WO2016099118A1 - 가공성이 우수한 올레핀계 중합체 - Google Patents

가공성이 우수한 올레핀계 중합체 Download PDF

Info

Publication number
WO2016099118A1
WO2016099118A1 PCT/KR2015/013735 KR2015013735W WO2016099118A1 WO 2016099118 A1 WO2016099118 A1 WO 2016099118A1 KR 2015013735 W KR2015013735 W KR 2015013735W WO 2016099118 A1 WO2016099118 A1 WO 2016099118A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
catalyst
molecular weight
equation
alkyl
Prior art date
Application number
PCT/KR2015/013735
Other languages
English (en)
French (fr)
Inventor
승유택
이기수
권헌용
홍대식
김세용
이승민
정동훈
신은영
권현지
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150170825A external-priority patent/KR101747396B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/111,394 priority Critical patent/US9587056B2/en
Priority to EP15870285.2A priority patent/EP3078682B1/en
Priority to JP2016539116A priority patent/JP2018502169A/ja
Priority to CN201580007045.4A priority patent/CN105960421B/zh
Publication of WO2016099118A1 publication Critical patent/WO2016099118A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene

Definitions

  • the present invention relates to an olefin polymer having excellent processability.
  • Olefin polymerization catalyst systems can be classified into Ziegler-Natta and metallocene catalyst systems, and these two highly active catalyst systems have been developed for their respective characteristics.
  • the Ziegler-Natta catalyst has been widely applied to the existing commercial processes since the invention in the 50s, but is characterized by a wide molecular weight distribution of the polymer because it is a mul tisi te catalyst having many active sites. There is a problem that there is a limit in securing the desired physical properties because the composition distribution is not uniform.
  • the metallocene catalyst is composed of a combination of a main catalyst composed mainly of transition metal compounds and a cocatalyst composed of organometallic compounds composed mainly of aluminum, and such catalysts are homogeneous complex catalysts and have a single active site catalyst (s ingl e si).
  • te catalyst a narrow molecular weight distribution according to the characteristics of a single active site, a homogeneous composition distribution of the comonomer is obtained, the stereoregularity of the polymer according to the modification of the ligand structure of the catalyst and changes in the polymerization conditions, copolymerization characteristics , Molecular weight, crystallinity and the like can be changed.
  • 5,914,289 describes a method for controlling the molecular weight and molecular weight distribution of a polymer using a metallocene catalyst supported on each carrier, but the amount and time of preparation of the solvent used in preparing the supported catalyst This takes a lot, and the hassle of having to support the metallocene catalyst to be used on the carrier, respectively.
  • Korean Patent Application No. 10-2003-0012308 discloses a method for controlling the molecular weight distribution by supporting a double-nuclear metallocene catalyst and a mononuclear metallocene catalyst on a carrier together with an activator to polymerize by changing the combination of catalysts in the reactor. Is starting.
  • linear low density polyethylene is a resin produced by copolymerizing ethylene and alpha olefin at low pressure using a polymerization catalyst, and has a narrow molecular weight distribution, a short length branch of a constant length, and no long chain branching.
  • linear low density polyethylene film had a high breaking strength and elongation, with the characteristics of normal polyethylene, hard-to-tear strength, falling weight cheunggyeok strength is superior to the application of conventional low density poly "ethylene or high-density polyethylene stretch film, the overlap film, etc. It is increasing.
  • linear low density polyethylene using 1-butene or 1-nuxene as comonomer is mostly produced in a single vapor phase reactor or a single loop slurry reactor, which is more productive than a process using 1-octene comonomer, but these products are also Due to the limitations of the catalyst technology and the process technology used, there is a problem that the physical properties are inferior to that of using the 1-octene comonomer, and the processability is poor due to the narrow molecular weight distribution. Many efforts have been made to improve this problem, and US Patent Nos. 4, 935 and 474 report two or more metallocene compounds used for producing a polyethylene having a wide molecular weight distribution. United States Patent No.
  • the present invention is to provide an ethylene-alpha olefin polymer having excellent processability and improved mechanical properties.
  • the present invention provides an ethylene-alpha olefin copolymer satisfying the following conditions:
  • the weight average molecular weight is 50,000 to 150, 000,
  • Density is 0.910 to 0.940 g / cirf
  • MFRR MI10 / MI2.166
  • Equation 1 plateau ' delta value satisfies Equation 2:
  • the ethylene-alpha olefin copolymer as defined above is characterized in that the long chain branch (LCB) is introduced and shows excellent workability and Haze properties.
  • the catalyst which can be used in order to satisfy each said condition is mentioned later.
  • the increased average molecular weight (g / mol) of the ethylene-alpha olefin copolymer is
  • the molecular weight distribution (Mw / Mn) of the ethylene-alpha olefin copolymer is 2 to 5, preferably 2.5 to 3.5.
  • the density (g / « 3 ) of the ethylene-alphalefin copolymer is 0.910 to 0.940, preferably 0.915 to 0.930.
  • the ethylene-alpha-olefin copolymer and the MFRR (. MI 10 / MI 2 16) is from 10 to 20, measured by ASTM 1238 eseo 190 ° C.
  • the ethylene-alpha olefin copolymer of the present invention ⁇ complex viscosity (complex viscosity * [Pa.s]) graph according to the frequency (frequency, ⁇ [rad / s]) of 0.05 to 500 rad / s When fitted to 1, the C 2 value is -0.30 to -0.60. Equation 1 is a Power Law model, where x is frequency, y is complex viscosity, and two variables ( ⁇ and C 2 are required.
  • C 2 value indicates the slope of the graph to be related to the complex viscosity graph fluidity with respect to the frequency, with a high complex viscosity at a low frequency high frequency high fluidity , which means, that is, having a gradient value of the sound, the higher the absolute value of the inclination value may be said that indicates a high fluidity.
  • the olefin-based polymer of the present invention the complex viscosity So with respect to the frequency.
  • slope in profile (C 2 ) Ranges from about -0.30 to about -0.60, showing significantly higher flowability compared to conventional olefinic polymers having similar density and weight average molecular weight. Despite the low melt index, and it can be seen that shows excellent fluidity and the workability is more excellent shear thinning effect.
  • the C 2 is the -0.30 to -0.55.
  • the ( is 30,000 to 300, 000.
  • the complex viscosity according to the frequency can be obtained by using a dynamic frequency sweep at 190 ° C. using an ARES dvanced rheometric expansion system, and the dynamic frequency sweep can be measured using a 25 ⁇ parallel plate in the form of a disk.
  • the ethylene-alpha olefin copolymer of the present invention has a feature that the plateau delta value satisfies the following formula? In Van Gurp Pal men Plot.
  • the Van Gurp-Palmen graph is a graph in which the X-axis is complex modulus (G, dyne / cuf) and the Y-axis is phase angle (d (delta)).
  • This graph is used when In particular, when the inflection point is present in the graph means that the presence of LCB, these polymers are excellent in swell, bubble stability, melt fracture, sagging time, etc., can be variously applied according to the application, in particular pipe having improved physical properties Etc. can be provided.
  • the present invention is characterized in that the plateau delta value, which is the d value at the inflection point, satisfies Equation 2 above. Preferably, the plateau delta value satisfies Equation 2-1.
  • the Van Gurp-Palmen graph can be obtained by selecting and plotting G * and delta among the better variables in the dynamic frequency sweep test.
  • G * is the force applied when straining the polymer
  • delta is the elastic term among them.
  • the olefinic polymer as described above may be prepared using a supported metallocene catalyst, specifically, A supported catalyst comprising one or more selected from the group consisting of a first catalyst represented by 1, a second catalyst represented by the following Formula 2, and a third catalyst represented by the following Formula 3 is used:
  • M is a Group 4 transition metal
  • B is carbon, silicon or germanium
  • Qi and 3 ⁇ 4 are each independently hydrogen, halogen, alkyl, CHO, C 2 - 20 alkenyl, Ce-20 aryl, C 7 - 20 alkylaryl, C T 20 arylalkyl, CHO alkoxy, C 2 - 20 alkoxyalkyl,
  • Xi and 3 ⁇ 4 are each independently selected from halogen, d- 20 alkyl, C 2 - 20 alkenyl Al, C 6 - 20 aryl, nitro, amido, alkyl, silyl, d- 20 alkoxy, or d- 20 Sulfonate;
  • C 2 is the following Chemical Formula 2a or Chemical Formula 2b,
  • Ri to R 13 are each independently hydrogen, halogen, 20 alkyl, C 2 - 20 alkenyl, alkyl silyl, alkyl silyl, d-20, alkoxysilyl, d-20 ether, silyl ether 20 d-, d-20 alkyl, and 20 alkylaryl, or C T 20 arylalkyl, - C 6 - 20 aryl, C 7
  • R 'l to R' 3 are each independently hydrogen, halogen, (20 alkyl, C 2 - 20 alkenyl, or C 6
  • R lO to 3 and R 'to 10 ⁇ 13 are each independently hydrogen, alkyl, C 2 -20 alkenyl, C 6 - 20 aryl, C 7 - 20 alkylaryl, C 7 - 20 arylalkyl, C 2 - 20 alkoxycarbonyl Alkyl or d- 20 amine, or two or more adjacent groups of R 10 to R 13 and R '10 to R' 13 are connected to each other to form one or more aliphatic rings, aromatic rings, or hetero rings; The ring, aromatic ring, or hetero ring is unsubstituted or substituted with d-20 alkyl;
  • Q is -CH 2 CH 2- , -C (Z ! ) (Z 2 )-or -Si;
  • Z 2 are each independently hydrogen, alkyl, C 3 - 20 cycloalkyl, alkoxy, C 2 - 20 alkoxyalkyl, C 6 - 20 aryl, C 3 - 10 aryloxy, C 2 - alkenyl 20 Al, C 7 - 40 alkylaryl, or C 7 - 40 aryl-alkyl;
  • M 2 is a Group 4 transition metal
  • 3 ⁇ 4 and are each independently selected from halogen, alkyl, C 2 20 alkenyl, C 6 - 20 yaril, nitro, amido, Cl - 20 alkyl, silyl, alkoxy, d- or sulfone carbonate, and 20;
  • M 3 is a Group 4 transition metal
  • 3 ⁇ 4 and 3 ⁇ 4 are each independently halogen, alkyl, C 2 - 20 alkenyl Al, C 6 - 20 aryl, nitro, amido, alkyl, silyl, alkoxy, or d- d- 20 20 carbonate and sulfone;
  • l4 to 9 are each independently hydrogen, d-20 alkyl, C 2 - 20 alkenyl, alkoxy, C 6 _20 aryl, C 7 - 20 alkylaryl, C 7 - 20 aryl-alkyl, d-20 alkyl silyl group, C 6 - 20 arylsilyl, or CHO amine; Or two or more adjacent ones of R 14 to R 17 connected to each other to form one or more aliphatic rings, aromatic rings, or hetero rings;
  • L 2 is straight or branched chain alkylene
  • D 2 is -0- -S - -N (R) - or -Si (R) (R ') - , in which R and R' are each independently hydrogen, halogen, d-20 alkyl, C 2 - 20 alkenyl, or C 6 - 20 aryl;
  • a 2 is hydrogen, halogen, d- 20 alkyl, C 2 - 20 alkenyl, C 6 - 20 aryl, C 7 - 20 alkylaryl, C 7 - 20 arylalkyl, d- 20 alkoxy, C 2 - 20 'alkoxy alkyl, C 2 - 20 heterocycloalkyl, or C 5 - 20 membered heteroaryl;
  • B is carbon, silicon, or germanium, and is a bridge that binds a cyclopentadienyl family ligand and J (R 19 ) Z - Y by a covalent bond;
  • J is a periodic table group 15 element or group 16 element
  • z is the oxidation number of the element J
  • y is the number of bonds of the J elements.
  • i) Crab 1 catalyst and ii) Geo 12 It preferred to use a catalyst or a catalyst to 3 ', and it is more preferable to use a first catalyst and a second catalyst.
  • the indene derivative of d (Formula 2a) has a lower electron density than indenoindole derivatives or fluorenyl derivatives, and has a similar structure due to steric hindrance effects and electron density factors as it contains silyl groups having a large steric hindrance.
  • the olefin copolymer having a relatively low molecular weight can be polymerized with high activity.
  • the fluorenyl derivative which may be represented as C 2 (Formula 2b) forms a crosslinked structure by a bridge, and exhibits high polymerization activity by having a non-covalent electron pair which may act as a Lewis base in the ligand structure.
  • M is zirconium
  • B is silicon
  • 3 ⁇ 4 and 3 ⁇ 4 are each independently alkyl or C 2 - and 20 alkoxyalkyl, provided that at least one of Qi and Q 2 are C 2 - 20 Alkoxyalkyl (preferably d- 6 alkyl substituted with t-buroxy) and 3 ⁇ 4 and 3 ⁇ 4 are halogen. More preferably, 3 ⁇ 4 is methyl and 3 ⁇ 4 is 6—tert-butoxy—nuclear chamber.
  • R 13 is hydrogen
  • R 'i to R' 3 is CHO alkyl. More preferably, R'i to R'3 are methyl.
  • Representative examples of the compound represented by Formula 1 are the same as the compound represented by the following Formula 1-1 or 1-2:
  • the manufacturing method of the said 1st catalyst is concretely demonstrated to the Example mentioned later.
  • the first catalyst represented by Formula 1 mainly contributes to making a high molecular weight copolymer
  • the catalyst represented by Chemical Formula 2 or Formula 3 may contribute to making a relatively low molecular weight copolymer.
  • Formula 2 the first catalyst represented by Formula 1 mainly contributes to making a high molecular weight copolymer
  • the catalyst represented by Chemical Formula 2 or Formula 3 may contribute to making a relatively low molecular weight copolymer.
  • Formula 2 the catalyst represented by Chemical Formula 2 or Formula 3
  • RlO to Rl3 and R'10 to 1? ' 13 are each independently hydrogen, alkyl or C 2 - or 20 alkoxyalkyl, or R 10 to R 13 and R '10 to R' is at least two adjoining 13 are connected to each other at least one aliphatic ring or an aromatic ring And the aliphatic ring or aromatic ring is unsubstituted or
  • Q is -CH 2 CH 2- , -C (Z!) (Z 2 )-or -SKZiXZ)-;
  • Zi and Z 2 are each independently selected from (20 alkyl or C 2 - 20 alkoxy-alkyl;
  • M 2 is zirconium
  • R 10 to R 13 and R '10 to 1?' 13 are each independently hydrogen, methyl or 6-tert eu appendix when - or haeksil, or R 10 to R 13 and R '10 to R' is at least two adjoining 13 are connected to each other at least one benzene ring or a cycloalkyl Forming a nucleic acid ring, wherein the benzene ring is unsubstituted or substituted with tert-buroxy;
  • Q is -CH 2 CH 2- , -C (Z ! ) (Z 2 )-or -Si (3 ⁇ 4) (3 ⁇ 4)-;
  • Zi and Z 2 are each independently methyl or 6'butt-butoxy-nuclear
  • M 2 is zirconium
  • the manufacturing method of the said Crab 2 catalyst is concretely demonstrated to the Example mentioned later.
  • the third catalyst represented by Chemical Formula 3 may contribute to making a copolymer having a molecular weight intermediate between the first catalyst and the second catalyst.
  • M 3 is titanium
  • 3 ⁇ 4 and 3 ⁇ 4 are halogen
  • Rl4 to Rl9 are in alkyl
  • L 2 is d-) straight or branched alkylene
  • D 2 is -0-
  • a 2 is alkyl
  • z is the oxidation number of the element J
  • y is the number of bonds of the J elements.
  • a carrier containing a hydroxy group on the surface may be used, and preferably, a carrier having a highly reactive hydroxyl group and a siloxane group, dried to remove moisture from the surface.
  • a carrier having a highly reactive hydroxyl group and a siloxane group dried to remove moisture from the surface.
  • silica, silica-alumina, silica-magnesia, etc., dried at a high temperature may be used, and these are usually oxides, carbonates, such as Na 2 O, K 2 C0 3 , BaS0 4 , and Mg (N0 3 ) 2 . Sulfate, and nitrate components.
  • the mass ratio of catalyst to carrier is preferably 1: 1 to 1: 1000.
  • the mass ratio of at least one selected from the group consisting of i) a catalyst represented by Chemical Formula 1, ii) a second catalyst represented by Chemical Formula 2, and a third catalyst represented by Chemical Formula 3 is 1: 100 to 1. It is preferred that it is 100: 1. It may be advantageous in terms of maintaining the activity and economical efficiency of the catalyst by showing the optimum catalytic activity in the mass ratio.
  • co-catalysts may be additionally used to form the olefin polymer. Can be used to make.
  • the cocatalyst may further include one or more of the cocatalyst compounds represented by the following Chemical Formulas 4, 5 or 6.
  • R 30 may be the same as or different from each other, and each independently halogen; Hydrocarbons having 1 to 20 carbon atoms; Or a hydrocarbon having 1 to 20 carbon atoms substituted with halogen;
  • n is an integer of 2 or more
  • is as defined in Formula 4 above;
  • J is aluminum or boron
  • E is a neutral or divalent Lewis base
  • H is a hydrogen atom
  • Z is a Group 13 element
  • A may be the same as or different from each other, and each independently is an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 20 carbon atoms, which is unsubstituted or substituted with halogen, hydrocarbon having 1 to 20 carbon atoms, alkoxy or phenoxy.
  • Examples of the compound represented by Formula 4 include methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane, butyl aluminoxane, and the like, and more preferred compound is methyl aluminoxane.
  • Examples of the compound represented by Formula 5 include trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tripropyl aluminum, tributyl aluminum, dimethylchloro aluminum, triisopropyl aluminum, tri-s-butyl aluminum, tricyclopentyl aluminum , Tripentylaluminum, triisopentylaluminum, trinuclear silaluminum, trioctylaluminum, ethyldimethylaluminum, methyldiethylaluminum, triphenylaluminum, tri-P-rylylaluminum, dimethylaluminum methoxide, dimethylaluminum, trimethyl Boron, triethyl boron, triisobutyl boron, tripropyl boron ⁇ tributyl boron, and the like, and more preferable compounds are selected from trimethyl aluminum, triethyl aluminum, and triisobutyl aluminum.
