WO2016163810A1 - 중공 성형용 고밀도 폴리에틸렌 공중합체 - Google Patents

중공 성형용 고밀도 폴리에틸렌 공중합체 Download PDF

Info

Publication number
WO2016163810A1
WO2016163810A1 PCT/KR2016/003718 KR2016003718W WO2016163810A1 WO 2016163810 A1 WO2016163810 A1 WO 2016163810A1 KR 2016003718 W KR2016003718 W KR 2016003718W WO 2016163810 A1 WO2016163810 A1 WO 2016163810A1
Authority
WO
WIPO (PCT)
Prior art keywords
aryl
alkyl
alpha
ethylene
formula
Prior art date
Application number
PCT/KR2016/003718
Other languages
English (en)
French (fr)
Inventor
선순호
최이영
이기수
송은경
이현섭
이명한
유영석
조솔
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2016163810A1 publication Critical patent/WO2016163810A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene

Definitions

  • the present invention relates to a high density polyethylene co-polymer for blow molding, and more particularly to a high density polyethylene copolymer having excellent die swell characteristics.
  • Ellefin polymerization catalyst systems can be classified into Ziegler-Natta and metallocene catalyst systems, and these two highly active catalyst systems have been developed for their respective characteristics.
  • Ziegler-Natta catalysts have been widely applied to existing commercial processes since the invention in the 50s. Since the active site is a multi-site catalyst that is common to many, there is a problem that the molecular weight distribution of the polymer is large, and the composition distribution of the comonomer is not uniform, so there is a limit in securing the desired physical properties.
  • the metallocene catalyst is composed of a combination of a main catalyst composed mainly of transition metal compounds and a cocatalyst composed of organometallic compounds composed mainly of aluminum.
  • Such a catalyst is a homogeneous complex catalyst and is a single-site catalyst. ).
  • the molecular weight distribution is narrow depending on the characteristics of the single active site.
  • a polymer having a uniform composition distribution of the comonomer is obtained, and has a characteristic of changing the stereoregularity, copolymerization property, molecular weight, crystallinity, etc. of the polymer according to the ligand structure modification of the catalyst and the change of polymerization conditions.
  • US Patent No. 5, 914, 289 discloses a method for controlling the molecular weight and molecular weight distribution of a polymer using a metallocene catalyst supported on each carrier.
  • Korean Patent Application No. 10-2003-0012308 discloses a method of controlling the molecular weight distribution by supporting a dual-nuclear metallocene catalyst and a mononuclear metallocene catalyst on a carrier together with an activator to change the combination of catalysts in the reactor and polymerize them. Disclosing the plan. But. This method is limited in realizing the characteristics of each catalyst at the same time. In addition, there is a disadvantage that the metallocene catalyst portion is released from the carrier component of the finished catalyst to cause fouling in the reactor.
  • Linear low density polyethylene is a resin produced by co-polymerizing ethylene and alpha olefin at low pressure using a polymerization catalyst, which has a narrow molecular weight distribution, has a constant length short chain branch, and has no long chain branch.
  • Linear Low Density Polyethylene Film is a stretch film that is difficult to apply to existing low density polyethylene or high density polyethylene due to its characteristics of general polyethylene, high breaking strength and elongation, excellent tensile strength and fall impact strength. The use to overlap films etc. is increasing.
  • the present invention is to provide a polyethylene copolymer having excellent die swell characteristics and high Mp (molecular weight of maimum peak) value for vapor forming. [Measures of problem]
  • the present invention provides an ethylene / alpha-olefin copolymer that satisfies the following conditions:
  • the weight average molecular weight (g / niol) is 200,000 to 300,000,
  • MpCmolecular weight of niaxiniuni peak is 50, 000 to 150.000.
  • the ethylene / alpha-olefin copolymer according to the present invention has advantageous properties for blow molding.
  • Blow molding means extrusion blow and injection blow. There are injection stretch blow methods, in which both polymers are made into hollow pipe shapes (parisons or platforms) and then placed in molds and blown to produce molded parts. In this case, when the air is blown, the polymer hollow pipe must be well drawn to the mold side, and the physical property of the molten state is important so that it does not maintain shape and sag.
  • the normal stress means die swell physical properties of the ethylene / alpha-olefin copolymer. Die swelling refers to an expansion phenomenon in which the polymer resin swells larger than the die diameter when extruded through a die having a smaller diameter. The reason is that the force is generated in the direction perpendicular to the direction of the force received by the polymer resin. In the extrusion process. If the die swelling characteristic of the polymer is too high, the shape prediction of the molded article is difficult and the possibility of defects is high, which is undesirable.
  • the polymer hollow pipe must be well drawn toward the mold, and not only must be drawn in the direction of the force applied to the polymer resin, but also well in the perpendicular direction thereof.
  • the die swelling properties should be excellent. In particular, die swelling when manufacturing hollow molded parts, such as fuel tanks with large internal spaces. Characteristics are considered more important.
  • the molecular weight and Mp of the ethylene / alpha-olepin copolymer are adjusted to have a high NUnormal stress value. Die swelling should take into account the pressure applied by the polymer and its pressure in the perpendicular direction. In the present invention, die swelling characteristics are evaluated by the value of N nornial stress according to Equation 1.
  • N First Normal Stress Difference
  • SS Shear Stress
  • the ethylene / alpha olefin olefin copolymer according to the present invention has a N1 value of 1.5 or more by the above method.
  • the N1 value is 1.5 to 5.
  • the Mp refers to the molecular weight of the point showing the highest peak when measuring the GPC curve of the ethylene / alpha-olefin copolymer, the sugar affects the swelling.
  • Ethylene / alpha-olefin according to the present invention is for producing a hollow molded article such as a fuel tank.
  • High Mp value can increase the mechanical properties of the blow molded part.
  • the Mp value is 50, 000 to 150, 000. By having an Mp value in the above range. Excellent die swelling properties and mechanical properties of the hollow molded article can be improved.
  • the density (g / «') of the ethylene / alpha-olefin copolymer is 0.930 to 0.970. More preferably, it is 0.940 to 0.960.
  • Melt flow index measured at a 21 .6 kg load
  • Mw / Mn the molecular weight distribution of the ethylene / alpha-olefin copolymer
  • Mw / Mn the molecular weight distribution of the ethylene / alpha-olefin copolymer
  • the alpha-olefin monomers include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene.
  • 1-butene may be used as the alpha-olefin monomer.
  • the content of the comonomer alpha-olefin is not particularly limited, and the use of the copolymer. It can select appropriately according to the purpose etc. More specifically, it may be more than 0 and 99 mol% or less.
  • the ethylene / alpha-olefin copolymer as described above may be prepared using a metallocene catalyst.
  • the metallocene catalyst that can be used includes at least one first metallocene compound represented by Formula 1 below; And a mixture of one or more second metallocene compounds selected from compounds represented by the following Chemical Formulas 3 to 5. [
  • A is hydrogen. Halogen, Cuo alkyl, C 2 - 20 alkenyl, C 6 - 20 aryl, C 7 - 20 alkylaryl, C 7 - 20 arylalkyl. Alkoxy. C 2 - 20 alkoxyalkyl. C 3 - 20 heterocycloalkyl, or C 5 - 20 membered heteroaryl;
  • D is -S-, -N (R)-or -Si (RKR ')-, wherein R and R' are the same or different from each other, and are each independently hydrogen, halogen, d-20 alkyl. C 2 -20 alkenyl, or C 6 - 20 aryl;
  • L is d- ⁇ ) straight or branched chain alkylene
  • B is carbon, silicon or germanium
  • Q is hydrogen. halogen. d- 20 alkyl, C 2 - 20 alkenyl, C 6 - 20 aryl, C 7 - 20 arylalkyl. Or c 7 - 20 aryl-alkyl;
  • M is a Group 4 transition metal
  • X 1 and X 2 are the same as or different from each other. Each independently is halogen, Cwo alkyl, C 2 - 20 alkenyl. C 6 - 20 aryl, nitro, amido. d-20 alkylsilyl. d-20 alkoxy or d-20 sulfonate;
  • C 1 and C 2 are the same as or different from each other, and each independently
  • R 17 and I to R 9 ' are the same or different and are each independently hydrogen, halogen, and d-20 alkyl, C 2 of each other - 20 alkenyl, alkylsilyl, d-20 Silylalkyl, d- 20 alkoxysilyl. d- 20 alkoxy, C.6-20 aryl, C 7 - 20 alkylaryl, or C 7 - 20 alkyl and aryl, wherein R 10 to R is two or more adjacent to each other of 17 are connected to each other substituted or unsubstituted May form an aliphatic or aromatic ring;
  • M 1 is a Group 4 transition metal
  • Cp 1 and Cp 2 are the same as or different from each other, and each independently cyclopentadienyl.
  • R 3 and R b are the same as or different from each other, and each independently hydrogen, d-20 alkyl. d- ⁇ alkoxy. C 2 - 20 alkoxyalkyl, C 6 - 20 aryl, C 6 - 10 aryloxy, C 2 - 20 alkenyl, C 7 - 40 alkylaryl, C 7 - 40 arylalkyl i. -4o C 8 aryl alkenyl, or C 2 - 10 alkynyl;
  • Z 1 is a halogen atom, d- 20 alkyl, C 2 - 10 alkenyl. C 7 — 40 alkylaryl. C 7 - 40 arylalkyl. C 6 - 20 aryl. Substituted or unsubstituted alkylidene, substituted Unsubstituted amino. C2-20 alkylalkoxy. Or C and 40 arylalkoxy:
  • n 1 or 0:
  • M 2 is a Group 4 transition metal
  • Cp 3 and Cp 4 are the same as or different from each other.
  • 'Are each independently a cyclopentadienyl, inde carbonyl, 4, 5, 6. 7-tetrahydro-1-inde one selected from a carbonyl and a fluorenyl group consisting of carbonyl radicals, all of which are substituted by hydrocarbon having 1 to 20 carbon atoms Can be:
  • R c and R d are the same as or different from each other. Each independently hydrogen. Cuo alkyl, d-10 alkoxy, C 2 - 20 alkoxyalkyl. C 6 - 20 aryl. C 6 - 10 aryloxy, C 2 - 20 alkenyl, C 7 - 40 alkylaryl, C 7 - 40 arylalkyl. C 8 - 40 arylalkenyl. Or C 2 - 10 alkynyl;
  • Z 2 is a halogen atom, C o alkyl, C 2 - 10 alkenyl.
  • B 1 is carbon that crosslinks the Cp3 ⁇ 4 c ring and the Cp 4 R d ring or crosslinks one Cp 4 R d ring to M 2 .
  • ni 1 or 0
  • M 3 is a Group 4 transition metal
  • Cp 5 is cyclopentadienyl. Indenyl. And 4, 5.6, 7—tetrahydro-1-indenyl and fluorenyl radicals. They may be substituted with hydrocarbons having 1 to 20 carbon atoms; ,
  • R e is hydrogen. Alkyl. Ci- 10 alkoxy. C 2 - 20 alkoxyalkyl, C 6 - 20 aryl. C 6 - 10 aryloxy, C 2 - 20 alkenyl, C 7 - 40 alkylaryl. C 7 — 40 arylalkyl. C 8 - 40 arylalkenyl. Or C 2 - 10 alkynyl;
  • Z 3 is a halogen atom.
  • B 2 is carbon, germanium, silicon which crosslinks the Cp 5 R e ring and J. At least one or a combination of phosphorus or nitrogen atom containing radicals;
  • J is NR f .
  • PR f and S is any one selected from the group consisting of, R f is d-20 alkyl, aryl. Substituted alkyl or substituted aryl.
  • R f is d-20 alkyl, aryl. Substituted alkyl or substituted aryl.
  • substituents of Chemical Formulas 1, 3, 4, and 5 will be described in more detail.
  • the C 2 - to 20 alkenyl includes a linear or branched alkenyl.
  • the C 6 - 20 aryl group is a. Mono- or condensed aryl; Specifically phenyl. Biphenyl, naphthyl. Phenanthrenyl, fluorenyl and the like. It is not limited only to this.
  • L of the general formula (1) is C 4 - 8 straight or branched chain alkylene of one to more preferred, but is not limited thereto only. Also.
  • the alkylene group is d-20 alkyl. -2o C 2 alkenyl, or C 6 - can be unsubstituted or substituted with 20 aryl. Also.
  • a in Formula 1 is hydrogen methyl, ethyl. Propyl, isopropyl, n-butyl. tert-butyl. Methoxymethyl. tert-butoxymethyl. 1-ethoxyethyl, 1-methyl-1-methoxyethyl. Tetrahydropyranyl. Or tetrahydrofuranyl, but is not limited thereto.
