好ましい。S/Sが上記の範囲内であることが好ましいのは、サーメット部材3中のサーメット金属相6をサーメット酸化物相5で覆うことでサーメット金属相5の溶融塩(特にフッ化物)への溶解を防ぐとともにサーメット部材3の導電性を向上することができるためである。
 サーメット金属相6は、少なくともNi、Cuのうち一種以上の金属を含むことが好ましく、サーメット金属相6全体を100質量%とする場合において、Niの含有率が20~90質量%であり、Cuの含有率が10~80質量%であることがより好ましい。上記のサーメット金属相6の構成が好ましいのは、サーメット部材3の耐食性を向上させることができるためである。
 なお、サーメット酸化物相5とサーメット金属相6との面積比は、サーメット部材3の切断面を電子顕微鏡による反射電子線像(BEI)を用いて、倍率300~1000倍で観察することで算出する。
 図2Aの模式図をさらに実際のサーメット部材3に近づけた模式図が図2Bである。図2Bの通り、サーメット酸化物相5は、スピネルフェライト相5aと酸化ニッケル相5bとを有していてもよい。スピネルフェライト相5aは、スピネル型結晶構造を有し、組成式NiFe(x+y+z=3、x≠0、y≠0、MはAl、Co、Cr、Mn、Ti、Zr、Sn、V、Nb、Ta、Hfからなる群から選択される少なくとも1種以上)で表されるスピネルフェライトを含有する。酸化ニッケル相5bは、組成式Nix’Fe1-x’O(x’≠0)で表される酸化ニッケルを含有する。また、サーメット酸化物相5は、少なくともスピネルフェライト相5aを有することが好ましい。
 サーメット金属相6は、サーメット酸化物相5の中に分散しており、主にスピネルフェライト相5aの中に分散していることが好ましい。言いかえれば、サーメット金属相6の多くはスピネルフェライト相5aに閉じ込められた構成となっていることが好ましい。また、サーメット部材3は焼結体であることから、スピネルフェライト相5aの内部、酸化ニッケル相5bの内部、および/または各相の境界部分に、少量の空孔(図示せず)を有する。
 サーメット部材3全体を100質量%とする場合において、スピネルフェライト相5aの含有率が40~80質量%であり、酸化ニッケル相5bの含有率が0~10質量%(0質量%を含む)であり、サーメット金属相6の含有率が15~45質量%であることが好ましい。各相の含有率が上記の範囲内であることが好ましいのは、溶融塩電解時のサーメット部材3の溶融塩に対する溶解を最小化するとともに導電性を兼ね備えているため電解効率を向上させることができるためである。
 サーメット部材3に含まれる全スピネルフェライト相5aの平均組成が、組成式Nix1Fey1z1(0.60≦x1≦0.90、1.90≦y1≦2.40、0.00≦z1≦0.20)で表される範囲内であることが好ましい。スピネルフェライト相5aの平均組成が上記の範囲内であることが好ましいのは、良好な導電性と良好な耐食性とを両立させることができるためである。
 サーメット部材3が酸化ニッケル相5bを含むことが好ましく、サーメット部材3に含まれる全酸化ニッケル相5bの平均組成が、組成式Nix’1Fe1-x’1O(0.70≦x’1≦1.00)で表される範囲内であることが、より好ましい。その他の相(スピネルフェライト相5aとサーメット金属相6)との化学的なバランスのため、酸化ニッケル相5bの平均組成が上記の範囲内であることが好ましい。
 図3はサーメット部材3と金属部材1とを接合した界面近傍の模式図である。本発明では、図3中のサーメット部材3と中間層4との界面からそれぞれ10μm、50μm、100μm、1000μm離れたところに存在するサーメット部材3中のサーメット金属相8~11に着目した。各々一定距離、界面から離れたサーメット金属相8~11に対し、Cuのサーメット金属相全体に対する質量比率を、C10(mass%)、C50(mass%)、C100(mass%)、C1000(mass%)とし、関係性を定義した。またサーメット酸化物相12、13に関しても同様にしてサーメット部材3と中間層4との界面からそれぞれ10μm、100μm離れたところに存在するサーメット部材中のサーメット酸化物相12、13に着目した。各々一定距離、界面から離れたサーメット酸化物相12、13に対し、Cuのサーメット酸化物相全体に対する質量比率を、M10(mass%)、M100(mass%)、とし、関係性を定義した。
 本複合体では、サーメット部材3と金属部材1とを接合した界面近傍において、サーメット部材3中のサーメット金属相8~11およびサーメット酸化物相12、13に着目し、それぞれの相におけるCuの比率が下記式1および下記式2の関係を満たしていることを特徴とする。またサーメット酸化物相12、13が複数の組成領域を持つ場合、いずれか一つの相が式2を満たせばよい。
 
 C10>C50>C100>C1000(mass%):式1
 
 5>M10-M100>-5(mass%):式2
 
 上記式1は、界面から離れるにつれて、サーメット金属相6におけるCuのサーメット金属相全体に対する質量比率が段階的に減少していることを意味している。これは、中間層4からサーメット金属相6へとCuが拡散していることを示唆している。また、上記式2は、Cuのサーメット酸化物相5における質量比率が、界面からの距離に関わらず、ほぼ一定の値であることを示している。言い換えれば、中間層4からサーメット酸化物相5へのCuの拡散はほとんどないことを意味している。
 本実施形態の複合体では、上記式1および上記式2を満たすことを特徴としている。上記式1および上記式2を満たす本実施形態の複合体がクラックの発生が少なく、接合強度が良好である。メカニズムの詳細は不明だが、中間層4とサーメット部材3との界面からサーメット部材3側へ離れるにつれて、サーメット部材3の熱膨張係数が傾斜を成しながら段階的に変化すると考えられる。そのため、局所的に応力が増加することなく、残留応力はサーメット部材3中で傾斜を成しながら分布することとなる。このことから、クラックの発生が抑制され、良好な接合強度が得られたと考えられる。
 次に、中間層4とサーメット部材3との界面近傍について述べる。Niの熱膨張係数とCuの熱膨張係数とを比較すると、Cuの熱膨張係数の方が高い。そのため、Cuが局所的に中間層4とサーメット部材3との界面近傍に集中してしまうと、熱膨張差が大きくなりクラックの原因となる。
 しかし、本実施形態の複合体では、Cuがサーメット部材3中のサーメット金属相6に拡散しているため、局所的に中間層4とサーメット部材3との界面近傍にCuが集中することがなく、中間層4とサーメット部材3との界面近傍において、サーメット部材3と中間層4との熱膨張差が緩和される。
 その結果、接合強度が良好な複合体を得ることができる。本実施形態では、例えば、4点曲げ強度測定による接合強度を評価した場合に、接合強度が50MPa以上である複合体を得ることができる。
 図1B中の金属部材1について使用する金属に限定はない。例えば、用途に応じて、ステンレス鋼等の構造用に使用されるものを選択すればよい。複合体中の金属部材1は、電極として使用した場合、電流経路の一部となる。溶融塩電解で使用する際はNiやNi、Cr、FeよりなるNi系合金を選択すると、耐熱性および耐酸化性が高く、溶融塩への溶解度が低い良好な複合体電極を形成することができる。
 図1Bの中間層4は、Cuを含む合金より構成される。本中間層4は、図1Aのように、金属部材1およびサーメット部材3の間にCuもしくはCuを含む合金よりなる中間部材2が挟まれた状態で熱処理されることによって形成される。本実施形態では、中間層4よりサーメット部材3中のサーメット金属相6へとCuが選択的に拡散している。これは、中間部材2に含まれるCuが接合のための熱処理中にサーメット部材3へ拡散することに起因する。さらにサーメット部材3中のNiが中間部材2へ拡散することから、中間部材2は、NiとCuの合金またはNiとCuの混合物を使用することが好ましい。NiとCuの質量比率に特に制限はなく、Cuが含まれてさえいれば良い。適切な接合温度および適切な焼成時間を選択することによって接合が可能になる。
 接合後の中間層4において、NiとCuとの質量比率を百分率で表した時に、Niが10<Ni<70(mass%)、Cuが30<Cu<90(mass%)であることが好ましい。本条件を満たすことにより、中間層4からサーメット金属相6へのCuの拡散が効果的に進行し、接合強度はさらに良好となる。
 また、本実施形態の中間層4は2つ以上の中間層を有していてもよい。すなわち、中間層4は二層構造以上の多層構造であってもよい。例えば、図6に示すように中間層4が第1の中間層41および第2の中間層42からなっていてもよい。なお、本実施形態では、サーメット部材3に近い方から順に第1の中間層41、第2の中間層42とする。
 サーメット部材3と中間層4との界面、各中間層の界面、および中間層4と金属部材1との界面の決定方法について、図8を参照しながら以下に述べる。なお、図8では例として図6に記載された複合体を用いる。
 まず、EDS(Energy Dispersive Spectroscopy)を用いて、複合体のサーメット部材3と中間層4との接合面に対し垂直方向に各金属元素の濃度のライン分析を行い、図8のようにグラフ化する。そして、濃度曲線の変曲点であって、濃度曲線の傾きの絶対値が極大となる点(図8ではN0、N1、N2)を界面の位置とする。図8では、N0がサーメット部材3と第1の中間層41との界面、N1が第1の中間層41と第2の中間層42との界面、N2が第2の中間層42と金属部材1との界面の位置である。
 変曲点とは、曲線を関数y=f(x)上の点(x,y)で表した場合に、二次導関数f' '(x)が0となる点であって、一次導関数f' (x)が極値となる点である。
 また、界面の位置はEDSを用いて各元素のマッピングを行い、目視にて決定することも可能であり、ライン分析により上記の方法で決定した界面の位置と、マッピングから目視にて決定した界面の位置とでは、実質的に一致する。
 続いて、各中間層における各元素濃度の決定方法について、図8を参照しながら以下に述べる。
 各中間層における各元素の濃度は、当該中間層内において当該元素の濃度が極大値または極小値を持つ場合には、当該極大値または極小値とする。例えば、図8の第1の中間層41の濃度は、極大値C1である。また、当該中間層内において当該元素の濃度が極大値および極小値を持たない場合には、二つの界面の中点における当該元素の濃度とする。例えば、図8の第2の中間層42の濃度は、第1の中間層41と第2の中間層42との界面N1および第2の中間層42と金属部材1との界面N2との中点(図示せず)における濃度C2である。
 ここで、中間層4は少なくとも2種類の金属元素Cu、M2を含有してもよい。M2の融点がCuの融点よりも高い点を除いてM2の種類に特に限定はない。そして、第1の中間層41は少なくともCuを含有し、第2の中間層42は少なくともM2を含有してもよい。そして、Cuの濃度は第1の中間層41の方が第2の中間層42よりも高く、M2の濃度は第2の中間層42の方が第1の中間層41よりも高いことが好ましい。
 図7は中間層4が三層構造である複合体の模式図である。図7に示す複合体は、第2の中間層42と金属部材1との間に第3の中間層43が存在し、第2の中間層42および金属部材1と接合している点以外は全て図6の複合体と同様の複合体である。
 第3の中間層43における各元素の濃度や界面の決定方法は、上記した第1の中間層41、第2の中間層42における各元素の濃度や界面の決定方法と同様である。
 第3の中間層43は、例えば第1の中間層41、第2の中間層42と同様に主にCuおよび/またはM2により構成されていてもよく、これらの構成に限定されない。
 第1の中間層41、第2の中間層42と同様に第3の中間層43にCuおよび/またはM2が含まれる場合には、第3の中間層43におけるCuの質量濃度が第2の中間層42におけるCuの質量濃度よりも高く、第3の中間層43におけるM2の質量濃度が第2の中間層42におけるM2の質量濃度よりも低いことが好ましい。
 中間層4は四層構造以上でもよい。また、中間層4が多層構造である場合において、中間層1つあたりの厚さの下限は10μmである。さらに、中間層1つあたりの厚さは20~2000μmとすることが好ましく、中間層4全体の厚さは20~3000μmとすることが好ましい。
 図6、図7に示す複合体では、M2としてNiを用いることが好ましい。上記の構成が好ましいのは、サーメット部材3と金属部材1との接合強度を向上することができるためである。
 また、本実施形態に係る中間層4は、図9に示されるように、サーメット部材3および金属部材1と接合し、かつ中間金属相46と中間酸化物相48とを有していてもよい。
 図9に示す複合体の中間層4が、少なくとも一種以上の金属の酸化物を有することで、当該酸化物が中間層4中に生じるボイドを限定することができる。言いかえれば、複合体の中間層4には、前記金属の酸化物を有する前記中間酸化物相48が金属の凝固収縮によって生じるボイドの体積を限定する。すなわち、中間層4に中間酸化物相48を存在させることで、中間層4に存在するボイドの割合を著しく減少させることができる。
 ボイドは、中間層4における応力の集中箇所となりうるため、ボイドの量を減少させることにより、複合体の接合強度を増加させることができると考えられる。図9に示す実施形態においては、中間層4に存在するボイドの割合を減少させることにより、複合体にクラックが生じることを防ぐことができ、複合体の接合強度を著しく向上させることができる。
 中間酸化物相48に含まれる酸化物のうち1種以上がサーメット酸化物相5に含まれる酸化物であることが好ましい。上記の構成により、中間層4の熱膨張の大きさをサーメット部材3の熱膨張の大きさに近づけることができる。中間層4の熱膨張の大きさをサーメット部材3の熱膨張の大きさに近づけることで、熱歪により生じる残留応力が減少し、クラックを防止するとともに複合体の接合強度を向上させることができる。
 中間金属相46を構成する金属元素の種類には、上記の通りCuを含有する点以外に限定はない。中間金属相46はCuのみから構成されていてもよく、Cuを含む複数の金属元素から構成されていてもよい。なお、中間金属相46はCuの他にNi、Feのうち一種以上を含むことが好ましい
 サーメット部材3と中間層4との界面に対して垂直に複合体を切断した切断面において、サーメット部材3と中間部材4との界面から垂線方向に最も離れた位置に存在する中間酸化物相48までの距離をdとする。前記界面から距離dまでの範囲を測定範囲とする。当該測定範囲における中間酸化物相48が占める面積と中間金属相46が占める面積との合計を100%とする場合に、中間酸化物相48が占める面積比率が、10%~50%であることが好ましい。
 中間酸化物相48が占める面積比率が10%以上であることにより、中間層4中のボイドを金属の酸化物が充分に充填し、クラックを防止すると共に接合強度を向上させることができる。
 図9に示す複合体では、サーメット部材3と中間層4との界面、および中間層4と金属部材1との界面は、前記の断面に対して光学顕微鏡を用いて目視により観察して決定することが可能である。また、走査電子顕微鏡を用いて得たBEI(反射電子)像を観察して決定することも可能である。また、中間酸化物相48は、走査電子顕微鏡を用いて得たBEI(反射電子)像における中間層4内での灰色部である。
 また、図9に示す複合体では、中間層4に含まれる金属がCuおよびNiのみからなることがさらに好ましい。また、上記の構成が好ましいのは、サーメット部材3と金属部材1の接合強度を向上することができるためである。
 [複合体の製造方法]
 次に、本実施形態に係る複合体の好適な製造方法について説明するが、以下の記載により本発明に係る複合体の製造方法は限定されない。
 本実施形態の複合体を構成するサーメット部材3の製造方法は、フェライト酸化物粉末と金属粉末とを混合して混合粉末を得る混合工程と、混合粉末を成形して成形体を得る成形工程と、成形体を所定の雰囲気および温度で焼成して焼結体を得る焼成工程と、を有する。
 混合工程では、酸化鉄(例えばFe)と金属の酸化物(例えばNiO)とを、所望のモル比率で含有するフェライト原料粉を準備する。そして、前記フェライト原料粉を仮焼きし、粉砕してフェライト酸化物粉末を得る。
 本実施形態に係る複合体を溶融塩電解用電極に用いる場合には、最終的に得られるサーメット部材がNiを含有することにより、Niを含有しない場合と比較して、溶融塩(特にフッ化物)に対する溶解度を低下させることが可能である。
 また、前記フェライト酸化物粉末とは別に金属粉末を準備する。前記金属粉末の種類に特に制限はなく、Niが含まれてさえいれば良い。金属単体の粉末、例えばNi金属単体の粉末でもよいし、2種類以上の金属粉末、例えばNiの金属粉末およびCuの金属粉末を特定の重量比率で混合した金属粉末でもよい。さらに、2種類以上の金属粉末を溶融し、合金化した合金粉末を金属粉末として用いてもよい。
 そして、前記フェライト酸化物粉末と前記金属粉末とを混合し、混合粉末を得る。前記フェライト酸化物粉末と前記金属粉末とを混合する方法に特に制限はなく、ボールミル等による通常の混合方法を用いることができる。また、混合方法は湿式法でも乾式法でもよく、前記フェライト酸化物粉末と前記金属粉末とを均一に混合できる方法であればよい。
 混合工程により得られる混合粉末の平均一次粒子径にも特に制限はないが、通常は、平均一次粒子径が1~30μmの混合粉末を得る。
 成形工程では、前記混合粉末を成形して成形体を作製する。成形方法に特に制限はなく、例えば一般的に用いられる通常の乾式成形によって成形体を作製することができる。通常の乾式成形を行う場合には、通常の金型の中にバインダが添加された前記混合粉末を充填し、プレス成形して成形体を作製する。バインダの種類にも特に限定はなく、通常の成形において用いられるバインダを用いることが可能である。良好な成形性が得られるという観点から、バインダとしてポリビニルアルコール(PVA)を用いることが好ましい。
 なお、成形方法は乾式成形に限定されるものではなく、混合粉末と溶媒とを含むスラリーを、溶媒を除去しながら加圧成形する湿式成形であってもよく、その他の成形方法であっても良い。
 焼成工程は、活性ガスの雰囲気下で行うことも可能であるが、不活性ガス、例えば、窒素ガスまたはアルゴンガスの雰囲気下で行うことが好ましい。不活性ガス雰囲気下で成形体を焼成することにより、金属粉末の酸化を防ぐと共に、酸化ニッケルが還元されNiが遊離し、金属粉末と遊離したNiとの合金化が促進される。そして、金属粉末とNiとの合金化によりサーメット部材3の導電率の低下を防ぐことができる。
 焼成工程における焼成温度および焼成時間は特に限定されず、原料として使用するフェライト酸化物粉末および金属粉末により適宜調整することができる。例えば、窒素ガスまたはアルゴンガス焼成雰囲気下で昇温し、好ましくは1200~1450℃、より好ましくは1300~1400℃の焼成温度で、好ましくは1~10時間、より好ましくは2~6時間焼成して焼結体を得ることができる。焼成温度を上記の範囲内とすることにより、サーメット部材3のサーメット酸化物相5における酸化ニッケル相の量を小さくでき、サーメット部材3の導電率が向上する傾向がある。
 また、焼成設備の耐熱性および製造コストを考慮する場合、焼成温度は1450℃以下であることが好ましい。
 さらに、焼成工程における昇温速度は30~500℃/時間であることが好ましく、50~350℃/時間であることがより好ましい。昇温速度を500℃/時間以下とすることにより、サーメット部材3の密度の低下を防ぐことができる。また、昇温速度を30℃/時間以上とすることにより、サーメット部材3の生産コストを低減することができる。
 また、焼成工程における降温速度については、10~500℃/時間であることが好ましく、30~350℃/時間であることがより好ましい。降温速度を500℃/時間以下とすることにより、サーメット部材3の密度の低下を防ぐことができる。また、昇温速度を30℃/時間以上とすることにより、サーメット部材3の生産コストを低減することができる。
 焼成工程によって得られた焼結体は、加工せずにそのままサーメット部材3としてもよいし、何らかの加工を施して所望の形状のサーメット部材3としてもよい。
 金属部材1について、使用する金属に限定はない。例えば、ステンレス鋼等の構造用に使用されるものを選択してもよい。本実施形態に係る複合体を溶融塩電解用電極に用いる場合には、金属部材1の材質としてNi-Fe合金などのNi系合金を選択すると、耐熱性および耐酸化性が高く溶融塩(特にフッ化物)への溶解度が低いため、好ましい。また、サーメット部材3は電解中に鉄を失い、金属部材中の鉄が補充されるため、金属部材1は鉄を含むことが好ましい。中間部材2中のNiの存在により、金属部材1からサーメット部材3への鉄の移動を有利に調整できる。また、市販のこれらの元素を含む合金から選択することも可能である。
 次に、複合体に含まれる中間層4について、その準備方法を説明する。以下、サーメット部材3と金属部材1とを一体化させる工程を熱処理工程と呼ぶ。
 本実施形態の中間部材2を構成する金属としては、接合時の熱処理を行う際に、溶融する金属であるCuを選択することが好ましい。さらに、Cuが含まれていれば、他の金属がさらに含まれていても良い。例えば、CuとNiとの合金など比較的低温で溶融する金属を選択しても良い。
 本実施形態の中間部材2としてはCu粉のみでもよく、NiとCuとの合金またはNi粉とCu粉の混合物を使用してもよい。また、形状は粉体の成形体、箔、板等、特に限定はない。前述の通り、中間部材2においてNiとCuの質量比率において特に制限はなく、Cuが含まれてさえいれば良い。中間部材2の組成に関わらず、適切な焼成温度および焼成時間を選択すれば接合が可能となる。ここで、中間部材2に金属の粉体を使用する場合には、加圧によって成形体としても良い。その際には、厚みを0.01~0.1cm、好ましくは、0.015~0.025cmになるように、加圧成形する。本条件を満たすことにより、サーメット部材3と金属部材1との熱処理過程において、良好な中間層4を提供できる。ここで、厚みに関しては、0.01cm未満になると、中間層4を形成する中間部材2の量が不足してしまい十分な接合強度が得られず、0.1cmを超えると、中間層4の焼成時における変形が無視できなくなる。成形圧に関しては、140MPa以上、好ましくは200MPa以上とする。成形圧が140MPaを下回る場合には、圧力が不足してしまうことにより、混合成形体を好適な厚みにすることができない。
 中間部材2をサーメット部材3と金属部材1によって挟み、熱処理工程の準備を完了する。
 また、図6に示すように中間層4が複数の中間層(第1の中間層41および第2の中間層42)からなる複合体は、例えば、サーメット部材3と金属部材1との間に複数の中間部材を挿入して加圧しながら加熱する方法を用いることで得ることができる。以下、複数の中間部材をサーメット部材3から金属部材1に向かって第1中間部材、第2中間部材と呼ぶ。第1中間部材には少なくともCuが含まれ、第2中間部材には少なくとも第2金属M2が含まれる。
 第2金属M2の種類には特に限定はないが、M2の融点がCuの融点よりも高いことが好ましい。さらに、接合工程における加熱温度がCuの融点よりも高くM2の融点よりも低いことが好ましい。Cuの融点よりも高い温度で加熱することにより、第1中間部材が溶融し、サーメット部材3および第2中間部材に対して液相拡散接合を行うことができ、サーメット部材3と接する第1中間部材が溶融しない場合と比較して接合強度を向上させることができる。そして、M2の融点よりも低い温度で加熱することにより、第2中間部材は溶融せず、サーメット部材3中の金属が第1中間部材および第2中間部材を通過して金属部材1まで拡散しないように反応を抑制することができる。第1中間部材のみを溶融させるために第1中間部材のCu濃度は第2中間部材のCu濃度より高くし、第2中間部材のM2濃度は第1中間部材のM2濃度より高くする。
 第1中間部材のCu濃度が第2中間部材のCu濃度より高いことにより、図6に示す複合体における第1の中間層41のCu濃度が第2の中間層42のCu濃度より高くなる。また、第2中間部材のM2濃度が第1中間部材のM2濃度より高いことにより、第2の中間層42のM2濃度が第1の中間層41のM2濃度より高くなる。
 上記の場合には、加熱により溶融しない第2中間部材が存在するために、サーメット部材3中のサーメット金属相6が第2中間部材にブロックされて金属部材1へ拡散移動しにくい。そのため、サーメット部材3と中間層4との界面近傍におけるボイドの増加およびクラックの発生を防止することができる。
 以上より、上記の複数の中間部材を用いる構成により、サーメット部材3と中間層4との界面近傍においてボイドが発生しにくくなり、接合強度がさらに向上しやすくなる。
 なお、第1金属Cuの融点は1083℃である。そして、第2金属M2がNi(融点1455℃)であることが好ましい。
 さらに、上記の通りに金属部材1がNiを含むことで、中間層4中のNiおよびCu成分、特に金属部材1と接する第2の中間層42のNiおよびCu成分が金属部材1中に拡散するため接合強度が増加する。
 図6の複合体においては、第1の中間層41のNiとCuの総重量を100としたときNiの量が10から60、Cuの量が90から40であり、第2の中間層42のNiとCuの総重量を100としたときNiの量が100から70、Cuの量が0から30であることが接合強度を向上させる観点から好ましい。
 さらに、図7に示す複合体は、中間部材の枚数を3枚に増やすことで形成できる。ここで、最も金属部材1に近い中間部材を第3中間部材とする。
 第3中間部材には少なくとも第1金属Cuが含まれることが好ましい。そして、第3中間部材のCu濃度は第2中間部材のCu濃度より高くし、第2中間部材のM2濃度は第3中間部材のM2濃度より高くすることが好ましい。
 以上の構成により、Cuの融点よりも高くM2の融点よりも低い温度で加熱することで第3中間部材が溶融し、第2中間部材および金属部材1と液相拡散接合を行う。
 第1中間部材、第2中間部材の2枚で実施する実施形態では、金属部材1と接する第2中間部材が溶融しないので、金属部材1と第2中間部材との接合が固相拡散接合となる。これに対し、第1中間部材、第2中間部材、第3中間部材の3枚で実施する実施形態では、金属部材50と第3中間部材との接合が液相拡散接合となる。すなわち、第1中間部材が溶融する際、第3中間部材も溶融して液相拡散接合することができ、第2中間部材および金属部材1に対して良好な液相拡散反応を示し、接合強度が向上する。
 したがって、第3中間部材を用いる場合には、最終的に得られる複合体において、第2の中間層42と金属部材1との間に形成されるボイドを減少させることが可能となる。ボイドを減少させることにより、本実施形態に係る複合体を電解用電極として使用した場合に、高く均一な電流密度分布が得られるという効果を奏する。
 第3中間部材を用いて第3の中間層43を設ける実施形態においては、最終的に得られる複合体において、第1の中間層41および/または第3の中間層43のNiとCuの総重量を100としたとき、当該中間層におけるNiの量が10から60、Cuの量が90から40であることが好ましい。
 以下、図9に示す複合体における中間層4の準備方法について説明する。
 図9に示す複合体における中間部材4を構成する金属としては、接合時の加熱処理を行う際に、溶融する金属を選択することが好ましい。例えば、CuとNiとの合金など比較的低温で溶融する金属を選択することが好ましい。
 図9に示す複合体における中間層4を構成する酸化物としては、前記サーメット部材3を構成する酸化物と全部または一部が共通する酸化物を用いることが好ましい。例えばサーメット部材3に含まれる酸化物がNi系フェライトとNiOとの混合物により構成されるのであれば、中間層4を構成する酸化物としては、Ni系フェライトおよび/またはNiOを含むことが好ましい。
 前記中間層4を構成する前記金属と前記酸化物とを、熱処理前に粉体の状態で十分に混合しておく。混合比率としては、質量ベースで金属:酸化物=95:5~65:35とすることが好ましく、90:10~65:35とすることがより好ましい。上記の配合比とすることで、前記中間層4における前記中間酸化物相48が占める面積と前記中間金属相46が占める面積との合計を100%とする場合に、前記中間酸化物相48が占める面積比率が10%~50%となる。
 前記中間酸化物相48が占める面積比率を10%~50%とすることによって、前記中間層におけるボイドの発生率を抑制することが容易になり、更に複合体における接合強度が良好になる。
 本実施形態では、前記混合後の粉体を加圧によって成形体として中間部材2とする方法について説明するが、中間部材2は成形体に限定されない。例えば、前記混合後の粉体に有機溶剤を用いて塗料化した塗料を中間部材2としても良い。
 前記混合後の粉体を、好ましくは厚さ0.01~0.1cm、より好ましくは厚さ0.015~0.025cmになるように加圧成形する。成形後の厚さを上記の範囲内とすることで、熱処理工程において、十分な量の中間層4を提供できるようになり、最終的に得られる複合体の接合強度を高め、かつ、熱処理工程における中間層4の変形を無視できる程度の小ささに抑制しやすくなる。成形圧に関しては、好ましくは140MPa以上、より好ましくは200MPa以上とする。成形圧を上記の範囲内とすることで、成形体を好適な厚みとしやすくなる。
 得られた前記成形体を中間部材2とし、サーメット部材3と金属部材1との間に挟むことによって、熱処理工程の準備を完了する。
 熱処理工程は、上記工程によって得られたサーメット部材3と選定した金属部材1で中間部材2を挟み熱処理を行う工程である。熱処理工程は、窒素ガス又はアルゴンガスなどの不活性ガス雰囲気もしくは真空雰囲気で行う。不活性ガスもしくは真空雰囲気で焼成することにより、金属部材1の酸化を防ぐことができる。
 金属部材1とサーメット部材3とを接合するにあたり、熱処理温度に関しては、拡散の進行が十分に進む温度を選択すれば良い。また適度な加圧を行いながら熱処理をおこなってもよい。もし、金属部材1およびサーメット部材3の熱耐性によって熱処理温度が制限される場合には、熱処理時間を増加させることによって、前述の式1を満足するような拡散を進行させてもよい。よって、本実施形態では熱処理温度および熱処理時間は特に限定されず、使用する金属部材1およびサーメット部材3の熱耐性に合わせ、適宜調整することができる。
 しかし、実際の制限としては、製造コスト低減およびサーメット部材3の熱処理温度の観点から、熱処理温度は1450℃以下であることが好ましく、より好ましくは1300℃以下であることが好ましい。また熱処理温度が低すぎると、熱処理時間が過度に増加し、100時間を超えてしまう。そのため、熱処理温度は1050℃から1300℃、熱処理時間は好ましくは0.1~100時間、より好ましくは1~75時間で熱処理を行い、複合体を得る。
 熱処理における昇温速度は30~600℃・h-1とし、好ましくは、50~350℃・h-1である。この条件よりも昇温速度が速い場合には、十分な接合がなされず、接合強度が低下してしまう傾向にあり、昇温速度が遅い場合には、生産コストが上昇してしまう。また、降温速度については、10~600℃・h-1とし、好ましくは、30~350℃・h-1である。降温速度がこの条件よりも早い場合には、クラックが多発してしまう傾向にあり、遅い場合には、生産コストが上昇してしまう。
 上記工程を経て、中間層4を介したサーメット部材3と金属部材1との複合体を得る。
 得られた複合体は、そのまま使用してもよいし、用途に合わせて加工してもよい。また、得られた複合体の用途に限定はないが、電解用電極として用いることが好適である。
 上記工程で得られた複合体について、断面の観測、サーメット部材3中のサーメット金属相6およびサーメット酸化物相5における組成分析および4点曲げによる強度測定を行った。
 得られた複合体を、サーメット部材3および金属部材1が中間層4を介して接合している部位が見えるように切断し、断面を露出させる。断面を鏡面研磨したのち、光学顕微鏡を用い、金属部材1、サーメット部材3、中間層4およびクラックの観察を行った。
 次に光学顕微鏡によって観測された断面像についてボイド解析を行った。ここで、中間層4において確認される黒色の部位をボイドと判断し、その比率を算出した。得られた複合体の中間層4に対し、ボイドが算出される最大のところでライン分析を行った。ラインの長さは3mmとし、ライン全体に占めるボイドの比率を算出した。同様の測定を10個のサンプルについて行い平均値を算出し、ボイド比率とした。また、一直線として例えば3mm相当のラインが引けない場合は、測定するサンプルの個数を増加させ、合計の測定範囲が30mm(例えば、測定可能長さが1.5mmであれば、20本分)となるようにし、ボイド比率を算出した。
 本実施形態では、中間層4におけるボイドの比率が5%未満となるものを良好な複合体と判断した。
 次にSEM-EDSによる点分析によりサーメット部材3中のサーメット金属相6の組成分析を行った。中間層4とサーメット部材3との界面より、垂直方向に10、50、100、1000μm離れたところに存在する図3中のサーメット金属相8~11の組成分析を行った。組成分析の結果より、各サーメット金属相8~11におけるサーメット金属相を構成する元素に対するCuの質量比率を算出した。算出された値をそれぞれ、中間層4とサーメット部材3との界面からの距離に対応させ、C10、C50、C100、C1000(mass%)と定義した。
 さらに、SEM-EDSによる点分析によりサーメット酸化物相12、13の組成分析を行った。中間層4とサーメット部材3との界面より、垂直方向に10、100μm離れたところに存在する図3中のサーメット酸化物相12、13の組成分析を行った。組成分析の結果より、各サーメット酸化物相12、13におけるサーメット酸化物相を構成する元素に対するCuの質量比率を算出した。算出された値をそれぞれ、中間層4とサーメット部材3との界面からの距離に対応させ、M10、M100(mass%)と定義した。
 次に、各複合体サンプルを図4のように加工した。加工したサンプルに対し、4点曲げをおこない接合強度を評価した。図4のように、金属部材1およびサーメット部材3を、D1=D4=2.0cm,D2=D6=0.3cm,D3=D5=0.4cmに加工した。
 上記サンプルを20個作製し、4点曲げ強度測定を行った。20個のサンプルの平均値を接合強度とした。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。また、サーメット部材3は、サーメット酸化物相5、およびサーメット金属相6とは異なる他の相を含んでいてもよい。また、金属部材1の材質には特に限定はない。接合強度をさらに上昇させる観点から機械的圧力の助けを借りた拡散接合法を適用してもよい。また、サーメット部材3は、前述した式1を満たすように、金属組成の異なる複数のサーメット部材を物理的に積層してもよい。
 以下に、実施例及び比較例を参照して、本発明の内容をより詳細に説明するが、本発明は下記の実施例に限定されるものではない。
 (実験例1)
 (実施例1~45および比較例1~24)
 市販のNiO粉末とFe粉末とを、NiOとFeのモル比率が70:30となるように配合し、ボールミルを用いて混合した。混合により得られた混合粉を、大気中、温度1000℃で3時間保持して仮焼を行った。仮焼により得られた仮焼粉をボールミルで粉砕し、フェライト酸化物粉末を調製した。
 得られたフェライト酸化物粉末と金属粉末とを混合した。ここで、金属粉末としてNi粉末、Ni粉末とCu粉末との混合粉末、Ni粉末とAg粉末との混合粉末、および、Ni粉末とCu粉末とAg粉末との混合粉末を準備した。Ni粉末とCu粉末との混合粉末については、NiとCuとの質量比率が、45<Ni<100(mass%)、0<Cu<55(mass%)を満たす混合比率とした。Ni粉末とAg粉末との混合比率はNi=98(mass%)、Ag=2(mass%)とした。Ni粉末とCu粉末とAg粉末との混合粉末については、NiとCuとAgとの質量比率が49<Ni<98(mass%)、0<Cu<49(mass%)、Ag=2(mass%)を満たす混合比率とした。また、前記フェライト酸化物と前記金属粉末の質量比率が83:17(mass%)となるように配合した。配合した粉末をボールミルにより混合し、得られた混合粉に対し、バインダー(PVA)を0.8mass%添加した。その後、これらをボールミルによって混合することで、混合粉末を得た。
 得られた混合粉末をプレス成形し、直方体形状を有する成形体を得た。この成形体を、窒素ガス雰囲気中、温度1300℃で3時間保持して焼成し、窒素ガス中で徐冷して、サーメット部材である焼結体を得た。得られた焼結体のうち1個を切断し、切断面を電子顕微鏡(日立ハイテクノロジー製:S-2100)による反射電子線像(BEI)を用いてランダムに30視野、500倍で観察し、サーメット酸化物相とサーメット金属相との面積比(So/Sm)を算出した。
 次に上記のようにして得られた焼結体(サーメット部材)を1.5cm×1.5cm×2.0cmに加工したものと組成がNi100mass%、(Ni72mass%Cr17mass%Fe10mass%)、(Ni63mass%Cr25mass%Fe11mass%Al1mass%)、(Ni65mass%Cu33mass%Fe2mass%)、(Ni10mass%Cr20mass%Fe70mass%)、(Fe88mass%Cr11mass%Si1mass%)の金属部材をそれぞれ1.5cm×1.5cm×2.0cmに加工したものを用意した。
 上記作製方法で得たサーメット部材と金属部材の1.5cm×1.5cmの面を、鏡面研磨し、鏡面処理面を接合面とした。
 次に、中間部材を準備した。中間部材としては、混合成形体を選択した。NiとCuの質量比率がNi=5(mass%)、Cu=95(mass%)という混合比率となるように混合粉を作製した。得られた混合粉を、厚みが0.02cmとなるように、195MPaで加圧して、混合成形体を作製した。
 次に、作製した厚み0.02cmの混合成形体を、サーメット部材の上に置き、混合成形体の上に金属部材を置いた。この際、サーメット部材と金属部材の鏡面処理を行った面に混合成形体が接するように混合成形体を挟んだ。
 そして、焼成温度を900~1425℃として熱処理を行い、複合体を得た。昇温速度、降温速度は300℃・h-1とし、保持時間は0.1~100時間とした。
 次に、得られた複合体に対し、サーメット部材の鏡面研磨を行った面に対して垂直な平面で切断して断面を出した。当該断面に対し、光学顕微鏡を用いてクラックの観察をおこなった。次に中間層におけるボイド解析についてのライン分析を行った。ライン分析は合計の測定範囲が30mmとなるように分析し、中間層におけるボイド比率とした。表1の「クラック」欄では、クラックの有無について記載した。さらに、表1の「ボイド」欄では、中間層におけるボイド比率が5%未満となる場合を○、5%以上10%未満となる場合を△、10%以上となる場合を×と表記した。
 得られた複合体における中間層の金属組成を測定した。当該中間層の金属組成はEDSを用いて測定した。表1にはNiおよびCuのみを記載した。
 次に、得られた複合体に対し、中間層とサーメット部材との界面断面の組成分析を行った。本実施例では、中間層とサーメット部材との界面より、垂直方向に10、50、100、1000μm離れたところに存在するサーメット金属相の組成分析を行った。組成分析の結果より、各サーメット金属相におけるCuの金属相全体に対する質量比率を算出し、算出された値をそれぞれ、中間層とサーメット部材との界面からの距離に対応させ、C10、C50、C100、C1000(mass%)と定義した。また、中間層とサーメット部材との界面より、垂直方向に10、100μm離れたところに存在するサーメット酸化物相も同様に組成分析を行った。組成分析の結果より、各酸化物相におけるCuのサーメット酸化物相に対する質量比率を算出し、算出された値をそれぞれ、中間層とサーメット部材の界面からの距離に対応させ、M10、M100(mass%)と定義した。得られた結果について表2に示した。
 また、得られた複合体に対して、図4に示すように0.4cm×0.3cm×2.0cmに加工したサンプルを20個用意した。それぞれのサンプルに対し、4点曲げ強度測定を行った。4点曲げ強度測定により得られた結果の平均値を接合強度とし評価した。4点曲げ強度試験は図10の概略図に示される方法により実施した。なお、4点曲げ強度試験装置としてアイコーエンジニアリング製:Model1311-Dを用いた。本願の実施例においては、接合強度50MPa以上を良好な接合強度とした。これらの結果を表2に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2を用いて、結果を説明していく。クラックが存在せず、4点曲げ強度測定の接合強度が50MPa以上の例を良好と判断した。
 ここで、クラックが存在せず、接合強度が50MPa以上である実施例に着目する。表2に示すように、これらの実施例においては、サーメット部材中のサーメット金属相およびサーメット酸化物相におけるCuの質量比率が、前述の式1および式2の関係を満たし、Cuがサーメット部材中のサーメット金属相へと選択的に拡散していることがわかる。これは、適切な熱処理温度および熱処理時間を選択することにより、中間層中のCuが十分にサーメット部材中のサーメット金属相へと選択的に拡散したことに起因する。これらの実施例では、接合強度が50MPaを上回り良好な複合体を得られた。
 前述した実施例に対し、比較例1~7、11~24では、Cuのサーメット金属相への拡散が効率的に進行せず、式1を満たすような傾斜組成は得られなかった。これらの比較例では、中間層とサーメット部材との界面近傍においてCuが集中し、接合強度は50MPaを下回り良好な複合体を得られなかった。特に、中間層においてボイドが5%以上発生した比較例6および7では接合強度がさらに低下した。これは、ボイドが多く発生することにより、中間層とサーメット部材との界面近傍において応力が集中したことに起因すると考えられる。
 また、比較例8~10では、式1の条件は満たしているが、式2の条件を満たさなかった。つまり、Cuの拡散がサーメット部材全体におこっており、サーメット部材にクラックが生じた。その結果、接合強度が20MPa以下となった。
 実施例では、サーメット部材の界面近傍においては、中間層とサーメット部材との界面から離れるにつれて、熱膨張係数が傾斜を成しながら段階的に変化していると考えられる。このことにより、残留応力もサーメット部材内で傾斜を成しながら分布することとなる。その結果、サーメット部材内において、局所的に残留応力が集中する箇所が消失すると考えられる。このことが要因となり、中間層におけるボイドが少なくても、クラックの発生が抑制される。
 次に接合強度について説明する。実施例では、接合強度が50MPaを越えた。これは、前述したCuのサーメット金属相への選択的な拡散に起因し、局所的に残留応力が集中する箇所が少なくなったことに由来すると考えられる。
 ここで、各々の金属の熱膨張係数について考える。接合前のサーメット金属相に含まれるNiよりも、中間部材中に含まれるCuの方が、熱膨張係数が高い。よって、本来は、Cuが局所的に中間層とサーメット部材との界面近傍に集中してしまうと、同部位におけるサーメット部材と金属部材との熱膨張差が大きくなる。このことに対し、本発明の複合体では、中間部材のCuがサーメット部材の内部に存在するサーメット金属相へと選択的に拡散している。そのため、中間層とサーメット部材との界面近傍において、中間層とサーメット部材との熱膨張差が小さくなり、サーメット部材中の残留応力低減につながったと考えられる。
 実施例と比較例との拡散の挙動の違いについて、図5で説明する。図5に実施例7と比較例7の場合について、中間層とサーメット部材との界面からの距離と、サーメット部材中におけるサーメット金属相に対するCuの質量比率と、の関係性を示す。図5から明らかなように、実施例7の場合、Cuの質量比率は、サーメット部材中の1000μmのところまで分布しているのに対し、比較例7では、サーメット部材中の100μmと1000μmのところでCuの質量比率が変化しておらず、Cuの拡散が十分に進行していないことがわかる。比較例7では、サーメット部材中において熱膨張差による残留応力があり、クラックの発生により接合強度が低下したと考えられる。
 次に、それぞれ金属部材、サーメット部材および中間部材を同じにし、熱処理温度について検討した、実施例1~9および比較例1、2、4~7を参照する。これらの結果から、熱処理温度が1085℃以上であれば、熱処理時間が3時間の場合に、式1を満たすようなCuが金属相へ十分に拡散した複合体が得られている。また、実施例1~9は、サーメット酸化物相における条件である式2も満たしており、良好な複合体を得ることができた。
 次に熱処理時間を変化させた比較例1および実施例10、比較例2~3および実施例11をそれぞれ比べると、サーメット金属相全体におけるCuの質量比率が式1を満たさなかった比較例1、2の場合でも、熱処理時間の増加によって、Cuのサーメット金属相への拡散が進行し、式1を満たすようになった場合には、接合強度が増加することがわかった。具体的には、比較例1に対しては熱処理時間を15時間とした実施例10、比較例2および3に対しては熱処理時間を75時間とした実施例11において、式1の関係が満たされ、接合強度が50MPa以上である良好な複合体を得ることができた。また、これらの例でもサーメット酸化物相における条件である式2は満たされていた。
 しかし、熱処理温度を1300℃とし、熱処理時間を変えた比較例8から10と実施例4、12~14を比較すると、熱処理時間が不適切な場合には接合強度が低下してしまっていることがわかる。これは、サーメット酸化物相におけるCuのサーメット酸化物相に対する質量比率が、拡散により変動してしまい、式2の関係を満たさなくなってしまったことに起因すると考えられる。
 前述のように、熱処理温度および熱処理時間は相補的であり、適切な条件を選択することにより接合は可能であることが分かった。そこで本発明では、熱処理温度および熱処理時間に特に制限は設けない。
 実施例4、10、15~24および比較例1、11~15では、使用する金属部材について検討を行った。ここで表1および表2において、同一金属部材を用い、熱処理条件の検討を行った実施例4、10および比較例1、実施例15、16および比較例11、実施例17、18および比較例12、実施例19,20および比較例13、実施例21、22および比較例14、実施例23,24および比較例15をそれぞれ比較する。これらの比較より、適切な熱処理温度および熱処理時間を選択すれば、金属部材の種類に関わらず、前述の式1および2の関係が満足されることが分かった。このとき、接合強度も50MPaを越え良好な複合体が得られた。よって、本発明では金属部材に制限を設けない。
 また、金属部材として、NiまたはNiを主成分とする合金を用いた実施例1~22、25~42ではNiを含まない合金を用いた実施例23、24と比較して接合強度が増加した。これは、中間層に、金属部材からもNiが拡散されることによって、強度が増したことに起因する。そこで、これらの例を、本発明の好適な例とした。
 さらに、複合体によって、溶融塩電解を行う場合には、溶融塩への溶解度の観点からも、金属部材として、NiまたはNiを含む合金を選択することが望ましいと判断した。
 実施例4、10、25~34および比較例1、16~20に、接合前のサーメット部材中のサーメット金属相におけるNiとCuの比率を変えた場合について示した。ここで表1において、接合前のサーメット金属相の組成を同一とし、熱処理条件の検討を行った実施例4、10および比較例1、実施例25、26および比較例16、実施例27、28および比較例17、実施例29、30および比較例18、実施例31、32および比較例19、実施例33、34および比較例20をそれぞれ比較すると、適切な熱処理温度および熱処理時間を選択すれば、接合前のサーメット金属相におけるNiとCuの比率に関わらず、接合強度は50MPa以上の良好な複合体が得られた。よって本発明では、接合前のサーメット部材中のサーメット金属相におけるNiとCuの比率に制限を設けない。
 実施例35~42および比較例21~24に、接合前の前記サーメット金属相に、CuとNi以外の金属が入る場合について示した。ここで表1において、接合前のサーメット金属相の組成を同一とし、熱処理条件の検討を行った。実施例35、36および比較例21、実施例37、38および比較例22、実施例39、40および比較例23、実施例41、42および比較例24をそれぞれ比較すると、Agが接合前のサーメット金属相に含まれていても、適切な熱処理温度および熱処理時間を選択すれば、前述の式1および式2の関係が満足され、50MPa以上の接合強度の良好な複合体が得られた。これらの場合についても本発明の範囲とした。
 実施例について、中間層の組成に関わらず、接合強度は50MPaを越えた。よって、これらの例を本発明の範囲内とした。このことに対し、NiとCuの質量比率が10≦Ni≦70(mass%)、30≦Cu≦90(mass%)であるような実施例2~8、12~14、15、17、19、21、23、25、27、29,31、33、35、37,39、41を本発明のより好適な例とした。
 以上より、Cuがサーメット金属相へと選択的に拡散していることを特徴とするサーメットと金属部材との複合体について説明した。このような複合体は、サーメット部材中にかかる接合による応力が傾斜的であり、好適な接合強度を示す。
 さらに、サーメット部材におけるサーメット酸化物相とサーメット金属相との面積比(So/Sm)が、60/40~90/10となるようにフェライト酸化物と金属粉末の使用比率を変化させた点以外は実施例6と同様にして、実施例43~45のサンプルを作製した。
 So/Smを変化させても、前述の式1および式2の関係を満足することができた。そして、実施例43~45は50MPa以上の接合強度の良好な複合体となった。よって、実施例43~45も本願の範囲と判断した。
 (実験例2)
 (実施例50~75)
 実験例2では、実験例1とは異なり、NiO粉末とFe粉末との混合比率を、NiOとFeのモル比率が50:50になるようにした。また、接合時間も変化させた。さらに、表2に示す材質の中間部材(実施例50では第1中間部材のみ、実施例51~69では第1中間部材および第2中間部材、実施例70~75では第1中間部材、第2中間部材に加えて第3中間部材)を準備した。各中間部材の厚みは0.02cmとした。
 そして、第3中間部材を用いない場合(実施例51~69)には、第1中間部材をサーメット部材の上に置き、第1中間部材の上に第2中間部材を置き、第2中間部材の上に金属部材を置いた。この際、サーメット部材の鏡面処理を行った面に第1中間部材が、金属部材の鏡面処理を行った面に第2中間部材が接するように第1中間部材および第2中間部材を挟んだ。
 第2中間部材および第3中間部材を用いない場合(実施例50)には、第1中間部材をサーメット部材の上に置き、第1中間部材の上に金属部材を置いた。この際、サーメット部材の鏡面処理を行った面および金属部材の鏡面処理を行った面に第1中間部材が接するように第1中間部材を挟んだ。
 第3中間部材を用いる場合(実施例70~75)には、第2中間部材の上に第3中間部材を置き、第3中間部材の上に金属部材を置く点以外は、第3中間部材を用いない場合と同様である。この際には、サーメット部材の鏡面処理を行った面に第1中間部材が、金属部材の鏡面処理を行った面に第3中間部材が接する
 上記した点および表3に記載のある条件以外は、実験例1の実施例6と同様にして表3の実施例51~75を作製した。なお、比較のために、実施例6の条件から接合時間およびNiO粉末とFe粉末との混合比率だけを変更した実施例50も同時に作製した。これらのサンプルについて、表4に示す各種特性を測定した。なお、全ての実施例でクラックは発生せず、中間層におけるボイド比率が5%未満であった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例51~75より、複数の中間部材を用いることで、複数の中間層を有する場合であっても、式1および式2を満たす場合には好適な接合強度を示す。
 ここで、複合体が第1中間層のみを有する実施例50に比べ、複数の中間層を有する実施例51~75において、接合強度はより増加した。よって、実施例51~75を本願のより好適な例とした。
 (実験例3)
 (実施例80~92)
 実験例3では、実験例2と同様に、NiO粉末とFe粉末との混合比率を、NiOとFeのモル比率が50:50になるようにした。さらに、中間部材として以下に示す製法により作製した混合成形体を用いた。上記した点および表5に記載のある条件以外は、実験例2の実施例50と同様にして表5に示す実施例81~92を得た。そして、表5および表6に示す各種特性を測定した。全ての実施例でクラックは発生せず、中間部材におけるボイド比率が5%未満であった。
 実験例3における混合成形体の製法は以下の通りである。混合成形体の原料となる金属粉体としてCu粉末を選択した。また、混合成形体の原料となる酸化物の粉体としてNiO-NiFe粉体を選択した。これらに関して、Cu金属:NiO-NiFe=100:0~50:50(mass%)(100:0を含まない)という混合比率となるように混合した。Cu金属とNiO-NiFeの質量比率を変えることにより、中間層中の中間金属相と中間酸化物相との面積比率を任意の値に制御することが可能である。得られた混合粉を、厚みが0.02cmとなるように、195MPaで加圧して、混合成形体を作製した。
 さらに、各実施例について中間酸化物相の面積比率を算出した。算出の手順には、各サンプルのBEI像において測定範囲を判断する工程、前記測定範囲と判断した部位において中間酸化物相が占める面積比率を算出する工程を含む。それぞれの工程について、以下に記述する。
 各サンプルについて、前記サーメット部材と前記金属部材とが前記中間層を挟んでいる領域のBEI像を倍率100倍で観測した。次に、前記サーメット部材と前記中間部材との界面から前記中間層側に存在し、前記界面から垂線方向に最も離れた位置に存在する中間酸化物相(BEI像における灰色部)までの距離dを計測した。具体的には、前記サーメット部材と前記中間層との界面からの垂線と前記BEI像において前記中間酸化物相が占める領域との交点の中で、前記界面から最も離れた点と界面との距離dを計測した。界面からの距離がd以下である前記中間部材内の領域を測定範囲とした。
 前記測定範囲において、BEI像のコントラストを解析し、前記BEI像全体に対する前記中間酸化物相を反映した灰色部の面積割合を計算した。同様の計算を10視野について行い、前記灰色部の平均面積割合を算出した。得られた値を前記中間層における前記中間酸化物相の面積比率とした。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5および表6より、中間層に中間酸化物相が含まれている場合においても、式1および式2を満たす場合には好適な接合強度を示す。
 また、中間層に中間酸化物相を含む実施例81~92の場合のほうが、中間層が中間金属相のみからなる実施例50よりも高い接合強度を示した。よって、これらを本願のより好適な例とした。
 以上のように、本発明のような中間層中のCuがサーメット金属相へと選択的に拡散していることを特徴とするサーメット部材と金属部材との複合体は、好適な接合強度を示す。本発明の複合体を用いることで、サーメット部材と金属部材の利点を兼ね備えたハイブリットな電解用電極を作成することができる。
1・・・金属部材
2・・・中間部材
3・・・サーメット部材
4・・・中間層
5・・・サーメット酸化物相
5a・・・スピネルフェライト相
5b・・・酸化ニッケル相
6・・・サーメット金属相
8・・・サーメット金属相(C10測定)
9・・・サーメット金属相(C50測定)
10・・・サーメット金属相(C100測定)
11・・・サーメット金属相(C1000測定)
12・・・サーメット酸化物相(M10測定)
13・・・サーメット酸化物相(M100測定)
41・・・第1の中間層
42・・・第2の中間層
43・・・第3の中間層
46・・・中間金属相
48・・・中間酸化物相
D1、D2、D3・・・サーメット部材の寸法
D4、D5、D6・・・金属部材の寸法

Claims (21)

  1.  サーメット部材と金属部材と中間層とを有する複合体であって、
     前記サーメット部材はサーメット酸化物相とサーメット金属相とを含み、
     前記サーメット酸化物相はNiを含む酸化物またはFeを含む酸化物を含み、
     前記サーメット金属相はNiを含み、
     前記中間層はCuを含み、
     前記サーメット部材と前記中間層との界面から前記サーメット部材側に10、50、100、1000μm離れた点における前記金属相中のCuの質量比率をC10、C50、C100、C1000(mass%)とし、
     前記界面から前記サーメット部材側に10、100μm離れた点における前記酸化物相中のCuの質量比率をM10、M100(mass%)としたときに、下記式1、式2を同時に満たすことを特徴とする複合体。
     
     C10>C50>C100>C1000(mass%):(式1)
     
     5>M10―M100>-5(mass%):(式2)
     
  2.  請求項1に記載の複合体であって、前記金属部材は少なくともNiを含むことを特徴とする複合体。
  3.  請求項1または請求項2に記載の複合体であって、前記中間層の、NiとCuの質量比率を百分率で表したときに、Niが10<Ni<70(mass%)、Cuが30<Cu<90(mass%)であることを特徴とする複合体。
  4.  請求項1~3のいずれかに記載の複合体であって、
     前記中間層は少なくとも第1の中間層および第2の中間層を有し、
     前記第1の中間層は、前記サーメット部材と接合しており、
     前記第1の中間層は少なくとも第1金属Cuを含み、
     前記第2の中間層は少なくとも第2金属M2を含み、
     前記第1金属Cuの融点が前記第2金属M2の融点よりも低く、
     前記第1の中間層におけるCuの質量濃度が前記第2の中間層におけるCuの質量濃度よりも高く、
     前記第2の中間層におけるM2の質量濃度が前記第1の中間層におけるM2の質量濃度よりも高いことを特徴とする複合体。
  5.  請求項4に記載の複合体であって、
     前記第1の中間層が、前記第2の中間層とも接合している複合体。
  6.  請求項4または請求項5に記載の複合体であって、前記第2の中間層が、前記金属部材と接合している複合体。
  7.  請求項4~6のいずれかに記載の複合体であって、
     前記第1の中間層におけるCuとM2との質量比(Cu/M2)が下記の式3の範囲内である複合体。
     
     40/60≦Cu/M2≦90/10:(式3)
     
  8.  請求項4~7のいずれかに記載の複合体であってM2がNiである複合体。
  9.  請求項4、5、7、8のいずれかに記載の複合体であって、
     前記中間層は、前記第1の中間層、前記第2の中間層に加えて第3の中間層を有し、
     前記第3の中間層は、前記金属部材と接合している複合体。
  10.  請求項9に記載の複合体であって、
     前記第3の中間層におけるCuの質量濃度が前記第2の中間層におけるCuの質量濃度より高く、
     前記第3の中間層におけるM2の質量濃度が前記第2に中間層におけるM2の質量濃度よりも低い複合体。
  11.  請求項9または請求項10に記載の複合体であって、前記第2の中間層が、前記第1の中間層および前記第3の中間層と接合している複合体。
  12.  請求項1~11のいずれかに記載の複合体であって、前記サーメット部材に含まれる前記サーメット酸化物相は、少なくともNiの酸化物を含む複合体。
  13.  請求項1~12のいずれかに記載の複合体であって、前記サーメット部材に含まれる前記サーメット酸化物相のうち少なくとも一部はニッケルフェライトからなる複合体。
  14.  請求項1~3のいずれかに記載の複合体であって、
     前記中間層は中間酸化物相と中間金属相とを含み、
     前記中間酸化物相は少なくとも一種以上の金属の酸化物を含む複合体。
  15.  請求項14に記載の複合体であって、前記少なくとも一種以上の金属の酸化物はサーメット酸化物相に含まれる金属の酸化物から選択される複合体。
  16.  請求項14または請求項15に記載の複合体であって、前記サーメット部材と前記中間層との界面に対して垂直に前記複合体を切断した切断面において、前記中間酸化物相が存在する領域における前記中間酸化物相が占める面積と前記中間金属相が占める面積との合計を100%とする場合に、前記中間酸化物相が占める面積比率が、10%~50%である複合体。
  17.  請求項14~16のいずれかに記載の複合体であって、前記中間層全体に占めるボイドの面積比率が30%以下である複合体。
  18.  請求項1~17のいずれかに記載の複合体であって、前記サーメット部材の断面における前記サーメット酸化物相の面積をS、前記サーメット金属相の面積をSとし、前記サーメット酸化物相と前記サーメット金属相との面積比をS/Sとする場合に、S/Sが下記の式4を満たす複合体。
     
       60/40≦S/S≦90/10:(式4)
     
  19.  請求項1~18のいずれかに記載の複合体であって、
     前記サーメット酸化物相が、
     組成式NiFe(x+y+z=3、x≠0、y≠0、MはAl、Co、Cr、Mn、Ti、Zr、Sn、V、Nb、Ta、Hfからなる群から選択される少なくとも1種以上)で表されるスピネルフェライト相と、
     組成式Nix’Fe1-x’O(x’≠0)で表される酸化ニッケル相と、を有し、
     前記サーメット酸化物相と前記サーメット金属相とを含む前記サーメット部材全体を100質量%とする場合において、
     前記スピネルフェライト相の含有率が40~80質量%であり、
     前記酸化ニッケル相の含有率が0~10質量%(0質量%を含む)であり、
     前記サーメット金属相の含有率が15~45質量%である複合体。
  20.  請求項19に記載の複合体であって、前記サーメット部材に含まれる前記スピネルフェライト相の平均組成が組成式Nix1Fey1z1(0.60≦x1≦0.90、1.90≦y1≦2.40、0.00≦z1≦0.20)で表される複合体。
  21.  請求項19または請求項20に記載の複合体であって、前記サーメット部材に前記酸化ニッケル相が含まれ、前記酸化ニッケル相の平均組成が組成式Nix’1Fe1-x’1O(0.70≦x’1≦1.00)で表される複合体。
PCT/JP2015/084811 2015-05-18 2015-12-11 複合体 WO2016185633A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/575,587 US11001933B2 (en) 2015-05-18 2015-12-11 Composite body
JP2017518722A JP6620807B2 (ja) 2015-05-18 2015-12-11 複合体
CN201580080123.3A CN107530780B (zh) 2015-05-18 2015-12-11 组装体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-100862 2015-05-18
JP2015100862 2015-05-18

Publications (1)

Publication Number Publication Date
WO2016185633A1 true WO2016185633A1 (ja) 2016-11-24

Family

ID=57319566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084811 WO2016185633A1 (ja) 2015-05-18 2015-12-11 複合体

Country Status (4)

Country Link
US (1) US11001933B2 (ja)
JP (1) JP6620807B2 (ja)
CN (1) CN107530780B (ja)
WO (1) WO2016185633A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3034433B1 (fr) * 2015-04-03 2019-06-07 Rio Tinto Alcan International Limited Materiau cermet d'electrode
WO2021112060A1 (ja) 2019-12-02 2021-06-10 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5289549A (en) * 1976-01-23 1977-07-27 Mitsubishi Heavy Ind Ltd Diffusion welding method
JPS59107060A (ja) * 1982-12-09 1984-06-21 Toshiba Tungaloy Co Ltd 複合焼結体及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4529494A (en) * 1984-05-17 1985-07-16 Great Lakes Carbon Corporation Bipolar electrode for Hall-Heroult electrolysis
US6030518A (en) * 1997-06-26 2000-02-29 Aluminum Company Of America Reduced temperature aluminum production in an electrolytic cell having an inert anode
JP3465649B2 (ja) * 1999-11-11 2003-11-10 株式会社村田製作所 セラミックインダクタ部品及び複合部品
AU2008349842A1 (en) 2008-02-04 2009-08-13 The Regents Of The University Of California Cu-based cermet for high-temperature fuel cell
JP5431036B2 (ja) * 2009-06-15 2014-03-05 三洋電機株式会社 車両用の組電池及びこれを備える車両並びに組電池用のセパレータ
KR101645625B1 (ko) * 2012-03-05 2016-08-05 가부시키가이샤 무라타 세이사쿠쇼 전자 부품, 전자 부품과 접합 대상물의 접합 구조체의 형성방법
JP6246666B2 (ja) * 2014-06-11 2017-12-13 日本発條株式会社 積層体の製造方法
FR3022917B1 (fr) * 2014-06-26 2016-06-24 Rio Tinto Alcan Int Ltd Materiau d'electrode et son utilisation pour la fabrication d'anode inerte

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5289549A (en) * 1976-01-23 1977-07-27 Mitsubishi Heavy Ind Ltd Diffusion welding method
JPS59107060A (ja) * 1982-12-09 1984-06-21 Toshiba Tungaloy Co Ltd 複合焼結体及びその製造方法

Also Published As

Publication number Publication date
CN107530780B (zh) 2019-06-28
CN107530780A (zh) 2018-01-02
US20180148853A1 (en) 2018-05-31
JP6620807B2 (ja) 2019-12-18
US11001933B2 (en) 2021-05-11
JPWO2016185633A1 (ja) 2018-05-24

Similar Documents

Publication Publication Date Title
JP5497493B2 (ja) 高温固体電解質燃料電池用インターコネクタ
US20110236713A1 (en) Functionally graded material shape and method for producing such a shape
Helle et al. Structure and high-temperature oxidation behaviour of Cu–Ni–Fe alloys prepared by high-energy ball milling for application as inert anodes in aluminium electrolysis
JP2010219045A6 (ja) 高温固体電解質燃料電池用インターコネクタ
JP2017216222A (ja) 酸化物電解質焼結体、及び、当該酸化物電解質焼結体の製造方法
AU2015278874B2 (en) Electrode material and use thereof for the manufacture of an inert anode
US20170368607A1 (en) Functionally graded w-cu composite
JP2017534059A (ja) 放射線遮蔽組成物及びその製造方法
DK201770819A1 (en) Cermet electrode material
Goupil et al. Consolidation of mechanically alloyed Cu–Ni–Fe material by spark plasma sintering and evaluation as inert anode for aluminum electrolysis
JP2018115378A (ja) W−Cr基合金またはそれにより作製された金型、電極または押出ダイス
JP6620807B2 (ja) 複合体
EP4257715A1 (en) Formed part with high-temperature persistence and low anisotropy, forming method and forming powder
JPWO2016185633A6 (ja) 複合体
JP2016156055A (ja) 断熱材料
JP2018517061A (ja) 複合体および電解用電極
TWI430504B (zh) 用於高溫固態電解燃料電池之互連饋線
WO2016189571A1 (en) An assembly body and electrode for electrolysis
JP2017057426A (ja) 電解用電極の製造方法
JP7332145B2 (ja) チタン基複合材料の製造方法
WO2017223348A1 (en) Multilayer electrode
JP4603841B2 (ja) 耐酸化性を有するタングステン合金とその製造方法
JP5060680B2 (ja) 銀・金属酸化物系接点材料
Zhang et al. Effects of the additive ZrO 2 on properties of nickel ferrite cermet inert anode
Qangule The influence of process route on mechanical property development in sintered commercially pure and blended elemental titanium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892632

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017518722

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15575587

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15892632

Country of ref document: EP

Kind code of ref document: A1