  • Examples of the compound represented by 6 include triethylammonium tetraphenylboron, tributylammonium tetraphenylboron, trimethylammonium tetraphenylboron, tripropylammonium tetraphenylboron, trimethylammonium tetra (P-tyl) boron, Trimethylammonium tetra ( ⁇ , ⁇ - dimethylphenyl) boron, tributyl ammonium tetra ( ⁇ -trifluoromethylphenyl) boron, trimethyl ammonium tetra ( ⁇ -trifluoromethylphenyl) boron,
  • Trimethylammonium tetra ( ⁇ -tripolomethylphenyl) aluminum Trimethylammonium tetra ( ⁇ -tripolomethylphenyl) aluminum
  • the supported catalyst according to the present invention may be prepared by supporting a cocatalyst compound on a carrier, supporting the first catalyst on the carrier, and supporting the cocatalyst 12 catalyst and / or the third catalyst on the carrier.
  • the catalyst loading order may be changed as needed.
  • a hydrocarbon solvent such as pentane, nucleic acid, heptane, or the like, or an aromatic solvent such as benzene, toluene, or the like may be used.
  • the metallocene compound and the cocatalyst compound may be used in a form supported on silica or alumina.
  • the present invention also provides a method for producing an olefin polymer comprising the step of polymerizing an olefin monomer in the presence of the supported catalyst.
  • specific examples of the olefin monomers include ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1 -Octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-nuxadecene, 1-atocene, and the like, and two or more thereof can be mixed and copolymerized.
  • the olefin polymer is more preferably an ethylene / alpha olefin copolymer, but is not limited thereto.
  • the content of the alpha olefin which is the comonomer is not particularly limited, and may be appropriately selected depending on the use, purpose, and the like of the olefin polymer. More specifically, it may be more than 0 and 99 mol% or less.
  • the polymerization reaction may be carried out by homopolymerization with one olefin monomer or copolymerization with two or more monomers using one continuous slurry polymerization reactor, a loop slurry reactor, a gas phase reactor, or a solution reactor.
  • the supported catalyst is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, for example, pentane, nucleic acid, heptane, nonan, decane, and their isomers and aromatic hydrocarbon veins such as toluene and benzene, chlorine such as dichloromethane and chlorobenzene.
  • the solution may be dissolved or diluted in a hydrocarbon solvent substituted with an atom or the like.
  • the solvent used herein is preferably used by removing a small amount of water or air that acts as a catalyst poison by treating a small amount of alkylaluminum, and may be carried out by further using a cocatalyst.
  • the ethylene-alpha olefin copolymer according to the present invention has a high molecular weight and a wide molecular weight distribution, is excellent in processability and mechanical properties, and can be usefully used for applications such as films.
  • Figure 1 shows a complex viscosity graph according to the frequency of one embodiment and a comparative example of the present invention.
  • Figure 3 shows a complex viscosity graph according to the frequency of one embodiment of the present invention.
  • Figure 4 shows the Van Gurp Pal men Plot according to the frequency of one embodiment of the present invention.
  • Figure 5 shows the relationship between the plateau delta value and the molecular weight of an embodiment of the present invention.
  • the dried 250 mL Schlenk flask (first flask) was charged with 1.66 g (10 ⁇ l) of fluorene and made argon, and 50 mL of ether was injected under reduced pressure. After incubating to 0 ° C., the inside of the flask was replaced with argon, and 4.8 mL (12 ⁇ L) of 2.5 M n-BuLi nucleic acid solution was slowly added dropwise. The reaction mixture was slowly raised to phase silver and stirred for one day. Another 250 mL Schlenk flask was filled with 40 mL of nucleic acid, and then 2/713 g (10 ⁇ L) of (6-tert-supplementary nucleus) dichloro (methyl) silane was injected.
  • the mixture was prepared to -78 ° C, and slowly added dropwise to the mixture prepared above. Slowly warmed up to room temperature and stirred for 12 hours.
  • the mixture of the first flask was cooled to ⁇ 78 ° C., and the solution of the second flask was added dropwise thereto, then slowly sublimed to phase silver and stirred for 24 hours.
  • 50 mL of water was added thereto, and the organic layer was extracted three times with ether (50 mL ⁇ 3).
  • a moderate amount of MgS0 4 was added to the collected organic layer, followed by stirring for a while. After filtering and drying the solvent under reduced pressure, 5.8 g (molecular weight 566.96, 10.3 nimol, yield: 103%) of a yellow oily ligand compound were obtained.
  • the obtained ligand compound was used for the preparation of the metallocene compound without separate separation process.
  • the ligand compound synthesized in Step 1 was dissolved in 4 equivalents of methyl tert-butyl ether (MTBE) and 60 mL of toluene, and then 2 equivalents of n—BuLi Nucleic acid solution was added. After one day, all of the solvent inside the flask was removed under vacuum and dissolved in the same amount of toluene.
  • MTBE methyl tert-butyl ether
  • ZrCl 4 (THF) 2 was taken in a glove box and placed in a 250 mL Schlenk flask to prepare a suspension in which luluene was added.
  • the lithiated ligand compound was slowly added to the toluene suspension of ZrCl 4 (THF) 2 . After the injection, the mixture was slowly cooled to room temperature, stirred for one day to proceed with the reaction, and then the ruluene in the mixture was removed by vacuum decompression to about 1/5 of the volume, and recrystallized by adding 5 times the volume of the remaining ruluene. .
  • the mixture was filtered to avoid contact with outside air to obtain a metallocene compound, which was obtained at the top of the filter using some nucleic acid. After washing the filter cake (filter cake), it was weighed in a glove box to confirm the synthesis, yield and purity. As a result, 4.05 g (5.56 nimol, 55.6%) of an orange solid were obtained (purity: 100%, molecular weight: 727.08).
  • the prepared nucleic acid slurry was filtered under argon, and the filtered solid and the filtrate were both evaporated under vacuum reduced pressure.
  • the remaining filter cake (filter cake) and filtrate was confirmed through R, respectively, and weighed in a glove box to confirm the yield and purity.
  • silica Into a 20 L sus high pressure reactor, add 3.0 kg of toluene solution to silica (Grace After adding 1,000 g of Davison Co., Ltd. SP952X, 200 ° C. firing), the reactor was stirred while raising the degree of silver to 40 ° C. After the silica was dispersed in 60 minutes, 6.0 kg of 10 wt% methylaluminoxane (MAO) / luene solution was added thereto, the temperature was raised to 60 ° C., and the mixture was stirred at 200 rpm for 12 hours. After the reactor temperature was lowered back to 40 ° C., the stirring was stopped and settling for 30 minutes, followed by decantation of the reaction solution.
  • MAO methylaluminoxane
  • the supported catalysts prepared in Preparation Examples 3-1 to 3-4 were introduced into an isobutane slurry loop process continuous polymerizer (reactor volume 140 L, reaction flow rate 7 m / s) to prepare an olefin polymer.
  • 1-nuxene was used as the comonomer, The reactor pressure was maintained at 40 bar and the polymerization temperature was maintained at 88 ° C. Ml and density were controlled by 1 kH decene and hydrogenation.
  • Example 5-11 Preparation of Olefin Polymer
  • the supported catalyst prepared in Preparation Example 3-5 was introduced into an isobutane slurry loop process continuous polymerizer (reactor volume 140 L, reaction flow rate 7 m / s) to prepare an olefin polymer.
  • 1 ⁇ nucleus was used as the comonomer, the reaction pressure was 40 bar and the polymerization temperature was 88 ° C. Ml and density were controlled by 1-nuxene and hydrogenation amount. Comparative example
  • LG Chem's LUCENE TM SP330 product was prepared as a commercial mLLDPE prepared by a slurry loop process polymerization process. Physical properties of the copolymers prepared in Examples and Comparative Examples were measured as follows, and the results are shown in Tables 1 and 2 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 가공성이 우수한 에틸렌-알파올레핀 공중합체에 관한 것이다. 본 발명에 따른 공중합체는 고분자량 및 넓은 분자량 분포를 가져 가공성이 우수하고, 향상된 기계적 물성을 나타내어, 필요로 하는 용도에 유용하게 사용될 수 있다.