  • B of Formula 1 is preferably silicon, but is not limited thereto.
  • the first metallocene compound of Formula 1 forms a structure in which indeno indole derivatives and / or fluorene derivatives are crosslinked by a bridge.
  • specific examples of the compound represented by Chemical Formula 2b may include a compound represented by one of the following structural formulas. This invention is not limited only to this.
  • specific examples of the compound represented by Formula 2c may include a compound represented by one of the following structural formulas,
  • specific examples of the first metallocene compound represented by Chemical Formula 1 may include a compound represented by one of the following structural formulas. Only this
  • the first metallocene compound of Chemical Formula 1 may have excellent activity and may combine high molecular weight ethylene / alpha-lepin copolymer. Especially. High polymerization activity even when used on a carrier. Ultra high molecular weight ethylene / alpha-levine copolymers can be prepared. In addition, even in the case of carrying out a polymerization reaction including hydrogen in order to produce an ethylene / alpha olefin copolymer having a high molecular weight and a wide molecular weight distribution.
  • the first metallocene compound of formula 1 according to the present invention exhibits low hydrogen reaction properties and is still capable of polymerizing ultra high molecular weight ethylene / alpha-lepin copolymers with high activity. therefore.
  • an ethylene / alpha-olefin copolymer can be produced that satisfies high molecular weight properties without degrading the activity, thus including a high molecular weight of ethylene / alpha-olefin copolymer.
  • Ethylene / alpha-lepine copolymers having a distribution can be readily prepared.
  • the first metallocene compound of Chemical Formula 1 is prepared as a ligand compound by connecting an indenoindole derivative and / or fluorene derivative with a bridge compound. It can be obtained by adding a metal precursor compound to perform metallization (met all at ion). The manufacturing method of the said 1st metallocene compound is concretely demonstrated to the Example mentioned later.
  • Examples of the compound represented by Formula 3 include one of the following structural formulas
  • the compound represented by Formula 5 may be, for example, a compound represented by the following structural formula, but is not limited thereto.
  • the metallocene catalyst used in the present invention is at least one of the low U metallocene compounds represented by Formula 1, and at least one second metallocene compound selected from the compounds represented by Formulas 3 to 5.
  • the above may be supported on the carrier together with the cocatalyst compound.
  • the supported metallocene catalyst may induce the production of LCB (Long Cha in Br anch) in the ethylene / alpha -olefin copolymer prepared /. In the supported metallocene catalyst according to the present invention.
  • the cocatalyst supported on the carrier for activating the metallocene compound is not particularly limited as long as it is an organometallic compound including a Group 13 metal, and can be used when polymerizing an olefin under a general metallocene catalyst.
  • the cocatalyst compound may include at least one of an aluminum-containing first cocatalyst of Formula 6 and a borate-based second cocatalyst of Formula 7 below.
  • each R 18 is independently a halogen, halogen substituted or unsubstituted hydrocarbyl group having 1 to 20 carbon atoms.
  • k is an integer of 2 or more
  • T + is a + monovalent polyatomic ion
  • B is boron in +3 oxidation state
  • G is independently hydride, dialkylamido, and halide.
  • G has less than 20 carbons. In less than one position G is a halide.
  • the molecular weight distribution of the final produced polyolefin is more uniform.
  • the polymerization activity can be improved.
  • the first cocatalyst of Chemical Formula 6 may be linear, circular or reticulated It may be an alkylaluminoxane compound having a repeating unit bonded thereto, and specific examples of such a first cocatalyst include methylaluminoxane (MA0). Ethyl aluminoxane, isobutyl aluminoxane, butyl aluminoxane, etc. are mentioned.
  • the second cocatalyst of Chemical Formula 7 is trisubstituted ammonium salt, or dialkyl ammonium salt. It may be a borate-based compound in the form of trisubstituted phosphonium salt. Specific examples of such a second cocatalyst include trimetalammonium tetraphenylborate, methyldioctadecylammonium tetraphenylborate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri (n-butyl) ammonium tetraphenylborate , Methyltetracyclocyclodecylammonium tetraphenylborate.
  • Borate compounds in the form of trisubstituted phosphonium salts such as methyldioctadecylphosphonium tetrakis (pentafluorophenyl) borate or tri (2,6-dimethylphenyl) phosphonium tetrakis (pentafluorophenyl) borate Can be mentioned.
  • the mass ratio of the total transition metal to the carrier included in the first metallocene compound represented by Formula 1 or the second metallocene compound represented by Formulas 3 to 5 may be from 1:10 to 1: 1,000. When the carrier and the metallocene compound are included in the mass ratio, an optimal shape can be exhibited. Also.
  • the mass ratio of cocatalyst compound to carrier may be from 1: 1 to 1: 100.
  • a carrier containing a hydroxyl group on the surface can be used. Preferably dried to remove moisture from the surface.
  • a carrier having a highly reactive hydroxyl group and a siloxane group can be used.
  • silica dried at high temperature, silica-alumina, silica-magnesia and the like can be used, and these are usually Na 2 0, K 2 CO 3. BaS0 4 .
  • oxides and carbonates such as Mg (N0 3 ) 2 . Sulfate, and nitrate components.
  • Drying degree of the carrier is preferably 200 to 800 ° C., more preferably 300 to 600 '. Most preferred is 300 to 400 r.
  • the drying temperature of the carrier is less than 200 ° C, there is too much moisture, and the surface moisture and cocatalysts react. If it exceeds 800 ° C, pores on the surface of the carrier It is not preferable because the surface area is reduced as they are combined, and the amount of hydroxy groups on the surface is reduced and only siloxane groups remain, thereby reducing the reaction space with the promoter.
  • the amount of hydroxy groups on the surface of the carrier is preferably from 0.1 to 10 kPa / g, more preferably from 0.5 to 5 mnio l / g.
  • the amount of the hydroxyl group on the surface of the carrier is a method and conditions for producing the carrier or dry conditions. For example temperature, time. It can be adjusted by vacuum or spray drying or the like. If the amount of the hydroxy group is less than 0.1 dl ol / g, there is little support for the cocatalyst, and if it exceeds 10 dl ol / g, it may be due to moisture other than the hydroxyl group present on the surface of the carrier particle. It is not desirable because there is. Meanwhile. Ethylene / alpha olefin copolymers according to the present invention. In the presence of the supported metallocene catalyst described above, it can be prepared by polymerizing ethylene and alpha—lepin.
  • the polymerization reaction can be carried out by copolymerizing ethylene and alpha-olefin using one continuous slurry polymerization reaction, loop slurry reaction, gas phase reaction or solution reaction.
  • the polymerization temperature may be about 25 to about 500 ° C, preferably about 25 to about 200 ° C, more preferably about 50 to about 150 C C.
  • the polymerization pressure may be about 1 to about 100 gf / OT, preferably about 1 to about 50 Kgf / cu, more preferably about 5 to about 30 Kgf / oif.
  • the supported metallocene catalyst is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, such as pentane and nucleic acid.
  • Aromatic hydrocarbon solvents such as benzene, dichloromethane, chlorobenzene and The solution may be dissolved or diluted in a hydrocarbon solvent substituted with the same chlorine atom.
  • the solvent used herein is preferably used by removing a small amount of water or air that acts as a catalyst poison by treating a small amount of alkyl aluminum, and may be carried out by further using a promoter.
  • Ethylene / alpha-lephine copolymer according to the present invention is a combination of the catalyst of formula 3 to 5 to polymerize low molecular weight polymer chain and the catalyst of formula 1 to mainly polymerize high molecular weight chain, ethylene and It is prepared by copolymerizing alpha-lepinin monomer. Due to the interaction of the two or more catalysts, a polymer can be obtained in which the molecular weight distribution is wide and the polymer chains in the high molecular weight region are contained in a higher content. As a result, the ethylene / alpha-olefin co-polymer is. For example, it can exhibit a molecular weight distribution curve as shown in FIG. It can have a high Mp value. In addition, as shown in Figure 2, having a high Norma l St Ress value, it can be preferably applied to the production of hollow molded articles such as fuel tanks. ⁇ Effects of the Invention ⁇
  • the ethylene / alpha-olepin copolymer according to the present invention has a high Mp value and excellent die swelling properties, and thus can be preferably applied to the manufacture of a boost molded article such as a fuel tank.
  • Figure 2 shows the Norma l St ress measurement results of the polymer prepared in Comparative Examples and Examples of the present invention.
  • reaction solution was filtered to remove LiCl. Of filtrate Toluene was removed by drying in vacuo and the nucleic acid was added and sonicat m for 1 hour. The slurry was filtered to give 6 g of a dark violet metallocene compound (Mw 758.02, 7.92 mmol, yield 66 mol), and two isomers were observed in 1 H-NMR.
  • T-Buty)-(CH 2 ) 6 -Cl was prepared by the method shown in Tetrahedron Lett. 2951 (1988) using 6-chlorohexanol. NaCp was reacted to give t-Buty HCH 2 ) 6 -C 5 H 5 (yield 60%, bp 80 ° CI 0.1 niinHg).
  • t-Butyl-0- (CH 2 ) 6 -C 5 H 5 was dissolved in THF at -78 ° C, and normal butyllithium (n—BuLi) was slowly added, and then warmed to room temperature.
  • I was.
  • a ZrCl 4 (THF) 2 (1.70 g, 4.50 mmol) / THF (30 mL) standing suspending detected (suspension) solution of a lithium salt (lithium salt) synthesized based on the solution in the solution was again -78 ° C 'slowly Added and reacted further for 6 hours at room temperature.
  • step 1 Put 10 g of the dried silica of step 1 into a glass reactor. Add 100 niL of toluene and stir. 50 mL of 10 wt% methylaluminoxane (MAO) / luene solution was added thereto, followed by slow reaction at 40 ° C. with stirring. Thereafter, the mixture was washed with a sufficient amount of toluene to remove unreacted aluminum compound, and reduced pressure to remove remaining toluene. 100 mL of toluene was added again, and then 0.25 I ⁇ ol of the metallocene catalyst prepared in Preparation Example 1 was dissolved in toluene and added together to react for 1 hour. After the reaction is over.
  • MAO methylaluminoxane
  • each of the supported catalysts prepared in Examples and Comparative Examples were quantified in a dry box, and each was placed in a glass bottle of 50 niL, and then sealed with a rubber septum to prepare a catalyst to be taken out of the dry box.
  • the polymerization was carried out in a 2 L metal alloy reaction vessel, which was equipped with a mechanical stirrer and temperature controlled and used at high pressure. Injecting 1 L of nucleic acid and 1-butene (5 mL) containing 1.0 ninio 1 triethylaluminum into the reaction vessel. After each of the supported catalysts prepared above was introduced into the reactor without air contact.
  • MFR 21 .6 / MFR 5 MFR 21 . 6 Melt index (MI, 21.6 kg load) divided by MFR 5 (MI. 5 kg lower).
  • the ⁇ 12 value at the shear rate 1 / s was Nl.
  • the results are shown in Table 1 below.
  • the GPC curve of each co-polymer is shown in Figure 1
  • the results of the measurement of the normal stress (Nl) is shown in Figure 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 에틸렌 /알파-올레핀 공중합체에 관한 것으로, 본 발명에 따른 에틸렌 /알파-올레핀 공중합체는 높은 Mp 값과 우수한 다이 팽윤 특성을 가져, 연료 탱크와 같은 중공 성형품의 제조에 바람직하게 적용될 수 있다.

Description

【명세서】
【발명의 명칭】
중공 성형용 고밀도 폴리에틸렌 공중합체
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2015년 4월 9일자 한국특허 출원번호 제 10-2015- 0050440호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은 중공 성형용 고밀도 폴리에틸텐 공증합체에 관한 것으로, 특히 die swell 특성이 우수한 고밀도 폴리에틸렌 공중합체에 관한 것이다. 【배경기술】
을레핀 중합 촉매계는 지글러 나타 및 메탈로센 촉매계로 분류할 수 있으며, 이 두 가지의 고활성 촉매계는 각각의 특징에 맞게 발전되어 왔다. 지글러 나타 촉매는 50년대 발명된 이래 기존의 상업 프로세스에 널리 적용되어 왔으나. 활성점이 여러 개 흔재하는 다활성점 촉매 (multi-site catalyst)이기 때문에, 증합체의 분자량 분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다. 한편, 메탈로센 촉매는 전이금속 화합물이 주성분인 주촉매와 알루미늄이 주성분인 유기 금속 화합물인 조촉매의 조합으로 이루어지며 , 이와 같은 촉매는 균일계 착체 촉매로 단일 활성점 촉매 (single-site catalyst)이며. 단일 활성점 특성에 따라 분자량 분포가 좁으며. 공단량체의 조성 분포가 균일한 고분자가 얻어지며, 촉매의 리간드 구조 변형 및 중합 조건의 변경에 따라 고분자의 입체 규칙도, 공중합 특성, 분자량, 결정화도 등을 변화시킬 수 있는 특성을 가지고 있다. 미국특허 등록번호 제 5, 914, 289호에는 각각의 담체에 담지된 메탈로센 촉매를 이용하여 고분자의 분자량 및 분자량 분포를 제어하는 방법이 기재되어 있으나, 담지촉매 제조시 사용된 용매의 양 및 제조시간이 많이 소요되고, 사용되는 메탈로센 촉매를 담체에 각각 담지시켜야 하는 번거로움이 따랐다. 대한민국특허 출원번호 제 10-2003-0012308호에는 담체에 이중핵 메탈로센 촉매와 단일핵 메탈로센 촉매를 활성화제와 함께 담지하여 반응기 내 촉매의 조합을 변화시키며 중합함으로싸 분자량 분포를 제어하는 방안을 개시하고 있다. 그러나. 이러한 방법은 각각의 촉매의 특성을 동시에 구현하기에 한계가 있으며. 또한 완성된 촉매의 담체 성분에서 메탈로센 촉매 부분이 유리되어 반응기에 파울링 ( foul i ng )을 유발하는 단점이 있다. 따라서, 상기한 단점들을 해결하기 위해서 간편하게 활성이 우수한 흔성 담지 메탈로센 촉매를 제조하여 원하는 물성의 올레핀계 증합체를 제조하는 방법에 대한 요구가 계속되고 있다. 한편. 선형 저밀도 폴리에틸렌은 중합촉매를 사용하여 저압에서 에틸렌과 알파 올레핀을 공증합하여 제조되어, 분자량 분포가 좁고 일정한 길이의 단쇄 분지를 가지며, 장쇄 분지가 없는 수지이다. 선형 저밀도 폴리에틸렌 필름은 일반 폴리에틸렌의 특성과 더불어 파단강도와 신율이 높고, 인뎔강도, 낙추충격강도 등이 우수하여 기존의 저밀도 폴리에틸렌이나 고밀도 폴리에틸렌의 적용이 어려운 스트레치 필름. 오버랩 필름 등에의 사용이 증가하고 있다. 그런데, 1—부텐 또는 1-핵센을 공단량체로 사용하는 선형 저밀도 폴리에틸렌은 대부분 단일 기상반응기 또는 단일 루프 슬러리 반웅기에서 제조되며. 1-옥텐 공단량체를 사용하는 공정 대비 생산성은 높으나, 이러한 제품 역시 사용 촉매기술 및 공정기술의 한계로 물성이 1-옥텐 공단량체 사용시보다 크게 열세하고. 분자량 분포가 좁아 .가공성이 블량한 문제가 있다. 이러한 문제의 개선을 위해 많은 노력이 진행되고 있으며 미국특허 등록번호 제 4, 935, 474호에는 2종 또는 그 이상의 메탈로센 화합물이 사용되어 넓은 분자량 분포를 갖는 폴리에틸렌 제조법에 대해 보고되어 있다. 미국특허 등톡번호 제 6,828, 394호에는 공단량체 결합성이 좋은 것과 그렇지 않은 것을 흔합사용해 가공성이 우수하고 특히 필름용에 적합한 폴리에틸렌 제조방법에 대해 보고되어 있다. 또한, 미국특허 등록번호 제 6, 841, 631호. 미국특허 등록번호 제 6.894.128호에는 적어도 2종의 메탈 컴파운드가 사용된 메탈로센계 촉매로 이정 또는 다정 분자량분포를 갖는 폴리에틸렌을 제조하여, 필름. 블로우몰딩, 파이프 등의 용도에 적용이 가능하다고 보고되어 있다. 하지만 이러한 제품들은 가공성은 개선되었으나 단위 입자 내의 분자량별 분산상태가 균일하지 못해 비교적 양호한 압출조건에서도 압출외관이 거칠고 물성이 안정적이지 못한 문제가 있다. 이러한 배경에서 물성과 가공성 간의 균형이 이루어진 보다 우수한 제품의 제조가 끊임없이 요구되고 있으며, 특히 중공 성형을 위하여 다이 팽윤 (die swell) 특성이 우수하고 높은 Mp molecular wei ht of max i mum peak) 값을 가지는 폴리에틸렌 공중합체의 제조가 필요한 상태이다.
【발명의 내용】
【해결하려는 과제】
상기 종래기술의 문제점을 해결하기 위해, 본 발명은 증공 성형을 위하여 다이 팽윤 (die swell) 특성이 우수하고 높은 Mp( molecular weight of ma imum peak) 값을 가지는 폴리에틸렌 공중합체를 제공하고자 한다. 【과제의 해결 수단】
상기 과제를 해결하기 위하여. 본 발명은 하기의 조건을 만족하는 에틸렌 /알파-올레핀 공중합체를 제공한다:
중량 평균 분자량 (g/niol)이 200,000 내지 300, 000이고,
MpCmolecular weight of niaxiniuni peak)가 50 , 000 내지 150.000이고. 하기 관계식 1의 N normal stress) 값이 1.5 이상인 ,
에틸렌 /알파-올레핀 공중합체:
[관계식 1] Nl( normal stress) = Ni( first normal stress ' difference) I SS( shear stress)
상기 식에서,
(제 1 수직 웅력차 계수; first normal stress difference) 및 SS (전단 웅력; shear stress)는 각각 shear rate가 1/s이고 190°C에서 측정한다. 본 발명에 따른 에틸렌 /알파-올레핀 공중합체는, 중공 성형에 유리한 물성을 가지고 있다. 중공 성형 (blow molding)이란, 크게 압출 블로우 , 사출 블로우. 사출 연신 블로우 방법이 있는데, 모두 고분자를 중공 파이프 모양 (패리슨 또는 플랫폼)과 같이 만든 다음 몰드에 위치시키고 공기를 불어 넣어 성형품을 제조하는 공정이다. 이때 공기를 불어 넣었을 때 고분자 중공 파이프가 몰드 쪽으로 잘 연신되어야 하고, 또한 형상을 유지하지 못하고 처지는 현상이 없도록 용융 상태의 물성이 중요하다. 본 발명에서는 이러한 물성을 가질 수 있도록, 이하 설명할 바와 같은 Mp 및 Normal stress 값을 가진다 . 상기 normal stress(Nl)는, 상기 에틸렌 /알파-올레핀 공중합체의 다이 팽윤 (die swell) 물성을 의미한다. 다이 팽윤이란 고분자 수지가 직경이 작은 다이를 통과하였을 때 다이의 직경보다 더 크게 부풀어져서 압출되는 팽창 현상을 의미하는 것으로. 고분자 수지가 받는 힘의 방향에 대하여 직각 방향으로 힘이 발생하는 것에 기인한다. 압출 성형 공정에서는. 고분자의 다이 팽윤 특성이 너무 높으면 성형품의 형상 예측이 어렵고 불량이 발생할 가능성이 높아져 바람직하지 않다. 그러나, 본 발명과 같이 증공 성형에서는, 고분자 중공 파이프가 몰드 쪽으로 잘 연신되어야 하는데, 고분자 수지가 받는 힘의 방향으로 연신되어야 할 뿐만 아니라, 이의 직각 방향으로도 잘 연신되어야 하므로. 중공 성형에 있어서는 다이 팽윤 특성이 우수하여야 한다. 특히, 내부 공간이 넓은 연료 탱크와 같은 중공 성형품을 제조하는 경우에는 다이 팽윤 특성이 보다 중요하게 고려된다. 본 발명에서는 상기 에틸렌 /알파-을레핀 공중합체의 분자량 및 Mp를 조껄하여 높은 NUnormal stress) 값을 가지는 것을 특징으로 한다. 다이 팽윤은 고분자가 받는 압력과 이의 직각 방향으로 받는 압력을 고려하여야 하며 . 본 발명에서는 상기 관계식 1에 따른 N nornial stress) 값으로 다이 팽윤 특성을 평가한다. 상기 관계식 1에서 , N^First Normal Stress Difference) 및 SS (전단 웅력: Shear Stress)는 각각 전단 변형를 (shear rate)가 1/s이고 190°C에서 측정한다. 상기 N1의 측정 방법은. 에틸렌 /알파-을레핀 공증합체에 회전력 (토크)을 주고, 이에 따른 전단 웅력 (shear stress)과. 회전축과 평행 방향의 수직 웅력 (normal stress)를 측정하여 , 상기 관계식 1에 따른 Nl( normal stress) 값을 측정한다. 회전력 및 온도에 따라 N1 값이 달라지기 때문에 , 본 발명에서는 shear rate가 1/s이고 190°C에서 측정하는 것을 기준으로 한다. 본 발명에 따른 에틸렌 /알파ᅳ올레핀 공중합체는, 상기 방법에 의한 N1 값이 1.5 이상이다. 상기 범위의 N1 값을 가짐으로써 , 증공 성형시 고분자 중공 파이프가 몰드 쪽으로 잘 연신되어 연료 탱크와 같이 내부 공간이 넓은 중공 성형품을 제조할 수 있다. 바람직하게는. 상기 N1 값은 1.5 내지 5이다. 또한. 상기 Mp는 상기 에틸렌 /알파-올레핀 공중합체의 GPC 커브를 측정하였을 때 가장 높은 peak를 나타내는 지점의 분자량을 의미하며, 상기 당이 팽윤에 영향을 준다. 특히 . 본 발명에 따른 에틸렌 /알파-올레핀은 연료 탱크와 같은 중공 성형품을 제조하기 위한 것으로. 높은 Mp 값은 중공 성형품의 기계적 물성을 높일 수 있다. 본 발명에 따른 에틸렌 /알파-을레핀 공중합체는. 상기 Mp 값이 50 , 000 내지 150 , 000이다. 상기 범위의 Mp 값을 가짐으로써. 우수한 다이 팽윤 특성과 중공 성형품의 기계적 물성을 향상시킬 수 있다. 바람직하게는, 상기 에틸렌 /알파-올레핀 공중합체의 밀도 (g/«')가 0.930 내지 0.970이고. 보다 바람직하게는 0.940 내지 0.960이다. 바람직하게는, 상기 에틸렌 /알파-을레핀 공중합체의 HLMKASTM D1238에 의거하여 190°C . 21 .6kg 하중에서 측정된 용융 유동 지수)는 1 내지 10 g/10 mi n이고, 보다 바람직하게는 4 내지 8 g/10 min 이다. 바람직하게는, 상기 에틸렌 /알파-올레핀 공중합체의 분자량 분포 (Mw/Mn) 가 1 내지 20으로서, 넓은 분자량 분포를 보여 우수한 가공성을 나타낼 수 있다. 본 발명에 따른 에틸렌 /알파-올레핀 공중합체에서. 상기 알파-올레핀 단량체의 구체적인 예로는 프로필렌, 1-부텐, 1—펜텐, 4-메틸 -1-펜텐, 1- 핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센. 1-도데센, 1-테트라데센. 1- 핵사데센, 1-아이토센 등이 있으며, 이들을 2종 이상 사용할 수도 있다. 바람직하게는. 상기 알파-올레핀 단량체로 1-부텐을 사용할 수 있다. 상기 에틸렌 /알파-올레핀 공중합체에서, 상기 공단량체인 알파- 올레핀의 함량은 특별히 제한되는 것은 아니며, 공중합체의 용도. 목적 등에 다라 적절하게 선택할 수 있다. 보다 구체적으로는 0 초과 99 몰% 이하일 수 있다. 상기와 같은 에틸렌 /알파-올레핀 공중합체는 메탈로센 촉매를 이용하여 제조할 수 있다. 상기 사용할 수 있는 메탈로센 촉매는 하기 화학식 1로 표시되는 제 1 메탈로센 화합물 1종 이상; 및 하기 화학식 3 내지 5로 표시되는 화합물 중에서 선택되는 제 2 메탈로센 화합물 1종 이상의 흔합물일 수 있다. [
Figure imgf000009_0001
상기 화학식 1에서,
A는 수소. 할로겐, Cuo 알킬, C2-20 알케닐, C620 아릴, C7-20 알킬아릴, C7-20 아릴알킬. 알콕시. C2-20 알콕시알킬. C3-20 헤테로시클로알킬, 또는 C5-20 헤테로아릴이고;
D는 -S- , -N(R)- 또는 -Si (RKR ' )-이고, 여기서 R 및 R '은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, d-20 알킬. C2-20 알케닐, 또는 C6-20 아릴이고;
L은 d-κ) 직쇄 또는 분지쇄 알킬렌이고;
B는 탄소, 실리콘 또는 게르마늄이고;
Q는 수소. 할로겐. d— 20 알킬, C2-20 알케닐, C6-20 아릴, C7-20 알킬아릴. 또는 c7-20 아릴알킬이고;
M은 4족 전이금속이며;
X1 및 X2는 서로 동일하거나 상이하고. 각각 독립적으로 할로겐, Cwo 알킬 , C2-20 알케닐. C6-20 아릴 , 니트로 , 아미도. d-20 알킬실릴. d-20 알콕시 또는 d-20 술폰네이트이고;
C1 및 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식
2a , 화학식 2b 또는 하기 화학식 2c 중 하나로 표시되고. 단. C1 및 C2가 모두 화학식 2c인 경우는 제외하며 :
[
Figure imgf000009_0002
[화학식 2b]
Figure imgf000010_0001
Figure imgf000010_0002
상기 화학식 2a , 2b 및 2c에서, 내지 R17 및 I 내지 R9 '는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, d-20 알킬, C2-20 알케닐, 알킬실릴, d-20 실릴알킬, d-20 알콕시실릴. d-20 알콕시, C.6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이며, 상기 R10 내지 R17 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고;
[화학식 3]
(Cp1Ra)n(Cp2Rb)M1Z13-n
상기 화학식 3에서.
M1은 4족 전이금속이고;
Cp1 및 Cp2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디엔닐. 인데닐. 4 , 5 , 6 , 7-테트라하이드로 -1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며:
R3 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, d-20 알킬. d-ΙΟ 알콕시. C2-20 알콕시알킬, C6-20 아릴, C6-10 아릴옥시, C2-20 알케닐, C7-40 알킬아릴, C7-40 아릴알킬. C8-4o 아릴알케닐, 또는 C2-10 알키닐이고;
Z1은 할로겐 원자, d-20 알킬, C2-10 알케닐. C740 알킬아릴. C7-40 아릴알킬 . C6-20 아릴 . 치환되거나 치환되지 않은 알킬리덴, 치환되거나 치환되지 않은 아미노. C2-20 알킬알콕시. 또는 C고 40 아릴알콕시이고:
n은 1 또는 0이고:
[화학식 4] 상기 화학식 4에서 .
M2는 4족 전이 금속이고;
. Cp3 및 Cp4는 서로 동일하거나 상이하고. '각각 독립적으로 시클로펜타디에닐, 인데닐, 4 , 5 , 6. 7-테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며:
Rc 및 Rd는 서로 동일하거나 상이하고. 각각 독립적으로 수소. Cuo 알킬, d—10 알콕시, C2-20 알콕시알킬. C6-20 아릴. C6-10 아릴옥시, C220 알케닐, C7-40 알킬아릴, C7-40 아릴알킬. C8-40 아릴알케닐. 또는 C2-10 알키닐이고;
Z2는 할로겐 원자, C o 알킬, C2-10 알케닐. C7-40 알킬아릴. C7-40 아릴알킬, C6-20 아릴. 치환되거나 치환되지 않은 d-20 알킬리덴, 치환되거나 치환되지 않은 아미노. C2-20 알킬알콕시. 또는 C7-40 아릴알콕시이고:
B1은 Cp¾c 고리와 Cp4Rd 고리를 가교 결합시키거나, 하나의 Cp4Rd 고리를 M2에 가교 결합시키는, 탄소. 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼 증 하나 이상 또는 이들의 조합이고;
ni은 1 또는 0이고;
[화학식 5]
(Cp5Re )B2( J )M3Z3 2
상기 화학식 5에서,
M3은 4족 전이 금속이고;
Cp5는 시클로펜타디에닐. 인데닐. 4 , 5.6 , 7—테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선텍된 어느 하나이고. 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; ,
Re는 수소. 알킬. Ci-10 알콕시. C2-20 알콕시알킬, C6-20 아릴. C6- 10 아릴옥시, C2-20 알케닐, C7-40 알킬아릴. C740 아릴알킬. C8-40 아릴알케닐. 또는 C2-10 알키닐이고;
Z3은 할로겐 원자. 알킬, C2-10 알케닐. C7-40 알킬아릴, C7-40 아릴알킬, C6-20 아릴. 치환되거나 치환되지 않은 알킬리덴. 치환되거나 치환되지 않은 아미노, C2-20 알킬알콕시, 또는 C7-40 아릴알콕시이고;
B2는 Cp5Re 고리와 J를 가교 결합시키는 탄소, 게르마늄, 규소. 인 또는 질소 원자 함유 라디칼중 하나 이상 또는 이들의 조합이고;
