WO2016176922A1 - 有机电解液体系锂碘二次电池及其制备方法 - Google Patents

有机电解液体系锂碘二次电池及其制备方法 Download PDF

Info

Publication number
WO2016176922A1
WO2016176922A1 PCT/CN2015/086440 CN2015086440W WO2016176922A1 WO 2016176922 A1 WO2016176922 A1 WO 2016176922A1 CN 2015086440 W CN2015086440 W CN 2015086440W WO 2016176922 A1 WO2016176922 A1 WO 2016176922A1
Authority
WO
WIPO (PCT)
Prior art keywords
iodine
lithium
secondary battery
organic electrolyte
electrolyte system
Prior art date
Application number
PCT/CN2015/086440
Other languages
English (en)
French (fr)
Inventor
陈军
赵庆
卢艳莹
陶占良
朱智强
胡宇翔
Original Assignee
南开大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南开大学 filed Critical 南开大学
Publication of WO2016176922A1 publication Critical patent/WO2016176922A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to an organic electrolyte system lithium iodine secondary battery and a preparation method thereof, in particular to an organic electrolyte system lithium iodine secondary battery using iodine element/carbon composite material as a positive electrode and a preparation method thereof.
  • Lithium-iodine solid-state electrolyte primary batteries have been used in cardiac pacemaker power supplies since 1972 due to their high energy density, high reliability, and low self-discharge (JRMoser, US Patent, 3, 660, 163).
  • JRMoser US Patent, 3, 660, 163
  • this type of battery has a large internal resistance during discharge, and the rate performance is greatly limited.
  • the capacity will still decay with the cycle.
  • the specific discharge capacity was attenuated from -400 mAh/g to less than 250 mAh/g.
  • the iodine dissolved in the electrolyte will flow to the negative electrode side and directly react with lithium, resulting in a strong self-discharge phenomenon.
  • the specific discharge capacity was reduced from ⁇ 250 mAh/g to ⁇ 200 mAh/g.
  • Their positive electrode material is a synthetic method using conventional heat treatment.
  • the iodine element and the carbon material are simultaneously added to the inner tank of the polytetrafluoroethylene, and after sealing, the mixture is heated to 200 ° C so that the iodine element becomes iodine vapor and penetrates into the carbon material.
  • iodine vapor is attached to the inner wall of the inner liner and the surface of the carbon material, causing loss of raw materials, and the iodine attached to the surface of the carbon material needs to be removed through a washing process, and the preparation process is complicated, and the load is difficult to control.
  • the object of the present invention is to provide an organic electrolyte system lithium iodine secondary battery and a preparation method thereof, which can overcome the problems of serious self-discharge in the lithium ion iodine secondary battery of the current organic electrolyte system and complicated preparation of the positive electrode material.
  • the lithium-iodine secondary battery of the organic electrolyte system of the invention has long cycle life, high rate performance, low self-discharge effect and strong practicability
  • the method has the advantages of low preparation cost, simple process, good electrochemical performance, safety and pollution-free, and has wide application prospects.
  • the organic electrolyte system provided by the present invention comprises a positive electrode, a negative electrode, a separator, and an organic electrolyte containing an additive.
  • the positive electrode material comprises an iodine elemental/carbon composite active material, wherein the iodine content is 10% to 80% (mass fraction).
  • the preparation method of the iodine element/carbon composite material adopts a dissolution-adsorption method, and the steps include:
  • the carbon material is one or two of porous carbon materials having high specific surface area, high porosity and high electrical conductivity, such as activated carbon cloth, activated carbon, CMK-3, porous conductive carbon black, ordered mesoporous carbon, and the like. Mixture of any of the above ratios.
  • the mass ratio of the iodine element to the carbon material is 1:9-8:2.
  • the negative electrode is a metallic lithium or a lithium-containing alloy.
  • the separator is a three-layer composite film composed of polyethylene, polypropylene, and polyethylene in sequence, a Celgard series film (Celgard 2340) or a glass fiber filter paper.
  • the organic electrolyte containing the additive is composed of an additive, a solid lithium salt electrolyte and an organic solvent, the mass fraction of the additive in the electrolyte is 0.5% to 2%, and the concentration of the solid lithium salt electrolyte in the organic solvent is 0.2 to 5 mol/ L, wherein the additive is anhydrous lithium nitrate;
  • the solid lithium salt electrolyte is LiPF 6 , LiCF 3 SO 3 , LiN(CF 3 SO 2 ) 2 , LiClO 4 , LiP(C 6 H 4 O 2 ) 3 , LiPF 3 (C 2 F 5 ) 3 and a mixture of LiB(C 2 O 4 ) 2 in one or more ratios;
  • the organic solvent is 1,3-dioxol cyclopentane, ethylene glycol dimethyl ether, diethylene glycol One or a mixture of two or more kinds of ether solvents such as dimethyl ether, tetraethylene glycol dimethyl ether, 4-methyl-1,3-d
  • the preparation method of the positive electrode is: adding a conductive agent and a binder to the iodine element/carbon composite material, using water as a dispersing agent, adjusting the slurry, uniformly grinding and coating on a current collector (aluminum foil), under vacuum 80- After drying at 100 ° C, a positive electrode sheet was obtained.
  • the mass ratio of the conductive agent to the binder is 5-15% of the conductive agent, 5-10% of the binder, and the rest is the iodine element/carbon composite material.
  • the conductive agent is selected from at least one or a mixture of acetylene black, Super P, Vulcan XC-72, KS6, graphene, and carbon nanotubes.
  • the binder is composed of sodium carboxymethyl cellulose (CMC) and oil-filled styrene-butadiene rubber (SBR) binders mixed in different ratios, and the mass ratio is between 1:2 and 2:1.
  • CMC sodium carboxymethyl cellulose
  • SBR oil-filled styrene-butadiene rubber
  • the invention provides a long cycle life, high rate performance, low self-discharge effect and simple preparation of a cathode material
  • Organic electrolyte system lithium iodine secondary battery uses iodine element/carbon composite as the positive electrode.
  • the adsorption of iodine and its lithium salt by porous carbon effectively inhibits the dissolution of the active material, and at the same time improves the electrical conductivity of the electrode, showing better cycle performance and rate performance.
  • the ether electrolyte with the addition of anhydrous lithium nitrate was used to form a uniform protective film on the surface of the lithium by the reaction of anhydrous lithium nitrate with lithium metal, which reduced the self-discharge effect of the battery.
  • the iodine element/carbon composite material used is prepared by a room temperature "dissolution-adsorption" method, which does not require high-temperature heating to sublimate iodine, and does not cause loss of raw materials, and the iodine content of the prepared composite material is easy to control.
  • the preparation method provided by the invention has the advantages of simple and easy operation, safety, no pollution and strong practicability, and has wide application prospects.
  • Example 1 is a scanning electron micrograph of an iodine elemental/activated carbon cloth composite obtained in Example 1.
  • Example 2 is a thermogravimetric curve of the iodine elemental/activated carbon cloth composite obtained in Example 1.
  • Example 3 is an XPS spectrum of the iodine elemental/activated carbon cloth composite obtained in Example 1.
  • Example 4 is a graph showing a constant current charge and discharge curve at a rate of 0.5 C after standing, for 2 hours, 10 hours, and 24 hours after the battery assembled with the iodine elemental/activated carbon cloth composite obtained in Example 1.
  • Fig. 5 is a scanning electron micrograph of the negative electrode lithium sheet after the battery assembled by the iodine element/activated carbon cloth composite obtained in Example 1 was allowed to stand for 10 hours.
  • Fig. 6 is a graph showing the cycle charge and discharge capacity retention of a battery assembled of the iodine element/activated carbon cloth composite obtained in Example 1 at a rate of 0.5 C.
  • Fig. 7 is a graph showing the cycle charge and discharge capacity retention of batteries assembled by the iodine elemental/activated carbon cloth composite obtained in Example 1 at different magnifications.
  • Fig. 8 is a graph showing a constant current charge and discharge curve of a battery assembled of the iodine elemental/activated carbon cloth composite obtained in Example 2 at a rate of 0.5 C.
  • Fig. 9 is a graph showing a constant current charge and discharge curve of a battery assembled of the iodine element/activated carbon cloth composite obtained in Example 3 at a rate of 0.5 C.
  • Fig. 10 is a graph showing a constant current charge and discharge curve of a battery assembled of the iodine elemental/activated carbon cloth composite obtained in Example 4 at a rate of 0.5 C.
  • Figure 11 is a graph showing a constant current charge and discharge curve of a battery assembled of the iodine elemental/activated carbon cloth composite obtained in Example 5 at a rate of 0.5 C.
  • Fig. 12 is a graph showing a constant current charge and discharge curve of a battery assembled of the iodine elemental/activated carbon cloth composite obtained in Example 6 at a rate of 0.5 C.
  • Figure 13 is a scanning electron micrograph of the iodine element/CMK-3 composite obtained in Example 7.
  • Figure 14 is a graph showing a constant current charge and discharge curve of a battery assembled of the iodine element/CMK-3 composite obtained in Example 7 at a rate of 0.5 C.
  • Figure 15 is a graph showing the cycle charge and discharge capacity retention of a battery assembled of the iodine element/CMK-3 composite obtained in Example 7 at a rate of 0.5 C.
  • Fig. 16 is a graph showing a constant current charge and discharge curve of a battery assembled of the iodine element/CMK-3 composite material obtained in Example 8 at a rate of 0.5 C.
  • Figure 17 is a graph showing the constant current charge and discharge curves of a battery assembled of the iodine element/activated carbon composite obtained in Example 9 at a rate of 0.5 C.
  • Fig. 18 is a graph showing a constant current charge and discharge curve of a battery assembled of the iodine element/porous conductive carbon black composite obtained in Example 10 at a rate of 0.5 C.
  • Example 1 Preparation of iodine elemental/activated carbon cloth composite by room temperature "dissolution-adsorption" method, the steps are as follows:
  • the iodine elemental/activated carbon cloth composite material was obtained by filtration, washed three times with water, and dried at 80 °C.
  • the obtained sample was an iodine elemental/activated carbon cloth composite material, and its scanning electron microscope photograph is shown in Fig. 1.
  • Fig. 1 In order to determine the iodine content in the composite, it was subjected to a thermogravimetric test, and the resulting weight loss curve is shown in Fig. 2.
  • the measured mass fraction of iodine was 22%, corresponding to 5.6 mg/cm 2 .
  • the composite material was analyzed by X-ray photoelectron spectroscopy (model, AxisUltraDLD; instrument manufacturer, KratosAnalytical Ltd. UK) (XPS), and the obtained I3d spectrum is shown in Fig. 3.
  • Iodine was observed at 630.6 eV and 619.2 eV, respectively.
  • the characteristic peaks of elemental I3d 3/2 and I3d 5/2 demonstrate that a stable iodine element/activated carbon composite can be prepared by this simple "dissolution-adsorption" method.
  • the composite material prepared as described above was used as a positive electrode, the lithium metal plate was a negative electrode, and the organic electrolyte containing the additive was assembled in a glove box.
  • the electrolyte is a LiN(CF 3 SO 2 ) 2 solution having a concentration of 1.0 mol/L, and the solvent is a mixture of 1,3-dioxolane and ethylene glycol dimethyl ether in a volume ratio of 1:1, and the additive is Anhydrous lithium nitrate having a mass fraction of 1%.
  • the electrochemical performance of the electrode was tested as follows:
  • the voltage window was 2.0 to 3.6 V, and the obtained charge and discharge curve was obtained.
  • All specific capacities are calculated on the basis of the mass of iodine. It can be seen that the battery has almost no change in capacity after standing for a different time, and has reached 300 mAh/g, demonstrating a low self-discharge effect.
  • Fig. 5 is a scanning electron micrograph of the lithium negative electrode after standing for 10 hours, and the surface is relatively smooth.
  • Fig. 6 is a cycle life diagram of the electrode at a rate of 0.5 C.
  • the first discharge specific capacity is 299 mAh/g
  • the reversible specific capacity after 300 cycles is 200 mAh/g
  • the capacity retention rate is 67%
  • the Coulomb efficiency has been more than 90 percent.
  • the composite exhibits a high rate performance.
  • the electrode has reversible specific capacities of 301, 273, 232, and 169 mAh/g at 0.5 C, 1 C, 2 C, and 5 C, respectively, and exhibits high cycle stability at each current density. .
  • Example 2 The electrolyte in Example 1 was a LiN(CF 3 SO 2 ) 2 solution having a concentration of 1.0 mol/L, and the solvent was 1,3-dioxolane and ethylene glycol in a volume ratio of 1:1.
  • a mixture of methyl ether, the additive is 1% of anhydrous lithium nitrate changed to 1.0 mol/L of LiN(CF 3 SO 2 ) 2 solution, and the solvent is 1:1 dioxolan of 1:1 by volume.
  • the charge and discharge curves obtained at a magnification of 0.5 C are shown in Fig. 8.
  • Example 3 1.0 mol/L of LiN(CF 3 SO 2 ) 2 solution in Example 1 was prepared, and the solvent was a mixture of 1,3-dioxolane and ethylene glycol dimethyl ether in a volume ratio of 1:1.
  • the additive is a 1% by mass of anhydrous lithium nitrate changed to 1.0 mol/L of LiN(CF 3 SO 2 ) 2 solution, the solvent is tetraethylene glycol dimethyl ether, and the additive is anhydrous with a mass fraction of 1%.
  • Lithium nitrate, other simultaneous Example 1. The charge and discharge curves obtained at a magnification of 0.5 C are shown in Fig. 9.
  • Example 4 The amount of the iodine element added in Example 1 was determined to be 25 mg, and the same as in Example 1. The mass fraction of iodine in the obtained composite material was 11%, which corresponded to 2.5 mg/cm 2 . Using this composite material as a positive electrode, batteries were assembled in the same manner as in the examples, and a charge and discharge curve obtained at a magnification of 0.5 C is shown in FIG. It can be seen that the specific capacity obtained is much larger than the theoretical specific capacity of iodine. This is because the calculation of specific capacity is based on the mass of iodine. However, in the composite material, the content of iodine is relatively low, and the capacity contributed by the activated carbon cloth is relatively large.
  • Example 5 The amount of the iodine element added in Example 1 was set to 113 mg, and the same as in Example 1. The mass fraction of iodine in the obtained composite material was 36%, which corresponded to 11.6 mg/cm 2 . Using this composite material as a positive electrode, batteries were assembled in the same manner as in the examples, and a charge and discharge curve obtained at a magnification of 0.5 C is shown in FIG.
  • Example 6 The amount of the iodine element added in Example 1 was determined to be 169 mg, and the same as in Example 1. The mass fraction of iodine in the obtained composite material was 45%, which corresponded to 16.9 mg/cm 2 . Using this composite material as a positive electrode, batteries were assembled in the same manner as in the examples, and a charge and discharge curve obtained at a magnification of 0.5 C is shown in Fig. 12 .
  • Example 7 Preparation of iodine element/CMK-3 composite by room temperature "dissolution-adsorption" method, the steps are as follows:
  • the obtained sample was an iodine element/CMK-3 composite material, and a scanning electron microscope photograph thereof is shown in FIG.
  • the steps are as follows:
  • iodine element/CMK-3 composite material conductive carbon superP, binder sodium carboxymethyl cellulose (CMC) and oil-filled styrene-butadiene rubber (SBR) are mixed in water at a mass ratio of 80:10:5:5, and ground. After homogenization, the obtained slurry was applied to an aluminum foil, and dried at 80 ° C under vacuum to obtain an electrode sheet.
  • CMC carboxymethyl cellulose
  • SBR oil-filled styrene-butadiene rubber
  • the electrode sheet prepared above was used as a positive electrode, the lithium metal plate was a negative electrode, and an ether-based electrolyte containing an additive was used to assemble a battery in a glove box.
  • the electrolyte is 1.0 mol/L of LiN(CF 3 SO 2 ) 2 solution, and the solvent is a mixture of 1,3-dioxolane and ethylene glycol dimethyl ether in a volume ratio of 1:1, and the additive is a mass fraction. It is 1% anhydrous lithium nitrate.
  • the electrochemical performance of the electrode was tested as follows:
  • the assembled battery was tested for constant current charge and discharge at a rate of 0.5 C.
  • the voltage window was 2.0 to 3.6 V.
  • the characteristic charge and discharge curves are shown in Figure 14.
  • the corresponding cycle life diagram is shown in Figure 15.
  • the capacity after 100 cycles is cycled. There is still 128mAh/g.
  • Example 8 The amount of the iodine element added in Example 7 was determined to be 150 mg, and the same as in Example 7. The mass fraction of iodine in the obtained composite material was 60%. Using this composite material as a positive electrode, batteries were assembled in the same manner as in the examples, and a charge and discharge curve obtained at a magnification of 0.5 C is shown in FIG.
  • Example 9 The CMK-3 in Example 7 was changed to activated carbon, and the same as in Example 7. At a magnification of 0.5C The obtained charge and discharge curve is shown in Fig. 17.
  • Example 10 The CMK-3 in Example 7 was changed to a porous conductive carbon black (Ketjenblack, EC600JD), and the same as in Example 7. The charge and discharge curves obtained at a magnification of 0.5 C are shown in Fig. 18.
  • the invention provides an organic electrolyte system lithium iodine secondary battery and a preparation method thereof, which overcome the problems of serious self-discharge in the lithium ion iodine secondary battery of the organic electrolyte system and complicated preparation of the cathode material.
  • the iodine elemental/carbon composite material of the invention is prepared by a room temperature "dissolution-adsorption" method, does not require high temperature heating to sublimate iodine, does not cause loss of raw materials, and the iodine content of the prepared composite material is easy to control.
  • the adsorption of iodine and its lithium salt by porous carbon effectively inhibits the dissolution of the active material, improves the electrical conductivity of the electrode, and exhibits better cycle performance and rate performance.
  • the ether electrolyte with the addition of anhydrous lithium nitrate was used to form a uniform protective film on the surface of the lithium by the reaction of anhydrous lithium nitrate with lithium metal, which reduced the self-discharge effect of the battery.
  • the lithium iodine secondary battery of the organic electrolyte system of the invention has the characteristics of long cycle life, high rate performance, low self-discharge effect and strong practicability, and has low preparation cost, simple process, safety and pollution-free, and has wide application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种有机电解液体系锂碘二次电池及制备方法。该电池包括正极、负极、隔膜和电解液。正极使用碘单质/碳复合活性材料,负极为金属锂或含锂合金,电解液为含有无水硝酸锂添加剂的醚类电解液。采用"溶解-吸附"法,在室温下将碘单质和碳材料加入到水溶液中经过搅拌合成制备。以碘单质/碳复合材料为正极,碳材料的多孔结构可以吸附碘及其锂盐,抑制它们的溶解,提高循环稳定性,同时碳材料优良的电导率能提高电极的倍率性能,电解液中无水硝酸锂添加剂可与负极锂反应生成一层光滑的保护膜,抑制电池的自放电效应。

Description

有机电解液体系锂碘二次电池及其制备方法 技术领域
本发明涉及一种有机电解液体系锂碘二次电池及其制备方法,特别是一种以碘单质/碳复合材料为正极的有机电解液体系锂碘二次电池及其正极材料的制备方法。
背景技术
锂碘固态电解质一次电池具有能量密度高、可靠性高以及自放电小等优点,自1972年以来就被应用于心脏起搏器电源(J.R.Moser,USPatent,3,660,163)。但是这种电池在放电过程中内阻很大,倍率性能受到了很大限制。2011年,Liu等报导了一种可充的全固态锂碘二次电池,其倍率性能依旧较差(F.C.Liu,W.M.Liu,M.H.Zhan,Z.W.Fu,H.Li,Anallsolid-staterechargeablelithium-iodinethinfilmb atteryusingLiI(3-hydroxypropionitrile)2asanI-ionelectrolyte.Energy&EnvironmentalScience,2011,4:1261)。Wang等提出采用有机液态电解液可以大大提高锂碘二次电池的倍率性能(Y.L.Wang,Q.L.Sun,Q.Q.Zhao,J.S.CaoandS.H.Ye,Rechargeablelithium/iodinebatterywithsuperi orhigh-ratecapabilitybyusingiodine-carboncompositeascathode.Energy&EnvironmentalScience,2011,4:3947)。他们选择了传统的碳酸酯类电解液(碳酸乙烯酯:碳酸甲乙酯:碳酸二甲酯体积比1:1:1),电解质盐为LiPF6。同时,针对碘单质及其锂盐在极性有机溶剂中的溶解问题,他们将具有大比表面积和小孔径的导电碳黑与碘复合作为正极,得到了较好的循环稳定性和倍率性能。但是,由于碘及其锂盐仍然不可避免的会在电解液中溶解,容量还是会随着循环衰减。在1C的倍率下循环20周后,放电比容量就从~400mAh/g衰减到了250mAh/g以下。同时,溶解在电解液中的碘会流动到负极一侧与锂直接反应,导致较强的自放电现象。电池在静置一天后,放电比容量就从~250mAh/g降到了~200mAh/g。他们的正极材料是采用传统热处理的合成方法,即将碘单质和碳材料同时加入聚四氟乙烯的内胆中,密封后加热至200℃使得碘单质变为碘蒸气渗入到碳材料中。但是这种方法碘蒸气会附在内胆内壁以及碳材料的表面,造成原料的损失,且需要经过洗涤过程去除附在碳材料表面的碘,制备工艺复杂,负载量不易控制。
发明内容
本发明的目的在于提供一种有机电解液体系锂碘二次电池及其制备方法,可以克服目前有机电解液体系锂碘二次电池中自放电较严重以及正极材料制备复杂的问题。本发明有机电解液体系锂碘二次电池具备长循环寿命、高倍率性能、低自放电效应、实用性强的特 点,而且制备成本低、过程简单,且电化学性能好,安全无污染,具有广泛的应用前景。
本发明提供的有机电解液体系锂碘二次电池包括正极、负极、隔膜、含有添加剂的有机电解液。
所述的正极材料包含碘单质/碳复合活性材料,其中碘的含量为10%~80%(质量分数)。
所述的碘单质/碳复合材料的制备方法采用溶解-吸附法,包括的步骤:
1)室温下依次将固态碘单质与碳材料加入到水中,充分搅拌,直至水溶液变澄清。
2)过滤得到沉淀,用水洗涤数次,50~100℃下干燥即得到碘单质/碳复合材料。
所述的碳材料为活性碳布、活性炭、CMK-3、多孔导电碳黑、有序介孔碳等具有高比表面积、高孔隙率以及高电导率的多孔碳材料中的一种或者两种以上任意比例的混合物。
所述碘单质与碳材料的质量比为1:9~8:2。
所述负极为金属锂或含锂合金。
所述隔膜为聚乙烯、聚丙烯和聚乙烯依次构成的三层复合膜、Celgard系列膜(Celgard2340)或玻璃纤维滤纸。
所述含有添加剂的有机电解液由添加剂、固体锂盐电解质和有机溶剂组成,添加剂在电解液中的质量分数为0.5%-2%,固体锂盐电解质在有机溶剂中的浓度为0.2-5mol/L,其中添加剂为无水硝酸锂;固体锂盐电解质为LiPF6、LiCF3SO3、LiN(CF3SO2)2、LiClO4、LiP(C6H4O2)3、LiPF3(C2F5)3和LiB(C2O4)2的一种或两种以上任意比例的混合物;有机溶剂为1,3-二氧环戊烷、乙二醇二甲醚、二乙二醇二甲醚、四乙二醇二甲醚、4-甲基-1,3-二氧环戊烷、四氢呋喃和2-甲基四氢呋喃等醚类溶剂中的一种或两种以上任意比例的混合物。
所述正极的制备方法:以碘单质/碳复合材料,加入导电剂和粘接剂,以水为分散剂,调成浆料,研磨均匀后涂在集流体(铝箔)上,真空下80-100℃干燥后即得到正极片。
所述导电剂与粘结剂的质量比为导电剂5~15%,粘结剂5~10%,其余为碘单质/碳复合材料。
所述导电剂选自乙炔黑、Super P、VulcanXC-72、KS6、石墨烯、碳纳米管中的至少一种或几种进行混合而成。
所述粘结剂为羧甲基纤维素钠(CMC)、充油丁苯橡胶(SBR)两种粘结剂以不同比例混合而成,质量比为1:2~2:1之间。
本发明提供了一种具有长循环寿命、高倍率性能、低自放电效应且正极材料制备简单 的有机电解液体系锂碘二次电池。该电池以碘单质/碳复合材料作为正极,利用多孔碳对碘及其锂盐的吸附作用有效抑制了活性材料的溶解,同时提高了电极的电导率,表现出较好的循环性能和倍率性能。选用添加了无水硝酸锂的醚类电解液,利用无水硝酸锂与金属锂的反应在锂表面生成了一层均匀的保护膜,降低了电池的自放电效应。此外,所采用的碘单质/碳复合材料利用了室温“溶解-吸附”的方法制备,不需要高温加热使碘升华,不会造成原料的损失,所制备的复合材料中碘的含量易于控制。相比于之前传统的热处理方法,本发明所提供的制备方法具有简单易行、安全无污染、实用性强的优点,具有广泛的应用前景。
附图说明
图1是实例1获得的碘单质/活性碳布复合材料的扫描电子显微镜照片。
图2是实例1获得的碘单质/活性碳布复合材料的热重曲线。
图3是实例1获得的碘单质/活性碳布复合材料的XPS谱图。
图4是实例1获得的碘单质/活性碳布复合材料所组装的电池静置2小时、10小时和24小时后在0.5C倍率下恒流充放电曲线。
图5是实例1获得的碘单质/活性碳布复合材料所组装的电池静置10小时后负极锂片的扫描电子显微镜照片。
图6是实例1获得的碘单质/活性碳布复合材料所组装的电池在0.5C倍率下的循环充放电容量保持曲线。
图7是实例1获得的碘单质/活性碳布复合材料所组装的电池在不同倍率下的循环充放电容量保持曲线。
图8是实例2获得的碘单质/活性碳布复合材料所组装的电池在0.5C倍率下恒流充放电曲线。
图9是实例3获得的碘单质/活性碳布复合材料所组装的电池在0.5C倍率下恒流充放电曲线。
图10是实例4获得的碘单质/活性碳布复合材料所组装的电池在0.5C倍率下恒流充放电曲线。
图11是实例5获得的碘单质/活性碳布复合材料所组装的电池在0.5C倍率下恒流充放电曲线。
图12是实例6获得的碘单质/活性碳布复合材料所组装的电池在0.5C倍率下恒流充放电曲线。
图13是实例7获得的碘单质/CMK-3复合材料的扫描电子显微镜照片。
图14是实例7获得的碘单质/CMK-3复合材料所组装的电池在0.5C倍率下恒流充放电曲线。
图15是实例7获得的碘单质/CMK-3复合材料所组装的电池在0.5C倍率下的循环充放电容量保持曲线。
图16是实例8获得的碘单质/CMK-3复合材料所组装的电池在0.5C倍率下恒流充放电曲线。
图17是实例9获得的碘单质/活性炭复合材料所组装的电池在0.5C倍率下恒流充放电曲线。
图18是实例10获得的碘单质/多孔导电碳黑复合材料所组装的电池在0.5C倍率下恒流充放电曲线。
具体实施方式
下面结合实例,对本发明作进一步的详细说明,但本发明的实施方式不限于此。
这里应当说明的是实施例中未注明具体条件的实验方法,通常按照常规条件以及手册中所述的条件,或按照制造厂商所建议的条件;制备与检测所用的通用设备、材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1:采用室温“溶解-吸附”法制备碘单质/活性碳布复合材料,步骤如下:
(1)将56mg碘单质加入到100ml水中。
(2)将面积为10cm2的活性碳布加入到上述溶液中。
(3)室温下搅拌2小时,直至溶液变为澄清。
(4)过滤得到碘单质/活性碳布复合材料,用水洗涤三次,80℃下干燥。
所得到的样品即为碘单质/活性碳布复合材料,其扫描电子显微镜照片见图1。为了测定复合材料中的碘含量,对其进行了热重测试,所得失重曲线见图2,所测得的碘的质量分数为22%,对应于5.6mg/cm2。同时对该复合材料进行了X射线光电子能谱(型号,AxisUltraDLD;仪器厂家,KratosAnalyticalLtd.英国)(XPS)分析,所得到的I3d谱图见图3,分别在630.6eV和619.2eV处观察到碘单质的I3d3/2和I3d5/2的特征峰,证明了通过 这种简单的“溶解-吸附”方法就能制备出稳定的碘单质/活性碳复合材料。
直接使用上述制备的复合材料为正极,金属锂片为负极,含有添加剂的有机电解液在手套箱中组装电池。其中电解液为浓度为1.0mol/L的LiN(CF3SO2)2溶液,溶剂为体积比1:1的1,3-二氧戊烷和乙二醇二甲醚的混合液,添加剂为质量分数为1%的无水硝酸锂。对该电极的电化学性能测试如下:
将所装配的电池分别静置2小时、10小时和24小时后在0.5C倍率下(1C=211mA/g)进行恒流充放电测试,电压窗口为2.0~3.6V,所得到的充放电曲线见图4。所有比容量都以碘的质量计算。可以看出,该电池在静置不同时间后容量几乎没有变化,都达到了300mAh/g,证明了低的自放电效应。图5为锂负极静置10小时后的扫描电子显微镜照片,表面比较光滑。这主要是因为电解液中加入的硝酸锂可以与负极锂反应,在其表面生成一层光滑的保护膜,从而防止溶解在电解液中的部分碘与锂的反应,避免自放电现象的发生。所得到的比容量超过理论容量的原因是因为活性碳布也提供了一部分容量。图6为该电极在0.5C倍率下的循环寿命图,首次放电比容量为299mAh/g,循环300周后的可逆比容量为200mAh/g,容量保持率达到了67%,且库伦效率一直在90%以上。同样,由于活性碳布优良的导电性,该复合材料还表现出了很高的倍率性能。如图7所示,该电极在0.5C,1C,2C和5C下的可逆比容量分别为301,273,232和169mAh/g,并且在每个电流密度下都表现出较高的循环稳定性。
实施例2:将实施例1中电解液为浓度为1.0mol/L的LiN(CF3SO2)2溶液,溶剂为体积比1:1的1,3-二氧戊烷和乙二醇二甲醚的混合液,添加剂为质量分数为1%的无水硝酸锂改变为1.0mol/L的LiN(CF3SO2)2溶液,溶剂为体积比1:1的1,3-二氧戊烷和乙二醇二甲醚的混合液,添加剂为质量分数为1.5%,其他同实施例1。在0.5C的倍率下所得到的充放电曲线如图8所示。
实施例3:将实施例1中1.0mol/L的LiN(CF3SO2)2溶液,溶剂为体积比1:1的1,3-二氧戊烷和乙二醇二甲醚的混合液,添加剂为质量分数为1%的无水硝酸锂改变为1.0mol/L的LiN(CF3SO2)2溶液,溶剂为四乙二醇二甲醚,添加剂为质量分数为1%的无水硝酸锂,其他同时实施例1。在0.5C的倍率下所得到的充放电曲线如图9所示。
实施例4:将实施例1中加入的碘单质的量定为25mg,其他同实施例1。所得到的复合材料中碘的质量分数为11%,对应于2.5mg/cm2。使用该复合材料为正极,采用与实施例相同的方法组装电池,在0.5C的倍率下得到的充放电曲线如图10所示。可以看出,所 得到的比容量远远大于碘的理论比容量。这是因为比容量的计算都是以碘的质量计算的。但是在该复合材料中碘的含量较低,活性碳布贡献的容量就相对较大。
实施例5:将实施例1中加入的碘单质的量定为113mg,其他同实施例1。所得到的复合材料中碘的质量分数为36%,对应于11.6mg/cm2。使用该复合材料为正极,采用与实施例相同的方法组装电池,在0.5C的倍率下得到的充放电曲线如图11所示。
实施例6:将实施例1中加入的碘单质的量定为169mg,其他同实施例1。所得到的复合材料中碘的质量分数为45%,对应于16.9mg/cm2。使用该复合材料为正极,采用与实施例相同的方法组装电池,在0.5C的倍率下得到的充放电曲线如图12所示。
实施例7:采用室温“溶解-吸附”法制备碘单质/CMK-3复合材料,步骤如下:
(1)将50mg碘单质加入到100ml水中。
(2)将100mg的CMK-3加入到上述溶液中。
(3)室温下搅拌2小时,直至溶液变为澄清。
(4)过滤得到沉淀,用水洗涤三次,然后在80℃下干燥。
所得到的样品即为碘单质/CMK-3复合材料,其扫描电子显微镜照片见图13。利用该材料制备正极,步骤如下:
将碘单质/CMK-3复合材料、导电碳superP、粘结剂羧甲基纤维素钠(CMC)和充油丁苯橡胶(SBR)按照质量比80:10:5:5在水中混合,研磨均匀后将所得浆料涂覆到铝箔上,真空下80℃干燥后即得到电极片。
使用上述制备的电极片为正极,金属锂片为负极,含有添加剂的醚类电解液在手套箱中组装电池。其中电解液为1.0mol/L的LiN(CF3SO2)2溶液,溶剂为体积比1:1的1,3-二氧戊烷和乙二醇二甲醚的混合液,添加剂为质量分数为1%的无水硝酸锂。对该电极的电化学性能测试如下:
将所装配的电池在0.5C倍率下进行恒流充放电测试,电压窗口为2.0~3.6V,所得到的特征充放电曲线见图14,相应循环寿命图见图15,循环100周后的容量仍有128mAh/g。
实施例8:将实施例7中加入的碘单质的量定为150mg,其他同实施例7。所得到的复合材料中碘的质量分数为60%。使用该复合材料为正极,采用与实施例相同的方法组装电池,在0.5C的倍率下得到的充放电曲线如图16所示。
实施例9:将实施例7中CMK-3改变为活性炭,其他同实施例7。在0.5C的倍率下 得到的充放电曲线如图17所示。
实施例10:将实施例7中CMK-3改变为多孔导电碳黑(Ketjenblack,EC600JD),其他同实施例7。在0.5C的倍率下得到的充放电曲线如图18所示。
工业实用性
本发明提出了一种有机电解液体系锂碘二次电池及其制备方法,克服了目前有机电解液体系锂碘二次电池中自放电较严重以及正极材料制备复杂的问题。本发明碘单质/碳复合材料利用了一种室温“溶解-吸附”的方法制备,不需要高温加热使碘升华,不会造成原料的损失,所制备的复合材料中碘的含量易于控制。利用多孔碳对碘及其锂盐的吸附作用有效抑制了活性材料的溶解,同时提高了电极的电导率,表现出较好的循环性能和倍率性能。选用添加了无水硝酸锂的醚类电解液,利用无水硝酸锂与金属锂的反应在锂表面生成了一层均匀的保护膜,降低了电池的自放电效应。本发明有机电解液体系锂碘二次电池具备长循环寿命、高倍率性能、低自放电效应、实用性强的特点,而且制备成本低、过程简单,安全无污染,具有广泛的应用前景。
以上所述仅为本发明的部分实例,并非用来限制本发明。但凡依本发明内容所做的均等变化与修饰,都为本发明的保护范围之内。

Claims (19)

  1. 一种有机电解液体系锂碘二次电池,包括正极、负极、隔膜和电解液,其特征在于:所述的正极包含碘单质/碳复合活性材料,其中碘单质的含量为10%~80%;
    所述的负极为金属锂或含锂合金;所述的电解液为含有添加剂的醚类溶液;隔膜为聚乙烯、聚丙烯和聚乙烯依次构成的三层复合膜、Celgard系列膜或玻璃纤维滤纸。
  2. 根据权利要求1所述的有机电解液体系锂碘二次电池,其特征在于所述的碘单质/碳复合活性材料的X射线光电子能谱分析,分别在630.6eV和619.2eV处显示出碘单质的I3d3/2和I3d5/2的特征峰。
  3. 根据权利要求1所述的有机电解液体系锂碘二次电池,其特征在于所述的含有添加剂醚类溶液为包括添加剂、固体锂盐电解质和有机溶剂。
  4. 根据权利要求3所述的有机电解液体系锂碘二次电池,其特征在于所述的添加剂为无水硝酸锂。
  5. 根据权利要求3所述的有机电解液体系锂碘二次电池,其特征在于所述的固体锂盐为LiPF6、LiCF3SO3、LiN(CF3SO2)2、LiClO4、LiP(C6H4O2)3、LiPF3(C2F5)3或LiB(C2O4)2的一种或两种以上任意比例的混合物。
  6. 根据权利要求3所述的有机电解液体系锂碘二次电池,其特征在于所述的有机溶剂为1,3-二氧环戊烷、乙二醇二甲醚、二乙二醇二甲醚、四乙二醇二甲醚、4-甲基-1,3-二氧环戊烷、四氢呋喃和2-甲基四氢呋喃醚类溶剂中的一种或两种以上任意比例的混合物。
  7. 根据权利要求3所述的有机电解液体系锂碘二次电池,其特征在于所述的添加剂在电解液中的质量分数为0.5%-2%。
  8. 根据权利要求3所述的有机电解液体系锂碘二次电池,其特征在于所述的固体锂盐电解质在有机溶剂中的浓度为0.2-1.5mol/L。
  9. 根据权利要求1所述的有机电解液体系锂碘二次电池,其特征在于所述的碘单质/碳复合活性材料的制备方法采用溶解-吸附法,具体包括的步骤:
    1)室温下依次将固态碘单质与活性碳材料加入到水中,充分搅拌,直至水溶液变澄清;
    2)过滤得到沉淀,用水洗涤,50~100℃下干燥即得到碘单质/活性碳复合材料;
  10. 根据权利要求9所述的有机电解液体系锂碘二次电池,其特征在于所述的碳材料 为活性碳布、活性炭、CMK-3、多孔导电碳黑、有序介孔碳的多孔碳材料中的一种或者两种以上的混合物。
  11. 根据权利要求9所述的有机电解液体系锂碘二次电池,其特征在于所述碘单质/碳复合活性材料中碘单质与碳材料的质量比为1:9到8:2之间。
  12. 根据权利要求1所述的所述的有机电解液体系锂碘二次电池,其特征在于所述的正极的制备方法:以碘单质/碳复合材料,加入导电剂,粘接剂与分散剂水中调成浆料,研磨均匀后涂在集流体上,真空下80-100℃干燥后即得到正极片。
  13. 根据权利要求12所述的有机电解液体系锂碘二次电池,所述导电剂与粘结剂的质量比为导电剂5~15%,粘结剂5~10%,其余为碘单质/活性碳复合材料。
  14. 根据权利要求12所述的有机电解液体系锂碘二次电池,其特征在于所述导电剂为乙炔黑、SuperP、KS6、石墨烯、碳纳米管、VulcanXC-72中的至少一种或几种进行混合而成;
  15. 根据权利要求12所述的有机电解液体系锂碘二次电池,其特征在于所述粘结剂为羧甲基纤维素钠和充油丁苯橡胶,质量比在1:2和2:1之间。
  16. 一种有机电解液体系锂碘二次电池,包括正极、负极、隔膜和电解液,其特征在于:所述的正极包含碘单质/碳复合活性材料,其中碘单质的含量为10%~80%;
    所述的负极为金属锂或含锂合金;所述的电解液为含有无水硝酸锂添加剂、固体锂盐LiN(CF3SO2)2电解质和有机溶剂;所述的隔膜为聚乙烯、聚丙烯和聚乙烯依次构成的三层复合膜、Celgard系列膜或玻璃纤维滤纸;
    所述的有机溶剂为1,3-二氧环戊烷、乙二醇二甲醚、四乙二醇二甲醚中的一种或两种任意比例的混合物。
  17. 根据权利要求16所述的有机电解液体系锂碘二次电池,其特征在于所述的添加剂在电解液中的质量分数为0.5%-2%。
  18. 根据权利要求16所述的有机电解液体系锂碘二次电池,其特征在于所述的固体锂盐电解质在有机溶剂中的浓度为0.2-1.5mol/L。
  19. 根据权利要求16所述的有机电解液体系锂碘二次电池,其特征在于所述的碳材料为活性碳布、活性炭、CMK-3、多孔导电碳黑中的一种或者两种以上的混合物。
PCT/CN2015/086440 2015-05-06 2015-08-10 有机电解液体系锂碘二次电池及其制备方法 WO2016176922A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510236185.0A CN106207255B (zh) 2015-05-06 2015-05-06 有机电解液体系锂碘二次电池及其制备方法
CN201510236185.0 2015-05-06

Publications (1)

Publication Number Publication Date
WO2016176922A1 true WO2016176922A1 (zh) 2016-11-10

Family

ID=57218459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086440 WO2016176922A1 (zh) 2015-05-06 2015-08-10 有机电解液体系锂碘二次电池及其制备方法

Country Status (2)

Country Link
CN (1) CN106207255B (zh)
WO (1) WO2016176922A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019118409A1 (en) * 2017-12-13 2019-06-20 Yale University Rechargeable batteries, lithium metal electrodes, battery separators, and methods of forming and using the same
CN113725414A (zh) * 2021-08-30 2021-11-30 郑州大学 一种水系锌碘二次电池正极材料及其正极和水系锌碘二次电池
CN114388868A (zh) * 2021-12-23 2022-04-22 南京大学 一种全固态锂-碘二次电池及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107068989B (zh) * 2016-12-23 2020-02-07 浙江大学 一种用于锂碘电池的正极材料
CN106848244A (zh) * 2017-02-28 2017-06-13 天津理工大学 一种有机电解液体系镁碘二次电池及其制备方法
KR101990618B1 (ko) * 2017-04-14 2019-06-18 주식회사 엘지화학 리튬 금속용 전기 도금용액 및 이를 이용한 리튬 금속전극의 제조방법
CN107666015B (zh) * 2017-09-04 2019-08-27 天津理工大学 一种水相电解质体系锌碘二次电池及其制备方法
CN110660990A (zh) * 2019-09-30 2020-01-07 河南工学院 碘基包合物二次电池正极及其制备方法及钠碘二次电池
CN114628710A (zh) * 2020-12-11 2022-06-14 中国科学院大连化学物理研究所 一种氟化碳电池用电解液及应用
CN112592538B (zh) * 2021-02-24 2021-05-14 苏州度辰新材料有限公司 一种塑料助剂预混物
CN113582231A (zh) * 2021-06-08 2021-11-02 湖南师范大学 一种MoO2/碳复合间层的制备方法
CN114335758B (zh) * 2021-12-31 2023-03-17 郑州大学 基于石榴石固态电解质高温熔融锂碘电池
CN114813795A (zh) * 2022-05-06 2022-07-29 南开大学 一种应用于电池材料研究的透射电镜双倾原位样品杆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2174782Y (zh) * 1993-07-09 1994-08-17 南阳师范高等专科学校 锌氯蓄电池
CN102244288A (zh) * 2011-06-02 2011-11-16 南开大学 锂磷二次电池
CN102447113A (zh) * 2011-12-12 2012-05-09 南开大学 聚合物包覆硫/碳复合材料为正极的锂电池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102254583B (zh) * 2011-03-30 2013-07-17 中国科学院青岛生物能源与过程研究所 一种用做染料敏化太阳能电池阴极的碘掺杂碳材料
CN104282918B (zh) * 2013-07-02 2018-04-10 中国科学院上海硅酸盐研究所 锂空气电池用阴极、锂空气电池、以及制备锂空气电池用电极的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2174782Y (zh) * 1993-07-09 1994-08-17 南阳师范高等专科学校 锌氯蓄电池
CN102244288A (zh) * 2011-06-02 2011-11-16 南开大学 锂磷二次电池
CN102447113A (zh) * 2011-12-12 2012-05-09 南开大学 聚合物包覆硫/碳复合材料为正极的锂电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIULI SUN.: "Preparation and Electrochemical Performance of Iodine/Carbon Composites for Rechargeable Lithium Iodine Batteries.", WANFANG DATA KNOWLEDGE SERVICE PLATFORM., 29 December 2011 (2011-12-29), pages 26 and 27,45 and 46 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019118409A1 (en) * 2017-12-13 2019-06-20 Yale University Rechargeable batteries, lithium metal electrodes, battery separators, and methods of forming and using the same
CN113725414A (zh) * 2021-08-30 2021-11-30 郑州大学 一种水系锌碘二次电池正极材料及其正极和水系锌碘二次电池
CN114388868A (zh) * 2021-12-23 2022-04-22 南京大学 一种全固态锂-碘二次电池及其制备方法
CN114388868B (zh) * 2021-12-23 2023-10-13 南京大学 一种全固态锂-碘二次电池及其制备方法

Also Published As

Publication number Publication date
CN106207255B (zh) 2018-10-30
CN106207255A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2016176922A1 (zh) 有机电解液体系锂碘二次电池及其制备方法
Ma et al. Enhanced performance of lithium sulfur battery with self-assembly polypyrrole nanotube film as the functional interlayer
CN105449186B (zh) 一种二次电池及其制备方法
WO2020006788A1 (zh) 一种金属有机框架碳纳米管复合材料的制备方法
EP2927996B1 (en) Cathode active material for lithium-sulfur battery and manufacturing method therefor
US8846248B2 (en) Metal-sulfur electrode for lithium-sulfur battery and preparing method thereof
JP6183472B2 (ja) 非水電解質二次電池およびその組電池
CN104810504A (zh) 一种柔性石墨烯集流体与活性材料一体化电极极片及其制备方法
WO2017215121A1 (zh) 一种电池浆料、电池极片及其制备方法
Guo et al. A mixed microporous/low-range mesoporous composite with high sulfur loading from hierarchically-structured carbon for lithium sulfur batteries
JP7193449B2 (ja) 多孔質ケイ素材料および導電性ポリマーバインダー電極
WO2019080689A1 (zh) 一种混合型超级电容器
CN109505035A (zh) 一种锂硫电池隔膜材料的制备方法
WO2017206062A1 (zh) 一种二次电池及其制备方法
Geng et al. A sandwich-structure composite carbon layer coated on separator to trap polysulfides for high-performance lithium sulfur batteries
WO2024125486A1 (zh) 钠离子电池和储能设备
JP2014096238A (ja) 蓄電デバイス用正極の製造方法、及び正極
CN109961967B (zh) 锂离子电容器及其制备方法
WO2018059180A1 (zh) 一种高功率高能量化学电源及其制备方法
CN107256969A (zh) 钠离子电池负极浆料及其制备方法
CN104779379A (zh) 一种锂二次电池用新型硫碳复合材料及其制备方法
CN110875476A (zh) 锂二次电池的负极、其制备方法和锂二次电池
Si et al. Silicon–carbon composite dispersed in a carbon paper substrate for solid polymer lithium-ion batteries
CN113764817A (zh) 一种改性隔膜及其制备方法以及锂离子电容器
WO2023134234A1 (zh) 正极复合材料、其制备方法、正极以及锂离子二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891173

Country of ref document: EP

Kind code of ref document: A1