Description

【발명의 명칭】
가공성이 우수한 을레핀계 중합체
【관련 출원 (들)과의 상호 인용】
본 출원은 2014년 12월 15일자 한국 특허 출원 제 10-2014-0180750호 및 2015년 12월 2일자 한국 특허 출원 게 10— 2015-0170825호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
【기술분야】
본 발명은 가공성이 우수한 올레핀계 중합체에 관한 것이다.
【배경기술】
올레핀 중합 촉매계는 지글러 나타 및 메탈로센 촉매계로 분류할 수 있으며, 이 두 가지의 고활성 촉매계는 각각의 특징에 맞게 발전되어 왔다. 지글러 나타 촉매는 50년대 발명된 이래 기존의 상업 프로세스에 널리 적용되어 왔으나, 활성점이 여러 개 흔재하는 다활성점 촉매 (mul t i s i te catalyst )이기 때문에, 중합체의 분자량 분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다. 한편, 메탈로센 촉매는 전이금속 화합물이 주성분인 주촉매와 알루미늄이 주성분인 유기 금속 화합물인 조촉매의 조합으로 이루어지며, 이와 같은 촉매는 균일계 착체 촉매로 단일 활성점 촉매 (s ingl e si te catalyst )이며, 단일 활성점 특성에 따라 분자량 분포가 좁으며, 공단량체의 조성 분포가 균일한 고분자가 얻어지며, 촉매의 리간드 구조 변형 및 중합 조건의 변경에 따라 고분자의 입체 규칙도, 공중합 특성, 분자량, 결정화도 등을 변화시킬 수 있는 특성을 가지고 있다. 미국특허 제 5 , 914 , 289호에는 각각의 담체에 담지된 메탈로센 촉매를 이용하여 고분자의 분자량 및 분자량 분포를 제어하는 방법이 기재되어 있으나, 담지 촉매 제조시 사용된 용매의 양 및 제조시간이 많이 소요되고, 사용되는 메탈로센 촉매를 담체에 각각 담지시켜야 하는 번거로움이 따랐다. 한국특허 출원번호 제 10-2003-0012308호에는 담체에 이중핵 메탈로센 촉매와 단일핵 메탈로센 촉매를 활성화제와 함께 담지하여 반응기 내 촉매의 조합을 변화시키며 중합함으로써 분자량 분포를 제어하는 방안을 개시하고 있다. 그러나, 이러한 방법은 각각의 촉매의 특성을 동시에 구현하기에 한계가 있으며, 또한 완성된 촉매의 담체 성분에서 메탈로센 촉매 부분이 유리되어 반응기에 파울링 ( foul ing)을 유발하는 단점이 있다. 따라서, 상기한 단점들을 해결하기 위해서 간편하게 활성이 우수한 담지 메탈로센 촉매를 제조하여 원하는 물성의 올레핀계 중합체를 제조하는 방법에 대한 요구가 계속되고 있다. . 한편, 선형 저밀도 폴리에틸렌은 중합촉매를 사용하여 저압에서 에틸렌과 알파 올레핀을 공중합하여 제조되어ᅳ 분자량 분포가 좁고 일정한 길이의 단쇄 분지를 가지며, 장쇄 분지가 없는 수지이다. 선형 저밀도 폴리에틸렌 필름은 일반 폴리에틸렌의 특성과 더불어 파단강도와 신율이 높고, 인열 강도, 낙추층격강도 등이 우수하여 기존의 저밀도 폴리'에틸렌이나 고밀도 폴리에틸렌의 적용이 어려운 스트레치 필름, 오버랩 필름 등에의 사용이 증가하고 있다. 그런데, 1-부텐 또는 1-핵센을 공단량체로 사용하는 선형 저밀도 폴리에틸렌은 대부분 단일 기상반웅기 또는 단일 루프 슬러리 반응기에서 제조되며, 1-옥텐 공단량체를 사용하는 공정 대비 생산성은 높으나, 이러한 제품 역시 사용 촉매기술 및 공정기술의 한계로 물성이 1-옥텐 공단량체 사용시보다 크게 열세하고, 분자량 분포가 좁아 가공성이 불량한 문제가 있다. 이러한 문제의 개선을 위해 많은 노력이 진행되고 있으며, 미국특허 제 4 , 935, 474호에는 2종 또는 그 이상의 메탈로센 화합물이 사용되어 넓은 분자량 분포를 갖는 폴리에틸렌 제조법에 대해 보고되어 있다. 미국특허 제 6,828, 394호에는 공단량체 결합성이 좋은 것과 그렇지 않은 것을 흔합 사용하여 가공성이 우수하고 특히 필름용에 적합한 폴리에틸렌 제조방법에 대해 기재되어 있다. 또한, 미국특허 제 6,841,631호, 미국특허 제 6 ,894, 128호에는 적어도 2종의 메탈 컴파운드가 사용된 메탈로센계 촉매로 이정 또는 다정 분자량분포를 갖는 폴리에틸렌을 제조하여, 필름, 블로우 몰딩, 파이프 등의 용도에 적용할 수 있다고 기재되어 있다. 하지만 이러한 제품들은 가공성은 개선되었으나 단위 입자 내의 분자량별 분산 상태가 균일하지 못해 비교적 양호한 압출 조건에서도 압출 외관이 거칠고 물성이 안정적이지 못한 문제가 있다. 이러한 배경에서 물성과 가공성 간의 균형이 이루어진, 보다 우수한 제품의 제조가 끊임없이 요구되고 있으며, 이에 대한 개선이 더욱 필요한 상태이다.
【발명의 내용】
【해결하려는 과제】
상기 종래기술의 문제점을 해결하기 위해, 본 발명은 가공성이 우수하고 향상된 기계적 물성을 갖는 에틸렌 -알파올레핀 중합체를 제공하고자 한다.
【과제의 해결 수단】
상기 과제를 해결하기 위하여, 본 발명은 하기의 조건을 만족하는 에틸렌 -알파올레핀 공중합체를 제공한다:
중량 평균 분자량이 50,000 내지 150, 000이고,
분자량 분포 (Mw/Mn)가 2 내지 5이고,
밀도가 0.910 내지 0.940 g/cirf이고,
MFRR(MI10/MI2.16)이 10 내지 20이고,
0.05 내지 500 rad/s의 주파수 (frequency, co[rad/s])에 따른 복소점도 (complex viscosity, n*[Pa.s]) 그래프를 하기 수학식 1로 피팅했을 때 C2 값이 -0.30 내지 -0.60이고,
[수학식 1] plateau 'delta 값이 하기 수학식 2를 만족함:
[수학식 2]
-0.02x(Mw/104)+0.76 < plateau delta < -0.02X (Mw/104)+1.36 상기 정의된 에틸렌 -알파올레핀 공중합체는, 폴리에될렌의 가공성을 높이기 위하여 Long Chain Branch(LCB)를 도입한 것으로, 우수한 가공성 및 Haze 특성을 나타낸다. 또한, 상기의 각 조건을 만족하기 위하여 사용할 수 있는 촉매는 후술하기로 한다. 상기 에틸렌 -알파올레핀 공중합체의 증량 평균 분자량 (g/mol)은
50,000 내지 150 ,000이고, 바람직하게는 90,000 내지 125 ,000이다. 상기 에틸렌 -알파올레핀 공중합체의 분자량 분포 (Mw/Mn)는 2 내지 5이고, 바람직하게는 2.5 내지 3.5이다. 상기 에틸렌—알파을레핀 공중합체의 밀도 (g/«3)는 0.910 내지 0.940이고, 바람직하게는 0.915 내지 0.930이다. 상기 에틸렌-알파올레핀 공중합체의 MFRR(MI10/MI2.16)은 10 내지 20이고, 190°C에서 ASTM 1238에 의하여 측정한다. 또한, 본 발명의 에틸렌 -알파올레핀 공중합체는 0.05 내지 500 rad/s의 주파수 (frequency, ω [rad/s] )에따른 복소점도 (complex viscosity *[Pa.s]) 그래프를 상기 수학식 1로 피팅했을 때 C2 값이 -0.30 내지 - 0.60이라는 특징이 있다. 상기 수학식 1은 Power Law 모델로서, x는 주파수를, y는 복소 점도를 의미하며, 두 개의 변수인 (^과 C2가 요구된다. (^은 점조도 지수 (consistency index)라고 하며, C2는 CV index라고 하는데, C2 값은 그래프의 기울기를 의미한다. 주파수에 따른 복소점도 그래프는 유동성과 관련된 것으로, 낮은 주파수에서 높은 복소점도를 갖고 높은 주파수에서는 낮은 복소점도를 가질수록 유동성이 높은 것을 .의미한다. 즉, 음의 기울기 값을 가지며, 상기 기울기 값의 절대값이 클수록 높은 유동성을 나타내는 것이라 할 수 있다. 본 발명의 올레핀계 중합체는 주파수에 따른 복소점도 그래.프에서 기울기 (C2)가 약 -0.30 내지 약 -0.60인 범위로, 유사한 밀도 및 중량 평균 분자량을 갖는 종래의 올레핀계 중합체에 대비하여 현저히 높은 유동성을 보인다ᅳ 이에 따라 낮은 용융지수에도 불구하고 shear thinning 효과가 훨씬 뛰어나 우수한 유동성 및 가공성을 나타냄을 알 수 있다. 바람직하게는, 상기 C2가 -0.30 내지 -0.55이다. 또한, 상기 ( 은 30,000 내지 300, 000이다. 상기 주파수에 따른 복소점도는 ARES dvanced rheometric expansion system)을 이용하여 190°C에서 dynamic frequency sweep로 구할 수 있다. 상기 dynamic frequency sweep는 디스크 형태의 25 瞧 parallel plate를 이용하여 측정할 수 있다. 또한, 본 발명의 에틸렌 -알파올레핀 공중합체는 Van Gurp Pal men Plot에서, plateau delta 값이 하기 수학식 ?를 만족한다는 특징이 있다.
[수학식 2]
-0.02x(Mw/104)+0.76 < plateau delta < -0.02X (Mw/104)+1.36
Van Gurp-Palmen 그래프는, X축이 복합탄성률 (complex modulus, G, dyne/cuf)이고 Y축이 위상차 (phase angle, d(delta))인 그래프로서, 을레핀계 중합체에서 LCB의 존재 여부를 판단할 때 사용하는 그래프이다. 특히, 상기 그래프 내에 변곡점이 존재하면 LCB가 존재하는 것을 의미하며, 이러한 고분자는 swell , bubble stability, melt fracture, sagging time 등이 우수하여 , 용도에 따라 다양하게 적용될 수 있으며, 특히 향상된 물성을 갖는 pipe 등을 제공할 수 있다. 특히, 본 발명에서는 변곡점에서의 d 값인 plateau delta 값이 상기 수학식 2를 만족하는 것을 특징으로 한다. 바람직하게는, 상기 plateau delta 값이 하기 수학식 2-1을 만족한다. 상기 Van Gurp-Palmen 그래프는 dynamic frequency sweep 테스트에서 나은 변수 중 G*와 delta를 선택하여 plot하여 얻을 수 있다. G*는 고분자에 변형을 줄 때 받는 힘이고, delta는 그 중에서 탄성항에 해당한다.
[수학식 2-1]
-0.02x(Mw/104)+0.91 < plateau delta < -0.02X (Mw/104)+1.26 상기와 같은 올레핀계 중합체는 담지 메탈로센 촉매를 이용하여 제조할 수 있으며, 구체적으로 하기 화학식 1로 표시되는 제 1 촉매, 하기 화학식 2로 표시되는 제 2 촉매 및 하기 화학식 3으로 표시되는 제 3 촉매로 이루어진 군에서 선택된 1종 이상을 포함하는, 담지 촉매를 사용한다:
[화학식 1]
Figure imgf000008_0001
상기 화학식 1에서,
M은 4족 전이금속이고
B는 탄소, 실리콘 또는 게르마늄이고;
Qi 및 ¾는 각각 독립적으로 수소, 할로겐, CHO 알킬, C2-20 알케닐, Ce-20 아릴, C7-20 알킬아릴, C교 20 아릴알킬, CHO 알콕시, C220 알콕시알킬,
Cs-20 헤테로시클로알킬, 또는 C5-20 헤테로아릴이고; 단, ¾ 및 Q2 중 적어도 하나는 C2-20 알콕시알킬이고;
Xi 및 ¾는 각각 독립적으로 할로겐, d-20 알킬, C2-20 알케닐, C6-20 아릴, 니트로, 아미도, 알킬실릴, d-20 알콕시, 또는 d-20 술폰네이트이고;
(^은 하기 화학식 2a이고,
C2는 하기 화학식 2a 또는 화학식 2b이고,
Figure imgf000009_0001
상기 화학식 2a 및 2b에서,
Ri 내지 R13은 각각 독립적으로 수소, 할로겐, 20 알킬, C2-20 알케닐, 알킬실릴, 실릴알킬, d-20 알콕시실릴, d-20 에테르, d-20 실릴에테르, d-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C교 20 아릴알킬이고,
R ' l 내지 R ' 3은 각각 독립적으로 수소, 할로겐, ( 20 알킬, C2-20 알케닐, 또는 C6-20 아릴이며,
[화학식 2]
Figure imgf000010_0001
상기 화학식 2에서,
lO 내지 3 및 R ' 10 내지 ^ 13은 각각 독립적으로 수소, 알킬, C2-20 알케닐, C6-20 아릴, C7-20 알킬아릴, C7-20 아릴알킬 , C2-20 알콕시알킬 또는 d-20 아민이거나, 또는 R10 내지 R13 및 R' 10 내지 R' 13 중 인접하는 2개 이상이 서로 연결되어 1개 이상의 지방족 고리, 방향족 고리, 또는 헤테로 고리를 형성하고, 상기 지방족 고리, 방향족 고리, 또는 헤테로 고리는 비치환되거나 또는 d-20 알킬로 치환되고;
Q는 -CH2CH2- , -C(Z!) (Z2)- 또는 -Si 이고;
및 Z2는 각각 독립적으로 수소, 알킬, C3-20 시클로알킬, 에 알콕시 , C2-20 알콕시알킬, C6-20 아릴, C3-10 아릴옥시, C2-20 알케닐, C7-40 알킬아릴, 또는 C7-40 아릴알킬이고;
M2는 4족 전이금속이며;
¾ 및 는 각각 독립적으로 할로겐, 알킬, C2 20 알케닐, C6-20 야릴, 니트로, 아미도, Cl-20 알킬실릴, 알콕시, 또는 d-20 술폰네이트이고;
[화학식 3]
Figure imgf000011_0001
상기 화학식 3에서,
M3은 4족 전이금속이고;
¾ 및 ¾은 각각 독립적으로 할로겐, 알킬, C2-20 알케닐, C6-20 아릴, 니트로 , 아미도, 알킬실릴, d— 20 알콕시 또는 d— 20 술폰네이트이고;
l4 내지 9는 각각 독립적으로 수소, d-20 알킬, C2-20 알케닐, 알콕시 C6_20 아릴, C7-20 알킬아릴, C7-20 아릴알킬, d-20 알킬실릴, C6-20 아릴실릴, 또는 CHO 아민이거나; .또는 상기 R14 내지 R17 중 인접하는 2개 이상이 서로 연결되어 1개 이상의 지방족 고리, 방향족 고리, 또는 헤테로 고리를 형성하고;
L2는 직쇄 또는 분지쇄 알킬렌이며;
D2는 -0- -S - -N(R)- 또는 -Si (R) (R ' )- 이고, 여기서 R 및 R '은 각각 독립적으로 수소, 할로겐, d-20 알킬, C2-20 알케닐, 또는 C6-20 아릴이며;
A2는 수소, 할로겐, d— 20 알킬, C2-20 알케닐, C620 아릴, C7-20 알킬아릴, C7-20 아릴알킬, d— 20 알콕시, C2-20 '알콕시알킬, C2-20 헤테로시클로알킬, 또는 C5-20 헤테로아릴이고;
B는 탄소, 실리콘, 또는 게르마늄이고, 시클로펜타디에닐 계열 리간드와 J (R19 )Z-Y를 공유 결합에 의해 묶어주는 다리이고;
J는 주기율표 15족 원소 또는 16족 원소이며;
z는 J 원소의 산화수이고;
y는 J 원소의 결합수이다. 본 발명에서, 2종의 촉매를 사용할 경우, i ) 게 1 촉매 및 i i ) 거 12 촉매 또는 게 3 촉매를 '사용하는 것이 바람직하고, 제 1 촉매 및 제 2 촉매를 사용하는 것이 보다 바람직하다. 상기 화학식 1로 표시되는 게 1 촉매는, 특히 d (화학식 2a)에 실릴기가 치환되어 있는 것을 특징으로 한다. 또한, d (화학식 2a)의 인덴 유도체는 인데노인돌 유도체나 플루오레닐 유도체에 비해 상대적으로 전자 밀도가 낮으며, 입체 장애가 큰 실릴기를 포함함에 따라 입체 장애 효과 및 전자 밀도적 요인에 의하여 유사한 구조의 메탈로센 화합물에 비해 상대적으로 낮은 분자량의 올레핀 증합체를 고활성으로 중합할 수 있다. 또한, C2(화학식 2b)와 같이 표시될 수 있는 플루오레닐 유도체가 브릿지에 의해 가교된 구조를 형성하며, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써 높은 중합 활성을 나타낸다. 바람직하게는, 상기 화학식 1에서, M은 지르코늄이고, B는 실리콘이고, ¾ 및 ¾는 각각 독립적으로 알킬 또는 C2-20 알콕시알킬이고, 단, Qi 및 Q2 중 적어도 하나는 C2-20 알콕시알킬 (바람직하게는, t-부록시로 치환된 d-6 알킬)이고, ¾ 및 ¾는 할로겐이다. 보다 바람직하게는, ¾은 메틸이고, ¾는 6—터트-부톡시— 핵실이다. 또한, 바람직하게는 상기 화학식 2a 및 2b에서, 내지 R13은 수소이고, R' i 내지 R ' 3은 CHO 알킬이다. 보다 바람직하게는, R ' i 내지 R ' 3은 메틸이다. 상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기 화학식 1-1 또는 1-2로 표시되는 화합물과 같다:
[화학식 1-1]
Figure imgf000013_0001
-2]
Figure imgf000013_0002
상기 제 1 촉매의 제조방법은 후술하는 실시예에 구체화하여 설명한다 . 상기 담지 촉매에서, 화학식 1로 표시되는 제 1 촉매는 주로 고분자량의 공중합체를 만드는데 기여하고, 화학ᅳ식 2 또는 화학식 3으로 표시되는 촉매는 상대적으로 저분자량의 공중합체를 만드는데 기여할 수 있다. 바람직하게는, 상기 화학식 2에서,
RlO 내지 Rl3 및 R'10 내지 1?'13은 각각 독립적으로 수소, 알킬 또는 C2-20 알콕시알킬이거나, 또는 R10 내지 R13 및 R'10 내지 R'13 중 인접하는 2개 이상이 서로 연결되어 1개 이상의 지방족 고리 또는 방향족 고리를 형성하고, 상기 지방족 고리 또는 방향족 고리는 비치환되거나 또는
Ci-20 알킬로 치환되고;
Q는 -CH2CH2-, -C(Z!)(Z2)- 또는 -SKZiXZ )-이고;
Zi 및 Z2는 각각 독립적으로 ( 20 알킬 또는 C2-20 알콕시알킬이고;
M2는 지르코늄이며;
¾ 및 는 할로겐이다. 보다 바람직하게는, 상기 화학식 2에서,
R10 내지 R13 및 R'10 내지 1?'13은 각각 독립적으로 수소, 메틸 또는 6-터트ᅳ부록시-핵실이거나, 또는 R10 내지 R13 및 R'10 내지 R'13 중 인접하는 2개 이상이 서로 연결되어 1개 이상의 벤젠 고리 또는 사이클로핵산 고리를 형성하고, 상기 벤젠 고리는 비치환되거나 또는 터트-부록시로 치환되고;
Q는 -CH2CH2-, -C(Z!)(Z2)- 또는 -Si (¾)(¾)-이고;
Zi 및 Z2는 각각 독립적으로 메틸 또는 6ᅳ터트-부톡시 -핵실이고;
M2는 지르코늄이며;
¾ 및 는 클로로이다. 2로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure imgf000014_0001
Figure imgf000015_0001
상기 게 2 촉매의 제조방법은 후술하는 실시예에 구체화하여 설명한다. 상기 화학식 3으로 표시되는 제 3 촉매는, 상기 제 1 촉매와 제 2 촉매의 중간 정도의 분자량의 공중합체를 만드는데 기여할 수 있다. 바람직하게는, 상기 화학식 3에서,
M3은 티타늄이고;
¾ 및 ¾은 할로겐이고;
Rl4 내지 Rl9는 에 알킬이고;
L2는 d- ) 직쇄 또는 분지쇄 알킬렌이며;
D2는 -0-이고;
A2는 알킬이고;
B는 실리콘이고;
J는 질소이며;
z는 J 원소의 산화수이고;
y는 J 원소의 결합수이다. 적인 예는 다음과 같다:
Figure imgf000016_0001
상기 제 3 촉매의 제조방법은 후술하는 실시예에 구체화하여 설명한다. 본 발명에 따른 담지 촉매에 있어서, 상기 담체로는 표면에 하이드록시기를 함유하는 담체를 사용할 수 있으며 , 바람직하게는 건조되어 표면에 수분이 제거된, 반응성이 큰 하이드록시기와 실록산기를 가지고 있는 담체를 사용할 수 있다. 예컨대, 고온에서 건조된 실리카, 실리카 -알루미나, 및 실리카- 마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na20, K2C03, BaS04, 및 Mg(N03)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다. 본 발명에 따른 담지 촉매에 있어서, 촉매 대 담체의 질량비는 1:1 내지 1:1000인 것이 바람직하다. 상기 질량비로 담체 및 촉매를 포함할 때, 적절한 담지 촉매 활성을 나타내어 촉매의 활성 유지 및 경제성 측면에서 유리할 수 있다. 또한, 상기 i) 상기 화학식 1로 표시되는 게 1 촉매와 ii) 상기 화학식 2로 표시되는 제 2 촉매 및 상기 화학식 3으로 표시되는 제 3 촉매로 이루어진 군에서 선택된 1종 이상의 질량비는 1:100 내지 100:1인 것이 바람직하다. 상기 질량비에서 최적의 촉매 활성을 나타내어 촉매의 활성 유지 및 경제성 측면에서 유리할 수 있다. 상기 촉매 이외에, 조촉매를 추가로 사용하여 을레핀 중합체를 제조하는데 사용할 수 있다. 상기 조촉매로는 하기 화학식 4, 화학식 5 또는 화학식 6으로 표시되는 조촉매 화합물 중 1종 이상을 추가로 포함할 수 있다.
[화학식 4]
- [Al (R30)-0]m- 상기 화학식 4에서,
R30은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고;
m은 2 이상의 정수이며;
[화학식 5] 상기 화학식 5에서,
ι는 상기 화학식 4에서 정의된 바와 같고;
J는 알루미늄 또는 보론이며;
[화학식 6]
[E-H] + [ZA4]— 또는 [E] + [ZA4]—
상기 화학식 6에서,
E는 중성 또는 양이은성 루이스 염기이고;
H는 수소 원자이며;
Z는 13족 원소이고;
A는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다. 상기 화학식 4로 표시되는 화합물의 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 있으며, 더욱 바람직한 화합물은 메틸알루미녹산이다 상기 화학식 5로 표시되는 화합물의 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리- s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리핵실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리 -P- 를릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에특시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론ᅳ 트리부틸보론 등이 포함되며, 더욱 바람직한 화합물은 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄 중에서 선택된다. 상기 화학식 . 6으로 표시되는 화합물의 예로는 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라 (P-틀릴)보론, 트리메틸암모니움테트라 (ο , ρ- 디메틸페닐)보론, 트리부틸암모니움테트라 (Ρ-트리플로로메틸페닐)보론, 트리메틸암모니움테트라 (Ρ-트리플로로메틸페닐 )보론 ,
트리부틸암모니움테트라펜타플로로페닐보론, Ν, Ν- 디에틸아닐리니움테트라페닐보론, Ν ,Ν- 디에틸아닐리니움테트라펜타플로로페닐보론,
디에틸암모니움테트라펜타플로로페닐보론 , 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라 (Ρ- 를릴)알루미늄, 트리프로필암모니움테트라 (Ρ-를릴)알루미늄, 트리에틸암모니움테트라 (ο , ρ—디메틸페닐)알루미늄,
트리부틸암모니움테트라 (Ρ-트리플로로메틸페닐)알루미늄,
트리메틸암모니움테트라 (Ρ-트리폴로로메틸페닐)알루미늄,
트리부틸암모니움테트라펜타플로로페닐알루미늄, Ν ,Ν- 디에틸아닐리니움테트라페닐알루미늄, Ν,Ν- 디에틸아닐리니움테트라펜타플로로페닐알루미늄,
디에틸암모니움테트라펜타테트라페닐알루미늄,
트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리프로필암모니움테트라 (P-를릴)보론, 트리에틸암모니움테트라 ( 0,으 디메틸페닐)보론, 트리부틸암모니움테트라 (P-트리플로로메틸페닐)보론, 트리페닐카보니움테트라 (P-트리플로로메틸페닐)보론,
트리페닐카보니움테트라펜타플로로페닐보론 등이 있다. 본 발명에 따른 담지 촉매는 담체에 조촉매 화합물을 담지시키는 단계, 상기 담체에 상기 제 1 촉매를 담지시키는 단계, 및 상기 담체에 상기 거 12 촉매 및 /또는 제 3 촉매를 담지시키는 단계로 제조할 수 있으며, 촉매 담지 순서는 필요에 따라 바뀔 수 있다. 상기 담지 촉매의 제조시에 반응 용매로서 펜탄, 핵산, 헵탄 등과 같은 탄화수소계 용매, 또는 벤젠, 를루엔 등과 같은 방향족계 용매가 사용될 수 있다. 또한, 메탈로센 화합물과 조촉매 화합물은 실리카나 알루미나에 담지된 형태로도 이용할 수 있다. 또한, 본 발명은 상기 담지 촉매의 존재 하에서, 올레핀계 단량체를 중합시키는 단계를 포함하는 올레핀계 중합체의 제조방법을 제공한다. 본 발명에 따른 올레핀계 중합체의 제조방법에 있어서, 상기 올레핀계 단량체의 구체적인 예로는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4- 메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1ᅳ도데센, 1- 테트라데센, 1ᅳ핵사데센, 1—아이토센 등이 있으며, 이들을 2종 이상 흔합하여 공중합할 수도 있다. 상기 올레핀계 중합체는 에틸렌 /알파올레핀 공중합체인 것이 보다 바람직하나, 이에만 한정되는 것은 아니다. 상기 을레핀계 중합체가 에틸렌 /알파을레핀 공중합체인 경우에 있어서, 상기 공단량체인 알파올레핀의 함량은 특별히 제한되는 것은 아니며, 올레핀계 중합체의 용도, 목적 등에 따라 적절하게 선택할 수 있다. 보다 구체적으로는 0 초과 99 몰% 이하일 수 있다. 상기 중합 반응은 하나의 연속식 슬러리 중합 반응기, 루프 슬러리 반웅기, 기상 반웅기 또는 용액 반응기를 이용하여 하나의 올레핀계 단량체로 호모중합하거나 또는 2종 이상의 단량체로 공중합여 진행할 수 있다. 상기 담지 촉매는 탄소수 5.내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 핵산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 를루엔, 벤젠과 같은 방향족 탄화수소 용맥, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입할 수 있다. 여기에 사용되는 용매는 소량의 알킬 알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며ᅳ 조촉매를 더 사용하여 실시하는 것도 가능하다.
【발명의 효과】
본 발명에 따른 에틸렌 -알파올레핀 공중합체는, 고분자량 및 넓은 분자량 분포를 가지고, 가공성 및 기계적 물성이 우수하여, 필름 등의 용도로 유용하게 사용할 수 있다.
【도면의 간단한 설명】
도 1은, 본 발명의 일실시예 및 비교예의 주파수에 따른 복소점도 그래프를 나타낸 것이다.
도 2는, 본 발명의 일실시예 및 비교예의 주파수에 따른 Van Gurp
Pal men Plot을 나타낸 것이다.
도 3은, 본 발명의 일실시예의 주파수에 따른 복소점도 그래프를 나타낸 것이다.
도 4는, 본 발명의 일실시예의 주파수에 따른 Van Gurp Pal men Plot을 나타낸 것이다. 도 5는, 본 발명의 일실시예의 plateau delta 값과 분자량의 관계를 나타낸 것이다.
【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다. 제조예 1: 제 1촉매의 제조
Figure imgf000021_0001
단계 1) 리간드 화합물의 제조
건조된 250 mL Schlenk flask (제 1 플라스크)에 1.66 g(10 画 ol)의 플루오렌 (fluorene)을 채우고 아르곤 상태를 만든 후, 감압 하에서 에테르 50 mL를 주입하였다. 0°C까지 넁각한 후 플라스크 내부를 아르곤으로 치환하고 2.5 M n-BuLi 핵산 용액 4.8 mL(12 隱 ol)를 천천히 적가하였다. 반응 흔합물을 천천히 상은까지 올린 후 하루 동안 교반하였다. 다른 250 mL Schlenk flask에 핵산 40 mL를 채운 후, (6-터트- 부록시핵실)디클로로 (메틸)실란 2/713 g(10 誦 ol)을 주입하였다. -78°C까지 넁각하고, 여기에 위에서 준비한 흔합물을 천천히 적가하였다. 상온까지 천천히 승온시키고 12시간 동안 교반하였다. 다른 건조된 250 mL Schlenk flask (제 2 플라스크)에 ((11{-인덴-3- 일 )메틸)트리메틸실란 ( (IH- i nden-3-y 1 )methyl )tr imethyl si lane) 2.02 g(10 隱 ol)을 넣고 THF 50 mL를 가하여 용해시켰다. 이 용액을 0°C로 냉각시키고 2.5 M n-BuLi 핵산 용액 4.8 mL(12 讓 ol)를 적가하고, 상온으로 승온시킨 후 12시간 동안 교반하였다. 제 1 플라스크의 흔합물을 -78°C로 냉각하고, 여기에 제 2 플라스크의 용액을 적가한 후, 상은으로 천천히 승은하고 24시간 동안 교반하였다. 여기에 물 50 mL를 넣고 유기층을 에테르로 3회 추출 (50 mLx3)하였다. 모아진 유기층에 적당량의 MgS04를 넣어 잠시 교반한 후, 필터하여 감압 하에 용매를 건조시킨 결과, 5.8g (분자량 566.96, 10.3 nimol, 수율: 103%)의 노란색 오일 형태의 리간드 화합물을 수득하였다. 얻어진 리간드 화합물은 별도의 분리 과정없이 메탈로센 화합물의 제조에 사용하였다.
¾ NMR (500 MHz, CDC13): 0.00, 0.26 (3H, d), 0.46 (9H, m), 0.67 (1H, m), 0.83 (1H, m), 1.01 (1H, m), 1.25 (2H, m), 1.42 (2H, m), 1.49 (2H, m), 1.60 (9H, m), 1.72 (2H, m), 2.41 (2H, m), 3.66 (2H, m), 3.70, 3.77 (1H, s), 4.52 (1H, m), 6.01, 6.26, 6.37 (1H, s), 7.50 (1H, m), 7.59-7.80 (7H, m) , 7.81 (1H, q), 7.97 (1H, d), 8.29 (2H, m).
2) 메탈로센 화합물의 제조
오븐에 건조한 250 mL Schlenk flask에 상기 단계 1에서 합성한 리간드 화합물을 넣고 4당량의 메틸터셔리부틸에테르 (methyl tert-butyl ether, MTBE)와 를루엔 60 mL에 녹인 다음, 2당량의 n— BuLi 핵산 용액을 가하였다. 하루가 지난 후 진공 조건에서 플라스크 내부의 용매를 모두 제거하고 동량의 를루엔에 용해시켰다. Glove box 내에서 1당량의 ZrCl4(THF)2을 취해 250 mL Schlenk flask에 담고 를루엔을 넣은 서스펜션 (suspension)을 준비하였다. 위의 두 개의 플라스크 모두 - 78°C까지 냉각시킨 후 lithiation된 리간드 화합물을 천천히 ZrCl4(THF)2의 를루엔 서스펜션에 가하였다. 주입이 끝난 후, 천천히 상온까지 을려 하루 동안 교반하여 반응을 진행시킨 후 흔합물 내의 를루엔을 약 1/5 부피까지 진공 감압을 통해 제거하고 남은 를루엔의 5배 정도 부피의 핵산을 가해 재결정시켰다. 외부 공기와 닿지 않게 흔합물을 여과하여 메탈로센 화합물을 수득하였으며, 약간의 핵산을 사용하여 필터 윗 부분에 얻어진 필터 케이크 (filter cake)를 씻어준 다음, glove box 내에서 계량하여 합성 여부, 수율 및 순도를 확인하였다. 그 결과, 4.05 g(5.56nimol, 55.6%)의 주황색 고체를 수득하였다 (순도: 100%, 분자량: 727.08).
¾ NMR (500 MHz, CDC13): -0.13 (9H, m), -0.13 (3H, m), 0.53 (2H, m), 0.87 (2H, m) , 1.25 (9H, m), 1.29 (4H, m), 1.51 (2H, s), 1.64 (2H, m), 3.34 (2H, m) , 5.26 (1H, s), 6.81 (1H, m), 7.07 (2H, m), 7.18 (1H, m), 7.38 (1H, m), 7.46-7.56 (4H, m) , 7.72 (1H, q), 7.95 (1H, d), 8.03 (1H, d) 제조예 2: 계 2촉매의 제조
Figure imgf000023_0001
단계 1) 리간드 화합물의 제조
건조된 250 mL Schlenk flask에 인덴 (indene) 2.323 g(20 隨 ol)을 넣고 아르곤 기체 하에서 MTBE 40 mL를 주입하였다. 상기 용액을 0°C까지 냉각한 다음, 2.5M n-BuLi 핵산 용액 8 mL(20 隨 ol)를 적가하였다. 상기 흔합물을 천천히 상온으로 승온시키고 24시간 동안 교반하였다. 다른 250 mL Schlenk flask에 (6-터트-부톡시핵실)디클로로 (메틸)실란 ((6-tert- butoxyhexyl )dichloro(methyl )si lane) 2.713 g( 10 隱 ol)과 핵산 30 mL를 넣고 -78°C까지 넁각한 다음, 여기에 위에서 준비된 흔합물을 적가하였다. 상기 흔합물을 천천히 상온으로 승온시키고 24시간 동안 교반하였다. 여기에 물 50 mL을 넣어 quenching하고 유기층을 분리하여 MgS04로 건조시켰다. 그 결과, 3.882 g(9.013画 ol, 90%)의 생성물을 얻었다.
' 匿 기준 purity (wt%)=100%, Mw=430.70
¾ NMR (500 MHz, CDC13): -0.45, -0.22, -0.07, 0.54 (total 3H, s) 0.87 (1H, m), 1.13 (9H, m), 1.16-1.46 (10H, m), 3.25 (2H, m) , 3.57 (1H m), 6.75, 6.85, 6.90, 7.11, 7.12, 7.19 (total 4H, m), 7.22-7.45 (4H, m), 7.48-7.51 (4H, m) 단계 2) 메탈로센 화합물의 제조
오본에 건조한 250 mL Schlenk flask에 상기 단계 1에서 합성한 리간드 화합물을 넣고 4당량의 MTBE와 를루엔 60 mL에 녹였다. 여기에 2.1당량의 n-BuLi 핵산 용액을 가하고 24시간 동안 lithiation시킨 다음, 용매를 모두 진공 감압하여 제거하였다. 이를 핵산 용매 하에 schlenk filter를 통하여 Li-salt만 얻었다 (3.092 g, 6.987 mmol). 보다 순수한 촉매 전구체를 얻기 위하여 purification을 진행하였다. Glove box 내에서 2.1당량의 ZrCl4(THF)2을 취해 250 mL Schlenk flask에 담고 를루엔을 넣어 서스펜션 (suspension)을 준비하였다. 상기 두 개의 플라스크 모두 ᅳ 78°C까지 넁각시킨 다음, lithiation된 리간드 화합물을 천천히 ZrCl4(THF)2의 를루엔 서스펜션에 가하였다. 상기 흔합물을 천천히 상온으로 승온시키고 하루 동안 교반한 다음, 흔합물 내의 를루엔을 진공 감압을 통해 제거하고 이전 용매 정도 부피의 핵산을 가해 재결정시켰다. 제조된 핵산 슬러리를 아르곤 하에 여과하고, 여과된 고체와 여과액을 모두 진공 감압 하에 용매를 증발시켰다. 위에 남은 필터 케이크 (filter cake)와 filtrate를 각각 丽 R을 통하여 확인하고, glove box 내에서 계량하여 수율 및 순도를 확인하였다.
3.1 g(6.987 画 ol)의 리간드 화합물로부터 1.321 g(2.806 mmol, 40.2%)의 노란색 오일을 얻어 를루엔 용액으로 보관하였다 (0.3371 mmol/mg).
NMR 기준 purity (wt%)=100%, Mw: 605.85
¾ NMR (500 MHz, CDC13): 0.88 (3H, m), 1.15 (9H, m), 1.17-1.47 (10H, m), 1.53 (4H, d), 1.63 (3H, m), 1.81 (1H, m) , 6.12 (2H, m), 7.15 (2H, m), 7.22-7.59 (8H, m) 제조예 3: 담지 촉매의 제조
제조예 3-1
20 L sus 고압 반웅기에 를루엔 용액 3.0 kg을 넣고 실리카 (Grace Davison사 제조 SP952X, 200 °C 소성) 1,000 g을 투입한 후, 반응기 은도를 40°C로 올리면서 교반하였다. 실리카를 60분 동안 층분히 분산시킨 후, 10 wt% 메틸알루미녹산 (MAO)/를루엔 용액 6.0 kg을 투입하고, 60°C로 온도를 올린 후 200 rpm으로 12시간 동안 교반하였다. 반응기 온도를 다시 40°C로 낮춘 후 교반을 중지하고 30분 동안 settling 시킨 후 반웅 용액을 decantation하였다. 를루엔 3.0 kg을 투입하고 10분 동안 교반한 후, 교반을 중지하고 30분 동안 settling 시키고 를루엔 용액을 decant at ion하였다. 별도의 반웅기에 를루엔 2.0 kg을 투입하고, 제조예 2의 화합물 (43 g)과 를루엔 1,500 mL를 플라스크에 담아 용액을 준비하고 30분 동안 sonication 하였다. 이와 같이 준비된 제조예 2의 화합물 /를루엔 용액을 상기 반응기에 투입하고 200 rpm으로 90분 동안 교반하였다. 반웅기 온도를 상온으로 낮춘 후 교반을 중지하고 30분 동안 settling 시킨 후 반웅 용액을 decant at ion하였다. 를루엔 2.0 kg을 투입하고 10분 동안 교반한 후, 교반을 중지하고 30분 동안 settling 시키고 반응 용액을 decant at ion하였다. 반응기에 핵산 3.0 kg을 투입하고 핵산 슬러리를 filter dry로 이송하고 핵산 용액을 필터하였다. 50°C에서 4시간 동안 감압 하에 건조하여 700 g-Si02 담지 촉매를 제조하였다. 제조예 3-2 내지 3-5
20 L SLis 고압 반응기에 를루엔 용액 3.0 kg을 넣고 실리카 (Grace
Davison사 제조 SP952X, 200 °C 소성) 1,000 g을 투입한 후, 반응기 온도를
40°C로 을리면서 교반하였다. 실리카를 60분 동안 충분히 분산시킨 후, 10 wt% 메틸알루미녹산 (MA0)/를루엔 용액 6.0 kg을 투입하고, 60°C로 온도를 을린 후 200 rpm으로 12시간 동안 교반하였다. 반웅기 온도를 다시 40°C로 낮춘 후 교반을 중지하고 30분 동안 settling 시킨 후 반응 용액을 decant at ion하였다. 를루엔 3.0 kg을 투입하고 10분 동안 교반한 후, 교반을 중지하고 30분 동안 settling 시키고 를루엔 용액을 decant at ion하였다. . 별도의 반응기에 를루엔 2.0 kg을 투입하고, 제조예 1의 화합물과 를루엔 1,0(30 mL를 플라스크에 담아 용액을 준비하고 30분 동안 sonication 하였다. 이와 같이 준비된 제조예 1의 화합물 /를루엔 용액을 상기 반응기에 투입하고 200 rpm으로 90분 동안 교반하였다. 교반을 중지하고 30분 동안 settling 시킨 후 반응 용액을 decantat ion하였다. 이때 상기 제조예 1의 화합물의 사용량은 20 g 내자 40 g 내에서 조절하여 각각 제조예 3ᅳ 2 내지 3-5로 하였다. 별도의 반웅기에 를루엔 2.0 kg을 투입하고, 제조예 2의 화합물 (20一 40 g)과 를루엔 1,500 mL를 플라스크에 담아 용액을 준비하고 30분 동안 sonication 하였다. 이와 같이 준비된 제조예 2의 화합물 /를루엔 용액을 상기 반응기에 투입하고 200 rpm으로 90분 동안 교반하였다. 반응기 온도를 상온으로 낮춘 후 교반을 중지하고 30분 동안 settling 시킨 후 반응 용액을 decant at ion하였다. 를루엔 2.0 kg을 투입하고 10분 동안 교반한 후, 교반을 중지하고
30분 동안 settling 시키고 반응 용액을 decantat ion하였다. 반응기에 핵산 3.0 kg을 투입하고 핵산 슬러리를 filter dry로 이송하고 핵산 용액을 필터하였다. 50°C에서 4시간 동안 감압 하에 건조하여 700 g-Si02 담지 촉매를 제조하였다. 실시예 1-4: 을레핀 중합체 제조
상기 제조예 3-1 내지 3-4에서 제조한 담지 촉매를 isobutane slurry loop process 연속 중합기 (반웅기 부피 140 L, 반응 유속 7 m/s)에 투입하여 올레핀 중합체를 제조하였다. 공단량체로는 1-핵센을 사용하였고, 반응기 압력은 40 bar로, 중합 온도는 88°C로 유지하였다ᅳ Ml 및 밀도는 1ᅳ 핵센 및 수소 첨가량으로 조절하였다. 실시예 5-11: 올레핀 중합체 제조
상기 제조예 3-5에서 제조한 담지 촉매를 isobutane slurry loop process 연속 중합기 (반응기 부피 140 L, 반응 유속 7 m/s)에 투입하여 올레핀 중합체를 제조하였다. 공단량체로는 1ᅳ핵센을 사용하였고, 반웅기 압력은 40 bar로, 중합 온도는 88°C로 유자하였다 ·. Ml 및 밀도는 1-핵센 및 수소 첨가량으로 조절하였다. 비교예
Slurry loop process 중합 공정으로 제조된 상업용 mLLDPE인 LG 화학의 LUCENE™ SP330 제품을 준비하였다. 상기 실시예 및 비교예에서 제조한 공중합체의 물성을 하기와 같이 측정하였으며, 그 결과를 하기 표 1 및 2에 나타내었다.
1) 밀도: ASTM 1505
2) 용융지수 (Ml, 2.16 kg/ 10 kg): 측정 온도 190 °C, ASTM 1238 3) MFRR(MFR10/MFR2.i6): MFR10 용융지수 (MI, 10 kg 하중)를 MFR2.16(MI,
2.16 kg 하중)으로 나눈 비율이다.
4) 분자량, 분자량 분포: 측정 은도 160°C, 겔투과 크로마토그라피- 에프티아이알 (GPC-F IR)을 이용하여 PS standard로 수 평균 분자량 및 중량 평균 분자량을 측정하였다. 분자량 분포는 중량 평균 분자량과 수 평균 분자량의 비로 나타내었다.
5) -(n* 기을기): 주파수에 따른 복소점도를 ARES dvanced rheometr ic expansion system)을 이용하여 190°C에서 dynamic frequency sweep로 구하였다. 상기 dynamic frequency sweep는 디스크 형태의 25 麵 parallel plate를 이용하여 측정하였다. Power law 피팅은 측정 프로그램인 TA Orchestrator를 이용하여 피팅하였다. 6) Plateau Delta: Van Gurp-Palmen 그래프를 ' dynamic frequency sweep 테스트에서 나온 변수 중 G*와 delta를 선택하여 plot하여 얻었다.
【표 11
Figure imgf000028_0001
【표 2】
Figure imgf000028_0002

