WO2016171083A1 - 導電パターン形成部材の製造方法 - Google Patents

導電パターン形成部材の製造方法 Download PDF

Info

Publication number
WO2016171083A1
WO2016171083A1 PCT/JP2016/062150 JP2016062150W WO2016171083A1 WO 2016171083 A1 WO2016171083 A1 WO 2016171083A1 JP 2016062150 W JP2016062150 W JP 2016062150W WO 2016171083 A1 WO2016171083 A1 WO 2016171083A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive pattern
forming member
pattern forming
resin
member according
Prior art date
Application number
PCT/JP2016/062150
Other languages
English (en)
French (fr)
Inventor
水口創
河野友孝
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020177025586A priority Critical patent/KR101898955B1/ko
Priority to CN201680021542.4A priority patent/CN107430336B/zh
Priority to JP2016561876A priority patent/JP6150021B2/ja
Publication of WO2016171083A1 publication Critical patent/WO2016171083A1/ja
Priority to US15/684,469 priority patent/US10048583B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/12Esters of phenols or saturated alcohols
    • C08F222/20Esters containing oxygen in addition to the carboxy oxygen
    • C08F222/205Esters containing oxygen in addition to the carboxy oxygen the ester chains containing seven or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a method for manufacturing a conductive pattern forming member.
  • the display electrode formed in the display area of the capacitive touch panel is a transparent electrode made of ITO (indium tin oxide) or the like.
  • ITO indium tin oxide
  • a metal thin film such as ITO is formed on the base material by sputtering or the like, and a photoresist, which is a photosensitive resin, is further applied to the surface and exposed through a photomask.
  • etching and resist removal are performed.
  • Patent Documents 1 and 2 disclose Technology has also been devised.
  • peripheral wiring connected to the transparent electrode is formed around the display area.
  • a method of forming this peripheral wiring a method of finely processing a conductive paste having photosensitivity by a photolithography method is known (Patent Documents 3 to 7).
  • this conductive paste is used to form a peripheral wiring connected to a transparent electrode pattern formed from a base material on which the photosensitive resin layer and the transparent electrode layer are laminated, the photosensitivity formed on the base material It is necessary to apply the conductive paste to the surface of the resin layer and the transparent electrode layer before processing.
  • the conductive paste coating film is not exposed in the development process after the conductive paste is exposed through the photomask. Residues are not only generated when the portions are dissolved and removed, but ion migration between the formed conductive pattern and the photosensitive resin layer is regarded as a problem.
  • the present invention provides a method for producing a conductive pattern forming member that is excellent in ion migration resistance between a conductive pattern formed on a substrate and a photosensitive resin layer while suppressing generation of a residue in dissolution removal of an unexposed portion.
  • the purpose is to provide.
  • the present inventors have found that it is extremely effective in solving the above problems that the conductive particles used in the formation of the conductive pattern contain conductive particles that satisfy a certain condition. As a result, the present invention was completed.
  • conductive particles, double bonds, and carboxyl groups are formed on the surface of the layer A made of a resin having a carboxyl group (a) and the transparent electrode layer B formed on the substrate.
  • the composition C containing the resin (c) is applied to obtain a coating film C, a coating process, a drying process of drying the coating film C to obtain a dry film C, and the exposure of the dry film C.
  • a method for producing a conductive pattern forming member wherein the proportion of particles having a particle size of 0.3 to 2.0 ⁇ m in the conductive particles is 80% or more.
  • a conductive pattern forming member of the present invention it is possible to suppress the generation of residues in the dissolution and removal of unexposed portions, and to have an ion migration resistance with a layer made of a resin having a carboxyl group formed on a substrate. An excellent conductive pattern can be formed.
  • the ion migration resistance can be further enhanced by laminating OCA having a benzotriazole-based compound or an isobornyl skeleton.
  • conductive particles on the surface of the layer A formed of a resin (a) having a carboxyl group and a transparent electrode layer B formed on a base material and two A coating step of applying a composition C containing a resin (c) having a heavy bond and a carboxyl group to obtain a coating film C; and a drying step of drying the coating film C to obtain a dry film C.
  • a ratio of particles having a particle size of 0.3 to 2.0 ⁇ m in the conductive particles is 80% or more.
  • the coating step provided in the method for producing a conductive pattern forming member of the present invention is a step of obtaining a coating film C by coating the composition C on the surface of the resin layer A and the transparent electrode layer B.
  • the transparent electrode layer B is laminated on a layer A (hereinafter “resin layer A”) made of a resin (a) having a carboxyl group (hereinafter “resin (a)”). And the resin layer A is formed on the base material.
  • resin layer A made of a resin (a) having a carboxyl group (hereinafter “resin (a)”).
  • the base material on which the resin layer A is formed refers to a support for forming a transparent electrode layer, a conductive pattern or the like on the surface.
  • Examples of the base material include a rigid substrate such as glass, a glass epoxy substrate or a ceramic substrate, or a flexible substrate such as a polyester film or a polyimide film.
  • the resin layer A formed on the base material is a so-called photosensitive resin layer and functions as a photoresist for pattern formation of the transparent electrode layer B.
  • the resin (a) constituting the resin layer A has a carboxyl group in its molecular chain and is alkali-soluble.
  • Examples of the resin (a) include an acrylic copolymer, an epoxycarboxylate compound, a polyamic acid, or a siloxane polymer.
  • An acrylic copolymer or an epoxy carboxylate compound having a high visible light transmittance is preferable.
  • An acrylic copolymer having a carboxyl group can be obtained by copolymerizing an acrylic monomer and an unsaturated acid such as an unsaturated carboxylic acid as a copolymerization component.
  • acrylic monomer examples include acrylic acid (hereinafter “AA”), methyl acrylate, ethyl acrylate (hereinafter “EA”), 2-ethylhexyl acrylate, n-butyl acrylate (hereinafter “BA”), iso- Butyl acrylate, iso-propane acrylate, glycidyl acrylate, butoxytriethylene glycol acrylate, dicyclopentanyl acrylate, dicyclopentenyl acrylate, 2-hydroxyethyl acrylate, isobornyl acrylate, 2-hydroxypropyl acrylate, isodexyl acrylate, Isooctyl acrylate, lauryl acrylate, 2-methoxyethyl acrylate, methoxyethylene glycol acrylate, methoxydiethylene glycol acrylate , Octafluoropentyl acrylate, phenoxyethyl acrylate, stearyl acrylate, triflu
  • the unsaturated acid examples include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetate, and acid anhydrides thereof.
  • the acid value of the resulting acrylic copolymer can be adjusted by the amount of the unsaturated acid used as the copolymer component.
  • the epoxycarboxylate compound refers to a compound that can be synthesized using an epoxy compound and a carboxyl compound having an unsaturated double bond as starting materials.
  • Examples of the epoxy compound that can be a starting material include glycidyl ethers, alicyclic epoxy resins, glycidyl esters, glycidyl amines, and epoxy resins. More specifically, for example, methyl glycidyl ether, ethyl glycidyl ether, butyl glycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether Bisphenol A diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, bisphenol fluorenediglycidyl ether, biphenol diglycidyl ether, tetramethylbiphenol glycidyl ether, trimethyl
  • Examples of the carboxyl compound having an unsaturated double bond that can be used as a starting material include (meth) acrylic acid, crotonic acid, cinnamic acid, and ⁇ -cyanocinnamic acid.
  • the acid value of the epoxycarboxylate compound may be adjusted by reacting the epoxycarboxylate compound with the polybasic acid anhydride.
  • the polybasic acid anhydride include succinic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, itaconic anhydride, 3-methyltetrahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride, Examples include trimellitic anhydride or maleic anhydride.
  • An epoxy carboxylate compound is obtained by reacting a carboxyl group of an epoxy carboxylate compound whose acid value is adjusted with the above polybasic acid anhydride and a compound having an unsaturated double bond such as glycidyl (meth) acrylate. You may adjust the quantity of the reactive unsaturated double bond which has.
  • Urethane may be formed by reacting the hydroxy group of the epoxycarboxylate compound with a diisocyanate compound.
  • the diisocyanate compound include hexamethylene diisocyanate, tetramethylxylene diisocyanate, naphthalene-1,5-diisocyanate, tridenic diisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate, allyl cyanide diisocyanate, and norbornane diisocyanate.
  • the acid value of the resin (a) is preferably 50 to 250 mgKOH / g since the resin layer A functions as an alkali-soluble photoresist, and 60 to 150 mgKOH / g in order to further improve pattern processability. Is more preferable.
  • the acid value of the resin (a) can be measured according to JIS K 0070 (1992).
  • the visible light transmittance of the resin layer A is preferably 80% or more when the conductive pattern forming member manufactured by the manufacturing method of the present invention is a constituent element of the touch panel.
  • the transparent electrode layer B laminated on the resin layer A is not an entirely flat layer, but is an arbitrarily shaped pattern that is patterned using the function of the resin layer A as a photoresist. . That is, the transparent electrode layer does not completely cover the resin layer A, but the resin layer A is exposed at a portion where the pattern of the transparent electrode layer B is not formed.
  • the transparent electrode layer B consists only of a conductive component or contains a conductive component.
  • the conductive component constituting the transparent electrode layer B include indium, tin, zinc, gallium, antimony, titanium, zirconium, magnesium, aluminum, gold, silver, copper, palladium, tungsten, oxides of these metals, or carbon nanotubes. Is mentioned. More specifically, for example, indium tin oxide (hereinafter “ITO”), indium zinc oxide, indium oxide-zinc oxide composite oxide, aluminum zinc oxide, gallium zinc oxide, fluorine zinc oxide, fluorine Indium oxide, antimony tin oxide, or fluorine tin oxide may be used.
  • ITO indium tin oxide
  • ITO or fibrous silver (hereinafter referred to as “silver fiber”), which has high conductivity and visible light transmittance and is advantageous in terms of price, is preferable, and has high connection reliability with the conductive pattern C described later. Fiber is more preferred.
  • Examples of the method for forming the transparent electrode layer before pattern processing include a vacuum deposition method, a sputtering method, an ion plating method, and a coating method.
  • the thickness of the transparent electrode layer B is preferably 0.01 to 1.5 ⁇ m in order to achieve both good conductivity and visible light transmittance. Further, the visible light transmittance of the transparent electrode layer B is preferably 80% or more for the same reason as the resin layer A.
  • composition C applied to the surface of the resin layer A and the transparent electrode layer B contains conductive particles and a resin (c) having a double bond and a carboxyl group (hereinafter “resin (c)”). To do.
  • Examples of the conductive particles contained in the composition C include silver, gold, copper, platinum, lead, tin, nickel, aluminum, tungsten, molybdenum, chromium, titanium, indium, and alloys of these metals. Silver, gold or copper is preferred, and silver is more preferred because of its high stability and advantageous price.
  • the aspect ratio which is a value obtained by dividing the major axis length by the minor axis length, is preferably 1.0 to 3.0, more preferably 1.0 to 2.0. preferable.
  • the aspect ratio of the conductive particles is 1.0 or more, the contact probability between the conductive particles is further increased.
  • the aspect ratio of the conductive particles is 2.0 or less, the exposure light is not easily shielded in the exposure process described later, and the development margin is widened.
  • the aspect ratio of the conductive particles is determined by observing the conductive particles with a scanning electron microscope (SEM) or a transmission electron microscope (TEM), and randomly selecting primary particles of 100 conductive particles. It can be determined by measuring the major axis length and minor axis length and determining the aspect ratio from the average value of both.
  • the particle size of the conductive particles is preferably 0.3 to 2.0 ⁇ m, more preferably 0.5 to 1.5 ⁇ m.
  • the resin layer A swells due to the components contained in the composition C, and the conductive particles are taken into the resin layer A, and a residue is easily generated.
  • the particle diameter of the conductive particles is 0.3 ⁇ m or more, the conductive particles taken into the resin layer A are easily exposed in the development process described later, and can be washed away. As a result, ion migration is performed. Resistance is improved.
  • the particle size of the conductive particles is 2.0 ⁇ m or less, the straightness of the obtained conductive pattern C is increased.
  • the proportion of particles having a particle size of 0.3 to 2.0 ⁇ m in the conductive particles contained in the composition C is: It is necessary to be 80% or more, and preferably 90% or more.
  • the particle size of the conductive particles is obtained by observing the conductive particles with an electron microscope, randomly selecting the primary particles of 20 conductive particles, measuring the maximum width of each, and obtaining the average value thereof. Can be calculated.
  • the proportion of the particles having a particle size of 0.3 to 2.0 ⁇ m in the conductive particles contained in the composition C is determined by observing the conductive particles with an electron microscope, and randomly 100 primary particles of the conductive particles. And the maximum width of each is measured, and the maximum width can be determined from the proportion of primary particles in the range of 0.3 to 2.0 ⁇ m.
  • the particle size of the conductive particles contained in the conductive pattern C is such that the collected conductive pattern C is dissolved in tetrahydrofuran (hereinafter referred to as “THF”), the precipitated conductive particles are recovered, and 70 ° C. using a box oven. It can calculate similarly to the above about what dried for 10 minutes.
  • THF tetrahydrofuran
  • the proportion of the conductive particles in the solid content of the composition C is preferably 60 to 95% by mass.
  • the proportion of the conductive particles is 60% by mass or more, the contact probability between the conductive particles is increased, and the resistance value of the obtained conductive pattern C can be stabilized.
  • the ratio of the conductive particles is 95% by mass or less, the exposure light is not easily shielded in the exposure process described later, and the development margin is widened.
  • solid content means all the components of the composition C except a solvent.
  • Examples of the resin (c) contained in the composition C include an acrylic copolymer or an epoxycarboxylate compound. In order to improve the adhesiveness of the obtained conductive pattern C, an epoxy carboxylate compound is preferable.
  • An acrylic copolymer having a double bond and a carboxyl group can be obtained by copolymerizing an acrylic monomer and an unsaturated acid having a carboxyl group and an unsaturated double bond as a copolymerization component.
  • the unsaturated acid include AA, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetate, and acid anhydrides thereof.
  • the acid value of the resulting acrylic copolymer can be adjusted by the amount of the unsaturated acid used as the copolymer component.
  • the acid value of the resin (c) is preferably the same as that of the resin (a). Moreover, the acid value of resin (c) can be measured similarly to resin (a).
  • Composition C may contain a photopolymerization initiator.
  • the photopolymerization initiator include 1,2-octanedione-1- [4- (phenylthio) -2- (O-benzoyloxime)], 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, ethanone-1- [9-ethyl-6-2 (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) Benzophenone, methyl o-benzoylbenzoate, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4,4′-dichlorobenzophenone, 4-benzoyl-4′-methyldiphenyl Ketone, dibenzyl ketone, fluorenone, 2,2'
  • the addition amount of the photopolymerization initiator is preferably 0.05 to 30 parts by mass with respect to 100 parts by mass of the resin (c).
  • the addition amount of the photopolymerization initiator is 0.05 parts by mass or more, the cured density of the exposed part increases, and the remaining film ratio after development can be increased.
  • the addition amount of the photopolymerization initiator is 30 parts by mass or less, excessive light absorption by the photopolymerization initiator at the top of the coating film C obtained by applying the composition C is suppressed. .
  • a decrease in adhesion with the resin layer A due to the resulting conductive pattern C having an inversely tapered shape is suppressed.
  • Composition C may contain a sensitizer together with the photopolymerization initiator.
