WO2016170895A1 - 基材の粗面化方法、基材の表面処理方法、溶射皮膜被覆部材の製造方法及び溶射皮膜被覆部材 - Google Patents

基材の粗面化方法、基材の表面処理方法、溶射皮膜被覆部材の製造方法及び溶射皮膜被覆部材 Download PDF

Info

Publication number
WO2016170895A1
WO2016170895A1 PCT/JP2016/059126 JP2016059126W WO2016170895A1 WO 2016170895 A1 WO2016170895 A1 WO 2016170895A1 JP 2016059126 W JP2016059126 W JP 2016059126W WO 2016170895 A1 WO2016170895 A1 WO 2016170895A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
roughening
substrate
laser
roughened
Prior art date
Application number
PCT/JP2016/059126
Other languages
English (en)
French (fr)
Inventor
博紀 横田
大輔 川井
水津 竜夫
Original Assignee
トーカロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トーカロ株式会社 filed Critical トーカロ株式会社
Priority to KR1020177033287A priority Critical patent/KR102013391B1/ko
Priority to US15/568,445 priority patent/US11131014B2/en
Priority to JP2017514023A priority patent/JP6483247B2/ja
Priority to EP16782917.5A priority patent/EP3287542B1/en
Priority to CN201680022664.5A priority patent/CN107532272B/zh
Publication of WO2016170895A1 publication Critical patent/WO2016170895A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics

Definitions

  • the present invention relates to a method for roughening a base material by laser processing, a method for surface-treating a base material roughened by laser processing, and a thermal spray coating in which the surface of the base material roughened by laser processing is coated with a thermal spray coating.
  • the present invention relates to a member manufacturing method and a thermal spray coating coated member.
  • Spraying method is a ceramic, metal, combustion flame or Ar of spray powder combustible gases such as cermets, supplies He, during plasma flame, such as H 2, and these softened or melted state, the surface of the spray body
  • This is a surface treatment technology that coats the surface with a sprayed coating at a high speed.
  • Such a coating technique always has a problem of adhesion between the substrate to be sprayed and the sprayed coating.
  • the roughening of the base material is generally performed. Blasting is the most well known as a roughening means.
  • projections which are fine particles of metal or ceramics, are sprayed on the surface of the substrate at high speed to form irregularities.
  • the physical adhesion is improved by the expression of the anchor effect, and the thermal spray coating is adhered.
  • Blasting is not a problem from the standpoint of base material strength for materials that are highly ductile and malleable, such as metal base materials, but for brittle materials such as ceramics, May cause decline.
  • patent document 1 even if it is a base material which consists of a brittle material by giving the surface of a base material the micro blasting which used the masking material or the mesh, the curvature of a base material is suppressed and it has a level
  • Patent Documents 3 to 9 As a general roughening technique other than the blast treatment, a roughening technique by irradiating a substrate with a laser is known (Patent Documents 3 to 9). Among these, the following three are described in the description of the laser surface roughening treatment for the ceramic substrate.
  • a surface of a hard inorganic material for example, a material having a crystal structure with high covalent bonding properties such as SiC by chemical vapor deposition (CVD)
  • a coating film of an oxide-based inorganic material for example, Y 2 O 3 —SiO 2 composite oxide
  • a thermal spraying method can be suitably formed.
  • Patent Document 7 in a method of manufacturing a layer composite having a ceramic base body and a ceramic protective layer, the surface of the ceramic base body is structured using a laser beam before thermal spraying. The surface can be roughened as desired, and as a result, the protective layer provided by thermal spraying then adheres well.
  • Patent Document 8 as a method for producing a deformation measuring device, (a) the surface roughness is increased on the SiC surface of a component constituted by a base material coated with a SiC layer deposited by chemical vapor deposition.
  • a method comprising the steps of superimposing laser collisions and (b) depositing an alumina coating on the SiC surface by atmospheric spraying to improve the physicochemical state of the SiC surface with a laser beam, Thereby, the physicochemical bond between the alumina coating and the SiC surface is improved.
  • a roughening process is performed using a laser, problems such as a decrease in adhesion due to the occurrence of residues as in the case of the blasting process are eliminated. Further, the roughening treatment by laser is easier to control than the blast treatment, and the surface properties are also less likely to vary.
  • the surface roughened by laser processing does not necessarily provide higher adhesion than the surface processed by blast roughening. It is assumed that appropriate irregularities are imparted to the substrate surface.
  • the cause of the decrease in the base material strength by the blasting process is that a microcrack is introduced into the surface of the base material that is a brittle material due to the collision of the projection material. This microcrack becomes a starting point of cracking and may eventually lead to destruction of the base material.
  • the present invention can maintain the substrate strength high even when the ceramic substrate is roughened by laser irradiation, and a sprayed coating is formed on the substrate.
  • Surface roughening method of base material capable of developing strong adhesion sometimes, surface treatment method of base material after surface roughening treatment, method for producing thermal spray coating member using those methods, and thermal spray coating
  • An object is to provide a member.
  • the present inventor has intensively studied to solve the above problems. As a result, from the viewpoint of effectively modifying the surface properties by laser irradiation, it is possible to apply a roughening treatment to the ceramic base material by irradiating the laser with the laser under the predetermined conditions in the atmosphere. It has been found that it greatly contributes to the improvement of the adhesion and the suppression of the decrease in the strength of the base material, thereby solving the problem.
  • a laser having a power density of 1.0 ⁇ 10 7 to 10 9 W / cm 2 and an action time to an irradiation position of 1.0 ⁇ 10 ⁇ 7 to 10 ⁇ 5 s is provided as a ceramic substrate.
  • the substrate is roughened by irradiating the substrate with the air in the atmosphere.
  • the laser power density is set to 1.0 ⁇ 10 7 to 10 9 W as a laser irradiation condition for obtaining a good base material that does not cause a great decrease in the base material strength and provides high adhesion.
  • / Cm 2 and the action time to the irradiation position is 1.0 ⁇ 10 ⁇ 7 to 10 ⁇ 5 s.
  • the laser irradiation of the said conditions is performed with respect to the ceramic base material in air
  • high adhesion to the thermal spray coating formed thereon can be obtained by the action of chemical affinity.
  • the oxide film obtained under the above conditions can cover the upper part of the microcrack generated simultaneously with the roughening by the laser irradiation, the reduction of the base material strength is suppressed.
  • the oxide film covering the roughened surface of the base material and the top of the micro crack of the base material formed by the laser irradiation is formed simultaneously with the roughening. It can be formed, thereby reducing the influence of the microcracks on the roughened surface on the decrease in the strength of the base material, and the range of application to structural members that require high strength is expanded.
  • the type of the ceramic substrate is not particularly limited, but silicon carbide, silicon nitride, silicon boride, or a mixture containing one or more of these is preferable.
  • the surface of the base material obtained by the roughening method of the base material is preferably subjected to thermal oxidation treatment.
  • thermal oxidation treatment As a result, the micro cracks that cause the strength decrease are healed, and the oxide film formed by the laser irradiation is densified. Therefore, excellent adhesion to the thermal spray coating and the effect of suppressing further decrease in substrate strength Is obtained.
  • the present invention is also a substrate surface treatment method characterized in that the surface of the substrate that has been roughened by the roughening method of the substrate is subjected to a thermal oxidation treatment.
  • the substrate obtained by the surface roughening method is suitably used as a sprayed body.
  • the present invention provides a thermal spray coating member characterized by subjecting a base material that has been subjected to a surface roughening treatment by the surface roughening method or a surface treatment by the surface treatment method of the base material to a thermal spraying treatment. It is also a manufacturing method.
  • the present invention provides a thermal spray coating, characterized in that a thermal spray coating is provided on the base material that has been subjected to a roughening treatment by the roughening method of the base material or a surface treatment by the surface treatment method of the base material. It is also a member.
  • the oxide film covering the roughened surface of the substrate can exhibit high adhesion with the sprayed coating formed thereon.
  • the oxide film covers the roughened surface and the upper part of the micro cracks generated on the surface of the substrate by the laser irradiation, and has a highly durable sprayed coating that maintains the strength of the sprayed body. It becomes a member.
  • a substrate having high adhesion to the sprayed coating and high durability can be obtained.
  • the surface treatment method for a base material of the present invention it is possible to obtain more excellent adhesion to the sprayed coating and a further suppression effect on the strength of the base material.
  • thermo spray coating member having high adhesion with a base material and a highly durable base material.
  • the thermal spray coating member of the present invention since the thermal spray coating with high adhesion to the base material and the highly durable base material are provided, it can be applied to a structural member requiring high strength.
  • FIG. 1 It is a schematic cross section of the thermal spray coating covering member concerning one embodiment of the present invention. It is a principal part enlarged view of FIG. It is the schematic of the laser processing apparatus for enforcing the roughening method of this invention. 6 is a cross-sectional SEM photograph of a test piece obtained under the conditions of Example 5.
  • FIG. 1 It is a schematic cross section of the thermal spray coating covering member concerning one embodiment of the present invention. It is a principal part enlarged view of FIG. It is the schematic of the laser processing apparatus for enforcing the roughening method of this invention. 6 is a cross-sectional SEM photograph of a test piece obtained under the conditions of Example 5.
  • FIG. 1 It is a schematic cross section of the thermal spray coating covering member concerning one embodiment of the present invention. It is a principal part enlarged view of FIG. It is the schematic of the laser processing apparatus for enforcing the roughening method of this invention. 6 is a cross-sectional SEM photograph of a test piece obtained under the conditions of
  • FIG. 1 is a schematic cross-sectional view of a thermal spray coating member 1 according to an embodiment of the present invention
  • FIG. 2 is an enlarged view of a main part thereof.
  • the thermal spray coating member 1 of the present embodiment is a base material 2 that is a thermal sprayed body having a roughened surface 2 a roughened by laser irradiation, and a roughened surface of the base material 2.
  • An oxide film 3 present on the surface 2a and a thermal spray coating 4 covering the substrate 2 via the oxide film 3 are constituted.
  • the base material 2 used in this embodiment is a ceramic base material that can be laser processed, oxide ceramics (for example, alumina (Al 2 O 3 )), nitride ceramics (for example, aluminum nitride (AlN)), boride ceramics
  • oxide ceramics for example, alumina (Al 2 O 3 )
  • nitride ceramics for example, aluminum nitride (AlN)
  • boride ceramics is preferably a ceramic substrate containing silicon, among others, silicon carbide (SiC), silicon nitride (Si 3 N 4 ), silicon boride (SiB 4 ), or A mixture containing one or more of these (eg, SiC—Si 3 N 4 , Si—SiC, Si—Si 3 N 4, etc.) is preferred.
  • Sialon (registered trademark) manufactured by Hitachi Metals, Ltd. may be used. These materials are materials on which an oxide film 3 (in this case, a silicon dioxide (SiO 2 ) film) is easily formed under the laser irradiation conditions of the present invention, and maintain high adhesion to the thermal spray coating 4 and substrate strength. As a result, an oxide film 3 can be obtained.
  • oxide film 3 in this case, a silicon dioxide (SiO 2 ) film
  • the laser can be arbitrarily selected from general lasers such as continuous oscillation and pulse oscillation in a fiber laser, a semiconductor laser, a YAG laser, and the like according to the irradiation object, and is not limited. In the following description, it is assumed that a continuous wave fiber laser is used.
  • FIG. 3 is a schematic view of a laser processing apparatus 10 for carrying out the method for roughening a sprayed body of the present invention.
  • the laser processing apparatus 10 includes a laser oscillator (not shown), an optical fiber, a control device, a collimator lens, a galvano scanner 11, an f ⁇ lens 12, and an XY table 13 that moves the substrate 2 as an irradiation object in the X direction and the Y direction. I have.
  • the laser light emitted from the laser oscillator is transmitted by an optical fiber and is incident on a collimating lens arranged in front of the galvano scanner 11.
  • the laser light incident on the collimating lens is adjusted to parallel light and enters the galvano scanner 11.
  • the galvano scanner 11 includes a galvanometer mirror 14 and an actuator 15 that adjusts the angle of the galvanometer mirror 14.
  • the laser beam 16 is scanned in an arbitrary pattern.
  • the f ⁇ lens 12 corrects and focuses the incident laser light 16 so as to focus on a plane including the surface of the base material 2.
  • the XY table 13 fixes the base material 2 and moves it in the XY directions.
  • the control device controls the output of the laser emitted from the laser oscillator, the emission timing, and the pattern of the laser scanned by the galvano scanner 11 based on a machining program for roughening the substrate 2 and machining conditions.
  • the spot diameter at the focal point can be controlled by appropriately combining the core diameter of the optical fiber that transmits the laser and the focal length of the collimating lens and the f ⁇ lens 12.
  • the range of the base material 2 that can be scanned by the galvano scanner 11 is limited. For this reason, when the processing within the scannable range is completed, the base material 2 is moved by the XY table 13 so that the unprocessed region becomes a position where scanning is possible, and is processed again. Thereby, the surface of the base material 2 is roughened by the pattern based on the processing program previously input into the control apparatus, and becomes the roughened surface 2a.
  • the power density and operation time in the present invention are defined as follows. Definition of power density (W / cm 2 ): output / spot area ((spot diameter / 2) 2 ⁇ ⁇ ) Definition of action time (s): Time required for a laser spot to pass an arbitrary point (spot diameter / scanning speed)
  • the power density of the laser is set in the range of 1.0 ⁇ 10 7 to 10 9 W / cm 2 by the lens configuration and the control device of the laser processing apparatus 10, and the operation time to the irradiation position is 1.0 ⁇ 10 ⁇ 7 to 10. Adjust to -5 s.
  • Laser irradiation may be performed once or multiple times. For example, by performing irradiation a plurality of times while changing the laser scanning direction, the uneven shape can be patterned into a desired shape. Further, if the laser scanning direction is made regular, a concavo-convex surface in which convex portions are formed in a pattern with a certain regularity can be obtained.
  • the arithmetic average roughness Ra of the roughened surface 2a of the substrate 2 roughened by laser irradiation is adjusted to 0.5 to 30 ⁇ m, for example. Due to the unevenness of the roughened surface 2a, good adhesion of the thermal spray coating 4 due to the anchor effect can be obtained.
  • a more preferable lower limit of the arithmetic average roughness Ra is 2 ⁇ m, and a more preferable upper limit is 20 ⁇ m.
  • the oxide film 3 is a silicon dioxide (SiO 2 ; silica) film. Further, when aluminum nitride (AlN) is used for the base material, an alumina (Al 2 O 3 ) film is obtained as the oxide film 3. When the roughened surface 2a is formed on the substrate 2 by irradiating the laser, a microcrack 5 is generated on the uneven surface layer due to the impact of laser irradiation or the like.
  • This microcrack 5 has a size of about 5 to 20 ⁇ m in the depth direction, and although the influence of the strength surface on the base material 2 is less than that of the blasting process, the microcrack 5 is the starting point, and the strength of the base material There is a possibility that a significant decrease in the thickness and destruction of the substrate occur.
  • a laser having a power density in the range of 1.0 ⁇ 10 7 to 10 9 W / cm 2 and an operation time on the irradiation position adjusted to 1.0 ⁇ 10 ⁇ 7 to 10 ⁇ 5 s is used.
  • the material 2 is irradiated, and the oxide film 3 is formed so as to cover the upper part of the minute crack 5 generated on the roughened surface 2a by the laser irradiation. That is, the microcracks 5 as described above are formed on the roughened surface 2a roughened by the laser irradiation under the above conditions, and at the same time, the oxide film is formed so as to close the mouth of the microcracks 5. 3 is formed, the minute crack 5 is enclosed, and the strength reduction of the substrate 2 is suppressed.
  • a laser having a power density in the range of 1.0 ⁇ 10 7 to 10 9 W / cm 2 and an operating time at the irradiation position adjusted to 1.0 ⁇ 10 ⁇ 7 to 10 ⁇ 5 s is used as the base material 2.
  • the oxide film 3 can be formed on the entire roughened surface 2a simultaneously with the roughening, which expresses high adhesion between the substrate 2 and the thermal spray coating 4. As a result, in the thermal spray coating member 1, the thermal spray coating 4 is firmly adhered to the roughened surface 2 a via the oxide film 3.
  • the thickness of the oxide film 3 formed by laser irradiation is preferably 2 to 20 ⁇ m, whereby excellent adhesion and sufficient covering effect for the microcracks 5 can be obtained. If the thickness of the oxide film 3 is smaller than 2 ⁇ m, sufficient adhesion may not be obtained. On the other hand, if the thickness of the oxide film 3 is larger than 20 ⁇ m, the crack generated in the base material by the laser becomes too large, and the oxide film 3 may not sufficiently cover the upper part of the crack. is there. A more preferable lower limit of the thickness of the oxide film 3 is 5 ⁇ m, and a more preferable upper limit is 10 ⁇ m.
  • the roughened surface 2a of the base material 2 roughened by laser irradiation under the above conditions is further subjected to thermal oxidation treatment.
  • the method include a method of exposing to the atmosphere heated to 800 to 2000 ° C. for about 5 to 20 hours.
  • the preferable lower limit of the temperature at the time of the thermal oxidation treatment is 1000 ° C.
  • the preferable upper limit is 1500 ° C.
  • the thermal oxidation treatment Since ceramic is used for the base material 2 used in this embodiment, according to the thermal oxidation treatment, the remaining portion of the microcrack 5 formed by the laser irradiation and enclosed by the oxide film 3 is removed. The oxide film 3 is formed so as to fill, and the minute crack 5 is closed and healed. Furthermore, the generation of the oxide film 3 is promoted also in the oxide film 3 already formed by laser irradiation, and as a result, the inside of the oxide film 3 is further densified. By this heat treatment, it is possible to further improve the adhesion of the oxide film 3 already formed by the laser irradiation to the thermal spray coating 4 and further suppress the decrease in the strength of the base material.
  • the thermal oxidation treatment mainly acts on densification of the oxide film 3 and healing of the microcracks 5
  • the thickness of the oxide film 3 after the thermal oxidation treatment is almost the same as that before the thermal oxidation treatment, and is 2 to 20 ⁇ m. Degree.
  • the thermal spray coating 4 is formed by colliding and depositing on the base material 2 at a high speed in a state where various thermal spray powders are softened or melted.
  • the material which comprises the sprayed coating 4 is not limited, A metal (an alloy is included), ceramics, a cermet, etc. are mentioned.
  • the metal constituting the thermal spray coating 4 include Ni, Cr, Co, Al, Ta, Y, W, Nb, V, Ti, B, Si, Mo, Zr, Fe, Hf, and La.
  • the elemental metal of the element selected, and the alloy containing 1 or more types of these elements are mentioned.
  • the ceramic constituting the thermal spray coating 4 include Ni, Cr, Co, Al, Ta, Y, W, Nb, V, Ti, B, Si, Mo, Zr, Fe, Hf, and La.
  • oxide ceramics include Al 2 O 3 , Cr 2 O 3 , HfO 2 , La 2 O 3 , TiO 2 , Y 2 O 3 , ZrO 2 , Al 2 O 3 .SiO 2 , NiO, and ZrO 2 .SiO. 2 , SiO 2 , MgO, and CaO.
  • nitride ceramics include TiN, TaN, AlN, BN, Si 3 N 4 , HfN, NbN, YN, ZrN, Mg 3 N 2 , and Ca 3 N 2 .
  • fluoride ceramics include LiF, CaF 2 , BaF 2 , YF 3 , AlF 3 , ZrF 4 , and MgF 2 .
  • carbide ceramics include TiC, WC, TaC, B 4 C, SiC, HfC, ZrC, VC, and Cr 3 C 2 .
  • boride-based ceramics include TiB 2 , ZrB 2 , HfB 2 , VB 2 , TaB 2 , NbB 2 , W 2 B 5 , CrB 2 , and LaB 6 .
  • a cermet material obtained by combining a metal material and a ceramic material may be used as the thermal spray material.
  • cermet materials Cr 3 C 2 , TaC, WC, NbC, VC, TiC, B 4 C, SiC, CrB 2 , WB, MoB, ZrB 2 , TiB 2 , FeB 2 , CrN, Cr 2 N, TaN, Ceramic materials selected from the group of NbN, VN, TiN, BN are Ni, Cr, Co, Al, Ta, Y, W, Nb, V, Ti, B, Si, Mo, Zr, Fe, Hf, La And a composite material with a metal material selected from the group.
  • thermal spraying powder for forming the thermal spray coating 4 for example, a powder having a particle size range of about 5 to 80 ⁇ m is used.
  • the particle size of the thermal spray powder is appropriately set according to the fluidity of the powder and the film characteristics.
  • the thickness of the thermal spray coating 4 is, for example, 50 to 2000 ⁇ m.
  • the thickness of the thermal spray coating 4 is appropriately set according to the purpose of use.
  • the sprayed coating 4 generally has pores inside, and the average porosity is, for example, 5 to 10%.
  • the average porosity varies depending on the spraying method and the spraying conditions.
  • An example of the process for obtaining the thermal spray coating member 1 is to clean the surface of the base material 2, laser surface roughening of the base material 2, surface thermal oxidation of the base material 2, thermal spray coating Thermal spraying for forming 4 is performed in this order. After the thermal spray coating 4 is formed on the roughened surface 2a of the substrate 2, a surface layer sealing treatment, a surface polishing treatment, or the like of the thermal spray coating 4 may be performed. Other processes such as a preheating process may be included depending on the difference in the thermal spray material.
  • thermal spraying method for forming the thermal spray coating 4 examples include atmospheric plasma spraying, reduced pressure plasma spraying, high-speed flame spraying, gas flame spraying, arc spraying, and explosion spraying.
  • the plasma spraying method using electric energy as a heat source is a method of forming a film using argon, hydrogen, nitrogen, or the like as a plasma generation source. Since the heat source temperature is high and the frame speed is high, a high melting point material is used. It is possible to form a dense film.
  • thermal spraying methods By using these thermal spraying methods, it is possible to obtain a thermal spray coating 4 having excellent durability and high quality.
  • the film forming conditions by each thermal spraying method may be appropriately set according to the type of the base material 2, the type of sprayed powder, the film thickness, the manufacturing environment, and the like.
  • the roughening method of the base material, the surface treatment method of the base material, and the manufacturing method of the thermal spray coating member according to this embodiment laser power is used as a suitable condition for laser irradiation to obtain a good oxide film 3.
  • the density is set to 1.0 ⁇ 10 7 to 10 9 W / cm 2
  • the action time to the irradiation position is set to 1.0 ⁇ 10 ⁇ 7 to 10 ⁇ 5 s.
  • the oxide film 3 obtained under these conditions is present on the roughened surface 2a, and the thermal spray coating 4 is in close contact with the roughened surface 2a of the substrate 2 through the oxide film 3. . Thereby, the high adhesiveness of the sprayed coating 4 sprayed on the base material 2 can be obtained.
  • the structure constituted by the thermal spray coating member 1 of the present embodiment can be applied to a structural member that requires a high strength because deterioration of the base material strength is suppressed, durability can be maintained over a long period of time. Is possible.
  • the present invention is not limited to this embodiment.
  • the surface of the base material is subjected to a roughening process by laser irradiation, the surface is made a roughened surface, an Al 2 O 3 sprayed coating is applied to the roughened surface, and a test piece of the sprayed coating coated member is prepared.
  • Laser irradiation was performed by controlling the output of the laser, the scanning speed, and the spot diameter, and changing the power density and the operation time on the irradiation position.
  • the roughened state of the test piece after laser irradiation was observed, and the adhesion test of the sprayed coating and the bending strength test of the test piece after the Al 2 O 3 sprayed coating were formed.
  • Example 1 to 8 and Comparative Examples 2 to 10 one side of a 50 ⁇ 50 ⁇ 6 mm SiC plate was irradiated with a laser, and the region irradiated with the laser was used as a roughened surface.
  • Comparative Example 1 blasting was performed on one side of a 50 ⁇ 50 ⁇ 6 mm SiC plate, and the treated region was used as a roughened surface.
  • Table 1 shows the laser irradiation conditions of Examples 1 to 8 and Comparative Examples 2 to 10, and the evaluation results of Examples 1 to 8 and Comparative Examples 1 to 10. 4 is a cross-sectional SEM photograph of the test piece obtained under the conditions of Example 5.
  • the roughened state was evaluated by visual observation and microscopic observation, and a roughened surface was evaluated as “ ⁇ ”, and a roughened surface was evaluated as “ ⁇ ”.
  • the base material was broken as shown in Table 1.
  • Adhesion is determined by measuring the adhesion of the thermal sprayed coating to the substrate using a test method based on JIS H8300. Was shown as ⁇ , and low adhesion less than 3 MPa was shown as x.
  • Examples 1 to 8 A good roughened surface on which an oxide film was formed was obtained.
  • Comparative Examples 2 to 4 The base material was destroyed because the laser irradiation action time was too long.
  • Comparative Example 5 The power density of laser irradiation was too small to obtain an oxide film.
  • Comparative Examples 6 and 7 The power density of laser irradiation was too small and the surface was not roughened.
  • Comparative Example 8 The action time of laser irradiation was too short to obtain an oxide film.
  • Comparative Example 9 The laser irradiation action time was too short and was not roughened.
  • Comparative Example 10 The base material was destroyed with a long action time with respect to the power density of laser irradiation.
  • Example 1 the roughened state is good, the adhesion of the sprayed coating is high, and the rate of decrease in bending strength is maintained at 60% or less.
  • Comparative Example 1 in which the blast treatment was performed, the adhesion was low and the bending strength was remarkably reduced.
  • Comparative Examples 2 to 10 the laser irradiation conditions were not appropriate, and destruction of the base material, non-roughening, low adhesion, a decrease in bending strength, and the like were observed.
  • Example 9 in which the base material is silicon nitride (Si 3 N 4 ) and Example 10 in which the base material is aluminum nitride (AlN), the roughened state is good, the adhesion of the sprayed coating is high, and the bending strength is high. The rate of decline was also small.
  • Example 11 in which the base material was alumina (Al 2 O 3 ), although the adhesion was not good, it was in a usable range, the roughened state was good, and the rate of decrease in bending strength was It was small.
  • the surface of the base material is roughened by laser irradiation under the same laser conditions as in Example 5 to make the surface roughened, and further in an electric furnace (in the atmosphere) at 1200 ° C. Then, a thermal oxidation treatment was performed for 10 hours, and then an Al 2 O 3 sprayed coating was applied to the roughened surface to prepare a test piece of the sprayed coating-coated member.
  • the surface of the base material was subjected to a roughening process by laser irradiation to make the surface a roughened surface, and further in an electric furnace (in the atmosphere) at 1200 ° C.
  • Example 12 after the roughening treatment by laser irradiation, the oxidation treatment of the roughening treatment surface is further performed by the heat treatment before the coating formation of the thermal spray coating, and the adhesion and bending strength are improved.
  • Comparative Example 11 after the roughening treatment by blasting, the oxidation treatment of the roughening treatment surface is performed by the heat treatment before the coating formation of the thermal spray coating, and the bending strength is slightly improved, but still Not enough.
  • the adhesiveness since it is a roughening treatment by a blasting treatment that does not destroy the substrate, sufficient unevenness is not given, and good adhesiveness is not obtained.
  • the above embodiments and examples are illustrative and not restrictive.
  • the roughening method of the base material, the surface treatment method of the base material, the manufacturing method of the thermal spray coating member, and the thermal spray coating member of the present invention can be used in various applications such as the automobile industry and the semiconductor industry.
  • Thermal spray coating covering member 2 Base material (thermal sprayed body) 2a Roughened surface 3 Oxide film 4 Thermal spray coating 5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Laser Beam Processing (AREA)

Abstract

パワー密度を1.0×10~10W/cmとし、かつ照射位置への作用時間を1.0×10-7~10-5sとしたレーザを、セラミックス基材(2)に大気中で照射して、セラミックス基材(2)の表面を粗面化するとともに、粗面化表面(2a)に酸化膜3を形成する。これにより、基材強度の大きな低下を引き起こさず、かつ、粗面化表面(2a)による物理的密着力に加え、化学的親和力の作用により、セラミックス基材(2)の上に形成される溶射皮膜との高い密着性を得る。

Description

基材の粗面化方法、基材の表面処理方法、溶射皮膜被覆部材の製造方法及び溶射皮膜被覆部材
 本発明は、レーザ加工による基材の粗面化方法、レーザ加工によって粗面化した基材を表面処理する方法、レーザ加工によって粗面化した基材の表面を溶射皮膜で被覆した溶射皮膜被覆部材の製造方法及び溶射皮膜被覆部材に関する。
 構造物の耐摩耗性などを向上させるために構造部材の表面に各種の溶射皮膜を形成することが広く行われている。溶射法はセラミックス、金属、サーメットなどの溶射粉末を可燃性ガスの燃焼フレーム又はAr、He、Hなどのプラズマフレーム中に供給し、これらを軟化又は溶融した状態にして、被溶射体の表面に高速で吹き付けることにより、その表面に溶射皮膜をコーティングする表面処理技術である。
 このようなコーティング技術で常に課題になるのが、被溶射体である基材と溶射皮膜との密着性である。密着性を向上させるために一般的に行われているのが、基材の粗面化である。粗面化の手段として最もよく知られているのはブラスト処理である。ブラスト処理では、金属やセラミックスなどの微粒子である投射材を基材表面に高速で吹き付けて凹凸を形成する。粗面化処理を施した表面では、アンカー効果の発現により物理的密着性が向上し、溶射皮膜が密着する。
 ブラスト処理は、金属製の基材など、延性・展性に富む材料に対しては、基材強度の観点からはあまり問題とならないが、セラミックスなどの脆性材料に対しては、基材強度の低下を引き起こす可能性がある。
 これに対し、特許文献1では、基材表面をマスキング材またはメッシュを用いたマイクロブラスト加工を施すことによって、脆性材料からなる基材であっても、基材の反りを抑制し、段差を有する凹凸面を形成することができ、溶射膜の密着性を向上することができるとしている。
 また、特許文献2では、ブラスト処理を行わない新たな粗面化技術として、成形体表面に糊材を被覆させた後に粗粒子をまぶし、その後、粗粒子を付着させた成形体を乾燥させて過剰な粗粒子を取り除き、さらに、成形体を焼成させることで、鋭い凹凸を有する基材が得られ、ブラスト処理を行わなくても溶射層の強固な接着が得られるとしている。
 ブラスト処理以外の一般的な粗面化技術として、レーザを基材に照射することによる粗面化技術が知られている(特許文献3~9)。このうち、セラミックス製の基材に対するレーザ粗面化処理の記述があるものは、以下の3つである。
 特許文献6では、表面層の硬質無機材料(例えば、化学蒸着法(CVD法)によるSiCなどの共有結合性の高い結晶構造の材料)の表面にレーザビームを用いて粗面化処理を施すことで、特に、溶射法による酸化物系無機材料(例えばY-SiO複合酸化物)のコーティング被膜を好適に形成することができるとしている。
 特許文献7では、セラミックス製のベース体とセラミックス製の保護層とを有する層複合体を製造する方法において、セラミック製のベース体の表面を、溶射前にレーザビームを用いて構造化しておくことで、所望のように粗面化することができ、その結果、次いで溶射によって設けられる保護層は良好に固着するとしている。
 特許文献8では、変形測定装置を作製する方法として、(a)化学気相成長によって堆積されたSiC層で被覆された基材によって構成された部品のSiC表面に、表面の粗さを増加する目的で、レーザ衝突を重ねるステップと、(b)SiC表面上に常圧溶射によってアルミナコーティングを堆積するステップを含む方法を開示しており、レーザビームによってSiC表面の物理化学的状態を改良し、それによって、アルミナコーティングとSiC表面との物理化学的結合が向上するとしている。
特開2007-277620号公報 特開2003-277169号公報 特開昭61-163258号公報 特開昭63-108930号公報 特開平7-116870号公報 特開平10-310859号公報 特開2010-64952号公報 特開2008-275617号公報 特開2000-263260号公報
 レーザを用いて粗面化処理を行えば、ブラスト処理の場合のような残留物が生じることによる密着性の低下などの問題がなくなる。また、レーザによる粗面化処理はブラスト処理に比べて制御しやすく、表面性状もバラツキにくくなる。
 しかし、レーザ加工によって粗面化処理したものが、必ずしもブラスト粗面化処理したものに比べて高い密着性が得られるわけではない。基材表面に適切な凹凸が付与されることが前提となる。
 一方で、セラミックス基材に対する粗面化処理では、強度低下が起こりやすいという課題がある。本発明者らの検討によれば、ブラスト処理で基材強度が低下する原因は、投射材の衝突によって脆性材料である基材の表面に微少亀裂を導入してしまうことにある。この微少亀裂が割れの起点となり、最終的に基材の破壊へとつながるおそれがある。
 レーザ加工によれば、ブラスト処理に比べると基材の表面に与える物理的な衝撃が少ない。しかしながら、本発明者らの検討によれば、レーザ加工であっても基材の表面には僅かな亀裂が発生している。この亀裂は、人間の目によって確認できるほどの大きさではなく、顕微鏡観察によってはじめて確認される(図4参照。詳しくは後述する。)。そのため、密着性を向上させることのみに着目して基材表面に対して凹凸を形成すると、基材強度の低下を招いてしまう。
 そこで本発明は従来技術の問題点に鑑み、セラミックス基材に対してレーザ照射による粗面化を行ったときでも、基材強度を高く保つことができ、かつ基材上に溶射皮膜を形成したときに強固な密着力を発現させることのできる基材の粗面化方法、粗面化処理後の基材の表面処理方法、それらの方法を用いた溶射皮膜被覆部材の製造方法及び溶射皮膜被覆部材を提供することを目的とする。
 本発明者は上記の課題を解決するべく鋭意検討を行った。その結果、レーザの照射によって表面性状を効果的に改質する観点から、セラミックス基材に対し、大気中で、かつ所定の条件でレーザを照射し、粗面化処理を施すことが、溶射皮膜との密着性の向上及び基材強度低下の抑制に大きく寄与することを見いだし、これにより課題を解決するに至った。
 本発明は、パワー密度を1.0×10~10W/cmとし、かつ照射位置への作用時間を1.0×10-7~10-5sとしたレーザを、セラミックス基材に大気中で照射することによって、前記基材の表面を粗面化することを特徴とする基材の粗面化方法である。
 本発明では、基材強度の大きな低下を引き起こさず、かつ高い密着性が得られる良好な基材を得るためのレーザ照射の条件として、レーザのパワー密度を1.0×10~10W/cmとし、かつ照射位置への作用時間を1.0×10-7~10-5sとしている。また、本発明では、セラミックス基材に対し、大気中で上記条件のレーザ照射を行っているため、粗面化表面上に、薄い酸化膜を形成することができる。これにより、粗面化表面による物理的密着力に加え、化学的親和力の作用により、その上に形成される溶射皮膜との高い密着性を得ることができる。さらに、上記条件下で得られた酸化膜は、レーザの照射による粗面化と同時に生じた微少亀裂の上部を覆うことができるため、基材強度の低下が抑制される。
 すなわち、上記の条件によるレーザの照射によれば、粗面化と同時に、基材の粗面化された表面、及び、レーザの照射によって形成された基材の微少亀裂の上部を覆う酸化膜を形成することができ、それによって、粗面化表面の微少亀裂による、基材強度の低下への影響が低減されて、高強度を要する構造部材への適用範囲が広がる。
 前記セラミックス基材の種類は、特に限定されないが、炭化ケイ素、窒化ケイ素、硼化ケイ素又はこれらの1種以上を含む混合物が好適である。
 前記基材の粗面化方法によって得られた基材の表面は、熱酸化処理することが好ましい。これにより、強度低下の原因となる微少亀裂を治癒するとともに、レーザの照射によって形成された酸化膜の緻密化が起こるので、溶射皮膜に対する優れた密着性と、さらなる基材強度の低下の抑制効果が得られる。本発明は、前記基材の粗面化方法による粗面化処理がなされた基材の表面を熱酸化処理することを特徴とする基材の表面処理方法でもある。
 前記基材の粗面化方法によって得られた基材は、被溶射体として好適に用いられる。本発明は、前記基材の粗面化方法による粗面化処理、又は前記基材の表面処理方法による表面処理がなされた基材に対し、溶射処理を施すことを特徴とする溶射皮膜被覆部材の製造方法でもある。
 さらに本発明は、前記基材の粗面化方法による粗面化処理、又は前記基材の表面処理方法による表面処理がなされた基材上に、溶射皮膜を備えることを特徴とする溶射皮膜被覆部材でもある。
 基材の粗面化表面を覆う酸化膜は、その上に形成される溶射皮膜との間で高い密着性を発揮することができる。また、上記酸化膜は、粗面化表面及びレーザの照射によって基材の表面に生じた微少亀裂の上部を覆うものであり、被溶射体の強度が維持された、耐久性の高い溶射皮膜被覆部材となる。
 本発明の基材の粗面化方法によれば、溶射皮膜に対する高い密着性と、耐久性の高い基材を得ることができる。
 本発明の基材の表面処理方法によれば、溶射皮膜に対する、より優れた密着性と、さらなる基材強度の低下の抑制効果が得られる。
 本発明の溶射皮膜被覆部材の製造方法によれば、基材との密着性が高い溶射皮膜と、耐久性の高い基材を備える溶射皮膜被覆部材を得ることができる。
 本発明の溶射皮膜被覆部材によれば、基材との密着性が高い溶射皮膜と、耐久性の高い基材を備えるので、高強度を要する構造部材への適用が可能となる。
本発明の一実施形態に係る溶射皮膜被覆部材の模式断面図である。 図1の要部拡大図である。 本発明の粗面化方法を実施するためのレーザ加工装置の概略図である。 実施例5の条件で得られた試験片の断面SEM写真である。
 本発明の実施の形態について図面を参照して説明する。図1は本発明の一実施形態に係る溶射皮膜被覆部材1の模式断面図であり、図2はその要部拡大図である。本実施形態の溶射皮膜被覆部材1は図1のように、レーザの照射で粗面化された粗面化表面2aを有する被溶射体である基材2と、この基材2の粗面化表面2aに存在する酸化膜3と、この酸化膜3を介して基材2を被覆する溶射皮膜4とで構成されている。
 例えば、セラミックス材料の一つであるSiC材料は高硬度であるため、ブラスト処理によって十分な粗さを付与するためには、ブラスト圧を高くするなどの条件設定が必要になる。ところが、そのような処理では基材に与える衝撃が強くなり、基材に大きな亀裂が発生して強度の低下を招くため、ブラスト処理を適用し難い。本発明では、適切な条件のレーザを照射することで凹凸を付与しているため、基材に対する衝撃を小さくしつつ、適切な粗さを付与することができる。また、レーザの照射と同時に酸化膜3を形成し、アンカー効果による物理的な密着のみに頼るのではなく、化学的親和力による結合をも起こさせる。
 本実施形態で用いる基材2は、レーザ加工できるセラミックス基材であれば酸化物セラミックス(例えば、アルミナ(Al))、窒化物セラミックス(例えば、窒化アルミニウム(AlN))、硼化物セラミックス、炭化物セラミックスなど特に限定されないが、好ましくは、ケイ素を含有するセラミックス基材であり、中でも特に、炭化ケイ素(SiC)、窒化ケイ素(Si)、硼化ケイ素(SiB)、又は、これらの1種以上を含む混合物(例えばSiC-Si、Si-SiC、Si-Siなど)が好ましい。また、日立金属社製の「サイアロン」(登録商標)を使用することもできる。これらの材料は、本発明のレーザの照射条件において酸化膜3(この場合は、二酸化ケイ素(SiO)膜)が形成されやすい材料であり、溶射皮膜4に対する高い密着性及び基材強度の維持を可能とする酸化膜3を得ることができる。
 基材2にレーザを照射して粗面化表面2aを得るための粗面化方法について以下に詳しく説明する。本実施形態においてレーザは照射対象物に応じてファイバーレーザ、半導体レーザ、YAGレーザ等における連続発振やパルス発振等の一般的なレーザから任意に選択でき、限定されるものではない。以下の説明では連続発振のファイバーレーザを使用することを想定している。
 図3は本発明の被溶射体の粗面化方法を実施するためのレーザ加工装置10の概略図である。レーザ加工装置10は、図示しないレーザ発振器、光ファイバー、制御装置、コリメートレンズ、図示のガルバノスキャナ11、fθレンズ12、照射対象物である基材2をX方向及びY方向に移動させるXYテーブル13を備えている。
 レーザ発振器から出射されたレーザ光は、光ファイバーによって伝送され、ガルバノスキャナ11の前段に配置されたコリメートレンズに入射する。コリメートレンズに入射したレーザ光は平行光に調整され、ガルバノスキャナ11に入射する。ガルバノスキャナ11はガルバノミラー14及びガルバノミラー14の角度を調整するアクチュエータ15を備えており、ガルバノミラー14を制御することでレーザ光16を任意のパターンでスキャニングする。fθレンズ12と基材2の距離を適正に配置することで、fθレンズ12は入射するレーザ光16を基材2の表面を含む平面で焦点を結ぶよう補正して集光する。XYテーブル13は基材2を固定すると共に、XY方向に移動させる。
 制御装置は基材2を粗面化加工するための加工プログラム、加工条件などに基づいて、レーザ発振器から出射させるレーザの出力や出射タイミング、ガルバノスキャナ11がスキャンするレーザのパターンを制御する。
 レーザを伝送する光ファイバーのコア径、コリメートレンズ及びfθレンズ12の焦点距離を適切に組み合わせることで、焦点でのスポット径を制御することができる。
 ガルバノスキャナ11によってスキャニングできる基材2の範囲は限定されている。そのため、スキャンニングできる範囲内での加工が終了すると、基材2は未加工領域がスキャニング可能な位置となるようXYテーブル13によって移動させられ、再び加工される。これにより、制御装置に予め入力されている加工プログラムに基づいたパターンで基材2の表面が粗面化されて粗面化表面2aとなる。
 本発明におけるパワー密度及び作用時間は、以下のように定義する。
 パワー密度(W/cm)の定義:出力/スポット面積((スポット径/2)×π)
 作用時間(s)の定義:任意の点をレーザのスポットが通り過ぎるのに必要な時間(スポット径/走査速度)
 レーザ加工装置10のレンズ構成及び制御装置により、レーザのパワー密度を1.0×10~10W/cmの範囲とし、照射位置への作用時間を1.0×10-7~10-5sに調整する。この条件のレーザを大気中で基材2へ照射することによって、基材2の表面に凹凸を形成して粗面化し、それと共に粗面化表面2aに酸化膜3を形成する。
 レーザの照射は、1回であっても複数回であってもよい。例えば、レーザの走査方向を変えて複数回の照射を行うことで、凹凸の形状を所望の形にパターニングすることができる。また、レーザの走査方向を規則的にすれば、凸部が一定の規則性をもってパターン状に並んで形成された凹凸面が得られる。
 レーザの照射によって粗面化される基材2の粗面化表面2aの算術平均粗さRaは、例えば0.5~30μmに調整される。この粗面化表面2aの凹凸によって、アンカー効果による溶射皮膜4の良好な密着力が得られる。算術平均粗さRaのより好ましい下限は2μmであり、より好ましい上限は20μmである。
 SiCに代表されるケイ素含有セラミックス材料を基材2とした場合の酸化膜3は、二酸化ケイ素(SiO;シリカ)膜となる。また、基材に窒化アルミニウム(AlN)を用いたときには、酸化膜3としてアルミナ(Al)膜が得られる。レーザを照射して基材2に粗面化表面2aを形成すると、その凹凸の表層にレーザ照射の衝撃等によって微少亀裂5が生じる。この微少亀裂5は深さ方向に5~20μm程度の大きさであり、ブラスト処理に比べて基材2への強度面の影響は少ないものの、この微少亀裂5が発端となって、基材強度の著しい低下や、基材破壊が起こる可能性がある。
 本実施形態では、パワー密度を1.0×10~10W/cmの範囲とし、照射位置への作用時間を1.0×10-7~10-5sに調整したレーザを基材2へ照射しており、酸化膜3が、レーザの照射によって粗面化表面2aに生じた微少亀裂5の上部を覆うように形成されている。すなわち、上記条件のレーザの照射によって粗面化された粗面化表面2aには、上記のような微少亀裂5が形成されるが、それと同時に、微少亀裂5の口を塞ぐようにして酸化膜3が形成されるので、当該微少亀裂5は封じ込まれ、基材2の強度低下が抑制される。
 加えて、パワー密度を1.0×10~10W/cmの範囲とし、照射位置への作用時間を1.0×10-7~10-5sに調整したレーザを基材2へ照射することで、粗面化と同時に粗面化表面2aの全体に酸化膜3を形成することができ、これが基材2と溶射皮膜4との高い密着性を発現させる。これにより、溶射皮膜被覆部材1において、溶射皮膜4が酸化膜3を介して粗面化表面2aに強固に密着する。
 レーザの照射によって形成される酸化膜3の厚みは、2~20μmであることが好ましく、これにより、優れた密着性と、微少亀裂5に対する十分な被覆効果が得られる。酸化膜3の厚みが2μmよりも小さいと、十分な密着力が得られないおそれがある。一方で、酸化膜3の厚みが20μmよりも大きくなるような条件であると、レーザによって基材に発生する亀裂が大きくなりすぎて、酸化膜3が亀裂の上部を十分に被覆できない可能性がある。酸化膜3の厚みのより好ましい下限は5μmであり、より好ましい上限は10μmである。
 上記条件によるレーザの照射によって粗面化された基材2の粗面化表面2aに対しては、さらに熱酸化処理することが好ましい。方法としては、例えば、800~2000℃に昇温した大気中に、5~20時間程度、曝す方法が挙げられる。熱酸化処理する際の温度の好ましい下限は、1000℃であり、好ましい上限は、1500℃である。
 本実施形態で用いる基材2にはセラミックスを用いていることから、上記熱酸化処理によれば、レーザの照射によって形成されるとともに酸化膜3によって封じ込まれた微少亀裂5の残りの部分を埋めるように酸化膜3が生成し、微少亀裂5が塞がって治癒される。さらには、レーザの照射によってすでに形成されている酸化膜3の内部においても酸化膜3の生成が促進し、その結果、酸化膜3内がより緻密化されることになる。この熱処理によって、レーザの照射によってすでに形成されている酸化膜3の溶射皮膜4に対する密着性をさらに向上させ、また、基材強度の低下をさらに抑制することができる。
 上記熱酸化処理は、主に酸化膜3の緻密化や微少亀裂5の治癒に作用するため上記熱酸化処理後の酸化膜3の膜厚は、熱酸化処理前とほぼ変わらず、2~20μm程度である。
 次に、上記処理がなされた粗面化表面2aに対し、溶射処理を施して溶射皮膜4を形成する工程について説明する。
 溶射皮膜4は、各種の溶射粉末が軟化又は溶融した状態で、基材2に高速で衝突して堆積することで形成される。溶射皮膜4を構成する材料は限定されず、金属(合金を含む)、セラミックス、サーメットなどが挙げられる。
 上記溶射皮膜4を構成する金属の具体例としては、Ni、Cr、Co、Al、Ta、Y、W、Nb、V、Ti、B、Si、Mo、Zr、Fe、Hf、Laの群から選択される元素の単体金属、これら元素の1種以上を含む合金が挙げられる。
 上記溶射皮膜4を構成するセラミックスの具体例としては、Ni、Cr、Co、Al、Ta、Y、W、Nb、V、Ti、B、Si、Mo、Zr、Fe、Hf、Laの群から選択される元素の1種以上を含む酸化物系セラミックス、窒化物系セラミックス、フッ化物系セラミックス、炭化物系セラミックス、硼化物系セラミックス、これらの混合物が挙げられる。
 酸化物系セラミックスとしては、Al、Cr、HfO、La、TiO、Y、ZrO、Al・SiO、NiO、ZrO・SiO、SiO、MgO、CaOが挙げられる。窒化物系セラミックスとしては、TiN、TaN、AlN、BN、Si、HfN、NbN、YN、ZrN、Mg、Caが挙げられる。フッ化物系セラミックスとしては、LiF、CaF、BaF、YF、AlF、ZrF、MgFが挙げられる。炭化物系セラミックスとしては、TiC、WC、TaC、BC、SiC、HfC、ZrC、VC、Crが挙げられる。硼化物系セラミックスとしては、TiB、ZrB、HfB、VB、TaB、NbB、W、CrB、LaBが挙げられる。
 金属材料とセラミックス材料を複合化したサーメット材料を溶射材料としてもよい。サーメット材料としては、Cr、TaC、WC、NbC、VC、TiC、BC、SiC、CrB、WB、MoB、ZrB、TiB、FeB、CrN、CrN、TaN、NbN、VN、TiN、BNの群から選択されるセラミックス材料を、Ni、Cr、Co、Al、Ta、Y、W、Nb、V、Ti、B、Si、Mo、Zr、Fe、Hf、Laの群から選択される金属材料と複合化したものなどが挙げられる。
 溶射皮膜4を形成するための溶射粉末は、例えば、粒径5~80μm程度の粒度範囲の粉末を用いる。溶射粉末の粒径は、粉末の流動性や、皮膜特性に応じて適宜設定される。
 溶射皮膜4の厚みは、例えば、50~2000μmである。溶射皮膜4の厚みは、使用目的に応じて適宜設定される。
 溶射皮膜4は、内部に気孔を持つことが一般的であり、その平均気孔率は、例えば、5~10%である。平均気孔率は溶射法や溶射条件によって変化する。
 溶射皮膜被覆部材1を得るための工程の一例を挙げると、基材2の表面の清浄化処理、基材2の表面のレーザ粗面化処理、基材2の表面の熱酸化処理、溶射皮膜4を形成するための溶射施工をこの順に行う。基材2の粗面化表面2aに溶射皮膜4を形成した後、溶射皮膜4の表層の封孔処理、表面研磨処理等を行ってもよい。溶射材料の違いによって予熱工程などの他の工程が含まれる場合もある。
 溶射皮膜4を形成するための溶射方法として、大気プラズマ溶射法、減圧プラズマ溶射法、高速フレーム溶射法、ガスフレーム溶射法、アーク溶射法、爆発溶射法などが挙げられる。特に電気エネルギーを熱源とするプラズマ溶射法は、プラズマの発生源としてアルゴン、水素及び窒素などを利用して成膜するものであり、熱源温度が高く、フレーム速度が速いことから高融点の材料を緻密に成膜することが可能である。
 これらの溶射法を用いることによって、耐久性に優れ、かつ高品質の溶射皮膜4を得ることができる。各溶射法による成膜条件は、基材2の種類、溶射粉末の種類、膜厚、製造環境などに応じて適宜設定すればよい。
 本実施形態の基材の粗面化方法、基材の表面処理方法、及び、溶射皮膜被覆部材の製造方法では、良好な酸化膜3を得るためのレーザ照射の好適な条件として、レーザのパワー密度を1.0×10~10W/cmとし、かつ照射位置への作用時間を1.0×10-7~10-5sとしている。本実施形態では、この条件下で得られた酸化膜3が粗面化表面2aに存在し、当該酸化膜3を介して溶射皮膜4が基材2の粗面化表面2aに密着している。これにより基材2に溶射された溶射皮膜4の高い密着性を得ることができる。
 また、上記条件下での処理によって、レーザの照射で基材2に生じた亀裂は治癒されているので、基材2の強度が維持される。従って、本実施形態の溶射皮膜被覆部材1で構成された構造体は、基材強度の低下が抑制され、耐久性を長期に渡って維持することができ、高強度を要する構造部材への適用が可能となる。
 以下、本発明の実施例について説明する。本発明はこの実施例に限定されるものではない。基材の表面にレーザの照射による粗面化加工を施して、当該表面を粗面化表面とし、この粗面化表面にAl溶射皮膜を施工し、溶射皮膜被覆部材の試験片を作製した。レーザの出力、走査速度及びスポット径を制御して、パワー密度及び照射位置への作用時間を変化させてレーザ照射を行った。レーザ照射後の試験片の粗面化状態を観察し、Al溶射皮膜を成膜した後の試験片の溶射皮膜の密着性試験及び試験片の曲げ強度試験を実施した。
 実施例1~8、比較例2~10では50×50×6mmのSiC製の板材の片面にレーザを照射して、レーザを照射した領域を粗面化表面とした。比較例1では50×50×6mmのSiC製の板材の片面にブラスト処理を行い、処理した領域を粗面化表面とした。実施例1~8、比較例2~10のレーザの照射条件、及び実施例1~8、比較例1~10の各評価結果を表1に示す。また、図4は、実施例5の条件で得られた試験片の断面SEM写真である。
 粗面化状態は目視及び顕微鏡観察で評価し、粗面化されているものを○とし、粗面化されていないものを×とした。比較例2~4、10は表1に記載のとおり基材が破壊された。密着性はJIS H8300に準拠した試験法を用いて、基材に対する溶射皮膜の密着力を測定し、5MPa以上の高い密着性を示したものを○とし、3MPa以上、5MPa未満の密着性を示したものを△とし、3MPa未満の低い密着性を示したものを×とした。曲げ強度の低下率は3点曲げ試験(支点間距離:40mm、試験数:N=3)を用いて試験片の曲げ強度を測定し、粗面化処理をしていない未処理試験片に対する曲げ強度の低下率を算出した。例えば、未処理試験片の曲げ強度が100MPaであって、処理後の試験片が60MPaである場合、曲げ強度の低下率は40%となる。
Figure JPOXMLDOC01-appb-T000001
 各試験片の粗面化後の状態を以下に示す。
実施例1~8:酸化膜が形成された良好な粗面化表面が得られた。
比較例2~4:レーザ照射の作用時間が長すぎて基材が破壊された。
比較例5:レーザ照射のパワー密度が小さすぎて酸化膜が得られなかった。
比較例6、7:レーザ照射のパワー密度が小さすぎて粗面化されなかった。
比較例8:レーザ照射の作用時間が短すぎて酸化膜が得られなかった。
比較例9:レーザ照射の作用時間が短すぎて粗面化されなかった。
比較例10:レーザ照射のパワー密度に対して作用時間が長く基材が破壊された。
 実施例1~8では粗面化状態は良好で、溶射皮膜の密着性も高く、曲げ強度の低下率も60%以下を維持している。ブラスト処理を実施した比較例1では密着性が低く、曲げ強度が著しく低下している。比較例2~10ではレーザ照射の条件が適切でなく、基材の破壊、非粗面化、低密着性、曲げ強度の低下などが認められた。
 次に、基材を炭化ケイ素(SiC)ではなく、窒化ケイ素(Si)、窒化アルミニウム(AlN)、アルミナ(Al)として、実施例5と同じレーザ条件で、基材の表面にレーザの照射による粗面化加工を施して、当該表面を粗面化表面とし、それぞれ粗面化表面にAl溶射皮膜を施工し、溶射皮膜被覆部材の試験片を作製した。そして、溶射皮膜の密着性試験及び試験片の曲げ強度試験を実施した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 基材を窒化ケイ素(Si)とした実施例9、基材を窒化アルミニウム(AlN)とした実施例10では、粗面化状態は良好で、溶射皮膜の密着性も高く、曲げ強度の低下率も小さかった。一方、基材をアルミナ(Al)とした実施例11では、密着性は良好とまではいえないものの使用可能な範囲であり、粗面化状態は良好で、曲げ強度の低下率は小さかった。
 次に、実施例5と同じレーザ条件で、基材の表面にレーザの照射による粗面化加工を施して、当該表面を粗面化表面とし、さらに1200℃の電気炉(大気中)の中で10時間熱酸化処理を行った後、粗面化表面にAl溶射皮膜を施工し、溶射皮膜被覆部材の試験片を作製した。また、比較例1と同じブラスト条件で、基材の表面にレーザの照射による粗面化加工を施して、当該表面を粗面化表面とし、さらに1200℃の電気炉(大気中)の中で10時間熱酸化処理を行った後、粗面化表面にAl溶射皮膜を施工し、溶射皮膜被覆部材の試験片を作製した。そして、溶射皮膜の密着性試験及び試験片の曲げ強度試験を実施した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例12では、レーザの照射による粗面化処理後、溶射皮膜の被覆形成前の熱処理によって、粗面化処理面の更なる酸化処理が行われ、密着性及び曲げ強度が向上している。一方、比較例11では、ブラストによる粗面化処理後、溶射皮膜の被覆形成前の熱処理によって、粗面化処理面の酸化処理が行われており、曲げ強度はやや改善しているものの、依然として十分な値ではない。また、密着性についても、そもそも基材を破壊しない程度のブラスト処理による粗面化処理であるので、十分な凹凸が付与されておらず、良好な密着性が得られていない。
 上記の実施形態及び実施例は例示であり制限的なものではない。本発明の基材の粗面化方法、基材の表面処理方法、溶射皮膜被覆部材の製造方法、及び溶射皮膜被覆部材は自動車産業、半導体産業など、あらゆる用途で用いることができる。
 1 溶射皮膜被覆部材
 2 基材(被溶射体)
 2a 粗面化表面
 3 酸化膜
 4 溶射皮膜
 5 微少亀裂
 10 レーザ加工装置
 11 ガルバノスキャナ
 12 fθレンズ
 13 XYテーブル
 14 ガルバノミラー
 15 アクチュエータ
 16 レーザ光

Claims (6)

  1.  パワー密度を1.0×10~10W/cmとし、かつ照射位置への作用時間を1.0×10-7~10-5sとしたレーザを、セラミックス基材に大気中で照射することによって、前記基材の表面を粗面化することを特徴とする基材の粗面化方法。
  2.  前記レーザの照射による粗面化と同時に、前記レーザの照射によって粗面化された表面、及び当該粗面化された表面に形成された微少亀裂の上部、を覆う酸化膜が形成されることを特徴とする請求項1に記載の基材の粗面化方法。
  3.  前記セラミックス基材は、炭化ケイ素、窒化ケイ素、硼化ケイ素、又は、これらの1種以上を含む混合物であることを特徴とする請求項1又は2に記載の基材の粗面化方法。
  4.  請求項1~3のいずれかに記載の基材の粗面化方法による粗面化処理がなされた基材の表面を熱酸化処理することを特徴とする基材の表面処理方法。
  5.  請求項1~3のいずれかに記載の基材の粗面化方法による粗面化処理、又は、請求項4に記載の基材の表面処理方法による表面処理がなされた基材に対し、溶射処理を施すことを特徴とする溶射皮膜被覆部材の製造方法。
  6.  請求項1~3のいずれかに記載の基材の粗面化方法による粗面化処理、又は、請求項4に記載の基材の表面処理方法による表面処理がなされた基材上に、溶射皮膜を備えることを特徴とする溶射皮膜被覆部材。
PCT/JP2016/059126 2015-04-21 2016-03-23 基材の粗面化方法、基材の表面処理方法、溶射皮膜被覆部材の製造方法及び溶射皮膜被覆部材 WO2016170895A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177033287A KR102013391B1 (ko) 2015-04-21 2016-03-23 기재의 조면화(粗面化)방법, 기재의 표면처리방법, 용사 피막 피복부재의 제조방법 및 용사 피막 피복부재
US15/568,445 US11131014B2 (en) 2015-04-21 2016-03-23 Method for roughening surface of substrate, method for treating surface of substrate, method for producing thermal spray-coated member, and thermal spray-coated member
JP2017514023A JP6483247B2 (ja) 2015-04-21 2016-03-23 溶射皮膜被覆部材の製造方法
EP16782917.5A EP3287542B1 (en) 2015-04-21 2016-03-23 Method for roughening substrate, method for surface-treating substrate and method for producing spray-coated member
CN201680022664.5A CN107532272B (zh) 2015-04-21 2016-03-23 基材的表面粗化方法、基材的表面处理方法、喷涂覆膜被覆部件及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015086406 2015-04-21
JP2015-086406 2015-04-21

Publications (1)

Publication Number Publication Date
WO2016170895A1 true WO2016170895A1 (ja) 2016-10-27

Family

ID=57144402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059126 WO2016170895A1 (ja) 2015-04-21 2016-03-23 基材の粗面化方法、基材の表面処理方法、溶射皮膜被覆部材の製造方法及び溶射皮膜被覆部材

Country Status (7)

Country Link
US (1) US11131014B2 (ja)
EP (1) EP3287542B1 (ja)
JP (1) JP6483247B2 (ja)
KR (1) KR102013391B1 (ja)
CN (1) CN107532272B (ja)
TW (1) TWI640381B (ja)
WO (1) WO2016170895A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067248A1 (ja) * 2018-09-27 2020-04-02 ダイセルポリマー株式会社 表面に粗面化構造を有する炭化物系の非磁性セラミックス成形体とその製造方法
WO2020067249A1 (ja) * 2018-09-27 2020-04-02 ダイセルポリマー株式会社 表面に粗面化構造を有する非磁性セラミックス成形体とその製造方法
WO2020067493A1 (ja) * 2018-09-28 2020-04-02 新和工業株式会社 セラミックの処理方法及びセラミック部材
TWI719454B (zh) * 2019-04-11 2021-02-21 大陸商三贏科技(深圳)有限公司 複合鏡座的製作方法、音圈馬達及電子產品
WO2021039588A1 (ja) 2019-08-23 2021-03-04 トーカロ株式会社 表面処理方法
WO2021200867A1 (ja) * 2020-03-30 2021-10-07 デンカ株式会社 窒化ケイ素板及びその製造方法、複合基板及びその製造方法、並びに、回路基板及びその製造方法
WO2021200878A1 (ja) * 2020-03-30 2021-10-07 デンカ株式会社 窒化アルミニウム板及びその製造方法、複合基板及びその製造方法、並びに、回路基板及びその製造方法
JP7422104B2 (ja) 2021-03-23 2024-01-25 東京窯業株式会社 積層構造体の製造方法及び積層構造体

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112017027975A2 (pt) 2015-06-24 2018-08-28 University Of Dundee método e aparelho para redução de rendimento, e, superfície tratada a laser
GB201603991D0 (en) * 2016-03-08 2016-04-20 Univ Dundee Processing method and apparatus
CN108723598B (zh) * 2018-05-16 2021-05-25 东莞美景科技有限公司 一种自动化产品表面处理工艺方法
CN111164237A (zh) * 2018-07-17 2020-05-15 Komico有限公司 耐电浆涂层的气胶沉积涂布法
CN110484850A (zh) * 2019-09-26 2019-11-22 中国人民解放军陆军装甲兵学院 一种用于渗氮基体上制备结合性能良好喷涂层的方法
CN111230296B (zh) * 2020-01-10 2022-03-04 中国航空制造技术研究院 一种多孔薄壁腔体构件及激光焊接方法
CN112626439B (zh) * 2020-11-24 2023-06-02 北京星航机电装备有限公司 一种曲面薄壁件等离子喷涂前处理方法及喷涂方法
CN113873816B (zh) * 2021-09-15 2023-03-31 武汉华星光电半导体显示技术有限公司 一种盖板的制备方法及盖板
CN114888440B (zh) * 2022-06-22 2024-05-07 济南大学 一种原位转化吸热涂层的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121175A (ja) * 1982-12-28 1984-07-13 株式会社東芝 放熱体の製造方法
JPS62110882A (ja) * 1985-11-11 1987-05-21 Kawasaki Steel Corp 冷間圧延ロ−ルの粗面化方法
JPS6415294A (en) * 1987-07-08 1989-01-19 Kawasaki Steel Co Method for roughening roll
JPH01185987A (ja) * 1988-01-21 1989-07-25 Nippon Steel Corp パルスレーザ発振方法及びその装置
JP2005051238A (ja) * 2003-07-21 2005-02-24 Abb Res Ltd レーザ照射されたメタライズされた電気セラミック

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163258A (ja) 1985-01-11 1986-07-23 Shinagawa Refract Co Ltd レ−ザ溶射方法
US4931125A (en) * 1985-06-18 1990-06-05 The Dow Chemical Company Method for adhesive bonding with pretreatment of components
JPS63108930A (ja) 1986-10-24 1988-05-13 Toshiba Corp 金型の製造方法
FR2692887B1 (fr) * 1992-06-29 1996-11-29 Alsthom Cge Alcatel Procede pour realiser une liaison entre du cuivre et un substrat pour l'electronique de puissance en ceramique non oxyde.
JP3222660B2 (ja) 1993-10-26 2001-10-29 松下電工株式会社 基材表面の処理方法
US5703341A (en) * 1993-11-23 1997-12-30 Lockheed Martin Energy Systems, Inc. Method for adhesion of metal films to ceramics
US5558789A (en) * 1994-03-02 1996-09-24 University Of Florida Method of applying a laser beam creating micro-scale surface structures prior to deposition of film for increased adhesion
JPH10310859A (ja) 1997-05-09 1998-11-24 Natl Space Dev Agency Japan<Nasda> 硬質無機材料の表面処理方法
JP2000263260A (ja) 1999-03-17 2000-09-26 Ebara Corp 表面処理方法及び耐摩耗・耐摺動性部材
US6899798B2 (en) * 2001-12-21 2005-05-31 Applied Materials, Inc. Reusable ceramic-comprising component which includes a scrificial surface layer
JP2003277169A (ja) 2002-03-26 2003-10-02 Kyushu Refract Co Ltd セラミックス
GB2397307A (en) 2003-01-20 2004-07-21 Rolls Royce Plc Abradable Coatings
EP1719744A1 (en) * 2004-01-23 2006-11-08 Tokuyama Corporation Non oxide ceramic having oxide layer on the surface thereof, method for production thereof and use thereof
US7741687B2 (en) * 2006-03-10 2010-06-22 Semiconductor Energy Laboratory Co., Ltd. Microstructure, semiconductor device, and manufacturing method of the microstructure
JP2007277620A (ja) 2006-04-05 2007-10-25 Covalent Materials Corp 脆性材料基材への溶射膜形成方法
FR2915493B1 (fr) 2007-04-30 2009-07-24 Snecma Sa Procede pour realiser un depot sur un substrat recouvert de sic
DE102008041957A1 (de) 2008-09-10 2010-03-11 Robert Bosch Gmbh Verfahren zur Herstellung eines keramischen Schichtverbundes
DE102011121545B4 (de) * 2011-12-20 2013-07-11 Eads Deutschland Gmbh Verfahren zur Strukturierung und chemischen Modifikation einer Oberfläche eines Werkstücks
US20130209745A1 (en) * 2012-02-10 2013-08-15 National Research Council Of Canada Method of coating of a substrate with a thermal spray coating material and coated substrate formed thereby

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121175A (ja) * 1982-12-28 1984-07-13 株式会社東芝 放熱体の製造方法
JPS62110882A (ja) * 1985-11-11 1987-05-21 Kawasaki Steel Corp 冷間圧延ロ−ルの粗面化方法
JPS6415294A (en) * 1987-07-08 1989-01-19 Kawasaki Steel Co Method for roughening roll
JPH01185987A (ja) * 1988-01-21 1989-07-25 Nippon Steel Corp パルスレーザ発振方法及びその装置
JP2005051238A (ja) * 2003-07-21 2005-02-24 Abb Res Ltd レーザ照射されたメタライズされた電気セラミック

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3287542A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067248A1 (ja) * 2018-09-27 2020-04-02 ダイセルポリマー株式会社 表面に粗面化構造を有する炭化物系の非磁性セラミックス成形体とその製造方法
WO2020067249A1 (ja) * 2018-09-27 2020-04-02 ダイセルポリマー株式会社 表面に粗面化構造を有する非磁性セラミックス成形体とその製造方法
JP7100084B2 (ja) 2018-09-27 2022-07-12 ダイセルポリマー株式会社 複合成形体
JP2020125240A (ja) * 2018-09-27 2020-08-20 ダイセルポリマー株式会社 表面に粗面化構造を有する炭化物系の非磁性セラミックス成形体の製造方法
JP7444693B2 (ja) 2018-09-27 2024-03-06 ダイセルミライズ株式会社 表面に粗面化構造を有する炭化物系の非磁性セラミックス成形体の製造方法
JP2020128335A (ja) * 2018-09-27 2020-08-27 ダイセルポリマー株式会社 複合成形体
JP2020128336A (ja) * 2018-09-27 2020-08-27 ダイセルポリマー株式会社 複合成形体
JPWO2020067249A1 (ja) * 2018-09-27 2021-02-15 ダイセルポリマー株式会社 表面に粗面化構造を有する非磁性セラミックス成形体とその製造方法
JPWO2020067248A1 (ja) * 2018-09-27 2021-02-15 ダイセルポリマー株式会社 表面に粗面化構造を有する炭化物系の非磁性セラミックス成形体とその製造方法
JP7444694B2 (ja) 2018-09-27 2024-03-06 ダイセルミライズ株式会社 複合成形体
JP6745424B1 (ja) * 2018-09-28 2020-08-26 新和工業株式会社 セラミックの処理方法及びセラミック部材
CN112739667A (zh) * 2018-09-28 2021-04-30 新和工业株式会社 陶瓷的处理方法及陶瓷构件
KR20210060485A (ko) 2018-09-28 2021-05-26 신와고교 가부시키가이샤 세라믹의 처리 방법 및 세라믹 부재
DE112019004865T5 (de) 2018-09-28 2021-07-08 Shinwa Industrial Co., Ltd. Verarbeitungsverfahren von Keramik und Keramikbauteil
CN112739667B (zh) * 2018-09-28 2023-02-17 新和工业株式会社 陶瓷的处理方法及陶瓷构件
WO2020067493A1 (ja) * 2018-09-28 2020-04-02 新和工業株式会社 セラミックの処理方法及びセラミック部材
TWI719454B (zh) * 2019-04-11 2021-02-21 大陸商三贏科技(深圳)有限公司 複合鏡座的製作方法、音圈馬達及電子產品
WO2021039588A1 (ja) 2019-08-23 2021-03-04 トーカロ株式会社 表面処理方法
WO2021200878A1 (ja) * 2020-03-30 2021-10-07 デンカ株式会社 窒化アルミニウム板及びその製造方法、複合基板及びその製造方法、並びに、回路基板及びその製造方法
WO2021200867A1 (ja) * 2020-03-30 2021-10-07 デンカ株式会社 窒化ケイ素板及びその製造方法、複合基板及びその製造方法、並びに、回路基板及びその製造方法
JP7422104B2 (ja) 2021-03-23 2024-01-25 東京窯業株式会社 積層構造体の製造方法及び積層構造体

Also Published As

Publication number Publication date
KR20170139084A (ko) 2017-12-18
EP3287542A1 (en) 2018-02-28
EP3287542B1 (en) 2019-11-20
CN107532272B (zh) 2020-04-17
EP3287542A4 (en) 2018-10-31
CN107532272A (zh) 2018-01-02
KR102013391B1 (ko) 2019-08-22
US20180142338A1 (en) 2018-05-24
TWI640381B (zh) 2018-11-11
JP6483247B2 (ja) 2019-03-13
US11131014B2 (en) 2021-09-28
TW201707823A (zh) 2017-03-01
JPWO2016170895A1 (ja) 2018-02-08

Similar Documents

Publication Publication Date Title
JP6483247B2 (ja) 溶射皮膜被覆部材の製造方法
US20140302247A1 (en) Method of forming densified layer in spray coating, and spray coating covering member
US7494723B2 (en) Y2O3 spray-coated member and production method thereof
TWI323294B (ja)
JP4603018B2 (ja) 熱放射性および耐損傷性に優れる酸化イットリウム溶射皮膜被覆部材およびその製造方法
JP4372748B2 (ja) 半導体製造装置用部材
JP5001323B2 (ja) 白色酸化イットリウム溶射皮膜表面の改質方法および酸化イットリウム溶射皮膜被覆部材
US20140300064A1 (en) Member for semiconductor manufacturing device
JP6929716B2 (ja) オキシフッ化イットリウム溶射膜及びその製造方法、並びに溶射部材
WO2015151573A1 (ja) セラミック溶射皮膜被覆部材及び半導体製造装置用部材
JP5526364B2 (ja) 白色酸化イットリウム溶射皮膜表面の改質方法
JPS61113755A (ja) 高耐蝕・耐熱性セラミツク溶射被膜形成金属材の製造方法
KR20070030718A (ko) Y2o3 용사 피막 피복 부재 및 그 제조 방법
US20210317558A1 (en) Method for coating a component and coated component
JP6125860B2 (ja) 皮膜密着性に優れたセラミックス溶射皮膜被覆部材
KR20030050637A (ko) 고에너지 가속전자빔을 이용한 표면복합재료 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017514023

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15568445

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177033287

Country of ref document: KR

Kind code of ref document: A