J는 NRf. 0, PRf 및 S로 이루어진 군에서 선택된 어느 하나이고, 상기 Rf는 d-20 알킬 , 아릴 . 치환된 알킬 또는 치환된 아릴이다. 상기 화학식 1, 3, 4 및 5의 치환기들을 보다 구체적으로 설명하면 하기와 같다. 상기 C o 알킬로는. 직쇄 또는 분지쇄의 알킬을 포함하고, 구체적으로 메틸 , 에틸 , 프로필 , 이소프로필 , n—부틸 . tert-부틸 . 펜틸 . 핵실, 헵틸. 옥틸 등을 들 수 있으나. 이에만 한정되는 것은 아니다. 상기 C2-20 알케닐로는, 직쇄 또는 분지쇄의 알케닐을 포함하고. 구체적으로 알릴, 에테닐, 프로페닐, 부테닐. 펜테닐 등을 들 수 있으나. 이에만 한정되는 것은 아니다. 상기 C6-20 아릴로는. 단환 또는 축합환의 아릴을 포함하고. 구체적으로 페닐. 비페닐, 나프틸. 페난트레닐, 플루오레닐 등을 들 수 있으나. 이에만 한정되는 것은 아니다. 상기 C5-20 헤테로아릴로는, 단환 또는 축합환의 헤테로아릴을 포함하고, 카바졸릴, 피리딜. 퀴놀린. 이소퀴놀린. 티오페닐. 퓨라닐, 이미다졸, 옥사졸릴, 티아졸릴, 트리아진, 테트라하이드로피라닐. 테트라하이드로퓨라닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다. 상기 C O 알콕시로는. 메톡시, 에록시, 페닐옥시, 시클로핵실옥入' 등을 돌 수 있으나. 이에만 한정되는 것은 아니다. 상기 4족 전이금속으로는 티타늄, 지르코늄, 하프늄 등을 들 수 있으나. 이에만 한정되는 것은 아니다. 상기 화학식 2a. 2b 및 2c의 내지 R17 및 I 내지 I 는 각각 독립적으로 수소. 메틸, 에틸. 프로필. 이소프로필, n-부틸. tert-부틸, 펜틸. 핵실, 헵틸, 옥틸, 페닐, 할로겐. 트리메틸실릴, 트리에틸실릴, 트리프로필실릴, 트리부틸실릴. 트리이소프로필실릴. 트리메틸실릴메틸, 메톡시. 또는 에톡시인 것이 더욱 바람직하나. 이에만 한정되는 것은 아니다. 상기 화학식 1의 L은 C4-8 직쇄 또는 분지쇄 알킬렌인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다. 또한. 상기 알킬렌기는 d-20 알킬. C2-2o 알케닐, 또는 C6-20 아릴로 치환 또는 비치환될 수 있다. 또한. 상기 화학식 1의 A는 수소 메틸, 에틸. 프로필, 이소프로필, n-부틸. tert-부틸. 메톡시메틸. tert-부톡시메틸. 1-에톡시에틸, 1-메틸- 1-메톡시에틸. 테트라하이드로피라닐. 또는 테트라하이드로퓨라닐인 것이 바람직하나, 이에만 한정되는 것은 아니다. 또한, 상기 화학식 1의 B는 실리콘인 것이 바람직하나, 이에만 한정되는 것은 아니다. 상기 화학식 1의 제 1 메탈로센 화합물은 인데노 인돌 (indeno indole) 유도체 및 /또는 플루오렌 (fluorene) 유도체가 브릿지에 의해 가교된 구조를 형성하며. 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써 담체의 루이스 산 특성을 지니는 표면에 담지되어 담지 시에도 높은 증합 활성을 나타낸다. 또한 전자적으로 풍부한 인데노 인돌기 및 /또는 플루오렌기를 포함함에 따라 활성이 높고, 적절한 입체 장애와 리간드의 전자적인 효과로 인해 수소 반웅성이 낮을 뿐 아니라 수소가 존재하는 상황에서도 높은 활성이 유지된다. 또한 인데노 인돌 유도체의 질소 원자가 자라나는 고분자 사슬의 bet a-hydrogen을 수소결합에 의해 안정화시켜 bet a-hydrogen e l ninat i on을 억제하여 초고분자량의 올레핀계 중합체를 중합할 수 있다. 본 발명의 일 실시예에 따르면. 상기 화학식 2a로 표시되는 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나. 본 발명
Figure imgf000014_0001
본 발명의 일 실시예에 따르면, 상기 화학식 2b로 표시되는 화합물의 구체적인 예로는 하기 구조식 들 중 하나로 표시되는 화합물을 들 수 있으나. 본 발명이 이에만 한정되는 것은 아니다.
Figure imgf000015_0001
본 발명의 일 실시예에 따르면 , 상기 화학식 2c로 표시되는 화합물의 구체적인 예로는 하기 구조식 들 중 하나로 표시되는 화합물을 들 수 있으나,
Figure imgf000015_0002
Figure imgf000016_0001
본 발명의 일 실시예에 따르면 , 상기 화학식 1로 표시되는 제 1 메탈로센 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나. 이에만
Figure imgf000016_0002
Figure imgf000017_0001
 상기 화학식 1의 제 1 메탈로센 화합물은 활성이 우수하고 고분자량의 에틸렌 /알파-을레핀 공중합체를 증합할 수 있다. 특히. 담체에 담지하여 사용할 경우에도 높은 중합 활성을 나타내어. 초고분자량의 에틸렌 /알파- 을레핀 공중합체를 제조할 수 있다. 또한, 고분자량과 동시에 넓은 분자량 분포를 갖는 에틸렌 /알파ᅳ 올레핀 공중합체를 제조하기 위해 수소를 포함하여 중합 반응을 진행하는 경우에도. 본 발명에 따른 화학식 1의 제 1 메탈로센 화합물은 낮은 수소 반웅성을 나타내어 여전히 높은 활성으로 초고분자량의 에틸렌 /알파-을레핀 공중합체의 중합이 가능하다. 따라서. 다른 특성을 갖는 촉매와 혼성으로 사용하는 경우에도 활성의 저하 없이 고분자량의 특성을 만족시키는 에틸렌 /알파-올레핀 공중합체를 제조할 수 있어, 고분자의 에틸렌 /알파- 올레핀 공중합체를 포함하면서 넓은 분자량 분포를 갖는 에틸렌 /알파- 을레핀 공중합체를 용이하게 제조할 수 있다. 상기 화학식 1의 제 1 메탈로센 화합물은 인데노인돌 유도체 및 /또는 플루오렌 유도체를 브릿지 화합물로 연결하여 리간드 화합물로 제조한 다음. 금속 전구체 화합물을 투입하여 메탈레이션 (met a l l at ion)을 수행함으로써 수득될 수 있다. 상기 제 1 메탈로센 화합물의 제조방법은 후술하는 실시예에 구체화하여 설명한다. 상기 화학식 3으로 표시되는 화합물로는 예를 들어 하기 구조식들 중 하나로
Figure imgf000018_0001
Figure imgf000019_0001
Figure imgf000019_0002
상기 화학식 4에서, ill이 1인 경우는 Cp3Rc 고리와 Cp4Rd 고리 또는 Cp4Rd 고리와 M2가 B1에 의해 가교 결합된 브릿지 화합물 구조인 것을 의미하며 , in이 0인 경우는 비가교 화합물 구조를 의미한다. 상기 화학식 4로 표시되는 화합물로는 예를 들어 하기 구조식 하나로
Figure imgf000019_0003
Figure imgf000020_0001
또한, 화학식 5로 표시되는 화합물로는 예를 들어 하기 구조식으로 표시되는 화합물일 수 있으나, 이에만 한정되는 것은 아니다.
Figure imgf000020_0002
본 발명에서 사용되는 메탈로센 촉매는 상기 화학식 1로 표시되는 저 U 메탈로센 화합물의 1종 이상, 및 상기 화학식 3 내지 화학식 5로 표시되는 화합물 중 선택되는 제 2 메탈로센 화합물의 1종 이상을 조촉매 화합물과 함께 담체에 담지한 것일 수 있다. 또한, 상기 담지 메탈로센 촉매는 /제조되는 에틸렌 /알파-올레핀 공중합체에서 LCB ( Long Cha i n Br anch )의 생성을 유도할 수 있다. 본 발명에 따른 담지 메탈로센 촉매에 있어서. 상기 메탈로센 화합물을 활성화하기 위하여 담체에 함께 담지되는 조촉매로는 13족 금속을 포함하는 유기 금속 화합물로서, 일반적인 메탈로센 촉매 하에 올레핀을 중합할 때 사용될 수 있는 것이라면 특별히 한정되는 것은 아니다. 구체적으로. 상기 조촉매 화합물은 하기 화학식 6의 알루미늄 함유 제 1 조촉매, 및 하기 화학식 7의 보레이트계 제 2 조촉매 중 하나 이상을 포함할 수 있다.
[화학식 6]
- [Al (R18)-0- ]k- 화학식 6에서, R18은 각각 독립적으로 할로겐 , 할로겐 치환 또는 비치환된 탄소수 1 내지 20의 하이드로카빌기이고. k는 2 이상의 정수이고, [화학식 7] 화학식 7에서, T+은 +1가의 다원자 이온이고, B는 +3 산화 상태의 붕소이고, G는 각각 독립적으로 하이드라이드, 디알킬아미도, 할라이드. 알콕사이드, 아릴옥사이드, 하이드로카빌, 할로카빌 및 할로-치환된 하이드로카빌로 이루어진 군에서 선택되고. 상기 G는 20개 이하의 탄소를 가지나. 단 하나 이하의 위치에서 G는 할라이드이다.
이러한 제 1 및 제 2 조촉매의 사용에 의해, 최종 제조된 폴리을레핀의 분자량 분포가 보다 균일하게 되면서 . 중합 활성이 향상될 수 있다.
상기 화학식 6의 제 1 조촉매는 선형, 원형 또는 망상형으로 반복단위가 결합된 알킬알루미녹산계 화합물로 될 수 있고, 이러한 제 1 조촉매의 구체적인 예로는, 메틸알루미녹산 (MA0). 에틸알루미녹산, 이소부틸알루미녹산 또는 부틸알루미녹산 등을 들 수 있다.
또한, 상기 화학식 7의 제 2 조촉매는 삼치환된 암모늄염, 또는 디알킬 암모늄염. 삼치환된 포스포늄염 형태의 보레이트계 화합물로 될 수 있다. 이러한 제 2 조촉매의 구체적인 예로는, 트리메탈암모늄 테트라페닐보레이트, 메틸디옥타데실암모늄 테트라페닐보레이트, 트리에틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리 (n-부틸)암모늄 테트라페닐보레이트, 메틸테트라데사이클로옥타데실암모늄 테트라페닐보레이트. Ν,Ν一 디메틸아닐늄 테트라페닐보레이트. Ν.Ν-디에틸아닐늄 테트라페닐보레이트, Ν.Ν-디메틸 (2, 4, 6-트리메틸아닐늄)테트라페닐보레이트, 트리메틸암모늄 테트라키스 (펜타플로오로페닐)보레이트, 메틸디테트라데실암모늄 테트라키스 (펜타페닐)보레이트, 메틸디옥타데실암모늄 테트라키스 (펜타플루오로페닐)보레이트. 툐리에틸암모늄. 테트라키스 (펜타플루오로페닐)보레이트,
트리프로필암모늄테트라키스 (펜타프루오로페닐)보레이트 , 트리 (ηᅳ 부틸)암모늄 테트라키스 (펜타플루오로페닐 )보레이트, 트리 (2급- 부틸)암모늄테트라키스 (펜타플루오로페닐)보레이트, Ν.Ν-디메틸아닐늄 테트라키스 (펜타플루오로페닐)보레이트, Ν.Ν- 디에틸아닐늄테트라키스 (펜타플루오로페닐)보레이트, Ν, Ν-디메틸 (2,4,6- 트리메틸아닐늄)테트라키스 (펜타플루오로페닐)보레이트 ,
트리메틸암모늄테트라키스 (2, 3, 4, 6-테트라플루오로페닐)보레이트,
트리에틸암모늄 테트라키스 ( 2 , 3 , 4 , 6-테트라플루오로페닐)보레이트 , 트리프로필암모늄 테트라키스 (2, 3, 4.6-테트라플루오로페닐)보레이트, 트리 (η-부틸 )암모늄 테트라키스 (2 , 3 , 4 , 6- ,테트라플루오로페닐 )보레이트 , 디메틸 (t-부틸)암모늄 테트라키스 (2, 3, 4, 6—테트라플루오로페닐)보레이트, N.N-디메틸아닐늄 테트라키스 (2.3, 4, 6—테트라플루오로페닐)보레이트, Ν,Ν- 디에틸아닐늄 테트라키스 (2, 3, 4, 6-테트라플루오로페닐)보레이트 또는 Ν.Ν- 디메틸 -(2, 4, 6-트리메틸아닐늄)테트라키스 -(2, 3,4,6- 테트라플루오로페닐)보레이트 등의 삼치환된 암모늄염 형태의 보레이트계 화합물; 디옥타데실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 디테트라데실암모늄 테트라키스 (펜타플루오로페닐)보레이트 또는 디사이클로핵실암모늄 테트라키스 (펜타플루오로페닐)보레이트 등의 디알킬암모늄염 형태의 보레이트계 화합물; 또는 트리페닐포스포늄 테트라키스 (펜타플루오로페닐)보레이트. 메틸디옥타데실포스포늄 테트라키스 (펜타플루오로페닐)보레이트 또는 트리 ( 2 , 6-디메틸페닐)포스포늄 테트라키스 (펜타플루오로페닐)보레이트 등의 삼치환된 포스포늄염 형태의 보레이트계 화합물 등을 들 수 있다. 본 발명에 따른 담지 메탈로센 촉매에 있어서. 화학식 1로 표시되는 제 1 메탈로센 화합물, 또는 화학식 3 내지 5로 표시되는 제 2 메탈로센 화합물에 포함되는 전체 전이금속 대 담체의 질량비는 1 : 10 내지 1 : 1 .000 일 수 있다. 상기 질량비로 담체 및 메탈로센 화합물을 포함할 때, 최적의 형상을 나타낼 수 있다. 또한. 조촉매 화합물 대 담체의 질량비는 1 : 1 내지 1 : 100 일 수 있다. 본 발명에 따른 담지 메탈로센 촉매에 있어서, 상기 담체로는 표면에 하이드록시기를 함유하는 담체를 사용할 수 있으며. 바람직하게는 건조되어 표면에 수분이 제거된. 반응성이 큰 하이드록시기와 실록산기를 가지고 있는 담체를 사용할 수 있다. 예컨대, 고온에서 건조된 실리카, 실리카 -알루미나, 및 실리카- 마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na20 , K2CO3. BaS04. 및 Mg(N03)2 등의 산화물, 탄산염. 황산염, 및 질산염 성분을 함유할 수 있다. 상기 담체의 건조 은도는 200 내지 800 °C가 바람직하고, 300 내지 600 '가 더욱 바람직하며. 300 내지 400 r가 가장 바람직하다. 상기 담체의 건조 온도가 200°C 미만인 경우 수분이 너무 많아서 표면의 수분과 조촉매가 반웅하게 되고. 800°C를 초과하는 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 줄어들며 , 또한 표면에 하이드록시기가 많이 없어지고 실톡산기만 남게 되어 조촉매와의 반웅자리가 감소하기 때문에 바람직하지 않다. 상기 담체 표면의 하이드록시기 양은 0. 1 내지 10 隱 ol /g이 바람직하며, 0.5 내지 5 mnio l /g일 때 더욱 바람직하다. 상기 담체 표면에 있는 하이드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건. 예컨대 온도, 시간. 진공 또는 스프레이 건조 등에 의해 조절할 수 있다. 상기 하이드록시기의 양이 0. 1 隱 ol /g 미만이면 조촉매와의 받웅자리가 적고, 10 隱 ol /g을 초과하면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것일 가능성이 있기 때문에 바람직하지 않다. 한편. 본 발명에 따른 에틸렌 /알파ᅳ을레핀 공중합체는. 상술한 담지 메탈로센 촉매의 존재 하에서, 에틸렌 및 알파—을레핀을 중합시킴으로써 제조할 수 있다. 상기 중합 반웅은 하나의 연속식 슬러리 중합 반웅기, 루프 슬러리 반웅기, 기상 반웅기 또는 용액 반웅기를 이용하여 에틸렌 및 알파- 올레핀을 공중합하여 진행할 수 있다. 그리고, 상기 중합 온도는 약 25 내지 약 500 °C , 바람직하게는 약 25 내지 약 200 °C , 보다 바람직하게는 약 50 내지 약 150 CC일 수 있다. 또한 . 중합 압력은 약 1 내지 약 100 gf/OT , 바람직하게는 약 1 내지 약 50 Kgf /cu , 보다 바람직하게는 약 5 내지 약 30 Kgf /oif일 수 있다. 상기 담지 메탈로센 촉매는 탄소수 5 내지 12의 지방족 탄화수소 용매 , 예를 들면 펜탄, 핵산. 헵탄, 노난, 데칸, 및 이들의 이성질체와 를루엔. 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입할 수 있다. 여기에 사용되는 용매는 소량의 알킬 알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다. 본 발명에 따른 에틸렌 /알파-을레핀 공중합체는 저분자량의 고분자 쇄를 주로 중합하는 화학식 3 내지 5의 촉매와, 고분자량의 고분자 쇄를 주로 중합하는 화학식 1의 촉매를 함께 사용하여, 에틸렌 및 알파-을레핀 단량체를 공중합하여 제조된다. 이러한 2종 이상의 촉매의 상호 작용으로 인하여, 전체적으로 분자량 분포가 넓으면서도, 고분자량 영역에 있는 고분자 쇄들이 보다 높은 함량으로 포함된 증합체가 얻어질 수 있다. 그 결과, 상기 에틸렌 /알파-올레핀 공증합체는. 예를 들어, 도 1에 도시된 바와 같은 분자량 분포 곡선을 나타낼 수 있으며. 높은 Mp 값을 가질 수 있다. 또한 도 2에 도시된 바와 같이, 높은 Norma l St ress 값을 가져, 연료 탱크와 같은 중공 성형품의 제조에 바람직하게 적용될 수 있다. 【발명의 효과】
본 발명에 따른 에틸렌 /알파-을레핀 공중합체는, 높은 Mp 값과 우수한 다이 팽윤 특성을 가져, 연료 탱크와 같은 증공 성형품의 제조에 바람직하게 적용될 수 있다.
【도면의 간단한 설명】
도 1은, 본 발명의 비교예 및 실시예에서 제조한 중합체의 GPC 커브를 나타낸 것이다.
도 2는, 본 발명의 비교예 및 실시예에서 제조한 중합체의 Norma l St ress 측정 결과를 나타낸 것이다.
【발명을 실시하기 위한 구체적인 내용】 ·
이하. 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐. 이에 의해 본 발명의 내용이 한정되는 것은 아니다. 제조예 1
단계 1) 리간드 화합물의 제조
Fluorene 2 g을 5 niL MTBE, hexane 100 niL에 녹여 2.5 M n-BuLi hexane so kit ion 5.5 niL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. ( 6- ( t e r t -bu t oxy ) hexy 1 ) d i ch 1 or o ( me t hy 1 ) s i 1 ane 3.6 g을 핵산 (hexane) 50 mL에 녹여 dry ice/acetone bath하에서 fluorene— Li 슬러리를 30분 동안 transfer하여 상온에서 밤새 교반하였다. 이와 동시에 5.8— dimethy卜 5,10-dihydroindeno[l,2-b]indole (12 隱 ol, 2.8 g) 또한 THF 60 niL어 1 녹여 2.5M n-BuL i hexane solution 5.5 niL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. fluorene과 (6-(tert- butoxy)hexyl )dichloro(methyl )si lane 과의 반응 용액을' NMR 샘플링하여 반웅 완료를 확인한 후 5.8-d i me t hy 1 -5 , 10-d i hydr o i ndeno [ 1 , 2-b ] i ndo 1 e-L i solution을 dry ice/acetone bath하에서 transfer하였다. 상온에서 밤새 교반하였다. 반응 후 ether/water로 추출 (extract ion)하여 유기층의 잔류수분을 MgS04로 제거 후 리간드 화합물 (Mw 597.90, 12 隱 ol)을 얻었으며 이성질체 (isomer) 두 개가 생성되었음을 1H-NMR에서 확인할 수 있었다.
!H NMR (500 MHz, d6-benzene): -0.30 - -0.18 (3H. d . 0.40 (2H, m). 0.65 1.45 (8H, in). 1.12 (9H, d). 2.36 ~ 2.40 (3H, d), 3.17 (2H, m), 3.41 - 3.43 (3H, d). 4.17 ~ 4.21 (1H, d). 4.34 - 4.38 (1H. d). 6.90 - 7.80 (15H, m) 단계 2) 메탈로센 화합물의 제조
상기 단계 1에서 합성한 리간드 화합물 7.2 g(12 画 ol)을 diethylether 50 mL에 녹여 2.5 M n-BuL i hexane so kit ion 11.5 mᄂ를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 진공 건조하여 갈색 (brown color)의 sticky oil을 얻었다. 를루엔에 녹여 슬러리를 얻었다. ZrCl4(THF)2를 준비하고 를루엔 50 niL를 넣어 슬러리로 준비하였다, ZrCl4(THF)2의 50 mL 를루엔 슬러리를 dry ice/acetone bath에서 transfer하였다. 상온에서 밤새 교반함에 따라 보라색 (violet color)으로 변화하였다. 반웅 용액을 필터하여 LiCl을 제거하였다. 여과액 (filtrate)의 를루엔을 진공 건조하여 제거한 후 핵산을 넣고 1시간 동안 sonicat m하였다. 슬러리를 필터하여 여과된 고체 (filtered solid)인 질은 보라색 (dark violet)의 메탈로센 화합물 6 g(Mw 758.02. 7.92 mmol , yield 66 mol 을 얻었다. 1H-NMR에서 두 개의 isomer가 관찰되었다.
¾ NMR (500 MHz. CDC13): 1.19 (9H, d). 1.71 (3H, d), 1.50 1.70(4H. m), 1.79(2H, m), 1.98 2.19(4H, m). 2.58(3H. s). 3.38 (2H, m), 3.91 (3H. d), 6.66 ~ 7.88 (15H, m) 제조예 2
6一클로로핵사놀 (6-chlorohexanol)을 사용하여 문헌 (Tetrahedron Lett. 2951 (1988))에 제시된 방법으로 t-Buty )-(CH2)6-Cl을 제조하고. 여기에 NaCp를 반응시켜 t-Buty HCH2)6-C5H5를 얻었다 (수율 60%, b.p. 80 °C I 0.1 niinHg ) .
또한, -78°C에서 t-Butyl-0-(CH2)6-C5H5를 THF에 녹이고, 노르말 부틸리튬 (n— BuLi)을 천천히 가한 후, 실온으로 승온시킨 후, 8시간 반웅시켰다. 그 용액을 다시 -78°C '에서 ZrCl4(THF)2(1.70 g, 4.50 mmol) /THF (30 mL)의 서스펜견 (suspension) 용액에 기 합성된 리튬염 (lithium salt) 용액을 천천히 가하고 실온에서 6시간 동안 더 반웅시켰다.
모든 휘발성 물질을 진공 건조하고. 얻어진 오일성 액체 물질에 핵산 (hexane) 용매를 가하여 걸러내었다. 걸러낸 용액을 진공 건조한 후. 핵산을 가해 저온 (-20T?)에서 침전물을 유도하였다. 얻어진 침전물을 저온에서 걸러내어 흰색 고체 형태의 [tBu— 0— (CH2)6-C5H4]2ZrCl2 화합물을 얻었다 (수율 92%).
lH NMR (300 MHz. CDC13): 6.28 (t. J = 2.6 Hz. 2 H), 6.19 (t. J = 2.6 Hz, 2 H), 3.31 (t , 6.6 Hz, 2 H), 2.62 (t . J = 8 Hz), 1.7 - 1.3 (m, 8 H), 1.17 (s, 9 H).
13C NMR (CDCI3): 135.09. 116.66. 112.28. 72.42. 61.52, 30.66, 30.61, 30.14, 29.18. 27.58, 26.00. 실시예: 담지 촉매의 제조
단계 1) 담지체 건조
실리카 (Grace Davison사 제조 SYL0P0L 948)를 400°C의 온도에서 15사간 동안 진공을 가한 상태에서 탈수하였다. 단계 2) 담지 촉매 제조
상기 단계 1의 건조된 실리카 10 g를 유리 반응기에 넣고. 를루엔 100 niL을 추가로 넣고 교반을 한다. 10 wt% 메틸알루미녹산 (MAO)/를루엔 용액을 50 mL를 가하여 40°C에서 교반하며 천천히 반응시켰다. 이 후 충분한 양의 를루엔으로 세척하여 반응하지 않은 알루미늄 화합물을 제거하고, 감압하여 남아 있는 를루엔을 제거하였다. 다시 를루엔 100 mL를 투입한 후, 상기 제조예 1에서 제조된 메탈로센 촉매 0.25 I腦 ol을 를루엔에 녹여 같이 투입하여 1시간 동안 반웅올 시켰다. 반응이 끝난 후. 상기 제조예 2에서 제조된 메탈로센 촉매 0.25 iiimol을 를루엔에 녹여 투입한 후, 1시간 동안 반웅을 추가로 시켰다. 반웅이 끝난 후 , 교반을 멈추고 롤루엔층을 분리제거 후. 아닐리늄 ' 보레이트 (N.N— diniethylani 1 inium t e t r ak i s ( pen t a f 1 uor opheny 1 ) bor a t e , AB) 1.0 mmol을 투입하고 1시간 동안 교반을 시킨 후, 50°C에서 감압하여 를루엔을 제거하여, 담지 촉매를 제조하였다. 비교예
실시예의 단계 1의 건조된 실리카 10 g를 유리 반웅기에 넣고, 를루엔 100 mL을 추가로 넣고 교반하였다. 10 wt% 메틸알루미녹산 (MA0)/를루엔 용액을 50 mL를 가하여 40°C에서 교반하며 천천히 반웅시켰다. 이후 층분한 양의 를루엔으로 세척하여 반웅하지 않은 알루미늄 화합물을 제거하고, 감압하여 남아 있는 를루엔을 제거하였다. 다시 를루엔 100 mL를 투입한 후, 상기 제조예 2에서 제조된 메탈로센 촉매 0.25 隱 ol을 를루엔에 녹여 같이 투입하여 1시간 동안 반웅을 시켰다. 반웅이 끝난 후, 50°C에서 감압하여 를루엔을 제거하여, 담지 촉매를 제조하였다. 실험예
단계 1) 에틸렌 /1-부텐 공중합
상기 실시예 및 비교예에서 제조한 각각의 담지 촉매 50 mg을 드라이 박스에서 정량하여 50 niL의 유리병에 각각 담은 후 고무 격막으로 밀봉하여 드라이 박스에서 꺼내어 주입할 촉매를 준비하였다. 중합은 기계식 교반기가 장착된 온도 조절이 가능하고 고압에서 이용되는 2L 금속 합금 반웅기에서 수행하였다. 상기 반웅기에 1.0 ninio 1 트리에틸알루미늄 (tnethylaluminum)이 들어 있는 핵산 1 L와 1-부텐 (5 mL)을 주입하고. 상기 준비한 각각의 담지 촉매를 반응기에 공기 접촉 없이 투입한 후. 80°C에서 기체 에틸렌 단량체를 9 Kgf/cui의 압력으로 계속적으로 가하면서 1시간 동안 증합하였다. 중합의 종결은 먼저 교반을 멈춘 후 에틸렌을 배기시켜 제거함으로써 완료시켰다. 상기 얻어진 중합체에서 중합 용매를 여과시켜 대부분 제거한 후 80 °C 진공 오븐에서 4시간 동안 건조시켰다. 단계 2) 중합체의 물성 평가
상기 실시예 및 비교예에서 제조된 중합체를 하기의 방법으로 물성을 평가하였다.
1) 밀도: ASTM 1505
2) 용융지수 (MFR, 5 kg/21.6 kg): 측정 온도 190°C . ASTM 1238
3) MFRR(MFR21.6/MFR5): MFR21.6 용융지수 (MI, 21.6kg 하중)를 MFR5(MI. 5kg 하증)으로 나눈 비율이다.
4) Mn, Mw, MWD. GPC 커브: 샘플을 PL-SP260을 이용하여 BHT 0.0125% 포함된 1,2,4—Trichlorobenzene에서 160 °C , 10시간 동안 녹여 전처리하고, PL-GPC220을 이용하여 측정 온도 16( C에서 수 평균분자량. 중량 평균분자량을 측정하였다. 분자량 분포는 중량 평균분자량과 수 평균분자량의 비로 나타내었다. 5) Nl( normal stress): ARES( advanced rheonietric expansion system. TA instrument) 장비를 사용하여, 중합체를 190°C에서 5분 동안 용융 시킨 후. shear rate 0.01/s - 1/s 영역의 rotational test를 진행하였으며. shear rate 1/s에서의 τ 12 값을 Nl으로 하였다. 상기 결과를 하기 표 1에 나타내었다. 또한, 각 공증합체의 GPC 커브를 도 1에 나타내었고, Nl( normal stress) 측정 결과를 도 2에 나타내었다.
【표 1】
Figure imgf000030_0001
상기 표 1 및 도 1에 나타난 바와 같이 . 비교예에 비하여 실시예의 Mp가 보다 고분자량 쪽으로 이동한 것을 확인할 수 있다. 또한. 도 2에 나타난 바와 같이, 비교예에 비하여 실시예의 / 1 12( )의 값이 shear rate가 증가함에 따라 보다 높음올 확인할 수 있었다.

Claims

【특허청구범위】 【청구항 1】 중량 평균 분자량 (g/mol)이 200,000 내지 300, 000이고, Mpdiiolecular weight of maximum peak)가 50.000 내지 150.000이고, 하기 관계식 1의 NKnormal stress) 값이 1.5 이상인 , 에틸렌 /알파-올레핀 공중합체:
[관계식 1]
Nl( normal stress) = Ni( first norma 1 stress difference) I SS( shear stress)
상기 식에서 ,
Ni(First Normal Stress Difference) 및 SS (전단 웅력; Shear Stress)는 각각 Shear rate가 1/s이고 190°C에서 측정한다.
【청구항 2】
제 1항에 있어서 ,
상기 N1 값이 1.5 내지 5인 것을 특징으로 하는,
에틸렌 /알파-을레핀 공중합체.
【청구항 3】
제 1항에 있어서 ,
상기 에틸렌 /알파-올레핀 공중합체의 밀도 (g/cui')가 0.930 내지 0.970인 것을 특징으로 하는,
에틸렌 /알파-을레핀 공증합체.
【청구항 4】
제 1항에 있어서 .
상기 HLMHASTM D1238에 의거하여 190 °C , 2.16kg 하중에서 측정된 용융 유동 지수)는 1 내지 10 g/10 min인 것을 특징으로 하는,
에틸렌 /알파-을레핀 공중합체.
【청구항 5】
제 1항에 있어서 ,
상기 에틸렌 /알파-올레핀 공중합체의 분자량 분포 (Mw/Mn)가 1 내지 20인 것을 특징으로 하는,
에틸렌 /알파-올레핀 공중합체.
[청구항 6】
저 U항에 있어서 ,
상기 알파 -올레핀은. 프로필렌, 1-부텐. 1-펜텐. 4—메틸 -1—펜텐, 1- 핵센ᅳ 1-헵텐, 1-옥텐. 1-데센, 1—운데센, 1-도데센. 1-테트라데센, 1- 핵사데센 및 1-아이토센으로 구성되는 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는,
에틸렌 /알파-올레핀 공중합체. 【청구항 7】
제 1항에 있어서 . 상기 에틸렌 /알파-올레핀 공중합체는 하기 화학식
1로 표시되는 제 1 메탈로센 화합물 1종 이상; 및 하기 화학식 3 내지 5로 표시되는 화합물 중에서 선택되는 제 2 메탈로센 화합물 1종 이상의 존재 하에. 에틸렌 및 알파—올레핀을 중합시킴으로써 제조되는. 에틸텐 /알파- 올레핀 공중합체: "
[
Figure imgf000032_0001
상기 화학식 1에서.
A는 수소, 할로겐. 알킬. C2-20 알케닐. C6-20 아릴. C7-20 알킬아릴 , C7-20 아릴알킬 . d-20 알콕시 , C2-20 알콕시알킬 . C3-20 헤테로시클로알킬, 또는 C5-20 해테로아릴이고:
D는 -0-. -S-, -NCR)- 또는 -Si(RKR')-이고. 여기서 R 및 R'은 서로 동일하거나 상이하고. 각각 독립적으로 수소. 할로겐, 알킬, C2-20 알케닐, 또는 C6-20 아릴이고:
L은 d- K) 직쇄 또는 분지쇄 알킬렌이고:
B는 탄소. 실리콘 또는 게르마늄이고:
Q는 수소. 할로겐, C1-20 알킬. C2-20 알케닐. C6-20 아릴, C7-20 알킬아릴, 또는 C 20 아릴알킬이고:
M은 4족 전이금속이며 :
X1 및 X2는 서로 동일하거나 상이하고. 각각 독립적으로 할로겐, d-20 알킬 . C2-20 알케닐 , C6-20 아릴 . 니트로. 아미도, 알킬실릴 . 알콕시 또는 술폰네이트이고:
C1 및 C2는 서로 동일하거나 상이하고 , 각각 독립적으로 하기 화학식 2a , 화학식 2b 또는 하기 화학식 2c 중 하나로 표시되고, 단. C 1 및 C2가 모두 화학식 2c인 경우는 제외하며 :
[화학식 2a ]
Figure imgf000033_0001
[
Figure imgf000033_0002
[
Figure imgf000033_0003
상기 화학식 2a . 2b 및 2(:에서 , 내지 R17 및 내지 R9 '는 서로 동일하거나 상이하고. 각각 독립적으로 수소, 할로겐. Ci-2o 알킬 . C2-20 알케닐. 알킬실릴, Ci-20 실릴알킬. 알콕시실릴, C-20 알콕시 . C6-20 아릴. C7-20 알킬아릴, 또는 C7-20 아릴알킬이며 . 상기 R10 내지 R17 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고:
[화학식 3]
Figure imgf000034_0001
상기 화학식 3에서 ,
M1은 4족 전이금속이고:
Cp1 및 Cp2는 서로 동일하거나 상이하고. 각각 독립적으로 시클로펜타디엔닐. 인데닐, 4.5, 6, 7-테트라하이드로 -1-인데닐. 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며 :
Ra 및 ! 는 서로 동일하거나 상이하고 . 각각 독립적으로 수소 . (: !-20 알킬. 알콕시 . C2-20 알콕시알킬, C620 아릴, C6 O 아릴옥시 . C2-20 알케닐. C7-40 알킬아릴. C7-40 아릴알킬. C8- 0 아릴알케닐, 또는 CHO 알키닐이고:
Z1은 할로겐 원자. C1-20 알킬. C2-10 알케닐. C7-40 알킬아릴. C7-40 아릴알킬 . (:ΰ-20 아릴 . 치환되거나 치환되지 않은 d-20 알킬리덴. 치환되거나 치환되지 않은 아미노, C2-20 알킬알콕시 , 또는 C7- 0 아릴알콕시이고:
n은 1 또는 0이고:
[화학식 4] 상기 화학식 4에서 .
M2는 4족 전이 금속이고:
Cp3 및 Cp4는 서로 동일하거나 상이하고. 각각 독립적으로 시클로펜타디에닐, 인데닐. 4, 5.6.7-테트라하이드로 -1ᅳ인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며 :
Rc 및 !^는 서로 동일하거나 상이하고 , 각각 독립적으로 수소 .
알킬, C-,ο 알콕시 . C2-20 알콕시알킬. C6-20 아릴. C6-10 아릴옥시 . C2-20 알케닐, C7-40 알킬아릴. C기 40 아릴알킬, C8-40 아릴알케닐. 또는 C2-10 알키닐이고;
Z2는 할로겐 원자. 알킬, C2-10 알케닐, C7-40 알킬아릴. C7-40 아릴알킬 . C6-20 아릴 . 치환되거나 치환되지 않은 d-20 알킬리덴. 치환되거나 치환되지 않은 아미노. C2-20 알킬알콕시, 또는 C7-40 아릴알콕시이고;
B1은 Cp¾c 고리와 Cp4Rd 고리를 가교 결합시키거나, 하나의 Cp4Rd 고리를 M2에 가교 결합시키는 , 탄소 , 게르마늄, 규소. 인 또는 질소 원자 함유 라디칼 중 하나 이상 또는 이들의 조합이고:
ill은 1 또는 0이고;
[화학삭 5]
( Cp5Re)B2( J )M3Z3 2
상기 화학식 5에서.
M3은 4족 전이 금속이고;
Cp5는 시클로펜타디에닐, 인데닐, 4 , 5 , 6 , 7—테트라하이드로ᅳ 1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며 :
Re는 수소, 알킬. d-10 알콕시 . C2-20 알콕시알킬. C6-20 아릴. C6-
10 아릴옥시. C2-20 알케닐, C7-40 알킬아릴. C7-40 아릴알킬, C840 아릴알케닐. 또는 C2-10 알키닐이고;
Z3은 할로겐 원자. C -20 알킬. C2-10 알케닐. C그 40 알킬아릴. C7-40 아릴알킬, C6-20 아릴, 치환되거나 치환되지 않은 d-20 알킬리덴. 치환되거나 치환되지 않은 아미노, C2-20 알킬알콕시, 또는 C7-40 아릴알콕시이고;
B2는 Cp5Re 고리와 J를 가교 결합시키는 탄소. 게르마늄. 규소. 인 또는 질소 원자 함유 라디칼중 하나 이상 또는 이들의 조합이고:
J는 NRf , 0. PRf 및 S로 이루어진 군에서 선택된 어느 하나이고. 상기 Rf는 알킬, 아릴. 치환된 알킬 또는 치환된 아릴이다.
PCT/KR2016/003718 2015-04-09 2016-04-08 중공 성형용 고밀도 폴리에틸렌 공중합체 WO2016163810A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150050440A KR20160121045A (ko) 2015-04-09 2015-04-09 중공 성형용 고밀도 폴리에틸렌 공중합체
KR10-2015-0050440 2015-04-09

Publications (1)

Publication Number Publication Date
WO2016163810A1 true WO2016163810A1 (ko) 2016-10-13

Family

ID=57071949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003718 WO2016163810A1 (ko) 2015-04-09 2016-04-08 중공 성형용 고밀도 폴리에틸렌 공중합체

Country Status (2)

Country Link
KR (1) KR20160121045A (ko)
WO (1) WO2016163810A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111881613A (zh) * 2020-08-05 2020-11-03 武汉市政工程设计研究院有限责任公司 一种正应力和剪应力不同权重三维应力场反演方法及系统
EP3656529A4 (en) * 2017-08-22 2020-11-04 LG Chem, Ltd. METHOD OF EVALUATING THE PHYSICAL INJECTION PROPERTIES OF A SYNTHETIC RESIN AND INJECTION-MOLDED POLYETHYLENE RESIN

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131793A1 (ko) * 2017-01-12 2018-07-19 주식회사 엘지화학 올레핀 중합체 및 이의 제조 방법
WO2022071744A1 (ko) * 2020-09-29 2022-04-07 주식회사 엘지화학 시공성 및 가공성이 우수한 에틸렌/1-헥센 공중합체

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110217499A1 (en) * 2008-08-29 2011-09-08 Basell Polyolefine Gmbh Polyethylene for Injection Moldings
KR20130113322A (ko) * 2010-07-06 2013-10-15 셰브론 필립스 케미컬 컴퍼니 엘피 수소 첨가없이 넓은 분자량 분포의 폴리올레핀 제조를 위한 촉매
US20140213734A1 (en) * 2013-01-30 2014-07-31 Exxonmobil Chemical Patents Inc. Polyethylene Copolymers with Vinyl Terminated Macromonomers as Comonomers
KR20150015789A (ko) * 2013-08-01 2015-02-11 주식회사 엘지화학 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀계 중합체의 제조방법
KR20150037520A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110217499A1 (en) * 2008-08-29 2011-09-08 Basell Polyolefine Gmbh Polyethylene for Injection Moldings
KR20130113322A (ko) * 2010-07-06 2013-10-15 셰브론 필립스 케미컬 컴퍼니 엘피 수소 첨가없이 넓은 분자량 분포의 폴리올레핀 제조를 위한 촉매
US20140213734A1 (en) * 2013-01-30 2014-07-31 Exxonmobil Chemical Patents Inc. Polyethylene Copolymers with Vinyl Terminated Macromonomers as Comonomers
KR20150015789A (ko) * 2013-08-01 2015-02-11 주식회사 엘지화학 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀계 중합체의 제조방법
KR20150037520A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3656529A4 (en) * 2017-08-22 2020-11-04 LG Chem, Ltd. METHOD OF EVALUATING THE PHYSICAL INJECTION PROPERTIES OF A SYNTHETIC RESIN AND INJECTION-MOLDED POLYETHYLENE RESIN
US11867600B2 (en) 2017-08-22 2024-01-09 Lg Chem, Ltd. Assessment method for injection molding property of plastic form
CN111881613A (zh) * 2020-08-05 2020-11-03 武汉市政工程设计研究院有限责任公司 一种正应力和剪应力不同权重三维应力场反演方法及系统

Also Published As

Publication number Publication date
KR20160121045A (ko) 2016-10-19

Similar Documents

Publication Publication Date Title
US10323110B2 (en) Ethylene/alpha-olefin copolymer having excellent processability
JP6487924B2 (ja) 加工性および環境応力亀裂抵抗性に優れたエチレン/1−ヘキセンまたはエチレン/1−ブテン共重合体
KR101592436B1 (ko) 내환경 응력 균열성이 우수한 폴리올레핀
US10669363B2 (en) Catalyst composition for synthesizing olefin copolymer and method for preparing olefin copolymer
KR102260362B1 (ko) 올레핀 공중합체
KR101593666B1 (ko) 가공성이 우수한 올레핀계 중합체
KR101747401B1 (ko) 가공성이 우수한 에틸렌/알파-올레핀 공중합체
KR101831418B1 (ko) 가공성 및 표면 특성이 우수한 에틸렌/알파-올레핀 공중합체
WO2016167568A1 (ko) 가공성이 우수한 에틸렌 /알파-올레핀 공중합체
WO2016167547A1 (ko) 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
KR102234944B1 (ko) 올레핀 공중합체
KR102073253B1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
WO2016163810A1 (ko) 중공 성형용 고밀도 폴리에틸렌 공중합체
KR102211603B1 (ko) 올레핀 공중합체 합성용 촉매 조성물 및 올레핀 공중합체의 제조 방법
KR102229002B1 (ko) 가공성 및 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
WO2016060445A1 (ko) 가공성 및 환경 응력 균열 저항성이 우수한 에틸렌 /1-헥센 또는 에틸렌 /1-부텐 공중합체
KR101725352B1 (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
WO2018117403A1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
WO2016167548A1 (ko) 가공성 및 표면 특성이 우수한 에틸렌 /알파-올레핀 공중합체
WO2016093580A1 (ko) 가공성이 우수한 에틸렌/알파-올레핀 공중합체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776913

Country of ref document: EP

Kind code of ref document: A1

WA Withdrawal of international application
NENP Non-entry into the national phase

Ref country code: DE