  • sensitizer examples include 2,4-diethylthioxanthone, isopropylthioxanthone, 2,3-bis (4-diethylaminobenzal) cyclopentanone, 2,6-bis (4-dimethylaminobenzal) cyclohexanone, 2 , 6-bis (4-dimethylaminobenzal) -4-methylcyclohexanone, Michler's ketone, 4,4-bis (diethylamino) benzophenone, 4,4-bis (dimethylamino) chalcone, 4,4-bis (diethylamino) chalcone P-dimethylaminocinnamylidene indanone, p-dimethylaminobenzylidene indanone, 2- (p-dimethylaminophenylvinylene) isonaphthothiazole, 1,3-bis (4-dimethylaminophenylvinylene) isonaphthothiazole,
  • the addition amount of the sensitizer is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the resin (c). Photosensitivity improves that the addition amount of a sensitizer is 0.05 mass part or more. On the other hand, when the addition amount of the sensitizer is 10 parts by mass or less, excessive light absorption at the upper part of the coating film C obtained by applying the conductive paste is suppressed. As a result, a decrease in adhesion with the resin layer A due to the manufactured conductive pattern C having an inversely tapered shape is suppressed.
  • Composition C may contain a solvent.
  • a solvent an alcohol solvent having a boiling point of 200 ° C. or higher, which has high solubility of the resin (c) and hardly causes uneven coating due to volatilization of the solvent, is preferable. Examples of the alcohol solvent having a boiling point of 200 ° C.
  • diethylene glycol triethylene glycol, 1,3-butanediol, glycerin, benzyl alcohol, dipropylene glycol, 1,4-butanediol, octanediol, 2,2,4 Trimethyl 1,3-pentanediol monoisobutyrate, ethylene glycol mono-2-ethylhexyl ether, 2,4-diethyl-1,5-pentanediol, 2-butyl-2-ethyl-1,3-propanediol, 3,5,5-trimethyl-1-hexanol, isodecanol, isotridecanol or ethylene glycol monohexyl ether.
  • the amount of the solvent added is preferably 10 to 200 parts by mass with respect to 100 parts by mass of the resin (c). It is easy to control the film thickness of the coating film of the composition C uniformly as the addition amount of a solvent is 10 mass parts or more. On the other hand, when the amount of the solvent added is 200 parts by mass or less, it is possible to suppress sedimentation of the conductive particles that occurs during storage of the composition C.
  • Composition C may contain an epoxy resin.
  • the epoxy resin include ethylene glycol-modified epoxy resin, bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, alicyclic epoxy resin, glycidyl.
  • examples include amine type epoxy resins, glycidyl ether type epoxy resins, and heterocyclic epoxy resins.
  • a bisphenol A type epoxy resin or a hydrogenated bisphenol A type epoxy resin is preferable, and a hydrogenated bisphenol A type epoxy resin having a high exposure light transmittance is more preferable. preferable.
  • the addition amount of the epoxy resin is 0.05 to 20 parts by mass of the epoxy resin with respect to 100 parts by mass of the resin (c). Adhesion can be improved. On the other hand, when the addition amount of the epoxy resin is 20 parts by mass or less, the solubility of the exposure film C in the developer is improved.
  • Examples of the method of applying the composition C include spin coating using a spinner, spray coating, roll coating, screen printing, or coating using a blade coater, die coater, calendar coater, meniscus coater, or bar coater.
  • the drying step included in the method for producing a conductive pattern forming member of the present invention is a step of drying the coating film C to obtain the dry film C.
  • the film thickness of the obtained dry film C is preferably 1 to 20 ⁇ m.
  • the film thickness of the dry film C can be measured using a stylus type step meter (for example, Surfcom (registered trademark) 1400; manufactured by Tokyo Seimitsu Co., Ltd.). More specifically, the film thicknesses at three randomly selected positions were measured with a stylus-type step gauge (measurement length: 1 mm, scanning speed: 0.3 mm / sec), and the average value thereof was determined as a dry film.
  • the film thickness can be C.
  • Examples of the method for drying the coating film C include heat drying or vacuum drying using a box oven, a hot plate, infrared rays, or the like.
  • the heating temperature is preferably 50 to 80 ° C, more preferably 60 to 80 ° C.
  • the heating temperature is 50 ° C. or higher, the amount of solvent or the like contained in the dry film C is sufficiently reduced, and the development margin is widened.
  • the heating temperature is 80 ° C. or lower, the resin layer A is difficult to swell and the conductive particles taken into the resin layer A are reduced, so that a residue in the development process is hardly generated.
  • the heating time is preferably 1 minute to several hours.
  • the heating temperature refers to the temperature at which the substrate surface is measured with a K thermocouple.
  • the exposure step included in the method for producing a conductive pattern forming member of the present invention is a step of exposing the coating film C to obtain a dry film C.
  • Examples of the light source for exposure include a high pressure mercury lamp, an ultrahigh pressure mercury lamp, or an LED that emits i-line (365 nm), h-line (405 nm), or g-line (436 nm).
  • Examples of the exposure method include vacuum suction exposure, proxy exposure, projection exposure, and direct drawing exposure.
  • the developing step included in the method for producing a conductive pattern forming member of the present invention is a step of developing the exposed film C and dissolving and removing the unexposed portion to obtain a desired pattern C.
  • Examples of the developer used for alkali development include tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, and dimethyl acetate.
  • An aqueous solution of aminoethyl, dimethylaminoethanol, dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine or hexamethylenediamine may be mentioned.
  • polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or ⁇ -butyrolactone, alcohols such as methanol, ethanol or isopropanol, ethyl lactate
  • esters such as propylene glycol monomethyl ether acetate, ketones such as cyclopentanone, cyclohexanone, isobutyl ketone or methyl isobutyl ketone, or a surfactant may be added.
  • Examples of the developer for organic development include N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide or hexamethylphosphoryl
  • Examples thereof include polar solvents such as amides or mixed solutions of these polar solvents and methanol, ethanol, isopropyl alcohol, xylene, water, methyl carbitol, or ethyl carbitol.
  • a developing method for example, a method of spraying a developing solution onto the surface of the exposure film C while the substrate is allowed to stand or rotate, a developing vessel in which a number of nozzles for discharging the developing solution are arranged, Examples thereof include a method of passing through a conveyor, a method of immersing in a developer, and a method of applying ultrasonic waves while immersing a substrate in the developer. From the viewpoint of uniformly developing a large area, development in which the substrate is passed through a conveyor through the developing tank is preferable. In that case, the pressure of the developer discharged from the nozzle is preferably 0.02 to 0.2 MPa.
  • the pattern C obtained in the development process may be rinsed with a rinse solution.
  • the rinsing liquid include water or an aqueous solution in which an alcohol such as ethanol or isopropyl alcohol or an ester such as ethyl lactate or propylene glycol monomethyl ether acetate is added to water.
  • the curing step provided in the method for producing a conductive pattern forming member of the present invention is a step of obtaining the conductive pattern C by curing the pattern C.
  • the curing temperature is preferably 100 to 300 ° C, more preferably 120 to 180 ° C.
  • the curing temperature is less than 100 ° C.
  • the volume shrinkage of the resin (c) does not increase, and the specific resistance of the conductive pattern C obtained does not become sufficiently low.
  • the curing temperature exceeds 300 ° C., a conductive pattern cannot be formed on a substrate having low heat resistance.
  • Examples of the curing method include heat drying using an oven, inert oven or hot plate, electromagnetic wave such as an ultraviolet lamp, infrared heater, halogen heater or xenon flash lamp, heat drying using microwaves, or vacuum drying. .
  • electromagnetic wave such as an ultraviolet lamp, infrared heater, halogen heater or xenon flash lamp
  • heat drying using microwaves or vacuum drying.
  • the difference (SA-SC value) between the acid value SA of the resin layer A and the organic component acid value SC of the conductive pattern C is preferably 20 to 150 mgKOH / g. It is more preferably 30 to 100 mg KOH / g, and further preferably 40 to 90 mg KOH / g.
  • the obtained conductive pattern C is highly hygroscopic due to the resin (c) having a carboxyl group, and an ion migration phenomenon starting from the conductive particles easily occurs due to the influence.
  • the resin layer A preferentially absorbs moisture, so that the moisture absorption of the conductive pattern C is suppressed, and as a result, the ion migration resistance of the conductive pattern forming member is improved. Can be made.
  • the SA-SC value is 150 mgKOH / g or less, the amount of hydrogen bonds between the carboxyl groups of the resin (a) and the resin (c) contained in the resin layer A and the conductive pattern C is increased. The adhesion between the resin layer A and the conductive pattern C can be improved.
  • the value of SA is calculated by dissolving 1 part by mass of the collected resin layer A in 100 parts by mass of THF and titrating the solution with a 0.1 mol / L potassium hydroxide solution using a phenolphthalein solution as an indicator. can do.
  • the SC value was determined by first dissolving 1 part by mass of the collected conductive pattern C in 10 parts by mass of THF, removing the conductive particles with a filter or the like, and then adding 0.1 mol / l of the solution using a phenolphthalein solution as an indicator.
  • the acid value of the conductive pattern C can be calculated by titration with an L potassium hydroxide solution.
  • the epoxy resin when contained in the composition C, it can react with a carboxyl group in a curing process, and the organic component acid value of the conductive pattern C can be lowered.
  • the conductive pattern forming member of the present invention can be covered with an OCA (Optical Clear Adhesive) layer D having a benzotriazole compound or an isobornyl skeleton for the purpose of suppressing migration.
  • OCA Optical Clear Adhesive
  • benzotriazole compounds include 1H-benzotriazole (1,2,3-benzotriazole), 4-methylbenzotriazole, 5-methylbenzotriazole, benzotriazole-1-methylamine, 4-methylbenzotriazole-1-methyl Amine, 5-methylbenzotriazole-1-methylamine, N-methylbenzotriazole-1-methylamine, N-ethylbenzotriazole-1-methylamine, N, N-dimethylbenzotriazole-1-methylamine, N, N-diethylbenzotriazole-1-methylamine, N, N-dipropylbenzotriazole-1-methylamine, N, N-dibutylbenzotriazole-1-methylamine, N, N-dihexylbenzotriazole-1-methylamine , N, N Dioctylbenzotriazole-1-methylamine, N, N-dimethyl-4-benzotriazole-1-methylamine, N, N-dimethyl-5-benzotriazole-1
  • Examples of the compound having an isobornyl skeleton include isobornyl acetate, isobornyl acrylate, isobornyl methacrylate, isobornyl cyclohexanol, etc., and these compounds may be contained as one of the components of the acrylic copolymer. Good.
  • the OCA material for forming the OCA layer D is obtained by applying a pressure-sensitive adhesive containing the above compound onto a release-treated substrate and drying it.
  • the OCA layer D can be formed by thermocompression bonding of the obtained OCA material with a thermal laminator or the like.
  • the touch panel of the present invention includes a conductive pattern forming member manufactured by the manufacturing method of the present invention. More specifically, the conductive pattern forming member manufactured by the manufacturing method of the present invention is suitably used as a member for a touch panel. Examples of the touch panel system include a resistive film type, an optical type, an electromagnetic induction type, and a capacitance type. Since the capacitance type touch panel requires particularly fine wiring, the conductive pattern formation of the present invention is performed. A member is used more suitably. In the touch panel provided with the conductive pattern C manufactured by the manufacturing method of the present invention as its peripheral wiring and the peripheral wiring is 50 ⁇ m pitch (wiring width + inter-wiring width) or less, the frame width can be reduced, and the view area can be reduced. Can be wide.
  • St 2-EHMA / styrene
  • GMA glycidyl methacrylate
  • the acrylic copolymer solution was diluted with ethyl acetate to a resin solid content of 30%, and 1.2 g of Duranate P301-75E (Asahi Kasei Co., Ltd .; solid content 75%) was added thereto.
  • the product was coated on a 50 ⁇ m PET film having one surface released from the mold so that the thickness after drying was 25 ⁇ m, and dried at 75 ° C. for 5 minutes to obtain OCA (d-2).
  • Example 1 A biaxially stretched polyethylene terephthalate film having a thickness of 30 ⁇ m was prepared as a substrate. A composition A1 in which resin (a-1), MPD-A, and OXE-01 are mixed at a ratio of 100: 50: 1 is applied to one side of the substrate, and heat treatment and drying are performed. A 4 ⁇ m resin layer A1 was formed. ⁇ Formation of transparent electrode layer B> An ITO thin film made of ITO and having a thickness of 22 nm was formed on the surface of the resin layer A using a sputtering apparatus equipped with an ITO sintered body target.
  • a photomask is brought into close contact with the ITO thin film, the resin layer A1 and the ITO thin film are exposed with an exposure amount of 200 mJ / cm 2 with an exposure machine having an ultra-high pressure mercury lamp, and further 200 mJ / cm 2 without passing through the photomask.
  • the resin layer A1 and the ITO thin film were exposed on the entire surface with an exposure amount, and then subjected to spray development with a 1% by mass aqueous sodium carbonate solution at 30 ° C. for 30 seconds to form a patterned transparent electrode layer B1 on the resin layer A1.
  • composition C ⁇ Preparation of composition C>
  • a resin solution C1 solid content: 70.1% by mass
  • 17.0 g of the obtained resin solution C1 and 68.0 g of silver particles were mixed and kneaded using a three roller mill (EXAKT M-50; manufactured by EXAKT) to obtain 85.0 g of composition C1. It was.
  • the composition C1 is applied to the surface of the resin layer A1 and the patterned transparent electrode layer B1 with a screen printer so that the dry film C1 has a thickness of 5 ⁇ m, dried at 70 ° C. for 10 minutes, and then given photo
  • a 0.2 mass% aqueous sodium carbonate solution is spray-developed at a pressure of 0.1 MPa for 30 seconds, and then at 140 ° C. for 60 seconds.
  • the conductive pattern forming member 1 was manufactured by curing for a minute.
  • the acid value SA of the resin layer A1 of the conductive pattern forming member 1 was 98 mgKOH / g
  • the organic component acid value SC of the conductive pattern C1 was 55 mgKOH / g
  • the value of SA-SC was 43 mgKOH / g.
  • the total light transmittance T 0 (of the resin layer A alone) of the portion where the composition C is not applied is measured in the same manner, and the decrease rate of T with respect to T 0 is calculated. Based on good / bad judgment.
  • the results are shown in Table 2.
  • Reduction rate is 10% or less: Good reduction rate is over 10%:
  • Defect ⁇ Evaluation of ion migration resistance> The conductive pattern forming member 1 on which the conductive pattern C1 shown in FIG. 2 is formed is put into a high-temperature and high-humidity tank at 85 ° C. and 85% RH, and a voltage of DC5V is applied from the terminal portion, and the resistance value suddenly increases by 3 digits. The decreasing short circuit time was confirmed. The same evaluation was repeated with a total of ten conductive pattern forming members 1, and the average value thereof was taken as the value of ion migration resistance. The results are shown in Table 2.
  • Example 2 In the case where the transparent electrode layer B is silver fiber, a conductive pattern forming member having the conditions shown in Table 1 was produced by the same method as in Example 1 except that the transparent electrode layer B was formed by the following method, and the same evaluation as in Example 1 was performed. . The results are shown in Table 2.
  • a photomask is adhered to the silver fiber thin film, the resin layer A2 and the silver fiber thin film are exposed at an exposure amount of 200 mJ / cm 2 with an exposure machine having an ultrahigh pressure mercury lamp, and further 200 mJ / cm without passing through the photomask.
  • spray development is performed with a 1% by mass aqueous sodium carbonate solution at 30 ° C. for 30 seconds to form a patterned transparent electrode layer B2 on the resin layer A2. did.
  • Example 15 A conductive pattern forming member was manufactured in the same manner as in Example 1.
  • the laminated layer 6 shown in FIG. 5 is obtained by laminating the resin layer A1, the patterned transparent electrode layer B1, and the conductive pattern C1 on the surface of OCA (d-1) under the conditions of 80 ° C. and pressing pressure of 0.5 MPa.
  • Laminated members 7 shown in FIG. The laminated members 6 and 7 were evaluated in the same manner as in Example 1. The results are shown in Table 2. (Examples 16 to 17) Conductive pattern forming members shown in Table 1 were produced in the same manner as in Example 15 and evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • the conductive pattern forming member manufactured by the manufacturing method of the present invention can be suitably used as a constituent element of a touch panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Wood Science & Technology (AREA)
  • Human Computer Interaction (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials For Photolithography (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

未露光部の溶解除去における残渣の発生を抑制しながら、基材上に形成され導電パターンと感光性樹脂層とのイオンマイグレーション耐性に優れる、導電パターン形成部材の製造方法を提供する。基材上に形成された、カルボキシル基を有する樹脂(a)からなる層A、及び、透明電極層Bの表面に、導電性粒子、及び、二重結合とカルボキシル基とを有する樹脂(c)を含有する組成物Cを塗布して、塗布膜Cを得る、塗布工程と、塗布膜Cを乾燥して乾燥膜Cを得る、乾燥工程と、乾燥膜Cを露光して露光膜Cを得る、露光工程と、露光膜Cを現像してパターンCを得る、現像工程と、パターンCをキュアして導電パターンCを得る、キュア工程と、を備え、導電性粒子に占める粒径0.3~2.0μmの粒子の割合が、80%以上である、導電パターン形成部材の製造方法。

Description

導電パターン形成部材の製造方法
 本発明は、導電パターン形成部材の製造方法に関する。
 静電容量式タッチパネルの表示領域に形成される表示電極は、ITO(酸化インジウムスズ)等からなる透明電極である。そのパターン加工のプロセスとしては、スパッタ等により基材にITO等の金属薄膜を膜付けして、その表面にさらに感光性を有する樹脂であるフォトレジストを塗布してフォトマスクを介して露光をし、現像でレジストパターンを形成した後にエッチング及びレジスト除去をするのが一般的である。
 一方で、基材上に予め感光性樹脂層及び透明電極層を積層したものを用意しておくことで、透明電極のパターンを形成する都度フォトレジストを塗布したり、除去したりすることを省く技術も考案されている(特許文献1及び2)。
 静電容量式タッチパネルでは表示領域の周辺には、透明電極と接続する周囲配線が形成される。この周囲配線の形成の方法としては、感光性を有する導電ペーストをフォトリソ法で微細加工する方法が知られている(特許文献3~7)。この導電ペーストを用いて、上記の感光性樹脂層及び透明電極層を積層した基材から形成した透明電極パターンに接続する周囲配線を形成しようとした場合、該基材上に形成された感光性樹脂層及び透明電極層の表面に、導電ペーストを塗布してからその加工をする必要がある。
特開2015-18157号公報 特開2014-199814号公報 特許第5278632号公報 国際公開第2013/108696号 特許第5360285号公報 特許第5403187号公報 国際公開第2013/146107号
 しかしながら、基材上の感光性樹脂層の表面に導電ペーストの塗布膜が形成された部位においては、導電ペーストをフォトマスクを介して露光した後の現像工程において、導電ペーストの塗布膜の未露光部の溶解除去の際に残渣が発生するばかりでなく、形成された導電パターンと感光性樹脂層とのイオンマイグレーションが問題視されていた。
 そこで本発明は、未露光部の溶解除去における残渣の発生を抑制しながら、基材上に形成された導電パターンと感光性樹脂層とのイオンマイグレーション耐性に優れる、導電パターン形成部材の製造方法を提供することを目的とする。
 本発明者らは、鋭意検討をした結果、導電パターンの形成に用いる導電ペーストが含有する導電性粒子として、その粒径が一定の条件を満たすものを用いることが、上記課題の解決に極めて有効であることを見出し、本発明を完成した。
 すなわち本発明は、基材上に形成された、カルボキシル基を有する樹脂(a)からなる層A、及び、透明電極層Bの表面に、導電性粒子、及び、二重結合とカルボキシル基とを有する樹脂(c)を含有する組成物Cを塗布して、塗布膜Cを得る、塗布工程と、上記塗布膜Cを乾燥して乾燥膜Cを得る、乾燥工程と、上記乾燥膜Cを露光して露光膜Cを得る、露光工程と、上記露光膜Cを現像してパターンCを得る、現像工程と、上記パターンCをキュアして導電パターンCを得る、キュア工程と、を備え、上記導電性粒子に占める粒径0.3~2.0μmの粒子の割合が、80%以上である、導電パターン形成部材の製造方法を提供する。
 本発明の導電パターン形成部材の製造方法によれば、未露光部の溶解除去における残渣発生を抑制でき、かつ、基材上に形成されたカルボキシル基を有する樹脂からなる層とのイオンマイグレーション耐性に優れる導電パターンを形成することができる。
 さらにベンゾトリアゾール系化合物もしくはイソボルニル骨格を有するOCAを積層させることでよりイオンマイグレーション耐性を高めることができる。
導電パターン形成部材の断面を示す概略図である。 イオンマイグレーション耐性の評価に用いた導電パターンの概略図である。 残渣の評価に用いた導電パターンの概略図である。 OCA層を積層した導電パターン形成部材の断面を示す概略図である。 OCA層を積層したイオンマイグレーション耐性の評価に用いた導電パターンの概略図である。
 本発明の導電パターン形成部材の製造方法は、基材上に形成された、カルボキシル基を有する樹脂(a)からなる層A、及び、透明電極層Bの表面に、導電性粒子、及び、二重結合とカルボキシル基とを有する樹脂(c)を含有する組成物Cを塗布して、塗布膜Cを得る、塗布工程と、上記塗布膜Cを乾燥して乾燥膜Cを得る、乾燥工程と、上記乾燥膜Cを露光して露光膜Cを得る、露光工程と、上記露光膜Cを現像してパターンCを得る、現像工程と、上記パターンCをキュアして導電パターンCを得る、キュア工程と、を備え、上記導電性粒子に占める粒径0.3~2.0μmの粒子の割合が、80%以上であることを特徴とする。
 本発明の導電パターン形成部材の製造方法が備える塗布工程は、樹脂層A及び透明電極層Bの表面に、組成物Cを塗布して、塗布膜Cを得る工程である。
 透明電極層Bは、カルボキシル基を有する樹脂(a)(以下、「樹脂(a)」)からなる層A(以下、「樹脂層A」)の上に積層している。そして樹脂層Aは、基材上に形成されている。
 その上に樹脂層Aが形成される基材とは、その表面上に透明電極層や導電パターン等を形成するための、支持体をいう。基材としては、例えば、ガラス、ガラスエポキシ基板若しくはセラミックス基板等のリジッド基板又はポリエステルフィルム若しくはポリイミドフィルム等のフレキシブル基板が挙げられる。
 基材上に形成されている樹脂層Aは、いわゆる感光性樹脂層であり、透明電極層Bのパターン形成のためのフォトレジストとしての機能を果たすものである。樹脂層Aを構成する樹脂(a)は、その分子鎖中にカルボキシル基を有しており、アルカリ可溶性である。樹脂(a)としては、例えば、アクリル系共重合体、エポキシカルボキシレート化合物、ポリアミック酸又はシロキサンポリマーが挙げられる。可視光透過率の高いアクリル系共重合体又はエポキシカルボキシレート化合物が好ましい。
 カルボキシル基を有するアクリル系共重合体は、アクリル系モノマー及び不飽和カルボン酸等の不飽和酸を共重合成分として、共重合させることにより得られる。
 アクリル系モノマーとしては、例えば、アクリル酸(以下、「AA」)、メチルアクリレート、エチルアクリレート(以下、「EA」)、2-エチルヘキシルアクリレート、n-ブチルアクリレート(以下、「BA」)、iso-ブチルアクリレート、iso-プロパンアクリレート、グリシジルアクリレート、ブトキシトリエチレングリコールアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニルアクリレート、2-ヒドロキシエチルアクリレート、イソボルニルアクリレート、2-ヒドロキシプロピルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2-メトキシエチルアクリレート、メトキシエチレングリコールアクリレート、メトキシジエチレングリコールアクリレート、オクタフロロペンチルアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、トリフロロエチルアクリレート、アミノエチルアクリレート、フェニルアクリレート、フェノキシエチルアクリレート、1-ナフチルアクリレート、2-ナフチルアクリレート、チオフェノールアクリレート、ベンジルメルカプタンアクリレート、アリル化シクロヘキシルジアクリレート、メトキシ化シクロヘキシルジアクリレート、1,4-ブタンジオールジアクリレート、1,3-ブチレングリコールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、プロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、トリグリセロールジアクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、アクリルアミド、N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド、N-n-ブトキシメチルアクリルアミド、N-イソブトキシメチルアクリルアミド、エポキシ基を不飽和酸で開環させた水酸基を有するエチレングリコールジグリシジルエーテルのアクリル酸付加物、ジエチレングリコールジグリシジルエーテルのアクリル酸付加物、ネオペンチルグリコールジグリシジルエーテルのアクリル酸付加物、グリセリンジグリシジルエーテルのアクリル酸付加物、ビスフェノールAジグリシジルエーテルのアクリル酸付加物、ビスフェノールFのアクリル酸付加物若しくはクレゾールノボラックのアクリル酸付加物等のエポキシアクリレートモノマー又はγ-アクリロキシプロピルトリメトキシシラン、あるいは、それらのアクリル基を、メタクリル基に置換した化合物が挙げられる。樹脂層Aの可視光透過性を高めるため、脂肪鎖又は脂環式構造を有するアクリル系モノマーが好ましい。
 不飽和酸としては、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸若しくは酢酸ビニル又はこれらの酸無水物が挙げられる。共重合成分として用いる不飽和酸の多少により、得られるアクリル系共重合体の酸価を調整することができる。
 エポキシカルボキシレート化合物とは、エポキシ化合物と、不飽和二重結合を有するカルボキシル化合物と、を出発原料として合成することができる化合物をいう。
 出発原料となり得るエポキシ化合物としては、例えば、グリシジルエーテル類、脂環式エポキシ樹脂、グリシジルエステル類、グリシジルアミン類又はエポキシ樹脂が挙げられる。より具体的には、例えば、メチルグリシジルエーテル、エチルグリシジルエーテル、ブチルグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ビスフェノールフルオレンジグリシジルエーテル、ビフェノールジグリシジルエーテル、テトラメチルビフェノールグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート又はtert-ブチルグリシジルアミンが挙げられる。
 出発原料となり得る不飽和二重結合を有するカルボキシル化合物としては、例えば、(メタ)アクリル酸、クロトン酸、桂皮酸又はα-シアノ桂皮酸が挙げられる。
 エポキシカルボキシレート化合物と多塩基酸無水物とを反応させて、エポキシカルボキシレート化合物の酸価を調整しても構わない。多塩基酸無水物としては、例えば、無水コハク酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水イタコン酸、3-メチルテトラヒドロ無水フタル酸、4-メチルーヘキサヒドロ無水フタル酸、無水トリメリット酸又は無水マレイン酸が挙げられる。
 上記の多塩基酸無水物により酸価を調整したエポキシカルボキシレート化合物が有するカルボキシル基と、グリシジル(メタ)アクリレート等の不飽和二重結合を有する化合物と、を反応させることにより、エポキシカルボキシレート化合物が有する反応性の不飽和二重結合の量を調整しても構わない。
 エポキシカルボキシレート化合物が有するヒドロキシ基と、ジイソシアネート化合物とを反応させることにより、ウレタン化をしても構わない。ジイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、テトラメチルキシレンジイソシアネート、ナフタレン-1,5-ジイソシアネート、トリデンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、アリルシアンジイソシアネート又はノルボルナンジイソシアネートが挙げられる。
 樹脂(a)の酸価は、樹脂層Aがアルカリ可溶性のフォトレジストとして機能するものであるため、50~250mgKOH/gであることが好ましく、パターン加工性をより高めるため、60~150mgKOH/gがより好ましい。なお樹脂(a)の酸価は、JIS K 0070(1992)に準拠して測定することができる。
 樹脂層Aの可視光透過率は、本発明の製造方法により製造される導電パターン形成部材をタッチパネルの構成要素とする場合には、80%以上であることが好ましい。
 樹脂層Aの上に積層されている透明電極層Bは、全面的に平坦な層ではなく、樹脂層Aのフォトレジストとしての機能を利用してパターン加工がされた、任意形状のパターンである。すなわち、透明電極層は樹脂層Aを完全に覆い隠しているのではなく、透明電極層Bのパターンが形成されていない部位においては、樹脂層Aが露出した状態となっている。
 透明電極層Bは、導電成分のみからなるか、又は、導電成分を含有する。透明電極層Bを構成する導電成分としては、例えば、インジウム、スズ、亜鉛、ガリウム、アンチモン、チタン、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウム若しくはタングステン又はこれら金属の酸化物あるいはカーボンナノチューブが挙げられる。より具体的には、例えば、インジウムスズ酸化物(以下、「ITO」)、インジウム亜鉛酸化物、酸化インジウム-酸化亜鉛複合酸化物、アルミニウム亜鉛酸化物、ガリウム亜鉛酸化物、フッ素亜鉛酸化物、フッ素インジウム酸化物、アンチモンスズ酸化物又はフッ素スズ酸化物が挙げられる。中でも、導電性及び可視光透過性が高く、かつ価格面でも有利な、ITO又は繊維状の銀(以下、「銀繊維」)が好ましく、後述する導電パターンCとの接続信頼性が高い、銀繊維がより好ましい。
 パターン加工をする前の、透明電極層の形成方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法又はコーティング法が挙げられる。
 透明電極層Bの厚さは、良好な導電性及び可視光透過性を両立させるため、0.01~1.5μmが好ましい。また透明電極層Bの可視光透過率は、樹脂層Aと同様の理由から、80%以上であることが好ましい。
 樹脂層A及び透明電極層Bの表面に塗布される組成物Cは、導電性粒子、及び、二重結合とカルボキシル基とを有する樹脂(c)(以下、「樹脂(c)」)を含有する。
 組成物Cが含有する導電性粒子としては、銀、金、銅、白金、鉛、スズ、ニッケル、アルミニウム、タングステン、モリブデン、クロム、チタン若しくはインジウム又はこれら金属の合金が挙げられるが、導電性高い銀、金又は銅が好ましく、安定性が高くかつ価格面でも有利な、銀がより好ましい。
 導電性粒子の形状としては、長軸長を短軸長で除した値であるアスペクト比が、1.0~3.0であることが好ましく、1.0~2.0であることがより好ましい。導電性粒子のアスペクト比が1.0以上であると、導電性粒子同士の接触確率が、より高まることになる。一方で、導電性粒子のアスペクト比が2.0以下であると、後述する露光工程において露光光が遮蔽されにくく、現像マージンが広くなる。導電性粒子のアスペクト比は、走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)で導電性粒子を観察し、無作為に100個の導電性粒子の一次粒子を選択して、それぞれの長軸長及び短軸長を測定し、両者の平均値からアスペクト比を求めることで決定することができる。
 導電性粒子の粒径は、0.3~2.0μmが好ましく、0.5~1.5μmがより好ましい。組成物Cを樹脂層A上に塗布すると、組成物Cが含有する成分によって樹脂層Aが膨潤して、導電性粒子が樹脂層A中に取り込まれ、残渣が発生し易くなる。ここで導電性粒子の粒径が0.3μm以上であると、樹脂層A中に取り込まれた導電性粒子が後述する現像工程において露出し易く、その洗い流しが可能となり、その結果として、イオンマイグレーション耐性が向上する。一方で、導電性粒子の粒径が2.0μm以下であると、得られる導電パターンCの直進性が高くなる。上記のような残渣抑制効果を得るため、本発明の導電パターン形成部材の製造方法においては、組成物Cが含有する導電性粒子に占める粒径0.3~2.0μmの粒子の割合が、80%以上であることが必要であり、90%以上であることが好ましい。
 導電性粒子の粒径は、電子顕微鏡で導電性粒子を観察し、無作為に20個の導電性粒子の一次粒子を選択して、それぞれの最大幅を測定し、それらの平均値を求めることで算出することができる。また、組成物Cが含有する導電性粒子に占める粒径0.3~2.0μmの粒子の割合は、電子顕微鏡で導電性粒子を観察し、無作為に100個の導電性粒子の一次粒子を選択して、それぞれの最大幅を測定し、最大幅が0.3~2.0μmの範囲にあった一次粒子の割合から決定することができる。
 また、導電パターンCが含有する導電性粒子の粒径は、採取した導電パターンCをテトラヒドロフラン(以下、「THF」)に溶解し、沈降した導電性粒子を回収し、ボックスオーブンを用いて70℃で10分間乾燥をしたものについて、上記と同様に算出することができる。
 組成物Cの固形分に占める導電性粒子の割合は、60~95質量%が好ましい。導電性粒子の割合が60質量%以上であると、導電性粒子同士の接触確率が高まり、得られる導電パターンCの抵抗値を安定化することができる。一方で、導電性粒子の割合が95質量%以下であると、後述する露光工程において露光光が遮蔽されにくく、現像マージンが広くなる。ここで固形分とは、溶剤を除く、組成物Cの全成分をいう。
 組成物Cが含有する樹脂(c)としては、例えば、アクリル系共重合体又はエポキシカルボキシレート化合物が挙げられる。得られる導電パターンCの密着性を高めるため、エポキシカルボキシレート化合物が好ましい。
 二重結合とカルボキシル基とを有するアクリル系共重合体は、アクリル系モノマー及びカルボキシル基と不飽和二重結合とを有する不飽和酸を共重合成分として、共重合させることにより得られる。不飽和酸としては、例えば、AA、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸若しくは酢酸ビニル又はこれらの酸無水物が挙げられる。共重合成分として用いる不飽和酸の多少により、得られるアクリル系共重合体の酸価を調整することができる。
 樹脂(c)の酸価は、樹脂(a)と同様であることが好ましい。また樹脂(c)の酸価は、樹脂(a)と同様に測定することができる。
 組成物Cは、光重合開始剤を含有しても構わない。光重合開始剤としては、例えば、1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、エタノンー1-[9-エチル-6-2(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ジクロロベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2’-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-t-ブチルジクロロアセトフェノン、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン、ベンジル、ベンジルジメチルケタール、ベンジル-β-メトキシエチルアセタール、ベンゾイン、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2-t-ブチルアントラキノン、2-アミルアントラキノン、β-クロルアントラキノン、アントロン、ベンズアントロン、ジベンゾスベロン、メチレンアントロン、4-アジドベンザルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサノン、6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、1-フェニル-1,2-ブタンジオン-2-(O-メトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(O-エトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(O-ベンゾイル)オキシム、1,3-ジフェニル-プロパントリオン-2-(O-エトキシカルボニル)オキシム、1-フェニル-3-エトキシ-プロパントリオン-2-(O-ベンゾイル)オキシム、ミヒラーケトン、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、N-フェニルチオアクリドン、4,4’-アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、四臭化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン、又は、メチレンブルー等の光還元性色素と、アスコルビン酸若しくはトリエタノールアミン等の還元剤との組み合わせが挙げられるが、光感度の高い、オキシムエステル系化合物が好ましい。
 光重合開始剤の添加量は、樹脂(c)100質量部に対して、0.05~30質量部が好ましい。光重合開始剤の添加量が0.05質量部以上であると、露光部の硬化密度が増加して、現像後の残膜率を高くすることができる。一方で、光重合開始剤の添加量が30質量部以下であると、組成物Cを塗布して得られた塗布膜Cの上部での、光重合開始剤による過剰な光吸収が抑制される。その結果、得られる導電パターンCが逆テーパー形状となることによる、樹脂層Aとの密着性低下が抑制される。
 組成物Cは光重合開始剤と共に、増感剤を含有しても構わない。
 増感剤としては、例えば、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、2,3-ビス(4-ジエチルアミノベンザル)シクロペンタノン、2,6-ビス(4-ジメチルアミノベンザル)シクロヘキサノン、2,6-ビス(4-ジメチルアミノベンザル)-4-メチルシクロヘキサノン、ミヒラーケトン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、4,4-ビス(ジメチルアミノ)カルコン、4,4-ビス(ジエチルアミノ)カルコン、p-ジメチルアミノシンナミリデンインダノン、p-ジメチルアミノベンジリデンインダノン、2-(p-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4-ジメチルアミノベンザル)アセトン、1,3-カルボニルビス(4-ジエチルアミノベンザル)アセトン、3,3-カルボニルビス(7-ジエチルアミノクマリン)、N-フェニル-N-エチルエタノールアミン、N-フェニルエタノールアミン、N-トリルジエタノールアミン、ジメチルアミノ安息香酸イソアミル、ジエチルアミノ安息香酸イソアミル、3-フェニル-5-ベンゾイルチオテトラゾール又は1-フェニル-5-エトキシカルボニルチオテトラゾールが挙げられる。
 増感剤の添加量は、樹脂(c)100質量部に対して0.05~10質量部が好ましい。増感剤の添加量が0.05質量部以上であると、光感度が向上する。一方で、増感剤の添加量が10質量部以下であると、導電ペーストを塗布して得られた塗布膜C上部での、過剰な光吸収が抑制される。その結果、製造された導電パターンCが逆テーパー形状となることによる、樹脂層Aとの密着性低下が抑制される。
 組成物Cは、溶剤を含有しても構わない。溶剤としては、樹脂(c)の溶解性が高く、かつ溶剤の揮発による塗布ムラの生じにくい、沸点200℃以上のアルコール系溶剤が好ましい。沸点200℃以上のアルコール系溶剤としては、例えば、ジエチレングリコール、トリエチレングリコール、1,3-ブタンジオール、グリセリン、ベンジルアルコール、ジプロピレングリコール、1,4-ブタンジオール、オクタンジオール、2,2,4-トリメチル1,3-ペンタンジオールモノイソブチレート、エチレングリコールモノ-2-エチルヘキシルエーテル、2,4-ジエチル-1,5-ペンタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、3,5,5-トリメチル-1-ヘキサノール、イソデカノール、イソトリデカノール又はエチレングリコールモノヘキシルエーテルが挙げられる。
 溶剤の添加量は、樹脂(c)100質量部に対して10~200質量部が好ましい。溶剤の添加量が10質量部以上であると、組成物Cの塗布膜の膜厚を均一に制御し易い。一方で、溶剤の添加量が200質量部以下であると、組成物Cの保管中に生じる導電性粒子の沈降を抑制できる。
 組成物Cは、エポキシ樹脂を含有しても構わない。エポキシ樹脂としては、例えば、エチレングリコール変性エポキシ樹脂、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、臭素化エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂又は複素環式エポキシ樹脂が挙げられる。得られる導電パターンCの樹脂層Aへの密着性を高めるため、ビスフェノールA型エポキシ樹脂又は水添ビスフェノールA型エポキシ樹脂が好ましく、露光光の透過性が高い、水添ビスフェノールA型エポキシ樹脂がより好ましい。
 エポキシ樹脂の添加量は、樹脂(c)100質量部に対して0.05~20質量部エポキシ樹脂の添加量が0.05質量部以上であると、得られる導電パターンCと、樹脂層Aとの密着性を高めることができる。一方で、エポキシ樹脂の添加量が20質量部以下であると、露光膜Cの現像液に対する溶解性が良好となる。
 組成物Cを塗布する方法としては、例えば、スピナーを用いた回転塗布、スプレー塗布、ロールコーティング、スクリーン印刷又はブレードコーター、ダイコーター、カレンダーコーター、メニスカスコーター若しくはバーコーターを用いた塗布が挙げられる。
 本発明の導電パターン形成部材の製造方法が備える乾燥工程は、塗布膜Cを乾燥して、乾燥膜Cを得る工程である。
 得られる乾燥膜Cの膜厚は、1~20μmが好ましい。乾燥膜Cの膜厚は、触針式段差計(例えばサーフコム(登録商標)1400;(株)東京精密製)を用いて測定することができる。より具体的には、無作為に選んだ3つの位置の膜厚を触針式段差計(測長:1mm、走査速度:0.3mm/sec)でそれぞれ測定し、それらの平均値を乾燥膜Cの膜厚とすることができる。
 塗布膜Cを乾燥する方法としては、例えば、ボックスオーブン、ホットプレート若しくは赤外線等による加熱乾燥又は真空乾燥が挙げられる。加熱の温度は50~80℃が好ましく、60~80℃がより好ましい。加熱の温度が50℃以上であると、乾燥膜Cが含有する溶剤等の量が十分に少なくなり、現像マージンが広くなる。一方で、加熱の温度が80℃以下であると、樹脂層Aが膨潤しづらく、樹脂層A中に取り込まれる導電性粒子が減ることで、現像工程における残渣が発生しにくくなる。なお加熱の時間は、1分~数時間が好ましい。ここで、加熱の温度とは、K熱電対において基板表面を測定した温度をいう。
 本発明の導電パターン形成部材の製造方法が備える露光工程は、塗布膜Cを露光して、乾燥膜Cを得る工程である。
 露光の光源としては、例えば、高圧水銀ランプ、超高圧水銀ランプ又はi線(365nm)、h線(405nm)若しくはg線(436nm)を発するLEDが挙げられる。露光の方法としては、例えば、真空吸着露光、プロキシ露光、プロジェクション露光又は直描露光が挙げられる。
 本発明の導電パターン形成部材の製造方法が備える現像工程は、露光膜Cを現像して未露光部を溶解除去して所望のパターンCを得る工程である。
 アルカリ現像を行う場合の現像液としては、例えば、水酸化テトラメチルアンモニウム、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン又はヘキサメチレンジアミンの水溶液が挙げられる。これらの水溶液に、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド若しくはγ-ブチロラクトン等の極性溶媒、メタノール、エタノール若しくはイソプロパノール等のアルコール類、乳酸エチル若しくはプロピレングリコールモノメチルエーテルアセテート等のエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン若しくはメチルイソブチルケトン等のケトン類又は界面活性剤を添加しても構わない。
 有機現像を行う場合の現像液としては、例えば、N-メチル-2-ピロリドン、N-アセチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド若しくはヘキサメチルホスホルトリアミド等の極性溶媒又はこれら極性溶媒とメタノール、エタノール、イソプロピルアルコール、キシレン、水、メチルカルビトール若しくはエチルカルビトールとの混合溶液が挙げられる。
 現像の方法としては、例えば、基材を静置又は回転させながら現像液を露光膜Cの表面にスプレーする方法、現像液を吐出するノズルが多数配置された現像槽の中を、基材をコンベアで通過させる方法、現像液中に浸漬する方法、又は、基材を現像液中に浸漬しながら超音波をかける方法が挙げられる。大面積を均一に現像するという観点からは、現像槽の中を、基材をコンベアで通過させる現像が好ましい。その場合、ノズルから吐出される現像液の圧力は、0.02~0.2MPaが好ましい。現像液の圧力が0.02MPa以上であると、打力により樹脂層A中に取り込まれた導電性粒子を除去し易くなる。一方で、現像液の圧力が0.2MPa以下であると、得られるパターンCの樹脂層Aに対する密着性が悪化しづらい。 現像工程で得られたパターンCは、リンス液によるリンス処理を施しても構わない。ここでリンス液としては、例えば、水あるいは水にエタノール若しくはイソプロピルアルコール等のアルコール類又は乳酸エチル若しくはプロピレングリコールモノメチルエーテルアセテート等のエステル類を加えた水溶液が挙げられる。
 本発明の導電パターン形成部材の製造方法が備えるキュア工程は、パターンCをキュアして導電パターンCを得る工程である。
 キュアの温度は、100~300℃が好ましく、120~180℃がより好ましい。キュアの温度が100℃未満であると、樹脂(c)の体積収縮量が大きくならず、得られる導電パターンCの比抵抗が十分に低くならない。一方で、キュアの温度が300℃を超えると、耐熱性が低い基材等の上に、導電パターンを形成することができない。
 キュアの方法としては、例えば、オーブン、イナートオーブン又はホットプレートによる加熱乾燥、紫外線ランプ、赤外線ヒーター、ハロゲンヒーター若しくはキセノンフラッシュランプ等の電磁波、又は、マイクロ波による加熱乾燥、あるいは、真空乾燥が挙げられる。加熱により、得られる導電パターンCの硬度が高まり、他の部材との接触による欠けや剥がれ等を抑制することができ、さらには樹脂層Aとの密着性を向上させることができる。
 イオンマイグレーション耐性をより向上させるため、樹脂層Aの酸価SAと、導電パターンCの有機成分酸価SCとの差(SA-SCの値)は、20~150mgKOH/gであることが好ましく、30~100mgKOH/gであることがより好ましく、40~90mgKOH/gであることがさらに好ましい。得られる導電パターンCは、カルボキシル基を有する樹脂(c)に起因して吸湿性が高く、その影響で導電性粒子を起点とするイオンマイグレーション現象が起こりやすい。しかしながら、SA-SCの値が20mgKOH/g以上であると、水分を樹脂層Aが優先的に吸湿するため、導電パターンCの吸湿が抑制され、結果として導電パターン形成部材のイオンマイグレーション耐性を向上させることができる。一方で、SA-SCの値が150mgKOH/g以下であると、樹脂層Aと導電パターンCとがそれぞれ含有する、樹脂(a)及び樹脂(c)のカルボキシル基同士の水素結合量を増やすことができ、樹脂層Aと導電パターンCとの密着性を向上させることができる。
 SAの値は、採取した1質量部の樹脂層Aを、100質量部のTHFに溶解し、該溶液をフェノールフタレイン液を指示薬として0.1mol/L水酸化カリウム溶液で滴定して、算出することができる。
 SCの値は、まず、採取した1質量部の導電パターンCを、10質量部のTHFに溶解し、フィルター等で導電粒子を除去後、該溶液をフェノールフタレイン液を指示薬として0.1mol/L水酸化カリウム溶液で滴定して導電パターンCの酸価を算出することができる。
なお組成物Cにエポキシ樹脂が含有されている場合、キュア工程でカルボキシル基と反応し、導電パターンCの有機成分酸価を下げることができる。
 本発明の導電パターン形成部材は、マイグレーションの抑制を目的に、ベンゾトリアゾール系化合物またはイソボルニル骨格を有するOCA(Optical Clear Adhesive)層Dで被覆できる。
 ベンゾトリアゾール系化合物としては1H-ベンゾトリアゾール(1,2,3-ベンゾトリアゾール)、4-メチルベンゾトリアゾール、5-メチルベンゾトリアゾール、ベンゾトリアゾール-1-メチルアミン、4-メチルベンゾトリアゾール-1-メチルアミン、5-メチルベンゾトリアゾール-1-メチルアミン、N-メチルベンゾトリアゾール-1-メチルアミン、N-エチルベンゾトリアゾール-1-メチルアミン、N,N-ジメチルベンゾトリアゾール-1-メチルアミン、N,N-ジエチルベンゾトリアゾール-1-メチルアミン、N,N-ジプロピルベンゾトリアゾール-1-メチルアミン、N,N-ジブチルベンゾトリアゾール-1-メチルアミン、N,N-ジヘキシルベンゾトリアゾール-1-メチルアミン、N,N-ジオクチルベンゾトリアゾール-1-メチルアミン、N,N-ジメチル-4-ベンゾトリアゾール-1-メチルアミン、N,N-ジメチル-5-ベンゾトリアゾール-1-メチルアミン、N,N-ジエチル-4-ベンゾトリアゾール-1-メチルアミン、N,N-ジエチル-5-ベンゾトリアゾール-1-メチルアミン、N,N-ジプロピル-4-ベンゾトリアゾール-1-メチルアミン、N,N-ジプロピル-5-ベンゾトリアゾール-1-メチルアミン、N,N-ジブチル-4-ベンゾトリアゾール-1-メチルアミン、N,N-ジブチル-5-ベンゾトリアゾール-1-メチルアミン、N,N-ジヘキシル-4-ベンゾトリアゾール-1-メチルアミン、N,N-ジヘキシル-5-ベンゾトリアゾール-1-メチルアミンなどが挙げられる。
 イソボルニル骨格を有する化合物としてはイソボルニルアセテート、イソボルニルアクリレート、イソボルニルメタクリレート、イソボルニルシクロヘキサノールなどが挙げられ、これら化合物をアクリル共重合体の構成成分の一つとして含有してもよい。
 OCA層Dを形成するためのOCA材は上記化合物を含有する粘着剤を離型処理された基材の上に塗工し、乾燥することで得られる。得られたOCA材を熱ラミネーター等で熱圧着することでOCA層Dを形成することができる。
 本発明のタッチパネルは、本発明の製造方法により製造された導電パターン形成部材を具備する。より具体的には、本発明の製造方法により製造された導電パターン形成部材は、タッチパネル用の部材として好適に用いられる。タッチパネルの方式としては、例えば、抵抗膜式、光学式、電磁誘導式又は静電容量式が挙げられるが、静電容量式タッチパネルは特に微細な配線が求められることから、本発明の導電パターン形成部材がより好適に用いられる。本発明の製造方法により製造された導電パターンCをその周囲配線として備え、かつ該周囲配線が50μmピッチ(配線幅+配線間幅)以下であるタッチパネルにおいては、額縁幅を細くでき、ビューエリアを広くすることができる。
 以下に本発明を実施例及び比較例を挙げて詳細に説明するが、本発明の態様はこれらに限定されるものではない。
 各実施例及び比較例で用いた材料は、以下のとおりである。
 [樹脂(a)]
 (合成例1)
 共重合比率(質量基準):EA/メタクリル酸2-エチルヘキシル(以下、「2-EHMA」)/BA/N-メチロールアクリルアミド(以下、「MAA」)/AA=20/40/20/5/15
窒素雰囲気の反応容器中に、150gのジエチレングリコールモノエチルエーテルアセテート(以下、「DMEA」)を仕込み、オイルバスを用いて80℃まで昇温した。これに、20gのEA、40gの2-EHMA、20gのBA、5gのMAA、15gのAA、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、樹脂(a-1)を得た。得られた樹脂(a-1)の酸価は103mgKOH/gであった。
 (合成例2)
 共重合比率(質量基準):EA/2-EHMA/BA/MAA/AA=20/20/20/15/25
窒素雰囲気の反応容器中に、150gのDMEAを仕込み、オイルバスを用いて80℃まで昇温した。これに、20gのEA、20gの2-EHMA、20gのBA、5gのMAA、25gのAA、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、樹脂(a-2)を得た。得られた樹脂(a-2)の酸価は153mgKOH/gであった。
 (合成例3)
 共重合比率(質量基準):EA/2-EHMA/BA/MAA/AA=30/20/10/25/15
窒素雰囲気の反応容器中に、150gのDMEAを仕込み、オイルバスを用いて80℃まで昇温した。これに、30gのEA、20gの2-EHMA、10gのBA、25gのMAA、15gのAA、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、樹脂(a-3)を得た。得られた樹脂(a-3)の酸価は101mgKOH/gであった。
 (合成例4)
 共重合比率(質量基準):EA/2-EHMA/BA/グリシジルメタクリレート(以下、「GMA」)/AA=20/40/20/5/15
窒素雰囲気の反応容器中に、150gのDMEAを仕込み、オイルバスを用いて80℃まで昇温した。これに、20gのEA、40gの2-EHMA、20gのBA、15gのAA、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。引き続き、5gのGMA、1gのトリエチルベンジルアンモニウムクロライド及び10gのDMEAからなる混合物を、0.5時間かけて滴下した。滴下終了後、さらに2時間付加反応を行った。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、樹脂(a-4)を得た。得られた樹脂(a-4)の酸価は107mgKOH/gであった
[樹脂(c)]
 (合成例5)
 共重合比率(質量基準):EA/2-EHMA/スチレン(以下、「St」)/グリシジルメタクリレート(以下、「GMA」)/AA=20/40/25/5/10
窒素雰囲気の反応容器中に、150gのDMEAを仕込み、オイルバスを用いて80℃まで昇温した。これに、20gのEA、40gの2-EHMA、25gのSt、10gのAA、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。引き続き、5gのGMA、1gのトリエチルベンジルアンモニウムクロライド及び10gのDMEAからなる混合物を、0.5時間かけて滴下した。滴下終了後、さらに2時間付加反応を行った。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、樹脂(c-1)を得た。得られた樹脂(c-1)の酸価は73mgKOH/gであった。
 (合成例6)
 共重合比率(質量基準):エチレンオキサイド変性ビスフェノールAジアクリレート(FA-324A;日立化成工業(株)製)/EA/GMA/AA=60/20/5/15
窒素雰囲気の反応容器中に、150gのDMEAを仕込み、オイルバスを用いて80℃まで昇温した。これに、60gのエチレンオキサイド変性ビスフェノールAジアクリレート、20gのEA、15gのAA、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。引き続き、5gのGMA、1gのトリエチルベンジルアンモニウムクロライド及び10gのDMEAからなる混合物を、0.5時間かけて滴下した。滴下終了後、さらに2時間付加反応を行った。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、樹脂(c-2)を得た。得られた樹脂(c-2)の酸価は104mgKOH/gであった。
 (合成例7)
 窒素雰囲気の反応溶液中に、492.1gのカルビトールアセテート、860.0gのEOCN-103S(日本化薬(株)製;クレゾールノボラック型エポキシ樹脂;エポキシ当量:215.0g/当量)、288.3gのAA、4.92gの2,6-ジ-tert-ブチル-p-クレゾール及び4.92gのトリフェニルホスフィンを仕込み、98℃の温度で反応液の酸価が0.5mg・KOH/g以下になるまで反応させ、エポキシカルボキシレート化合物を得た。引き続き、この反応液に169.8gのカルビトールアセテート及び201.6gのテトラヒドロ無水フタル酸を仕込み、95℃で4時間反応させ、樹脂(c-3)を得た。得られた樹脂(c-3)の酸価は104mgKOH/gであった。
 (合成例8)
 窒素雰囲気の反応容器中に、368.0gのRE-310S(日本化薬(株)製;エポキシ当量:184.0g/当量)、141.2gのAA、1.02gのハイドロキノンモノメチルエーテル及び1.53gのトリフェニルホスフィンを仕込み、98℃の温度で反応液の酸価が0.5mgKOH/g以下になるまで反応させ、エポキシカルボキシレート化合物を得た。その後、この反応溶液に755.5gのカルビトールアセテート、268.3gの2,2-ビス(ジメチロール)-プロピオン酸、1.08gの2-メチルハイドロキノン及び140.3gのスピログリコールを加え、45℃に昇温した。この溶液に485.2gのトリメチルヘキサメチレンジイソシアネートを、反応温度が65℃を超えないように徐々に滴下した。滴下終了後、反応温度を80℃に上昇させ、赤外吸収スペクトル測定法により、2250cm-1付近の吸収がなくなるまで6時間反応させ、樹脂(c-4)を得た。得られた樹脂(c-4)の酸価は80.0mgKOH/gであった。
 (合成例9)
 窒素雰囲気の反応容器に、300gのデナコールEX-203(ナガセケムテックス(株)製)のアクリル酸付加物(分子量:368)、500gのDMEA、0.5gの2-メチルハイドロキノン及び200gの2,2-ビス(ヒドロキシメチル)プロピオン酸を仕込み、45℃に昇温した。この溶液に201.3gのトルエンジイソシアネートを、反応温度が50℃を超えないように徐々に滴下した。滴下終了後、反応温度を80℃に上昇させ、赤外吸収スペクトル測定法により、2250cm-1付近の吸収がなくなるまで6時間反応させた。この溶液に120gのGMAを加え、95℃に昇温して6時間反応させ、樹脂(c-5)を得た。得られた化合物(c-5)の酸価は83mgKOH/gであった。
 [光重合開始剤]
・IRGACURE(登録商標)OXE-01(以下、「OXE-01」;チバジャパン(株)製)
・IRGACURE(登録商標)369(以下、「IC-369」;チバジャパン(株)製)
 [モノマー]
・ライトアクリレートMPD-A(以下、「MPD-A」;共栄社化学(株)製)
 [アルコール系溶剤]
・ジエチレングリコール(以下、「DEG」)
 [エポキシ樹脂]
・jER(登録商標)828(以下、「828」;三菱化学(株)製)
・jER(登録商標)YX-8000(以下、「YX-8000」;三菱化学(株)製)
 [透明電極材料]
・ITO(酸化インジウム97質量%、酸化スズ3質量%)
・銀繊維(線径5nm、線長5μm)
[OCA(d)]
 (合成例10)
 窒素雰囲気の反応容器中に、150gの酢酸エチルを仕込み、オイルバスを用いて80℃まで昇温した。これに、50.0gのEA、10.0gの2-ヒドロキシエチルアクリレート、0.8gの2,2’-アゾビスイソブチロニトリル及び10gの酢酸エチルからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。
次に上記アクリル共重合体溶液に1gの1,2,3-ベンゾトリアゾールを添加し、樹脂固形分が30%になるように酢酸エチルで希釈し、そこへ1.2gのデュラネートP301-75E(旭化成(株)製;固形分75%)を添加したものを片面を離型処理された50μmのPETフィルム上に乾燥後の厚さが25μmになるように塗工して、75℃で5分間乾燥することでOCA(d-1)を得た。
 (合成例11)
 窒素雰囲気の反応容器中に、150gの酢酸エチルを仕込み、オイルバスを用いて80℃まで昇温した。これに、50.0gのイソボルニルメタクリレート、10.0gの2-ヒドロキシエチルアクリレート、0.8gの2,2’-アゾビスイソブチロニトリル及び10gの酢酸エチルからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。
次に上記アクリル共重合体溶液を酢酸エチルで樹脂固形分が30%になるように希釈し、そこへ1.2gのデュラネートP301-75E(旭化成(株)製;固形分75%)を添加したものを片面を離型処理された50μmのPETフィルム上に乾燥後の厚さが25μmになるように塗工して、75℃で5分間乾燥することでOCA(d-2)を得た。
 (合成例12)
 窒素雰囲気の反応容器中に、150gの酢酸エチルを仕込み、オイルバスを用いて80℃まで昇温した。これに、50.0gのイソボルニルメタクリレート、10.0gの2-ヒドロキシエチルアクリレート、0.8gの2,2’-アゾビスイソブチロニトリル及び10gの酢酸エチルからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。
次に上記アクリル共重合体溶液に1gの1,2,3-ベンゾトリアゾールを添加し、樹脂固形分が30%になるように酢酸エチルで希釈し、そこへ1.2gのデュラネートP301-75E(旭化成(株)製;固形分75%)を添加したものを片面を離型処理された50μmのPETフィルム上に乾燥後の厚さが25μmになるように塗工して、75℃で5分間乾燥することでOCA(d-3)を得た。
 (実施例1)
<樹脂層Aの形成>
 基材として、厚さ30μmの二軸延伸ポリエチレンテレフタレートフィルムを用意した。基材の片面に、樹脂(a-1)、MPD-A及びOXE-01がそれぞれ100:50:1の割合で混合された組成物A1を塗布し、熱処理及び乾燥をして、厚さが4μmの樹脂層A1を形成した。
<透明電極層Bの形成>
 樹脂層Aの表面に、ITOの焼結体ターゲットを備えたスパッタ装置を用いて、ITOからなる厚さ22nmのITO薄膜を形成した。
<ITO薄膜のパターン加工>
 ITO薄膜にフォトマスクを密着させ、超高圧水銀ランプを有する露光機で200mJ/cmの露光量で樹脂層A1及びITO薄膜を露光し、さらにフォトマスクを介すことなく、200mJ/cmの露光量で樹脂層A1及びITO薄膜を全面露光した露光後、30℃の1質量%炭酸ナトリウム水溶液で30秒間スプレー現像し、樹脂層A1上にパターン加工された透明電極層B1を形成した。
<組成物Cの調製>
 100mLクリーンボトルに、10.0gの化合物(C-1)、2.0gのIC-369及び5.0gのジエチエングリコールを入れ、自転-公転真空ミキサー“あわとり錬太郎”(登録商標)ARE-310((株)シンキー製)で混合して、17.0gの樹脂溶液C1(固形分70.1質量%)を得た。
得られた17.0gの樹脂溶液C1、68.0gの銀粒子を混ぜ合わせ、3本ローラーミル(EXAKT M-50;EXAKT社製)を用いて混練し、85.0gの組成物C1を得た。
<導電パターン形成部材の製造>
 樹脂層A1及びパターン加工された透明電極層B1の表面に、組成物C1をスクリーン印刷機で乾燥膜C1の膜厚が5μmになるように塗布し、70℃で10分間乾燥後、所定のフォトマスクを介して超高圧水銀ランプを有する露光機で300mJ/cmの露光量で露光し、0.2質量%炭酸ナトリウム水溶液を0.1MPaの圧力で30秒間スプレー現像した後、140℃で60分間キュアを行い、導電パターン形成部材1を製造した。
 導電パターン形成部材1の樹脂層A1の酸価SAは98mgKOH/g、導電パターンC1の有機成分酸価SCは55mgKOH/gであり、SA-SCの値は、43mgKOH/gであった。
<残渣の評価>
 図3に示す導電パターンC1を形成した導電パターン形成部材1について、未露光部分の全光線透過率Tを、NDH-7000SP(日本電色工業(株)製)を用いて、JIS K7361-1に準じて測定した。一方で、組成物Cを塗布していない部位の(樹脂層A単独の)全光線透過率Tを、同様に測定し、Tに対するTの低下率を算出して、以下の判断基準に基づき良/不良の別を判断した。結果を表2に示す。
低下率が10%以下 :  良
低下率が10%超  : 不良
<イオンマイグレーション耐性の評価>
 図2に示す導電パターンC1を形成した導電パターン形成部材1を、85℃、85%RHの高温高湿槽に投入し、端子部からDC5Vの電圧を印加して、急激に抵抗値が3桁低下する短絡時間を確認した。計10個の導電パターン形成部材1で同評価を繰り返し、それらの平均値を、イオンマイグレーション耐性の値とした。結果を表2に示す。
 (実施例2~14)
 透明電極層Bが銀繊維の場合は下記方法により形成した以外は、表1に示す条件の導電パターン形成部材を実施例1と同様の方法で製造し、実施例1と同様の評価を行った。結果を表2に示す。
<透明電極層Bの形成>
銀繊維の水分散液(固形分0.2質量%)を樹脂層A2上に塗布し、100℃で5分間乾燥し、厚さ1.0μmからなる銀繊維薄膜を形成した。
<銀繊維薄膜のパターン加工>
銀繊維薄膜にフォトマスクを密着させ、超高圧水銀ランプを有する露光機で200mJ/cmの露光量で樹脂層A2及び銀繊維薄膜を露光し、さらにフォトマスクを介すことなく、200mJ/cmの露光量で樹脂層A2及び銀繊維薄膜を全面露光した露光後、30℃の1質量%炭酸ナトリウム水溶液で30秒間スプレー現像し、樹脂層A2上にパターン加工された透明電極層B2を形成した。
(実施例15)
 実施例1と同様の方法で、導電パターン形成部材を製造した。
<OCA層Dの形成>
樹脂層A1及びパターン加工した透明電極層B1、導電パターンC1の表面にOCA(d-1)を80℃、圧着圧力0.5MPaの条件でラミネートして、図5に示す積層部材6、及び図6に示す積層部材7をそれぞれ製造した。
積層部材6及び7について、実施例1と同様の評価を行った。結果を表2に示す。
(実施例16~17)
 表1に示す導電パターン形成部材を実施例15と同様の方法で製造し、実施例1と同様の評価を行った。結果を表2に示す。
 (比較例1~3)
 表1に示す条件の導電パターン形成部材を実施例1もしくは実施例2と同様の方法で製造し、実施例1と同様の評価を行った。結果を表2に示す。
 実施例1~17においては、いずれも残渣が十分に抑制された、イオンマイグレーション耐性に優れる導電パターン形成部材を製造できていることが判る。
[規則91に基づく訂正 29.07.2016] 
Figure WO-DOC-TABLE-1
Figure JPOXMLDOC01-appb-T000002
 本発明の製造方法により製造された導電パターン形成部材は、タッチパネルの構成要素として好適に利用することができる。
1 透明電極層B
2 導電パターンC
3 層A
4 支持体
5 端子部
6 乾燥膜Cの露光エリア
7 乾燥膜Cの未露光部エリア
8 塗布膜Cの印刷エリア
9 OCA層D

Claims (15)

  1.  基材上に形成された、カルボキシル基を有する樹脂(a)からなる層A、及び、透明電極層Bの表面に、導電性粒子、及び、二重結合とカルボキシル基とを有する樹脂(c)を含有する組成物Cを塗布して、塗布膜Cを得る、塗布工程と、
     前記塗布膜Cを乾燥して乾燥膜Cを得る、乾燥工程と、
     前記乾燥膜Cを露光して露光膜Cを得る、露光工程と、
     前記露光膜Cを現像してパターンCを得る、現像工程と、
     前記パターンCをキュアして導電パターンCを得る、キュア工程と、を備え、
     前記導電性粒子に占める粒径0.3~2.0μmの粒子の割合が、80%以上である、導電パターン形成部材の製造方法。
  2.  前記導電性粒子に占める粒径0.5~1.5μmの粒子の割合が、80%以上である、請求項1記載の導電パターン形成部材の製造方法。
  3.  前記組成物Cが、さらに光重合開始剤を含有する、請求項1又は2記載の導電パターン形成部材の製造方法。
  4.  前記二重結合とカルボキシル基を有する樹脂(c)が、酸価が50~250mgKOH/gのアクリル樹脂である、請求項1~3のいずれか一項記載の導電パターン形成部材の製造方法。
  5.  前記透明電極層Bが銀を含有し、かつ、前記組成物Cが前記導電性粒子として銀粒子を含む、請求項1~4のいずれか一項記載の導電パターン形成部材の製造方法。
  6.  前記透明電極層Bが含有する銀が、繊維状である、請求項5記載の導電パターン形成部材の製造方法。
  7.  前記組成物Cが、沸点200℃以上のアルコール系溶剤を含有する、請求項1~6のいずれか一項記載の導電パターン形成部材の製造方法。
  8.  前記乾燥工程の温度が、50~80℃である、請求項1~7のいずれか一項記載の導電パターン形成部材の製造方法。
  9.  前記現像工程の現像圧力が、0.02~0.2MPaである、請求項1~8のいずれか一項記載の導電パターン形成部材の製造方法。
  10.  前記組成物Cが、エポキシ樹脂を含有する、請求項1~9のいずれか一項記載の導電パターン形成部材の製造方法。
  11.  前記カルボキシル基を有する樹脂(a)からなる層Aの酸価SAと、前記導電パターンCの有機成分酸価SCとの差が、20~150mgKOH/gである、請求項1~10のいずれか一項記載の導電パターン形成部材の製造方法。
  12.  請求項1~11のいずれか一項記載の導電パターン形成部材の製造方法によって得られた導電パターン形成部材であって、前記導電パターンCが、ウレタン結合を有する化合物を含有する導電パターン形成部材。
  13.  請求項1~11のいずれか一項記載の導電パターン形成部材の製造方法によって得られた導電パターン形成部材または請求項12に記載の導電パターン形成部材であって、前記導電パターンCが、シクロヘキサン骨格を有する化合物を含有する導電パターン形成部材。
  14.  請求項1~11のいずれか一項記載の導電パターン形成部材の製造方法によって得られた導電パターン形成部材または請求項12もしくは13に記載の導電パターン形成部材であって、前記層Aと、前記透明電極層Bと、導電パターンC上に積層されたOptical Clear Adhesive層Dがイソボルニル骨格を含有する導電パターン形成部材。
  15.  請求項1~11のいずれか一項記載の導電パターン形成部材の製造方法によって得られた導電パターン形成部材または請求項12、13もしくは14に記載の導電パターン形成部材であって、前記層Dがベンゾトリアゾール系化合物を含有する導電パターン形成部材。
PCT/JP2016/062150 2015-04-21 2016-04-15 導電パターン形成部材の製造方法 WO2016171083A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177025586A KR101898955B1 (ko) 2015-04-21 2016-04-15 도전 패턴 형성 부재의 제조 방법
CN201680021542.4A CN107430336B (zh) 2015-04-21 2016-04-15 导电图案形成部件的制造方法
JP2016561876A JP6150021B2 (ja) 2015-04-21 2016-04-15 導電パターン形成部材の製造方法
US15/684,469 US10048583B2 (en) 2015-04-21 2017-08-23 Method for manufacturing conductive pattern forming member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015086437 2015-04-21
JP2015-086437 2015-04-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/684,469 Continuation US10048583B2 (en) 2015-04-21 2017-08-23 Method for manufacturing conductive pattern forming member

Publications (1)

Publication Number Publication Date
WO2016171083A1 true WO2016171083A1 (ja) 2016-10-27

Family

ID=57143123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062150 WO2016171083A1 (ja) 2015-04-21 2016-04-15 導電パターン形成部材の製造方法

Country Status (6)

Country Link
US (1) US10048583B2 (ja)
JP (1) JP6150021B2 (ja)
KR (1) KR101898955B1 (ja)
CN (1) CN107430336B (ja)
TW (1) TWI620983B (ja)
WO (1) WO2016171083A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6717439B1 (ja) * 2018-11-30 2020-07-01 東レ株式会社 積層部材

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180171207A1 (en) 2015-06-17 2018-06-21 Clariant International Ltd. Water-Soluble Or Water-Swellable Polymers As Water Loss Reducers In Cement Slurries
JP7032402B2 (ja) 2016-12-12 2022-03-08 クラリアント・インターナシヨナル・リミテツド ある特定のレベルのバイオベース炭素を含むポリマー
JP7050784B2 (ja) 2016-12-12 2022-04-08 クラリアント・インターナシヨナル・リミテツド 化粧料組成物、皮膚科学的組成物または医薬組成物におけるバイオベースのポリマーの使用
US11306170B2 (en) 2016-12-15 2022-04-19 Clariant International Ltd. Water-soluble and/or water-swellable hybrid polymer
US11401362B2 (en) 2016-12-15 2022-08-02 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
WO2018108665A1 (en) 2016-12-15 2018-06-21 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
US11339241B2 (en) 2016-12-15 2022-05-24 Clariant International Ltd. Water-soluble and/or water-swellable hybrid polymer
CN114489373A (zh) * 2021-12-24 2022-05-13 浙江鑫柔科技有限公司 一种用于在基材上形成金属网格的方法和装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118875A1 (ja) * 2012-02-09 2013-08-15 ダイソー株式会社 金属微粒子含有光硬化性樹脂組成物及びその利用
WO2013137226A1 (ja) * 2012-03-15 2013-09-19 富士フイルム株式会社 感光性フィルム、静電容量型入力装置の製造方法および静電容量型入力装置、並びに、これを備えた画像表示装置
WO2013146107A1 (ja) * 2012-03-28 2013-10-03 東レ株式会社 感光性導電ペーストおよび導電パターンの製造方法
WO2013191062A1 (ja) * 2012-06-20 2013-12-27 富士フイルム株式会社 転写フィルム、静電容量型入力装置の製造方法および静電容量型入力装置、並びに、これを備えた画像表示装置
WO2014103325A1 (ja) * 2012-12-28 2014-07-03 東洋インキScホールディングス株式会社 感光性導電性インキ及びその硬化物、並びに導電パターン付き積層体
JP2015184648A (ja) * 2014-03-26 2015-10-22 東洋紡株式会社 感光性導電ペースト、導電性薄膜、電気回路、及びタッチパネル
JP2015184626A (ja) * 2014-03-26 2015-10-22 東レ株式会社 感光性樹脂組成物、それからなる感光性樹脂ペーストならびにそれらを硬化させて得られる硬化膜およびそれを有する電極回路
JP2016046031A (ja) * 2014-08-21 2016-04-04 日立化成株式会社 積層体、積層体の製造方法、フィルムセット並びに電子部品
JP2016097595A (ja) * 2014-11-21 2016-05-30 日立化成株式会社 積層体及びその製造方法、フィルムセット、感光性導電フィルム、並びに、電子部品

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278632A (en) 1975-12-12 1977-07-02 Tokyo Shibaura Electric Co Peeling solution for silver plating
JPS5360285A (en) 1976-11-11 1978-05-30 Asahi Chemical Ind Method and device for sucking gases at equal speed
JPS543187A (en) 1977-06-08 1979-01-11 Ryonichi Kk Preparation of polyvinyl chloride
JP3953625B2 (ja) 1998-03-02 2007-08-08 太陽インキ製造株式会社 感光性組成物
KR20050122498A (ko) * 2004-06-24 2005-12-29 삼성에스디아이 주식회사 감광성 페이스트 조성물, 이를 이용하여 제조된 pdp전극, 및 이를 포함하는 pdp
WO2009054464A1 (ja) * 2007-10-26 2009-04-30 Teijin Limited 透明導電性積層体及び透明タッチパネル
JP5364787B2 (ja) 2009-03-31 2013-12-11 太陽ホールディングス株式会社 感光性導電ペースト及び電極パターン
JP2010282023A (ja) * 2009-06-04 2010-12-16 Jiroo Corporate Plan:Kk 直下型液晶表示装置用光学シート及びバックライトユニット
CN108008602A (zh) 2010-05-13 2018-05-08 日立化成株式会社 透明导电图案的形成方法、导电膜基板及制造方法
CN102585713B (zh) * 2010-12-31 2014-07-23 第一毛织株式会社 显示器用光学粘合剂组合物、光学粘合剂膜和显示器装置
JP5763492B2 (ja) * 2011-09-30 2015-08-12 富士フイルム株式会社 静電容量型入力装置の製造方法および静電容量型入力装置、並びに、これを備えた画像表示装置
JP5230788B2 (ja) 2011-11-24 2013-07-10 日東電工株式会社 透明導電性フィルム
KR20140115316A (ko) 2012-01-19 2014-09-30 도레이 카부시키가이샤 도전 페이스트 및 도전 패턴의 제조 방법
WO2014077136A1 (ja) * 2012-11-13 2014-05-22 東レ株式会社 感光性導電ペースト、積層基板、導電パターンの製造方法及び静電容量型タッチパネル
JP6205925B2 (ja) 2013-07-12 2017-10-04 日立化成株式会社 感光性導電フィルム、並びにこれを用いた導電パターンの形成方法及び導電パターン基板
JP2015040316A (ja) * 2013-08-20 2015-03-02 デクセリアルズ株式会社 ナノ粒子担持金属ナノワイヤー、分散液、透明導電膜及びその製造方法、並びに、タッチパネル
CN103642406A (zh) * 2013-11-20 2014-03-19 苍南县三维电子塑胶有限公司 一种用于触摸屏的光学透明胶制备方法
KR101810855B1 (ko) * 2015-04-21 2017-12-20 도레이 카부시키가이샤 적층 부재 및 터치 패널

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118875A1 (ja) * 2012-02-09 2013-08-15 ダイソー株式会社 金属微粒子含有光硬化性樹脂組成物及びその利用
WO2013137226A1 (ja) * 2012-03-15 2013-09-19 富士フイルム株式会社 感光性フィルム、静電容量型入力装置の製造方法および静電容量型入力装置、並びに、これを備えた画像表示装置
WO2013146107A1 (ja) * 2012-03-28 2013-10-03 東レ株式会社 感光性導電ペーストおよび導電パターンの製造方法
WO2013191062A1 (ja) * 2012-06-20 2013-12-27 富士フイルム株式会社 転写フィルム、静電容量型入力装置の製造方法および静電容量型入力装置、並びに、これを備えた画像表示装置
WO2014103325A1 (ja) * 2012-12-28 2014-07-03 東洋インキScホールディングス株式会社 感光性導電性インキ及びその硬化物、並びに導電パターン付き積層体
JP2015184648A (ja) * 2014-03-26 2015-10-22 東洋紡株式会社 感光性導電ペースト、導電性薄膜、電気回路、及びタッチパネル
JP2015184626A (ja) * 2014-03-26 2015-10-22 東レ株式会社 感光性樹脂組成物、それからなる感光性樹脂ペーストならびにそれらを硬化させて得られる硬化膜およびそれを有する電極回路
JP2016046031A (ja) * 2014-08-21 2016-04-04 日立化成株式会社 積層体、積層体の製造方法、フィルムセット並びに電子部品
JP2016097595A (ja) * 2014-11-21 2016-05-30 日立化成株式会社 積層体及びその製造方法、フィルムセット、感光性導電フィルム、並びに、電子部品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6717439B1 (ja) * 2018-11-30 2020-07-01 東レ株式会社 積層部材

Also Published As

Publication number Publication date
CN107430336A (zh) 2017-12-01
JP6150021B2 (ja) 2017-06-21
TW201706711A (zh) 2017-02-16
JPWO2016171083A1 (ja) 2017-05-18
US10048583B2 (en) 2018-08-14
CN107430336B (zh) 2019-06-11
KR20170140166A (ko) 2017-12-20
KR101898955B1 (ko) 2018-09-14
TWI620983B (zh) 2018-04-11
US20170363956A1 (en) 2017-12-21

Similar Documents

Publication Publication Date Title
JP6150021B2 (ja) 導電パターン形成部材の製造方法
JP5967079B2 (ja) 導電ペーストおよび導電パターンの製造方法
WO2014208445A1 (ja) 導電ペースト、導電パターンの製造方法及びタッチパネル
CN111149056A (zh) 感光性导电糊剂及导电图案形成用膜
JP6090537B1 (ja) 積層部材及びタッチパネル
WO2017208842A1 (ja) 積層パターン形成基材及びタッチパネルの製造方法
JP2018120652A (ja) 導電パターン形成用フィルム
TWI658108B (zh) 導電糊、觸控面板及導電圖案的製造方法
JP5673890B1 (ja) 導電ペースト及び導電パターンの製造方法
JP5403187B1 (ja) 感光性導電ペーストおよび導電パターンの製造方法
WO2018029749A1 (ja) 導電パターン形成部材の製造方法
WO2014069436A1 (ja) 感光性導電ペースト及び導電パターンの製造方法
WO2015122345A1 (ja) 導電ペースト、パターンの製造方法、導電パターンの製造方法及びセンサー
JP6717439B1 (ja) 積層部材
WO2018029750A1 (ja) 積層部材及びタッチパネル
TW201800850A (zh) 感光性導電糊及附有導電圖案之基板的製造方法
TW201807498A (zh) 導電圖案形成構件及其製造方法
JPWO2017094693A1 (ja) 電極層支持用絶縁ペースト、タッチパネル、タッチパネルの製造方法
TW201806771A (zh) 積層構件及觸控面板
JP2017174705A (ja) 導電ペースト、導電パターンの製造方法、及び、導電パターンを具備する基板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016561876

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783104

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177025586

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16783104

Country of ref document: EP

Kind code of ref document: A1