Claims

【특허청구범위】 【청구항 1】 중량 평균 분자량이 50,000 내지 150,000이고, 분자량 분포 (Mw/Mn)가 2 내지 5이고, . 밀도가 0.910 내지 0.940 g/cuf이고, MFRR(MI10/MI2.16)이 10 내지 20이고, 0.05 내지 500 rad/s의 주파수 (frequency, Q)[rad/s])에 따른 복소점도 (complex viscosity, n*[Pa.s]) 그래프를 하기 수학식 1로 피팅했을 때 C2 값이 -0.30 내지 -0.60이고,
[수학식 1]
C
Van Gurp Pal men Plot에서, plateau delta 값이 하기 수학식 2를 만족하는,
[수학식 2]
-0.02 (Mw/104)+0.76 < plateau delta < -0.02X (Mw/104)+1.36 에틸렌ᅳ알파올레핀 공중합체 .
【청구항 2】
제 1항에 있어서,
상기 (^이 30,000 내지 300 ,000인,
에틸렌 -알파올레핀 공중합체.
【청구항 3】
제 1항에 있어서,
상기 중량 평균 분자량이 90,000 내지 125, 000인,
에틸렌ᅳ알파올레핀 공중합체.
【청구항 4】
거 U항에 있어서 상기 분자량 분포가 2.5 내지 3.5인,
에틸렌 -알파올레핀 공중합체.
【청구항 5]
게 1항에 있어서,
상기 밀도가 0.915 내지 0.930 g/citf인,
에틸렌ᅳ알파올레핀 공중합체.
【청구항 6]
제 1항에 있어서, .
상기 C2가 -0.30 내지 -0.55인,
에틸렌 -알파을레핀 공중합체.
【청구항 7]
제 1항에 있어서,
상기 pl ateau del ta 값이 하기 수학식 2-1을 만족하는,
[수학식 2-1]
-0.02 x (Mw/104)+0.91 < pl ateau del ta < -0.02 (Mw/104)+1 .26 에틸렌-알파올레핀 공중합체 ·
【청구항 8】
제 1항에 있어서,
상기 알파을레핀은 프로필렌, 1ᅳ부텐, 1-펜텐, 4-메틸 -1-펜텐, 1- 핵센, 1-헵텐, 1-옥텐, 1ᅳ데센, 1-운데센, 1-도데센, 1ᅳ테트라데센, 1- 헥사데센 및 1-아이토센으로 구성되는 군으로부터 선택되는 1종 이상인, 에틸렌 -알파올레핀 공중합체.
PCT/KR2015/013735 2014-12-15 2015-12-15 가공성이 우수한 올레핀계 중합체 WO2016099118A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/111,394 US9587056B2 (en) 2014-12-15 2015-12-15 Olefin based polymer having excellent processability
EP15870285.2A EP3078682B1 (en) 2014-12-15 2015-12-15 Olefin-based polymer having excellent processability
JP2016539116A JP2018502169A (ja) 2014-12-15 2015-12-15 加工性に優れたオレフィン系重合体
CN201580007045.4A CN105960421B (zh) 2014-12-15 2015-12-15 具有优良可加工性的基于烯烃的聚合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140180750 2014-12-15
KR10-2014-0180750 2014-12-15
KR10-2015-0170825 2015-12-02
KR1020150170825A KR101747396B1 (ko) 2014-12-15 2015-12-02 가공성이 우수한 올레핀계 중합체

Publications (1)

Publication Number Publication Date
WO2016099118A1 true WO2016099118A1 (ko) 2016-06-23

Family

ID=56126921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013735 WO2016099118A1 (ko) 2014-12-15 2015-12-15 가공성이 우수한 올레핀계 중합체

Country Status (1)

Country Link
WO (1) WO2016099118A1 (ko)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935474A (en) 1983-06-06 1990-06-19 Exxon Research & Engineering Company Process and catalyst for producing polyethylene having a broad molecular weight distribution
US5914289A (en) 1996-02-19 1999-06-22 Fina Research, S.A. Supported metallocene-alumoxane catalysts for the preparation of polyethylene having a broad monomodal molecular weight distribution
KR20030012308A (ko) 2001-07-31 2003-02-12 주식회사 예스아이비 배팅형 복권 시스템 및 배팅 방법
US6828394B2 (en) 2001-07-19 2004-12-07 Univation Technologies, Llc Mixed metallocene catalyst systems containing a poor comonomer incorporator and a good comonomer incorporator
US6841631B2 (en) 1999-10-22 2005-01-11 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
JP2006307176A (ja) * 2005-03-28 2006-11-09 Sumitomo Chemical Co Ltd エチレン−α−オレフィン共重合体
KR20100067627A (ko) * 2008-12-11 2010-06-21 주식회사 엘지화학 혼성 담지 메탈로센 촉매, 이의 제조방법 및 이를 이용한 올레핀계 중합체의 제조방법
JP2010229214A (ja) * 2009-03-26 2010-10-14 Sumitomo Chemical Co Ltd エチレン‐α‐オレフィン共重合体
US20130029125A1 (en) * 2008-12-15 2013-01-31 Exxonmobil Chemical Patents Inc. Thermoplastic Polyolefin Blends and Films Therefrom
JP2013538915A (ja) * 2010-09-29 2013-10-17 ダウ グローバル テクノロジーズ エルエルシー 収縮フィルム用途での使用に好適なエチレン/アルファ−オレフィン共重合体、及びそれから製造される物品

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935474A (en) 1983-06-06 1990-06-19 Exxon Research & Engineering Company Process and catalyst for producing polyethylene having a broad molecular weight distribution
US5914289A (en) 1996-02-19 1999-06-22 Fina Research, S.A. Supported metallocene-alumoxane catalysts for the preparation of polyethylene having a broad monomodal molecular weight distribution
US6841631B2 (en) 1999-10-22 2005-01-11 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
US6894128B2 (en) 1999-10-22 2005-05-17 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
US6828394B2 (en) 2001-07-19 2004-12-07 Univation Technologies, Llc Mixed metallocene catalyst systems containing a poor comonomer incorporator and a good comonomer incorporator
KR20030012308A (ko) 2001-07-31 2003-02-12 주식회사 예스아이비 배팅형 복권 시스템 및 배팅 방법
JP2006307176A (ja) * 2005-03-28 2006-11-09 Sumitomo Chemical Co Ltd エチレン−α−オレフィン共重合体
KR20100067627A (ko) * 2008-12-11 2010-06-21 주식회사 엘지화학 혼성 담지 메탈로센 촉매, 이의 제조방법 및 이를 이용한 올레핀계 중합체의 제조방법
US20130029125A1 (en) * 2008-12-15 2013-01-31 Exxonmobil Chemical Patents Inc. Thermoplastic Polyolefin Blends and Films Therefrom
JP2010229214A (ja) * 2009-03-26 2010-10-14 Sumitomo Chemical Co Ltd エチレン‐α‐オレフィン共重合体
JP2013538915A (ja) * 2010-09-29 2013-10-17 ダウ グローバル テクノロジーズ エルエルシー 収縮フィルム用途での使用に好適なエチレン/アルファ−オレフィン共重合体、及びそれから製造される物品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3078682A4 *

Similar Documents

Publication Publication Date Title
JP6470834B2 (ja) 加工性に優れたエチレン/アルファ−オレフィン共重合体
CN108401432B (zh) 用于合成烯烃共聚物的催化剂组合物和制备烯烃共聚物的方法
JP2017526773A (ja) 加工性に優れたオレフィン系重合体
KR101658172B1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법
KR101747396B1 (ko) 가공성이 우수한 올레핀계 중합체
KR101747401B1 (ko) 가공성이 우수한 에틸렌/알파-올레핀 공중합체
KR101593666B1 (ko) 가공성이 우수한 올레핀계 중합체
JP6896303B2 (ja) エチレン/アルファ−オレフィン共重合体
WO2016167547A1 (ko) 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
WO2016036204A1 (ko) 가공성이 우수한 올레핀계 중합체
KR101831418B1 (ko) 가공성 및 표면 특성이 우수한 에틸렌/알파-올레핀 공중합체
KR101606825B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법
KR20180046291A (ko) 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
WO2016060445A1 (ko) 가공성 및 환경 응력 균열 저항성이 우수한 에틸렌 /1-헥센 또는 에틸렌 /1-부텐 공중합체
KR101725352B1 (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
WO2016099118A1 (ko) 가공성이 우수한 올레핀계 중합체
KR102215024B1 (ko) 폴리올레핀의 제조 방법
WO2018117403A1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
WO2015072658A1 (ko) 가공성이 우수한 올레핀계 중합체

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016539116

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015870285

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015870285

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15111394

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15870285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE