WO2016167601A1 - 가공성이 우수한 에틸렌/알파-올레핀 공중합체 - Google Patents

가공성이 우수한 에틸렌/알파-올레핀 공중합체 Download PDF

Info

Publication number
WO2016167601A1
WO2016167601A1 PCT/KR2016/003947 KR2016003947W WO2016167601A1 WO 2016167601 A1 WO2016167601 A1 WO 2016167601A1 KR 2016003947 W KR2016003947 W KR 2016003947W WO 2016167601 A1 WO2016167601 A1 WO 2016167601A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
aryl
ethylene
alpha
alkoxy
Prior art date
Application number
PCT/KR2016/003947
Other languages
English (en)
French (fr)
Inventor
선순호
최이영
이기수
송은경
승유택
이예진
한창완
조솔
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2017503838A priority Critical patent/JP6470834B2/ja
Priority to US15/501,415 priority patent/US10323110B2/en
Priority to CN201680002412.6A priority patent/CN106661160B/zh
Priority to EP16780324.6A priority patent/EP3162820A4/en
Publication of WO2016167601A1 publication Critical patent/WO2016167601A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/06Cp analog where at least one of the carbon atoms of the non-coordinating part of the condensed ring is replaced by a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged

Definitions

  • the present invention relates to an ethylene / alpha-olefin copolymer having excellent processability.
  • Olefin polymerization catalyst systems can be classified into Ziegler-Natta and metallocene catalyst systems, and these two highly active catalyst systems have been developed for their respective characteristics.
  • the Ziegler-Natta catalyst has been widely applied to the existing commercial processes since the invention in the 50s, but has a wide molecular weight distribution of the polymer because it is a multi-active catalyst with multiple active sites. , There is a problem in that the composition distribution of the comonomer is not uniform and there is a limit in securing desired physical properties.
  • the metallocene catalyst is composed of a combination of a main catalyst composed mainly of transition metal compounds and a cocatalyst composed of an organic metal compound composed mainly of aluminum, and such a catalyst is a homogeneous complex catalyst.
  • te catalyst the polymer has a narrow molecular weight distribution according to the characteristics of a single active site, a homogeneous composition of the comonomer is obtained, the stereoregularity of the polymer according to the modification of the ligand structure of the catalyst and the change of polymerization conditions, copolymerization characteristics , Molecular weight, crystallinity and the like can be changed.
  • 5,914, 289 discloses a method for controlling the molecular weight and molecular weight distribution of a polymer using a metallocene catalyst supported on a respective carrier. Although the method has been described, the amount of solvent used in preparing the supported catalyst and the preparation time are long, and the cumbersome task of supporting the metallocene catalyst to be used on the carrier is performed.
  • Korean Patent Application No. 10-2003-0012308 discloses a method of controlling molecular weight distribution by supporting a double-nucleated metallocene catalyst and a mononuclear metallocene catalyst on a carrier together with an activator to polymerize by changing the combination of catalysts in the reactor. Is starting.
  • linear low density polyethylene uses a polymerization catalyst. It is a resin produced by co-polymerizing ethylene and alpha olepin at low pressure, having a narrow molecular weight distribution, having a constant length short chain branch, and having no long chain branch.
  • linear low density polyethylene films have high breaking strength and elongation, and excellent tear strength and fall stratification strength, so that the use of stretch films and overlap films, which are difficult to apply to existing low density polyethylene or high density polyethylene, has increased. Doing.
  • linear low-density polyethylene using 1-butene or 1 ⁇ nucleene as comonomer is mostly produced in a single gas phase reactor or a single loop slurry reactor, and is more productive than a process using 1-octene comonomer, but these products are also used.
  • the present invention is to provide an ethylene / alpha-olefin copolymer excellent in processability.
  • the present invention provides an ethylene / alpha -olefin copolymer satisfying the following conditions:
  • the molecular weight is 50,000 to 150,000 g / mol
  • Density is 0.940 to 0.965 g / citf
  • Melt and flow rate ratio (MFR 5 / MFR 2. 16 , measured by the ASTM1238 at 190 ° C) is 3.5 or more
  • y c 1 X ethylene / alpha-olefin copolymer.
  • a perfectly elastic material is deformed in proportion to the elastic shear stress (el astic shear stress), which is called Hook's law.
  • deformation occurs in proportion to the v i scous shear stress, which is called Newton's law.
  • the fully elastic material can be deformed again when elastic energy is accumulated and the elastic shear stress is removed, and the fully viscous material is not recovered even when the viscous shear stress is removed because the energy is all lost to the deformation.
  • the viscosity of the material itself does not change.
  • the polymer has a property in the molten state between the material of the fully elastic material and the viscous liquid, which is called viscoelastic (vi scoelast i ci ty).
  • viscoelastic Vi scoelast i ci ty
  • the deformation is not proportional to the shear force, and the viscosity varies according to the shear force, which is also called a non-Newtonian fluid.
  • This property is due to the complexity of the deformation due to shear forces due to the large molecular size and complex intermolecular structure of the polymer.
  • shear thinning is important among the characteristics of non-Newtonian fluids.
  • Shear fluidization refers to a phenomenon in which the viscosity of the polymer decreases as the shear rate increases.
  • the method of forming the polymer is determined according to the shear fluidization characteristic.
  • shear fluidization characteristics are measured through a graph of complex viscosity (a * [Pa.s]) according to frequency (frequency, o [rad / s]).
  • Equation 1 is a model for quantitatively evaluating the shear fluidization characteristics of the ethylene / alpha olefin olefin copolymer according to the present invention, and also to predict the complex viscosity at a high frequency by applying complex viscosity data according to frequency will be.
  • Equation 1 is a p Lawwer model, x is a frequency, y is a complex viscosity, two variables ( ⁇ and C 2 are required. Is a consistency index, C 2 is is called CV index, and C 2 values indicate the slope of the graph.
  • the fitting of the complex viscosity graph according to the frequency by Equation 1 can be used TA Orchestrator, TA Instruments' ARES measurement program.
  • the molecular weight is 80,000 to 90,000 g / nl
  • the ethylene / alpha-olefin copolymer preferably has a molecular weight distribution of 5 to 6.
  • the ethylene / Wave-eulre pin copolymer is preferably a 0.960 to about 0.965 g / citf density.
  • the ethylene / alpha-olepin copolymer preferably has a melt flow rate ratio of 3.5 to 40. Further, the ethylene / alpha-olefin copolymer preferably has the C 2 value of -0.40 to -0.25.
  • Alpha-olepin which can be used for the copolymerization of the ethylene / alpha-olephine is 1-butene, 1-pentene, 1-nuxene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dode Any one or more selected from the group consisting of sen, 1-tetradecene, 1-nuxadecene, 1-octadecene and 1-eicosene can be used.
  • the content of alpha-olefin is about 0.5 to about
  • A is hydrogen, halogen, d- 20 alkyl, C 2 - 20 alkenyl, C 6 - 20 aryl, C 7 - 20 alkylaryl, C T 20 arylalkyl, d 20 alkoxy, C 2 20 alkoxyalkyl, C 3 - 20 heterocycloalkyl, or C 5 - 20 membered heteroaryl;
  • D is -0-, -S-, -N (R)-or -Si (R) (R ') _, wherein R and R' are the same as or different from each other, and are each independently hydrogen, halogen, Ci- 20 alkyl, C 2 - 20 alkenyl, or C 6 - 20 aryl;
  • L is d- 10 straight or branched chain alkylene
  • B is carbon, silicon or germanium
  • Q is hydrogen, halogen, alkyl, C 2 - 20 alkenyl Al, C 6 - 20 aryl, C 7 - 20 alkylaryl, or C 7 - 20 aryl-alkyl;
  • M is a Group 4 transition metal
  • Alkenyl of 20 Al, C 6 - - X 1 and X 2 are the same or different and each is independently halogen, d-20 alkyl, C 2 to each other 20 aryl, nitro, amido, alkyl, silyl, d- 20 alkoxy, or sulfone carbonate ego;
  • C 1 and C 2 are the same as or different from each other, and are each independently represented by one of the following Formula 2a, 2b, or 2c, except that both C 1 and C 2 are Formula 2c;
  • R 17 and "to" are the same or different and each is independently hydrogen, halogen, CHO-alkyl, C 2 of each other - 20 alkenyl, alkylsilyl, d-20 silyl alkyl, C 20 alkoxysilyl, d- 20 alkoxy, C 6 - 20 aryl, C 7 - 20 alkylaryl, or C 7 - 20 alkyl and aryl, wherein the substituted R 10 to R 17 of the two or more adjacent to each other are connected to each other Or may form an unsubstituted aliphatic or aromatic ring;
  • M 1 is a Group 4 transition metal
  • Cp 1 and Cp 2 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radicals One, they may be substituted with a hydrocarbon of 1 to 20 carbon atoms;
  • R a and R b are the same or different and each is independently hydrogen, alkyl, alkoxy, C 2 - 20 alkoxyalkyl, C 6 - 20 aryl, C 6 - 10 aryloxy, C 2 - alkenyl 20 Al, C 7 - 40 alkylaryl, C 7 - 40 arylalkyl, C 8 - 40 arylalkenyl, or C 2 - 10 alkynyl;
  • Z 1 is a halogen atom, d-20 alkyl, C 2 - 10 alkenyl, C 7 - 40 alkylaryl, C 7 - 40 arylalkyl, C 6 - 20 aryl, optionally substituted d- 20 alkylidene, substituted unsubstituted amino, C 2 - 20 alkyl, an alkoxy, or a C 7 - 40 aryl-alkoxy;
  • n 1 or 0;
  • M 2 is a Group 4 transition metal
  • Cp 3 and Cp 4 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5, 6,7—tetrahydro-1-indenyl and fluorenyl radicals They may be substituted with a hydrocarbon having 1 to 20 carbon atoms;
  • R c and R d are the same or different and each is independently hydrogen, alkyl, C 10 alkoxy, C 2 - 20 alkoxyalkyl, C 6 - 20 aryl, C 6 - 10 aryloxy, C 2 - 20 alkenyl, C 7 - 40 alkylaryl, C 7 - 40 arylalkyl, C 8 - 40 arylalkenyl, or C 2 - 10 alkynyl;
  • Z 2 is a halogen atom, CHO-alkyl, C 2 - 10 alkenyl, C 7 - 40 alkylaryl, C 7 - 40 arylalkyl, C 6 - 20 aryl, optionally substituted d-20 alkylidene, optionally substituted that is not amino, C 2 - 20 alkyl, an alkoxy, or a C 7 - 40 aryl-alkoxy;
  • B 1 crosslinks the Cp3 ⁇ 4 c ring with the Cp 4 R d ring, or one Cp 4 R d
  • n 1 or 0;
  • M 3 is a Group 4 transition metal
  • Cp 5 is any one selected from the group consisting of cyclopentadienyl, indenyl, 4, 5, 6 , 7-tetrahydro-1-indenyl and fluorenyl radicals, which may be substituted with hydrocarbons having 1 to 20 carbon atoms Can be;
  • R e is alkyl, hydrogen, d-2o alkoxy, C 2 - 20 alkoxyalkyl, C 6 - 20 aryl, C 6 - 10 aryloxy, C 2 - 20 alkenyl, C 7 - 40 alkylaryl, C 7 - 40 arylalkyl, C 8 - 40 arylalkenyl, or C 2 - 10 alkynyl;
  • z 3 is a halogen atom, d- 20 alkyl, c 2 _ 10 - alkenyl, C 7 - 40 alkylaryl, C 7 - 40 arylalkyl, C 6 20 aryl, substituted or unsubstituted (20 alkylidene, substituted or unsubstituted amino, C 2 - 20 alkyl, an alkoxy, or a C 7 - 40 aryl-alkoxy;
  • B 2 is at least one or a combination of carbon, germanium, silicon, phosphorus or nitrogen atom containing radicals which crosslink the Cp3 ⁇ 4 e ring and J;
  • the ( 20 alkyl) includes a linear or branched alkyl, specifically methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, pentyl, nuclear chamber, heptyl, octyl, etc., but but not limited to the C 2 -.
  • alkenyl include, including alkenylene of straight or branched chain and, specifically allyl, ethenyl, propenyl, butenyl, pentenyl, and the like, but a pen, It is not limited only to this.
  • the c 6 _ 20 aryl includes monocyclic or condensed aryl, and specifically includes phenyl, biphenyl, naphthyl, phenanthrenyl, fluorenyl, and the like, but is not limited thereto.
  • the C 5 - 20 heteroaryl group include a monocyclic or condensed ring includes heteroaryl, carbazolyl, pyridyl, quinoline, isoquinoline, thiophenyl, furanyl, imidazole, oxazolyl, thiazolyl, triazine, tetrahydro Hydropyranyl, tetrahydrofuranyl, and the like, but is not limited thereto.
  • Examples of the CHO alkoxy include methoxy, ethoxy, phenyloxy, cyclonuxyloxy, and the like, but are not limited thereto.
  • Examples of the Group 4 transition metal include titanium, zirconium, hafnium, and the like, but are not limited thereto.
  • Addition of Formulas 2a, 2b and 2c to R 17 and 'to 3 ⁇ 4' are each independently hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, pentyl, nucleus, heptyl, octyl, phenyl, halogen , Trimethylsilyl, triethylsilyl, tripropylsilyl, tributylsilyl, triisopropylsilyl, trimethylsilylmethyl, mesooxy, or ethoxy are more preferred, but not limited thereto.
  • L of the general formula (1) is C 4 - 8 straight or branched chain alkylene of one to more preferred, but is not limited thereto only. Further, the alkylene group d-20 alkyl, C 2 - may be substituted or unsubstituted aryl as 20 - 20 alkenyl, or C 6.
  • A is hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, mesooxymethyl, tert-butoxymethyl, 1-ethoxyethyl, 1-methyl- It is preferably 1-methoxyethyl, tetrahydropyranyl, or tetrahydrofuranyl, but is not limited thereto.
  • B of Formula 1 is preferably silicon, but is not limited thereto.
  • the first metallocene compound of Chemical Formula 1 forms a structure in which an indeno indole derivative and / or a fluorene (f luorene) derivative is crosslinked by a bridge, and is non-covalent to act as a Lewis base on the ligand structure. By having an electron pair, it is supported on the surface which has the Lewis acid characteristic of a support, and shows high polymerization activity even when it carries.
  • the electronically rich intenoid group and / or fluorene group containing a high activity due to the proper steric hindrance and the electronic effect of the ligand is not only low hydrogen reactivity but also maintains high activity in the presence of hydrogen.
  • the beta-hydrogen of the polymer chain in which the nitrogen atom of the inteno indole derivative is grown is stabilized by hydrogen bonding to inhibit beta-hydrogen eliminat ion, thereby polymerizing an ultra high molecular weight olefin polymer.
  • specific examples of the compound represented by Chemical Formula 2a may include a compound represented by one of the following structural formulas, but the present invention
  • specific examples of the compound represented by Chemical Formula 2b may include a compound represented by one of the following structural formulas, but the present invention is limited thereto.
  • specific examples of the compound represented by Formula 2c may include a compound represented by one of the following structural formulas,
  • specific examples of the first metallocene compound represented by Chemical Formula 1 may include compounds represented by one of the following structural formulas, but are not limited thereto.
  • First metallocene sulfide of Formula 1 3 ⁇ 4 " Water has excellent activity and can polymerize high molecular weight ethylene / alpha-olefin copolymers. In particular, water exhibits high polymerization activity even when used on a carrier, thereby preparing ultra high molecular weight ethylene / alpha-olefin copolymers.
  • the first metallocene of the general formula (1) according to the present invention may be used even when the polymerization reaction is carried out including hydrogen to prepare an ethylene / alpha-olefin copolymer having a high molecular weight and a wide molecular weight distribution.
  • the compound exhibits low hydrogen reaction properties and is still capable of polymerizing ultra high molecular weight ethylene / alpha-olefin co-polymers with high activity, thus allowing high molecular weight properties without degrading the activity even when used in combination with catalysts having other properties.
  • Ethylene / alpha -olefin copolymer which satisfies the Ethylene / alpha-olefin copolymer having a broad molecular weight distribution can be easily prepared.
  • the first metallocene compound of Formula 1 is a ligand by connecting an indeno indole derivative and / or fluorene derivative with a bridge compound After preparing the compound, the metal precursor compound is added to perform metal lat ion Can be obtained. The manufacturing method of the said 1st metallocene compound is concretely demonstrated to the Example mentioned later.
  • Examples of the compound represented by Formula 3 include one of the following structural formulas
  • the compound represented by Formula 5 may be, for example, a compound represented by the following structural formula, but is not limited thereto.
  • the metallocene catalyst used in the present invention may be one or more of the metallocene compound selected from the group consisting of one metallocene compound represented by Chemical Formula 1, and the compound represented by Chemical Formulas 3 through 5.
  • the above may be supported on the carrier together with the cocatalyst compound.
  • the supported metallocene catalyst may induce the production of LCB Long Chain Branch) in the ethylene / alpha-olefin copolymer prepared.
  • the cocatalyst supported on the carrier for activating the metallocene compound is an organometallic compound containing a Group 13 metal, and polymerizes olefin under a general metallocene catalyst. If it can be used when it is not particularly limited.
  • the cocatalyst compound may include at least one of an aluminum-containing co-catalyst of Formula 6, and a borate-based second promoter of Formula 7 below.
  • R 18 is each independently halogen, halogen substituted or Unsubstituted C1-C20 hydrocarbyl group, k is an integer of 2 or more, and [Formula 7]
  • T + is a + monovalent polyatomic ion
  • B is boron in +3 oxidation state
  • G is independently hydride, dialkylamido, halide, alkoxide, aryl oxide, hydrocarbyl, halocarbyl And halo-substituted hydrocarbyl, wherein G has up to 20 carbons, but at less than one position G is a halide.
  • the first cocatalyst of Chemical Formula 6 may be an alkylaluminoxane compound having a repeating unit bonded in a linear, circular, or reticular form.
  • a U promoter include methylaluminoxane (MA0) and ethylalumina. Noxyl acid, isobutyl aluminoxane or butyl aluminoxane.
  • the second cocatalyst of Formula 7 may be a borate-based compound in the form of a trisubstituted ammonium salt, or a dialkyl ammonium salt, a trisubstituted phosphonium salt.
  • C 2 promoter examples include trimetalammonium tetraphenylborate, methyldioctadecylammonium tetraphenylborate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate tri (n-butyl) ammonium tetraphenylborate, Methyltetracyclooctadecylammonium tetraphenylborate, ⁇ , ⁇ - dimethylaninium tetraphenylborate, ⁇ , ⁇ -diethylaninium tetraphenylborate, ⁇ , ⁇ -dimethyl (2, 4, 6-trimethylaninium) Tetraphenylborate, trimethylammonium tetrakis (pentafluorophenyl) borate, methylditetradecylammonium tetrakis (pentaphenyl)
  • the mass ratio of the total transition metal to the carrier contained in the first metallocene compound represented by Formula 1 or the second metallocene compound represented by Formulas 3 to 5 is 1 : May be from 1 to 1,000.
  • the carrier and the metallocene compound are included in the mass ratio, the optimum shape can be exhibited.
  • the mass ratio of the promoter compound to the carrier may be 1: 1 to 1: 100.
  • the carrier may be a carrier containing a hydroxy group on the surface, and preferably has a highly reactive hydroxyl group and a siloxane group which are dried to remove moisture on the surface. Carriers can be used.
  • silica, silica-alumina, silica-magnesia, etc., dried at a high temperature may be used, which are typically Na 2 O, K 2 C0 3 , BaS0 4 , and
  • the drying temperature of the carrier is preferably 200 to 800 ° C., more preferably 300 to 600 ° C., most preferably 300 to 400 ° C.
  • the drying temperature of the carrier is less than 200 ° C, there is too much moisture to react with the surface moisture and the promoter, and if 8 (xrc is exceeded, the surface area decreases as the pores of the carrier surface merge, and the surface is hydroxy on the surface.
  • the amount of hydroxyl groups on the surface of the carrier is preferably 0.1 to 10 ⁇ L ol / g, and 0.5 to 5 ⁇ L ol / g.
  • the amount of hydroxy groups on the surface of the carrier can be controlled by the method and conditions for preparing the carrier or by drying conditions such as temperature, time, vacuum or spray drying, etc.
  • the amount of hydroxy groups is zero. If it is less than 1 mmol / g, there is little reaction space with the cocatalyst, and if it exceeds 10 mmol / g, in water other than the hydroxyl group on the surface of the carrier particle, Is not preferable because it may be the result
  • the ethylene / alpha according to the invention - in the presence of an olefin copolymer, the above-described metallocene catalyst supported metal, ethylene and alpha-olefins by polymerizing It can manufacture.
  • the polymerization reaction may be performed by copolymerizing ethylene and alpha-lephine using one continuous slurry polymerization reaction reactor, a loop slurry reactor, a gas phase reactor, or a solution reactor.
  • the polymerization temperature may be about 25 to about 500 ° C, preferably about 25 to about 200 ° C, more preferably about 50 to about 150 ° C.
  • the polymerization pressure may be about 1 to about 100 Kgf / crf, preferably about 1 to about 50 Kgf / ciii 2 , more preferably about 5 to about 30 Kgf / cirf.
  • the supported metallocene catalyst is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, for example, pentane, nucleic acid, heptane, nonane, decane, isomers thereof and aromatic hydrocarbon solvents such as toluene and benzene, dichloromethane, chlorobenzene and
  • the solution may be dissolved or diluted in a hydrocarbon solvent substituted with the same chlorine atom.
  • the solvent used herein is preferably used by removing a small amount of water, air, or the like acting as a catalyst poison by treating a small amount of alkyl aluminum, and may be carried out by further using a promoter.
  • Ethylene / alpha-olefin copolymer according to the present invention is a combination of a catalyst of the general formula (3) to 5 to mainly polymerize the low molecular weight polymer chain, and a catalyst of the formula (1) mainly to polymerize the high molecular weight polymer chain, ethylene and alpha It is prepared by copolymerizing an -olefin monomer. Due to the interaction of these two or more catalysts, the overall low molecular weight and molecular weight distribution increase. As a result, the ethylene / alpha-olepin copolymer can exhibit excellent processability and is therefore preferable for producing a product by inj ect ion molding method.
  • Ethylene / alpha-olefin copolymer according to the present invention is excellent in processability, It can be applied to manufacture products by injection molding method.
  • Figure 1 shows the vGP plot of the copolymer prepared in Examples and Comparative Examples of the present invention.
  • Figure 2 shows a complex viscosity graph according to the frequency of the copolymer prepared in Examples and Comparative Examples of the present invention.
  • 6-Chlorohexanol 6-Chlorohexanol
  • t-Butyl_0- (CH 2 ) 6 -Cl was used to prepare t-Butyl_0- (CH 2 ) 6 -Cl using the method presented in Tetrahedron Lett. 2951 (1988), which was subjected to NaCp to t- Butyl-0- (C3 ⁇ 4) 6 -C 5 3 ⁇ 4 was obtained (yield 60%, bp 80 ° CI 0.1 mmHg).
  • t-Butyl-0- (CH 2 ) 6 -C 5 3 ⁇ 4 at -78 ° C was dissolved in THF, normal butyllithium (n-BuLi) was slowly added, and then heated to room temperature, followed by reaction for 8 hours. .
  • the toluene slurry was transferred to a fil ter dryer and filtered. 3.0 kg of toluene was added and stirred for 10 minutes, and then stirring was stopped and filtered. 3.0 kg of nucleic acid was added to the reactor and stirred for 10 minutes, and then the stirring was stopped and ' filtered. Drying under reduced pressure at 50 ° C. for 4 hours to prepare a 500g-Si0 2 supported catalyst.
  • the olefin polymer was prepared by bi modal operation of each of the common supported metallocene catalysts prepared in Examples 1 and 2 using two hexane slurry slurry tank process polymerizers in two reactors. 1-butene was used as comonomer.
  • polymerization conditions using respective common supported metallocene catalysts are summarized in Table 1 below.
  • Mn, Mw, MWD the sample using a PL-SP260 to melt for 160 ° C, 10 hours in 1,2,4-Trichlorobenzene with 0.0125% BHT pretreatment and the measured temperature using the PL- GPC220 160 ° C Number average molecular weight and weight average molecular weight Measured. The molecular weight distribution was expressed as the ratio of weight average molecular weight and number average molecular weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)

Abstract

본 발명은 가공성이 우수한 에틸렌 /알파−올레핀 공중합체에 관한 것이다. 본 발명에 따른 에틸렌 /알파−올레핀 공중합체는, 가공성이 우수하여, injection molding 방법으로 제품을 제조하는데 적용할 수 있다.

Description

【명세서 ]
【발명의 명칭】
가공성이 우수한에릴렌 /알파-을레펀공중합체
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2015년 4월 15일자 한국특허 출원번호 제 10-2015- 0053279호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은 가공성이 우수한 에틸렌 /알파-올레핀 공중합체에 관한 것이다.
【배경기술】
올레핀 중합 촉매계는 지글러 나타 및 메탈로센 촉매계로 분류할 수 있으며, 이 두 가지의 고활성 촉매계는 각각의 특징에 맞게 발전되어 왔다. 지글러 나타 촉매는 50년대 발명된 이래 기존의 상업 프로세스에 널리 적용되어 왔으나, 활성점이 여러 개 흔재하는 다활성점 촉매 (mul t i-si te catalyst )이기 때문에, 중합체의 분자량 분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다. 한편, 메탈로센 촉매는 전이금속 화합물이 주성분인 주촉매와 알루미늄이 주성분인 유기 금속 화합물인 조촉매의 조합으로 이루어지며, 이와 같은 촉매는 균일계 착체 촉매로 단일 활성점 촉매 (s ingl e si te catalyst )이며, 단일 활성점 특성에 따라 분자량 분포가 좁으며, 공단량체의 조성 분포가 균일한 고분자가 얻어지며, 촉매의 리간드 구조 변형 및 중합 조건의 변경에 따라 고분자의 입체 규칙도, 공중합 특성, 분자량, 결정화도 등을 변화시킬 수 있는 특성을 가지고 있다. 미국특허 등록번호 제 5 , 914 , 289호에는 각각의 담체에 담지된 메탈로센 촉매를 이용하여 고분자의 분자량 및 분자량 분포를 제어하는 방법이 기재되어 있으나, 담지촉매 제조시 사용된 용매의 양 및 제조시간이 많이 소요되고, 사용되는 메탈로센 촉매를 담체에 각각 담지시켜야 하는 번거로움이 따랐다 . 대한민국특허 출원번호 제 10-2003-0012308호에는 담체에 이중핵 메탈로센 촉매와 단일핵 메탈로센 촉매를 활성화제와 함께 담지하여 반응기 내 촉매의 조합을 변화시키며 중합함으로써 분자량 분포를 제어하는 방안을 개시하고 있다. 그러나, 이러한 방법은 각각의 촉매의 특성을 동시에 구현하기에 한계가 있으며, 또한 완성된 촉매의 담체 성분에서 메탈로센 촉매 부분이 유리되어 반웅기에 파을링 ( foul ing)을 유발하는 단점이 있다. 따라서, 상기한 단점들을 해결하기 위해서 간편하게 활성이 우수한 흔성 담지 메탈로센 촉매를 제조하여 원하는 물성의 을레핀계 중합체를 제조하는 방법에 대한 요구가 계속되고 있다. ᅳ 한편, 선형 저밀도 폴리에틸렌은 중합촉매를 사용하여. 저압에서 에틸렌과 알파 을레핀을 공증합하여 제조되어, 분자량 분포가 좁고 일정한 길이의 단쇄분지를 가지며, 장쇄분지가 없는 수지이다. 선형 저밀도 폴리에틸렌 필름은 일반 폴리에틸렌의 특성과 더불어 파단강도와 신율이 높고, 인열강도, 낙추층격강도 등이 우수하여 기존의 저밀도 폴리에틸렌이나 고밀도 폴리에틸렌의 적용이 어려운 스트레치 필름, 오버랩 필름 등에의 사용이 증가하고 있다. 그런데, 1-부텐 또는 1ᅳ핵센을 공단량체로 사용하는 선형 저밀도 폴리에틸렌은 대부분 단일 기상반응기 또는 단일 루프 슬러리 반응기에서 제조되며, 1-옥텐 공단량체를 사용하는 공정 대비 생산성은 높으나, 이러한 제품 역시 사용 촉매기술 및 공정기술의 한계로 물성이 1-옥텐 공단량체 사용시보다 크게 열세하고, 분자량 분포가 좁아 가공성이 불량한 문제가 있다. 이러한 문제의 개선을 위해 많은 노력이 진행되고 있으며, 미국특허 등록번호 게 4, 935, 474호에는 2종 또는 그 이상의 메탈로센 화합물이 사용되어 넓은 분자량 분포를 갖는 폴리에틸렌 제조법에 대해 보고되어 있다. 미국특허 등록번호 제 6 ,828 ,394호에는 공단량체 결합성이 좋은 것과 그렇지 않은 것을 흔합사용해 가공성이 우수하고 특히 필름용에 적합한 폴리에틸렌 제조방법에 대해 보고되어 있다. 또한, 미국특허 등록번호 게 6 ,841 ,631호, 미국특허 등록번호 제 6, 894 ,128호에는 적어도 2종의 메탈 컴파운드가 사용된 메탈로센계 촉매로 이정 또는 다정 분자량분포를 갖는 폴리에틸렌을 제조하여, 필름, 블로우몰딩, 파이프 등의 용도에 적용이 가능하다고 보고되어 있다. 하지만 이러한 제품들은 가공성은 개선되었으나 단위 입자 내의 분자량별 분산상태가 균일하지 못해 비교적 양호한 압출조건에서도 압출외관이 거칠고 물성이 안정적이지 못한 문제가 있다. 이러한 배경에서 물성과 가공성 간의 균형이 이루어진 보다 우수한 제품의 제조가 끊임없이 요구되고 있으며, 특히 가공성이 우수한 폴리에틸렌 공중합체의 필요성이 더욱 요구된다.
【발명의 내용】
【해결하려는 과제】
상기 종래기술의 문제점을 해결하기 위하여, 본 발명은 가공성이 우수한 에틸렌 /알파-을레핀 공중합체를 제공하고자 한다.
【과제의 해결 수단】
상기 과제를 해결하기 위하여, 본 발명은 하기의 조건을 만족하는 에틸렌 /알파-올레핀 공중합체를 제공한다:
분자량이 50,000 내지 150,000 g/mol이고,
분자량 분포 (Mw/Mn)가 2 내지 10이고,
밀도가 0.940 내지 0.965 g/citf이고,
용융 유동율비 (MFR5/MFR2.16, 190°C에서 ASTM1238에 의하여 측정 )가 3.5 이상이고,
'주파수 (frequency, co[rad/s])에 따른 복소 점도 (complex viscosity, n*[Pa.s]) 그래프를, 하기 수학식 1의 Power Law로 피팅했을때 C2 값이 - 0.25 이하인,
' [수학식 1]
c 2
y= c 1 X 에틸렌 /알파-올레핀 공중합체. 완전한 탄성의 물질은 탄성 전단 응력 (el ast i c shear stress)에 비례하여 변형이 발생하며, 이를 후크의 법칙이라고 한다. 또한, 순수한 점섬의 액체의 경우 점성 전단 웅력 (vi scous shear stress)에 비례하여 변형이 발생하며, 이를 뉴튼 법칙이라고 한다. 완전한 탄성의 물질은 탄성 에너지가 축적되어 탄성 전단 응력이 제거되면 변형이 다시 회복될 수 있고, 완전한 점성의 물질은 에너지가 변형으로 모두 소멸되기 때문에, 점성 전단 응력이 제거되더라도 변형이 회복되지 않는다. 또한, 물질 자체의 점성이 변하지 않는다. 그러나, 고분자는 용융 상태에서 완전한 탄성의 물질과 점성의 액체의 중간 정도의 성질을 가지는데, 이를 점탄성 (vi scoelast i ci ty)이라고 한다. 즉, 고분자는 용융 상태에서 전단 웅력을 받으면 변형이 전단 웅력에 비례하지 않으며, 또한 전단 웅력에 따라 점성이 변하는 특성이 있으며, 이를 비뉴튼 유체라고도 한다. 이러한 특성은, 고분자가 거대한 분자 크기와 복잡한 분자간 구조를 가져 전단 웅력에 따른 변형의 복잡성에 기인한다. 특히, 고분자를 이용하여 성형품을 제조할 경우에, 비뉴튼 유체가 가지는 특성 중에서도 전단 유동화 현상 (shear thinning)이 중요하게 고려된다. 전단 유동화 현상이란, 전단 속도 (shear rate)가 증가함에 따라 고분자의 점성이 감소하는 현상을 의미하는데, 이러한 전단 유동화 특성에 따라 고분자의 성형 방법이 결정된다. 특히, 본 발명과 같이 높은 속도의 고분자 압출이 필요한 성형품 제조시, 상당한 압력이 용융 고분자에 가해져야 하므로 전단 유동화 특성을 나타내지 않는다면 이러한 성형품의 제조가 어려운바, 전단 유동화 특성이 중요하게 고려된다. 이에 본 발명에서는 주파수 (frequency, o [rad/s])에 따른 복소 점도 (complex viscosity, a*[Pa.s]) 그래프를 통하여 전단 유동화 특성을 측정한다. 상기 수학식 1은, 본 발명에 따른 에틸렌 /알파ᅳ올레핀 공중합체의 전단 유동화 특성을 정량적으로 평가하기 위한 모델이며, 또한 주파수에 따른 복소 점도 데이터를 적용하여 높은 주파수에서의 복소 점도를 예측하기 위한 것이다. 상기 수학식 1은 power Law 모델로서, x는 주파수를, y는 복소 점도를 의미하며, 두 개의 변수인 (^과 C2가 요구된다. 은 점조도 지수 (consistency index)라고 하며, C2는 CV index라고 하는데, C2 값은 그래프의 기울기를 의미한다. 낮은 주파수에서 복소 점도가 높을수록 물성이 좋고, 높은 주파수에서 복소 점도가 낮을수록 가공성이 좋으므로, C2 값이 작을수록, 즉 그래프의 음의 기울기가 클수록 바람직하다. 상기 주파수에 따른 복소 점도 그래프를 상기 수학식 1로 피팅하는 방법으로, TA Instruments의 ARES 측정 프로그램인 TA Orchestrator를 사용할 수 있다. 상기 에틸렌 /알파—올레핀 공중합체는, 바람직하게는 분자량이 80,000 내지 90,000 g/n l이다. 또한, 상기 에틸렌 /알파-올레핀 공중합체는, 바람직하게는 분자량 분포가 5 내지 6이다. 또한, 상기 에틸렌 /알파-을레핀 공중합체는, 바람직하게는 밀도가 0.960 내지 0.965 g/citf이다. 또한, 상기 에틸렌 /알파-을레핀 공중합체는, 바람직하게는 용융 유동율비가 3.5 내지 40이다. 또한, 상기 에틸렌 /알파-올레핀 공중합체는, 바람직하게는 상기 C2 값이 -0.40 내지 -0.25이다. 상기 에틸렌 /알파-을레핀의 공중합에 사용할 수 있는 알파 -을레핀은, 1-부텐, 1-펜텐, 1-핵센, 4-메틸 -1-펜텐, 1-옥텐, 1-데센, 1-도데센, 1- 테트라데센, 1-핵사데센, 1-옥타데센 및 1-에이코센으로 구성되는 군으로부터 선택되는 어느 하나 이상인 것을 사용할 수 있다. 상기 에틸렌 /알파—올레핀 공중합체에서, 알파-올레핀의 함량은 약 0.5 내지 약
10 중량 %, 바람직하게는 약 1 내지 약 5 중량 %일 수 있으나, 이에 한정되는 것은 아니다.
[
Figure imgf000008_0001
상기 화학식 1에서,
A는 수소, 할로겐, d-20 알킬, C2-20 알케닐, C6-20 아릴, C7-20 알킬아릴, C교 20 아릴알킬, d 20 알콕시, C2 20 알콕시알킬, C320 헤테로시클로알킬, 또는 C5-20 헤테로아릴이고;
D는 -0-, -S- , -N(R)- 또는 -Si (R) (R ' )_이고, 여기서 R 및 R'은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, Ci-20 알킬, C2-20 알케닐, 또는 C6-20 아릴이고;
L은 d-10 직쇄 또는 분지쇄 알킬렌이고;
B는 탄소, 실리콘 또는 게르마늄이고;
Q는 수소, 할로겐, 알킬, C2-20 알케닐, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고;
M은 4족 전이금속이며; X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, d-20 알킬, C2-20 알케닐, C620 아릴, 니트로, 아미도, 알킬실릴, d-20 알콕시 또는 술폰네이트이고;
C1 및 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 2a , 화학식 2b 또는 하기 화학식 2c 중 하나로 표시되고, 단, C1 및 C2가 모두 화학식 2c인 경우는 제외하며;
Figure imgf000009_0001
상기 화학식 2a , 2b 및 2c에서, 내지 R17 및 ' 내지 '는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, CHO 알킬, C2-20 알케닐, 알킬실릴, d-20 실릴알킬, C -20 알콕시실릴, d-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이며, 상기 R10 내지 R17 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고;
[화학식 3]
Figure imgf000009_0002
상기 화학식 3에서,
M1은 4족 전이금속이고;
Cp1 및 Cp2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디엔닐 , 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 알킬, 알콕시, C2-20 알콕시알킬, C6-20 아릴, C6-10 아릴옥시, C2-20 알케닐, C7-40 알킬아릴, C7-40 아릴알킬, C8-40 아릴알케닐, 또는 C2-10 알키닐이고;
Z1은 할로겐 원자, d-20 알킬, C2-10 알케닐, C740 알킬아릴, C7-40 아릴알킬, C6-20 아릴, 치환되거나 치환되지 않은 d-20 알킬리덴, 치환되거나 치환되지 않은 아미노, C2-20 알킬알콕시, 또는 C7-40 아릴알콕시이고;
n은 1 또는 0이고;
[화학식 4] 상기 화학식 4에서,
M2는 4족 전이 금속이고;
Cp3 및 Cp4는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4,5 , 6,7—테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 알킬, C 10 알콕시, C2-20 알콕시알킬, C6-20 아릴, C6-10 아릴옥시 , C2-20 알케닐, C7-40 알킬아릴, C7-40 아릴알킬, C8-40 아릴알케닐, 또는 C2-10 알키닐이고;
Z2는 할로겐 원자, CHO 알킬, C2-10 알케닐, C7-40 알킬아릴, C7-40 아릴알킬, C6-20 아릴, 치환되거나 치환되지 않은 d-20 알킬리덴, 치환되거나 치환되지 않은 아미노, C2-20 알킬알콕시, 또는 C740 아릴알콕시이고;
B1은 Cp¾c 고리와 Cp4Rd 고리를 가교 결합시키거나, 하나의 Cp4Rd 고리를 M2에 가교 결합시키는, 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼 중 하나 이상 또는 이들의 조합이고;
m은 1 또는 0이고;
[화학식 5]
(Cp5Re)B2 (J )M3Z32
상기 화학식 5에서,
M3은 4족 전이 금속이고;
Cp5는 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Re는 수소 d-2o 알킬, 에 알콕시, C2-20 알콕시알킬, C6-20 아릴, C6- 10 아릴옥시, C2-20 알케닐, C7-40 알킬아릴, C7-40 아릴알킬, C8-40 아릴알케닐, 또는 C2-10 알키닐이고;
z3은 할로겐 원자, d-20 알킬, c2_10 -알케닐, C7-40 알킬아릴, C7-40 아릴알킬, C6 20 아릴, 치환되거나 치환되지 않은 ( 20 알킬리덴, 치환되거나 치환되지 않은 아미노, C2-20 알킬알콕시, 또는 C7-40 아릴알콕시이고;
B2는 Cp¾e 고리와 J를 가교 결합시키는 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼중 하나 이상 또는 이들의 조합이고;
J는 NRf , 0, PRf 및 S로 이루어진 군에서 선택된 어느 하나이고, 상기 ^는 CHO 알킬, 아릴, 치환된 알킬 또는 치환된 아릴이다. 상기 화학식 1 , 3 , 4 및 5의 치환기들을 보다 구체적으로 설명하면 하기와 같다. 상기 ( 20 알킬로는, 직쇄 또는 분지쇄의 알킬을 포함하고, 구체적으로 메틸, 에틸, 프로필, 이소프로필, n-부틸, tert -부틸, 펜틸, 핵실, 헵틸, 옥틸 등을 들 수 있으나, 이에만 한정되는 것은 아니다. 상기 C2-20 알케닐로는, 직쇄 또는 분지쇄의 알케닐을 포함하고, 구체적으로 알릴, 에테닐, 프로페닐, 부테닐, 펜테닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다. 상기 c6_20 아릴로는, 단환 또는 축합환의 아릴을 포함하고, 구체적으로 페닐, 비페닐, 나프틸, 페난트레닐, 플루오레닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다. 상기 C5-20 헤테로아릴로는, 단환 또는 축합환의 헤테로아릴을 포함하고, 카바졸릴, 피리딜, 퀴놀린, 이소퀴놀린, 티오페닐, 퓨라닐, 이미다졸, 옥사졸릴, 티아졸릴, 트리아진, 테트라하이드로피라닐, 테트라하이드로퓨라닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다. 상기 CHO 알콕시로는, 메톡시, 에록시, 페닐옥시, 시클로핵실옥시 등을 들 수 있으나, 이에만 한정되는 것은 아니다. 상기 4족 전이금속으로는 티타늄, 지르코늄, 하프늄 등을 들 수 있으나, 이에만 한정되는 것은 아니다. 상가 화학식 2a, 2b 및 2c의 내지 R17 및 ' 내지 ¾ '는 각각 독립적으로 수소, 메틸, 에틸, 프로필, 이소프로필, n-부틸, tert-부틸, 펜틸, 핵실, 헵틸, 옥틸, 페닐, 할로겐, 트리메틸실릴, 트리에틸실릴, 트리프로필실릴, 트리부틸실릴, 트리이소프로필실릴, 트리메틸실릴메틸, 메특시, 또는 에록시인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다. 상기 화학식 1의 L은 C4-8 직쇄 또는 분지쇄 알킬렌인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다. 또한, 상기 알킬렌기는 d-20 알킬, C2-20 알케닐, 또는 C6-20 아릴로 치환 또는 비치환될 수 있다. 또한, 상기 화학식 1의 A는 수소, 메틸, 에틸, 프로필, 이소프로필, n-부틸, tert-부틸, 메특시메틸, tert-부록시메틸, 1-에록시에틸, 1-메틸- 1-메톡시에틸, 테트라하이드로피라닐, 또는 테트라하이드로퓨라닐인 것이 바람직하나, 이에만 한정되는 것은 아니다. 또한, 상기 화학식 1의 B는 실리콘인 것이 바람직하나, 이에만 한정되는 것은 아니다. 상기 화학식 1의 제 1 메탈로센 화합물은 인데노 인돌 ( indeno indole) 유도체 및 /또는 플루오렌 ( f luorene) 유도체가 브릿지에 의해 가교된 구조를 형성하며, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써 담체의 루이스 산 특성을 지니는 표면에 담지되어 담지 시에도 높은 중합 활성을 나타낸다. 또한 전자적으로 풍부한 인테노 인돌기 및 /또는 플루오렌기를 포함함에 따라 활성이 높고, 적절한 입체 장애와 리간드의 전자적인 효과로 인해 수소 반응성이 낮을 뿐 아니라 수소가 존재하는 상황에서도 높은 활성이 유지된다. 또한 인테노 인돌 유도체의 질소 원자가 자라나는 고분자 사슬의 beta-hydrogen을 수소결합에 의해 안정화시켜 beta-hydrogen el iminat ion을 억제하여 초고분자량의 올레핀계 중합체를 중합할 수 있다. 본 발명의 일 실시예에 따르면, 상기 화학식 2a로 표시되는 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명
Figure imgf000013_0001
Figure imgf000014_0001
본 발명의 일 실시예에 따르면, 상기 화학식 2b로 표시되는 화합물의 구체적인 예로는 하기 구조식 들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이 만 한정되는 것
Figure imgf000014_0002
본 발명의 일 실시예에 따르면, 상기 화학식 2c로 표시되는 화합물의 구체적인 예로는 하기 구조식 들 중 하나로 표시되는 화합물을 들 수 있으나,
Figure imgf000015_0001
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 제 1 메탈로센 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물 들 수 있으나, 이에만 한정되는 것은 아니다.
Figure imgf000015_0002
17Ϊ
Figure imgf000016_0001
L 6£00/9lOZW^/13d Ϊ09.9Ϊ/9Ϊ0Ζ OAV
Figure imgf000017_0001
상기 화학식 1의 제 1 메탈로센 화¾|"물은 활성이 우수하고 고분자량의 에틸렌 /알파-올레핀 공중합체를 중합할 수 있다. 특히, 담체에 담지하여 사용할 경우에도 높은 증합 활성을 나타내어, 초고분자량의 에틸렌 /알파- 올레핀 공중합체를 제조할 수 있다. 또한, 고분자량과 동시에 넓은 분자량 분포를 갖는 에틸렌 /알파- 올레핀 공중합체를 제조하기 위해 수소를 포함하여 중합 반웅을 진행하는 경우에도, 본 발명에 따른 화학식 1의 제 1 메탈로센 화합물은 낮은 수소 반웅성을 나타내어 여전히 높은 활성으로 초고분자량의 에틸렌 /알파-올레핀 공증합체의 중합이 가능하다. 따라서, 다른 특성을 갖는 촉매와 흔성으로 사용하는 경우에도 활성의 저하 없이 고분자량의 특성을 만족시키는 에틸렌 /알파-올레핀 공중합체를 제조할 수 있어, 고분자의 에틸렌 /알파- 을레핀 공중합체를 포함하면서 넓은 분자량 분포를 갖는 에틸렌 /알파- 올레핀 공중합체를 용이하게 제조할 수 있다. 상기 화학식 1의 제 1 메탈로센 화합물은 인데노인돌 유도체 및 /또는 플루오렌 유도체를 브릿지 화합물로 연결하여 리간드 화합물로 제조한 다음, 금속 전구체 화합물을 투입하여 메탈레이션 (metal lat ion)을 수행함으로써 수득될 수 있다. 상기 제 1 메탈로센 화합물의 제조방법은 후술하는 실시예에 구체화하여 설명한다. 상기 화학식 3으로 표시되는 화합물로는 예를 들어 하기 구조식들 중 하나로
Figure imgf000018_0001
상기 화학식 4에서, m이 1인 경우는 Cp¾c 고리와 Cp4Rd 고리 또는 Cp4Rd 고리와 M2가 B1에 의해 가교 결합된 브릿지 화합물 구조인 것을 의미하며, m이 0인 경우는 비가교 화합물 구조를 의미한다. 상기 화학식 4로 표시되는 화합물로는 예를 들어 하기 구조식
Figure imgf000019_0001
또한, 화학식 5로 표시되는 화합물로는 예를 들어 하기 구조식으로 표시되는 화합물일 수 있으나, 이에만 한정되는 것은 아니다.
Figure imgf000019_0002
Figure imgf000020_0001
본 발명에서 사용되는 메탈로센 촉매는 상기 화학식 1로 표시되는 게 1 메탈로센 화합물의 1종 이상, 및 상기 화학식 3 내지 화학식 5로 표시되는 화합물 중 선택되는 게 2 메탈로센 화합물의 1종 이상을 조촉매 화합물과 함께 담체에 담지한 것일 수 있다. 또한, 상기 담지 메탈로센 촉매는 제조되는 에틸렌 /알파-올레핀 공중합체에서 LCB Long Chain Branch)의 생성을 유도할 수 있다. 본 발명에 따른 담지 메탈로센 촉매에 있어서, 상기 메탈로센 화합물을 활성화하기 위하여 담체에 함께 담지되는 조촉매로는 13족 금속을 포함하는 유기 금속 화합물로서, 일반적인 메탈로센 촉매 하에 올레핀을 중합할 때 사용될 수 있는 것이라면 특별히 한정되는 것은 아니다. 구체적으로, 상기 조촉매 화합물은 하기 화학식 6의 알루미늄 함유 거 U 조촉매, 및 하기 화학식 7의 보레이트계 제 2 조촉매 중 하나 이상을 포함할 수 있다.
[화학식 6]
-[Al ( 18)-0-]k- 화학식 6에서, R18은 각각 독립적으로 할로겐, 할로겐 치환 또는 비치환된 탄소수 1 내지 20의 하이드로카빌기이고, k는 2 이상의 정수이고, [화학식 7]
T+[BG4]"
화학식 7에서, T+은 +1가의 다원자 이온이고, B는 +3 산화 상태의 붕소이고, G는 각각 독립적으로 하이드라이드, 디알킬아미도, 할라이드, 알콕사이드, 아릴옥사이드, 하이드로카빌, 할로카빌 및 할로-치환된 하이드로카빌로 이루어진 군에서 선택되고, 상기 G는 20개 이하의 탄소를 가지나, 단 하나 이하의 위치에서 G는 할라이드이다. 이러한 제 1 및 제 2 조촉매의 사용에 의해, 최종 제조된 폴리올레핀의 분자량 분포가 보다 균일하게 되면서, 중합 활성이 향상될 수 있다. 상기 화학식 6의 제 1 조촉매는 선형, 원형 또는 망상형으로 반복단위가 결합된 알킬알루미녹산계 화합물로 될 수 있고, 이러한 거 U 조촉매의 구체적인 예로는, 메틸알루미녹산 (MA0) , 에틸알루미녹산, 이소부틸알루미녹산 또는 부틸알루미녹산 등을 들 수 있다. 또한, 상기 화학식 7의 제 2 조촉매는 삼치환된 암모늄염, 또는 디알킬 암모늄염, 삼치환된 포스포늄염 형태의 보레이트계 화합물로 될 수 있다. 이러한 게 2 조촉매의 구체적인 예로는, 트리메탈암모늄 테트라페닐보레이트, 메틸디옥타데실암모늄 테트라페닐보레이트, 트리에틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트 트리 (n-부틸)암모늄 테트라페닐보레이트, 메틸테트라데사이클로옥타데실암모늄 테트라페닐보레이트, Ν,Ν- 디메틸아닐늄 테트라페닐보레이트, Ν,Ν—디에틸아닐늄 테트라페닐보레이트, Ν, Ν-디메틸 (2, 4, 6-트리메틸아닐늄)테트라페닐보레이트, 트리메틸암모늄 테트라키스 (펜타플로오로페닐)보레이트, 메틸디테트라데실암모늄 테트라키스 (펜타페닐)보레이트, 메틸디옥타데실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리에틸암모늄 , 테트라키스 (펜타플루오로페닐)보레이트, 트리프로필암모늄테트라키스 (펜타프루오로페닐)보레이트, 트리 (n- 부틸)암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리 (2급- 부틸 )암모늄테트라키스 (펜타플루오로페닐 )보레이트, Ν ,Ν-디메틸아닐늄 테트라키스 (펜타플루오로페닐)보레이트,
디에틸아닐늄테트라키스 (펜타플루오로페닐)보레이트, 1^ -디메틸(2,4,6- 트리메틸아닐늄)테트라키스 (펜타플루오로페닐)보레이트,
트리메틸암모늄테트라키스 (2, 3, 4, 6-테트라플루오로페닐)보레이트,
트리에틸암모늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트 트리프로필암모늄 테트라키스 (2, 3 , 4 , 6-테트라플루오로페닐)보레이트 트리 (η-부틸)암모늄 테트라키스 (2,3,4,6- ,테트라플루오로페닐)보레이트, 디메틸 ( t-부틸)암모늄 테트라키스 (2, 3, 4, 6-테트라플루오로페닐)보레이트, Ν,Ν-디메틸아닐늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, Ν,Ν- 디에틸아닐늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트 또는 Ν , Ν- 디메틸 -(2,4,6-트리메틸아닐늄)테트라키스 -(2,3,4,6- 테트라플루오로페닐)보레이트 등의 삼치환된 암모늄염 형태의 보레이트계 화합물; 디옥타데실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 디테트라데실암모늄 테트라키스 (펜타플루오로페닐)보레이트 또는 디사이클로핵실암모늄 테트라키스 (펜타플루오로페닐)보레이트 등의 디알킬암모늄염 형태의 보레이트계 화합물; 또는 트리페닐포스포늄 테트라키스 (펜타플루오로페닐)보레이트, 메틸디옥타데실포스포늄 테트라키스 (펜타플루오로페닐)보레이트 또는 트리 (2 , 6-디메틸페닐)포스포늄 테트라키스 (펜타플루오로페닐)보레이트 등의 삼치환된 포스포늄염 형태의 보레이트계 화합물 등을 들 수 있다. 본 발명에 따른 담지 메탈로센 촉매에 있어서, 화학식 1로 표시되는 제 1 메탈로센 화합물, 또는 화학식 3 내지 5로 표시되는 제 2 메탈로센 화합물에 포함되는 전체 전이금속 대 담체의 질량비는 1 : 10 내지 1 : 1 , 000 일 수 있다. 상기 질량비로 담체 및 메탈로센 화합물을 포함할 때, 최적의 형상을 나타낼 수 있다. 또한, 조촉매 화합물 대 담체의 질량비는 1 : 1 내지 1 : 100 일 수 있다. 본 발명에 따른 담지 메탈로센 촉매에 있어서, 상기 담체로는 표면에 하이드록시기를 함유하는 담체를 사용할 수 있으며, 바람직하게는 건조되어 표면에 수분이 제거된, 반응성이 큰 하이드록시기와 실록산기를 가지고 있는 담체를 사용할 수 있다. 예컨대, 고온에서 건조된 실리카, 실리카 -알루미나, 및 실리카- 마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na20, K2C03 , BaS04 , 및
Mg(N03)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다. 상기 담체의 건조 온도는 200 내지 800°C가 바람직하고, 300 내지 600°C가 더욱 바람직하며, 300 내지 400 °C가 가장 바람직하다. 상기 담체의 건조 온도가 200°C 미만인 경우 수분이 너무 많아서 표면의 수분과 조촉매가 반응하게 되고, 8(xrc를 초과하는 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 줄어들며 , 또한 표면에 하이드록시기가 많이 없어지고 실록산기만 남게 되어 조촉매와의 반웅자리가 감소하기 때문에 바람직하지 않다. 상기 담체 표면의 하이드록시기 양은 0. 1 내지 10 隱 ol /g이 바람직하며, 0.5 내지 5 隱 ol /g일 때 더욱 바람직하다. 상기 담체 표면에 있는 하이드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건, 예컨대 온도, 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다. 상기 하이드록시기의 양이 0. 1 mmol /g 미만이면 조촉매와의 반웅자리가 적고, 10 mmol /g을 초과하면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것일 가능성이 있기 때문에 바람직하지 않다. 한편, 본 발명에 따른 에틸렌 /알파-올레핀 공중합체는, 상술한 담지 메탈로센 촉매의 존재 하에서, 에틸렌 및 알파-올레핀을 중합시킴으로써 제조할 수 있다. 상기 중합 반웅은 하나의 연속식 슬러리 중합 반웅기, 루프 슬러리 반응기, 기상 반응기 또는 용액 반응기를 이용하여 에틸렌 및 알파- 을레핀을 공중합하여 진행할 수 있다. 그리고, 상기 중합 온도는 약 25 내지 약 500°C , 바람직하게는 약 25 내지 약 200°C , 보다 바람직하게는 약 50 내지 약 150°C일 수 있다. 또한, 중합 압력은 약 1 내지 약 100 Kgf/crf , 바람직하게는 약 1 내지 약 50 Kgf/ciii2 , 보다 바람직하게는 약 5 내지 약 30 Kgf/cirf일 수 있다. 상기 담지 메탈로센 촉매는 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 핵산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 를루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입할 수 있다. 여기에 사용되는 용매는 소량의 알킬 알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다. 본 발명에 따른 에틸렌 /알파-올레핀 공중합체는 저분자량의 고분자 쇄를 주로 중합하는 화학식 3 내지 5의 촉매와, 고분자량의 고분자 쇄를 주로 중합하는 화학식 1의 촉매를 함께 사용하여, 에틸렌 및 알파-올레핀 단량체를 공중합하여 제조된다. 이러한 2종 이상의 촉매의 상호 작용으로 인하여, 전체.적으로 저분자량 및 분자량 분포가 증가한다. 그 결과, 상기 에틸렌 /알파-을레핀 공중합체는, 우수한 가공성을 나타낼 수 있으며 따라서 inj ect ion molding 방법으로 제품을 제조하는데 바람직하다.
【발명의 효과]
본 발명에 따른 에틸렌 /알파-올레핀 공중합체는 가공성이 우수하여, injection molding 방법으로 제품을 제조하는데 적용할 수 있다.
【도면의 간단한 설명】
도 1은, 본 발명의 실시예 및 비교예에서 제조한 공중합체의 vGP plot을 나타낸 것이다.
도 2는, 본 발명의 실시예 및 비교예에서 제조한 공중합체의 주파수에 따른 복소 점도 그래프를 나타낸 것이다.
【발명을 실시하기 위한 구체적인 내용】
^하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
[제 1 메탈로센 화합물]
Figure imgf000025_0001
1-1) 리간드 화합물의 제조
fluorene 2 g을 5 mL MTBE, hexane 100 mL에 녹여 2.5 M n— BuLi hexane solution 5.5 mL를 dry ice/acetone bath에서 적가하여 상은에서 밤새 교반하였다. (6-(tert-butoxy)hexyl)dichloro(methyl)silane 3.6 g을 핵산 (hexane) 50 mL에 녹여 dry ice/acetone bath하에서 fluorene— Li 슬러리를 30분 동안 transfer하여 상온에서 밤새 교반하였다. 이와 동시에 5 , 8-d i me t hy 1 -5 , 10-d i hydr 0 i ndeno [ 1 , 2-b ] i ndo 1 e (12 mmol, 2.8 g) 또한 THF 60 mL에 녹여 2.5M n-BuLi hexane solut ion 5.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. fluorene과 (6-(tert_ butoxy)hexyl)dichloro(methyl)silane 과의 반웅 용액을 NMR 샘폴링하여 반웅 완료를 확인한 후 5,8-dimethyl-5,10— dihydroindeno[l,2-b]indole-Li solution을 dry ice/acetone bath하에서 transfer하였다. 상온에서 밤새 교반하였다. 반응 후 ether/water로 추출 (extract ion)하여 유기층의 잔류수분을 MgS04로 제거 후 리간드 화합물 (Mw 597.90, 12隱 ol)을 얻었으며 이성질체 (isomer) 두 개가 생성되었음을 1H-NMR에서 확인할 수 있었다.
¾ NMR (500 MHz, d6-benzene): -0.30 ~ -0.18 (3H, d) , 0.40 (2H, m), 0.65 ~ 1.45 (8H, m), 1.12 (9H, d), 2.36 ~ 2.40 (3H, d), 3.17 (2H, m), 3.41 ~ 3.43 (3H,― d), 4.17 - 4.21 (1H, d) , ' 4.34 - 4.38 (lH, d), 6.90 ~ 7.80 (15H, m)
1-2) 메탈로센 화합물의 제조
상기 1-1에서 합성한 리간드 화합물 7.2 g (12隱 ol)을 diethylether 50 mL에 녹여 2.5 M n-BuLi hexane solut ion 11.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 진공 건조하여 갈색 (brown color)의 sticky oil을 얻었다. 를루엔에 녹여 슬러리를 얻었다. ZrCl4(THF)2를 준비하고 를루엔 50 mL를 넣어 슬러리로 준비하였다. ZrCl4(THF)2의 50 mL 를루엔 슬러리를 dry ice/acetone bath에서 transfer하였다. 상온에서 밤새 교반함에 따라 보라색 (violet color)으로 변화하였다. 반웅 용액을 필터하여 LiCl을 제거하였다. 여과액 (filtrate)의 를루엔을 진공 건조하여 제거한 후 핵산을 넣고 1시간 동안 sonication하였다. 슬러리를 필터하여 여과된 고체 (filtered solid)인 짙은 보라색 (dark violet)의 메탈로센 화합물 6 g (Mw 758.02, 7.92 睡 ol, yield 66 mol%)을 얻었다. 1H-NMR상에서 두 개의 isomer가 관찰되었다.
¾ NMR (500 MHz, CDC13): 1.19 (9H, d), 1.71 (3H, d) , 1.50 ~ 1.70(4H, m), 1.79(2H, m), 1.98 ~ 2.19(4H, m), 2.58(3H, s), 3.38 (2H, m), 3.91 (3H, d), 6.66 ~ 7.88 (15H, m) 제조예 2
Figure imgf000027_0001
2-1) 리간드 —합물의 제조
250 mL flask에 5-methyl-5, 10-dihydroindeno[l ,2_b] indole 2.63 g(12 匪 ol)을 넣고 THF 50 mL에 녹인 후 2.5M n-BuLi hexane solution 6 mL를 dr y ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 또 다른 250 mL flask에 (6-(tert-butoxy)hexyl )dichloro(methyl )si lane 1.62 g(6 腿 ol)을 hexane 100 mL에 녹여 준비한 후 dry ice/acetone bath 하에서 5-methyl-5, 10-dihydroindeno[l,2-b] indole^! 1 ithiated solution에 천천히 적가하여 상온에서 밤새 교반하였다. 반웅 후 ether /water로 추출하여 유기층의 잔류수분을 MgS04로 제거 후 진공 건조하여 리간드 화합물 3.82 g(6瞧 ol)을 얻었으며 이를 1H-NMR에서 확인하였다.
¾ NMR (500 丽 z, CDC13): -0.33 (3H, m), 0.86- 1.53 (10H, m), 1.16 (9H, d), 3.18 (2H, m), 4.07 (3H, d), 4.12 (3H, d), 4.17 (1H, d), 4.25 (1H, d), 6.95~ 7.92 (16H, m)
2-2) 메탈로센 화합물의 제조
상기 2-1에서 합성한 리간드 화합물 3.82 g(6 瞧 ol)을 toluene 100 mL와 MTBE 5 mL에 녹인 후 2.5M n-BuLi hexane solution 5.6 mL(14 瞧 ol)를 dryice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 또 다른 flask에 ZrCl4(THF)2 2.26 g(6 麵 ol)을 준비하고 toluene 100 mL를 넣어 슬러리로 준비하였다. ZrCl4(THF)2의 toluene slurry를 litiation된 리간드에 dry ice/acetone bath에서 transfer하였다. 상온에서 밤새 교반하였고 violet color로 변화하였다. 반웅 용액을 필터하여 LiCl올 제거한 후 얻어진 여액을 진공 건조하여 hexane을 넣고 sonication하였다. 슬러리를 필터하여 filtered solid인 dark violet의 메탈로센 화합물 3.40 g(yield 71.1 mol%)을 얻었다.
¾ NMR (500 MHz, CDC13): 1.74 (3H, d), 0.85~2.33(10H, m), 1.29(9H, d), 3.87 (3H, s), 3.92 (3H, s), 3.36(2H, m), 6.48- 8.10 (16H, m)
[제 2 메탈로센 화합물]
제조예 3: [tBu"(HCH2)6ᅳ CsH ^rCl 의 제조
6-클로로핵사놀 (6— chlorohexanol)을 사용하여 문헌 (Tetrahedron Lett. 2951 (1988))에 제시된 방법으로 t-Butyl_0-(CH2)6-Cl을 제조하고, 여기에 NaCp를 받웅시켜 t-Butyl-0-(C¾)6-C5¾를 얻었다 (수율 60%, b.p. 80 °C I 0.1 mmHg) . 또한, -78°C에서 t-Butyl-0-(CH2)6-C5¾를 THF에 녹이고, 노르말 부틸리튬 (n-BuLi)을 천천히 가한 후, 실온으로 승은시킨 후, 8시간 반웅시켰다. 그 용액을 다시 _78°C에서 ZrCl4(THF)2(1.70 g, 4.50 mmol)/THF(30 mL)의 서스펜견 (suspension) 용액에 기 합성된 리튬염 (lithium salt) 용액을 천천히 가하고 실온에서 6시간 동안 더 반웅시켰다. 모든 휘발성 물질을 진공 건조하고, 얻어진 오일성 액체 물질에 핵산 (hexane) 용매를 가하여 걸러내었다. 걸러낸 용액을 진공 건조한 후, 핵산을 가해 저온 (-20°C)에서 침전물을 유도하였다. 얻어진 침전물을 저온에서 걸러내어 흰색 고체 형태의 [tBu-0-(CH2)6-C5H4]2ZrCl2 화합물을 얻었다 (수율 92%).
¾ NMR (300 丽 z, CDCls): 6.28 (t, J = 2.6 Hz, 2H) , 6.19 (t, J = 2.6 Hz, 2H), 3.31 (t, 6.6 Hz, 2H) , 2.62 (t, J = 8 Hz), 1.7 - 1.3 (m, 8H), 1.17 (s, 9H)
13C NMR (CDCls): 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30.61, 30.14, 29.18, 27.58, 26.00 [흔성 담지 촉매]
실시예 1 및 2
20L sus 고압 반웅기에 를루엔 용액 3.0 kg을 넣고 반응기 온도를 40°C로 유지하였다. 실리카 (Grace Davi son , SP2212) 500 g을 반웅기에 투입하고 실리카를 충분히 분산시킨 후, 10 wt% 메틸알루미녹산 (MAO)/를루엔 용액 2.78 kg을 투입한 후 80°C로 온도를 올려 200 rpm으로 Ϊ5시간 이상 교반하였다. 반응기 은도를 다시— 40°C로 낮춘 후, 7.5 wt 촉매 제조예 2/를루엔 용액 300 g을 반응기에 투입하고 1시간 동안 200 rpm으로 교반하였다. 8.8 wt% 촉매 제조예 1/를루엔 용액 250 g을 반웅기에 투입하고 1시간 동안 200 rpm으로 교반하였다. 촉매 제조예 3(20 g)을 를루엔에 녹여 반응기에 투입하고 2시간 동안 200 rpm으로 교반하였다. 조촉매 (ani 1 inium tetraki s(pentaf luorophenyl )borate) 70 g을 를루엔에 묽혀 반응기에 투입하고 15시간 이상 200 rpm으로 교반하였다. 반응기 온도를 상온으로 낮춘 후, 교반을 중지하고 30분 동안 set t l ing 시킨 후 반응 용액을 decantat ion 하였다. 를루엔 슬러리를 f i l ter dryer로 이송하고 필터하였다. 를루엔 3.0 kg을 투입하고 10분 동안 교반한 후, 교반을 중지하고 여과하였다. 반응기에 핵산 3.0 kg을 투입하고 10분 동안 교반한 다음, 교반을 중지하고' 여과하였다. 50°C에서 4시간 동안 감압 하에 건조하여 500g— Si02 담지 촉매를 제조하였다.
[에틸렌 /1-부텐 공중합체]
상기 실시예 1 및 2에서 제조한 각각의 흔성 담지 메탈로센 촉매를 hexane s lurry st i rred tank process 중합기를 이용하여, 반응기 2개로 bi modal 운전을 하여 올레핀 중합체를 제조하였다. 공단량체로는 1-부텐을 사용하였다. 상기 실시예 1 및 2에서 각각의 흔성 담지 메탈로센 촉매를 이용한 중합 조건을 하기 표 1에 정리하여 나타내었다.
【표 1】 사용 촉매 실시예 1 실시예 2
R1 에틸렌 공급량 (kg/hi- ) 7.0 7.0
R1 압력 (kg/cni) 7.5 7.2
R1온도 (°C) 84.4 85.0
Rl수소 투입량 (g/hr) 3.10 2.44
R2 에틸렌 공급량 (kg/hr) 6.0 6.0
R2 압력 (kg/ erf) 4.7 4.8
R2온도 (°C) 75.2 73.0
R2 1-부텐 투입량 (g/hr) 18.0 18.0
촉매활성 (kg PE/g Si02) 6.1 7.8
[비교예 1 내지 2]
상기 실시예 1 및 2에서 각각의 흔성 담지 메탈로센 촉매를 이용하여 제조한 중합체와 비교하기 위하여, 밀도가 유사한 하기의 공중합체를 비교예로 사용하였다.
비교예 1: KPIC M850
바교예 2: LG ME8000
[공중합체의 물성 평가]
상기 실시예에서 제조된 공중합체 및 비교예의 공중합체를 하기의 방법으로 물성을 평가하였다.
1) 밀도: ASTM 1505
2) 용융지수 (MFR, 5 kg/2.16 kg): 측정 온도 190°C, ASTM 1238 3) MFRR(MFR5/MFR2.i6)-: MFR5 용융지수 (MI, 5kg 하중)를 MFR2.16(MI,
2.16kg 하중)으로 나눈 비율이다. '
4) Mn, Mw, MWD: 샘플을 PL-SP260을 이용하여 BHT 0.0125% 포함된 1,2,4-Trichlorobenzene에서 160°C, 10시간 동안 녹여 전처리하고 PL- GPC220을 이용하여 측정 온도 160°C에서 수 평균분자량, 중량 평균분자량을 측정하였다. 분자량 분포는 중량 평균분자량과 수 평균분자량의 비로 나타내었다 .
5) 주파수에 따른 복소 점도 그래프, Power Law 및 Cross Model로 피팅: TA instruments의 ARES(Advanced Rheometr i c Expans ion System)으로 복소 점도를 측정하였다. 샘플은 190°C에서 직경 25.0 mm의 paral lel pl ates를 이용하여 gap이 2.0 mm가 되도록 하였다. 측정은 dynami c strain frequency sweep 모드로 strain은 5% , frequency는 0.05 rad/s에서 500 rad/s까지, 각 decade에 10 point 씩 총 41 point를 측정하였다. Power l aw 피팅은 측정 프로그램인 TA Orchestrator를 이용하여 피팅하였다. 상기 결과를 하기 표 2, 도 1 및 도 2에 나타내었다.
【표 2】
Figure imgf000031_0001
상기 표 2 및 도 2에 나타난 바와 같이, 본 발명에 따른 실시예의 경우 주파수에 따른 복소점도 그래프에서 음의 기울기 값이 비교예에 비하여 높음을 확인할 수 있었으며, 따라서 전단 유동화 특성이 보다 우수함을 확인할 수 있었다.

Claims

【특허청구범위】 【청구항 1】 분자량이 50,000 내지 150,000 g/mol이고, 분자량 분포 (Mw/Mn)가 2 내지 10이고, 밀도가 0.940 내지 0.965 g/cm!이고, 용융 유동율비 (MFR5/MF¾.16, 190°C에서 ASTM1238에 의하여 측정 )가 3.5 이상이고, ^^^~( f r^quency^- ά [ r a37s ] ) 따른 톡소 점도 (complex viscosity, H*[Pa.s]) 그래프를, 하기 수학식 1의 Power Law로 피팅했을때 C2 값이 - 0.25 이하인,
[수학식 1]
y^cx x 에틸렌 /알파-을레핀 공중합체.
【청구항 2】
제 1항에 있어서,
상기 분자량이 80,000 내지 90,000 g/nrol인 것을 특징으로 하는, 에틸렌 /알파-올레핀 공중합체.
【청구항 3】
제 1항에 있어서.,
상기 분자량 분포가 5 내지 6인 것을 특징으로 하는
에틸렌 /알파-을레핀 공중합체.
【청구항 4】
제 1항에 있어서,
상기 밀도가 0.960 내지 0.965 g/cin3인 것을 특징으로 하는,
에틸렌 /알파-을레핀 공중합체. 【청구항 5】
게 1항에 있어서,
상기 용융 유동율비가 3.
5 내지 40인 것을 특징으로 하는,
에틸렌 /알파-을레핀 공중합체.
【청구항 6]
제 1항에 있어서,
상기 C2 값이 -0.40 내자 -0.25인 것을 특징으로 하는,
에틸렌 /알파-올레핀 공중합체.
【청구항 7】
제 1항에 있어서,
상기 알파—올레핀은 1-부텐, 1-펜텐, 1—핵센, 4-메틸 -1-펜텐, 1-옥텐 1-데센, 1-도데센, 1-테트라데센, 1-핵사데센, 1-옥타데센 및 1- 에이코센으로 구성되는 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는,
에틸렌 /알파-올레핀 공중합체.
【청구항 8】
제 1항에 있어서,
상기 에틸렌 /알파-을레핀 공중합체는 하기 화학식 1로 표시되는 제 1 메탈로센 화합물 1종 이상; 및 하기 화학식 3 내지 5로 표시되는 화합물 중에서 선택돠는 제 2 메탈로센 화합물 1종 이상의 존재 하에, 에틸렌 및 알파-올레핀을 중합시킴으로써 제조되는,
에틸렌 /알파-올레핀 공중합체:
[
Figure imgf000033_0001
상기 화학식 1에서 A는 수소, 할로겐, d-20 알킬, C2-20 알케닐, C620 아릴, C7-20 알킬아릴, C7-20 아릴알킬, d-20 알콕시, C2-20 알콕시알킬, C3-20 헤테로시클로알킬, 또는 C5-20 헤테로아릴이고;
D는 -0-, -S- , -N(R)- 또는 -Si (R) (R ' )_이고, 여기서 R 및 R '은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, Ci— 20 알킬, C2-20 알케닐, 또는 C6-20 아릴이고;
L은 d-10 직쇄 또는 분지쇄 알킬렌이고;
B는 탄소, 실리콘 또는 게르마늄이고;
Q는 수소, 할로겐, d-20 알킬, C2-20 알케닐, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고;
M은 4족 전이금속이며;
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, d-20 알킬, C2-20 알케닐, C6-20 아릴, 니트로, 아미도, d-20 알킬실릴, d-20 알콕시 또는 에0 술폰네이트이고;
C1 및 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식
2a , 화학식 2b 또는 하기 화학식 2c 중.하나로 표시되고, 단, C1 및 C2가 모두 화학식 2c인 경우는 제외하며 ;
Figure imgf000034_0001
[화학식 2c ]
Figure imgf000035_0001
상기 화학식 2a , 2b 및 2c에서, 내지 R17 및 ' 내지 '는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, CHO 알킬, C2-20 알케닐, CHO 알킬실릴, d-20 실릴알킬, d-20 알콕시실릴, d-20 알콕시, C6-20 아릴, - £7-20 알킬아 또는 C7-20 아릴알킬이며 상기 R10 내지 R17 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고;
[화학식 3]
Figure imgf000035_0002
상기 화학식 3에서,
M1은 4족 전이금속이고;
Cp1 및 Cp2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디엔닐, 인데닐, 4 5 6 7-테트라하이드로— 1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 알킬, 알콕시, C2-20 알콕시알킬, C6-20 아릴, C6-10 아릴옥시, C2-20 알케닐, C7-40 알킬아릴, C7-40 아릴알킬, C8-40 아릴알케닐, 또는 C2-10 알키닐이고;
Z1은 할로겐 원자, d 20 알킬, C2-10 알케닐, C740 알킬아릴, C7-40 아릴알킬 , C6-20 아릴 , 치환되거나 치환되지 않은 알킬리덴, 치환되거나 치환되지 않은 아마노, C2-20 알킬알콕시 또는 C7-40 아릴알콕시이고;
n은 1 또는 0이고;
[화학식 4]
(Cp3Rc)mB1(Cp4Rd)M2Z2 3-m
상기 화학식 4에서,
M2는 4족 전이 금속이고; Cp3 및 Cp4는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4, 5,6, 7-테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 알킬, Cwo 알콕시, C2-20 알콕시알킬, C6-20 아릴, C6-10 아릴옥시, C2-20 알케닐, C7-40 알킬아릴, C7-40 아릴알킬, C8-40 아릴알케닐, 또는 c210 알키닐이고;
Z2는 할로겐 원자, d-20 알킬, C2-10 알케닐, C7-40 알킬아릴, C7-40 아릴알킬, C6-20 아릴, 치환되거나 치환되지 않은 d-20 알킬리덴, 치환되거나 치환되지 않은 아미노, C2-20 알킬알콕시, 또는 C7-40 아릴알콕시이고;
B1은 Cp3Rc 고리와 Cp4Rd 고리를 가교 결합시키거나, 하나의 Cp4Rd 고리를 M2에 가교 결합시키는, 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼 중 하나 이상 또는 이들의 조합이고;
m은 1 또는 0이고;
[화학식 5]
(Cp¾e)B2(J)M3Z3 2
상기 화학식 5에서,
M3은 4족 전이 금속이고;
Cp5는 시클로펜타디에닐, 인데닐, 4, 5,6 ,7-테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Re는 수소, 알킬, d-10 알콕시, C2-20 알콕시알킬, C6-20 아릴, C6-
10 아릴옥시, C2-20 알케닐, C7-40 알킬아릴, C7-40 아릴알킬, C8 40 아릴알케닐, 또는 C2-10 알키닐이고;
' Z3은 할로겐 원자, d-20 알킬, C2-10 알케닐, C고 40 알킬아릴, C7-40 아릴알킬, C6-20 아릴 , 치환되거나 치환되지 않은 d-20 알킬리덴, 치환되거나 치환되지 않은 아미노, C2-20 알킬알콕시, 또는 C7-40 아릴알콕시이고;
B2는 Cp¾e 고리와 J를 가교 결합시키는 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼중 하나 이상 또는 이들의 조합이고; J는 N f, 0, PRf 및 S로 이루어진 군에서 선택된 어느 하나이고, 는 d-20 알킬, 아릴, 치환된 알킬 또는 치환된 아릴이다.
PCT/KR2016/003947 2015-04-15 2016-04-15 가공성이 우수한 에틸렌/알파-올레핀 공중합체 WO2016167601A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017503838A JP6470834B2 (ja) 2015-04-15 2016-04-15 加工性に優れたエチレン/アルファ−オレフィン共重合体
US15/501,415 US10323110B2 (en) 2015-04-15 2016-04-15 Ethylene/alpha-olefin copolymer having excellent processability
CN201680002412.6A CN106661160B (zh) 2015-04-15 2016-04-15 具有优异加工性的乙烯/α-烯烃共聚物
EP16780324.6A EP3162820A4 (en) 2015-04-15 2016-04-15 Ethylene/alpha-olefin copolymer having excellent processability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150053279A KR101891638B1 (ko) 2015-04-15 2015-04-15 가공성이 우수한 에틸렌/알파-올레핀 공중합체 공중합체
KR10-2015-0053279 2015-04-15

Publications (1)

Publication Number Publication Date
WO2016167601A1 true WO2016167601A1 (ko) 2016-10-20

Family

ID=57126722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003947 WO2016167601A1 (ko) 2015-04-15 2016-04-15 가공성이 우수한 에틸렌/알파-올레핀 공중합체

Country Status (6)

Country Link
US (1) US10323110B2 (ko)
EP (1) EP3162820A4 (ko)
JP (1) JP6470834B2 (ko)
KR (1) KR101891638B1 (ko)
CN (1) CN106661160B (ko)
WO (1) WO2016167601A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108473613A (zh) * 2016-12-19 2018-08-31 Lg化学株式会社 负载型混杂茂金属催化剂及使用该催化剂制备聚烯烃的方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101747401B1 (ko) * 2014-12-08 2017-06-14 주식회사 엘지화학 가공성이 우수한 에틸렌/알파-올레핀 공중합체
KR102039073B1 (ko) * 2016-11-15 2019-10-31 주식회사 엘지화학 충격 강도가 우수한 폴리에틸렌 수지
EP3434700B1 (en) * 2016-11-15 2022-09-14 LG Chem, Ltd. Ethylene/alpha-olefin copolymer having excellent processability
KR102072697B1 (ko) * 2016-12-09 2020-02-03 주식회사 엘지화학 가공성 및 기계적 물성이 우수한 에틸렌/1-헥센 공중합체
WO2018117403A1 (ko) * 2016-12-19 2018-06-28 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
US11225568B2 (en) 2017-12-20 2022-01-18 Lg Chem, Ltd. Polyethylene copolymer and method for preparing same
KR102459861B1 (ko) 2017-12-21 2022-10-27 주식회사 엘지화학 가공성이 우수한 에틸렌/1-부텐 공중합체
US11214669B2 (en) 2018-03-21 2022-01-04 Lg Chem, Ltd. Polyolefin resin composition and stretch film using the same
KR102252430B1 (ko) * 2018-12-10 2021-05-14 주식회사 엘지화학 폴리에틸렌 및 이의 염소화 폴리에틸렌
CN117050215A (zh) * 2018-12-10 2023-11-14 Lg化学株式会社 聚乙烯及其氯化聚乙烯
WO2020122560A1 (ko) * 2018-12-10 2020-06-18 주식회사 엘지화학 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2020122563A1 (ko) * 2018-12-10 2020-06-18 주식회사 엘지화학 폴리에틸렌 및 이의 염소화 폴리에틸렌
KR102427755B1 (ko) * 2018-12-10 2022-08-01 주식회사 엘지화학 폴리에틸렌 및 이의 염소화 폴리에틸렌
KR102427756B1 (ko) * 2018-12-10 2022-08-01 주식회사 엘지화학 폴리에틸렌 및 이의 염소화 폴리에틸렌
KR102431339B1 (ko) * 2018-12-10 2022-08-10 주식회사 엘지화학 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2020122562A1 (ko) * 2018-12-10 2020-06-18 주식회사 엘지화학 폴리에틸렌 및 이의 염소화 폴리에틸렌
KR102178361B1 (ko) * 2019-02-20 2020-11-12 주식회사 엘지화학 고가교도를 갖는 폴리에틸렌 및 이를 포함하는 가교 폴리에틸렌 파이프
CN116057083B (zh) * 2020-09-29 2024-05-07 株式会社Lg化学 聚乙烯及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110217499A1 (en) * 2008-08-29 2011-09-08 Basell Polyolefine Gmbh Polyethylene for Injection Moldings
KR20130113322A (ko) * 2010-07-06 2013-10-15 셰브론 필립스 케미컬 컴퍼니 엘피 수소 첨가없이 넓은 분자량 분포의 폴리올레핀 제조를 위한 촉매
US20140213734A1 (en) * 2013-01-30 2014-07-31 Exxonmobil Chemical Patents Inc. Polyethylene Copolymers with Vinyl Terminated Macromonomers as Comonomers
KR20150015789A (ko) * 2013-08-01 2015-02-11 주식회사 엘지화학 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀계 중합체의 제조방법
KR20150037520A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935474A (en) 1983-06-06 1990-06-19 Exxon Research & Engineering Company Process and catalyst for producing polyethylene having a broad molecular weight distribution
US5914289A (en) 1996-02-19 1999-06-22 Fina Research, S.A. Supported metallocene-alumoxane catalysts for the preparation of polyethylene having a broad monomodal molecular weight distribution
US6274684B1 (en) 1999-10-22 2001-08-14 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
EP1412400A2 (en) 2001-07-19 2004-04-28 Univation Technologies LLC Mixed metallocene catalyst systems containing a poor comonomer incorporator and a good comonomer incorporator
KR20040076965A (ko) 2003-02-27 2004-09-04 호남석유화학 주식회사 올레핀 중합용 담지 다중핵 메탈로센 촉매 및 이의 제조방법
JP5622841B2 (ja) 2009-05-07 2014-11-12 エルジー・ケム・リミテッド オレフィン系重合体およびそれを含む繊維
KR101154507B1 (ko) 2009-07-31 2012-06-13 주식회사 엘지화학 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하여 제조된 올레핀계 중합체
KR101248421B1 (ko) 2010-07-15 2013-03-28 에스케이이노베이션 주식회사 탄성 및 가공성이 우수한 에틸렌 공중합체
WO2012112259A2 (en) 2011-02-15 2012-08-23 Exxonmobil Chemical Patents Inc. Thermoplastic polyolefin blends
EP2570455A1 (en) 2011-09-16 2013-03-20 Borealis AG Polyethylene composition with broad molecular weight distribution and improved homogeneity
US8796409B2 (en) * 2011-10-04 2014-08-05 Exxonmobil Chemical Patents Inc. Use of temperature and ethylene partial pressure to introduce long chain branching in high density polyethylene
US9115233B2 (en) * 2012-06-21 2015-08-25 Nova Chemicals (International) S.A. Ethylene copolymer compositions, film and polymerization processes
KR101644113B1 (ko) 2013-10-18 2016-07-29 주식회사 엘지화학 혼성 담지 메탈로센 촉매
KR101617870B1 (ko) * 2014-09-05 2016-05-03 주식회사 엘지화학 가공성이 우수한 올레핀계 중합체
KR101747396B1 (ko) * 2014-12-15 2017-06-14 주식회사 엘지화학 가공성이 우수한 올레핀계 중합체

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110217499A1 (en) * 2008-08-29 2011-09-08 Basell Polyolefine Gmbh Polyethylene for Injection Moldings
KR20130113322A (ko) * 2010-07-06 2013-10-15 셰브론 필립스 케미컬 컴퍼니 엘피 수소 첨가없이 넓은 분자량 분포의 폴리올레핀 제조를 위한 촉매
US20140213734A1 (en) * 2013-01-30 2014-07-31 Exxonmobil Chemical Patents Inc. Polyethylene Copolymers with Vinyl Terminated Macromonomers as Comonomers
KR20150015789A (ko) * 2013-08-01 2015-02-11 주식회사 엘지화학 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀계 중합체의 제조방법
KR20150037520A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3162820A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108473613A (zh) * 2016-12-19 2018-08-31 Lg化学株式会社 负载型混杂茂金属催化剂及使用该催化剂制备聚烯烃的方法
CN108473613B (zh) * 2016-12-19 2020-09-22 Lg化学株式会社 负载型混杂茂金属催化剂及使用该催化剂制备聚烯烃的方法

Also Published As

Publication number Publication date
CN106661160A (zh) 2017-05-10
EP3162820A1 (en) 2017-05-03
EP3162820A4 (en) 2018-04-11
KR20160123123A (ko) 2016-10-25
KR101891638B1 (ko) 2018-08-24
US10323110B2 (en) 2019-06-18
CN106661160B (zh) 2020-03-10
US20170233511A1 (en) 2017-08-17
JP2018512457A (ja) 2018-05-17
JP6470834B2 (ja) 2019-02-13

Similar Documents

Publication Publication Date Title
WO2016167601A1 (ko) 가공성이 우수한 에틸렌/알파-올레핀 공중합체
KR101617870B1 (ko) 가공성이 우수한 올레핀계 중합체
KR101726820B1 (ko) 가공성 및 환경 응력 균열 저항성이 우수한 에틸렌/1-헥센 또는 에틸렌/1-부텐 공중합체
KR102260362B1 (ko) 올레핀 공중합체
KR101747401B1 (ko) 가공성이 우수한 에틸렌/알파-올레핀 공중합체
US10669363B2 (en) Catalyst composition for synthesizing olefin copolymer and method for preparing olefin copolymer
JP2017518423A (ja) 耐環境応力亀裂性に優れたポリオレフィン
KR101593666B1 (ko) 가공성이 우수한 올레핀계 중합체
WO2016036204A1 (ko) 가공성이 우수한 올레핀계 중합체
WO2016167547A1 (ko) 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
EP3225638B1 (en) Ethylene/ -olefin copolymer having excellent processability and surface characteristics
WO2016167568A1 (ko) 가공성이 우수한 에틸렌 /알파-올레핀 공중합체
KR101747396B1 (ko) 가공성이 우수한 올레핀계 중합체
KR102211603B1 (ko) 올레핀 공중합체 합성용 촉매 조성물 및 올레핀 공중합체의 제조 방법
WO2016163810A1 (ko) 중공 성형용 고밀도 폴리에틸렌 공중합체
KR20180083247A (ko) 올레핀 중합체 및 이의 제조 방법
WO2016060445A1 (ko) 가공성 및 환경 응력 균열 저항성이 우수한 에틸렌 /1-헥센 또는 에틸렌 /1-부텐 공중합체
WO2016093580A1 (ko) 가공성이 우수한 에틸렌/알파-올레핀 공중합체
WO2016167548A1 (ko) 가공성 및 표면 특성이 우수한 에틸렌 /알파-올레핀 공중합체
WO2016099118A1 (ko) 가공성이 우수한 올레핀계 중합체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16780324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503838

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016780324

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016780324

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE