WO2016181495A1 - 電源システム - Google Patents

電源システム Download PDF

Info

Publication number
WO2016181495A1
WO2016181495A1 PCT/JP2015/063623 JP2015063623W WO2016181495A1 WO 2016181495 A1 WO2016181495 A1 WO 2016181495A1 JP 2015063623 W JP2015063623 W JP 2015063623W WO 2016181495 A1 WO2016181495 A1 WO 2016181495A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead acid
acid battery
ion secondary
lithium ion
power supply
Prior art date
Application number
PCT/JP2015/063623
Other languages
English (en)
French (fr)
Inventor
田原 雅彦
手塚 淳
智之 小池
崇光 渡辺
瑛文 小石
輝昌 土屋
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CA2985749A priority Critical patent/CA2985749C/en
Priority to US15/573,728 priority patent/US10119513B2/en
Priority to CN201580079747.3A priority patent/CN107531201B/zh
Priority to RU2017142982A priority patent/RU2668491C1/ru
Priority to BR112017024103-0A priority patent/BR112017024103B1/pt
Priority to MX2017014027A priority patent/MX369581B/es
Priority to EP15891820.1A priority patent/EP3296159B1/en
Priority to KR1020177032883A priority patent/KR101833190B1/ko
Priority to JP2017517517A priority patent/JP6384601B2/ja
Priority to PCT/JP2015/063623 priority patent/WO2016181495A1/ja
Publication of WO2016181495A1 publication Critical patent/WO2016181495A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/0307Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for using generators driven by a machine different from the vehicle motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0862Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery
    • F02N11/0866Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery comprising several power sources, e.g. battery and capacitor or two batteries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/06Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
    • F02N2200/063Battery voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2250/00Problems related to engine starting or engine's starting apparatus
    • F02N2250/02Battery voltage drop at start, e.g. drops causing ECU reset
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a power supply system for a vehicle including two secondary batteries.
  • JP2011-234479A discloses a power supply system for a vehicle including a lead acid battery and a lithium ion secondary battery.
  • the power supply voltage of the vehicle instantaneously decreases due to a large current flowing in the starter motor. Therefore, some vehicle electrical components provided on the lithium ion secondary battery side From the viewpoint of load protection, the lithium-ion secondary battery and the starter motor are de-energized, and power is supplied only from the lead acid battery to the starter motor.
  • the lead acid battery discharged at the start of the engine automatic restart is charged during the operation after the engine automatic restart.
  • lead acid batteries have low durability against repeated charge and discharge compared to high-performance storage batteries such as lithium ion secondary batteries and nickel metal hydride batteries. Therefore, in the configuration of the above-mentioned document in which the lead acid battery charges and discharges every time it is automatically restarted from the idling stop, deterioration is promoted even if a high-performance lead acid battery dedicated to the idling stop is used.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a power supply system capable of suppressing deterioration of power storage means such as a lead acid battery.
  • a power supply system applied to a vehicle having an idling stop function for automatically stopping and restarting an engine.
  • the power supply system connects the generator, the first power storage means capable of charging / discharging the power generated by the generator, the second power storage means capable of charging / discharging the generated power, and the first power storage means and the second power storage means 2.
  • a switching means having one path, a first switch that switches between a conductive state and a non-conductive state of one path, and a second switch that switches between a conductive state and a non-conductive state of the other path;
  • An engine restarting unit connected to one power storage unit side or the second power storage unit side and starting the engine at the time of automatic restart; an electric load on the vehicle connected to the first power storage unit side with respect to the switching unit;
  • Control means for performing on / off control of the first switch and the second switch.
  • a control means makes both a 1st switch and a 2nd switch into a conduction
  • FIG. 1 is a schematic diagram of an engine system which is a premise of an embodiment according to the present invention.
  • FIG. 2 is a diagram illustrating the configuration of the first power supply system.
  • FIG. 3 is a diagram illustrating the configuration of the second power supply system.
  • FIG. 4 is a diagram illustrating the configuration of the third power supply system.
  • FIG. 5 is a time chart showing the switching control according to the first embodiment.
  • FIG. 6 is a time chart showing switching control according to the second embodiment.
  • FIG. 7 is a time chart showing switching control according to the third embodiment.
  • FIG. 8 is a time chart showing the switching control according to the reference example.
  • FIG. 1 is a system schematic diagram of an engine with an idling stop function which is a premise of the present invention.
  • the engine 1 includes a generator 2 on one side surface and an air conditioner compressor 4 on the other side surface via brackets (not shown).
  • a compressor pulley 7 attached to the tip of the rotating shaft of the air conditioner compressor 4 are wound around the belt 8. Hung and these are mechanically connected.
  • the three pulleys of the crank pulley 5, the generator pulley 6, and the compressor pulley 7 are mechanically connected by a single belt 8, but the generator pulley 6 and the compressor pulley 7 are different from each other.
  • the belt 8 may be mechanically connected to the crank pulley 5.
  • a chain may be used instead of the belt.
  • the engine 1 is provided with a starter 9 in the vicinity of the connection with the automatic transmission 11.
  • the starter 9 includes a pinion gear that moves forward and backward in the same manner as a general starter.
  • the pinion gear engages with a gear provided on the outer periphery of the drive plate attached to the crankshaft base end portion, whereby cranking is performed.
  • the power supply to the starter 9 will be described later.
  • the automatic transmission 11 includes an electric oil pump 10 for securing control hydraulic pressure during idling stop.
  • the electric oil pump 10 operates in accordance with a command from the automatic transmission controller 20 and improves the response when starting from an idling stop.
  • the generator 2 is driven by the driving force of the engine 1 to generate power, and when generating power, the generated voltage can be variably controlled by LIN (Local Interconnect Network) communication or hard wire.
  • the generator 2 can also regenerate kinetic energy of the vehicle as electric power when the vehicle is decelerated. These power generation and regeneration are controlled by an engine control module (hereinafter referred to as ECM) 19.
  • ECM engine control module
  • the ECM 19 reads detection signals of various sensors such as a crank angle sensor 12, a battery sensor, an atmospheric pressure sensor, and signals of various switches such as a brake switch, and controls idling stop control in addition to control of fuel injection amount and ignition timing. Execute.
  • the ECM 19 includes an ABS / VDC unit 21, an air conditioner amplifier 22, an electric power steering unit 25, a vehicle control controller 26, a power distribution controller 23, a meter unit 24, a driving support system (ADAS) unit 27, and a CAN (Controller Area). Communication is performed via a network), and optimal control for the vehicle is performed.
  • the ECM 19 is composed of a microcomputer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). It is also possible to configure the ECM 19 with a plurality of microcomputers.
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • I / O interface input / output interface
  • the system shown in FIG. 1 includes two secondary batteries, a lead storage battery as a first power storage means and a nonaqueous electrolyte secondary battery as a second power storage means.
  • the lead acid battery is a lead acid battery 15
  • the nonaqueous electrolyte secondary battery is a lithium ion secondary battery 16.
  • the open voltage of the lead acid battery 15 in the fully charged state is 12.7 V
  • the open voltage of the lithium ion secondary battery 16 in the fully charged state is 13.1 V.
  • the lead acid battery 15 and the lithium ion secondary battery 16 are connected in parallel to each other via two paths C1 and C2, and the MOSFET 50 and the lead functioning as switching means are respectively connected to these two paths.
  • An acid battery path relay 51 is connected.
  • Lead acid battery 15 supplies power to all electrical loads 30.
  • lead acid in order to prevent the influence of an instantaneous voltage drop (hereinafter also referred to as “instantaneous drop”) caused by driving the starter 9 at the start of the engine automatic restart from the idling stop, lead acid is used.
  • Battery path relay 51 is turned off (non-conductive state). Thereby, the operating voltage of all the electrical loads 30 is guaranteed.
  • the power generated by the generator 2 (including power generated by regeneration; the same applies hereinafter) is charged to both the lead acid battery 15 and the lithium ion secondary battery 16.
  • the voltage is adjusted by controlling the field current of the generator 2.
  • general idling stop control is executed. Specifically, for example, when conditions such as the accelerator pedal being fully closed, the brake pedal being depressed, and the vehicle speed being a predetermined vehicle speed or less are satisfied, the engine 1 is automatically stopped, and the depression amount of the brake pedal is a predetermined amount. The engine 1 is automatically restarted when it becomes below.
  • FIG. 2 is a diagram illustrating a first configuration of a power supply system that supplies power to the starter 9 and the electrical load 30 (hereinafter also referred to as a type 1 power supply system).
  • the lead acid battery 15 and the lithium ion secondary battery 16 are connected to each other in parallel by two paths C1 and C2.
  • a lead acid battery path relay 51 serving as a first switch that switches between a conduction state and a non-conduction state of the path C2 is connected to the path C2 that is one path.
  • a MOSFET 50 serving as a second switch for switching the conduction state and the non-conduction state of the route C1 is connected to the route C1, which is another route.
  • the lead acid battery path relay 51 is arranged on the path C2 from the lithium ion secondary battery 16 to the lead acid battery 15.
  • the MOSFET 50 is disposed on a path C1 from the lithium ion secondary battery 16 to the lead acid battery 15.
  • the MOSFET 50 is connected so that the forward direction of the parasitic diode coincides with the direction from the lithium ion secondary battery 16 side to the lead acid battery 15 side. This prevents energization from the lead acid battery 15 to the lithium ion secondary battery 16 in the path C1 regardless of the on / off state of the MOSFET 50.
  • the lead acid battery path relay 51 a so-called normally closed type relay that is turned on (conductive state) when the coil is not energized is used.
  • the instantaneous maximum current capacity of the MOSFET 50 is, for example, 180A, and the instantaneous maximum current capacity of the lead acid battery path relay 51 is, for example, 1200A.
  • a lithium ion secondary battery attached relay 52 is connected to the lithium ion secondary battery 16 in series.
  • the relay 52 attached to the lithium ion secondary battery is configured by a so-called normally open type relay that is in an off state (non-conducting state) when the coil is not energized.
  • the instantaneous maximum current capacity of the lithium ion secondary battery-attached relay 52 is, for example, 800A.
  • the lithium ion secondary battery 16, the lithium ion secondary battery attached relay 52, the MOSFET 50, and the battery controller 60 are combined into one and configured as a lithium battery pack P.
  • the battery controller 60 receives from the ECM 19 a signal related to a discharge command or a charge command to the starter 9 and all the electrical loads 30 according to the operating state of the engine 1, and attached to the lithium ion secondary battery based on this signal. On / off control of the relay 52 and the MOSFET 50 is performed.
  • the all electrical load 30 is connected to the lead acid battery 15 side with respect to the lead acid battery path relay 51.
  • the starter 9 and the generator 2 are connected to the lithium ion secondary battery 16 side with respect to the lead acid battery path relay 51.
  • FIG. 3 is a diagram illustrating a second configuration of a power supply system that supplies power to the starter 9 and the electrical load 30 (hereinafter also referred to as a type 2 power supply system).
  • a type 2 power supply system supplies power to the starter 9 and the electrical load 30 (hereinafter also referred to as a type 2 power supply system).
  • symbol is attached
  • the type 2 power supply system 100 ′ is different from the type 1 power supply system 100 shown in FIG. 2 in that an electric motor 70 is used instead of the generator 2, and the starter 9 is a lead acid battery path relay 51. However, it is different in that it is connected to the lead acid battery 15 side.
  • the electric motor 70 includes a pulley corresponding to the generator pulley 6, and the pulley and the crank pulley 5 are mechanically connected by a belt or the like.
  • the electric motor 70 includes an inverter and has a motor function that is driven by electric power supplied from the lithium ion secondary battery 16 and a power generation function that is driven by the driving force of the engine 1 to generate electric power. Further, when the power generation function of the electric motor 70 is used, the generated voltage can be variably controlled.
  • the switching between the motor function and the power generation function is performed by ECM19.
  • the motor function is used mainly at the start stage of automatic restart from the idling stop. That is, in this type 2 power supply system 100 ′, the electric motor 70 serves as engine restarting means.
  • the starter 9 is used only at the first start (when the start is not automatic restart). This starter 9 can use the same specifications as a vehicle having no idling stop function.
  • the starter 9 is changed from the lead acid battery 15 to the start of the engine 1 for the first time.
  • the lead-acid battery path relay 51 no current flows.
  • the current capacity of the lead acid battery path relay 51 can be made smaller than that of the lead acid battery path relay 51 used in the type 1 power supply system 100, and the cost of configuring the lead acid battery path relay 51. Can be reduced.
  • FIG. 4 is a diagram for explaining a third configuration of a power supply system that supplies power to the starter 9 and the electrical load 30 (hereinafter also referred to as a type 3 power supply system).
  • the type 2 power supply system 100 ′′ is different from the type 1 power supply system 100 shown in FIG. 2 in that the generator 2 is connected to the lead acid battery 15 side with respect to the lead acid battery path relay 51. Is different.
  • FIG. 8 is a time chart showing on / off control of the lead acid battery path relay 51, the lithium ion secondary battery attached relay 52, and the MOSFET 50 according to the reference example.
  • the lead-acid battery path relay 51, the lithium-ion secondary battery-attached relay 52, and the MOSFET 50 are turned on / off in comparison with the on / off state of the ignition key (not shown) and the magnitude of the engine speed, respectively.
  • the off state is shown over time.
  • the state in which the lead acid battery path relay 51, the lithium ion secondary battery attached relay 52, and the MOSFET 50 are turned on means that these are in a conductive state
  • the state in which the relay 52 attached to the ion secondary battery and the MOSFET 50 are turned off means that they are in a non-conductive state. 8 is described as being applied to the configuration of the power supply system 100 shown in FIG. 2, but the power supply system 100 ′ shown in FIG. 3 and the power supply system 100 ′′ shown in FIG. The same applies to the configuration.
  • the lead-acid battery path relay 51 that is a normally closed type is The MOSFET 50 is in an on state, the MOSFET 50 is in an off state, and the normally open type lithium ion secondary battery attached relay 52 is in an off state.
  • the battery controller 60 switches the lithium-ion secondary battery-attached relay 52 to the ON state during the period from the time t1 to the time t2 during operation after the initial engine start is completed.
  • the power generated by the generator 2 can be charged not only to the lead acid battery 15 but also to the lithium ion secondary battery 16 via the path C2.
  • the lithium ion secondary battery 16 is more easily charged with the power generated by the generator 2 than the lead acid battery 15, and the lead acid battery 15 is hardly charged when the charging voltage exceeds 13V when fully charged. There is a characteristic. Therefore, the power generated by the generator 2 is mainly charged in the lithium ion secondary battery 16.
  • the battery controller 60 switches the MOSFET 50 to the on state. Then, ECM19 switches the lead-acid battery path relay 51 off state from the time t 2 after a predetermined time ⁇ t has elapsed.
  • the lead acid battery path relay 51 is switched to the OFF state after a predetermined time has elapsed after the MOSFET 50 is switched to the ON state, so that the lead acid battery path relay 51 is turned off with the potential difference between both ends reduced. Therefore, it is possible to prevent the occurrence of an arc at the time of interruption.
  • the predetermined time ⁇ t can be appropriately set as a time that can eliminate the potential difference between both ends of the lead acid battery path relay 51 to some extent.
  • the lead acid battery path relay 51 is maintained in the off state, and the battery controller 60 includes the MOSFET 50 and the lithium ion secondary battery attached relay 52. Remain on.
  • the power supply to all the electrical loads 30 is mainly performed from the lithium ion secondary battery 16. Furthermore, as described above, since the generated power has a characteristic that the lithium ion secondary battery 16 is easily charged, except for the automatic restart start stage in which the starter 9 is driven by the power of the lithium ion secondary battery 16 described later, The voltage of the lithium ion secondary battery 16 is maintained higher than the voltage of the lead acid battery 15.
  • the lithium ion secondary battery 16 has characteristics of higher energy density and charge / discharge energy efficiency than the lead acid battery 15. Moreover, since the lithium ion secondary battery 16 does not involve the dissolution and precipitation reaction of the electrode material during charging and discharging, it has a feature that a long life can be expected. On the other hand, the lead acid battery 15 is less expensive than the lithium ion secondary battery 16 if it has the same capacity, but the electrode deteriorates due to discharge, so that the lithium ion secondary battery 15 has durability against repeated charge and discharge. It is inferior to the secondary battery 16.
  • the battery controller 60 switches the MOSFET 50 to the OFF state at the restart start stage (time t4 to t5) immediately before the idling stop is completed.
  • a predetermined resistance and a bypass relay connected in parallel may be interposed between the lithium ion secondary battery 16 and the starter 9.
  • the bypass relay is changed from the non-conductive state to the conductive state, so that the starter 9 is started.
  • the spike current can be greatly reduced, and the starting performance is ensured.
  • control for returning to the normal traveling state is performed.
  • the process enters the restart initial stage (time t5 to time t6).
  • time t ⁇ b> 5 which is the time of entry at the initial stage of restart
  • the battery controller 60 switches the MOSFET 50 to the on state.
  • the ECM 19 switches the lead acid battery path relay 51 to the on state after a predetermined time ( ⁇ t ′ in the figure) when the MOSFET 50 is switched to the on state.
  • the lead acid battery path relay 51 is switched to the on state after a predetermined time (delay) ⁇ t.
  • delay a time (delay) ⁇ t.
  • the path C1 is made conductive without delay by the MOSFET 50 having a faster response speed than the lead acid battery path relay 51, and the lead acid battery 15 and the lithium ion secondary battery 16 are connected. It is possible to discharge to the entire electrical load 30 by both. Moreover, the potential difference between the both ends of the lead acid battery path relay 51 decreases by turning on the MOSFET 50. Therefore, in this state, the lead acid battery path relay 51 is switched to the on state, thereby preventing an inrush current.
  • the battery controller 60 switches the MOSFET 50 to the off state.
  • the engine stop phase is started in which the ignition key is turned off. From time t7 to time t8 is a stop start stage until the engine stops.
  • the normally open type lithium ion secondary battery attached relay 52 is switched off.
  • the normally closed type lead acid battery path relay 51 remains on. Therefore, at the next engine initial start (time t0), the initial start can be performed in a state where the lead acid battery 15 and the starter 9 are in conduction.
  • the lead acid battery 15 having a low battery life is accelerated every time the idling stop is executed, so that the replacement cycle is shortened.
  • the lead acid battery path relay 51 and the MOSFET 50 are in the off state at the start of the automatic restart of the engine 1, and the power supply path from the lead acid battery 15 to the starter 9 is blocked. Therefore, since only the electric power of the lithium ion secondary battery 16 is used for automatic restart, the replacement cycle of the lead acid battery 15 can be prolonged.
  • the lead acid battery 15 and the starter 9 are switched between energization and cutoff by both the MOSFET 50 and the lead acid battery path relay 51.
  • this energization and interruption may be performed by using only one of the MOSFET 50 and the lead acid battery path relay 51 or another switch.
  • the MOSFET 50 is frequently turned on and off, causing a problem due to heat generation.
  • the responsiveness of the relay switch is low, so the automatic restart condition is established and the off-state is controlled. Then, it takes time until the automatic restart.
  • the lead-acid battery path relay 51 is turned off during idling stop, the MOSFET 50 is also in the off state, so that power cannot be supplied from the lithium ion secondary battery 16 during idling stop.
  • the energization and interruption of the lead acid battery 15 and the starter 9 are not configured only in either the MOSFET 50 or the lead acid battery path relay 51. A redundant circuit including both of these is preferable.
  • the lead-acid battery path relay 51 is turned off and the MOSFET 50 is turned on during idling stop (time t3 to time t4), and a response is made at the start of automatic restart (time t4).
  • the voltage of the lithium ion secondary battery 16 takes a value equal to or higher than the voltage of the lead acid battery 15 except for the restart start stage (time t4 to time t5).
  • the voltage of the lead acid battery 15 exceeds the voltage of the lithium ion secondary battery 16 only from the lead acid battery 15 side to the lithium ion secondary battery 16 side only at the restart start stage (time t4 to time t5).
  • Current may flow. Therefore, if the lead acid battery path relay 51 and the MOSFET 50 are turned off at the restart start stage (time t4 to time t5), current can be prevented from flowing from the lead acid battery 15 side to the lithium ion secondary battery 16 side. .
  • the power supply system 100 in the present reference example has the same configuration as that of a general vehicle electrical circuit having only one battery in a portion where the lead acid battery 15 and the all electrical load 30 are connected.
  • the lithium ion secondary battery 16 is used for automatic restart and the lead acid battery 15 is not used. Therefore, even when the power supply system 100 according to the present reference example is mounted on a vehicle having an idling stop function, the capacity of the lead acid battery 15 does not need to be increased as compared with a vehicle having no idling stop function, and the same specification. It can be. Therefore, the cost for introducing the idling stop system into the vehicle can be reduced.
  • the lithium ion secondary battery pack P includes the lithium ion secondary battery 16, the MOSFET 50, the lithium ion secondary battery attached relay 52, and the battery controller 60, and the lead acid battery path relay 51 is the lithium.
  • positioned out of the ion secondary battery pack P is taken.
  • the lead acid battery path relay 51 may be arranged in the lithium battery pack P while being in parallel with the MOSFET 50.
  • the battery controller 60 may be provided outside the lithium ion secondary battery pack P.
  • FIG. 5 is a time chart showing the switching control of the lead acid battery path relay 51, the lithium ion secondary battery attached relay 52, and the MOSFET 50 according to this embodiment.
  • a chart of ON / OFF control of the lead acid battery path relay 51 and the MOSFET 50 according to the reference example shown in FIG. 8 is indicated by a broken line in the drawing.
  • a chart of charge / discharge instructions is shown.
  • a positive value is taken only during time t2 to time t3 during deceleration regeneration, and charging to the lead acid battery 15 and the lithium ion secondary battery 16 is performed from time t2 to time t3. An instruction has been issued.
  • a discharge instruction is issued from the lead acid battery 15 or the lithium ion secondary battery 16 except during the deceleration regeneration (time t2 to time t3).
  • the ratio of the discharge amounts of the lead acid battery 15 and the lithium ion secondary battery 16 can be suitably adjusted in a state where the discharge instruction is issued.
  • the battery controller 60 switches the MOSFET 50 from the off state to the on state when shifting from the initial start of the engine 1 to the operating state (time t1).
  • the lead acid battery path relay 51 is maintained in the ON state until a predetermined time ⁇ t4 before the time t4 when the idle stop ends. Then, the ECM 19 switches the lead acid battery path relay 51 to the OFF state before the predetermined time ⁇ t4 at time t4. Thereafter, the restart start stage ends and the process proceeds to the restart initial stage (time t5). After the predetermined time ⁇ t5 has elapsed, the ECM 19 switches the lead acid battery path relay 51 to the ON state again.
  • the lead acid battery path relay 51 and the MOSFET 50 are always in the on state except for the restart start stage (time t4 to time t5) and around the predetermined time. Will be maintained.
  • the harness resistance can be reduced as compared with the case where only one path is used when discharging from the lithium ion secondary battery 16 to the full electrical load 30, and the lithium ion secondary battery 16 to the full electrical load 30 can be reduced.
  • the amount of discharge from the lead acid battery 15 to the total electrical load 30 can be suppressed by increasing the amount of discharge.
  • the power supply system 100 to which the control of this embodiment is applied is applied to a vehicle having an idling stop function for automatically stopping and restarting the engine.
  • the power supply system 100 includes a generator 2, a lead acid battery 15 that can charge and discharge the power generated by the generator 2, a lithium ion secondary battery 16 that can charge and discharge the generated power, a lead acid battery 15 and lithium.
  • Engine restart means 9 connected to the lead acid battery 15 or the lithium ion secondary battery 16 for starting the engine 1 when the automatic restart is started, and two paths C1 and C2 connecting the ion secondary battery 16;
  • a vehicle electrical load 30 connected to the lead acid battery 15, a lead acid battery path relay 51 that switches between a conductive state and a non-conductive state of one path C2, and a MOSFET 50 that switches a conductive state and a non-conductive state of the other path C1.
  • an ECM 19 for performing on / off control of the lead acid battery path relay 51 and the MOSFET 50, and a battery controller 60.
  • control means 19 and 60 make both the lead acid battery path
  • the “automatic restart start stage” in addition to the time t4 to time t5, which is the restart start stage described above, the predetermined time ⁇ t4 before the above-described time t4 to the predetermined time t5. It is assumed that the interval until after ⁇ t5 has elapsed is included. That is, the “starting stage of automatic restart” means a section from time t4 ⁇ t4 to time t5 + ⁇ t5 in FIG.
  • the MOSFET 50 is excluded except for the automatic restart start stage (time t4- ⁇ t4 to time t5 + ⁇ t5).
  • the lead-acid battery path relay 51 is always maintained in a conductive state. Therefore, the two paths C1 and C2 from the lithium ion secondary battery 16 as the second power storage means to the lead acid battery 15 as the first power storage means are both in a conductive state.
  • the lithium ion secondary battery 16 since the power supply from the lithium ion secondary battery 16 to the all-electric load 30 toward the lead acid battery 15 at the time of discharging is performed using both the path C1 and the path C2, the lithium ion secondary battery 16 The harness resistance from the lithium ion secondary battery 16 to the full electrical load 30 can be reduced as compared with the case where only one path is used when discharging to the full electrical load 30. As a result, the discharge amount from the lithium ion secondary battery 16 to the all electrical load 30 can be increased, and the discharge amount of the lead acid battery 15 can be suppressed.
  • the discharge share of the lead acid battery 15 is about 8% as compared with the control of the reference example. I know it will be smaller.
  • control of the present embodiment is not limited to the type 1 power supply system 100 shown in FIG. 2, but the type 2 power supply system 100 ′ shown in FIG. 3 and the type 3 power supply system 100 ′′ shown in FIG. It is possible to apply to.
  • FIG. 6 is a time chart showing the switching control of the lead acid battery path relay 51, the lithium ion secondary battery attached relay 52, and the MOSFET 50 according to this embodiment.
  • This embodiment is different from the control according to the first embodiment shown in FIG. 5 in that the battery controller 60 turns off the MOSFET 50 in the deceleration regeneration stage (time t2 to time t3) when a charge command is issued (FIG. 5). (See inside circle).
  • the power supply system 100 ′′ to which the control of the present embodiment is applied has the following operational effects.
  • the battery controller 60 makes the MOSFET 50, which is the second switch, non-conductive during deceleration regeneration of the automobile.
  • the path C1 is in a non-energized state, so that the path from the generator 2 to the lithium ion secondary battery 16 is only the path C2.
  • the harness resistance from the generator 2 to the lithium ion secondary battery 16 increases as compared with the case where the path C1 and the path C2 can be used, and thus the amount of charge to the lithium ion secondary battery 16 is suppressed.
  • This inevitably increases the amount of charge to the lead acid battery 15. That is, since the charge sharing rate to the lead acid battery 15 can be improved during charging, the remaining charge (SOC) of the lead acid battery 15 can be increased.
  • control of this embodiment is not limited to the type 3 power supply system 100 ′′ shown in FIG. 4, but the type 1 power supply system 100 shown in FIG. 2 and the type 3 power supply system 100 ′ shown in FIG. It is possible to apply to.
  • the power supply system 100 ′ having the configuration shown in FIG. 3 is used as a premise.
  • FIG. 7 is a time chart showing the switching control of the lead acid battery path relay 51, the lithium ion secondary battery attached relay 52, and the MOSFET 50 according to the present embodiment.
  • This embodiment is different from the first embodiment shown in FIG. 5 in that the lead-acid battery path relay 51 is turned off in the deceleration regeneration stage (time t2 to time t3) when a charge command is issued (circles in the figure). See box).
  • the power supply system 100 to which the control of this embodiment is applied has the following operational effects.
  • the electric motor 70 that is a generator is arranged on the lithium ion secondary battery 16 side.
  • the battery controller 60 puts the lead acid battery path relay 51 into a non-conductive state during the deceleration regeneration of the automobile.
  • the path C2 is in a non-energized state, and therefore the path to reach the lead acid battery 15 as the first power storage means from the electric motor 70. It will always pass C1. Therefore, the lithium ion secondary battery 16 that is the second power storage means passes through the process in which the generated power reaches the lead acid storage battery 15 from the electric motor 70.
  • the electric power of the electric motor 70 is preferentially charged to the lithium ion secondary battery 16.
  • the charge sharing rate to the lithium ion secondary battery 16 can be improved, the charge remaining amount (SOC) of the lithium ion secondary battery 16 can be increased.
  • the lithium ion secondary battery 16 is preferentially charged in the process of the generated power from the electric motor 70 to the lead acid battery 15, thereby leading to lead acid.
  • the voltage actually supplied to the battery 15 drops, and the charging voltage to the lead acid battery 15 is prevented from becoming excessive.
  • the power supplied to all the electrical loads 30 arranged on the lead acid battery 15 side can also be suppressed, and it is possible to reliably prevent the all electrical loads 30 from becoming overvoltage.
  • control of the present embodiment is not limited to the type 2 power supply system 100 ′ shown in FIG. 3, but can be applied to the type 2 power supply system 100 shown in FIG.
  • the first power storage means is not limited to the lead acid battery 15 and may be a lead-free secondary battery such as a nickel metal hydride battery. Further, a switching element using a semiconductor may be used instead of the mechanical relay used in each embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Charge By Means Of Generators (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Secondary Cells (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

発電機と、発電機の発電電力を充放電可能な第1蓄電手段と、発電電力を充放電可能な第2蓄電手段と、第1蓄電手段と第2蓄電手段とを繋ぐ2つの経路と、一の経路の導通状態と非導通状態を切り替える第1スイッチと、他方の経路の導通状態と非導通状態を切り替える第2スイッチと、切り替え手段と、切り替え手段に対して第1蓄電手段側又は第2蓄電手段側に接続され、自動再始動の際にエンジンを始動させるエンジン再始動手段と、切り替え手段に対して第1蓄電手段側に接続された車両の電装負荷と、第1スイッチ及び第2スイッチのオン・オフ制御を行う制御手段と、を備え、制御手段は、アイドルストップからの自動再始動の開始段階を除いた前記エンジンの運転中及びアイドルストップ中において第1スイッチ及び第2スイッチの双方を導通状態とする。

Description

電源システム
 本発明は、二つの二次電池を備える車両の電源システムに関する。
 JP2011-234479Aには、鉛酸電池とリチウムイオン二次電池とを備える車両の電源システムが開示されている。この電源システムでは、アイドリングストップからのエンジン自動再始動の場合、スタータモータに流れる大電流により車両の電源電圧が瞬時低下するために、リチウムイオン二次電池側に設けられている一部の車両電装負荷の保護の観点から、リチウムイオン二次電池とスタータモータとの通電を遮断し、鉛酸電池のみからスタータモータへ電力を供給する構成となっている。
 上記文献の構成では、エンジン自動再始動の開始段階に放電した鉛酸電池は、エンジン自動再始動後の運転中に充電されることとなる。しかし、一般に鉛酸電池はリチウムイオン二次電池やニッケル水素電池といった高性能蓄電池に比べて、充放電の繰り返しに対する耐久性が低い。したがって、アイドリングストップから自動再始動する度に鉛酸電池が充放電を行なう上記文献の構成では、アイドリングストップ専用の高性能な鉛酸電池を用いても劣化が促進されることとなる。
 本発明はこのような事情に鑑みてなされたものであり、その目的は、鉛酸電池等の蓄電手段の劣化を抑制し得る電源システムを提供することにある。
 本発明のある態様によれば、エンジンを自動停止及び自動再始動するアイドリングストップ機能を有する車両に適用される電源システムが提供される。電源システムは、発電機と、発電機の発電電力を充放電可能な第1蓄電手段と、発電電力を充放電可能な第2蓄電手段と、第1蓄電手段と第2蓄電手段とを繋ぐ2つの経路と、一の経路の導通状態と非導通状態を切り替える第1スイッチと、他方の経路の導通状態と非導通状態を切り替える第2スイッチと、を有する切り替え手段と、切り替え手段に対して第1蓄電手段側又は第2蓄電手段側に接続され、自動再始動の際にエンジンを始動させるエンジン再始動手段と、切り替え手段に対して第1蓄電手段側に接続された車両の電装負荷と、第1スイッチ及び第2スイッチのオン・オフ制御を行う制御手段と、を備える。そして、制御手段は、自動再始動の開始段階を除いたエンジンの運転中及びアイドルストップ中において第1スイッチ及び第2スイッチの双方を導通状態とする。
図1は、本発明に係る実施形態の前提となるエンジンシステムの概略図である。 図2は、第1の電源システムの構成を説明する図である。 図3は、第2の電源システムの構成を説明する図である。 図4は、第3の電源システムの構成を説明する図である。 図5は、第1実施形態に係るスイッチング制御を示したタイムチャートである。 図6は、第2実施形態に係るスイッチング制御を示したタイムチャートである。 図7は、第3実施形態に係るスイッチング制御を示したタイムチャートである。 図8は、参考例に係るスイッチング制御を示したタイムチャートである。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 図1は、本発明の前提となるアイドリングストップ機能付きエンジンのシステム概略図である。
 図1に示すように、エンジン1は一方の側面に発電機2を、他方の側面にエアコンコンプレッサ4を、それぞれ図示しないブラケット等を介して備えている。エンジン1のクランクシャフト先端に装着したクランクプーリ5と、発電機2の回転軸先端に装着した発電機プーリ6と、エアコンコンプレッサ4の回転軸先端に装着したコンプレッサプーリ7とが、ベルト8に巻掛けられ、これらが機械的に連結されている。
 なお、図1ではクランクプーリ5、発電機プーリ6、及びコンプレッサプーリ7の3つのプーリが一本のベルト8で機械的に連結されているが、発電機プーリ6とコンプレッサプーリ7をそれぞれ別のベルト8でクランクプーリ5と機械的に連結してもよい。また、ベルトに代えてチェーンを用いてもよい。
 エンジン1は自動変速機11との連結部付近にスタータ9を備える。スタータ9は、一般的な始動用のスタータと同様に進退動するピニオンギヤを備える。そして、スタータ9の作動時には、ピニオンギヤがクランクシャフト基端部に装着されたドライブプレートの外周に設けたギヤに係合することで、クランキングが行なわれる。スタータ9への電力供給については後述する。
 自動変速機11は、アイドリングストップ中の制御油圧を確保するための電動オイルポンプ10を備える。電動オイルポンプ10は自動変速機コントローラ20の指令に応じて作動し、アイドリングストップからの発進時の応答性を向上している。
 発電機2は、エンジン1の駆動力により駆動して発電し、発電する際に発電電圧をLIN(Local Interconnect Network)通信またはハードワイヤーにより可変制御することが可能である。また、発電機2は、車両の減速時に車両の運動エネルギを電力として回生することもできる。これら発電や回生の制御はエンジンコントロールモジュール(以下、ECMと称する。)19が行う。
 ECM19は、クランク角センサ12、バッテリセンサ、大気圧センサ等の各種センサの検出信号や、ブレーキスイッチ等の各種スイッチ類の信号を読み込み、燃料噴射量や点火時期等の制御の他、アイドリングストップ制御を実行する。また、ECM19は、ABS・VDCユニット21、エアコンアンプ22、電動パワーステアリングユニット25、車両制御コントローラ26、電源分配コントローラ23、メータユニット24、及び運転支援システム(ADAS)ユニット27と、CAN(Controller Area Network)を介して相互通信を行い、車両に最適な制御を行っている。
 なお、ECM19は中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。ECM19を複数のマイクロコンピュータで構成することも可能である。
 図1に示すシステムは、第1蓄電手段としての鉛蓄電池及び第2蓄電手段としての非水電解質二次電池の2つの二次電池を備える。以下、鉛蓄電池は鉛酸電池15、非水電解質二次電池はリチウムイオン二次電池16とする。なお、鉛酸電池15の満充電状態での開放電圧は12.7V、リチウムイオン二次電池16の満充電状態での開放電圧は13.1Vとする。
 後述するが、鉛酸電池15とリチウムイオン二次電池16とは2つの経路C1、C2を介して相互に並列接続されており、これら2つの経路にはそれぞれ、切り替え手段として機能するMOSFET50と鉛酸電池経路リレー51が接続されている。
 鉛酸電池15は全電装負荷30へ電力を供給する。特に、本システムでは、アイドリングストップからのエンジン自動再始動の開始段階において、スタータ9を駆動することによる瞬間的な電圧降下(以下、瞬低ともいう。)の影響を防止するために、鉛酸電池経路リレー51がオフ状態(非導通状態)とされる。これにより、全電装負荷30の作動電圧が保証される。
 発電機2の発電電力(回生による電力も含む。以下同様)は、鉛酸電池15及びリチウムイオン二次電池16のいずれにも充電される。
 なお、鉛酸電池15及びリチウムイオン二次電池16から全電装負荷30へ電力を供給する際や、発電機2の発電電力を鉛酸電池15又はリチウムイオン二次電池16に充電する際には、発電機2の界磁電流制御によって電圧の調整が行われる。
 また、上記システムにおいては一般的なアイドリングストップ制御が実行される。具体的には、例えば、アクセルペダルが全閉、ブレーキペダルが踏み込まれた状態、及び車速が所定車速以下等の諸条件を満たす場合はエンジン1を自動停止し、ブレーキペダルの踏み込み量が所定量以下になった場合等にエンジン1を自動再始動する。
 図2は、スタータ9や電装負荷30への電力供給を行う電源システムの第1構成(以下、タイプ1の電源システムとも称する)を説明する図である。
 図2に示すように、本実施形態にかかる電源システム100には、鉛酸電池15とリチウムイオン二次電池16とは2つの経路C1及び経路C2により、相互に並列に繋がれている。そして、一の経路である経路C2には該経路C2の導通状態と非導通状態を切り替える第1スイッチとしての鉛酸電池経路リレー51が接続されている。また、他の経路である経路C1には該経路C1の導通状態と非導通状態を切り替える第2スイッチとしてのMOSFET50が接続されている。これら鉛酸電池経路リレー51及びMOSFET50により切り替え手段が構成される。
 すなわち、鉛酸電池経路リレー51は、リチウムイオン二次電池16から鉛酸電池15へ至る経路C2に配置されている。そして、MOSFET50は、リチウムイオン二次電池16から鉛酸電池15へ至る経路C1に配置されている。
 MOSFET50は、その寄生ダイオードの順方向とリチウムイオン二次電池16側から鉛酸電池15側へ向かう方向とが一致するように接続されている。これにより、MOSFET50のオン・オフ状態に依らず、経路C1において鉛酸電池15からリチウムイオン二次電池16への通電が防止される。また、鉛酸電池経路リレー51としては、コイルに通電されていない状態でオン状態(導通状態)となる、いわゆるノーマルクローズタイプのリレーが用いられる。なお、MOSFET50の瞬時最大電流容量は、例えば180Aであり、鉛酸電池経路リレー51の瞬時最大電流容量は、例えば1200Aである。
 また、リチウムイオン二次電池16には、リチウムイオン二次電池付属リレー52が直列に接続されている。リチウムイオン二次電池付属リレー52は、コイルに通電されていない状態でオフ状態(非導通状態)となる、いわゆるノーマルオープンタイプのリレーにより構成される。ここで、リチウムイオン二次電池付属リレー52の瞬時最大電流容量は例えば800Aである。
 なお、本実施形態ではリチウムイオン二次電池16、リチウムイオン二次電池付属リレー52、MOSFET50、及びバッテリーコントローラ60が一つにまとめられ、リチウム電池パックPとして構成されている。ここでバッテリーコントローラ60は、ECM19から、エンジン1の運転状態に応じたスタータ9や全電装負荷30への放電指令又は充電指令に係る信号を受信し、この信号に基づいてリチウムイオン二次電池付属リレー52とMOSFET50のオン・オフ制御を行う。
 そして、タイプ1の電源システム100では、全電装負荷30は、鉛酸電池経路リレー51に対して鉛酸電池15側に接続されている。スタータ9及び発電機2は、鉛酸電池経路リレー51に対してリチウムイオン二次電池16側に接続されている。
 図3は、スタータ9や電装負荷30への電力供給を行う電源システムの第2構成(以下、タイプ2の電源システムとも称する)を説明する図である。なお、図2で示した各要素と同様の要素には同一の符号を付している。
 本タイプ2の電源システム100´は、図2に示したタイプ1の電源システム100に対して、発電機2の代わりに電動機70が用いられている点、及びスタータ9が鉛酸電池経路リレー51に対して鉛酸電池15側に接続されている点で相違する。なお、電動機70は発電機プーリ6に相当するプーリを備え、当該プーリとクランクプーリ5とがベルト等により機械的に連結されている。
 電動機70はインバータを備え、リチウムイオン二次電池16から供給される電力により駆動するモータ機能と、エンジン1の駆動力により駆動して発電する発電機能を有する。また、電動機70の発電機能を使用する際に、発電電圧を可変に制御することが可能である。
 モータ機能と発電機能の切り換えは、ECM19が行う。モータ機能を使用するのは、主にアイドリングストップからの自動再始動の開始段階である。すなわち、本タイプ2の電源システム100´では、電動機70がエンジン再始動手段となる。なお、スタータ9は初回始動時(自動再始動ではない始動時)にのみ使用される。このスタータ9はアイドリングストップ機能を有しない車両と同じ仕様を用いることができる。
 また、本タイプ2の電源システム100´によれば、鉛酸電池15及びスタータ9が鉛酸電池経路リレー51に対して同じ側にあるので、エンジン1の初回始動時に鉛酸電池15からスタータ9へ電力供給する際に、鉛酸電池経路リレー51に電流は流れない。
 すなわち、鉛酸電池経路リレー51の瞬時最大電流容量を設定するにあたって、エンジン1の初回始動時にスタータ9を駆動するための大電流が流れることを考慮する必要がない。このため、鉛酸電池経路リレー51の電流容量を、タイプ1の電源システム100において用いた鉛酸電池経路リレー51と比較してより小さくすることができ、鉛酸電池経路リレー51を構成するコストを低減できる。
 図4は、スタータ9や電装負荷30への電力供給を行う電源システムの第3の構成(以下、タイプ3の電源システムとも称する)を説明する図である。なお、本タイプ2の電源システム100´´は、図2に示したタイプ1の電源システム100に対し、発電機2を鉛酸電池経路リレー51に対して鉛酸電池15側に接続した点で相違する。
 以下では、上記タイプ1~3の各電源システムにおいて、エンジンの始動状況に応じた鉛酸電池経路リレー51、リチウムイオン二次電池付属リレー52、及びMOSFET50のオン・オフ制御制御について説明する。
 (参考例)
 図8は、参考例に係る鉛酸電池経路リレー51、リチウムイオン二次電池付属リレー52、及びMOSFET50のオン・オフ制御を示したタイムチャートである。当図には、それぞれ、イグニションキー(図示せず)のオン・オフ状態及びエンジン速度の大きさと対比して、鉛酸電池経路リレー51、リチウムイオン二次電池付属リレー52、及びMOSFET50のオン・オフ状態が経時的に示されている。
 なお、以下では、鉛酸電池経路リレー51、リチウムイオン二次電池付属リレー52、及びMOSFET50がオンされている状態とはこれらが導通状態であることを意味し、鉛酸電池経路リレー51、リチウムイオン二次電池付属リレー52、及びMOSFET50がオフされている状態とはこれらが非導通状態であることを意味する。また、図8のタイムチャートは、図2に示した電源システム100の構成に適用したものとして説明するが、図3に示した電源システム100´、及び図4に示した電源システム100´´の構成に対しても同様に適用が可能である。
 図示のように、例えばイグニションキー操作やスタートボタン操作といった運転者の始動操作に応じてエンジン1を初回始動する時刻t0~時刻t1の間においては、ノーマルクローズタイプである鉛酸電池経路リレー51はオン状態であり、MOSFET50はオフ状態であり、ノーマルオープンタイプのリチウムイオン二次電池付属リレー52はオフ状態である。
 これにより、経路C2を介して鉛酸電池15のみからスタータ9への電力供給が行われる。なお、初回始動時に、バッテリーコントローラ60がリチウムイオン二次電池付属リレー52をオン状態とすることで、鉛酸電池15及びリチウムイオン二次電池16の2つの電池からスタータ9に電力供給するようにしても良い。
 そして、エンジン初回始動が終了した後の運転中である時刻t1~時刻t2の間においては、バッテリーコントローラ60が、リチウムイオン二次電池付属リレー52をオン状態に切り替える。
 これにより、発電機2の発電電力が鉛酸電池15だけでなく、経路C2を介してリチウムイオン二次電池16にも充電され得る状態となる。
 ここで、リチウムイオン二次電池16は鉛酸電池15に比べて発電機2の発電電力が充電され易い上に、鉛酸電池15は満充電時では充電電圧が13Vを超えるとほとんど充電されなくなるという特性がある。したがって、発電機2の発電電力は主にリチウムイオン二次電池16に充電されることとなる。
 そして、アイドルストップに移行する前の減速回生段階が開始される時刻t2では、バッテリーコントローラ60がMOSFET50をオン状態に切り替える。そして、ECM19は、時刻t2から所定時間Δt経過した後に鉛酸電池経路リレー51をオフ状態に切り替える。
 このようにMOSFET50がオン状態に切り替えられてから所定時間経過後に鉛酸電池経路リレー51がオフ状態に切り替えられることで、鉛酸電池経路リレー51をその両端電位差を減少した状態でオフにすることができるので、遮断時アークの発生を防止することができる。
 なお、上記所定時間Δtは、鉛酸電池経路リレー51の両端電位差をある程度解消できる程度の時間として適宜設定することができる。
 さらに、減速回生段階が終了した後の時刻t3から時刻t4のアイドルストップ中においても、鉛酸電池経路リレー51はオフ状態に維持され、バッテリーコントローラ60は、MOSFET50及びリチウムイオン二次電池付属リレー52もオン状態に維持されたままである。
 したがって、時刻t3から時刻t4のアイドルストップ中においては、鉛酸電池経路リレー51がオフ状態であっても、リチウムイオン二次電池16と全電装負荷30の通電が経路C1により確保されている。したがって、鉛酸電池15及びリチウムイオン二次電池16のいずれからも全電装負荷30へ電力供給が可能である。
 なお、例えば発電機2の制御が不能になり発電電圧が過剰に高くなった場合には、バッテリーコントローラ60によりリチウムイオン二次電池付属リレー52をオフ状態とすることが好ましい。これにより、リチウムイオン二次電池16に過電圧がかかることが防止される。
 また、リチウムイオン二次電池16及び鉛酸電池15の特性上、全電装負荷30への電力供給は主にリチウムイオン二次電池16から行われる。さらに、上述したように発電電力はリチウムイオン二次電池16に充電され易いという特性を有するので、後述するリチウムイオン二次電池16の電力でスタータ9を駆動する自動再始動の開始段階を除き、リチウムイオン二次電池16の電圧は鉛酸電池15の電圧以上に維持される。
 ところで、リチウムイオン二次電池16は鉛酸電池15に比べてエネルギ密度及び充放電エネルギ効率が高いという特性を有する。また、リチウムイオン二次電池16は充放電時に電極材料の溶解析出反応を伴わないので、長寿命が期待できるという特徴も有する。これに対し鉛酸電池15は、同じ容量であればリチウムイオン二次電池16に比べて低コストであるが、放電することによって電極が劣化するため、繰り返しの充放電に対する耐久性ではリチウムイオン二次電池16に劣る。
 そこで本参考例では、アイドリングストップが終了する直前である再始動開始段階(時刻t4~t5)において、バッテリーコントローラ60は、MOSFET50をオフ状態に切り替える。
 これにより、鉛酸電池経路リレー51及びMOSFET50がともにオフ状態であるので、スタータ9側(リチウムイオン二次電池16)と全電装負荷30側(鉛酸電池15)との間の通電が完全に遮断される。したがって、スタータ9のモータに流れる大電流により全電装負荷30の電圧が瞬時低下することが防止される。一方で、リチウムイオン二次電池付属リレー52はオン状態に維持されているので、リチウムイオン二次電池16とスタータ9との間の通電は確保されており、リチウムイオン二次電池16の放電によるスタータ9の始動を行うことは可能である。
 なお、リチウムイオン二次電池16とスタータ9の間に、所定の抵抗とこれに並列接続されたバイパスリレーを介在させても良い。この構成の下、リチウムイオン二次電池16からの電力供給によりスタータ9を駆動して100~150ms程度経過した後に、バイパスリレーを非導通状態から導通状態とすることにより、スタータ9の始動時のスパイク電流を大幅に低減させることができ、始動性能が確保される。この場合、エンジン完爆後に所定時間が経過したら、通常の走行時の状態へと戻す制御を行う。
 次に、再始動開始段階が終了した後には、再始動初期段階(時刻t5~時刻t6)に突入する。ここで、再始動初期段階の突入時である時刻t5において、バッテリーコントローラ60はMOSFET50をオン状態に切り替える。一方、ECM19は、MOSFET50がオン状態に切り替えられた所定時間(図のΔt´)後に、鉛酸電池経路リレー51をオン状態に切り替える。
 このように、先ず、MOSFET50がオン状態に切り替えられた後に、所定時間(ディレイ)Δtをもって鉛酸電池経路リレー51がオン状態に切り替えられる。これにより、再始動初期段階の開始時(時刻t5)において、鉛酸電池経路リレー51よりも応答速度の速いMOSFET50によって遅延なく経路C1を導通させて鉛酸電池15及びリチウムイオン二次電池16の双方による全電装負荷30への放電を可能とすることができる。また、MOSFET50をオン状態していることで鉛酸電池経路リレー51の両端間の電位差が減少する。したがって、この状態で鉛酸電池経路リレー51がオン状態に切り替えられることで、突入電流の発生が防止される。
 そして、再始動初期段階が終了した後におけるエンジン運転中の状態(時刻t6~時刻t7)では、バッテリーコントローラ60は、MOSFET50をオフ状態に切り替える。
 その後、時刻t7においてイグニションキーをオフ状態とするエンジンの停止段階が開始される。時刻t7~時刻t8はエンジンが停止に至るまでの停止開始段階である。図からわかるように、本参考例においては、エンジンの回転数がゼロとなる時刻t8において、ノーマルオープンタイプのリチウムイオン二次電池付属リレー52がオフ状態に切り替わる。一方で、ノーマルクローズタイプの鉛酸電池経路リレー51はオン状態のままである。したがって、次回のエンジン初期始動時(時刻t0)においては、鉛酸電池15とスタータ9が導通した状態で初期始動を行うことができる。
 次に、上述した電源システム100における参考例についての作用効果を説明する。
 上記参考例において、仮にエンジン1の自動再始動開始時(時刻t4)に鉛酸電池15の電力を用いるとすると、上述したようにリチウムイオン二次電池16に比べて繰り返しの充放電に対する耐久性が低い鉛酸電池15は、アイドリングストップを実行する度に劣化が促進されるので、交換サイクルが短くなる。
 これに対し本参考例では、エンジン1の自動再始動の開始段階に鉛酸電池経路リレー51及びMOSFET50がオフ状態であり、鉛酸電池15からスタータ9への電力供給通路が遮断されている。したがって、自動再始動にリチウムイオン二次電池16の電力のみが用いられるので、鉛酸電池15の交換サイクルを長期化することができる。
 なお、図2ではMOSFET50及び鉛酸電池経路リレー51の双方により、鉛酸電池15とスタータ9との通電と遮断を切り替えている。しかしながら、この通電と遮断を、MOSFET50または鉛酸電池経路リレー51のいずれか一方のみ又は他のスイッチを用いて行うようにしても良い。
 しかしながら、鉛酸電池15とスタータ9との通電と遮断をMOSFET50のみで行うと、MOSFET50が頻繁にオン・オフされることとなり熱発生による弊害が生じる。また、鉛酸電池15とスタータ9との通電と遮断を鉛酸電池経路リレー51のみで行うと、リレースイッチの応答性が低いため、自動再始動条件が成立してからオフ状態に制御したのでは自動再始動までに時間を要することになる。一方、アイドリングストップ中に鉛酸電池経路リレー51をオフ状態にすると、MOSFET50もオフ状態であることから、アイドリングストップ中にリチウムイオン二次電池16からの電力供給ができなくなる。
 さらに、製品としての安全性や耐久性をより高めるという観点からも、鉛酸電池15とスタータ9との通電と遮断をMOSFET50または鉛酸電池経路リレー51のいずれか一方のみに構成するのではなく、これら両方を含む冗長回路とすることが好ましい。
 そして、本参考例では、アイドリングストップ中(時刻t3~時刻t4)に、鉛酸電池経路リレー51がオフ状態、及びMOSFET50がオン状態とされ、自動再始動の開始時(時刻t4)には応答性に優れるMOSFET50をオン状態からオフ状態に切り替えることにより、鉛酸電池15からスタータ9への電力供給通路を確実に遮断して、全電装負荷30の電圧低下を引き起こすことなく速やかな自動再始動が可能となる。
 特に、本参考例では、再始動開始段階(時刻t4~時刻t5)を除いて、リチウムイオン二次電池16の電圧は鉛酸電池15の電圧以上の値をとる。逆に言えば、再始動開始段階(時刻t4~時刻t5)にのみ鉛酸電池15の電圧がリチウムイオン二次電池16の電圧を超えて鉛酸電池15側からリチウムイオン二次電池16側へ電流が流れる可能性がある。したがって、再始動開始段階(時刻t4~時刻t5)に鉛酸電池経路リレー51及びMOSFET50をオフ状態にすれば、鉛酸電池15側からリチウムイオン二次電池16側へ電流が流れることを防止できる。
 これにより、MOSFET50の寄生ダイオードの順方向と反対方向を順方向とする寄生ダイオードを備えたMOSFETを配置することなく、鉛酸電池15側からリチウムイオン二次電池16側へ電流が流れることを防止できる。したがって、使用するMOSFETの数を削減してコストを抑制することができる。
 本参考例における電源システム100は、鉛酸電池15と全電装負荷30とを接続した部分については、バッテリを1つだけ備える一般的な車両の電装回路と同様の構成になる。
 さらに、本参考例では、上述のように自動再始動にリチウムイオン二次電池16のみを用いて鉛酸電池15を用いていない。したがって、本参考例に係る電源システム100をアイドリングストップ機能を有する車両に実装する場合においても、鉛酸電池15の容量を、アイドリングストップ機能を有しない車両に比べて大きくする必要がなく、同じ仕様とすることができる。したがって、アイドリングストップシステムを車両に導入するコストを低減することができる。
 また、本参考例によれば、例えばリチウムイオン二次電池16のマイナス端子が外れる等の原因によってリチウムイオン二次電池16からスタータ9への電力供給が不可能な状態になっても、鉛酸電池経路リレー51を閉じることで鉛酸電池15からスタータ9へ電力を供給できるので、自動再始動が可能である。すなわち、自動再始動に係るシステムに対する冗長化が実現される。
 なお、本参考例では、リチウムイオン二次電池パックPが、リチウムイオン二次電池16、MOSFET50、リチウムイオン二次電池付属リレー52、及びバッテリーコントローラ60を有し、鉛酸電池経路リレー51がリチウムイオン二次電池パックP外に配置される構成をとっている。
 しかしながら、この構成は電源システム100の回路による作用を変えない範囲で任意に変更が可能である。例えば、鉛酸電池経路リレー51を、MOSFET50に対して並列な状態のままリチウム電池パックP内に配置するようにしても良い。また、バッテリーコントローラ60は、リチウムイオン二次電池パックP外に設けても良い。
 (第1実施形態)
 以下、第1実施形態について説明する。なお、下記の各実施形態においては、上記参考例と同様の要素には同一の符号を付し、その説明を省略する。また、本実施形態に係る制御では、図2に示した構成の電源システム100が前提として用いられる。
 図5は、本実施形態に係る鉛酸電池経路リレー51、リチウムイオン二次電池付属リレー52、及びMOSFET50のスイッチング制御を示したタイムチャートである。なお、参考のため、図8に示した参考例に係る鉛酸電池経路リレー51及びMOSFET50のオン・オフ制御のチャートを図中に破線で示している。
 また、当図においては、充電/放電指示のチャートを示している。この充電/放電指示のチャートでは、減速回生中である時刻t2~時刻t3においてのみ正の値をとっており、この時刻t2~時刻t3において鉛酸電池15やリチウムイオン二次電池16への充電指示が発せられている。
 一方で、上記減速回生中(時刻t2~時刻t3)以外では、鉛酸電池15やリチウムイオン二次電池16からの放電指示が発せられている。特に、本実施形態では、後に詳細に説明するが、上記放電指示が発せられている状態で、鉛酸電池15とリチウムイオン二次電池16の放電量の割合を好適に調整することができる。
 本実施形態に係る制御では、エンジン1の初期始動から運転状態に移行する時(時刻t1)にバッテリーコントローラ60がMOSFET50をオフ状態からオン状態に切り替える。
 さらに、本実施形態に係る電源システム100の制御では、アイドルストップが終了する時刻t4の所定時間Δt4前までの間において、鉛酸電池経路リレー51がオン状態に維持されている。そして、ECM19は時刻t4の所定時間Δt4前に鉛酸電池経路リレー51をオフ状態に切り替える。その後、再始動開始段階が終了して再始動初期段階に移行し(時刻t5)、その所定時間Δt5経過後に、ECM19が再び鉛酸電池経路リレー51をオン状態に切り替える。
 すなわち、本実施形態においては、エンジン1の初期始動の後は、再始動開始段階(時刻t4~時刻t5)及びその所定時間前後を除いて、鉛酸電池経路リレー51及びMOSFET50が常にオン状態に維持されることとなる。
 これにより、本実施形態では、上記再始動開始段階(時刻t4~時刻t5)及びその所定時間前後を除き、放電指令が発せられている全過程において、経路C1及び経路C2の双方を介して、リチウムイオン二次電池16から鉛酸電池15側の全電装負荷30へ放電が行われることとなる。
 したがって、リチウムイオン二次電池16から全電装負荷30への放電に際して一つの経路しか用いない場合と比較してハーネス抵抗を減少させることができ、リチウムイオン二次電池16から全電装負荷30への放電量を増加させて、鉛酸電池15から全電装負荷30への放電量を抑制することができる。
 以上、説明した本実施形態に係る制御が適用された電源システム100によれば以下の作用効果を奏する。
 本実施形態の制御が適用された電源システム100では、エンジンを自動停止及び自動再始動するアイドリングストップ機能を有する車両に適用される。そして、電源システム100は、発電機2と、発電機2の発電電力を充放電可能な鉛酸電池15と、発電電力を充放電可能なリチウムイオン二次電池16と、鉛酸電池15とリチウムイオン二次電池16とを繋ぐ2つの経路C1、C2と、鉛酸電池15又はリチウムイオン二次電池16に接続され、自動再始動開始の際にエンジン1を始動させるエンジン再始動手段9と、鉛酸電池15に接続された車両の電装負荷30と、一の経路C2の導通状態と非導通状態を切り替える鉛酸電池経路リレー51と、他方の経路C1の導通状態と非導通状態を切り替えるMOSFET50と、鉛酸電池経路リレー51及びMOSFET50のオン・オフ制御を行うECM19及びバッテリーコントローラ60と、を備える。そして、制御手段19、60は、アイドルストップからの自動再始動の開始段階を除いたエンジン1の運転中及びアイドルストップ中において鉛酸電池経路リレー51及びMOSFET50の双方を導通状態とする。なお、ここで「自動再始動の開始段階」には、図5及び上述した再始動開始段階である時刻t4~時刻t5に加えて、上述した時刻t4の所定時間Δt4前から時刻t5の所定時間Δt5経過後までの区間が含まれるものとする。すなわち、「自動再始動の開始段階」とは、図5における時刻t4-Δt4~時刻t5+Δt5の区間を意味する。
 本実施形態の制御が適用された電源システム100によれば、エンジン1の初期始動以降、すなわち時刻t0以降においては、自動再始動の開始段階(時刻t4-Δt4~時刻t5+Δt5)を除いて、MOSFET50及び鉛酸電池経路リレー51が常に導通状態に維持されることとなる。したがって、第2蓄電手段であるリチウムイオン二次電池16から第1蓄電手段である鉛酸電池15への2つの経路C1、C2が双方とも導通した状態となる。
 したがって、放電時におけるリチウムイオン二次電池16から鉛酸電池15側への全電装負荷30への電力供給が、経路C1及び経路C2の双方を用いて行われるので、リチウムイオン二次電池16から全電装負荷30への放電に際して一つの経路しか用いない場合と比較してリチウムイオン二次電池16から全電装負荷30へ至るまでのハーネス抵抗を減少させることができる。結果として、リチウムイオン二次電池16から全電装負荷30への放電量を増加させて、鉛酸電池15の放電量を抑制することができる。
 なお、本発明者らの鋭意研鑽の結果、本実施形態の制御が適用された電源システム100では、鉛酸電池15の放電分担率が、上記参考例の制御の場合と比較して8%程度小さくなることがわかっている。
 なお、本実施形態の制御は、図2に示したタイプ1の電源システム100に限られず、図3に示したタイプ2の電源システム100´や図4に示したタイプ3の電源システム100´´に適用することが可能である。
 (第2実施形態)
 以下、第2実施形態について説明する。なお、第1実施形態と同様の要素には同一の符号を付し、その説明を省略する。なお、本実施形態に係る制御では、図4に示した構成の電源システム100´´が前提として用いられる。
 図6は、本実施形態に係る鉛酸電池経路リレー51、リチウムイオン二次電池付属リレー52、及びMOSFET50のスイッチング制御を示したタイムチャートである。本実施形態では、充電指令が発せられる減速回生段階(時刻t2~時刻t3)において、バッテリーコントローラ60がMOSFET50をオフ状態とする点で図5に示す第1実施形態に係る制御と相違する(図中の丸囲み部分を参照)。
 本実施形態の制御が適用された電源システム100´´によれば以下の作用効果を奏する。
 本実施形態の制御が適用された電源システム100´´では、バッテリーコントローラ60が、自動車の減速回生中に、第2スイッチであるMOSFET50を非導通状態にする。これにより、減速回生中、すなわち充電指令が発生られている状態では、経路C1が非通電状態となるので、発電機2からリチウムイオン二次電池16へ至る経路が経路C2のみとなる。
 したがって、発電機2からリチウムイオン二次電池16へ至るまでのハーネス抵抗が経路C1及び経路C2が利用できる場合に比べて増加することとなるので、リチウムイオン二次電池16への充電量が抑制され、必然的に鉛酸電池15への充電量が増加することとなる。すなわち、充電時には鉛酸電池15への充電分担率を向上させることができるので、鉛酸電池15の充電残量(SOC)を高くすることができる。
 なお、本実施形態の制御は、図4に示したタイプ3の電源システム100´´に限られず、図2に示したタイプ1の電源システム100や図3に示したタイプ3の電源システム100´に適用することが可能である。
 (第3実施形態)
 以下、第3実施形態について説明する。なお、第1実施形態と同様の要素には同一の符号を付し、その説明を省略する。本実施形態に係る制御では、図3に示した構成の電源システム100´が前提として用いられる。特に、本実施形態では、発電機として機能する電動機70が、第2蓄電手段であるリチウムイオン二次電池16側に配置されていることが重要である。
 図7は、本実施形態に係る鉛酸電池経路リレー51、リチウムイオン二次電池付属リレー52、及びMOSFET50のスイッチング制御を示したタイムチャートである。本実施形態では、充電指令が発せられる減速回生段階(時刻t2~時刻t3)において、鉛酸電池経路リレー51をオフ状態とする点で図5に示す第1実施形態と異なる(図中の丸囲み部分を参照)。
 本実施形態の制御が適用された電源システム100によれば以下の作用効果を奏する。
 本実施形態の制御が適用された電源システム100では、発電機である電動機70が、リチウムイオン二次電池16側に配置される。そして、バッテリーコントローラ60が、自動車の減速回生中に鉛酸電池経路リレー51を非導通状態にする。これにより、充電指令が発せられている減速回生中(時刻t2~時刻t3)では、経路C2が非通電状態となるので、電動機70から第1蓄電手段である鉛酸蓄電池15へ至るために経路C1を必ず通過することとなる。したがって、発電電力が電動機70から鉛酸蓄電池15へ至る過程で第2蓄電手段であるリチウムイオン二次電池16が経由される。したがって、電動機70の電力は、リチウムイオン二次電池16に優先的に充電されることとなる。これにより、リチウムイオン二次電池16への充電分担率を向上させることができるので、リチウムイオン二次電池16の充電残量(SOC)を高くすることができる。
 さらに、本実施形態に係る電源システム100では、上述のように、発電電力が電動機70から鉛酸電池15へ至る過程で、リチウムイオン二次電池16に優先的に充電されることで、鉛酸電池15へ実際に供給される電圧が降下することとなり、鉛酸電池15への充電電圧が過剰となることが防止される。特に、本実施形態では、鉛酸電池15側に配置されている全電装負荷30に対する供給電力も抑制することができ、全電装負荷30が過電圧になることを確実に防止することができる。
 なお、本実施形態の制御は、図3に示したタイプ2の電源システム100´に限られず、図2に示したタイプ2の電源システム100に適用することが可能である。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。例えば、第1蓄電手段は鉛酸電池15に限定されるものではなく、例えば、ニッケル水素電池等の鉛フリー二次電池であってもよい。また、各実施形態で用いた機械式リレーに代えて、半導体を用いたスイッチング素子を用いてもよい。

Claims (3)

  1.  エンジンを自動停止及び自動再始動するアイドリングストップ機能を有する車両に適用される電源システムにおいて、
     発電機と、
     前記発電機の発電電力を充放電可能な第1蓄電手段と、
     前記発電電力を充放電可能な第2蓄電手段と、
     前記第1蓄電手段と前記第2蓄電手段とを繋ぐ2つの経路と、
     前記一の経路の導通状態と非導通状態を切り替える第1スイッチと、前記他方の経路の導通状態と非導通状態を切り替える第2スイッチと、を有する切り替え手段と、
     前記切り替え手段に対して前記第1蓄電手段側又は前記第2蓄電手段側に接続され、前記自動再始動の際にエンジンを始動させるエンジン再始動手段と、
     前記切り替え手段に対して前記第1蓄電手段側に接続された車両の電装負荷と、
     前記第1スイッチ及び前記第2スイッチのオン・オフ制御を行う制御手段と、
     を備え、
     前記制御手段は、前記自動再始動の開始段階を除いた前記エンジンの運転中及びアイドルストップ中において前記第1スイッチ及び前記第2スイッチの双方を導通状態とする電源システム。
  2.  請求項1に記載の電源システムにおいて、
     前記制御手段は、前記自動車の減速回生中に前記第2スイッチを非導通状態とする電源システム。
  3.  請求項1に記載の電源システムにおいて、
     前記発電機は、前記切り替え手段に対して前記第2蓄電手段側に配置され、
     前記制御手段は、前記自動車の減速回生中に前記第1スイッチを非導通状態とする電源システム。
PCT/JP2015/063623 2015-05-12 2015-05-12 電源システム WO2016181495A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA2985749A CA2985749C (en) 2015-05-12 2015-05-12 Power supply system
US15/573,728 US10119513B2 (en) 2015-05-12 2015-05-12 Power supply system
CN201580079747.3A CN107531201B (zh) 2015-05-12 2015-05-12 电源系统
RU2017142982A RU2668491C1 (ru) 2015-05-12 2015-05-12 Система подачи мощности
BR112017024103-0A BR112017024103B1 (pt) 2015-05-12 2015-05-12 Sistema de alimentação
MX2017014027A MX369581B (es) 2015-05-12 2015-05-12 Sistema de suministro de energia.
EP15891820.1A EP3296159B1 (en) 2015-05-12 2015-05-12 Power supply system
KR1020177032883A KR101833190B1 (ko) 2015-05-12 2015-05-12 전원 시스템
JP2017517517A JP6384601B2 (ja) 2015-05-12 2015-05-12 電源システム
PCT/JP2015/063623 WO2016181495A1 (ja) 2015-05-12 2015-05-12 電源システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/063623 WO2016181495A1 (ja) 2015-05-12 2015-05-12 電源システム

Publications (1)

Publication Number Publication Date
WO2016181495A1 true WO2016181495A1 (ja) 2016-11-17

Family

ID=57248958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063623 WO2016181495A1 (ja) 2015-05-12 2015-05-12 電源システム

Country Status (10)

Country Link
US (1) US10119513B2 (ja)
EP (1) EP3296159B1 (ja)
JP (1) JP6384601B2 (ja)
KR (1) KR101833190B1 (ja)
CN (1) CN107531201B (ja)
BR (1) BR112017024103B1 (ja)
CA (1) CA2985749C (ja)
MX (1) MX369581B (ja)
RU (1) RU2668491C1 (ja)
WO (1) WO2016181495A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095342A1 (ja) * 2021-11-29 2023-06-01 日産自動車株式会社 電源システム及び電源システムの制御方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6620674B2 (ja) * 2016-05-26 2019-12-18 株式会社オートネットワーク技術研究所 給電制御装置、給電制御方法及びコンピュータプログラム
US10697417B2 (en) * 2017-10-06 2020-06-30 Briggs & Stratton Corporation Battery connections for battery start of internal combustion engines
CN109572600A (zh) * 2018-11-20 2019-04-05 福建工程学院 可侦测车辆运转状态的开关装置及控制方法
US10804732B2 (en) * 2019-01-16 2020-10-13 Black Energy Co., Ltd Power supply device using electromagnetic power generation
KR102613199B1 (ko) * 2019-04-29 2023-12-14 현대자동차주식회사 차량 및 그의 제어 방법
CN112744101B (zh) * 2020-12-25 2023-02-17 中国第一汽车股份有限公司 充放电控制系统、方法及交通工具

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004328988A (ja) * 2003-04-09 2004-11-18 Denso Corp 車両用電源システム
JP2013119331A (ja) * 2011-12-08 2013-06-17 Mazda Motor Corp 車両の電源制御装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10014243B4 (de) * 2000-03-22 2004-11-04 Volkswagen Ag Zwei-Batteriensystem
JP2004222473A (ja) * 2003-01-17 2004-08-05 Toyota Motor Corp 車両用電源システム及び充電方法
WO2004071814A1 (ja) * 2003-02-17 2004-08-26 Denso Corporation 車両用電源システム
JP4842885B2 (ja) * 2007-05-23 2011-12-21 トヨタ自動車株式会社 車載機器制御システムおよび車両
JP4853456B2 (ja) * 2007-10-29 2012-01-11 マツダ株式会社 エンジンの自動停止装置
EP2272722B1 (en) 2009-07-01 2015-04-08 Denso Corporation Power source apparatus for vehicle
JP5234052B2 (ja) 2010-04-27 2013-07-10 株式会社デンソー 電源装置
JP5488529B2 (ja) * 2011-05-17 2014-05-14 マツダ株式会社 車両の電源制御装置
JP5811055B2 (ja) * 2012-07-11 2015-11-11 株式会社デンソー バッテリシステム制御装置
EP2878506B1 (en) * 2012-07-27 2020-09-16 Nissan Motor Company, Limited Vehicle control device and vehicle control method
DE102012017674A1 (de) * 2012-09-07 2014-03-13 Audi Ag Kraftfahrzeug mit einem Mehrspannungs-Bordnetz und zugehöriges Verfahren
DE102013204894A1 (de) * 2013-03-20 2014-09-25 Robert Bosch Gmbh Kraftfahrzeugbordnetz mit wenigstens zwei Energiespeichern, Verfahren zum Betreiben eines Kraftfahrzeugbordnetzes und Mittel zu dessen Implementierung
JP2015009791A (ja) * 2013-07-02 2015-01-19 本田技研工業株式会社 車両用電源装置
JP6380171B2 (ja) * 2015-03-06 2018-08-29 株式会社デンソー 電源システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004328988A (ja) * 2003-04-09 2004-11-18 Denso Corp 車両用電源システム
JP2013119331A (ja) * 2011-12-08 2013-06-17 Mazda Motor Corp 車両の電源制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3296159A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095342A1 (ja) * 2021-11-29 2023-06-01 日産自動車株式会社 電源システム及び電源システムの制御方法

Also Published As

Publication number Publication date
BR112017024103B1 (pt) 2022-07-05
CN107531201A (zh) 2018-01-02
EP3296159A1 (en) 2018-03-21
CA2985749A1 (en) 2016-11-17
EP3296159A4 (en) 2018-03-21
KR20170130611A (ko) 2017-11-28
JP6384601B2 (ja) 2018-09-05
US10119513B2 (en) 2018-11-06
KR101833190B1 (ko) 2018-02-27
CN107531201B (zh) 2019-03-15
BR112017024103A2 (ja) 2018-07-24
US20180126856A1 (en) 2018-05-10
MX2017014027A (es) 2018-03-08
RU2668491C1 (ru) 2018-10-01
MX369581B (es) 2019-11-13
EP3296159B1 (en) 2019-10-09
CA2985749C (en) 2019-02-26
JPWO2016181495A1 (ja) 2018-03-01

Similar Documents

Publication Publication Date Title
JP6056988B2 (ja) 電気回路
JP6384601B2 (ja) 電源システム
JP6844611B2 (ja) 電源システム及びその制御方法
JP2018166380A (ja) 車両用電源装置
JP6691502B2 (ja) 車両用電源装置
WO2016189593A1 (ja) 電源システム制御装置及び電源システム制御方法
JP2020096402A (ja) 車両用電源装置
JP2018198519A (ja) 車両用電源装置
JP6331740B2 (ja) 車両用電気回路
JP6560713B2 (ja) 車両用電源装置
WO2015189902A1 (ja) 車両用電気回路
JP2016220427A (ja) 電源装置
JP6768039B2 (ja) 車両用電源装置
JP2016220443A (ja) 電源システム
JP6572621B2 (ja) 電気回路
JP2020043669A (ja) 車両用電源装置
JP2020020329A (ja) 車両用電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891820

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017517517

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/014027

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2985749

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15573728

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177032883

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017142982

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017024103

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017024103

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171109