WO2016171177A1 - 熱源ユニット - Google Patents

熱源ユニット Download PDF

Info

Publication number
WO2016171177A1
WO2016171177A1 PCT/JP2016/062527 JP2016062527W WO2016171177A1 WO 2016171177 A1 WO2016171177 A1 WO 2016171177A1 JP 2016062527 W JP2016062527 W JP 2016062527W WO 2016171177 A1 WO2016171177 A1 WO 2016171177A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
source unit
air heat
heat exchanger
air
Prior art date
Application number
PCT/JP2016/062527
Other languages
English (en)
French (fr)
Inventor
圭佑 西本
靖 大越
拓也 伊藤
山口 博
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017514166A priority Critical patent/JP6433582B2/ja
Priority to US15/565,246 priority patent/US10436458B2/en
Priority to CN201680023038.8A priority patent/CN107532805A/zh
Priority to EP16783198.1A priority patent/EP3287706B1/en
Publication of WO2016171177A1 publication Critical patent/WO2016171177A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Definitions

  • the present invention relates to a heat source unit that constitutes an air conditioner, a heat pump water heater, and the like.
  • a plurality of fins are arranged at a predetermined interval from each other, and include a bent piece portion that is formed by penetrating through the heat exchange pipe and bent in the same direction along both side portions.
  • a plurality of air heat exchangers wherein the plurality of air heat exchangers are such that the two air heat exchangers have the bent pieces facing each other, and the lower ends of the respective air heat exchangers are close to each other, and
  • the upper end portion is provided to be inclined so as to be separated from each other, at least a part of the bent piece portion is provided to be exposed, and further provided in a direction perpendicular to the direction in which the two air heat exchangers face each other.
  • the blower is provided in the upper casing so that air sucked from the left and right sides of the upper casing passes through the air heat exchanger and is discharged from the upper casing.
  • the lower casing is formed in a rectangular parallelepiped shape in which the front shape and the rear shape are rectangular, and the width in the left-right direction of the lower casing is the width in the left-right direction of the lower surface of the upper casing. It is set to be equal to the length.
  • the difference between the width of the casing in the left-right direction is set to 400 mm or more, and the vertical dimension of the lower casing is set to be larger than the width of the lower casing in the left-right direction (for example, Patent Document 2).
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a heat source unit that is simple in structure, has improved maintainability and heat exchange efficiency, and is easy to manufacture.
  • the heat source unit has a predetermined number of plate-like heat radiation fins arranged at intervals in the plate thickness direction, and a plurality of tubes through which the refrigerant in the refrigeration cycle flows are plate-thick with respect to the heat radiation fins.
  • a plurality of air heat exchangers that are inserted in the direction and combined with heat radiating fins are placed on the upper part of the machine room that is rectangular in plan view, with the space on the upper side widened so as to be V-shaped when viewed from the short side.
  • the air heat exchanger has first to fourth air formed in an L-shape consisting of a long side and a short side by bending one end of the tube in the extending direction of the tube. It consists of heat exchangers, and the short sides are all on the short side of the machine room that is rectangular in plan view so that the first to fourth air heat exchangers are installed in a rectangular frame shape in plan view. It is characterized by being disposed.
  • the air heat exchanger includes first to fourth air heat exchangers that are formed in an L shape including a long side portion and a short side portion by bending one end portion side in the tube extending direction.
  • the first to fourth air heat exchangers are arranged in a rectangular frame shape in plan view so that the short sides are arranged on the short side of the rectangle so that the opposed air Since the locations where the ventilation portions of the heat exchanger are close to each other can be eliminated, the heat exchange efficiency is improved, and since the air heat exchanger used is L-shaped, there are few bent portions, so that the manufacture is easy.
  • the header of the air heat exchanger can be disposed only on the short side of the machine room, the maintainability during connection installation can be improved.
  • FIG. 1 It is a figure which shows the heat-source unit of the chiller apparatus by Embodiment 1 of this invention, (a) is a perspective view which shows an external appearance, (b) is a top view which shows typically arrangement
  • FIG. 2 is a diagram for explaining the arrangement of fans in the heat source unit of FIG.
  • FIG. 4 It is a figure which shows typically the connection condition of the heat source unit by Embodiment 4 of this invention, (a) is the figure seen from the longitudinal side of the heat source unit, (b) is the top view. It is a figure which shows the structure of the control panel with respect to a control system, (a) is a normal case, (b) is the case where the control panel of all the control systems is made common, (c) is an air exchanger on the same longitudinal surface. This is a case where the control panels of certain control systems are shared.
  • FIG. 1A and 1B are diagrams showing a heat source unit of a chiller device according to Embodiment 1 of the present invention, wherein FIG. 1A is a perspective view showing an appearance, and FIG. 1B is a top view schematically showing an arrangement of air heat exchangers. is there.
  • 2 is a perspective view showing the machine room panel and the like of FIG. 1 in a hidden state
  • FIG. 3 is a perspective view showing the bell mouth and the like in FIG. 1 in a hidden state
  • FIG. 4 is an upper view from the air heat exchanger of FIG.
  • FIG. 5 is an enlarged perspective view showing the vicinity of the control box of the machine room shown in FIG. 4, and FIG. 6 shows the air heat exchanger base of the machine room shown in FIG.
  • FIG. 7 is a view of the machine room of FIG. 5 as viewed from the short side.
  • FIG. 7A is a front view
  • FIG. 7B is a view of a portion surrounded by a broken line D of FIG.
  • the heat source unit of the present invention cools or heats a heat transfer fluid such as water or antifreeze supplied from a device on the use side installed outside the heat source unit, supplies the heat transfer fluid to the user side, and circulates it. By this, it is utilized as a heat source apparatus of the chiller apparatus which supplies cold heat or warm heat to the utilization side.
  • a heat source unit 100 is an element device including a refrigerant circuit 11 including a compressor constituting a refrigeration cycle on the heat source side, a heat exchange device 3 including a plate heat exchanger with a heat transfer fluid on the use side described later, and the like.
  • a plurality of so-called fin-and-tube air heat exchangers 2 arranged opposite to each other, a fan device 4 installed on the upper portion of the air heat exchanger 2, and the like are provided.
  • the air heat exchanger 2 has a predetermined number of plate-like heat radiation fins arranged at intervals in the plate thickness direction, and a plurality of tubes through which the refrigerant in the refrigeration cycle is passed in the plate thickness direction with respect to the heat radiation fins.
  • a flat heat exchanger that is penetrated and combined with each heat dissipating fin is bent in a circular arc shape at one end in the extending direction of the tube, and is bent 90 degrees in the direction of ventilation. It is formed in an L shape composed of a long side portion 2a and a short side portion 2b.
  • the first to fourth air heat exchangers 2 (2A to 2D) are used as the heat source unit 100.
  • the four air heat exchangers 2A to 2D are simply referred to as “air heat exchanger 2” unless otherwise required to be distinguished.
  • the overall shape is a rectangular frame as shown in FIG.
  • Each short side portion 2b is located on the short side of the machine room 1, and is installed so that a bent portion of the air heat exchanger 2 bent in an L shape is located at a rectangular corner portion thereof.
  • FIG. 1 (b) schematically shows a contact portion of the air heat exchanger 2 on the machine room 1, and the upper side of the air heat exchanger 2 and a plurality of rows of air heat exchangers are stacked. The state is not expressed.
  • the L-shaped air heat exchanger 2 composed of the long side portion 2a and the short side portion 2b
  • the L-shaped portion has an L-shaped bending direction (air heat exchangers 2B and 2C), and an inverted L-shaped shape.
  • 2 air heat exchangers 2A and 2E
  • the air heat exchanger 2 is preferably manufactured such that the hairpin portion 2c is positioned at the end of the long side portion 2a and the header portion 2d is positioned at the end of the short side portion 2b.
  • Each header part 2d of each air heat exchanger is located in the center part in the left-right direction when viewed from the short side of the machine room 1, and the hairpin part 2c is located in the center part in the left-right direction when viewed from the long side of the machine room 1. It is installed to be located. Thereby, there exists an advantage which is easy to do the maintenance of the hairpin part 2c of the air heat exchanger 2 compared with the past.
  • the first to fourth air heat exchangers 2A to 2D are rubber sheets on a heat exchanger base 21 (see FIGS. 4 and 5) having an upwardly inclined upper surface placed on the machine room 1.
  • the upper space is wider than the lower space so as to be substantially V-shaped when viewed from the short side of the heat source unit 100 or the machine room 1 with 21a sandwiched therebetween, as shown in FIG. .
  • the gap between the outer side surfaces of the adjacent air heat exchangers 2 is closed by the air heat exchanger side panel 22a (longitudinal surface) and the air heat exchanger side panel 22b (short side surface).
  • the lower portion of the air heat exchanger 2 is fixed to the heat exchanger base 21 via an air heat exchanger support (long surface) 23a (see FIG.
  • the upper part of the air heat exchanger 2 is fixed to the top frame 29 (see FIG. 1) of the heat source unit housing directly or via a connector (not shown) that connects the top frame 29 and the air heat exchanger 2. .
  • the fan device 4 installed on the top frame 29 constituting the housing of the heat source unit includes a fan 40, a fan motor 41 that drives the fan 40, and a fan that supports the fan motor 41, as shown in FIGS.
  • the motor support member 42, the fan guard 43 provided on the upper portion of the fan 40, and the bell mouth 44 to which the fan guard 43 is attached are attached to the frame top frame 29 via the bell mouth fixing member 45.
  • a blower chamber 5 is formed in an inner space surrounded by the heat exchanger base 21, the first to fourth air heat exchangers 2A to 2D, the air heat exchanger side panels 22a and 22b, the fan device 4, and the like. Yes.
  • the machine room upper beam 12 is supported and fixed by a machine room gate 131 and a machine room middle column 132 attached to the machine room frame 13, and is supported by the machine room frame 13, the machine room gate 131, and the machine room middle column 132.
  • the machine room panel (longitudinal surface) 141 and the machine room panel (short side surface) 142 are attached so as to close the surface surrounded by the outline.
  • a refrigerant circuit including a compressor or the like is installed in the longitudinal center of the machine room 1, and a refrigerant circuit on the heat source side constituting the refrigeration cycle and a transmission on the use side are arranged on one end of the machine room 1 in the longitudinal direction.
  • a heat exchanging device 3 of a chiller device formed so as to exchange heat with the circulation path of the thermal fluid is disposed, and a function of controlling the refrigerant circuit 11 is provided on the other end side in the longitudinal direction of the machine room 1.
  • a control panel group 17 is arranged, and each of these constituent members is fixed to the underframe 13.
  • the heat exchanger base 21 has a structure in which the upper side of the heat source unit is inclined to the inside of the heat source unit, and the blower chamber drain integrated plate 15 is inclined and installed inside the machine room 1. It is fixed with a pinch in between.
  • a blower chamber drain rod 16 is installed at an angle in the longitudinal direction of the heat source unit below the central end of the heat source unit of the blower chamber drain collecting plate 15, and a drain discharge port 16a (see FIG. 7 (b)) at the downstream portion thereof. ) Is provided.
  • a heater (not shown) is attached to the lower surfaces of the fan chamber drain collecting plate 15 and the fan chamber drain rod 16.
  • FIG. 8 is a perspective view of the heat source unit of FIG. 2 as viewed from the opposite side in the longitudinal direction
  • FIG. 9 is a diagram illustrating a specific example of the heat exchange device 3 of FIG. 8, and (a) is viewed from the viewpoint C of FIG.
  • FIG. 9B is a diagram viewed from the viewpoint D of FIG. 8
  • FIG. 9C is a diagram illustrating an example in which a usage-side pump is installed in the machine room.
  • 10A and 10B are diagrams for explaining the arrangement of the fans in the heat source unit of FIG. 1 in comparison with the preceding example.
  • FIG. 10A shows the case of the first embodiment
  • FIG. 10B shows the case of the preceding example.
  • the refrigerant circuit 11 installed inside the machine room 1 is configured such that independent refrigerant systems are juxtaposed with each air heat exchanger 2. For this reason, a total of four compressors and the like are provided corresponding to each air heat exchanger 2.
  • the heat exchanging device 3 installed on one end side in the longitudinal direction of the heat source unit 100 is supplied from the use side of a heat source (not shown) installed outside the heat source unit 100, for example, water / antifreeze liquid It consists of a plate heat exchanger group for exchanging heat between the heat transfer fluid and the refrigerant of the refrigeration cycle constituting the refrigerant circuit 11.
  • the heat exchange device 3 is also referred to as a water heat exchanger or the like.
  • the heat exchange device 3 is configured using a plurality of plate heat exchangers 31 ⁇ / b> A and 31 ⁇ / b> B whose flow paths are connected by plate heat exchanger connection pipes 32.
  • two plate heat exchangers arranged in parallel are installed so as to be connected in series.
  • the primary side of the heat exchanging device 3 is connected to the refrigerant circuit 11 on the heat source side by connection pipes 11a and 11b, and the secondary side is a feed pipe 34 that sends a heat transfer fluid to the use side, and the return from the use side.
  • a return pipe 33 that receives the thermal fluid is connected to extend outward and is circulated on the heat source side and the use side.
  • a refrigerant circuit having four refrigeration cycles independent from each other is installed, so that the connection pipes 11a and 11b in the heat exchange device 3 are formed independently of each other inside the heat exchange device 3.
  • the liquid pump 35 is connected to the attachment portion of the return pipe 33. Products will be provided at
  • the refrigerant circuit 11 is operated, the fan motor 41 attached to the upper part of the air heat exchanger 2 is operated, and the fan 40 is rotated, so that the outside air flows from the side surface outside the air heat exchanger 2 to the air heat exchanger.
  • Details of the interior of the blower chamber 5 of the heat source unit comprising a space surrounded by an air heat exchanger 2 that passes through a large number of fins (not shown) and is opposed in a V shape when viewed from the short side. It is taken in. The taken outside air is further discharged from the mouth of the bell mouth 44 toward the upper part of the heat source unit 100.
  • the heat-exchanged refrigerant is heat-exchanged with a heat transfer fluid such as water and antifreeze supplied through a return pipe 33 (see FIG. 9) in the heat exchange device 3 included in the refrigerant circuit 11, and the refrigerant is refrigerant.
  • a heat transfer fluid such as water and antifreeze supplied through a return pipe 33 (see FIG. 9) in the heat exchange device 3 included in the refrigerant circuit 11, and the refrigerant is refrigerant.
  • the heat transfer fluid supplied from the outside is discharged to the outside through the supply pipe 34.
  • a liquid pump 35 is inserted in the return pipe 33 as shown in FIG. By operating the liquid pump 35 on the side, the heat transfer fluid is supplied and circulated from the outside.
  • a heat transfer fluid supplied from the outside is provided by providing a four-way valve in the refrigerant circuit 11 and reversing the forward path through which the refrigerant compressed by the compressor flows through the air heat exchanger 2 and the heat exchange device 3. Can be both cooled and heated.
  • This heat source unit is assumed to be installed both indoors and outdoors, and when it is installed outdoors, rain and snow will enter the blower room 5 via the bell mouth 44. Further, when the outside air temperature around the heat source unit is a low temperature of about 0 degrees Celsius or less, if the heating operation for heating the heat transfer fluid supplied from the use side is continued, the water vapor contained in the outside air is converted into the air heat. Frost is generated by condensation on the surface of the exchanger 2 and further freezing. Since this frost hinders the passage of outside air in the air heat exchanger 2 and reduces the performance of the heat source unit 100, it is temporarily switched to the cooling operation as control for maintaining the performance.
  • the frost attached to the surface of the air heat exchanger 2 is melted and the passage of outside air becomes normal. Also in this case, a large amount of water formed by melting frost is dripped downward in the blower chamber.
  • the rainwater entering the blower chamber 5 and the water from the defrosting operation fall directly or directly through the upper surface of the heat exchanger base 21 to the blower chamber drain collecting plate 15. Since the blower chamber drain accumulation plate 15 is inclined so as to be lowered toward the center of the heat source unit 100 in the short direction, the water flows along the blower chamber drain accumulation plate 15 toward the center of the heat source unit in the short direction. It falls to the room drain 16.
  • the blower chamber drain rod 16 is inclined in the longitudinal direction of the heat source unit, and water is discharged from a drain discharge port 16 a attached to the downstream side of the blower chamber drain rod 16.
  • a heater can be attached to the lower surface side of the blower chamber drain accumulation plate 15 and the blower chamber drain rod 16 and operation control by a temperature sensor can be performed.
  • a temperature sensor In a low-temperature environment where water flowing into the blower chamber drain collecting plate 15 and the blower chamber drain rod 16 freezes, an operation is performed to operate a heater (not shown) in order to prevent the water from freezing.
  • the air heat exchanger 2 connected to one system of the refrigeration circuit in the refrigerant circuit 11 is single, it is not necessary to distribute the refrigerant.
  • Parts required for assembly such as the number of air heat exchangers, the number of piping parts, the number of housing parts, etc. constituting the refrigerant circuit compared to the case where a plurality of air heat exchangers are used in one refrigerant circuit as in FIG. Since the number of points can be reduced and the number of assembly steps can be reduced, production at a lower cost is possible.
  • the number of panels for blocking the air flow in portions other than the air heat exchanger 2 such as the air heat exchanger side panel (longitudinal surface) 22a and the air heat exchanger side panel (short surface) 22b, etc. Therefore, the cost can be further reduced. In addition, pressure loss due to refrigerant distribution can be avoided, leading to improved performance of the heat source unit.
  • the L-shaped air heat exchanger 2 has one bent portion, there is an advantage that bending is easier than in the prior art.
  • the air heat exchanger 2 is often used by overlapping a plurality of rows in order to improve performance, and the air heat exchangers in each row are fixed together on the header side. Therefore, when bending multiple rows of air heat exchangers, in order to absorb the path difference that occurs between the inside and outside of the bending R portion, generally hold the fixed header side and bend it while shifting the end on the hairpin side. .
  • two bending processes are required, and the first bending is performed by gripping the header side in the same manner as the bending of the air heat exchanger of the present invention.
  • the shape and arrangement of the air heat exchanger 2 in the heat source unit and the positional relationship between the fans 40 are as shown in FIG. 10A in the case of the first embodiment, whereas in the case of the first example. Is as shown in FIG.
  • the solid circle represents the fan 40, and the broken circle schematically represents the case where the diameter of the fan 40 is to be increased.
  • the ventilation portions of the adjacent air heat exchangers in the longitudinal direction face each other at a close position, whereas in Embodiment 1, there is no facing portion, so the air heat exchanger 2 is It can be used more efficiently.
  • the fan diameter when adjusting the fan diameter to improve performance, for example, in the first example, when the fan diameter is increased to some extent as shown by the broken line, the end of the air heat exchanger 2 is disposed immediately below the fan. Therefore, although there is a concern about a decrease in fan efficiency, for example, as shown in FIG. 10 (a), in the arrangement of the air heat exchanger of the present invention, the air heat exchanger end portion is in the middle of the long side portion of the blower chamber. Since it is not folded indoors, the fan diameter increase design within the range in which the air heat exchanger is not located directly below the fan 40 can be performed more preferentially than the previous example, so the reduction in fan efficiency is a concern. It becomes possible to design the performance without any problems.
  • the air heat exchanger area per unit bottom area can be secured wider than the heat source unit configured as in the preceding example 2, performance improvement is expected. Furthermore, in order to obtain a large-capacity heat source, when multiple heat source units are connected and installed in the short direction of the heat source unit, in the wind tunnel where air flows to the air heat exchanger created by the adjacent heat source units, the center in the longitudinal direction of the unit The pressure loss when the air heat exchanger draws in outside air increases as it approaches to the air heat exchanger, but the air heat exchanger corresponding to the independent refrigerant circuit is installed symmetrically in the longitudinal direction of the unit, so the pressure loss applied to the air heat exchanger The distribution is the same for all air heat exchangers, and stable and efficient output control is facilitated.
  • the header portion 2d of the air heat exchanger 2 is arranged with the U-shaped heat exchanger facing each other, so that the short side of the heat source unit is arranged.
  • the header portion 2d is arranged only on the short side that is easy to access. Therefore, the maintainability of the header of the air heat exchanger 2 at the time of connection installation is improved as compared with the conventional case.
  • the shape of the machine room 1 viewed from the short side is a trapezoidal shape with a long base in the preceding example 1, whereas the rectangular shape in the present invention, the work space outside the machine room can be made wider, Maintenance of the machine room becomes easy.
  • a flat air heat exchanger without a bent portion as in the preceding example 2 is installed in either one of the long side and the short side of a rectangular machine room. Since the short side 2b of the air heat exchanger 2 is also arranged on the short side of the machine room, the area of the air heat exchanger can be increased with respect to the same installation area of the heat source unit. Thus, it is possible to obtain a heat source unit with better performance. In addition, it is possible to efficiently use the air heat exchanger while ensuring the total area of the air heat exchanger, and it is also possible to easily adjust the fan diameter within the range where the fan performance can be used efficiently.
  • a pair of air heat exchangers folded in an L shape such as the air conditioner disclosed in Japanese Utility Model Publication No. 1-169090 and arranged in a U shape in a vertical state is used as a pair.
  • the present invention secures a space on the header side of the air heat exchanger. If the header is arranged at the top, the header maintenance space can be secured while securing the total area of the air heat exchanger.
  • FIG. FIG. 11 is a view of the heat source unit according to Embodiment 2 of the present invention as viewed from the short side of the heat source unit
  • FIG. 12 is a view schematically showing the connection state of the heat source units of FIG.
  • FIG. 4 is a view as seen from the longitudinal side of the heat source unit
  • FIG. 4B is a top view of the heat source unit.
  • FIG. 13 is a view for explaining the suction pressure loss distribution in the air heat exchanger at the center of the heat source unit shown in FIG. 11 in comparison with the preceding example, where (a) is the case of Embodiment 2, and (b) is This is the case of the preceding example.
  • both (a) and (b) are schematic views of the air heat exchanger of the heat source unit as viewed from above on the upper side, and the connected heat source unit from the shorter side of the machine room on the lower side. It is the seen schematic diagram.
  • the heat source unit 100 includes a plurality of (here, 3 units) heat source units 100A to 100C, which are the same as those in the first embodiment, juxtaposed so as to be connected in the short direction, respectively. It is connected to the pipe 64.
  • the return pipes 33 of the heat source units 100A to 100C are all connected to the main return pipe 63 having a larger flow path diameter than that, and the supply pipes 34 are all connected to the main feed pipe 64 having a larger flow path diameter than that. ing.
  • the main return pipe 63 and the main feed pipe 64 are connected to equipment on the use side (not shown) that uses a large amount of heat.
  • the connected heat source units are controlled while being adjusted so that the necessary amount of heat can be supplied in total. Also, for example, when the amount of heat required temporarily decreases, the amount of heat can be adjusted by moving the heat source units by the required number according to the supply amount.
  • the operation of the second embodiment will be described by taking as an example the case of moving all installed heat source units in normal operation.
  • the air sucked by the air heat exchanger 2 for heat exchange is indicated by the arrows in FIG. 13A.
  • the heat source unit blower chamber 5 formed in a rectangular frame shape at each part of the long side 2a of the air heat exchanger 2 from the gap between adjacent heat source units formed on the short side of the heat source unit. Sucked inside.
  • the first example 1 has the air suction space.
  • the angle that the base of the pentagon E forming the surface forms with the adjacent side is an obtuse angle, in the present invention it can be made vertical, so the present invention can secure a wider air suction space, Pressure loss caused by air suction is reduced, and more efficient operation is possible.
  • the suction pressure loss to the air heat exchanger 2 in the air heat exchanger of the units other than both ends in the connecting direction of the heat source unit group, here the three connected units, is “large” in FIG.
  • “small” and the suction portion are close to the suction portion so that a relative difference is indicated by characters such as “small”.
  • the distribution is “Large” in the part far from the center.
  • An L-shaped thick solid line indicates one air heat exchanger formed in an L-shape used in the present invention, and a U-shaped thick solid line indicates the preceding example 1. 1 shows one air heat exchanger formed in a U-shape.
  • the thin broken line surrounding those air heat exchangers has shown as a virtual line that the refrigerant circuit of one system
  • the heat exchangers of the units at both ends in the connecting direction of the heat source unit group here, the heat source units 100A and 100C at both ends of the three connected units are sucked into the air heat exchanger 2 corresponding to both ends in the connecting direction Since the pressure loss is smaller than that of the other air heat exchanger 2, “None” is described to indicate a relative difference.
  • Embodiment 2 of the present invention it is possible to equalize the output regardless of each refrigerant circuit by aligning control of the compressor rotation speed and the like of each refrigerant circuit. For this reason, it is possible to control the output stably only by examining the parameters for one system of the refrigerant circuit 11 when conducting the operation control. Further, when designing to optimize the operation efficiency of the entire heat source unit including the operation efficiency of the component equipment such as the compressor, the pressure loss distribution situation of the air heat exchanger corresponding to each refrigerant circuit system is different in the first example. Therefore, it is necessary to consider the situation of a plurality of refrigerant circuit systems in a combined manner.
  • the state of pressure loss acting on the air heat exchanger in the plurality of refrigerant circuit systems is equivalent, so the design of operation efficiency is a refrigerant. It suffices to be within the range of one circuit of the circuit, and the performance design can be easily performed. Furthermore, in the first example, it is necessary to perform a control design that increases the sum of outputs of a plurality of refrigerant circuit systems, whereas in the present invention, control design with only one system of the refrigerant circuit is sufficient, and thus more efficient. It is possible to design a control that provides a realistic output. And the suction pressure loss to an air heat exchanger becomes smaller than before, and the operation of a heat source unit becomes more efficient.
  • Embodiment 3 FIG.
  • the control panel group 17 for controlling each refrigerant circuit 11 shown in the second embodiment is usually configured in such a way that individual control panels corresponding to each control system are collected as shown in FIG. 15 (a). For example, as shown in FIG. 15 (b), if the control panel for controlling each control system is shared, it is efficient even if the control of one refrigerant circuit system is shared as shown in the second embodiment. Since an output can be obtained, the cost can be reduced while maintaining the output efficiency as compared with the case where the control mechanisms of the refrigerant circuits 11 are individually assigned.
  • FIG. 14A and 14B are diagrams schematically showing the connection state of the heat source units according to the fourth embodiment of the present invention, where FIG. 14A is a view seen from the longitudinal side of the heat source units, and FIG. 14B is a top view thereof.
  • the heat source unit 100 has three heat source units 100A to 100C similar to those in the first embodiment connected in the short direction, and this point is the same as in the second embodiment.
  • the difference from the second embodiment is that the main feed pipe 64 for the use side and the main return pipe 63 from the use side are installed so as to penetrate the machine room in the short direction in the machine room 1 and the main feed.
  • Connection portions 60 for connecting adjacent main supply pipes 64 or main return pipes 63 to each other when connecting the heat source units 100A to 100C are connected to the ends of the pipe 64 and the main return pipe 63 in the short direction.
  • the feed pipe 34 and the return pipe 33 (see FIG. 9) of each heat source unit are connected to the corresponding main feed pipe 64 and the main return pipe 63 inside the machine room 1, respectively.
  • water pipe headers (not shown) built in the machine room 1 of each of the heat source units 100A to 100C are connected to the corresponding main feed pipes 64 inside the machine room.
  • the main return pipe 63 is connected.
  • the piping for supplying and discharging the heat transfer fluid that adds a heat source that protrudes outside the space where the heat source unit is continuously installed is placed in the space where the heat source unit is continuously installed. Therefore, the installation space can be reduced. Further, in the present invention, since it is only necessary to connect the pipes built in the heat source unit at the connection portion 60, the required man-hours and the number of parts can be reduced. Further cost reduction of necessary piping and the like is possible.
  • each embodiment can be freely combined, or each embodiment can be appropriately modified or omitted.
  • the example in which the four air heat exchangers 2A to 2D are connected to the four independent refrigeration circuits has been described.
  • the present invention is not necessarily limited thereto.
  • the four air heat exchangers 2A to 2D may be appropriately changed, for example, two units are connected to two independent refrigeration circuits.
  • the position of the hairpin part 2c of the air heat exchanger 2 and the position of the header part 2d can also be reversed.
  • the position of the header portion 2d is the central portion in the longitudinal direction of the machine room 1, so that the distance from the compressor of the refrigerant circuit 11 installed in the central portion is small. Since it is close, there is an advantage that the piping length of the refrigeration circuit can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

部品点数、加工コスト削減、空気熱交換器等の効率的な配置、冷媒回路圧損部削減による性能改善を得る。冷媒が通流される複数のチューブを放熱フィンに対してその板厚方向に挿通させて放熱フィンと結合させた複数の空気熱交換器(2)を、平面視長方形状の機械室(1)の上部に、短手方向からみてV字状になるように上部側の間隔を広げて左右に対向配置した熱源ユニットであって、空気熱交換器(2)はチューブの延在方向の一端部側が折り曲げられて長辺部(2a)と短辺部(2b)からなるL字状に形成された第1から第4の空気熱交換器(2A~2D)からなり、その第1から第4の空気熱交換器の設置形状が平面視長方形の枠状となるように、短辺部(2b)を何れも長方形の短手側に配設した。

Description

熱源ユニット
 本発明は、空気調和装置、ヒートポンプ給湯装置等を構成する熱源ユニットに関するものである。
 従来の熱源ユニットとして、複数枚のフィンが互いに所定間隔を在して並べられ、これらフィンに熱交換パイプを貫通してなり、両側部に沿って同一方向に折曲げた折曲げ片部を備える複数の空気熱交換器を備え、複数の空気熱交換器は、2つの空気熱交換器が、折曲げ片部同士が互いに対向し、それぞれの空気熱交換器の下端部が互いに近接され、かつ上端部が互いに離間するように傾斜して設けられるとともに、折曲げ片部の少なくとも一部が露出するように設けられ、さらに、2つの空気熱交換器が対向する方向と直交する方向に複数設けられており、対向する空気熱交換器の間隔が上端から下方に向けて狭まるように傾斜して側面視で略V字状をなし、この熱交換器部の下部に設けられる機械室が上端から下方に向けて奥行き方向が漸次拡大するよう側面視で略逆V字状をなすことで、熱源ユニットとしての側面視は、中央部分が括れた略鼓状に形成されたものがある(例えば特許文献1参照)。
 また、筺体内に、空気用熱交換器、送風機、圧縮機および熱交換器等のヒートポンプ構成機器が収容されたヒートポンプ式の熱源機において、筺体は、正面視における左右両側面を下方に向けて幅が縮小するように傾斜して形成された上部筐体と、上部筐体下面に連続して設けられた下部筐体とを備え、空気用熱交換器は、上部筐体の左右両側に設けられ、送風機は、上部筐体の左右両側から吸い込まれた空気が、空気用熱交換器を通過して上部筐体から排出されるように、上部筐体に設けられ、圧縮機および熱交換器は、下部筐体に設けられ、下部筐体は、正面形状および背面形状が矩形状となる直方体形状に形成され、下部筐体の左右方向の幅長は、上部筐体下面の左右方向の幅長と同等に設定され、上部筐体上面の左右方向の幅長と下部筐体の左右方向の幅長との差が、400mm以上に設定され、下部筐体の上下方向の長さ寸法は、下部筐体の左右方向の幅長よりも大きく設定したものがある(例えば特許文献2参照)。
特許第5555701号公報 特開2012-013302号公報
 特許文献1に示すような熱源ユニットにおいては、空気熱交換器を細かく分けて組み立てていることから筺体および冷媒回路を構成する部品点数が多く必要となる、空気熱交換器相互が近い位置で対向する箇所があり空気熱交換器の吸込み圧損が大きくなるためファン効率が悪化する、空気熱交換器のヘッダ部分がチラーの奥まった部分に配置されるためメンテナンス性が悪い、熱源ユニット下部の機械室が底辺の広い台形状になっているため、連結設置した時の吸込み圧損が大きくなり、また、機械室のメンテナンススペースが確保しづらいといった問題がある。
 また、特許文献2に示すような熱源ユニットにあっては、特許文献1に示す熱源ユニットに比べ、連結設置時の機械室メンテナンス性および吸込み圧損並びに、空気熱交換器ヘッダ部および機械室へのメンテナンス性、空気熱交換器の効率性、部品点数が改善されるが、空気熱交換器の設置面が熱源ユニットの長手方向にしかなく、熱交の面積を確保しづらいため出力容量の確保が少なくなってしまうという課題があった。
 本発明は、上記のような問題点を解決するためになされたものであり、構造が簡素でメンテナンス性や、熱交換効率が改善され、しかも製造が容易な熱源ユニットを得ること目的としている。
 本発明に係る熱源ユニットは、所定数の板状の放熱フィンをその板厚方向に間隔をあけて配置し、冷凍サイクルにおける冷媒が通流される複数のチューブを、放熱フィンに対してその板厚方向に挿通させて放熱フィンと結合させた複数の空気熱交換器を、平面視長方形状の機械室の上部に、短手方向からみてV字状になるように上部側の間隔を広げて左右に対向配置した熱源ユニットであって、空気熱交換器はチューブの延在方向の一端部側が折り曲げられて長辺部と短辺部からなるL字状に形成された第1から第4の空気熱交換器からなり、その第1から第4の空気熱交換器の設置形状が平面視長方形の枠状となるように、短辺部を何れも平面視長方形状の機械室の短手側に配設したことを特徴とするものである。
 本発明によれば、空気熱交換器はチューブの延在方向の一端部側が折り曲げられて長辺部と短辺部からなるL字状に形成された第1から第4の空気熱交換器からなり、その第1から第4の空気熱交換器の設置形状が平面視長方形の枠状となるように、短辺部を何れも長方形の短手側に配設したことにより、対向された空気熱交換器の通風部分が相互に接近する箇所を無くせるので熱交換効率が改善され、また、用いる空気熱交換器がL字状のため曲げ箇所が少ないので、製造も容易である。また、例えば空気熱交換器のヘッダを機械室の短手側のみに配置することが可能となるので、連結設置時のメンテナンス性を向上できる。
本発明の実施の形態1によるチラー装置の熱源ユニットを示す図であり、(a)は外観を示す斜視図、(b)は空気熱交換器の配置を模式的に示す上面図である。 図1の機械室パネル等を非表示にして示す斜視図である。 図1のベルマウス等を非表示にして示す斜視図である。 図2の空気熱交換器から上の要素を非表示にして示す斜視図である。 図4の機械室の制御箱付近を拡大して示す斜視図である。 図5の機械室の空気熱交換器ベースを非表示にして示す斜視図である。 図5の機械室を短手側から見た図であり、(a)は正面図、(b)は図7(a)の破線Bで囲む部分を機械室の背面側から見たドレン配管を示す詳細図である。 図2の熱源ユニットを長手方向反対側から見た斜視図である。 図8の熱交換装置の具体例を示す図であり、(a)は図8の視点Cから見た図、(b)は図8の視点Dから見た図、(c)は機械室内に利用側のポンプを設置した例を示す図である。 図1の熱源ユニットにおけるファンの配置を先行例と比較して説明する図であり、(a)は実施の形態1の場合、(b)は先行例の場合である。 本発明の実施の形態2による熱源ユニットを熱源ユニットの短手側の方向から見た図である。 図11の熱源ユニットの連結状況を模式的に示す図であり、(a)は熱源ユニットの長手側から見た図、(b)は熱源ユニットの上面図である。 図11に示す熱源ユニットの中央部の空気熱交換器での吸込み圧損分布を先行例と比較して説明する図であり、(a)は実施の形態2の場合、(b)は先行例の場合である。 本発明の実施の形態4による熱源ユニットの連結状況を模式的に示す図であり、(a)は熱源ユニットの長手側から見た図、(b)はその上面図である。 制御系統に対する制御盤の構成を示す図であり、(a)は通常の場合、(b)は全制御系統の制御盤を共通化した場合、(c)は空気交換器が同一長手面上にある制御系統同士の制御盤を共通化した場合である。
実施の形態1.
 図1は本発明の実施の形態1によるチラー装置の熱源ユニットを示す図であり、(a)は外観を示す斜視図、(b)は空気熱交換器の配置を模式的に示す上面図である。図2は図1の機械室パネル等を非表示にして示す斜視図、図3は図1のベルマウス等を非表示にして示す斜視図、図4は図2の空気熱交換器から上の要素を非表示にして示す斜視図、図5は図4の機械室の制御箱付近を拡大して示す斜視図、図6は図5の機械室の空気熱交換器ベースを非表示にして示す斜視図である。図7は図5の機械室を短手側から見た図であり、(a)は正面図、(b)は図7(a)の破線Dで囲む部分を機械室の背面側から見たドレン配管を示す詳細図である。なお、本発明の熱源ユニットは、例えばその熱源ユニットの外部に設備された利用側の装置から供給される水・不凍液等の伝熱流体を冷却または加熱して利用側に送給し、循環することにより、利用側に冷熱または温熱を供給するチラー装置の熱源装置として利用されるものである。
 図において、熱源ユニット100は熱源側の冷凍サイクルを構成する圧縮機などを含む冷媒回路11や、後述する利用側の伝熱流体とのプレート熱交換器からなる熱交換装置3などを含む要素機器を設置するための直方体状の機械室1と、機械室1の上部に、該機械室1の矢印Aで示す短手側からみてV字状になるように上部側の間隔を広げて左右に対向配置した、いわゆるフィンアンドチューブ式の複数の空気熱交換器2と、空気熱交換器2の上部に設置されたファン装置4などを備えている。空気熱交換器2は、所定数の板状の放熱フィンをその板厚方向に間隔をあけて配置し、冷凍サイクルにおける冷媒が通流される複数のチューブを放熱フィンに対してその板厚方向に貫通させ、各放熱フィンと結合させた平面状の熱交換器を通風方向に1列、または複数列重ねたものを、前記チューブの延在方向の一端部側で円弧状に90度折り曲げて、長辺部2aと短辺部2bからなるL字状に形成したものである。
 熱源ユニット100としては、第1から第4の空気熱交換器2(2A~2D)を用いる。なお、特に区別する必要がある場合を除いて、それら4基の空気熱交換器2A~2Dを単に「空気熱交換器2」という。第1から第4の空気熱交換器2A~2Dは、それらを組み合わせ熱源ユニットの上方向から見たときに、図1(b)に示すように全体形状が長方形の枠状となるように、各短辺部2bが機械室1の短手側に位置し、その長方形の角部にL字状に曲げられた空気熱交換器2の曲げ部が位置するように設置される。なお、図1(b)は空気熱交換器2の機械室1上における当接部分を模式的に示しており、空気熱交換器2の上部側の広がりや空気熱交換器を複数列重ねた状態などは表現されていない。
 長辺部2aと短辺部2bからなるL字状の空気熱交換器2としては、L字部分の曲げ方向がL字状のもの(空気熱交換器2Bと2C)と、逆L字状のもの(空気熱交換器2Aと2E)の2種類が必要となるが、上下を反転させても冷媒回路に対する接続や機械室1上への取付け、固定などに支障を生じない場合には1種類でもよいことは勿論である。また、何れも好ましくは、空気熱交換器2の長辺部2aの端部にはヘアピン部2cが位置し、短辺部2bの端部にはヘッダ部2dが位置するように製作される。各空気熱交換器のヘッダ部2dは何れも機械室1の短手側から見て左右方向の中央部に位置し、ヘアピン部2cは機械室1の長手側から見て左右方向の中央部に位置するように設置されている。これにより、空気熱交換器2のヘアピン部2cのメンテナンスが従来に比べてやりやすい利点がある。
 第1から第4の空気熱交換器2A~2Dは、機械室1の上に置かれた外向きに傾いた上面を有する熱交換器ベース21(図4、図5参照)の上にゴムシート21aを挟み、熱源ユニット100あるいは機械室1の短手側から見て略V字状になるように上側の間隔を下側の間隔よりも広げて図1に示すように対向させて設置される。隣り合う空気熱交換器2相互の外側面の隙間は、空気熱交換器側面パネル22a(長手面)と空気熱交換器側面パネル22b(短手面)で塞がれている。空気熱交換器2の下部は熱交換器ベース21に、空気熱交換器支持金(長手面)23a(図4参照)と空気熱交換器支持金(短手面)23bを介して固定されており、空気熱交換器2の上部は熱源ユニット筺体の天枠29(図1参照)に直接もしくは天枠29と空気熱交換器2を連結する図示されていない連結具を介して固定されている。
 また、熱源ユニットの筺体を構成する天枠29に設置されたファン装置4は、図1、図3に示すように、ファン40、ファン40を駆動するファンモータ41、ファンモータ41を支持するファンモータ支持部材42、ファン40の上部に設けられたファンガード43、ファンガード43が取り付けられたベルマウス44などからなっており、ベルマウス固定部材45を介して筺体天枠29に取り付けられている。熱交換器ベース21、第1から第4の空気熱交換器2A~2D、空気熱交換器側面パネル22a、22b、及びファン装置4などで囲まれた内側空間には送風機室5が形成されている。
 機械室上部梁12は機械室台枠13に取り付けられた機械室門柱131と機械室中間柱132により支持、固定されており、機械室台枠13、機械室門柱131および機械室中間柱132によって輪郭が囲われた面を塞ぐように、機械室パネル(長手面)141、機械室パネル(短手面)142が取り付けられる。また機械室1の長手方向中央部には圧縮機などを含む冷媒回路が設置され、機械室1の長手方向の一端部側には冷凍サイクルを構成する熱源側の冷媒回路と、利用側の伝熱流体の循環路との間で熱交換を行うように形成されたチラー装置の熱交換装置3が配置され、機械室1の長手方向の他端部側には冷媒回路11を制御する機能を有する制御盤群17が配置され、それら各構成部材は何れも台枠13に固定されている。
 熱交換器ベース21は熱源ユニット短手側からみて上辺が熱源ユニット内側に傾いた構造を有する機械室上部梁12の上に、機械室1内部に傾けられて設置された送風機室ドレン集積板15を挟んで固定される。送風機室ドレン集積板15の熱源ユニット中央側端部の下方には送風機室ドレン樋16が熱源ユニット長手方向に傾けて設置されており、その下流部にドレン排出口16a(図7(b)参照)が設けられている。なお、寒冷地等、低温環境で使用される場合には、送風機室ドレン集積板15並びに送風機室ドレン樋16の下面にヒータ(図示省略)が貼り付けられる。
 図8は図2の熱源ユニットを長手方向反対側から見た斜視図、図9は図8の熱交換装置3の具体例を示す図であり、(a)は図8の視点Cから見た図、(b)は図8の視点Dから見た図、(c)は機械室内に利用側のポンプを設置した例を示す図である。図10は図1の熱源ユニットにおけるファンの配置を先行例と比較して説明する図であり、(a)は実施の形態1の場合、(b)は先行例の場合である。
 機械室1の内部に設置された冷媒回路11は、本実施の形態1では各空気熱交換器2に対して互いに独立した系統の冷媒回路が並置されるように構成されている。このため圧縮機なども各空気熱交換器2に対応して合計4台設けられている。また、熱源ユニット100の長手方向の一端部側に設置された熱交換装置3は、熱源ユニット100の外部に設備された図示していない熱源の利用側から供給される例えば、水・不凍液等の伝熱流体と、冷媒回路11を構成する冷凍サイクルの冷媒との間で熱交換するためのプレート熱交換器群からなっている。なお、この場合の熱交換装置3は水熱交換器などとも呼称される。
 熱交換装置3は、図9の例ではプレート熱交換器接続用配管32で流路を連結された複数のプレート熱交換器31A、31Bを用いて構成されている。この例では、2つのプレート熱交換器を並列化したものを直列に接続するように設置されている。その熱交換装置3の1次側は熱源側の冷媒回路11に対して接続管11a、11bによって接続され、2次側は利用側に伝熱流体を送る送給管34と利用側から戻る伝熱流体を受入れる戻り管33が外部に伸びる形で接続され、熱源側と利用側で循環されるように構成されている。なお、この例では互いに独立した4系統の冷凍サイクルを有する冷媒回路が設置されているので、熱交換装置3における接続管11a、11bは、その熱交換装置3の内部に互いに独立して形成された流路に繋がる4組が設けられている(詳細図示省略)。また、伝熱流体の循環用の供給動力が熱源ユニット設置場所の設備で準備ができない場合は、図9(c)に示すように、戻り管33の取り付け部に液体ポンプ35が連結された形態での製品提供がなされる。
 次に上記のように構成された実施の形態1の動作について説明する。冷媒回路11を動作させ、空気熱交換器2の上部に取り付けられたファンモータ41を作動させ、ファン40を回転させることにより、外気が空気熱交換器2の外側の側面部から空気熱交換器2の詳細図示されていない多数のフィンの間を通過して、短手方向から見てV字状に対向された空気熱交換器2で囲まれた空間からなる熱源ユニットの送風機室5の内部へと取り込まれる。取り込まれた外気は更にベルマウス44の口から熱源ユニット100の上部に向かって排出される。この動作により、冷媒回路11から送られてきた冷媒と空気熱交換器2の側面の周囲の外気が熱交換され、熱交換された外気は熱源ユニット上部へと排出される。
 ここで熱交換された冷媒は冷媒回路11内に含まれる熱交換装置3で戻り管33(図9参照)を介して供給される水、不凍液等の伝熱流体と熱交換され、冷媒は冷媒回路11内に再び戻り、外部から供給された伝熱流体は送給管34を介して外部へと排出される。なお、伝熱流体の外部からの供給にあたり、伝熱流体供給の動力源を利用側で準備できない場合、図9(c)に示すように戻り管33に液体ポンプ35が介挿され、熱源ユニット側でその液体ポンプ35を稼働させることにより伝熱流体の外部からの供給・循環を行う。
 なお、冷媒回路11内に四方弁を設け、圧縮機で圧縮された冷媒を空気熱交換器2と熱交換装置3に通流させる順路を逆にすることで、外部から供給される伝熱流体は冷却および加熱の両方を行うことができる。
 本熱源ユニットは室内および屋外両方への設置が想定されており、屋外へ設置した場合、雨や雪がベルマウス44を介して送風機室5内に入り込むこととなる。また、熱源ユニット周囲の外気温度が摂氏0度程度以下の低温である場合、利用側から供給された伝熱流体を加熱する暖房運転を継続して行うと、外気中に含まれる水蒸気が空気熱交換器2の表面で凝縮し、更に凍ることで霜が生成される。この霜は空気熱交換器2での外気の通過を妨げ、熱源ユニット100の性能を低減させてしまうので、性能維持のための制御として、一時的に冷房運転に切り替えられる。冷房運転を行うことで空気熱交換器2の表面温度が上昇するため、空気熱交換器2の表面に付いた霜が溶け外気の通過が通常通りになる。この場合も、霜が融けてできた大量の水が送風機室内の下部方向に滴下する。
 このようにして送風機室5内に入り込んだ雨水や除霜運転による水は直接、もしくは熱交換器ベース21の上面を伝い送風機室ドレン集積板15へと落下する。送風機室ドレン集積板15は熱源ユニット100の短手方向中心に向けて下るように傾いているので、水は送風機室ドレン集積板15に沿って熱源ユニット短手方向中心側に流れていき、送風機室ドレン樋16へと落下する。送風機室ドレン樋16は熱源ユニット長手方向に傾いており、送風機室ドレン樋16の下流側に取り付けられたドレン排出口16aから水が排出される。なお、使用環境が寒冷地等の気温が低い環境となる場合、送風機室ドレン集積板15と送風機室ドレン樋16の下面側にヒータを貼り付け、温度センサによる運転制御を行うように構成できる。送風機室ドレン集積板15と送風機室ドレン樋16に流れ込んできた水が凍るような低温環境である場合は、水の凍結を防ぐため図示していないヒータを作動させる運転を行う。
 上記のように、実施の形態1によると、冷媒回路11における冷凍回路の1系統に対して連結される空気熱交換器2は単一であるので、冷媒の分配が不要であるため、先行例1のように1系統の冷媒回路で複数の空気熱交換器を用いる場合と比べて冷媒回路を構成する空気熱交換器の個数、配管部品の個数、筺体部品の個数等、組み立てに必要な部品点数を削減することができ、組立工数も減らすことができるので、より低コストでの生産が可能となる。また、空気熱交換器側面パネル(長手面)22a、空気熱交換器側面パネル(短手面)22b等の空気熱交換器2以外の部分での空気の流れを塞ぐためのパネル類の個数なども減らすことができるので、併せて、より低コストにできる。また、冷媒の分配による圧損を回避することができるので、熱源ユニットの性能向上につながる。
 また、L字状の空気熱交換器2は曲げ箇所が1か所であるため、曲げ加工が従来よりも容易であるという利点がある。また、空気熱交換器2は性能向上のため、複数列を重ねて利用することが多く、それぞれの列の空気熱交換器はヘッダ側でまとめて固定される。そのため、複数列重ねた空気熱交換器を曲げる場合は、曲げR部の内側と外側で生じる経路差を吸収するために、一般に固定されたヘッダ側をつかみ、ヘヤピン側の端部をずらしながら曲げる。先行例のようなコ字状の空気熱交換器を製造するためには、2回の曲げ加工が必要で、一回目の曲げは本発明の空気熱交換器の曲げと同様にヘッダ側をつかんで曲げられるが、二回目の曲げ加工を行う際には、一回目の曲げに比べて長さが長い平板部分を持ち上げて曲げる必要があるため、本発明の場合のように一回の曲げで済む場合と比べて曲げ機のトルクや加工のためのスペースがより多く必要となる。
 また、熱源ユニットにおける空気熱交換器2の形状、配置とファン40の位置関係は、実施の形態1の場合は図10(a)に示すようになっているのに対し、先行例1の場合は図10(b)に示すようになっている。なお、実線の円はファン40、破線の円はそのファン40の直径を大きくしようとした場合を模式的に示している。まず、先行例1の場合、長手方向において隣り合う空気熱交換器の通風部分が近い位置で対向しているのに対し、実施の形態1では対向する部分がないので、空気熱交換器2をより効率的に利用することが可能となる。また、性能向上のため例えばファン径を大きく調整する場合、先行例1では破線で示すようにある程度ファン径を大きくした場合、空気熱交換器2の端部がファンの直下に配置されることとなるため、ファン効率の低下が懸念されるが、例えば図10(a)に示すように、本発明の空気熱交換器の配置では送風機室の長辺部の途中で空気熱交端部が送風機室内側へ折りこまれていないので、空気熱交換器がファン40の直下に位置しない範囲内でのファン径増大設計を先行例より優位に行うことができるので、ファン効率の低下を気にすることなく性能設計することが可能となる。
 また、先行例2のような構成の熱源ユニットに対し、ユニット底面積あたりの空気熱交換器面積がより広く確保できるため、性能向上が見込まれる。さらに、大容量の熱源を得るため、熱源ユニットを熱源ユニット短手方向へ複数連結設置した際に、隣り合う熱源ユニットにより作られる空気熱交換器へ空気が流れる風洞においては、ユニット長手方向の中央に近づくにつれ空気熱交換器が外気を吸い上げる際の圧損が大きくなるが、独立冷媒回路に対応した空気熱交換器がユニット長手方向に対称に設置されているため、空気熱交換器に負荷する圧損分布が全ての空気熱交換器で同様となり、安定した効率的な出力制御が容易となる。
 また、空気熱交換器2のヘッダ部2dが、先行例では図10(b)に示すように、コ字形状の熱交換器を対向させたものを列設するため、熱源ユニットの短手側ではない奥まった部分に配置されてしまうヘッダが存在するのに対し、本発明では図1(b)や図10(a)に示すように、アクセスしやすい短手側にのみヘッダ部2dを配置することが可能であることから連結設置時の空気熱交換器2のヘッダのメンテナンス性が従来と比べて向上する。また、短手側から見た機械室1の形状が先行例1では底辺が長い台形状であるのに対し、本発明では長方形状なので、機械室の外で作業するスペースをより広くできるので、機械室のメンテナンスが容易となる。
 また、先行例2のような曲げ部のない平面状の空気熱交換器を、長方形の機械室の長手側、短手側の何れか一方に設置するものと比較して、本発明では長方形の機械室の短手側にも空気熱交換器2の短辺部2bが配置されることから、熱源ユニットの同一設置面積に対して空気熱交換器の面積をより大きくすることが可能となるので、より性能のよい熱源ユニットを得ることが可能となる。
 また、空気熱交換器の総面積を確保しつつ効率的に利用することを可能とし、さらにファン性能を効率的に利用できる範囲でのファン径調整を容易にすることが可能となり、性能向上のためにファン径を大きくする場合の調整代について、ファン効率を落とさない範囲をより大きく確保することができる。
 また、実公平1-16990号公報に開示された空気調和機のようなL字状に折り曲げた空気熱交換器を垂直方向に立てた状態でコの字状に配置したものを対とし、コの字開口部を互いに向け合う形で長方形上に空気熱交換器を配置するものと比較して、本発明では空気熱交換器のヘッダ側上部のスペースが確保されるため、空気熱交換器のヘッダを上部に配置すれば空気熱交換器の総面積を確保しつつヘッダのメンテナンススペースを確保することができる。
実施の形態2.
 図11は本発明の実施の形態2による熱源ユニットを熱源ユニットの短手側の方向から見た図、図12は図11の熱源ユニットの連結状況を模式的に示す図であり、(a)は熱源ユニットの長手側から見た図、(b)は熱源ユニットの上面図である。図13は図11に示す熱源ユニットの中央部の空気熱交換器での吸込み圧損分布を先行例と比較して説明する図であり、(a)は実施の形態2の場合、(b)は先行例の場合である。なお、図13において、(a)、(b)の何れも上段側は熱源ユニットの空気熱交換器を上から見た模式図、下段側は連結された熱源ユニットを機械室の短手側から見た模式図である。
 図において、熱源ユニット100は、実施の形態1と同様の複数(ここでは3ユニット)の熱源ユニット100A~100Cが、短手方向に連結するように並置され、それぞれ主戻り管63及び主送給管64に接続されて成っている。各熱源ユニット100A~100Cの戻り管33は全てそれよりも流路径が大型の主戻り管63に連結され、送給管34は全てそれよりも流路径が大型の主送給管64に連結されている。また、これら主戻り管63と主送給管64は大量の熱を使用する図示していない利用側の設備と連結されている。
 このような設置形態の熱源ユニット100を用いて熱を利用側の設備に供給する場合、連結された熱源ユニットは、トータルで必要な熱量を供給できるように調整しながら運転制御される。また、例えば一時的に必要な熱量が大きく減少する場合は、その供給量に合わせて必要な台数だけ熱源ユニットを動かすことで熱量の調整が可能となる。
 以下、通常の運用である設備された全ての熱源ユニットを動かす場合を例に実施の形態2の動作について説明する。
 連結された3つの熱源ユニット100A~100Cの内、両端以外の熱源ユニット100Bでは、空気熱交換器2が熱交換のために吸い込む空気は、図13(a)の矢印で示すように、熱源ユニットの短手側にできた隣接する熱源ユニットの隙間から熱源ユニット長手方向に流れていき、空気熱交換器2の長辺部2a各部で、長方形の枠状に形成された熱源ユニット送風機室5の内部に吸い込まれる。
 このような構成によると、図13(b)に示す先行例1の連結設置形態と、本発明について隣接する熱源ユニットで構成される空気の吸込みスペースを比較すると、先行例1では空気の吸込みスペース面を形成する五角形Eの底辺が隣接する辺と作る角度が鈍角であるのに対し、本発明では垂直にすることができるため、本発明の方が空気の吸込みスペースをより広く確保できるため、空気の吸込みで発生する圧損が減少し、より効率の高い運転が可能となる。
 また、熱源ユニット群の連結方向の両端部以外のユニットの空気熱交換器、ここでは連結した3台中、中央部の熱源ユニット100Bの空気熱交換器2への吸込み圧損は図13に「大」、または「小」のような文字によって、相対的な違いを示すように、本発明の実施の形態2の場合、及び先行例1の場合共に、吸込み部に近い部分では「小」、吸込み部から遠い部分においては「大」のような分布となる。なお、L字状の太い実線で示したものは本発明で用いるL字状に形成された1基の空気熱交換器を示し、コ字状の太い実線で示したものは先行例1で示されたコ字状に形成された1基の空気熱交換器を示している。そして、それらの空気熱交換器を囲む細い破線は、同一の破線で囲われた中にある空気熱交換器で一つの系統の冷媒回路が形成されていることを仮想線として示している。また、熱源ユニット群の連結方向の両端部のユニットの熱交換器、ここでは連結した3台中、両端部の熱源ユニット100A、100Cについて、連結方向両端部に該当する空気熱交換器2への吸込み圧損は、その他の空気熱交換器2と比較して少なくなるので、相対的な違いを示すよう「無」と記載している。
 図13から明らかなように、(a)に示す実施の形態2の熱源ユニットでは、中央に位置する熱源ユニット100Bを構成する4系統の冷媒回路の空気熱交換器は、その全てが互いに同一の吸込み圧損となっているのに対して、(b)に示す先行例1の熱源ユニットでは、中央に位置する熱源ユニットを構成する4系統の冷媒回路の内、外気の吸込み側に位置する図における上下両端の2系統の熱源ユニットの空気熱交換器の吸込み圧損は「小」である一方、図における上下方向の中央部の2系統の熱源ユニットの空気熱交換器の吸込み圧損は「大」となっており、冷媒系統でばらつきが生じている。
 本発明の実施の形態2では各冷媒回路の圧縮機回転数等の制御を揃えることで、各冷媒回路によらず出力を同等にすることができる。このため、運転制御を行う際のパラメータの検討は冷媒回路11の1系統分の検討を行うだけで安定した出力のコントロールが可能となる。また、圧縮機等の要素機器の運転効率を含め、熱源ユニット全体の運転効率を最適化する設計を行う際、先行例1では各冷媒回路系統に対応する空気熱交換器の圧損分布状況が異なるので、複数の冷媒回路系統の状況を複合的に考慮する必要があるが、本発明では複数の冷媒回路系統で空気熱交換器に働く圧損の状態が同等になるので、運転効率の設計は冷媒回路の1系統分の範囲内で済み、簡易に性能設計することが可能となる。更に、先行例1では複数の冷媒回路系統の出力の和が大きくなるような制御設計を行う必要があるのに対し、本発明では冷媒回路の1系統のみでの制御設計で済むので、より効率的な出力が得られる制御設計が可能となる。そして、空気熱交換器への吸込み圧損が従来よりも少なくなり、より効率的な熱源ユニットの運転が可能となる。
実施の形態3.
 実施の形態2に示す各冷媒回路11をコントロールする制御盤群17は、通常は図15(a)に示す通り、各制御系統に対応した個別の制御盤が集められる形で構成されているが、例えば図15(b)に示す通り、各制御系統を制御する制御盤を共通化する形態をとると、実施の形態2に示した通り冷媒回路1系統の制御を共通化しても効率的な出力を得られるため、各冷媒回路11のコントロール機構を個別に割り当てた場合と比較して、出力効率を維持したままコストを低減することが可能となる。
 また、実施の形態2に示す各冷媒回路11の制御方法の場合、熱源ユニット群の連結方向の両端部のユニットの空気熱交換器、ここでは連結した3台中、両端部の熱源ユニット100A、100Cの空気熱交換器2への吸込み圧損は連結の外側の面と内側の面で異なるため、両端部の熱源ユニットでは両端部以外の熱源ユニットと比較して、運転効率が低下することになる。連結ユニット数が多ければ連結した熱源ユニット全体の運転効率の低下の度合いは小さくすることができるが、連結数が少ない場合や、要求される運転効率の水準が高い場合には、図15(c)に示す通り熱源機長手方向の同一面に空気熱交換器が配置された冷媒回路同士のみでコントロール機構を共通化することによって、コントロール機構の簡略化をある程度実現しつつ実施の形態2よりも効率的な運転が可能となる。
実施の形態4.
 図14は本発明の実施の形態4による熱源ユニットの連結状況を模式的に示す図であり、(a)は熱源ユニットの長手側から見た図、(b)はその上面図である。図において、熱源ユニット100は、実施の形態1と同様の熱源ユニット100A~100Cが短手方向へ3基連結されており、その点は実施の形態2と同様である。実施の形態2と異なる点は、利用側に対する主送給管64と利用側からの主戻り管63が機械室1における短手方向に該機械室を貫通するように設置され、かつ主送給管64と主戻り管63の短手方向の各端部には、熱源ユニット100A~100Cを連結するときに隣り合う主送給管64または主戻り管63を相互に連結するための接続部60が設けられていることである。これにより、この実施の形態4では図14(b)に示すように、主送給管64と主戻り管63が連結された各熱源ユニットを直線状に貫通するように設置されている。なお、各熱源ユニットの送給管34と戻り管33(図9参照)は、機械室1の内部でそれぞれ対応する主送給管64と主戻り管63に接続される。
 上記のように構成された実施の形態4では、各熱源ユニット100A~100Cの機械室1に内蔵された図示していない水配管ヘッダ同士が当該機械室の内部で、対応する主送給管64または主戻り管63に連結されている。このような構成であれば従来は熱源ユニットが連続設置されている空間の外側に突出していた熱源を付加する伝熱流体の供給排出の配管を、熱源ユニットが連続設置されている空間内に納めることができるので設置スペースの削減が可能となる。また、本発明では熱源ユニットに内蔵された配管を接続部60で連結させるだけで良いので、必要な工数や、部品点数を削減することができるので、現地の取り付け作業の簡易化、更に取り付けに必要な配管等の更なるコスト低減が可能となる。
 なお、本発明は、その発明の範囲内において、各実施の形態の一部または全部を自由に組合せたり、各実施の形態を適宜、変形、省略することが可能である。
 例えば、上記実施の形態では、4基の空気熱交換器2A~2Dを互いに独立した4系統の冷凍回路に接続した例で説明したが、必ずしもそれに限定されず、例えば4基の空気熱交換器2A~2Dを互いに独立した2系統の冷凍回路に2基ずつ接続するなど、適宜変更しても良い。
 また、空気熱交換器2のヘアピン部2cの位置とヘッダ部2dの位置を逆にすることもできる。その場合、ヘッダ部2dのメンテナンス性は悪くなるものの、ヘッダ部2dの位置が機械室1の長手方向中央部となるため、その中央部に設置された冷媒回路11の圧縮機などとの距離が近くなるので冷凍回路の配管長を短くできるという利点がある。
 1 機械室、11 冷媒回路、17 制御盤群、2(2A~2D) 空気熱交換器、2a 長辺部、2b 短辺部、2c ヘアピン部、2d ヘッダ部、3 熱交換装置、33 戻り管、34 送給管、40 ファン、5 送風機室、60 接続部、63 主戻り管、64 主送給管、100(100A、100B、100C) 熱源ユニット。

Claims (9)

  1.  所定数の板状の放熱フィンをその板厚方向に間隔をあけて配置し、冷凍サイクルにおける冷媒が通流される複数のチューブを、前記放熱フィンに対してその板厚方向に挿通させて前記放熱フィンと結合させた複数の空気熱交換器を、平面視長方形状の機械室の上部に、短手方向からみてV字状になるように上部側の間隔を広げて左右に対向配置した熱源ユニットであって、前記空気熱交換器は前記チューブの延在方向の一端部側が折り曲げられて長辺部と短辺部からなるL字状に形成された第1から第4の空気熱交換器からなり、その第1から第4の空気熱交換器の設置形状が平面視長方形の枠状となるように、前記短辺部を何れも前記平面視長方形状の機械室の短手側に配設したことを特徴とする熱源ユニット。
  2.  前記第1から第4の空気熱交換器における前記短辺部の端部にはヘッダ部が設けられ、前記長辺部の端部にはヘアピン部が設けられていることを特徴とする請求項1記載の熱源ユニット。
  3.  前記第1から第4の空気熱交換器は、互いに独立した系統の冷凍回路に対応させて接続され、その冷凍回路毎に稼働可能に構成されていることを特徴とする請求項1または請求項2記載の熱源ユニット。
  4.  前記機械室は直方体状に形成されていることを特徴とする請求項1から請求項3の何れか一項に記載の熱源ユニット。
  5.  前記冷凍サイクルを構成する熱源側の冷媒回路と、利用側の伝熱流体の循環路との間で熱交換を行うように形成されたチラー装置の熱交換装置が前記機械室の内部に設置されていることを特徴とする請求項1から請求項4の何れか一項に記載の熱源ユニット。
  6.  前記利用側の循環路を構成する、前記利用側への主送給管と前記利用側からの主戻り管が、前記機械室の短手方向に該機械室を貫通するように設置され、かつ前記主送給管と前記主戻り管の短手方向の各端部は、前記循環路と連結可能な接続部が設けられていることを特徴とする請求項5記載の熱源ユニット。
  7.  請求項1から請求項6の何れか一項に記載の前記熱源ユニットを短手方向に複数連結してなることを特徴とする熱源ユニット。
  8.  複数連結された熱源ユニットの各ユニットにおいて、各冷媒回路の制御盤のコントロール機構を、熱源機長手方向の同一面に空気熱交換器が配置された冷媒回路同士で共通のものとしたことを特徴とする請求項7記載の熱源ユニット。
  9.  複数連結された熱源ユニットの各ユニットにおいて、各冷媒回路の制御盤のコントロール機構を各冷媒回路で共通のものとしたことを特徴とする請求項7記載の熱源ユニット。
PCT/JP2016/062527 2015-04-21 2016-04-20 熱源ユニット WO2016171177A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017514166A JP6433582B2 (ja) 2015-04-21 2016-04-20 熱源ユニット
US15/565,246 US10436458B2 (en) 2015-04-21 2016-04-20 Heat source unit
CN201680023038.8A CN107532805A (zh) 2015-04-21 2016-04-20 热源单元
EP16783198.1A EP3287706B1 (en) 2015-04-21 2016-04-20 Heat source unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015086397 2015-04-21
JP2015-086397 2015-04-21

Publications (1)

Publication Number Publication Date
WO2016171177A1 true WO2016171177A1 (ja) 2016-10-27

Family

ID=57143109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062527 WO2016171177A1 (ja) 2015-04-21 2016-04-20 熱源ユニット

Country Status (5)

Country Link
US (1) US10436458B2 (ja)
EP (1) EP3287706B1 (ja)
JP (2) JP6433582B2 (ja)
CN (1) CN107532805A (ja)
WO (1) WO2016171177A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012619A1 (ja) * 2017-07-12 2019-01-17 三菱電機株式会社 熱源ユニット
JPWO2021024405A1 (ja) * 2019-08-07 2021-02-11
IT202100030377A1 (it) * 2021-12-01 2023-06-01 Hiref S P A Raffreddatore di liquidi ad aria

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6269717B2 (ja) * 2016-04-21 2018-01-31 ダイキン工業株式会社 熱源ユニット
ES2930282T3 (es) * 2016-05-03 2022-12-09 Carrier Corp Disposición de intercambiadores de calor
US11454420B2 (en) * 2019-02-06 2022-09-27 Johnson Controls Tyco IP Holdings LLP Service plate for a heat exchanger assembly
EP4012291A4 (en) * 2019-08-07 2022-08-10 Mitsubishi Electric Corporation COOLING UNIT
EP3936784A1 (en) * 2020-07-07 2022-01-12 Carrier Corporation Coil cleaning easy access
JP2024010814A (ja) * 2022-07-13 2024-01-25 三菱重工業株式会社 熱交換器ユニット、位置決め方法、及び、熱交換器ユニットの組立方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592809B2 (ja) * 1976-07-06 1984-01-20 三菱電機株式会社 冷房装置
JPS6229851A (ja) * 1985-07-30 1987-02-07 Toshiba Corp 空気調和機
JPH0116990Y2 (ja) * 1983-07-19 1989-05-18
JPH0812023B2 (ja) * 1984-07-24 1996-02-07 マルチスタック インターナショナル リミテッド モジュール式冷凍装置
JPH0914698A (ja) * 1995-06-23 1997-01-17 Sharp Corp 空気調和機の室外機
JPH10185240A (ja) * 1996-10-22 1998-07-14 Daikin Ind Ltd 冷凍装置の制御装置
JP2011102662A (ja) * 2009-11-10 2011-05-26 Mitsubishi Electric Corp 空調室外機
WO2011099629A1 (ja) * 2010-02-15 2011-08-18 東芝キヤリア株式会社 チリングユニット
JP2012013302A (ja) * 2010-06-30 2012-01-19 Nippon Itomic Co Ltd ヒートポンプ式の熱源機
WO2013118381A1 (ja) * 2012-02-06 2013-08-15 日立アプライアンス株式会社 熱交換ユニット及び熱交換装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021642Y2 (ja) * 1980-06-24 1985-06-27 太産工業株式会社 電磁ポンプ駆動回路
EP0095865A3 (en) 1982-06-01 1984-02-08 Celanese Corporation Thermoformed shaped articles of thermotropic liquid crystal polymers and methods of production thereof
JPS6021642A (ja) * 1983-07-15 1985-02-04 Nippon Telegr & Teleph Corp <Ntt> 移動通信呼処理方式
JPH072859U (ja) * 1993-05-28 1995-01-17 ヤンマーディーゼル株式会社 熱交換器
US6969422B2 (en) * 2000-09-20 2005-11-29 Goodrich Corporation Inorganic matrix composition and composites incorporating the matrix composition
JP2003240276A (ja) * 2002-02-13 2003-08-27 Daikin Ind Ltd 空気調和機用室外機
JP2004183906A (ja) 2002-11-29 2004-07-02 Fujitsu General Ltd 空気調和機
US7921904B2 (en) * 2007-01-23 2011-04-12 Modine Manufacturing Company Heat exchanger and method
KR20100015374A (ko) * 2007-04-05 2010-02-12 존슨 컨트롤스 테크놀러지 컴퍼니 열교환기
US7942020B2 (en) * 2007-07-27 2011-05-17 Johnson Controls Technology Company Multi-slab multichannel heat exchanger
JP4937240B2 (ja) 2008-12-10 2012-05-23 三菱電機株式会社 冷凍サイクル装置
KR20100121961A (ko) * 2009-05-11 2010-11-19 엘지전자 주식회사 공기조화기
CN103822394A (zh) 2009-07-28 2014-05-28 东芝开利株式会社 热源单元
JP2011158109A (ja) 2010-01-29 2011-08-18 Sanyo Electric Co Ltd 冷凍機の室外ユニット
JP5517801B2 (ja) 2010-07-13 2014-06-11 三菱電機株式会社 熱交換器及びこの熱交換器を搭載したヒートポンプシステム
JP5830602B2 (ja) * 2012-04-04 2015-12-09 東芝キヤリア株式会社 複合二元冷凍サイクル装置
JP5951475B2 (ja) * 2012-12-27 2016-07-13 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和装置及びそれに用いられる室外熱交換器
JP2015055410A (ja) * 2013-09-11 2015-03-23 ダイキン工業株式会社 熱交換器の製造方法、熱交換器及び空気調和機
US10837720B2 (en) * 2013-11-06 2020-11-17 Trane International Inc. Heat exchanger with aluminum tubes rolled into an aluminum tube support
CN103759553B (zh) 2014-02-17 2016-05-11 丹佛斯微通道换热器(嘉兴)有限公司 换热装置和热源单元
CN103925742B (zh) * 2014-04-18 2016-06-29 丹佛斯微通道换热器(嘉兴)有限公司 换热器及其制造方法、换热模块、换热装置和热源单元
KR20160131577A (ko) * 2015-05-08 2016-11-16 엘지전자 주식회사 공기조화기의 열교환기
US20170130974A1 (en) * 2015-11-09 2017-05-11 Carrier Corporation Residential outdoor heat exchanger unit

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592809B2 (ja) * 1976-07-06 1984-01-20 三菱電機株式会社 冷房装置
JPH0116990Y2 (ja) * 1983-07-19 1989-05-18
JPH0812023B2 (ja) * 1984-07-24 1996-02-07 マルチスタック インターナショナル リミテッド モジュール式冷凍装置
JPS6229851A (ja) * 1985-07-30 1987-02-07 Toshiba Corp 空気調和機
JPH0914698A (ja) * 1995-06-23 1997-01-17 Sharp Corp 空気調和機の室外機
JPH10185240A (ja) * 1996-10-22 1998-07-14 Daikin Ind Ltd 冷凍装置の制御装置
JP2011102662A (ja) * 2009-11-10 2011-05-26 Mitsubishi Electric Corp 空調室外機
WO2011099629A1 (ja) * 2010-02-15 2011-08-18 東芝キヤリア株式会社 チリングユニット
JP2012013302A (ja) * 2010-06-30 2012-01-19 Nippon Itomic Co Ltd ヒートポンプ式の熱源機
WO2013118381A1 (ja) * 2012-02-06 2013-08-15 日立アプライアンス株式会社 熱交換ユニット及び熱交換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3287706A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012619A1 (ja) * 2017-07-12 2019-01-17 三菱電機株式会社 熱源ユニット
JPWO2019012619A1 (ja) * 2017-07-12 2020-02-06 三菱電機株式会社 熱源ユニット
GB2577431A (en) * 2017-07-12 2020-03-25 Mitsubishi Electric Corp Heat source unit
GB2577431B (en) * 2017-07-12 2021-05-12 Mitsubishi Electric Corp Heat source unit
JPWO2021024405A1 (ja) * 2019-08-07 2021-02-11
WO2021024405A1 (ja) * 2019-08-07 2021-02-11 三菱電機株式会社 チリングユニット及びチリングユニットシステム
JP7209845B2 (ja) 2019-08-07 2023-01-20 三菱電機株式会社 チリングユニット及びチリングユニットシステム
IT202100030377A1 (it) * 2021-12-01 2023-06-01 Hiref S P A Raffreddatore di liquidi ad aria
EP4191184A1 (en) * 2021-12-01 2023-06-07 Hiref S.p.A. Air cooler for liquids

Also Published As

Publication number Publication date
JP6433582B2 (ja) 2018-12-05
EP3287706B1 (en) 2023-03-15
JPWO2016171177A1 (ja) 2017-07-13
EP3287706A1 (en) 2018-02-28
JP2019015503A (ja) 2019-01-31
CN107532805A (zh) 2018-01-02
US10436458B2 (en) 2019-10-08
US20180080667A1 (en) 2018-03-22
EP3287706A4 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
JP6433582B2 (ja) 熱源ユニット
JP5581671B2 (ja) 空調室外機
US11274838B2 (en) Air-conditioner outdoor heat exchanger and air-conditioner including the same
US11346609B2 (en) Heat exchanger
JP5500725B2 (ja) ヒートポンプ式の熱源機
US9234673B2 (en) Heat exchanger with subcooling circuit
US10047962B2 (en) Indoor unit for air-conditioning apparatus
WO2019008664A1 (ja) 冷凍サイクル装置
JP2014206330A (ja) チラー装置
JP6553981B2 (ja) ヒートポンプ応用機器の熱交換装置
JP6104378B2 (ja) 空気調和装置
EP3382287B1 (en) Fan coil unit
US20170284682A1 (en) Indoor unit for air-conditioning apparatus
JP6624851B2 (ja) 空気調和機およびその室内機
EP3144624A1 (en) Heat exchanger, and refrigeration cycle device provided with heat exchanger
JP6230852B2 (ja) 空気調和機及び空気調和機用熱交換器
KR102076679B1 (ko) 열교환기 및 자연 냉매 순환식 공기 조화기
WO2024069861A1 (ja) 熱交換装置および冷却装置
WO2021234960A1 (ja) 空気調和機の室外機
WO2024069869A1 (ja) 熱交換装置および冷却装置
JP5817058B2 (ja) 熱交換ユニット及び温度調整装置
US20230221013A1 (en) Multiple Fan HVAC System with Optimized Fan Location
US20230221012A1 (en) Multiple Fan HVAC System with Optimized Fan Location
US20240175636A1 (en) Heat exchanger and air conditioning system
WO2021234957A1 (ja) 熱交換器及び該熱交換器を備えた空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017514166

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15565246

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE