WO2016171018A1 - シリコン微粉末の製造方法、及び窒化シリコン微粉末の製造方法 - Google Patents

シリコン微粉末の製造方法、及び窒化シリコン微粉末の製造方法 Download PDF

Info

Publication number
WO2016171018A1
WO2016171018A1 PCT/JP2016/061653 JP2016061653W WO2016171018A1 WO 2016171018 A1 WO2016171018 A1 WO 2016171018A1 JP 2016061653 W JP2016061653 W JP 2016061653W WO 2016171018 A1 WO2016171018 A1 WO 2016171018A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
fine powder
producing
silicon fine
ingot
Prior art date
Application number
PCT/JP2016/061653
Other languages
English (en)
French (fr)
Inventor
正彦 池内
辰郎 下司
豊大 山本
誠 川田
大吾 高石
博文 稲田
裕也 荒川
純一郎 門野
南 秀明
Original Assignee
株式会社Tkx
地方独立行政法人 京都市産業技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Tkx, 地方独立行政法人 京都市産業技術研究所 filed Critical 株式会社Tkx
Priority to SG11201708638PA priority Critical patent/SG11201708638PA/en
Priority to JP2016559451A priority patent/JP6077193B1/ja
Publication of WO2016171018A1 publication Critical patent/WO2016171018A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation

Definitions

  • the present invention relates to a method for producing high-purity silicon fine powder and a method for producing high-purity silicon nitride fine powder.
  • silicon fine powder has attracted attention as an electronic material. Further, since silicon fine powder is expensive, an attempt has been made to regenerate and use cutting waste as silicon fine powder when cutting a high-purity silicon ingot.
  • Patent Document 1 includes a fixed abrasive wire to which abrasive grains are fixed in advance, a support unit that supports a workpiece (silicon ingot to be cut) and presses against the fixed abrasive wire, There is described a micromachining method of silicon swarf using a cutting or grinding device provided with a coolant liquid supply unit for supplying a coolant liquid containing no abrasive.
  • the cutting scraps after cutting the silicon ingot using the above-described cutting or grinding apparatus are recovered as a slurry together with a coolant liquid containing no abrasive, and from the slurry, a centrifuge or It is described that it is taken out as fine silicon powder of submicron order using solid-liquid separation means such as a filter press.
  • impurities such as metal are mixed in the slurry, making it difficult to obtain high-purity silicon fine powder.
  • Mixing of metal, etc. is, for example, Ni from electrodeposited diamond abrasive grains of fixed abrasive wires, Fe, Cr, etc.
  • Patent Document 2 discloses that D50 is about 0.35 ⁇ m to 1.1 ⁇ m by refining silicon cutting waste generated from a back grinding process in a semiconductor factory using a mechanical crushing means such as a ball mill or a wet jet mill. It is described that silicon fine powder is taken out and nitrided to obtain silicon nitride fine powder. However, miniaturization using a mechanical crushing means such as a ball mill or a wet jet mill is unsuitable for mass production because of high production costs.
  • Patent Document 3 discloses that a metal silicon having an average particle size of 2.9 ⁇ m obtained by drying metal silicon sludge generated by cylindrical grinding of single crystal metal silicon is used as a starting material for 160 hours in a batch furnace at 1450 ° C. and normal pressure.
  • the silicon nitride ingot is manufactured by nitriding. It is described that the manufactured silicon nitride ingot is coarsely pulverized by a jaw crusher and an alumina roll double roll crusher, and then pulverized by a vibration mill or a jet mill to prepare a silicon nitride powder for a release agent.
  • this silicon nitride powder is D50 in the range of 1.6 ⁇ m to 3.0 ⁇ m, it is preferable that the release agent peels off little.
  • a mechanical pulverization method has a problem that it is expensive as a mass production process.
  • Non-Patent Document 1 shows an example of cost analysis of silicon nitride powder obtained by nitriding metal silicon powder by direct nitriding. According to the table, the ratio of the coarse pulverization cost and the fine pulverization cost of the silicon nitride aggregate is 29.2% and 28.4%, respectively, and the sum reaches 57.6% and about 60%. From this, it can be seen that the reduction of the pulverization process is an important factor for cost reduction in mass production.
  • the object of the present invention is to improve the above-mentioned conventional problems, recover silicon cutting waste in an efficient and economically advantageous state under a simple processing step, and use the silicon cutting waste to machine A high-purity silicon fine powder that can be collected without mechanical crushing and a method for producing the same are provided.
  • the method for producing silicon fine powder according to the present invention includes a preparation step of preparing a fixed abrasive wire saw in which abrasive grains are fixed to a silicon ingot and a wire outer peripheral surface, and the silicon ingot is attached to a fixing plate for mounting a silicon ingot.
  • a drying step of drying the solid content by a drying means
  • the method for producing silicon fine powder according to the present invention is characterized in that the fixing plate contains aluminum hydroxide particles or magnesium hydroxide particles.
  • the average particle size of the abrasive grains fixed to the outer peripheral surface of the fixed abrasive wire saw is 1 to 25 ⁇ m, and the abrasive density is 1500 to 3000 particles / mm 2. It is characterized by being.
  • the method for producing silicon fine powder according to the present invention is characterized in that the fixed abrasive wire saw is a resin bond wire saw.
  • the ingot feed speed when cutting the silicon ingot is 0.1 to 1.0 mm / min, and the ingot feed speed when cutting the fixed plate is 0.00. It is characterized by being 0.5 to 0.5 mm / min.
  • the method for producing silicon fine powder according to the present invention is characterized in that, in the washing step, the cake obtained in the solid-liquid separation step is washed with a first washing solution and then washed with a second washing solution.
  • the first cleaning liquid is a sulfuric acid aqueous solution containing 5 to 40% by weight sulfuric acid
  • the cake obtained in the solid-liquid separation step is heated to 50 ° C. to 90 ° C. Washing is carried out with immersion and stirring in the heated aqueous sulfuric acid solution for 20 to 60 minutes.
  • the second cleaning liquid is a hydrofluoric acid aqueous solution containing 0.5 to 10% by weight of hydrofluoric acid, and is washed with the first cleaning liquid and separated into solid and liquid. The removed cake is washed by immersing it in the hydrofluoric acid aqueous solution for 5 to 30 minutes.
  • the method for producing silicon fine powder according to the present invention is characterized by obtaining scaly silicon fine powder.
  • the method for producing silicon fine powder according to the present invention is characterized in that a scaly silicon fine powder having a specific surface area of 10 to 50 m 2 / g is obtained.
  • the method for producing silicon nitride fine powder according to the present invention comprises obtaining silicon fine powder by the method for producing silicon fine powder and pressing the silicon fine powder against a container at a bulk density of 0.3 to 0.7 g / cm 3. It is characterized in that it is mounted in a nitriding furnace and is directly nitrided by a nitriding method.
  • the method for producing a silicon nitride fine powder according to the present invention is characterized in that a silicon nitride fine powder having a specific surface area of 1 to 10 m 2 / g is obtained.
  • the slurry after slicing a silicon ingot with a fixed abrasive wire is collected and subjected to a predetermined treatment, so that it has a scale-like shape without being refined by a mechanical crushing means.
  • high-purity silicon fine powder of submicron to micron order can be taken out. Therefore, the production cost of high-purity silicon fine powder can be kept low, and mass production becomes possible.
  • the conventional silicon nitride particles are agglomerated without forming an ingot.
  • a high-purity silicon nitride fine powder of submicron to micron order can be produced without going through a conventional pulverization process.
  • neither the production of silicon powder nor the production of fine silicon nitride powder requires the use of mechanical grinding processes such as ball mills and jet mills that have been used in the past. Cost can be kept low and mass production becomes possible.
  • the pulverization time can be greatly shortened and the pulverization power can be reduced.
  • FIG. It is an observation image by the scanning electron microscope (SEM) of the high purity silicon fine powder obtained through the washing
  • the ingot slicing apparatus 1 of the silicon ingot 3 will be described with reference to FIG.
  • the fixed abrasive wire saw 2 is pressed against the silicon ingot 3 to cut out the silicon wafer.
  • the fixed abrasive wire saw 2 includes two guide rollers 7 for a wire saw when viewed from the front. Between these guide rollers 7, the fixed abrasive wire saw 2 is wound at a constant pitch so as to be parallel to each other. As a result, a wire row appears between the guide rollers 7.
  • the fixed-abrasive wire saw 2 is led out from a bobbin of a feeding device (not shown), passed over each guide roller 7 via a supply-side guide roller 7, and then not shown via a guide-side guide roller 7. It is wound on the bobbin of the winding device.
  • the fixed abrasive wire saw 2 is controlled to have a predetermined tension.
  • the silicon ingot 3 is attached to the fixing plate 4 by an adhesive of the adhesive layer 6 and is movable in the vertical direction by an elevator device (not shown).
  • the silicon ingot 3 is moved to and approached to the wire row of the fixed abrasive wire saw 2 that is wound in a plurality of rows between the guide rollers 7 (in the direction of arrow a).
  • the silicon ingot 3 is pressed against the wire row and cut.
  • the silicon ingot 3 is cut into slices by advancing the coolant while supplying the coolant from the coolant supply unit 5 to the processing portion. In order to cut the silicon ingot 3 reliably, not only the silicon ingot 3 but also a part of the fixing plate 4 is cut through the adhesive layer 6.
  • FIG. 2 is a schematic perspective view of the ingot slicing apparatus 1 showing a state in which the fixed abrasive wire saw 2 for cutting the silicon ingot 3 is wound in a plurality of rows between the guide rollers 7.
  • FIG. 3 is a schematic longitudinal sectional view of the fixed abrasive wire saw 2.
  • the fixed-abrasive wire saw 2 has a resin bond layer (resin bonding) formed by hardening abrasive grains 9 such as diamond on the outer periphery of a metal core wire 11 such as a piano wire. It is a resin bond wire saw fixed through an agent layer 10.
  • a cured polymer resin such as an epoxy resin, an acrylic urethane resin, a polyurethane resin, a vinyl chloride resin, or a fluororesin may be employed in addition to the phenol resin.
  • the abrasive grains 9 may be diamond abrasive grains, zirconia abrasive grains, cubic boron nitride (CBN) abrasive grains, alumina abrasive grains, or silicon carbide abrasive grains. Further, a filler (not shown) made of inorganic particles may be added to the resin bond layer 10.
  • the metal core wire 11 having a higher tensile strength is preferable. Moreover, the thing with high intensity
  • Steel wires include heat-treated spring steel wires such as high carbon steel and medium carbon low alloy steel, hard steel wires, piano wires and stainless steel wires, cold-pressed steel wires and oil tempered wires such as wire rods made of spring steel, low Examples include steel wires with high toughness and high fatigue strength such as alloy steel, medium alloy steel, high alloy steel, and maraging steel.
  • the fixed abrasive wire saw 2 may be one in which abrasive grains 9 such as diamond are fixed to the outer periphery of the metal core wire 11 via a melt-solidified layer (not shown) generated by melting the brazing material. Further, the fixed abrasive wire saw 2 may be fixed by depositing a nickel film (not shown) or the like on the wire surface by an electrodeposition method, and embedding the abrasive grains 9 in the nickel film or the like.
  • the abrasive grains 9 may be diamond abrasive grains, zirconia abrasive grains, cubic boron nitride (CBN) abrasive grains, alumina abrasive grains, or silicon carbide abrasive grains.
  • the fixed abrasive wire saw 2 is not limited as described above, but a resin bond wire saw disclosed in Japanese Patent Application Laid-Open No. 2014-133288 filed by the present applicant is more preferable.
  • the diameter is preferably 0.05 to 0.3 mm.
  • the tension of the fixed abrasive wire saw 2 is preferably 14 to 40N.
  • the traveling speed of the fixed abrasive wire saw 2 is preferably 700 to 1200 m / min.
  • the processing mechanism by the fixed abrasive wire saw 2 is a cutting mechanism in which the silicon ingot 3 is scraped off by the abrasive grains 9, in order for the silicon fine particles in the cut silicon scraps to be submicron to micron order fine particles,
  • the average particle size of the abrasive grains 9 is preferably 1 to 25 ⁇ m.
  • the particle density for the wire is preferably 1500 to 3000 pieces / mm 2 .
  • the silicon ingot cutting surface and the resin bond wire saw are soft because the abrasive density is higher and the tension at the time of cutting is lower than the fixed abrasive wire saw in which the abrasive grains 9 are fixed by a nickel film. This is preferable because it becomes a touch state, and the cutting powder is fine and thin, and becomes thin-walled fine particles.
  • the ingot feed speed is preferably 0.1 to 1.0 mm / min. Since the fixed abrasive wire saw 2 has low rigidity, deflection occurs due to cutting resistance when the silicon ingot 3 is cut. Therefore, in order to cut the silicon ingot 3 reliably, a part of the fixing plate 4 of the silicon ingot 3 is cut in consideration of the deflection of the wire saw. When cutting a part of the fixing plate 4 for fixing the silicon ingot 3, it is preferable to set the ingot feed speed to 0.05 to 0.5 mm / min.
  • the fixing plate 4 to which the silicon ingot 3 is attached is formed by solidifying aluminum hydroxide (Al (OH) 3 ) powder having good endotherm with a binder resin in order to prevent the temperature rise of the silicon ingot 3 and the fixing plate 4 due to cutting.
  • Al (OH) 3 aluminum hydroxide
  • the aluminum hydroxide has a role of preventing the resin in the fixed plate from being softened or burned by the cutting heat when cutting to a part of the fixed plate 4. That is, when the fixing plate 4 is heated from 200 ° C. to 350 ° C. with cutting heat, the aluminum hydroxide is dehydrated and decomposed.
  • coolant liquid used in the present invention it is preferable to use a water-soluble organic (water-soluble cutting fluid) coolant liquid.
  • a water-soluble organic (water-soluble cutting fluid) coolant liquid For example, water containing a mixture of polyethylene glycol, diethylene glycol, propylene glycol, polypropylene glycol or the like as a main component is used. A coolant liquid is used.
  • FIG. 4 is a flowchart of a slurry recovery process and a solid-liquid separation process in which two ingot slicing apparatuses 1 are arranged.
  • slurry containing silicon cutting waste, cutting waste of the fixing plate 4, cutting waste of the adhesive layer 6 and coolant liquid can be accumulated in the coolant tank 8 and taken out.
  • cutting particles generated by slicing aluminum hydroxide (Al (OH) 3 ) which is a component of the fixing plate 4, binder resin, and other metal components (Al, Fe, Ca, K, Ni, etc.) Is included. Other metal components originate from the flow path in contact with the coolant.
  • the slurry also contains a component of the adhesive layer 6 that fixes the silicon ingot 3 to the fixing plate 4.
  • the slurry in the coolant tank 8 is transferred to the slurry receiving tank 12 together with the coolant by using a transfer pump (not shown). Further, the slurry is transferred from the slurry receiving tank 12 to the next solid-liquid separation step (S02).
  • the slurry is stirred by the stirrer 15 to uniformize the slurry state and suppress aggregation of the silicon cutting powder.
  • solid-liquid separation step (S02) most of the coolant is removed from the slurry using solid-liquid separation means (a) 16 such as a centrifugal separator or a filter press, and silicon cutting waste and impurities (cutting waste on the fixed plate 4) are removed. , Cutting scraps of the adhesive layer 6 and other metal components) and a cake 18 containing a very small amount of coolant liquid.
  • the removed coolant liquid is transferred to the coolant supply tank 14, a new coolant liquid is added, and the mixture is stirred by the stirrer 15 to make the mixed state uniform and regenerated. Further, the regenerated coolant is supplied to the ingot slicing apparatus 1 through the regenerated coolant supply line 17 and used.
  • a plurality of ingot slicing apparatuses 1 and coolant tanks 8 may be arranged to collect and collect the slurry. Furthermore, the coolant liquid can also be collected, recovered, regenerated, and then supplied to a plurality of ingot slicing apparatuses 1. By arranging a plurality of ingot slicing apparatuses 1 to form a line, the slurry recovery efficiency is improved.
  • the cleaning step (S03) is a step of cleaning the cake containing the silicon cutting powder to remove impurities, and further to remove the silicon natural oxide film (SiO 2 ).
  • the drying step (S04) is a step of obtaining a high-purity silicon fine powder by drying the solid content 32, which is washed and separated by solid-liquid separation in the washing step (S03), by a drying means.
  • the sulfuric acid aqueous solution that is the first cleaning liquid is used to remove the Al component and other metal components that react with sulfuric acid. That is, in the sulfuric acid cleaning tank 24, the cake 18 containing silicon cutting waste and impurities and a 1 to 40% by weight sulfuric acid aqueous solution are mixed at a weight ratio of 1:10, and the temperature is maintained at 50 to 90 ° C. with the thermostatic device 23. However, the washing is performed by dipping and stirring with a washing time of 20 to 60 minutes. The temperature in the thermostatic device 23 is preferably maintained at 50 to 80 ° C. Thereby, the Al component is reduced from about 10,000 ppm to about 40 ppm.
  • metal components are also reduced from several tens of ppm to several to several tens of ppm.
  • the metal component remaining after the sulfuric acid cleaning is a metal component that is strongly adsorbed on the natural oxide film (SiO 2 ) formed on the surface of the silicon cutting scrap.
  • SiO 2 natural oxide film
  • Al and Fe oxides and hydroxides are chemically more stable than SiO 2 , dehydrated and condensed with Si—OH groups, and taken into the natural oxide film like Si—O—Al, for cutting silicon. It is thought to strongly adsorb to the natural oxide film on the surface of the powder.
  • the metal strongly adsorbed to the natural oxide film is removed together with the natural oxide film (SiO 2 ) using a hydrofluoric acid aqueous solution as the second cleaning liquid.
  • a hydrofluoric acid aqueous solution As the second cleaning liquid.
  • a cake 29 taken out by a solid-liquid separation means (b) 19 such as a centrifuge or a filter press and a 0.5 to 10% by weight hydrofluoric acid aqueous solution in a weight ratio of 1:10.
  • a solid-liquid separation means (b) 19 such as a centrifuge or a filter press and a 0.5 to 10% by weight hydrofluoric acid aqueous solution in a weight ratio of 1:10.
  • Mix wash by immersion at room temperature and washing time 5-30 minutes.
  • the cleaning time with an aqueous fluorine solution is 5 to 20 minutes.
  • Pure water cleaning in the first pure water cleaning tank 26 is performed by immersing and stirring the cake 30 taken out by the solid-liquid separation means (c) 20 such as a centrifuge or a filter press after cleaning with hydrofluoric acid. To do. Since a small amount of hydrofluoric acid aqueous solution adheres to the cake 30 and silicon appearing on the surface reacts with water in the hydrofluoric acid aqueous solution and dissolves, it is preferable to clean with pure water within 5 minutes after the hydrofluoric acid cleaning. Preferably, pure water cleaning is performed within 1 minute after hydrofluoric acid cleaning.
  • the pure water washing in the second pure water washing tank 27 is immersed and stirred in the cake 31 taken out by the solid-liquid separation means (d) 21 such as a centrifugal separator or a filter press after the first pure water washing. To implement. After the second pure water cleaning, solid-liquid separation is performed by the solid-liquid separation means (e) 22 and the solid content 32 is taken out. Although pure water cleaning may be performed once, it is preferable to increase the cleaning degree by performing pure water cleaning twice.
  • the solid content 32 taken out after washing with pure water is dried using an air flow dryer 28 as a drying means to obtain silicon fine powder.
  • an air flow dryer 28 By drying with the air dryer 28, the silicon fine powder can be collected in a powder state without becoming a lump.
  • the drying means is preferably an air dryer, but is not limited thereto.
  • the scale-like silicon fine powder obtained in the drying step is used as a raw material, and the atmosphere is placed on a boat made of carbon (graphite), silicon nitride, alumina or boron nitride, or without pressing on a crucible. Place in the furnace. After evacuating the atmosphere furnace, nitrogen gas, hydrogen gas, ammonia gas or a mixed gas thereof is circulated in the furnace as a nitriding gas, and the temperature is raised.
  • a rare gas such as argon may be circulated together with the nitriding gas.
  • the rare gas one or more gases selected from the gas group consisting of argon, helium, neon, xenon, and krypton are used.
  • the temperature profile of the nitriding treatment As the temperature profile of the nitriding treatment, the temperature is raised to a predetermined temperature (maximum temperature) selected in the range of 1200 to 1400 ° C. at a rate of temperature increase of 300 ° C./hour. Hold at the predetermined temperature (maximum temperature) for 10 to 100 hours. After holding, the temperature is lowered to room temperature at a temperature lowering rate of 300 ° C./hour.
  • Examples 1 and 2 and Comparative Examples 1 and 2> According to the process flow of FIG. 4, the cake 18 containing silicon cutting waste and impurities was taken out from the slurry generated when the silicon ingot 3 was sliced.
  • Ingot slicing apparatus 1 silicon ingot 3 attached to fixed plate 4 containing aluminum hydroxide is fixed abrasive wire saw 2 having an average particle diameter of 10 ⁇ m of diamond abrasive grains 9 and a particle size density of 2300 pieces / mm 2. Slicing was performed under the condition of 0.5 mm / min, and the slurry was recovered from the coolant tank 8.
  • As the fixed abrasive wire saw 2 a resin bond wire saw was used.
  • the recovered slurry was subjected to solid-liquid separation with a centrifuge, and the cake 18 was taken out. Furthermore, it processed according to the process flow of FIG. 5, and obtained the high purity silicon fine powder from the cake 18 containing a silicon cutting waste and an impurity.
  • the sulfuric acid cleaning in the cleaning step (S03) is performed by mixing silicon scraps and impurities-containing cake 18 and a 25% by weight sulfuric acid aqueous solution in a weight ratio of 1:10, dipping and stirring at a temperature of 75 ° C. and a cleaning time of 60 minutes. Washing was performed. After washing with sulfuric acid, the cake 29 was taken out by solid-liquid separation.
  • Hydrofluoric acid cleaning is performed by mixing cake 29 obtained by solid-liquid separation with a centrifugal separator after sulfuric acid cleaning and a 1.0 wt% hydrofluoric acid aqueous solution in a weight ratio of 1:10, and at room temperature and a cleaning time of 20 minutes. Washing was performed by dipping and stirring. After washing with hydrofluoric acid, washing with pure water was performed twice, followed by solid-liquid separation with a centrifuge, and the solid content 32 was taken out. Further, the solid content 32 was dried by the air flow dryer 28 in the drying step (S04) to obtain silicon fine powder. As shown in the SEM observation image of FIG.
  • the high-purity silicon fine powder obtained by the above procedure is curved with a size of approximately 1 ⁇ m ⁇ (1-5) ⁇ m ⁇ (0.07-0.09) ⁇ m. It was confirmed to have a scale-like shape.
  • the silicon fine powder having a scaly shape is presumed to be due to a processing mechanism of scraping the silicon ingot with fixed abrasive grains.
  • a mechanical crushing means such as a ball mill or a jet mill.
  • the fixed abrasive wire saw 2 can be obtained without mechanical crushing.
  • High-purity scaly silicon fine powder on the order of submicron to micron can be produced in large quantities from the above-mentioned cutting waste.
  • FIG. 7 shows an SEM observation image of the cut surface of the fixed plate 4.
  • FIG. 7 shows that the resin surrounds and adheres around the coarse particles of aluminum hydroxide.
  • the coarse aluminum hydroxide particles are cut with diamond abrasive grains of the fixed abrasive wire saw 2 and mixed with the silicon cutting powder in the slurry.
  • the ingot feed speed as 0.05 to 0.5 mm / min, which is slower than the ingot feed speed when cutting only the silicon ingot 3, as a cutting condition of the fixed plate 4 containing aluminum hydroxide as a component, It was confirmed that the aluminum cutting particles became fine particles of several tens of nm or less, which are difficult to confirm even with a high-resolution SEM.
  • Table 1 shows the analysis results obtained by quantifying the metal of the silicon fine powder obtained by the above procedure using an ICP emission analyzer.
  • ICP emission analyzer a high-frequency plasma emission analyzer ICPS-8000 manufactured by Shimadzu Corporation was used.
  • Example 1 the high-purity scaly silicon fine powder obtained through the cleaning step (S03) in FIG. 5 ⁇ Sulfuric acid cleaning, hydrofluoric acid cleaning, and pure water cleaning> and the drying step (S04) was used. Used as a sample for analysis.
  • Comparative Example 1 the silicon fine powder obtained through the cleaning step of FIG. 8 ⁇ no sulfuric acid cleaning, no hydrofluoric acid cleaning, only pure water cleaning>, and the drying step was used for analysis. The pure water cleaning was performed by immersing and stirring the cake 18 containing silicon cutting waste and impurities in pure water.
  • Comparative Example 2 the silicon fine powder obtained through the washing step ⁇ sulfuric acid washing, hydrofluoric acid washing not carried out, pure water washing carried out> and the drying step in FIG. 9 was used for the analysis.
  • sulfuric acid cleaning silicon scraps and impurities containing cake 18 and 25 wt% sulfuric acid aqueous solution were mixed at a weight ratio of 1:10, and immersed in a cleaning time of 60 minutes while maintaining the temperature at 75 ° C. with the thermostatic device 23. Washing was performed with stirring. From Table 1, Examples 1 and 2 confirmed that the metal component of impurities was kept as low as several ppm, and that the sample used for the analysis was a high-purity silicon fine powder with few impurities.
  • Comparative Example 1 in addition to Al, which is a material component of the fixing plate 4, metal components such as Fe and Ca remain. Further, Comparative Example 2 shows that Al, which is a component of the fixing plate 4, remains in the hundreds of tens ppm although the content of Fe, Ca and the like is low.
  • Examples 3 and 4 and Comparative Examples 3 and 4> Take 3 g of the scaly silicon fine powder obtained in Examples 1 and 2 and lightly loosen it as a raw material for nitriding treatment. Place it on the boat without pressing it, place it in the atmosphere furnace, and directly Nitriding was performed to obtain a silicon nitride fine powder.
  • the atmosphere furnace used was an external heating atmosphere furnace using a high purity alumina furnace core tube. After evacuating the inside of the furnace, the temperature was raised to 1350 ° C. at a rate of 300 ° C./hour while flowing nitrogen gas at 300 ml / min, and then maintained at 1350 ° C. for 80 hours. Then, it cooled at room temperature / 300 degreeC / hour.
  • Table 2 shows the analysis result of the silicon nitride fine powder obtained by the above procedure using an X-ray diffractometer.
  • the powder X-ray diffractometer Ultima IV manufactured by Rigaku Corporation was used.
  • Example 3 the high-purity silicon nitride fine powder obtained by nitriding the flaky silicon fine powder obtained in Examples 1 and 2 under the above conditions was used for analysis.
  • Example 4 is a high purity obtained by nitriding the flaky silicon fine powder obtained in Examples 1 and 2 under the condition where only the holding time at 1350 ° C. was changed to 18 hours among the above conditions.
  • the silicon nitride fine powder was used for analysis as a sample. That is, this sample is a silicon nitride fine powder obtained through the cleaning step (S03) in FIG. 5 ⁇ Performance of sulfuric acid cleaning, cleaning with hydrofluoric acid, cleaning with pure water>.
  • Comparative Example 3 the silicon nitride fine powder obtained by nitriding the silicon fine powder obtained in Comparative Example 1 by a direct nitriding method was used for analysis as a sample. That is, this sample is a silicon nitride fine powder obtained through the cleaning step of FIG. 8 (no sulfuric acid cleaning, no hydrofluoric acid cleaning, pure water cleaning only).
  • Comparative Example 4 the silicon nitride fine powder obtained by nitriding the silicon fine powder obtained in Comparative Example 2 by direct nitriding was used as a sample for analysis. That is, this sample is a silicon nitride fine powder obtained through the cleaning step of FIG.
  • Example 3 of Table 2 it can be seen that the unreacted silicon is very small and the nitriding reaction is sufficiently advanced. Further, as shown in the SEM observation image of FIG. 10, it was confirmed that the silicon nitride fine powder obtained in Example 3 was not a scale shape but submicron amorphous particles. As shown in Table 2, the specific surface area was 3 m 2 / g, and the average particle size was converted from the specific surface area to be 0.58 ⁇ m.
  • Comparative Example 3 From Comparative Example 3, it can be confirmed that there is a large amount of unreacted silicon. In addition, the presence of needle crystals can be confirmed from the SEM observation image of FIG.
  • the raw material of the silicon nitride fine powder is made from silicon cutting waste that has been subjected to pure water cleaning only, and impurities such as metals remain in the silicon cutting waste. It is presumed that this residual metal acted to grow acicular crystals. From Comparative Example 4, it can be confirmed that the ratio of unreacted silicon is large and is not suitable as a release agent or a raw material for a sintered body.
  • silicon scrap generated when slicing the silicon ingot 3 can be refined without using mechanical crushing means to obtain high-purity scaly silicon fine powder.
  • Production of high-purity silicon nitride fine powder for mold release agents and sintered bodies, and high-purity silicon nitride ceramics by two-stage sintering, starting from such scaly silicon fine powder derived from silicon scraps Can be realized at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Silicon Compounds (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

【課題】シリコンインゴットをスライス加工する際に発生するシリコンの切削屑から、ボールミルやジェットミルなどの機械的破砕手段を用いることなく、高純度の鱗片状シリコン微粉末の採取を可能とするシリコン微粉末の製造方法を提供する。更にその鱗片状シリコン微粉末を出発原料とする窒化シリコン微粉末の製造方法を提供する。 【解決手段】水酸化アルミニウムを含む固定板4に固定したシリコンインゴット3を、固定砥粒ワイヤーソー2で切断し、シリコン切削粉、不純物及びクーラント液を含むスラリーとして回収する。回収したスラリーを固液分離して、シリコン切削粉と不純物を含むケーキ18を取りだす。そのケーキ18を50~90℃に加熱した1~40重量%の硫酸を含む硫酸水溶液にて20~60分浸漬攪拌して洗浄する。

Description

シリコン微粉末の製造方法、及び窒化シリコン微粉末の製造方法
 本発明は、高純度シリコン微粉末の製造方法、高純度窒化シリコン微粉末の製造方法に関する。
 従来より、シリコン微粉末は電子材料として注目されている。またシリコン微粉末は高価であるため、高純度シリコンインゴットを切削する際の、切削屑をシリコン微粉末として再生し利用する試みがなされている。
 このような事情から、特許文献1には、予め砥粒が固着された固定砥粒ワイヤーと、被加工物(切削すべきシリコンインゴット)を支持して固定砥粒ワイヤーに押し当てる支持ユニットと、研磨剤が非含有のクーラント液を供給するクーラント液供給ユニットと、を備えた切削又は磨砕装置を用いたシリコン切削屑の微細加工方法が記載されている。その微細加工方法によれば、上記切削又は磨砕装置を用いて、シリコンインゴットを切削した後の切削屑を、研磨剤が未含有のクーラント液とともにスラリーとして回収し、そのスラリーから遠心分離機やフィルタープレス機などの固液分離手段を用いて、サブミクロンオーダーのシリコン微粉末として取り出すことが記載されている。
 このような切削又は磨砕装置を用いて、シリコン微粉末を取り出すとき、スラリーに金属等の不純物が混入し、高純度のシリコン微粉末を得ることを難しくする。金属等の混入は、例えば、固定砥粒ワイヤーのNi電着ダイヤモンド砥粒からのNiやワイヤー母線のFe、Crなどの混入、クーラント液に接する装置経路からの混入、シリコンインゴットを固定する固定板の切削屑の混入、などが考えられる。また、これらの不純物の除去を純水だけで行うと、膨大な量の純水が必要となり、コスト高となるばかりでなく、純水に難溶な金属化合物の除去は困難である。
 また、特許文献2には、半導体工場のバックグラインド工程から発生したシリコン切削屑を、ボールミルや湿式ジェットミルなどの機械的破砕手段を用いて微細化して、D50が0.35μm~1.1μm程度のシリコン微粉末を取り出し、その微粉末を窒化して窒化シリコン微粉末を得ることが記載されている。しかしながらボールミルや湿式ジェットミルなどの機械的破砕手段を用いる微細化加工は、生産コストが高くなるため、大量生産には不適当である。
 特許文献3には、単結晶金属シリコンの円筒研削によって発生する金属シリコンスラッジを乾燥して得た平均粒径2.9μmの金属シリコンを出発原料として、1450℃、常圧のバッチ炉で160時間窒化して窒化ケイ素インゴットを製造している。製造した窒化ケイ素のインゴットをジョークラッシャーとアルミナロールダブルロールクラシャーで粗粉砕し、振動ミル又はジェットミルにより粉砕して、離型剤用窒化ケイ素粉末を調整していることが記されている。この窒化ケイ素粉末の粒径はD50で1.6μm~3.0μmの範囲であれば、離型剤の剥がれる割合が少なく好ましいとしている。しかし、このような機械的に粉砕する方法は、量産プロセスとしてコスト高になるという問題がある。
 さらに、非特許文献1には、金属シリコン粉末を直接窒化法で窒化して得られる窒化ケイ素粉末のコスト解析例が示されている。その表によれば、窒化ケイ素集合体の粗粉砕費と微粉砕費の割合はそれぞれ29.2%と28.4%であり、その和は57.6%と約6割に達する。このことから、この粉砕工程の削減が、量産におけるコスト低減の重要な因子であることがわかる。
国際公開WO2013/047678号 特開2011-51856号公報 特開2013-71864号公報
川崎卓、直接窒化法による窒化ケイ素粉末の経済性について、協会誌「セラミックス」、日本、日本セラミックス協会、35巻、2000年第11月号、p919-922
 本発明の目的は、上記した従来の問題点を改善し、簡易な処理工程の下で効率的に且つ経済的に有利な状態で、シリコン切削屑を回収し、そのシリコン切削屑を用いて機械的破砕を行うことなく、採取できる高純度のシリコン微粉末と、その製造法を提供する。
 本発明に係るシリコン微粉末の製造方法は、シリコンインゴット及びワイヤー外周面に砥粒が固着された固定砥粒ワイヤーソーを準備する準備工程と、シリコンインゴット取付用の固定板に、前記シリコンインゴットを固定する固定工程と、前記固定砥粒ワイヤーソーを用い、前記シリコンインゴットをスライスするスライス工程と、前記スライス工程で発生するシリコン切削屑を含むスラリーを回収するスラリー回収工程と、前記スラリーからシリコン切削屑を含むケーキを固液分離手段により分離して取り出す固液分離工程と、前記固液分離工程で得られたケーキを洗浄液で洗浄する洗浄工程と、前記洗浄工程後に固液分離して得られた固形分を、乾燥手段にて乾燥する乾燥工程と、を備えたことを特徴とする。
 本発明に係るシリコン微粉末の製造方法は、前記固定板が水酸化アルミニウム粒子または水酸化マグネシウム粒子を含むことを特徴とする。
 本発明に係るシリコン微粉末の製造方法は、前記固定砥粒ワイヤーソーの外周面に固着された前記砥粒の平均粒径が1~25μmであり、砥粒密度が1500~3000個/mmであることを特徴とする。
 本発明に係るシリコン微粉末の製造方法は、前記固定砥粒ワイヤーソーがレジンボンドワイヤーソーであることを特徴とする。
 本発明に係るシリコン微粉末の製造方法は、前記シリコンインゴットを切削するときのインゴット送り速度が0.1~1.0mm/分であり、前記固定板を切削するときのインゴット送り速度が0.05~0.5mm/分であることを特徴とする。
 本発明に係るシリコン微粉末の製造方法は、前記洗浄工程は前記固液分離工程で得られたケーキを第1の洗浄液で洗浄し、その後第2の洗浄液で洗浄することを特徴とする
 本発明に係るシリコン微粉末の製造方法は、前記第1の洗浄液は5~40重量%の硫酸を含む硫酸水溶液であり、前記固液分離工程で得られたケーキを、50℃~90℃に加熱した該硫酸水溶液にて、20分~60分浸漬撹拌しながら洗浄することを特徴とする。
 本発明に係るシリコン微粉末の製造法は、前記第2の洗浄液は、0.5~10重量%のフッ酸を含むフッ酸水溶液であり、前記第1の洗浄液で洗浄され固液分離されて取り出されたケーキを、該フッ酸水溶液にて5分~30分浸漬して洗浄することを特徴とする。
 本発明に係るシリコン微粉末の製造方法は、鱗片状シリコン微粉末を得ることを特徴とする。
 本発明に係るシリコン微粉末の製造方法は、比表面積が10~50m/gの鱗片状シリコン微粉末を得ることを特徴とする。
 本発明に係る窒化シリコン微粉末の製造方法は、シリコン微粉末の製造方法によりシリコン微粉末を得て、シリコン微粉末を0.3~0.7g/cmの嵩密度で容器に押圧することなく載上して窒化炉内に載置し、直接窒化法で窒化することを特徴とする。
 本発明に係る窒化シリコン微粉末の製造方法は、比表面積が1~10m/gの窒化シリコン微粉末を得ることを特徴とする。
 本発明によれば、固定砥粒ワイヤーでシリコンインゴットをスライス加工した後のスラリーを回収して所定の処理をすることにより、機械的破砕手段による微細化を行わずに、鱗片状の形状を有し、サブミクロン~ミクロンオーダーの高純度シリコン微粉末を取り出すことができる。そのため高純度シリコン微粉末の生産コストを低く抑えられ、大量生産が可能となる。
 更に、上記の高純度シリコン微粉末を用いて、所定の条件下で加熱して窒化することにより、従来のような窒化シリコン粒子が凝集しインゴットを形成するということ無しに、微粉末となるため、従来の粉砕工程を経ずに、サブミクロン~ミクロンオーダーの高純度の窒化シリコン微粉末を製造することができる。このように、シリコン粉末の製造にも、窒化シリコン微粉末の製造にも、従来用いられてきたボールミルやジェットミルのような機械的粉砕工程は必要ないため、高純度の窒化シリコン微粉末の生産コストを低く抑えられ、大量生産が可能となる。あるいは生産性の観点から機械的粉砕手段が必要な場合であっても、粉砕時間の大幅な短縮が可能となり、粉砕動力も軽減できる。
本発明に使用するインゴットスライス装置の正面視模式図である 本発明に使用するインゴットスライス装置の斜視模式図である。 本発明に使用する固定砥粒ワイヤーソーの縦断面模式図である。 2台のインゴットスライス装置によりシリコンインゴットがスライスされて得られるスラリーの回収工程、固液分離工程、クーラント液の再生クーラント供給ラインを示す工程フロー図である。 スラリー回収して固液分離したケーキを、洗浄工程(S03)<硫酸洗浄実施、フッ素洗浄実施、純水洗浄実施>、乾燥工程(S04)を経て高純度のシリコン微粉末を得ることを示す工程フロー図である。 図5の洗浄工程(S03)、乾燥工程(S04)を経て得られる高純度のシリコン微粉末の走査型電子顕微鏡(SEM)による観察像である。 本発明に使用する水酸化アルミニウム粒子を含む固定板の断面の走査型電子顕微鏡(SEM)による観察像である。 スラリー回収して固液分離したケーキを、洗浄工程<硫酸洗浄未実施、フッ酸洗浄未実施、純水洗浄のみ実施>、乾燥工程を経てシリコン微粉末を得ることを示す工程フロー図である。 スラリー回収して固液分離したケーキを、洗浄工程<硫酸洗浄実施、フッ酸洗浄未実施、純水洗浄実施>、乾燥工程を経てシリコン微粉末を得ることを示す工程フロー図である。 図5の洗浄工程(S03)<硫酸洗浄実施、フッ酸洗浄実施、純水洗浄実施>、乾燥工程(S04)を経て得られるシリコン微粉末を、直接窒化法で窒化して得られる高純度窒化シリコン微粉末の走査型電子顕微鏡(SEM)による観察像である。 図8の洗浄工程<硫酸洗浄未実施、フッ酸洗浄未実施、純水洗浄のみ実施>、乾燥工程を経て得られるシリコン微粉末を、直接窒化法で窒化して得られる窒化シリコン微粉末の走査電子顕微鏡(SEM)による観察像である。
 次に、本発明の実施形態について、図面に基づいて詳細に説明する。
 図1を用いて、シリコンインゴット3のインゴットスライス装置1を説明する。
 固定砥粒ワイヤーソー2をシリコンインゴット3に押し当てて、シリコンウェハーを切り出す。図1に示すように、固定砥粒ワイヤーソー2は、正面視して2本のワイヤーソー用のガイドローラ7を備えている。これらのガイドローラ7間には、固定砥粒ワイヤーソー2が互いに平行になるように一定のピッチで巻き掛けられている。これによりガイドローラ7間にワイヤー列が現出する。固定砥粒ワイヤーソー2は、図示しない繰出し装置のボビンから導出され、供給側のガイドローラ7を介して、各ガイドローラ7に掛け渡された後、導出側のガイドローラ7を介して図示しない巻取り装置のボビンに巻き取られる。また固定砥粒ワイヤーソー2は所定の張力になるように制御される。
 シリコンインゴット3は接着剤層6の接着剤により固定板4に取り付けられ、図示しない昇降装置により鉛直方向に移動可能にされている。シリコンインゴット3を、ガイドローラ7間で複数列に捲きまわされた固定砥粒ワイヤーソー2のワイヤー列に移動、接近させる(矢印a方向)。シリコンインゴット3は、ワイヤー列に押し当てられ、切断加工される。クーラント液供給ユニット5からクーラント液を加工部に供給しながら切り進めることにより、シリコンインゴット3をスライス状に切断する。
 シリコンインゴット3を確実に切断するため、シリコンインゴット3だけでなく、接着剤層6を経て固定板4の一部まで切削する。そのため、シリコン切削屑、固定板4の切削屑、接着剤層6の切削屑およびクーラント液は、クーラントタンク8に落下し、スラリーとして回収される。図2はシリコンインゴット3を切断するための固定砥粒ワイヤーソー2が、ガイドローラ7間で複数列に捲きまわされた状態を示すインゴットスライス装置1の斜視模式図である。
 図3を用いて、固定砥粒ワイヤーソー2を説明する。図3は、固定砥粒ワイヤーソー2の縦断面模式図である。
 図3に示すように固定砥粒ワイヤーソー2は、例えばピアノ線のような金属製芯線11の外周にダイヤモンドのような砥粒9をフェノール樹脂などの硬化により生成されたレジンボンド層(樹脂接着剤層)10を介して固着したレジンボンドワイヤーソーである。レジンボンドとしてはフェノール樹脂の他、例えばエポキシ樹脂、アクリルウレタン樹脂、ポリウレタン樹脂、塩化ビニル樹脂、フッ素樹脂などの硬化ポリマー系樹脂を採用しても良い。砥粒9はダイヤモンド砥粒のほかジルコニア砥粒、立方晶系窒化硼素(CBN)砥粒、アルミナ砥粒、炭化ケイ素砥粒を用いても良い。さらにレジンボンド層10に無機粒子からなるフィラー(図示しない)を加えてもよい。固定砥粒ワイヤーソー2では、張力が大きいほど切削性能は向上するので、金属製芯線11の引張強度が大きいものほど好ましい。また疲労に対する強度も高いものが望ましい。従って、固定砥粒ワイヤーソー2としての金属製芯線11には、鋼線が好ましく用いられる。鋼線には、高炭素鋼、中炭素低合金鋼などの熱処理バネ鋼による線材、硬鋼線、ピアノ線やステンレス線、冷間圧鋼線やオイルテンパー線などの加工バネ鋼による線材、低合金鋼、中合金鋼や高合金鋼、マルエージング鋼などの高靱性・高疲労強度の鋼線材が挙げられる。
 また固定砥粒ワイヤーソー2は金属製芯線11の外周にダイヤモンドのような砥粒9をろう材の溶融により生成された溶融固化層(図示しない)を介して固着したものでも良い。更に固定砥粒ワイヤーソー2は、電着法でニッケル膜(図示しない)などをワイヤー表面に析出させ、砥粒9をニッケル膜中などに埋設させて、固着させても良い。砥粒9はダイヤモンド砥粒のほかジルコニア砥粒、立方晶系窒化硼素(CBN)砥粒、アルミナ砥粒、炭化ケイ素砥粒を用いても良い。
 固定砥粒ワイヤーソー2は、以上説明したように限定されるものではないが、より好ましくは本願出願人の出願による特開2014-133288号で開示するレジンボンドワイヤーソーが最適である。
 固定砥粒ワイヤーソー2によるシリコンインゴット3のスライス加工において、ワイヤー直径を小さくして、カーフロス(切り代)を小さくすることが望ましいが、引張強度が小さいと切削速度を上げることができないため、ワイヤー直径としては0.05~0.3mmが好ましい。固定砥粒ワイヤーソー2の張力は14~40Nが好ましい。また固定砥粒ワイヤーソー2の走行速度は700~1200m/分が好ましい。固定砥粒ワイヤーソー2による加工メカニズムは、シリコンインゴット3を砥粒9で削り取るという切削メカニズムであるため、切削されたシリコン切削屑におけるシリコン微粒子がサブミクロン~ミクロンオーダーの微粒子とするには、ダイヤモンドなどの砥粒9の平均粒径は1~25μmが好ましい。またワイヤーに対する粒度密度は1500~3000個/mmであることが好ましい。レジンボンドワイヤーソーの場合、ニッケル膜により砥粒9を固着した固定砥粒ワイヤーソーに比べて、砥粒密度が高く、切削時の張力は低いため、シリコンインゴット切削面とレジンボンドワイヤーソーはソフトタッチの状態となり、切削粉が微細で、肉厚の薄い鱗片形状の微粒子となり、好ましい。
 インゴット送り速度は0.1~1.0mm/分が好ましい。固定砥粒ワイヤーソー2は剛性が小さいため、シリコンインゴット3の切削時の切削抵抗により、たわみが発生する。そのため、シリコンインゴット3を確実に切断するためには、ワイヤーソーのたわみを考慮に入れ、シリコンインゴット3の固定板4の一部を切削する。このシリコンインゴット3を固定する固定板4の一部を切削するときには、インゴット送り速度を0.05~0.5mm/分にすることが好ましい。
 シリコンインゴット3の素材としては、単結晶シリコン、多結晶シリコン、アモルファスシリコン等を採用することができる。シリコンインゴット3を取り付ける固定板4は、切削に伴うシリコンインゴット3と固定板4の昇温を防ぐため、吸熱性の良い水酸化アルミニウム(Al(OH))粉末をバインダー樹脂で固めたものが好ましい。また水酸化アルミニウムは、固定板4の一部まで切削した時に、その切削熱により、固定板内の樹脂が軟化あるいは燃焼しないように防止する役割を有する。すなわち、切削熱で固定板4が200℃から350℃に加熱されると、水酸化アルミニウムが脱水分解される。その時大きな吸熱反応(2.0KJ/g)に伴って、水が生成される。この吸熱反応と水の蒸発熱により固定板内の樹脂の軟化及び燃焼を防ぐ。水酸化アルミニウムに代えて、水酸化マグネシウムでも良い。
 本発明に使用されるクーラント液としては、水溶性有機系(水溶性切削液)のクーラント液を使用することが好ましく、例えばポリエチレングリコール、ジエチレングリコール、プロピレングリコール、ポリプロピレングリコール等を混合した水を主成分とするクーラント液が用いられる。
 図4を用いて、スラリー回収工程(S01)と固液分離工程(S02)を説明する。図4は、2台のインゴットスライス装置1が配置されたスラリー回収工程及び固液分離工程のフロー図である。
 スラリー回収工程(S01)において、クーラントタンク8に、シリコン切削屑、固定板4の切削屑、接着剤層6の切削屑及びクーラント液を含むスラリーを蓄積し、取り出すことができる。スラリーには、固定板4の成分である水酸化アルミニウム(Al(OH))がスライスされて発生した切削粒子、バインダー樹脂や、他の金属成分(Al、Fe、Ca、K、Niなど)が含まれる。他の金属成分はクーラント液と接する流路から由来する。またスラリーには、シリコンインゴット3を固定板4に固定する接着剤層6の成分も含まれる。クーラントタンク8のスラリーを、移送ポンプ(図示しない)を用いて、クーラント液と共にスラリー受入槽12に移送する。更にスラリー受入槽12から次工程の固液分離工程(S02)にスラリーを移送するが、攪拌器15で攪拌してスラリー状態を均一化してシリコン切削粉の凝集を抑制する。
 固液分離工程(S02)において、スラリーから遠心分離機やフィルタープレスなどの固液分離手段(a)16を用いて、ほとんどのクーラント液を取り除き、シリコン切削屑と不純物(固定板4の切削屑、接着剤層6の切削屑及び他の金属成分)及びごく微量のクーラント液を含むケーキ18としてケーキ受け容器13に取り出す。取り除いたクーラント液はクーラント供給槽14に移送して、クーラント新液を追加し、攪拌器15で攪拌して混合状態を均一化し、再生する。更に再生されたクーラントは、再生クーラント供給ライン17を通して、インゴットスライス装置1に供給し、使用する。
 インゴットスライス装置1とクーラントタンク8を複数台配置し、スラリーを集約して回収しても良い。更にクーラント液も集約して回収し、再生させた後、複数のインゴットスライス装置1に供給することができる。インゴットスライス装置1を複数台配置しライン化することにより、スラリーの回収効率が向上する。
 次に、図5を用いて、洗浄工程(S03)と乾燥工程(S04)を説明する。洗浄工程(S03)は、シリコン切削粉を含むケーキを洗浄して、不純物を取り除き、更にシリコンの自然酸化被膜(SiO)を取り除く工程である。乾燥工程(S04)は洗浄工程(S03)で洗浄され固液分離して取り出された固形分32を乾燥手段により乾燥させて、高純度シリコン微粉末を得る工程である。
 硫酸洗浄槽24の硫酸洗浄では、第1の洗浄液である硫酸水溶液を用いて、Al成分や、その他の硫酸と反応する金属成分を除去する。すなわち、硫酸洗浄槽24では、シリコン切削屑と不純物を含むケーキ18と、1~40重量%の硫酸水溶液とを1:10の重量比で混合し、恒温装置23で温度50~90℃に保ちながら、洗浄時間20~60分で浸漬攪拌して洗浄を行う。恒温装置23での温度は、好ましくは50~80℃に保つのがよい。これにより、Al成分は10,000ppm程度から40ppm程度に低減される。また他の金属成分も数十ppmから数~十数ppmに低減される。硫酸洗浄後も残る金属成分は、シリコン切削屑の表面に形成された自然酸化被膜(SiO)に強く吸着した金属成分である。AlやFeの酸化物や水酸化物はSiOよりも化学的に安定で、Si-OH基と脱水縮合して、Si-O-Alのように自然酸化被膜中に取り込まれて、シリコン切削粉の表面の自然酸化被膜に強く吸着すると考えられている。
 フッ酸洗浄槽25のフッ酸洗浄では、第2の洗浄液であるフッ酸水溶液を用いて、自然酸化被膜に強く吸着した金属を、自然酸化被膜(SiO)とともに除去する。ケーキ29の投入量を調整しながら攪拌器15で常時撹拌することで、HFガスなどの発生によりムース状の泡が拡大することを抑制する。硫酸水溶液による洗浄後、遠心分離機やフィルタープレスなどの固液分離手段(b)19により取り出されたケーキ29と、0.5~10重量%のフッ酸水溶液とを1:10の重量比で混合し、常温、洗浄時間5~30分浸漬攪拌して洗浄する。好ましくはフッ素水溶液による洗浄時間は5~20分とするのが良い。
 1回目純水洗浄槽26での純水洗浄を、フッ酸洗浄後、遠心分離機やフィルタープレスなどの固液分離手段(c)20により取り出されたケーキ30に対して、浸漬攪拌して実施する。ケーキ30には、微小量フッ酸水溶液が付着し、表面に現れたシリコンがフッ酸水溶液中の水分と反応して溶けるため、フッ酸洗浄後5分以内に純水洗浄することが良い。好ましくはフッ酸洗浄後、1分以内に純水洗浄することが良い。
 2回目純水洗浄槽27での純水洗浄を、1回目の純水洗浄後に遠心分離機やフィルタープレスなどの固液分離手段(d)21により取り出されたケーキ31に対して、浸漬攪拌して実施する。2回目の純水洗浄後、固液分離手段(e)22により固液分離して固形分32を取り出す。1回の純水洗浄でも良いが、2回の純水洗浄で洗浄度を上げることが好ましい。
 乾燥工程(S04)では、乾燥手段として気流乾燥機28を用いて、純水洗浄後に取り出された固形分32を乾燥させ、シリコン微粉末を得る。気流乾燥機28で乾燥させることにより、シリコン微粉末が塊になることなく、粉末の状態で採取できる。上記の洗浄工程と乾燥工程により、不純物が格段に少ない高純度の鱗片状シリコン微粉末を回収できる。尚、乾燥手段は気流乾燥機が好ましいが、それに限定されるものではない。
 窒化工程の一例である直接窒化法の例を説明する。
 前記の乾燥工程で得られた鱗片状シリコン微粉末を原料とし、炭素(グラファイト)製、窒化シリコン製、アルミナ製あるいは窒化ホウ素製のボート、または、るつぼに押圧することなく載上して、雰囲気炉内に載置する。雰囲気炉内を真空引きした後、窒素ガス、水素ガス、アンモニアガスまたはそれらの混合ガスを窒化ガスとして炉内に流通させ、昇温する。窒化ガスと共に、アルゴンなどの希ガスを流通させてもよい。希ガスはアルゴン、ヘリウム、ネオン、キセノン、クリプトンからなるガス群より選択されるいずれか1種以上のガスを用いる。
 窒化処理の温度プロファイルとしては、300℃/時の昇温速度で、1200~1400℃の範囲で選択される所定温度(最高温度)まで昇温する。その所定温度(最高温度)で10~100時間保持する。保持後、300℃/時の降温速度で常温まで降温する。
 この窒化処理で得られる窒化シリコンの粉末をほぐすことによって、不純物の少ない、サブミクロン~ミクロンオーダーの平均粒径を有する高純度の窒化シリコン微粉末を得ることができる。
 以下、本発明について、実施例及び比較例により、更に、詳細に説明する。
 <実施例1,2、比較例1,2>
 図4の工程フローに従って、シリコンインゴット3をスライス加工する際に発生するスラリーからシリコン切削屑と不純物を含むケーキ18を取り出した。インゴットスライス装置1で、水酸化アルミニウムを含む固定板4に取り付けたシリコンインゴット3をダイヤモンド砥粒9の平均粒径10μm、粒度密度2300個/mmの固定砥粒ワイヤーソー2で、インゴット送り速度0.5mm/分の条件下でスライス加工し、クーラントタンク8からスラリーを回収した。固定砥粒ワイヤーソー2は、レジンボンドワイヤーソーを用いた。回収したスラリーを遠心分離機で固液分離し、ケーキ18を取り出した。
 更に図5の工程フローに従って処理し、シリコン切削屑と不純物を含むケーキ18から高純度シリコン微粉末を得た。洗浄工程(S03)における硫酸洗浄は、シリコン切削屑と不純物を含むケーキ18と25重量%の硫酸水溶液を1:10の重量比で混合し、温度75℃、洗浄時間60分で浸漬攪拌して洗浄を行った。硫酸洗浄後、固液分離しケーキ29を取り出した。
 フッ酸洗浄は、硫酸洗浄後に遠心分離機で固液分離して得られたケーキ29と1.0重量%のフッ酸水溶液を1:10の重量比で混合し、常温、洗浄時間20分で浸漬攪拌して洗浄を行った。
 フッ酸洗浄後、2回の純水洗浄を行い、遠心分離機により固液分離し固形分32を取り出した。
 更に乾燥工程(S04)の気流乾燥器28で、固形分32を乾燥し、シリコン微粉末を得た。
 上記の手順で得た高純度シリコン微粉末は、図6のSEM観察像に示すように、その大きさが略1μm×(1~5)μm×(0.07~0.09)μmの湾曲した鱗片状の形状を有することを確認した。シリコン微粉末が鱗片状の形状を有することは、固定砥粒でシリコンインゴットを削り取るという加工メカニズムによるものと推定される。従来このサイズのシリコン微粉末を得るには、ボールミルやジェットミルなどの機械的破砕手段による微細化が必要であったが、本発明によれば、機械的破砕無しに、固定砥粒ワイヤーソー2の切削屑から、サブミクロン~ミクロンオーダーの高純度な鱗片状シリコン微粉末を大量に製造できる。
 図7は、固定板4の切断面のSEM観察像を示している。図7から水酸化アルミニウムの粗い粒子の周りを樹脂が取り囲んで接着していることが分かる。この粗い水酸化アルミニウムの粒子が固定砥粒ワイヤーソー2のダイヤモンド砥粒で切削され、シリコン切削粉とともにスラリー中に混合される。水酸化アルミニウムを成分とする固定板4の切削条件として、インゴット送り速度をシリコンインゴット3のみを切削するときのインゴット送り速度よりも遅い0.05~0.5mm/分にすることで、水酸化アルミニウム切削粒子は高解像度のSEMでも存在が確認しにくい数十nm以下の微粒子となることを確認した。
 通常、水酸化アルミニウムと硫酸、塩酸、硝酸とはそれぞれ次式で表わされる反応式で反応して、それぞれの溶液中に溶解すると言われている。
   2Al(OH)+3HSO→2Al3++3SO 2-+6H
   Al(OH)+3HCl→Al3++3Cl+3H
   Al(OH)+3HNO→Al3++3NO +3H
 しかし、本発明者らの水酸化アルミニウム粒子の酸溶解実験の結果、上記のいずれの酸の場合も、常温では水酸化アルミニウムは完全に溶解せず、白濁し、溶液の底部には水酸化アルミニウム粒子が沈殿した状態であった。一方、これらの白濁の液を50~90℃に加熱し20~60分加熱温度を保つと、硫酸の場合だけ、溶液底部の水酸化アルミニウム粒子は無くなり液中でコロイド状に白濁するか、または完全に透明になって水酸化アルミニウム粒子が溶解することを確認した。上記のように、水酸化アルミニウム粒子を硫酸で所定の条件で加熱することにより、水酸化アルミニウム粒子が完全に溶解した時だけでなく、溶液中でコロイド状に白濁するという状態で存在する時にも、固液分離手段により、液体分として分離されることを確認した。すなわち、フィルタープレスのろ布を通り抜けて液体分として分離されたり、遠心分離機の場合は液体側に漂って分離されると考えられる。
  表1は、上記の手順で得られたシリコン微粉末の金属の定量を、ICP発光分析装置により行った分析結果を示している。ICP発光分析装置は島津製作所製の高周波プラズマ発光分析装置ICPS-8000を使用した。
Figure JPOXMLDOC01-appb-T000001
 実施例1、2は、図5の洗浄工程(S03)<硫酸洗浄実施、フッ酸洗浄実施、純水洗浄実施>、乾燥工程(S04)を経て得られた高純度の鱗片状シリコン微粉末をサンプルとして分析に用いた。
 比較例1は、図8の洗浄工程<硫酸洗浄未実施、フッ酸洗浄未実施、純水洗浄のみ実施>、乾燥工程を経て得られたシリコン微粉末をサンプルとして分析に用いた。純水洗浄は、シリコン切削屑と不純物を含むケーキ18を純水で浸漬攪拌して洗浄を行った。
 比較例2は、図9の洗浄工程<硫酸洗浄実施、フッ酸洗浄未実施、純水洗浄実施>、乾燥工程を経て得られたシリコン微粉末をサンプルとして分析に用いた。硫酸洗浄は、シリコン切削屑と不純物を含むケーキ18と、25重量%の硫酸水溶液とを1:10の重量比で混合し、恒温装置23で温度75℃に保ちながら、洗浄時間60分で浸漬攪拌して洗浄を行った。
 表1より、実施例1,2は不純物の金属成分が数ppmと低く抑えられており、分析に用いられたサンプルが不純物の少ない高純度シリコン微粉末であることを確認した。比較例1は、固定板4の材料成分であるAlの他、Fe、Caなどの金属成分が残留している。さらに比較例2は、Fe、Caなどの含有成分は低い値になっているものの、固定板4の成分であるAlが百数十ppm残留していることを示している。
 <実施例3、4、比較例3、4>
 実施例1,2で得られた鱗片状シリコン微粉末を質量3g取り、軽くほぐして、窒化処理の原料とし、ボート上に押圧することなく載上して、雰囲気炉内に載置し、直接窒化法で窒化し窒化シリコン微粉末を得た。雰囲気炉は高純度のアルミナ炉心管を用いた外熱式雰囲気炉を使用した。炉内を真空引きした後、窒素ガスを300ml/分流通させながら1350℃まで300℃/時の昇温速度で昇温した後、1350℃で80時間保持した。その後、室温まで300℃/時で除冷した。
 表2は、上記の手順で得られた窒化シリコン微粉末のX線回折装置による分析結果を表している。粉末X線回折装置は、(株)リガク製Ultima IVを使用した。比表面積測定には日本ベル(株)製BELSORP-miniを使用した。
Figure JPOXMLDOC01-appb-T000002
 実施例3は、実施例1,2で得られた鱗片状シリコン微粉末を、上記の条件で窒化処理して得られた高純度の窒化シリコン微粉末をサンプルとして分析に用いた。また、実施例4は、実施例1,2で得られた鱗片状シリコン微粉末を、上記の条件のうち1350℃の保持時間のみ18時間に変更した条件で窒化処理して得られた高純度の窒化シリコン微粉末をサンプルとして分析に用いた。すなわちこのサンプルは、図5の洗浄工程(S03)<硫酸洗浄実施、フッ酸洗浄実施、純水洗浄実施>を経て得られた窒化シリコン微粉末である。
 比較例3は、比較例1で得られたシリコン微粉末を、直接窒化法で窒化して得られた窒化シリコン微粉末をサンプルとして分析に用いた。すなわちこのサンプルは、図8の洗浄工程<硫酸洗浄未実施、フッ酸洗浄未実施、純水洗浄のみ実施>を経て得られた窒化シリコン微粉末である。
 比較例4は、比較例2で得られたシリコン微粉末を、直接窒化法で窒化して得られた窒化シリコン微粉末をサンプルとして分析に用いた。すなわちこのサンプルは、図9の洗浄工程<硫酸洗浄実施、フッ酸洗浄未実施、純水洗浄実施>を経て得られた窒化シリコン微粉末である。
 表2の実施例3から、未反応シリコンは微小であり、窒化反応は十分に進んでいることが分かる。また、図10のSEM観察像に示すように、実施例3で得られた窒化シリコン微粉末は鱗片形状ではなく、サブミクロンの不定形微粒子であることが確認できた。また表2に記載されているように、比表面積は3m/gであり、比表面積から平均粒径を換算すると0.58μmであった。
 この事実は、フッ酸洗浄後のシリコン微粒子は鱗片状の形状を有していたことから、窒化処理することにより鱗片状のシリコン微粒子が、不定形の窒化シリコン微粒子に離脱したものと推定される。これは、鱗片状の形状を有するシリコン微粒子の外周部分に多数の切り欠きが存在することから、この切り欠きを起点として、窒化時の熱応力でクラックが発生し、不定形の窒化シリコン微粒子に離脱するものと推定される。このことは、固定砥粒ワイヤーソー2によるシリコン切削屑から、所定の洗浄処理後、窒化処理することにより、サブミクロン~ミクロンオーダーの高純度の窒化シリコン微粉末を安価に大量生産可能にすることを示すものである。
 比較例3から、未反応シリコンが多いことが確認できる。また図11のSEM観察像から針状結晶の存在が確認できる。この窒化シリコン微粉末の原料は、純水洗浄のみ実施したシリコン切削屑を原料とし、シリコン切削屑中に金属などの不純物が残存している。この残存金属が作用して、針状結晶が成長したものと推定される。比較例4から、未反応シリコンの比率が多く、離型剤、焼結体の原料に適さないことが確認できる。
 本発明によれば、シリコンインゴット3をスライス加工する際に発生するシリコン切削屑を、機械的破砕手段を用いることなく微細化して、高純度の鱗片状シリコン微粉末を得ることができる。このようなシリコン切削屑を由来とする鱗片状シリコン微粉末を出発原料として、離型剤用や焼結体用の高純度窒化シリコン微粉末、さらに2段階焼結による高純度窒化シリコンセラミックスの製造を低コストで実現できる。
 2:固定砥粒ワイヤーソー
 3:シリコンインゴット
 4:固定板
 9:砥粒
 18、29、30、31、32:ケーキ
 16、19、20、21、22:固液分離手段
 28:気流乾燥機

Claims (12)

  1.  シリコンインゴット及びワイヤー外周面に砥粒が固着された固定砥粒ワイヤーソーを準備する準備工程と、
     シリコンインゴット取付用の固定板に、前記シリコンインゴットを固定する固定工程と、
     前記固定砥粒ワイヤーソーを用い、前記シリコンインゴットをスライスするスライス工程と、
     前記スライス工程で発生するシリコン切削屑を含むスラリーを回収するスラリー回収工程と、
     前記スラリーから前記シリコン切削屑を含むケーキを固液分離手段により分離して取り出す固液分離工程と、
     前記固液分離工程で得られたケーキを洗浄液で洗浄する洗浄工程と、
     前記洗浄工程後に固液分離して得られた固形分を、乾燥手段にて乾燥する乾燥工程と、
    を備えるシリコン微粉末の製造方法。
  2.  前記固定板が、水酸化アルミニウムまたは水酸化マグネシウムを含むことを特徴とする請求項1に記載のシリコン微粉末の製造方法。
  3.  前記固定砥粒ワイヤーソーの外周面に固着された前記砥粒の平均粒径が1~25μmであり、砥粒密度が1500~3000個/mmであることを特徴とする請求項1~2のいずれかに記載のシリコン微粉末の製造方法。
  4.  前記固定砥粒ワイヤーソーが、レジンボンドワイヤーソーであることを特徴とする請求項1~3のいずれかに記載のシリコン微粉末の製造方法。
  5.  前記シリコンインゴットを切削するときのインゴット送り速度が0.1~1.0mm/分であり、前記固定板を切削するときのインゴット送り速度が0.05~0.5mm/分であることを特徴とする請求項1~4のいずれかに記載のシリコン微粉末の製造方法。
  6.  前記洗浄工程は前記固液分離工程で得られたケーキを第1の洗浄液で洗浄し、その後第2の洗浄液で洗浄することを特徴とする請求項1~5のいずれかに記載のシリコン微粉末の製造方法。
  7.  前記第1の洗浄液は1~40重量%の硫酸を含む硫酸水溶液であり、前記固液分離工程で得られたケーキを、50~90℃に加熱した該硫酸水溶液にて、20~60分浸漬撹拌しながら洗浄することを特徴とする請求項6に記載のシリコン微粉末の製造方法。
  8.  前記第2の洗浄液は、0.5~10重量%のフッ酸を含むフッ酸水溶液であり、前記第1の洗浄液で洗浄され固液分離されて取り出されたケーキを、該フッ酸水溶液にて5~30分浸漬して洗浄することを特徴とする請求項6又は7に記載のシリコン微粉末の製造方法。
  9.  請求項1~8のいずれかに記載のシリコン微粉末の製造方法により、鱗片状シリコン微粉末を得ることを特徴とするシリコン微粉末の製造方法。
  10.  請求項9に記載のシリコン微粉末の製造方法により、比表面積が10~50m/gの鱗片状シリコン微粉末を得ることを特徴とするシリコン微粉末の製造方法。
  11.  請求項9または10に記載のシリコン微粉末の製造方法により、鱗片状シリコン微粉末を得て、前記鱗片状シリコン微粉末を、0.3~0.7g/cmの嵩密度で容器に押圧することなく載上して窒化炉内に載置し、直接窒化法で窒化することを特徴とする窒化シリコン微粉末の製造方法。
  12.  請求項11に記載の窒化シリコン微粉末の製造方法により、比表面積が1~10m/gである窒化シリコン微粉末を得ることを特徴とする窒化シリコン微粉末の製造方法。
PCT/JP2016/061653 2015-04-20 2016-04-11 シリコン微粉末の製造方法、及び窒化シリコン微粉末の製造方法 WO2016171018A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11201708638PA SG11201708638PA (en) 2015-04-20 2016-04-11 Method for producing fine silicon powder, and method for producing fine silicon nitride powder
JP2016559451A JP6077193B1 (ja) 2015-04-20 2016-04-11 シリコン微粉末の製造方法、及び窒化シリコン微粉末の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-086286 2015-04-20
JP2015086286 2015-04-20

Publications (1)

Publication Number Publication Date
WO2016171018A1 true WO2016171018A1 (ja) 2016-10-27

Family

ID=57143895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061653 WO2016171018A1 (ja) 2015-04-20 2016-04-11 シリコン微粉末の製造方法、及び窒化シリコン微粉末の製造方法

Country Status (4)

Country Link
JP (1) JP6077193B1 (ja)
SG (1) SG11201708638PA (ja)
TW (1) TW201704149A (ja)
WO (1) WO2016171018A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167879A1 (ja) * 2018-02-28 2019-09-06 株式会社トクヤマ 窒化ケイ素粉末の製造方法
CN110696211A (zh) * 2019-11-15 2020-01-17 内蒙古中环光伏材料有限公司 一种大尺寸单晶硅棒切割装置及控制方法
US20210308905A1 (en) * 2018-12-26 2021-10-07 Akita Prefecture Cutting method and cutting device
JP2021527027A (ja) * 2018-06-14 2021-10-11 ロシRosi シリコンインゴット切断廃棄物をリサイクルするための処理方法
CN114433541A (zh) * 2021-12-27 2022-05-06 张家港博佑光电科技有限公司 一种石墨舟清洗工艺

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115972418B (zh) * 2023-03-20 2023-07-04 西安中威新材料有限公司 晶圆扩散用的碳化硅陶瓷晶舟开齿设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114908A (ja) * 1990-09-03 1992-04-15 Shin Etsu Chem Co Ltd 窒化ケイ素粉末
JP2000263452A (ja) * 1999-03-12 2000-09-26 Osaka Diamond Ind Co Ltd 超砥粒ワイヤソー
JP2007136909A (ja) * 2005-11-21 2007-06-07 Mitsubishi Materials Polycrystalline Silicon Corp 棒状芯材の加工方法と装置、およびシリコンシード
JP2007180527A (ja) * 2005-11-29 2007-07-12 Kyocera Corp 半導体基板の製造方法及び半導体基板の製造装置
JP2012020364A (ja) * 2010-07-14 2012-02-02 Sharp Corp シリコン再生方法
JP2012056841A (ja) * 2011-10-18 2012-03-22 Mitsubishi Materials Corp シリコンシードとその加工方法および加工装置
JP2012111672A (ja) * 2010-11-29 2012-06-14 Sharp Corp シリコン精製方法および精製シリコン
JP2013187109A (ja) * 2012-03-09 2013-09-19 Yoshiaki Nagaura シリカ電極の二次電池モジュール、及び製造方法
JP2014133288A (ja) * 2013-01-10 2014-07-24 Tkx Corp レジンボンドワイヤーソー

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114908A (ja) * 1990-09-03 1992-04-15 Shin Etsu Chem Co Ltd 窒化ケイ素粉末
JP2000263452A (ja) * 1999-03-12 2000-09-26 Osaka Diamond Ind Co Ltd 超砥粒ワイヤソー
JP2007136909A (ja) * 2005-11-21 2007-06-07 Mitsubishi Materials Polycrystalline Silicon Corp 棒状芯材の加工方法と装置、およびシリコンシード
JP2007180527A (ja) * 2005-11-29 2007-07-12 Kyocera Corp 半導体基板の製造方法及び半導体基板の製造装置
JP2012020364A (ja) * 2010-07-14 2012-02-02 Sharp Corp シリコン再生方法
JP2012111672A (ja) * 2010-11-29 2012-06-14 Sharp Corp シリコン精製方法および精製シリコン
JP2012056841A (ja) * 2011-10-18 2012-03-22 Mitsubishi Materials Corp シリコンシードとその加工方法および加工装置
JP2013187109A (ja) * 2012-03-09 2013-09-19 Yoshiaki Nagaura シリカ電極の二次電池モジュール、及び製造方法
JP2014133288A (ja) * 2013-01-10 2014-07-24 Tkx Corp レジンボンドワイヤーソー

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7358331B2 (ja) 2018-02-28 2023-10-10 株式会社トクヤマ 窒化ケイ素粉末の製造方法
KR102643831B1 (ko) 2018-02-28 2024-03-07 가부시끼가이샤 도꾸야마 질화규소 분말의 제조 방법
CN111727168A (zh) * 2018-02-28 2020-09-29 株式会社德山 氮化硅粉末的制造方法
KR20200127178A (ko) * 2018-02-28 2020-11-10 가부시끼가이샤 도꾸야마 질화규소 분말의 제조 방법
US20200399125A1 (en) * 2018-02-28 2020-12-24 Tokuyama Corporation Process for producing silicon nitride powder
JPWO2019167879A1 (ja) * 2018-02-28 2021-02-12 株式会社トクヤマ 窒化ケイ素粉末の製造方法
WO2019167879A1 (ja) * 2018-02-28 2019-09-06 株式会社トクヤマ 窒化ケイ素粉末の製造方法
JP2021527027A (ja) * 2018-06-14 2021-10-11 ロシRosi シリコンインゴット切断廃棄物をリサイクルするための処理方法
JP7376215B2 (ja) 2018-06-14 2023-11-08 ロシ シリコンインゴット切断廃棄物をリサイクルするための処理方法
US20210308905A1 (en) * 2018-12-26 2021-10-07 Akita Prefecture Cutting method and cutting device
CN110696211B (zh) * 2019-11-15 2023-03-28 内蒙古中环光伏材料有限公司 一种大尺寸单晶硅棒切割装置及控制方法
CN110696211A (zh) * 2019-11-15 2020-01-17 内蒙古中环光伏材料有限公司 一种大尺寸单晶硅棒切割装置及控制方法
CN114433541A (zh) * 2021-12-27 2022-05-06 张家港博佑光电科技有限公司 一种石墨舟清洗工艺

Also Published As

Publication number Publication date
TW201704149A (zh) 2017-02-01
SG11201708638PA (en) 2017-11-29
JPWO2016171018A1 (ja) 2017-05-18
JP6077193B1 (ja) 2017-02-08

Similar Documents

Publication Publication Date Title
JP6077193B1 (ja) シリコン微粉末の製造方法、及び窒化シリコン微粉末の製造方法
EP2303776B1 (en) Method for purification and compaction of feedstock for photovoltaic applications
WO2012109459A1 (en) Recovery of silicon value from kerf silicon waste
JP2010173916A (ja) シリコン屑から炭化珪素を製造する方法
JP5001589B2 (ja) 廃スラッジからのシリコンの製造方法
JP4966938B2 (ja) シリコンの再生方法
JPWO2010125942A1 (ja) シリコンスラッジの洗浄方法
TWI585038B (zh) Hydrogen production method and hydrogen production apparatus
JP2011218503A (ja) シリコン含有廃液処理方法
WO2011110577A1 (de) Verfahren zur herstellung von hochreinem silizium
JP5246702B2 (ja) シリコン精製方法
WO2009081725A1 (ja) シリコン再生方法
EP2712844A1 (en) Recycling of silicon kerfs from wafer sawing
JP5972660B2 (ja) コロイドシリカの製造方法及びcmp用スラリーの製造方法
JP2012111672A (ja) シリコン精製方法および精製シリコン
JPWO2013047678A1 (ja) 微細粒子製造方法
US20230322562A1 (en) Preparation method of high purity sic powder
JP5286095B2 (ja) シリコンスラッジ回収方法およびシリコン加工装置
KR102218607B1 (ko) 탄화규소의 분말의 제조 방법
KR100586642B1 (ko) Wire Saw 슬러리로부터 실리콘 카바이드의 선택적 회수방법
KR102236257B1 (ko) 고순도 SiC 분말의 제조방법
JP4845722B2 (ja) シリコン原料の製造方法
KR102270052B1 (ko) 고순도 SiC 분말의 제조방법
JP2010013307A (ja) シリコンの精製方法
JP2011225399A (ja) シリコン系太陽電池用原料の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016559451

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783039

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 11201708638P

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16783039

Country of ref document: EP

Kind code of ref document: A1