WO2018131793A1 - 올레핀 중합체 및 이의 제조 방법 - Google Patents

올레핀 중합체 및 이의 제조 방법 Download PDF

Info

Publication number
WO2018131793A1
WO2018131793A1 PCT/KR2017/014195 KR2017014195W WO2018131793A1 WO 2018131793 A1 WO2018131793 A1 WO 2018131793A1 KR 2017014195 W KR2017014195 W KR 2017014195W WO 2018131793 A1 WO2018131793 A1 WO 2018131793A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
aryl
formula
polymer
alkenyl
Prior art date
Application number
PCT/KR2017/014195
Other languages
English (en)
French (fr)
Inventor
김중수
송은경
송낙규
홍대식
김시용
신은영
유영석
홍윤기
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17890923.0A priority Critical patent/EP3476870A4/en
Priority to CN201780046384.2A priority patent/CN109476782B/zh
Priority to US16/316,080 priority patent/US20200123357A1/en
Publication of WO2018131793A1 publication Critical patent/WO2018131793A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • C08F4/6428Component covered by group C08F4/64 with an organo-aluminium compound with an aluminoxane, i.e. a compound containing an Al-O-Al- group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/07Heteroatom-substituted Cp, i.e. Cp or analog where at least one of the substituent of the Cp or analog ring is or contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/10Heteroatom-substituted bridge, i.e. Cp or analog where the bridge linking the two Cps or analogs is substituted by at least one group that contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/18Bulk density
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/18Applications used for pipes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts

Definitions

  • the present invention relates to eleupin polymers having excellent processability and dimensional stability and methods for their preparation.
  • High pressure resistance characteristics are generally physical properties that can be expressed in a high density region, because the higher the crystallinity in the polyolefin resin, the more the strength (Modulus) increases, and the higher the pressure resistance.
  • the processability of the polyolefin resin can be evaluated by the die expansion ratio (di e swel l rat io), the di e swel l rat io requires expensive analysis equipment for the measurement, the measurement error is relatively large, high pressure pipe New Hurdles in the development of the resin.
  • the present invention is to provide a "pin eulre useful polymer in the hollow profile, such as bring the excellent processability and dimension stability pipe.
  • the present invention is also to provide a method for producing the olepin polymer.
  • the present invention also provides a molded article comprising the olefin polymer described above.
  • the present invention also has high molecular weight properties. Specifically 2 L of olefin polymer
  • an leupin polymer having a Bloma swell value of 1.2 to 2.2, determined according to Equation 1 below:
  • the olefin polymer may have a Z average molecular weight (Mz + 1) of 300,000 g / mol to 6,000,000 g / ii) l.
  • the olepin polymer may have a capillary swell of 1.3 to 2.2.
  • the olefin polymer may have a density of 0.930 g / cm 3 to 0.960 g / cm 3 .
  • the olefin polymer may have a melt index of 0.01 g / 10 m in to 2 g / 10 min measured at a temperature of 190 ° C. and a load of 2.16 kg according to ASTM D1238.
  • the olefin polymer may have a polydispersity index (PDI) of 2.5 to 30.
  • the olepin polymer may be a copolymer of ethylene and alpha olefin, more specifically ethylene; It may be a copolymer of 1-octene, 1-nuxene or 1-butene.
  • at least one first metallocene compound represented by Formula 1 at least one second metallocene compound represented by Formula 3 and an agent represented by Formula 4 below
  • a process for preparing the above olefin polymer comprising polymerizing the olefin monomer in the presence of a catalyst composition comprising at least one trimetallocene compound:
  • A is hydrogen, halogen, alkyl, C 2 - 20 alkenyl Cs-20 cycloalkyl, aryl, C 7 - 20 alkylaryl, C 7 - 20 aryl-alkyl, d-20 alkoxy, C 2 - 20 alkoxyalkyl, C 3 - 20 heterocycloalkyl, or C 5 - 20 membered heteroaryl;
  • D is -0- -S-. -N (R)-or -SKRKR ')-, wherein R and R' are the same as or different from each other, and are each independently hydrogen. , Halogen, d- 2 o alkyl, C 2 - 20 alkenyl, C 3 - 20 cycloalkyl, or C 6 - 20 aryl;
  • L is d- 10 straight or branched chain alkylene
  • B is carbon, silicon or germanium
  • Q is hydrogen, halogen, d-20 alkyl, C 3 - 20 cycloalkyl, C 2 - 20 alkenyl, C 6 - 20 aryl, C 7 - 20 alkylaryl, or C 7 - 20 aryl-alkyl;
  • M is a Group 4 transition metal
  • Xii and 2 are the same as or different from each other, and each independently halogen, d-
  • alkyl C 2 - 20 alkenyl, C 3 - 20 cycloalkyl, C 6 - 20 aryl, nitro, amido, silyl Cwo alkyl, d-20-alkoxy, or sulfonamide, and carbonate;
  • d and C 2 are the same as or different from each other, and are each independently represented by any one of the following Formulas 2a, 2b, and 2c, except that d and C2 are both Formula 2c;
  • R 9 is independently hydrogen, halogen, d- 20 alkyl, C 2 of each other - 20 Al alkenyl, C 3 - 20 cycloalkyl alkyl, d- 20 alkylsilyl, 20 alkyl silyl, alkoxysilyl group, an alkoxy, a C 6 - 20 aryl, C 7 - 20 alkylaryl, or C 7 - 20 arylalkyl and, adjacent to each other of said R 10 to Ri 7 and 3 ⁇ 4 two or more may be linked to each other to form a substituted or unsubstituted aliphatic or aromatic ring;
  • At least one of R 2 i to! 1 ⁇ 2 is — (CH 2 ) n ⁇ 0R a , wherein R a is a straight or branched chain alkyl group of d- 6 and n is an integer from 2 to 10; the same or different and are each independently of one another, hydrogen, d-20 alkyl, C 2 - 20 alkenyl, Cs-20 cycloalkyl, C 6 - 20 aryl, C 7 - 20 alkylaryl, or C 7 - 20 arylalkyl or Or two or more adjacent to each other may be connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring,
  • X 2i and X 22 are the same as or different from each other, and each independently, halogen,
  • M 2 is a Group 4 transition metal
  • At least one of Rsi to 11 ⁇ 2 is — (C3 ⁇ 4) n ⁇ 0R a , wherein R a is a d or 6 straight or branched chain alkyl group, n is an integer from 2 to 10, and the others are the same or different from each other are each independently, hydrogen eu d- 2 o alkyl, C 2 - 20 alkenyl, C 3 -20 cycloalkyl, C 6 - 20 aryl, C 7 - 20 alkylaryl, or C 7 - 20 alkyl or aryl, or Two or more adjacent to each other may be connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring,
  • R b and R c are the same or different and are each independently hydrogen, alkyl, C 3 -20 cycloalkyl, d- 10 alkoxy, C 2 - 20 alkoxyalkyl, C 6 - 20 aryl, C 6 - 10 aryloxy , C 2 - 20 alkenyl, C 7 - 40 alkylaryl, C 7 -4o arylalkyl, C 8 - 40 arylalkenyl. Or C 2 - 10 alkynyl;
  • Xsi and 3 ⁇ 4 2 are the same as or different from each other, and are each independently halogen, d ⁇
  • alkyl C 2 — 10 alkenyl.
  • C 3 - 20 cycloalkyl C 7 - 40 alkylaryl, C 7 -40 aryl, Ce-20 aryl, d- 20 alkylidene, amino, C 2 - 20 alkyl, alkoxy, or the C 40 aryl-alkoxy;
  • C and Q2 are the same as or different from each other, and each independently hydrogen . , . Halogen, ( ⁇ - 20 alkyl, C 2 -.. 20 alkenyl, Cs-20 cycloalkyl, C 6 - 20 aryl, C 7 - 20 arylalkyl is - 20 alkylaryl, or C 7..
  • the catalyst composition may include 50 to 200 parts by weight of the second and the third metallocene compound each independently with respect to 100 parts by weight of the first metallocene compound.
  • the catalyst composition may further include one or more cocatalysts of the aluminum-containing first cocatalyst of Formula 5 and the borate-based second cocatalyst of Formula 6 below:
  • T + is a + monovalent polyatomic ion
  • is boron in the +3 oxidation state
  • G is independently hydride, dialkylamido, halide, alkoxide, aryloxide, hydrocarbyl, halocarbyl And halo-substituted hydrocarbyl, wherein G has up to 20 carbons, but at up to one position G is a halide.
  • the catalyst composition further includes a carrier, and the first, second and third metallocene compounds may be supported on the carrier.
  • a molded article specifically a pipe, comprising the above-described leupin polymer.
  • gel permeation chromatography is performed at a Capi ary swel l value using a capillary rheometer and a silver content of 16 CTC for the polymer to be measured. Measuring each Mz + 1 value used; And predicting the Bloma swel l property from the 2L Bloma swe ll value determined according to Equation 1 using the measured Capi ary swel l and Mz + 1 values.
  • a method is provided.
  • the olefin polymer according to the present invention has excellent processability and dimensional stability, and can be usefully applied to high pressure-resistant heating tubes, mining pipes or large diameter pipes. '
  • FIG. 1 is a graph showing a relationship between a 2L bloma swel l calculated value according to Equation 1 and a 2L bloma measured value (2L bk> nia).
  • FIG. 2 is a schematic diagram schematically showing an extrusion die used for measuring a 2L bloma value in Test Example 1.
  • FIG. 2 is a schematic diagram schematically showing an extrusion die used for measuring a 2L bloma value in Test Example 1.
  • polyolefin polymer and a method for preparing the olefin polymer according to a specific embodiment of the present invention will be described.
  • the physical properties of polyolefins can be evaluated in several respects. For example, weight average molecular weight, number average molecular weight, polydispersity index, melt flow rate (MFR), melt flow rate ratio (MFRR), density (density), full notch creep test (Full) Notch Creep Test (FNCT) can be used to comprehensively evaluate physical properties such as strength, processability and stability of polymers.
  • MFR melt flow rate
  • MFRR melt flow rate ratio
  • FNCT full notch creep test
  • polyolefin resins used as pressure-resistant heating tubes or large-diameter high-pressure pipes are required to have processability along with long-term stability under high pressure conditions.
  • the viscosity of the processing area, the extrusion amount, the presence of melt fracture and the pipe sizing are usually considered.
  • swell which is a characteristic of polymers, is a major factor that affects pipe dimensions along with elongation. If this is not considered, the swell may be changed in size or not processed.
  • the resin from the die enters the vaaium water bath and is dimensioned. If the initial swell is large or the swell is small, it is difficult to enter the bath.
  • a method of evaluating such dimensional stability and workability there is a method of measuring a conventional die swell ratio.
  • the method of calculating the die swell ratio increases the development cost by requiring expensive measuring equipment, and it is difficult to evaluate and analyze the dimensional stability and processability of the polymer due to the large measurement error.
  • the processability and dimensional stability can be predicted from the inherent swell properties and the elongation, and thus the bloma swell properties can be controlled, and in the preparation of the olefin polymer, three specific metallocene compounds are included.
  • the catalyst composition to control the Capillary swell and M z + 1 affecting the intrinsic swell properties and elongation, the leupin copolymer showing excellent processability and dimensional stability can be prepared.
  • an olefin polymer having a 2L Bloma swell value of 1.2 to 2.2, determined according to Equation 1 below, is provided:
  • the olefin polymer according to one embodiment of the present invention may have a 2L Bloma swell value of 1.3 to 2.15, and more specifically 1.5 to 2.11, determined according to Equation 1 below.
  • 2L Bloma swell is a quantified dimensional stability of the olefin polymer in consideration of two swell characteristics and elongation characteristics that affect the dimensions when processing with the olefin polymerizer, the molecular structure in the polymer from the 2L Bloma swell value Can be predicted.
  • the swell characteristic is a polymer-specific capillary swell value measured using a capillary rheometer
  • the stretching characteristic is a value measured by elongation by Mz + 1 measuring polymer region using gel permeation chromatography (GPC).
  • the 2L Bloma swell value is small due to stretching, and in the polymer having a large PI) I, the stretching is not good due to the polymer region (Mz + 1).
  • the olefin polymer according to an embodiment of the present invention may exhibit excellent processability and dimensional stability by satisfying the 2L Bloma swell value.
  • the olefin polymer according to an embodiment of the present invention has a Z average molecular weight (Mz + 1) of 300,000 g / mol to 6.000,000 g / mo, specifically, under conditions satisfying the 2L Bloma swell value.
  • Z mean molecular weight (Mz + 1) refers to the formation of polymer regions in the polymer, in particular polymer tail structures. Stretchability can be exhibited by having the Z average molecular weight (Mz + 1) in said range.
  • the Z average molecular weight (Mz + 1) is similar to the weight average molecular weight (Mw) and the number average molecular weight (Mn), and the standard polystyrene measured using gel permeation chromatography (GPC, manufactured by Agilent ⁇ !).
  • GPC gel permeation chromatography
  • the olefin polymer may have a capillary swell value of 1.3 to 2.2, more specifically, B 4 to 2.2, which is inherent in a polymer measured by using ieter for capi llary rhe.
  • the capillary swell value means the formation of a high molecular weight structure having a molecular weight of 10 5 to 10 fi g / mol in the polymer, and can exhibit excellent swell characteristics by submerging the capillary swell value within the above range.
  • the olefin polymer according to the embodiment of the present invention may exhibit physical properties corresponding to HDPE in order to maintain excellent mechanical properties of the existing HDPE.
  • the olepin copolymer has a density measured according to ASTM D1505
  • the olefin polymer has a Me It Index (MI) of 0.01 g / 10 m in to 2 g / lOinin, more specifically 0.5, measured at a temperature of 190 ° C. and a load of 2.16 kg according to ASTM D1238. g / 10 m in to 1.5 g / 10 m in.
  • MI Me It Index
  • melt flow rate (MFR 2. 16) divided by the MFRR (21.6 / 2.16) of less than 10 500, more specifically, be from 15 to 400 days have.
  • the olefin polymer may have a number average molecular weight of 8,000 g / mol to 50, 000 g / mol, and a weight average molecular weight of 70, 000 g / mo l to 400, 000 g / mol. More specifically, the olefin polymer may have a number average molecular weight of 10,000 g / mol to 45,000 g / mol, and a weight average molecular weight of 100, 000 g / mol to 350, 000 g / m.
  • the polydispersity index (PDI) determined by the ratio (Mw / Mn) of the number average molecular weight (Mn) to the weight average molecular weight (Mw) of the olepin polymer is 2.5 to 30, more specifically 2.5 to 25 days. have.
  • the olefin polymer may have at least one of the above-described physical properties, and may have all of the above-described physical properties in order to exhibit excellent mechanical strength.
  • the leupin copolymer showing such physical properties may be a copolymer of ethylene and an alpha olefin.
  • the alpha olefin is propylene,! Butene, .1-pentene, 4-methylene 1-: pentene, 1—nuxene. 1—heptene, 1-octene, 1-decene, 1-undecene. 1-dodecene, 1-tetradecene, 1-nuxadecene and combinations thereof.
  • the olefin polymer may be a copolymer of ethylene-octene, ethylene / 1-nuxene or ethylene / 1'butene.
  • the olefin polymer according to the embodiment is the copolymer described above, the above-described physical properties may be more easily implemented.
  • the type of the olefin copolymer according to the above embodiment is not limited to the above-described type, and may be provided to various kinds known in the art to which the present invention pertains if the above-described physical properties can be exhibited.
  • the content of alpha-olefin which is the comonomer is not particularly limited, and may be appropriately selected depending on the use, purpose, etc. of the copolymer. More specifically, it may be more than 0 mol% and 99 mol% or less.
  • the olefin polymer as described above may be at least one first metallocene compound represented by Formula 1 below, and a second metallocene represented by Formula 3 below. It can be prepared by a method comprising the step of adding an olefin monomer in the presence of a catalyst composition comprising at least one compound and at least one third metallocene compound represented by the following formula (4).
  • A is hydrogen, halogen, C L - 20 alkyl, C 2 - 20 alkenyl, C 3 - 20 cycloalkyl, C 6 - 20 aryl, C 7 - 20 alkylaryl, C 7 - 20 arylalkyl, alkoxy d- 20 , C 2 - 20 alkoxyalkyl, C 3 - 20 heterocycloalkyl, or C 5 - 20 membered heteroaryl;
  • D is -0—, -S-, -N (R)-or Si (R) (R ')-, wherein R and R' are the same as or different from each other, and are each independently hydrogen, halogen, d- 20 alkyl, C 2 - 20 alkenyl, C 3 - 20 cycloalkyl, or C 6 - 20 aryl;
  • L is C wo straight or branched chain alkylene
  • B is carbon, silicon or germanium
  • Q is hydrogen, halogen, d- 20 alkyl, Cs-20 cycloalkyl, C 2 - 20 alkenyl Al, C 6 - 20 aryl, C 7 - 20 arylalkyl. Or C 7 - 20 aryl-alkyl;
  • M is a Group 4 transition metal
  • Xn and 2 are the same or different and are each independently selected from halogen, d- 20 alkyl, C 2 -20 alkenyl, C 3 - 20 cycloalkyl, C 6 - 20 aryl, nitro, amido, alkyl, silyl, d- 20 alkoxy, or d- 20 sulfonate;
  • Ci and C 2 are the same as or different from each other, and are each independently represented by any one of the following Formulas 2a, 2b, and 2c, except that d and C 2 are both Formula 2c;
  • Ri to R 17 and I to ′ are the same or different from each other. Each independently hydrogen. Halogen, d-20 alkyl, CV 20 alkenyl, C 3 - 20 cycloalkyl, d- 20 alkylsilyl, d-20 alkyl silyl group, alkoxysilyl group 20,
  • Mi is a Group 4 transition metal
  • At least one of R 2 i to 8 is _ (CH 2 ) n -0R a , wherein .
  • R a is a straight or branched chain alkyl group of C- 6
  • n is an integer from 2 to 10
  • the others are mutually the same or different and each read as the neutral, hydrogen, d- 20 alkyl, C 2 -. 20 alkenyl, C 3 -20 cycloalkyl, C 6 - 20 aryl, C 7 - 20 alkylaryl, or C 7 - 20 aryl Alkyl.
  • two or more adjacent to each other may be connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring,
  • 3 ⁇ 4 ⁇ and 3 ⁇ 4 2 are the same as or different from each other, and are each independently halogen.
  • alkyl C 2 - 10 alkenyl, C 3. 20 cycloalkyl.
  • 6-2o aryl optionally substituted d-20 alkylidene, substituted or unsubstituted amino, C 2 - 20 alkyl, an alkoxy, or a C 7 - 40 aryl-alkoxy;
  • M 2 is a Group 4 transition metal
  • At least one of 3i to 4 is — (C3 ⁇ 4) n ⁇ 0R a , wherein R a is a straight or branched chain alkyl group of d- 6 and n is an integer from 2 to 10; and the others are the same or different from each other each independently, hydrogen, d-20 alkyl, C 2 - 20 alkenyl, C 3 - 20 cycloalkyl, C 6 - 20 aryl, C 7 - 20 alkylaryl, or c 7 - 20, or arylalkyl, or adjacent to each other Two or more may be linked to each other to form a substituted or unsubstituted aliphatic or aromatic ring,
  • R b and R c are the same as or different from each other.
  • ⁇ and 2 are the same and are you ⁇ different and are each independently of one another, halogen, d-
  • Qi and 3 ⁇ 4 are the same or different from each other and independently of each other. Hydrogen, halogen.
  • C 3 - 20 is an arylalkyl - 20 cycloalkyl, C 6 -2o aryl, C 7 - 20 alkylaryl, or C 7..
  • the CHO alkyl includes straight chain or branched alkyl, and specifically methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, pentyl, nucleus, heptyl, octyl, etc., but only It is not limited.
  • the C 2 - to 20 alkenyl including alkenylene of straight or branched chain and, specifically allyl, ethenyl, propenyl, butenyl, pentenyl, and the like, but a pen, but is not limited thereto only.
  • the C 3 - 20 cycloalkyl is a monocyclic or condensed ring containing a cycloalkyl, specifically cyclopropyl, cyclobutyl, cyclopentyl, haeksil. Norbornyl and the like, but is not limited thereto.
  • the C 6 - 20 aryl include, includes a monocyclic or condensed ring aryl group. Specifically, phenyl, biphenyl, naphthyl, and the like, but phenanthrenyl, fluorenyl, and thus are not limited thereto.
  • the C 5 - 20 heteroaryl group include a monocyclic or condensed ring includes heteroaryl, carbazolyl, pyridyl, quinoline, isoquinoline thiophenyl, furanyl. Imidazole, oxazolyl, thiazolyl, triazine, tetrahydropyranyl, tetrahydrofuranyl, and the like, but are not limited thereto.
  • Examples of the Cuo alkoxy include, but are not limited to, methoxy, echoxy, phenyloxy, cyclonuxyloxy, and the like.
  • Group 4 transition metal examples include titanium, zirconium, hafnium, and the like, but are not limited thereto.
  • the two substituents adjacent to each other connected to each other to form an aliphatic or aromatic ring means that the atom (s) of the two substituents and the valences (atoms) to which the two substituents are connected are connected to each other to form a ring. do.
  • substituents are optionally a hydroxyl group within the range to exhibit the same to similar effects as the desired effect; halogen; Hydrocarbyl group; A hydrocarbyl group or hydrocarbyloxy group including at least one hetero atom of the group 14 to 16 hetero atoms; -S i3 ⁇ 4; Hydrocarbyl (oxy) silyl groups; Phosphine groups; Phosphide groups; Sulfonate groups; And it may be substituted with one or more substituents selected from the group consisting of sulfone groups.
  • the first metallocene compound represented by the formula (1) mainly comprises a high molecular weight copolymer having a high shor t chain branch (SCB) content.
  • the second metallocene compound represented by the formula (3) may contribute to making a low molecular weight copolymer having a mainly low SCB content.
  • the third metallocene compound represented by Formula 4 may contribute to making a low to medium molecular weight copolymer having a moderate SCB content.
  • the first metallocene compound of Formula 1 forms a structure in which an indeno indole derivative and / or a fluorene derivative are crosslinked by a bridge, and Lewis is formed in the ligand structure. It has a lone pair of electrons that can act as a base. As such an electron-rich indeno indole group and / or fluorene group containing a high activity, due to the appropriate steric hindrance and the electronic effect of the ligand can be produced a high molecular weight olepin polymer low hydrogen reactivity.
  • bet a be hydrogen of the polymer chain in which the nitrogen atom of the indeno indole derivative grows is stabilized by hydrogen bonds, thereby suppressing beta-hydrogen iminat i on, thereby exhibiting low hydrogen reaction properties. Accordingly, even in the case of carrying out the polymerization reaction including hydrogen in order to prepare an eleupine polymer having a high molecular weight and a wide polydispersity index. Or low hydrogen reactivity even when supported on a carrier having Lewis acid characteristics.
  • a high catalytic activity results in ultra high molecular weight olefin polymers, specifically, ethylene / l-octene, ethylene / l-nuxene or ethylene / l-butene co-polymers. It can manufacture.
  • the chemical stone 1 and the metallocene compound can be used to prepare a leupine polymer that satisfies the characteristics of high molecular weight without deterioration of activity even when used in combination with a catalyst having a different characteristic, the olefin polymer of the polymer It is possible to easily prepare an olefin polymer having a broad polydispersity index.
  • A is hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl. t er t-butyl, methoxymethyl, ter t-butoxymethyl, 1-ethoxyethyl. 1-methyl-1-methoxyethyl, tetrahydropyranyl, or tetrahydrofuranyl is preferred, but is not limited thereto.
  • L in the general formula (1) is C 4 - 8 but is not a straight or a branched alkylene is more preferred that, limited thereto.
  • the alkylene group d-20 alkyl, C 2 - may be unsubstituted or substituted in 20-aryl-20-alkenyl, Cs-20 cycloalkyl, or C 6.
  • B of Formula 1 is preferably silicon, but only It is not limited.
  • Formulas 2a, 2b, and 2c to R 17 and R 'to' are each independently hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, pentyl, nucleus, heptyl, octyl, phenyl More preferably, halogen, trimethylsilyl, triethylsilyl, tripropylsilyl, tributylsilyl, triisopropylsilyl, trimethylsilylmethyl, methoxy, or ethoxy, but are not limited thereto.
  • Specific examples of the compound represented by Formula 2a may include a compound represented by one of the following structural formulas, but the present invention is not limited thereto.
  • first metallocene compound represented by Chemical Formula 1 may include a compound represented by one of the following structural formulas, but is not limited thereto.
  • the first metallocene compound of Chemical Formula 1 is prepared as a ligand compound by connecting an indenoindole derivative and / or fluorene derivative with a bridge compound, and then a metal precursor compound is added to metall at ion. It can be obtained by performing all).
  • the manufacturing method of the said 1st metallocene compound is concretely demonstrated to the Example mentioned later.
  • the second metallocene compound represented by Formula 3 mainly contributes to making a low molecular weight copolymer having a low SCB (short chain branch) content, high SCB when used with the first metallocene compound It is possible to prepare an olefin polymer having a high molecular weight and having a high molecular weight and at the same time having a wide molecular weight distribution having excellent physical properties and excellent processability.
  • SCB short chain branch
  • any one of R 21 to R 24 as a substituent of the cyclopentadienyl group in Chemical Formula 3, and any one of R 25 to 11 ⁇ 2 increases-(CH 2 ) n -0R a , where R a is a straight or branched chain alkyl group of and n is an integer from 2 to 10, more specifically by introducing a t-butoxynucleosil group to lower polyolefins in the preparation of polyolefins using comonomers.
  • Low molecular weight polyolefins with controlled conversion and copolymerization or comonomer distribution can be prepared.
  • the second metallocene having excellent activity and further improving the copolymerizability, in particular when copolymerizing 1—octene, 1—butene or 1-nuxene when used with the transition metal compound represented by Chemical Formula 1
  • Examples of the compound include compounds represented by the following structural formulas, and any one or both of them may be used.
  • the third metallocene compound of Formula 4 is a form in which two indene groups are crosslinked by S iQ! Q 2 bridge (br i dge), any of substituents R 31 to R 34 of the indene group At least one substituent is-(CH 2 ) n -0R a , and each indene group is R b And R c .
  • the third metallocene compound may be substituted with a substituent of indene or a derivative thereof.
  • is a straight or branched chain alkyl group of d- 6 and n is an integer of 2 to 10.
  • Polyolefin using a comonomer by introducing at least one, more specifically, two or more tether groups In the preparation, low-molecular weight pulley olefins having controlled copolymerization degree or comonomer distribution can be prepared by exhibiting a lower conversion to comonomers than other Cp-based catalysts which do not include the substituent.
  • the third metallocene compound of Formula 4 As a more specific example, with the third metallocene compound of Formula 4 above.
  • the first metallocene compound of Formula 1 When the first metallocene compound of Formula 1 is used together as a hybrid catalyst for the production of a polyolefin in the high molecular weight region, the first metallocene compound exhibits high copolymerizability in the polyolefin in the high molecular weight region. Due to the action of the third metallocene compound of the general formula > 4, the polyolefin in the low molecular weight : region may exhibit low copolymerizability.
  • the content of co-monomer and structure are concentrated in the molecular main chain, that is, the result of the content and having the BOCE Broad Orthogonal ⁇ Co ⁇ monomer Distribution) structure which is increasingly more structures into the molecular weight for polymerization of polrieul repin "it is very advantageous.
  • any one or more of R 31 to R 34 in Formula 4 is — (CH 2 ) n ⁇ 0R a , wherein ⁇ is a straight or branched chain alkyl group of C, and n is an integer of 2 to 10.
  • ⁇ ⁇ ⁇ may be specifically a tert-butoxybutyl group (tert-butoxybutyl) or a tert-butoxyhexyl group (tert-butoxyhexyl). More specifically, two indene groups may each include a-(CH 2 ) n -0R a group.
  • The-(CH 2 ) n -0R a group may be a tert-butoxy butyl group or tert-butoxynuxyl group.
  • a transition metal compound having such a structure is supported on a carrier, so that stable supported polymerization can be achieved. It is possible.
  • the functional group is 1-octene, 1-butene.
  • alpha olefin comonomers such as 1-nuxene, where n is less than or equal to 10, more specifically in-(CH 2 ) n -0Ra
  • a polyolefin having a copolymerization degree controlled without deteriorating other physical properties due to low copolymerization of alpha olefin comonomers while maintaining overall polymerization activity It is advantageous for the production of
  • the third metallocene compound represented by Chemical Formula 4 may be, for example, a compound represented by one of the following structural formulas, but is not limited thereto.
  • C. 3 metallocene compound represented by Formula 4 may be prepared according to a known method for preparing organic compounds and transition metal compounds. It demonstrates more concretely in the Example mentioned later.
  • the catalyst composition used in the present invention includes at least one first metallocene compound represented by Formula 1, at least one second metallocene compound represented by Formula 3, and a third metal represented by Formula 4 At least one rosene compound may be supported on a carrier together with a cocatalyst compound.
  • the carrier may be a carrier containing a hydroxyl group on the surface.
  • Preferably dried The carrier which has the highly reactive hydroxyl group and siloxane group from which the water was removed to the surface can be used.
  • silica, silica-alumina, silica-magnesia, etc., dried at a high temperature may be used, and these are usually oxides, carbonates, such as Na 2 O, K 2 C0 3 , BaS0 4 , and Mg (N0 3 ) 2 , Sulfate, and nitrate components.
  • Drying degree of the carrier is preferably 200 to 800 ° C., more preferably 300 to 600 ° C., most preferably 300 to 400 ° C. If the drying temperature of the carrier is less than 200 ° C, there is too much moisture to react with the surface moisture and the promoter, and if it exceeds 8 ( xrc, the surface area decreases as the pores on the surface of the carrier merge. It is not preferable because there are not many groups and only siloxane groups are left to decrease the reaction site with the promoter.
  • the amount of hydroxyl groups on the surface of the dim-body is preferably from 0.1 to 10 Pa ol / g, more preferably from 0.5 to 5 Pa ol / g.
  • the amount of the hydroxyl group on the surface of the carrier is a method and conditions for producing the carrier or dry conditions. For example, temperature, time, vacuum or spray drying and the like can be adjusted.
  • the said hydroxyl group . Sheep . If it is less than 0.1 dl ol / g, the reaction site with the cocatalyst is small, and if it exceeds 10 dl ol / g, it is not preferable because it may be due to moisture other than the hydroxyl group present on the surface of the carrier particle.
  • the supported metallocene catalyst may induce the production of a long chain branch (LCB) in an olefin polymer prepared specifically, ethylene / 1-nuxene or ethylene / 1-butene copolymer.
  • LCB long chain branch
  • the cocatalyst supported on the carrier for activating the metallocene compound is an organometallic compound containing a Group 13 metal. It will not be specifically limited if it can be used when polymerizing a pin.
  • the promoter compound may include at least one of an aluminum-containing first promoter of Formula 5, and a borate-based second promoter of Formula 6:
  • each R 31 is independently a halogen halogen substituted or unsubstituted hydrocarbyl group having 1 to 20 carbon atoms, and k is an integer of 2 or more.
  • T + is a + monovalent polyatomic ion
  • B is boron in the +3 oxidation state
  • G is independently hydride, dialkylamido, halide, alkoxide, aryloxide, hydrocarbyl, halocarbyl and Is selected from the group consisting of halo-substituted hydrocarbyls, wherein G has up to 20 carbons, but at less than one position G is a halide.
  • the polydispersity index of the finally produced polyolefin can be more uniform, and the polymerization activity can be improved.
  • the first cocatalyst of Chemical Formula 5 may be an alkylaluminoxane compound having a linear, circular or reticulated i: repeating unit, and specific examples of the first cocatalyst include methylaluminoxane (MA0) and ethyl.
  • MA0 methylaluminoxane
  • ethyl methylaluminoxane
  • Aluminoxane Isobutyl aluminoxane, butyl aluminoxane, etc. are mentioned.
  • the second cocatalyst of Formula 6 may be a borate-based compound in the form of a trisubstituted ammonium salt, or a dialkyl ammonium salt, a trisubstituted phosphonium salt.
  • Such a second cocatalyst include trimetalammonium tetraphenylborate, methyldioctadecylammonium tetraphenylborate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri (n-butyl) ammonium tetraphenylborate , Methyltetracyclooctadecylammonium tetraphenylborate, ⁇ , ⁇ -dimethylaninynium tetraphenylborate, ⁇ , ⁇ -diethylaninynium tetraphenylborate, ⁇ , ⁇ -dimethyl (2,4,6—trimethylaninium Tetraphenylborate, trimethylammonium tetrakis (pentafluorophenyl) borate, methylditetradecylammonium tetraphen
  • Borate compounds in the form of dialkylammonium salts such as ditetradecylammonium tetrakis (pentafluorophenyl) borate or dicyclonuxylammonium tetrakis (pentafluorophenyl) borate; Or triphenylphosphonium tetrakis (pentafluorophenyl) borate, methyldioctadecylphosphonium tetrakis (pentafluorophenyl) borate or tri (2,6-, dimethylphenyl) phosphonium tetrakis (pentafluorophenyl And a borate compound in the form of a trisubstituted phosphonium salt such as) borate.
  • dialkylammonium salts such as ditetradecylammonium tetrakis (pentafluorophenyl) borate or dicyclonuxylammonium tetraki
  • Such a supported metallocene catalyst may be prepared by, for example, supporting a promoter on a carrier and sequentially supporting the first to second metallocene compounds on the carrier supported carrier.
  • the supporting order of the metallocene compounds is not particularly limited, but may be supported in the order of the second metallocene compound, the third metallocene compound, and the first metallocene compound having a small molecular structure.
  • a promoter-supported carrier can be prepared.
  • the transition metal compound is added to the promoter supported carrier obtained in the step of supporting the promoter on the carrier, and then stirred at a temperature of about 20 to 120 ° C.
  • Supported catalysts can be prepared.
  • the transition metal compound may be added and stirred to the promoter-supported carrier, and then the supported catalyst may be added to prepare the supported catalyst.
  • the content of the carrier, the cocatalyst, the cocatalyst-supported carrier and the transition metal compound used in the catalyst compositions according to the one embodiment of the invention can be properly adjusted depending on the physical properties or the effectiveness of the desired supported "catalyst.
  • the second and third metallocene compounds are independently included in an amount of 50 to 200 parts by weight based on 100 parts by weight of the first me: tavante compound. number and, more specifically, the metallocene compound is a compound as a metallocene wherein the 3 ⁇ metal 100 to 170 parts by weight, with the second metal can be incorporated is 100 parts by weight to 170 ... of the first to the above-mentioned mixing weight ratio of the By including the metallocene compound of 3, it may be easier to prepare an olefin polymer having excellent processability and dimensional stability.
  • the weight ratio of the total metallocene compound to the carrier including the first to third metallocene compounds is 1:10 to 1: 1,000, more specifically 1 : 10 to 1: 500.
  • the carrier and the metallocene compound are included in the above-mentioned ratio of rain, the optimum shape can be exhibited.
  • the weight ratio of the promoter to the carrier may be 1: 1 to 1: 100, more specifically 1: 1 to 1:50.
  • the promoter and the carrier in the weight ratio. Active and polymeric microstructures can be optimized.
  • a hydrocarbon solvent such as pentane, nucleic acid, heptane, or an aromatic solvent such as benzene or toluene may be used.
  • a hydrocarbon solvent such as pentane, nucleic acid, heptane, or an aromatic solvent such as benzene or toluene may be used.
  • benzene or toluene may be used.
  • the preparation method of the supported catalyst is not limited to the contents described in the present specification, and the preparation method may further employ a step generally employed in the technical field to which the present invention belongs, and the step of the preparation method ( S) can typically be changed by changeable step (s).
  • the olefin copolymer according to the present invention can be produced by polymerizing an olefin monomer in the presence of the supported metallocene catalyst described above.
  • polymerizable olefin monomers examples include ethylene. There are alpha-olepin, cyclic olepin, and the like, and diene olepin-based monomers or triene olepin-based monomers having two or more double bonds can also be polymerized. Specific examples of the monomer include ethylene, propylene, 1—butene, 1-pentene, 4-methyl-1—pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1—dode Sen, 1 ⁇ tetradecene.
  • the comonomer is at least one comonomer selected from the group consisting of propylene, 1-butene, 1-nuxene, 4-methyl-1-pentene and 1—octene Can be. More specifically 1-butene or 1-nuxene.
  • polymerization reaction of the olefin resin various polymerization processes known as the polymerization reaction of olefin resin, such as a continuous solution polymerization process, bulk polymerization process, suspension polymerization process, slurry polymerization process or emulsion polymerization process can be employed.
  • the polymerization temperature is about 25 to about 500 ° C, preferably about 25 to about 200 ° C. More preferably about 50 to about 15 CTC.
  • the polymerization pressure may be about 1 to about 100 Kgf / ciif, preferably about 1 to about 50 Kgf / cuf, more preferably about 5 to about 30 Kgf / cui 2 .
  • the polymerization reaction may be carried out under hydrogen gas.
  • the hydrogen gas serves to activate the inert site of the metallocene catalyst and to control the molecular weight by causing a chain transfer reaction. Since the first to third metallocene compounds in the present invention have excellent hydrogen reactivity, olefin polymers having a desired molecular weight and melt index can be effectively produced by controlling the amount of hydrogen gas used during the polymerization process.
  • the hydrogen gas during the polymerization reaction may be introduced at a rate of 0.01 to 5 g / hr, more specifically 0.1 to 3.3 g / hr under 1 atmosphere of the reactor.
  • the above-described supported metallocene catalyst is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, for example, pentane, nucleic acid, heptane, nonane, decane, and their isomers, aromatic hydrocarbon solvents such as toluene and benzene, dichloromethane,
  • the solution may be dissolved or diluted in a hydrocarbon solvent substituted with a chlorine atom such as chlorobenzene.
  • the solvent used herein is preferably used by removing a small amount of water or air acting as a catalyst poison by treating with a small amount of alkyl alumine, and may be carried out by further using a promoter.
  • the urlepin copolymer prepared by the above-described manufacturing method is a first metallocene compound represented by the formula (1) mainly for polymerizing a high molecular weight chain, and a compound represented by the general formula (3) mainly for polymerizing a low molecular weight polymer chain. Due to the interaction of the 2 metallocene compound and the third metallocene compound represented by the formula (4) which mainly polymerizes the low and medium molecular weight polymer chain, it exhibits excellent processability and dimensional stability satisfying the 2L bloma swel l properties described above. Can be.
  • the olefin polymer according to the invention i along can be preferably applied to a high-pressure heating pipe, mining pipe or large diameter pipe.
  • a molded article manufactured using the olefin polymer specifically, a high pressure resistance heating tube.
  • Provide pipe such as mini ng pipe or large diameter pipe.
  • Method for predicting the physical properties of the polymer according to an embodiment of the invention by considering the swell properties and elongation affecting the dimensions during processing, it is useful for dimensional stability and processability prediction of the polymer.
  • it is produced by the catalyst dispersion index (PDI) of 2.5 to 30, and more specifically: a Bloma swell characteristics shown processability and dimensional stability for 2.5 to 25 olefin increased polymer, with high reliability It can be evaluated, and can be predicted to exhibit excellent dimensional stability and processability when the 2L Bloma swell value determined according to Equation 1: 1.2 to 2.2.
  • the ligand compound ⁇ .2 g (12 mmol) synthesized in 1-1 was dissolved in 50 mL of diethylether, and 11.5 mL of 2.5 M n-BuL i hexane solution was added dropwise in a dry ice / acetone bath, followed by stirring at room temperature overnight. Drying in vacuo gave a brown colored sticky oil. It was dissolved in toluene to obtain a slurry. ZrCl 4 (THF) 2 was prepared, and 50 tnL of toluene was added to prepare a slurry.
  • T-Butyl-0- (CH 2 ) 6 — (: 5 3 ⁇ 4 at ⁇ 78 ° C.) was dissolved in THF, and normal butyllithium (n-BuLi) was slowly added, and the reaction mixture was heated to room temperature for 8 hours.
  • the solution was again slowly immersed in a solution of pre-synthesized lithium salt in ZrCl 4 (THF) 2 (1.70 g. 4.50 mmol) / THF (30 in.O./suspension solution at _78 ° C. And actually boiled for 6 hours at
  • the obtained liquid was purified by 1 H-NMR to obtain the desired methyl (6-t-butoxy nucleosil) dichlorosilane ⁇ Methyi (6—t— -buthoxy ⁇ hexyl) dich lor os i lane ⁇ compound.
  • TiCl 3 (THF) 3 (10 ⁇ l) was quickly added to the dilithium salt of -78 ° C ligand synthesized in THF solution from (Dimethyl (tetraniethylCpH) t-Butylaniinosi lane). The reaction solution was stirred for 12 hours while slowly quenching with phase silver at -78 ° C. After stirring for 12 hours, an equivalent amount of PbCl 2 (10 miiiol) was added to the semi-aqueous solution at room temperature, followed by stirring for 12 hours. After stirring for 12 hours, a dark black solution was obtained. THF was removed from the resulting semi-aqueous solution and nucleic acid was added to filter the product.
  • the ethylene / 1-nuxene copolymer was prepared in the same manner as in Example 1, except that the reaction was performed under the conditions described in Table 1.
  • Example 1 Example 1
  • Example 1 Example 1
  • Example 1 Example 1
  • Example 1 Example 1
  • Example 1 Ethylene 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 flow
  • Die swell ratio weight of cut resin (g) weight of reference resin (g)
  • the weight of the cut resin is determined by the resin coming out through the extrusion die (outer diameter: 9 cm, inner diameter: 8.64 cm).
  • Pretreatment was carried out by dissolving in 1,2,4-iT + richlorobenzene for 160 ° C for 10 hours, and using PLGPC220 — ⁇ at the measurement temperature of 160 ° C for weight average molecular weight (Mw) and number average molecular weight (Mn Z-average molecular weight ( Mz + 1) was measured, and the polydispersity index (PDI, Mw / Mn) was calculated from this, and the molecular weight was obtained by normalizing with polystyrene.
  • Mw weight average molecular weight
  • Mn Z-average molecular weight Mz + 1
  • MI 2 . 16 and MFRR (21.6 / 2.16) Melt Index (. MI 2 16) is measured according to ASTM D1238 (condition E, 190 ° C, 2.16kg hajeung) standard. Melt Flow Rate ⁇
  • Ratio (MFRR (21.6 / 2.16) is MFR 21 . 6 to MFR 2 . Calculated by dividing by 16 , o
  • MFR 21 . 6 is measured according to ISO 1133 at a temperature of 190 ° C and a load of 21.6 kg
  • MFR 2 . lfr was measured under a temperature of 190 ° C. and a load of 2.16 kg according to ISO 1133.
  • Density ( g / cm 3 ) The density of the olefin polymer was measured according to the ASTM D792 standard.

Abstract

본 발명에서는 우수한 가공성 및 치수안정성을 가져 파이프 등의 중공 성형에 유용한 올레핀 중합체가 제공된다.

Description

【발명의 명칭】
올레핀 중합체 및 이의 제조 방법
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2017년 1월 12일자 한국 특허 출원 제 10-2017-
0005293호에 기초한 우선권의 이익을 주장하며. 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 우수한 가공성 및 치수안정성을 갖는 을레핀 중합체 및 이의 제조 방법에 관한 것이다.
【배경기술】
대구경 고압 파이프 관에 쓰이는 폴리올레핀 수지에는 일반적으로 높은 내압 특성 및 우수한 가공성이 요구된다. 높은 내압 특성은 일반적으로 고밀도 영역에서 발현될 수 있는 물성으로서, 이는 폴리올레핀 수지 내의 결정화도가 높을수록 강도 (Modulus)가 증가하여 고압에 견디는 힘이 증가하기 때문이다.
그러나. 통상 파이프는 최소 50년 동안의 장기 내압 안정성이 보장되어야 하지만, 밀도가 높으면 취성 파괴 (Br i t t le Fracture) 모드에 대한 저항력이 떨어져서, 장기 내압 특성이 저하되는 단점이 있다. 또한, 폴리올레핀 수지의 분자량이 낮거나 다분산지수가 좁으면 대구경 파이프 가공시에 Sagging 현상이 발생하여 가공이 어렵기 때문에, 분자량이 높고 다분산지수가 매우 넓은 폴리올레핀 수지를 적용하여야 이러한 문제를 해결할 수 있다. 특히, 분자량이 높으면 압출부하가 많이 발생하고, 파이프 외관이 불량하기 때문쎄 반드시 매우 넓은 다분산지수가 요구된다.
이러한 문제의 개선을 위해 많은 노력이 진행되고 있으나 제품의 물성과 가공성을 동시에 만족시키지는 못하는 문제점이 있어 장기 안정성과 가공성 간의 균형이 이루어진 보다 우수한 제품의 제조가 끊임없이 요구되고 있다.
한편, 폴리올레핀 수지의 가공성은 다이 팽창 비율 (di e swel l rat io)에 의해 평가할 수 있는데, 상기 di e swel l rat io는 측정에 고가의 분석 장비를 필요로 하여, 측정 오차가 비교적 커서 고압 파이프용 신규 수지의 개발에 있어 허들이 되고 있다.
【발명의 상세한 설명】
【기술적 과제】
본 발명은 우수한 가공성과 치수안정성을 가져 파이프 등의 '중공 성형에 유용한 을레핀 중합체를 제공하기 위한 것이다.
본 발명은 또한 상기 을레핀 중합체의 제조 방법을 제공하기 위한 것이다.
본 발명은 또한 상기한 올레핀 중합체를 포함하는 성형품을 제공하기 위한 것이다.
본 발명은 또한 고분자꾀 물성. 구체적으로는 올레핀 중합체의 2L
Bloma swell 특성을 예측하는 방법을 제공하기 위한 것이다.
[기술적 해결방법】
발명의 일 구현예에 따르면, 하기 수학식 1에 따라 결정되는 Bloma swell 값이 1.2 내지 2.2인 을레핀 증합체가 제공된다:
[수학식 1]
2L Bloma swell = (Capillary swell) x cl + (Mz+]) x c2 + c3 상기. 수학식 1에서, c 1=1.27, C.2-2.40E"7, 및 c3—0.940이다.
상기 올레핀 중합체는 Z 평균 분자량 (Mz+1)이 300,000 g/mol 내지 6,000,000 g/ii )l일 수 있다.
또, 상기 을레핀 중합체는 Capillary swell이 1.3 내지 2.2일 수 있다.
또, 상기 올레핀 중합체는 밀도가 0.930 g/cm3 내지 0.960 g/cm3일 수 있다.
또, 상가 올레핀 중합체는 ASTM D1238 규격에 따라 190 °C의 온도 및 2.16 kg의 하중 하에서 측정된 용융 지수가 0.01 g/ 10m in 내지 2 g/10min일 수 있다.
또, 상기 올레핀 중합체는 다분산지수 (PDI)가 2.5 내지 30일 수 있다. 또, 상기 을레핀 중합체는 에틸렌과 알파올레핀의 공중합체일 수 있으며, 보다 구체적으로는 에틸렌과; 1-옥텐, 1-핵센 또는 1-부텐의 공중합체일 수 있다. 본 발명의 다른 일 구현예에 따르면, 하기 화학식 1로 표시되는 제 1 메탈로센 화합물 1종 이상, 하기 화학식 3으로 표시되는 제 2 메탈로센 화합물 1종 이상, 및 하기 화학식 4로 표시되는 제 3 메탈로센 화합물 1종 이상을 포함하는 촉매 조성물의 존재 하에, 올레핀 단량체를 중합 반응시키는 단계를 포함하는, 상기한 올레핀 중합체의 제조 방법이 제공된다:
[
Figure imgf000005_0001
상기 화학식 1에서
A는 수소, 할로겐, 알킬, C2-20 알케 Cs-20 사이클로알킬 아릴, C7-20 알킬아릴 , C7-20 아릴알킬, d-20 알콕시 , C220 알콕시알킬, C3-20 헤테로시클로알킬, 또는 C5-20 헤테로아릴이고;
D는 -0- -S- . -N(R)- 또는 -SKRKR ' )- 이고, 여기서 R 및 R '은 서로 동일하거나 상이하고, 각각 독립적으로 수소. , 할로겐, d-2o 알킬, C2-20 알케닐, C320사이클로알킬, 또는 C6-20 아릴이고;
L은 d-10 직쇄 또는 분지쇄 알킬렌이고;
B는 탄소, 실리콘 또는 게르마늄이고;
Q는 수소, 할로겐, d-20 알킬 , C320 사이클로알킬, C220 알케닐, C620 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고;
M은 4족 전이금속이며;
Xii 및 2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, d-
20 알킬 , C2-20 알케닐, C3-20 사이클로알킬, C6-20 아릴 , 니트로 , 아미도, Cwo 알킬실릴, d-20 알콕시, 또는 술폰네이트이고;
d 및 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 2a , 화학식 2b 및 하기 화학식 2c 중 어느 하나로 표시되고, 단, d 및 C2가 모두 화학식 2c인 경우는 제외하며 ;
[화학식 2a]
Figure imgf000006_0001
상기 화학식 2a , 2b 및 2c에서, Ri 내지 R17: 내지 R9 '는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, d-20 알킬, C2-20 알케닐, C320 사이클로알킬, d-20 알킬실릴, 20 실릴알킬, 알콕시실릴, 에 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이며, 상기 R10 내지 Ri7 중 서로 인접하 ¾ 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고;
[화학식 3]
Figure imgf000007_0001
상기 화학식 3에서'
은 4족 전이금속이고;
R2i 내지 !½ 중 적어도 어느 하나는 -(CH2)n-0Ra (이때 , Ra는 d-6의 직쇄 또는 분지쇄 알킬기이고, n은 2 내지 10의 정수이다)이고, 나머지는 서로 동일하거나 상이하고 각각 독립적으로, 수소, d-20 알킬, C2-20 알케닐, Cs-20 사이클로알킬, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이거나, 또는 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고,
X2i 및 X22는 서로 동일하거나 상이하고 각각 독립적으로, 할로겐,
20 알킬, C2-10 알케닐, C3-20 사이클로알킬, C7-40 알킬아릴. C7-40 아릴알킬,
C6-2o 아릴, 에 알킬리덴, 아미노, C2-20 알킬알콕시, 또는 C7-40 아릴알콕시이고;
[화학식 4]
Figure imgf000007_0002
상기 화학식 4에서,
M2는 4족 전이 금속이고;
Rsi 내지 1½ 중 적어도 어느 하나는 -(C¾)n-0Ra (이때, Ra는 d-6의 직쇄 또는 분지쇄 알킬기이고, n은 2 내지 10의 정수이다)이고, 나머지는 서로 동일하거나 상이하고 각각 독립적으로, 수소ᅳ d-2o 알킬, C2-20 알케닐, C3-20 사이클로알킬, C620 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이거나, 또는 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할수 있고,
Rb 및 Rc는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 알킬, C3-20 사이클로알킬, d-10 알콕시, C2-20 알콕시알킬, C6-20 아릴, C6-10 아릴옥시, C2-20 알케닐, C7-40 알킬아릴, C7-4o 아릴알킬, C8-40 아릴알케닐. 또는 C2-10 알키닐이고;
Xsi 및 ¾2는 서로 동일하거나 상이하고 각각 독립적으로, 할로겐, d -
20 알킬, C210 알케닐. C3-20 사이클로알킬, C7-40 알킬아릴, C7-40 아릴알킬, Ce-20 아릴, d-20 알킬리덴, 아미노, C2-20 알킬알콕시, 또는 C그 40 아릴알콕시이고;
C 및 Q2는 서로 동일하거나 상이하고 각각 독립적으로, 수소 .,. 할로겐 , (^-20 알킬 , C220 알케닐. . Cs-20 사이클로알킬, C6-20 아릴, C720 알킬아릴, 또는 C720 아릴알킬이다. .
상기 제조방법에 있어서, 상기 촉매 조성물은 상기 제 1 메탈로센 화합물 100중량부에 대하여 상기 제 2 및 제 3 메탈로센 화합물을 각각 독립적으로 50 내지 200중량부로 포함할 수 있다.
또, 상기 촉매 조성물은 하기 화학식 5의 알루미늄 함유 제 1 조촉매, 및 하기 화학식 6의 보레이트계 제 2 조촉매 중 하나 이상의 조촉매를 더 포함할 수 있다:
[화학식 5]
Figure imgf000008_0001
화학식 5에서. 각각 독립적으로 할로겐, 할로겐 치환 또는 비치환된 탄소수 1 내지 20의 하이드로카빌기이고, k는 2 이상의 정수이고, [화학식 6] r[BG4]"
화학식 6에서, T+은 +1가의 다원자 이온이고, Β는 +3 산화 상태의 붕소이고, G는 각각 독립적으로 하이드라이드, 디알킬아미도, 할라이드, 알콕사이드, 아릴옥사이드, 하이드로카빌, 할로카빌 및 할로-치환된 하이드로카빌로 이루어진 군에서 선택되고, 상기 G는 20개 이하의 탄소를 가지나, 단 하나 이하의 위치에서 G는 할라이드이다.
또, 상기 제조방법에 있어서, 상기 촉매 조성물은 담체를 더 포함하며, 상기 제 1 , 제 2 및 제 3의 메탈로센 화합물이 상기 담체에 담지될 수 있다.
또, 본 발명의 다른 일 구현예에 따르면, 상기한 을레핀 중합체를 포함하는 성형품, 구체적으로는 파이프가 제공된다.
더 나아가, 본 발명의 또 다른 일 구현예에 따르면, 측정 대상 고분자에 대해 캐필러리 레오미터 (capi l l ary rheometer )를 이용한 Capi l l ary swel l 값 및 은도 16CTC에서 겔 투과 크로마토그라피 (GPC)를 이용한 Mz+1 값을 각각 측정하는 단계; 및 측정된 Capi l l ary swel l값과 Mz+1 값을 이용하여 상기 .수학식 1에 따라 결정되는 2L Bloma swe l l 값으로부터 Bloma swel l 특성을 예측하는 단계를 포함하는, 고분자의 물성을 예측하는 방법이 제공된다.
【발명의 효과】
본 발명에 따른 올레핀 중합체는 우수한 가공성 및 치수안정성을 가져, 고내압 난방관, mining 파이프 또는 대구경 파이프 등에 유용하게 적용될 수 있다. '
【도면의 간단한 설명】
도 1은 수학식 1에 따른 2L bloma swel l 계산값 (predi ct ion)과, 2L bloma 실측값 (2L bk>nia)과의 관계를 보여주는 그래프이다.
도 2는 시험예 1에서 2L bloma 값 측정시 사용되는 압출 다이를 개략적으로 도시한 모식도이다.
【발명의 실시를 위한 최선의 형태】
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서 , "포함하다", "구비하다'' 또는 "가지다" 등의 용어는 실시된 특징, 단계 , 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계 , 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나 이는 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 발명의 구체적인 구현예에 따른 올레핀 중합체 및 상기 올레핀 중합체의 제조 방법 등에 대해 설명하기로 한다 . 폴리올레핀의 물성은 여러 측면에서 평가될 수 있다. 예를 들어, 중량 평균 분자량, 수평균 분자량, 다분산지수, 용융 흐름 지수 (MFR. meli flow rate), 용융 유동율비 (MFRR, melt flow rate ratio), 밀도 (density) , 풀 노치 크립 테스트 (Full Notch Creep Test; FNCT)등을 측정하여 고분자의 강도, 가공성, 안정성 등의 물리적 특성올 평가하는데 종합적으로 활용될 수 있다. 이 중에서도 내압 난방관, 또는 대구경 고압 파이프 등으로 사용되는 폴리올레핀 수'지는 고압 조건에서의 장기 안정성과 함께 가공성을 갖추어야 할 것이 요구된다. 통상 파이프 가공성을 개선 하기 위해 가공 영역의 점도, 압출량, 용융균열 (melt fracture) 유무 및 관치수 (pipe sizing) 등이 고려된다. 또 고분자 고유 특징인 swell은 연신과 더불어 관 치수에 영향을 미치는 주요 인자로, 이를 고려하지 않을 경우 치수가 달라지거나 가공이 안될 우려가 있다. 통상 파이프 가공시 die에서 나온 수지가 vaaium water bath에 들어가는 과정에서 치수가 결정되는데, 초기 swell이 크거나, 또는 swell이 작더라도 연신이 되지 않은 경우에는 bath 에 잘 들어가지 않게 된다. 이러한 치수안정성 및 가공성을 평가하는 방법으로 종래 다이 팽창 비율 (Die swell ratio)을 측정하는 방법이 있다. 그러나 Die swell ratio를 구하는 방법은 고가의 측정 장비를 필요로 하여 개발 비용을 증가시키며, 측정 오차가 비교적 커서 고분자의 치수안정성 및 가공성을 평가, 분석하는데 어려움이 있다.
이에 대해 본 발명에서는 고유 swell 특성과 연신성으로부터 가공성 및 치수안정성을 예측하고, 이를 통해 bloma swell 특성을 제어할 수 있음을 알아내고, 올레핀 중합체의 제조시 3종의 특정 메탈로센 화합물을 포함하는 촉매 조성물을 사용하여 상기 고유 swell 특성과 연신성에 영향을 미치는 Capillary swell과 Mz+1을 제어함으로써, 우수한 가공성 및 치수안정성을 나타내는 을레핀 증합체를 제조할 수 있다.
즉, 본 발명의 일 구현예에 따르면, 하기 수학식 1에 따라 결정되는 2L Bloma swell 값이 1.2 내지 2.2인 올레핀 중합체가 제공된다:
[수학식 1]
2L Bk)ina swell = (Capillary swell) cl + (Mz+1) x c2 + c3 상기 수학식 l에서, Cl=1.27, c2=2.40E"7, 및 c3=-0.940이다.
보다 구체적으로 발명의 일 구현예에 따른 상기 올레핀 중합체는 상기 수학식 1에 따라 결정되는 2L Bloma swell 값이 1.3 내지 2.15, 보다 더 구체적으로는 1.5 내지 2.11인 것일 수 있다ᅳ
본 발명에 있어서, 2L Bloma swell은 올레핀 증합체를 이용한 가공시 치수에 영향을 미치는 swell 특성과 연신 특성의 두가지를 고려하여 올레핀 중합체의 치수 안정성을 수치화한 것으로, 2L Bloma swell 값으로부터 중합체내 분자구조를 예측할 수 있다. 상기 swell 특성은 capillary rheometer를 이용하여 측정한 중합체 고유의 capillary swell 값이고, 연신 특성은 겔 투과 크로마토그래피 (GPC)를 이용하여 Mz+1 측정 고분자 영역에 의한 연신성을 측정한 값이다. 다분산지수 (PDI)가 좁은 모노모달형 중합체의 경우 연신으로 인해 2L Bloma swell 값이 작고, PI)I가 넓은 중합체의 경우 고분자 영역 (Mz+1)으로 인해 연신이 잘 되지 않는다. 본 발명의 일 구현예에 따른 상기 올레핀 중합체는 상기한 2L Bloma swell 값을 충족함으로써 우수한 가공성 및 치수안정성을 나타낼 수 있다. 또, 본 발명의 일 구현예에 따른 상기 올레핀 중합체는 상기한 2L Bloma swell 값을 충족하는 조건 하에서, Z 평균 분자량 (Mz+1)이 300,000 g/mol 내지 6.000,000 g/mo 보다 구체적으로는 500,000 g/mol 내지 5,000,000 g/mol 일 수 있다. Z 평균 분자량 (Mz+1)은 중합체내 고분자 영역, 특히 고분자 테일 구조의 형성을 의미하는 것으로. 상기한 범위내의 Z 평균 분자량 (Mz+1)을 가짐으로써 연신성을 나타낼 수 있다.
본 발명에 있어서. Z 평균 분자량 (Mz+1)은 중량평균 분자량 (Mw) 및 수평균 분자량 (Mn)과 마찬가지로, 겔 투과 크로마토그래피 (GPC, gel permeation chromatography, Agilent入!" 제조)를 이용하여 '측정한 표준 폴리스티렌에 대한 환산 수치이다. 그러나, 상기한 분자량들의 측정방법은 이에 한정되는 것은 아니며 본 발명이 속한 기술분야에 알려진 다른 방법으로 측정될 수 있다.
또, 상기 올레핀 중합체는 capi llary rhe에 ieter를 이용하여 측정한 중합체 고유의 capillary swell값이 1.3 내지 2.2, 보다 구체적으로는 ᄂ 4 내지 2.2일 수 있다. capillary swell값은 중합체내 분자량 105 내지 10fi g/mol 수준의 중고분자 구조의 형성을 의미하는 것으로, 상기한 범위 내의 capillary swell값을 가잠으로써 우수한 swell 특성을 나타낼 수 있다.
또, 상기 발명의 일 구현예에 따른 올레핀 중합체는 기존의 HDPE의 우수한 기계적 물성을 유지하기 위해 HDPE에 준하는 물성을 나타낼 수 있다. 일 예로, 상기 을레핀 증합체는 ASTM D1505에 따라 측정한 밀도가
0.930 g/cm3 내지 0.960 g/cm3, 보다 구체적으로는 0.935 g/cni3 내지 0.955 g/cm3 일 수 있다.
또, 상기 올레핀 중합체는 ASTM D1238 규격에 따라 190 °C의 온도 및 2.16 kg의 하중 하에서 측정된 용융 지수 (Me It Index; MI)가 0.01 g/ 10m in 내지 2 g/lOinin, 보다 구체적으로는 0.5 g/ 10m in 내지 1.5 g/ 10m in 일 수 있다.
또, 상기 을레핀 중합체는 ISO 1133에 따라 190°C의 온도 및 21.6kg의 하중 하에서 측정된 용융 유동를 (MFR21.6)을 ISO 1133에 따라 190°C의 은도 및 2.16kg의 하중 하에서 측정된 용융 유동률 (MFR2.16)로 나눈 MFRR(21.6/2.16)이 10 이상 500 미만, 보다 구체적으로는 15 내지 400일 수 있다.
또, 상기 올레핀 중합체는 수평균분자량이 8 , 000 g/mol 내지 50 , 000 g/mol이고, 중량평균분자량이 70 , 000 g/mo l 내지 400 , 000 g/mol일 수 있다. 보다 구체적으로는 상기 올레핀 중합체는 수평균분자량이 10 , 000 g/mol 내지 45 , 000 g/mol이고, 중량평균분자량이 100 , 000 g/mol 내지 350 , 000 g/m 일 수 있다. 또, 을레핀 중합체의 중량 평균 분자량 (Mw)에 대한 수 평균 분자량 (Mn)의 비 (Mw/Mn)로 결정되는 다분산지수 (PDI )가 2.5 내지 30, 보다 구체적으로는 2.5 내지 25일 수 있다.
상기 올레핀 중합체는 상술한 물성 중 적어도 어느 하나의 물성을 가질 수 있으며, 우수한 기계적 강도를 나타내기 위해 상술할 물성 모두를 가질 수 있다. 이와 같이 상기한 분지형 고분자 구조의 함량과 Mw 조건을 충족하는 동시에ᅳ HDPE와 같이 상술한 밀도와 용융 지수, 더 나아가 MFRR . Mw, Mz+1 및 다분산지수의 범위를 더욱 충족할 경우, 우수한 치수안정성과 함께, 기계적 강도와 가공성의 개선 효과가 더욱 현저할 수 있다.
이러한 물성을 나타내는 을레핀 증합체는, 예를 들면. 에틸렌과 알파올레핀의 공중합체일 수 있다. 이때, 상기 알파올레핀은 프로필렌, ! - 부텐, .1-펜텐, 4-메틸ᅳ 1-:펜텐, 1—핵센. 1—헵텐, 1-옥텐, 1-데센, 1-운데센. 1-도데센, 1-테트라데센, 1-핵사데센 및 이들의 흔합물을 포함하는 것일 수 있다. 이 중에서도 상기 올레핀 중합체로는 에틸렌 -옥텐, 에틸렌 /1-핵센 또는 에틸렌 /1ᅳ부텐의 공중합체일 수 있다. 상기 일 구현예에 따른 올레핀 중합체가 상술한 공중합체인 경우 상술한 물성을 보다 용이하게 구현할 수 있다. 그러나, 상기 일 구현예에 따른 올레핀 증합체의 종류가 상술한 종류에 한정되는 것은 아니며, 상술한 물성을 나타낼 수 있다면 본 발명이 속한 기술분야에 알려진 다양한 종류의 것으로 제공될 수 있다.
상기 에틸렌 /알파-올레핀 공중합체에서, 상기 공단량체인 알파- 올레핀의 함량은 특별히 제한되는 것은 아니며, 공중합체의 용도, 목적 등에 따라 적절하게 선택할 수 있다. 보다 구체적으로는 0 몰% 초과 99 몰% 이하일 수 있다.
상기와 같은 올레핀 중합체는 하기 화학식 1로 표시되는 제 1 메탈로센 화합물 1종 이상, 하기 화학식 3으로 표시되는 제 2 메탈로센 화합물 1종 이상, 및 하기 화학식 4로 표시되는 제 3 메탈로센 화합물 1종 이상을 포함하는 촉매 조성물의 존재 하에 올레핀 단량체를 증합시키는 단계를 포함하는 제조방법에 의해 제조될 수 있다.
[
Figure imgf000014_0001
상기 화학식 1에서,
A는 수소, 할로겐, CL-20 알킬, C2-20 알케닐, C3-20 사이클로알킬, C6-20 아릴, C7-20 알킬아릴, C7-20 아릴알킬, d-20 알콕시, C2-20 알콕시알킬, C3-20 헤테로시클로알킬, 또는 C520 헤테로아릴이고;
D는 -0—, -S- , -N(R)- 또는 Si (R) (R ' )- 이고, 여기서 R 및 R '은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, d-20 알킬, C2-20 알케닐, C3-20사이클로알킬, 또는 C6-20 아릴이고;
L은 Cwo 직쇄 또는 분지쇄 알킬렌이고;
B는 탄소, 실리콘 또는 게르마늄이고; ·
Q는 수소, 할로겐, d-20 알킬, Cs-20 사이클로알킬, C2-20 알케닐, C6-20 아릴, C7-20 알킬아릴. 또는 C7-20 아릴알킬이고;
M은 4족 전이금속이며;
Xn 및 2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, d- 20 알킬 , C2-20 알케닐, C3-20 사이클로알킬 , C6-20 아릴 , 니트로, 아미도, 알킬실릴, d-20 알콕시, 또는 d-20 술폰네이트이고;
Ci 및 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 2a , 화학식 2b 및 하기 화학식 2c 중 어느 하나로 표시되고, 단, d 및 C2가 모두 화학식 2c인 경우는 제외하며 ;
[화학식 2a]
Figure imgf000015_0001
상기 화학식 2a , 2b 및 2c에서 . Ri 내지 R17 및 I 내지 '는 서로 동일하거나 상이하고. 각각 독립적으로 수소. 할로겐, d-20 알킬, CV20 알케닐, C3-20 사이클로알킬, d-20 알킬실릴, d-20 실릴알킬, 20 알콕시실릴,
Ci-so 알콕시, C6-20 아릴, , C7-20 알킬아릴, 또는 C7-20 아릴알킬이며, 상기 R10 내지 R17 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고;
[화학식 3]
Figure imgf000016_0001
상기 화학식 3에서,
Mi은 4족 전이금속이고;
R2i 내지 8 중 적어도 어느 하나는 _(CH2)n-0Ra (이때 . Ra는 C— 6의 직쇄 또는 분지쇄 알킬기이고, n은 2 내지 10의 정수이다)이고, 나머지는 서로 동일하거나 상이하고 각각 독.립적으로, 수소, d-20 알킬, C2-20 알케닐, C3-20 사이클로알킬, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이거나. 또는 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고
¾ι 및 ¾2는 서로 동일하거나 상이하고 각각 득립적으로, 할로겐. C小.
20 알킬, C2-10 알케닐, C3.20 사이클로알킬. C7-40 알킬아릴, C740 아릴알킬. 6-2o 아릴, 치환되거나 치환되지 않은 d-20 알킬리덴, 치환되거나 치환되지 않은 아미노, C2-20 알킬알콕시, 또는 C7-40 아릴알콕시이고;
[화학식 4]
Figure imgf000016_0002
상기 화학식 4에서,
M2는 4족 전이 금속이고;
3i 내지 4 중 적어도 하나는 -(C¾)n-0Ra (이때, Ra는 d-6의 직쇄 또는 분지쇄 알킬기이고, n은 2 내지 10의 정수이다)이고, 나머지는 서로 동일하거나 상이하고 각각 독립적으로, 수소, d-20 알킬, C220 알케닐, C3-20 사이클로알킬, C6-20 아릴, C7-20 알킬아릴, 또는 c720 아릴알킬이거나, 또는 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고,
Rb 및 Rc는 서로 동일하거나 상이하고. 각각 독립적으로 수소, Cwo 알킬 , C3-20 사이클로알킬 , d-10 알콕시, C2-20 알콕시알킬, C6-20 아릴 , C6-10 아릴옥시, C2-20 알케닐, C7-40 알킬아릴, C7-4o 아릴알킬, C 40 아릴알케닐, 또는 C2-10 알키닐이고;
ι 및 2는 서로 동일하거니 상이하고 각각 독립적으로, 할로겐, d-
20 알킬, C2-10 알케닐, C320 사이클로알킬, C7-40 알킬아릴, C7-40 아릴알킬. :C6-2o 아릴, 치환되거나 치환되지 않은 C o 알킬리덴, 치환되거나 치환되지 않은 아미노, C2- 20 알킬알콕시, 또는 C7-40 아릴알콕시이고;
. Qi 및 ¾는 서로 동일하거나 상이하고 각각 독립적으로. 수소, 할로겐. C1- 20 알킬, C2-20 알케닐. C3-20 사이클로알킬, C6-2o 아릴, C7-20 알킬아릴, .또는 C7-20 아릴알킬이다.
상기 화학식 1 , 3 및 4의 치환기들을 보다 구체적으로 설명하면 하기와 같다.
상기 CHO 알킬로는, 직쇄 또는 분지쇄의 알킬을 포함하고, 구체적으로 메틸, 에틸, 프로필, 이소프로필, n-부틸, tert-부틸, 펜틸, 핵실, 헵틸, 옥틸 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C2-20 알케닐로는, 직쇄 또는 분지쇄의 알케닐을 포함하고, 구체적으로 알릴, 에테닐, 프로페닐, 부테닐, 펜테닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C3-20 사이클로알킬로는, 단환 또는 축합환의 사이클로알킬을 포함하고, 구체적으로는 사이클로프로필, 사이클로부틸, 사이클로펜틸, 사이클로핵실. 노보닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다. 상기 C6-20 아릴로는, 단환 또는 축합환의 아릴을 포함하고, 구체적으로 페닐, 비페닐, 나프틸, 페난트레닐, 플루오레닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C5-20 헤테로아릴로는, 단환 또는 축합환의 헤테로아릴을 포함하고, 카바졸릴, 피리딜, 퀴놀린, 이소퀴놀린 티오페닐, 퓨라닐. 이미다졸, 옥사졸릴, 티아졸릴, 트리아진, 테트라하이드로피라닐, 테트라하이드로퓨라닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다. 상기 Cuo 알콕시로는, 메록시, 에특시, 페닐옥시, 시클로핵실옥시 등을 들 수 있으나 이에만 한정되는 것은 아니다.
상기 4족 전이금속으로는 티타늄, 지르코늄, 하프늄 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서에서 서로 인접하는 2 개의 치환기가 서로 연결되어 지방족 또는 방향족 고리를 형성한다는 것은 2개의 치환기의 원자 (들) 및 상기 2개의 치환기가 켤합된 원자가 (원자들이) 서로 연결되어 고리를 이루는 것을 의미한다.
상술한 치환가들은 목적하는 효과와 동일 내지 유사한 효과를 발휘하는 범위 내에서 임의적으로 하이드록시기; 할로겐; 하이드로카빌기; 하이드로카빌옥시기; 14족 내지 16족의 헤테로 원자들 중 하나 이상의 헤테로 원자를 포함하는 하이드로카빌기 또는 하이드로카빌옥시기; -S i¾ ; 하이드로카빌 (옥시)실릴기; 포스파인기; 포스파이드기; 술포네이트기; 및 술폰기로 이루어진 군에서 선택된 1 이상의 치환기로 치환될 수 있다.
본 발명의 일 구현예에 따른 올레핀 중합체의 제조에 사용가능한 촉매 조성물에 있어서, 화학식 1로 표시되는 제 1 메탈로센 화합물은 주로 높은 SCB( shor t chain branch) 함량을 가지는 고분자량의 공중합체를 만드는데 기여하고, 화학식 3으로 표시되는 제 2 메탈로센 화합물은 주로 낮은 SCB 함량을 가지는 저분자량의 공중합체를 만드는데 기여할 수 있다. 또한, 화학식 4로 표시되는 제 3 메탈로센 화합물은 중간 정도의 SCB 함량을 가지는 중저분자량의 공중합체를 만드는데 기여할 수 있다. 이에 따라 높은 SCB 함량을 가지는 고분자량의 을레핀계 공중합체이면서, 동시에 분자량 분포가 넓어 물성이 우수할 뿐만 아니라 가공성도 우수한 올레핀 중합체를 제조할 수 있다.
보다 구체적으로, 상기 화학식 1의 제 1 메탈로센 화합물은 인데노 인돌 ( indeno i ndol e) 유도체 및 /또는 플루오렌 ( f l uorene) 유도체가 브릿지에 의해 가교된 구조를 형성하며, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 갖는다. 이와 같이 전자적으로 풍부한 인데노 인돌기 및 /또는 플루오렌기를 포함함에 따라 활성이 높고, 적절한 입체 장애와 리간드의 전자적인 효과로 인해 수소 반응성이 낮아 고분자량의 을레핀 중합체를 제조할 수 있다. 특히 인데노 인돌 유도체의 질소 원자가 자라나는 고분자 사슬의 bet aᅳ hydrogen을 수소결합에 의해 안정화시켜 beta-hydrogen e l iminat i on을 억제함으로써 낮은 수소 반웅성을 나타낼 수 있다. 이에 따라 고분자량과 동시에 넓은 다분산지수를 갖는 을레핀 중합체를 제조하기 위해 수소를 포함하여 중합 반웅을 진행하는 경우에도. 또는 루이스 산 특성을 지니는 담체에 담지 시에도 낮은 수소 반응성을 나타내어 높은 촉매 활성으로 초고분자량의 올레핀 중합체, 구체적으로는 엘틸렌 / 1-옥텐, 에틸렌 / 1-핵센 또는 에틸렌 /1-부텐 공증합체를 제조할 수 있다.
또, 상기 화학석 1와 메탈로센 화합물은 다른 특성을 갖는 촉매와 흔성으로 사용하는 경우에도 활성의 저하 없이 고분자량의 특성을 만족시키는 을레핀 증합체를 제조할 수 있어, 고분자의 올레핀 중합체를 포함하면서 넓은 다분산지수를 갖는 올레핀 중합체를 용이하게 제조할 수 있다.
구체적으로, 상기 화학식 1에 있어서, A는 수소, 메틸, 에틸, 프로필, 이소프로필, n-부틸 . t er t-부틸, 메톡시메틸 , ter t-부록시메틸 , 1- 에톡시에틸. 1-메틸 -1-메특시에틸 , 테트라하이드로피라닐, 또는 테트라하이드로퓨라닐인 것이 바람직하나, 이에만 한정되는 것은 아니다. 또, 상기 화학식 1의 L은 C4-8 직쇄 또는 분지쇄 알킬렌인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다. 또한, 상기 알킬렌기는 d-20 알킬, C2-20 알케닐, Cs-20 사이클로알킬, 또는 C6-20 아릴로 치환 또는 비치환될 수 있다.
또, 상기 화학식 1의 B는 실리콘인 것이 바람직하나, 이에만 한정되는 것은 아니다.
또, 상기 화학식 2a, 2b 및 2c의 내지 R17 및 R ' 내지 '는 각각 독립적으로 수소, 메틸, 에틸, 프로필, 이소프로필, n-부틸, tert-부틸, 펜틸, 핵실, 헵틸, 옥틸, 페닐, 할로겐, 트리메틸실릴, 트리에틸실릴, 트리프로필실릴, 트리부틸실릴, 트리이소프로필실릴, 트리메틸실릴메틸, 메톡시, 또는 에톡시인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다.
상기 화학식 2a로 표시되는 화합물의 구체적인 예로는 하기 구조식들 증 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은 아니다.
Figure imgf000020_0001
Figure imgf000021_0001
또, 상기 화학식 2b로 표시되는 화합물의 구체적인 예로는 하기 구조식 들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은 아니다.
Figure imgf000021_0002
Figure imgf000022_0001
또, 상기 화학식 2(:로 표시되는 화합물의 구체적인 예로는 하기 구조식 들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만
Figure imgf000022_0002
상기 화학식 1로 표시되는 제 1 메탈로센 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 이에만 한정되는 것은 아니다.
Figure imgf000023_0001
ιζ
Figure imgf000024_0001
S6lM0/Z.T0ZaM/X3d C6Z.TCI/810Z OAV
Figure imgf000025_0001
7ᅵ.화학식 1의 제 1 메탈로센 화합물은 인데노인돌 유도체 및 /또는 플루오렌 유도체를 브릿지 화합물로 연결하여 리간드 화합물로 제조한 다음, 금속 전구체 화합물을 투입하여 메탈레이션 (metal l at ion)올 수행함으로써 수득될 수 있다. 상기 제 1 메탈로센 화합물의 제조방법은 후술하는 실시예에 구체화하여 설명한다.
한편, 상기 화학식 3으로 표시되는 제 2 메탈로센 화합물은 주로 '낮은 SCB ( short chain branch) 함량을 가지는 저분자량의 공중합체를 만드는데 기여하는 것으로, 상기 제 1 메탈로센 화합물과 함께 사용시 높은 SCB 함량을 가지는 고분자량의 올레핀계 공중합체이면서, 동시에 분자량 분포가 넓어 물성이 우수할 뿐만 아니라 가공성도 우수한 올레핀 중합체를 제조할 수 있다.
상기 화학식 3으로 표시되는 제 2 메탈로센 화합물의 구체적인 예로 하기 구조식들로 표시되는 화합물을 들 수 있으나, 본 발명이 이에
Figure imgf000026_0001
또, 상기 제 2 메탈로센 화합물들 중에서도, 상기 화학식 3에 있어서 상기 사이클로펜타디에닐기의 치환기로서 R21 내지 R24중 어느 하나, 그리고 R25 내지 1½ 중 증 어느 하나에 -(CH2)n-0Ra (이때, Ra는 의 직쇄 또는 분지쇄 알킬기이고, n은 2 내지 10의 정수이다), 보다 구체적으로는 t- 부톡시핵실기를 도입함으로써, 공단량체를 이용한 폴리을레핀 제조시 낮은 전환율을 나타내어 공중합도 또는 공단량체 분포가 조절된 저분자량의 폴리올레핀을 제조할 수 있다.
구체적으로, 우수한 활성을 가지며, 상기한 화학식 1로 표시되는 전이 금속 화합물과 함께 사용시 공중합성, 특히 1—옥텐, 1—부텐 또는 1- 핵센의 공중합성을 더욱 향상시킬 수 있는 제 2 메탈로센 화합물로는 하기 구조식으로 표시되는 화합물들을 들 수 있으며, 이들 중 어느 하나 또는 둘 모두의 흔합물이 사용될 수 있다.
Figure imgf000026_0002
한편, 화학식 4의 제 3 메탈로센 화합물은, 2개의 인덴 ( indene)기가 S iQ!Q2 브릿지 (br i dge)에 의해 가교된 형태이며, 상기 인덴기의 치환기 R31 내지 R34중 어느 하나 이상의 치환기는 -(CH2)n-0Ra이고, 각각의 인덴기는 Rb 및 Rc로 치환될 수 있다.
이와 같이, 제 3 메탈로센 화합물은 인덴 (indene) 또는 그 유도체의 치환기에
Figure imgf000027_0001
(이때, !^는 d-6의 직쇄 또는 분지쇄 알킬기이고, n은 2 내지 10의 정수이다)의 테더 (tether)기를 적어도 하나, 보다 구체적으로는 2 이상을 도입함으로써, 공단량체를 이용한 폴리올레핀 제조시 상기 치환기를 포함하지 않는 다른 Cp계 촉매에 비하여 공단량체에 대한 낮은 전환율을 나타내어 공중합도 또는 공단량체 분포가 조절된 중저분자량의 풀리올레핀을 제조할 수 있다.
보다 구체적인 예로, 상기 화학식 4의 제 3 메탈로센 화합물과 함께. 고분자량 영역의 폴리올레핀 제조용의 상기 화학식 1의 제 1메탈로센 화합물을 함께 사용하여 흔성 (hybrid) 촉매로서 사용할 경우, 제 1 메탈로센 화합물에 의해 고분자량 영역의 폴리올레핀에서는 높은 공중합성을 나타내면서, 상기 화학식 > 4의 제 3 메탈로센 화합물의 작용에 의해 저분자 : 영역에서의 폴리올레핀에서는 낮은 공중합성을 나타낼 수 있다. 이에 따라, 공단량체의 함량이 고분자량 주쇄에 집중되어 있는 구조, 즉, 결가지 함량이 고분자량 쪽으로 갈수록 많아지는 구조인 BOCE Broad Orthogonal ι Co~monomer Distribution) 구조를 갖는 :폴리을레핀을 중합하기에' 매우 유리하다.
구체적으로, 상기 화학식 4의 R31 내지 R34 중 어느 하나 이상은 - (CH2)n-0Ra (이때 , ^는 C 의 직쇄 또는 분지쇄 알킬기이고, n은 2 내지 10의 정수이다)인 특징을 지닌다. 상기 화학식 1에서, ᅳ !^^ᅦ 는 구체적으로 tert-부록시부틸기 (tert-butoxybutyl) 또는 tert- 부록시핵실기 (tert-butoxyhexyl) 일 수 있다. 보다 구체적으로는 2개의 인덴기가 각각 -(CH2)n-0Ra 기를 포함할 수 있으며. 상기 -(CH2)n-0Ra 기는 tert-부특시부틸기 또는 tert-부록시핵실기일 수 있다. 이와 같은 구조의 전이금속 화합물이 담체에 담지되었을 때, -(CH2)n-0Ra 기가 담지체로 사용되는 실리카 표면의 실라놀기와 밀접한 상호작용을 통해 공유결합을 형성할 수 있어 안정적인 담지 중합이 가능하다. 또한, 상기 작용기는 1- 옥텐, 1-부텐. 또는 1-핵센과 같은 알파 올레핀 공단량체의 공중합성에 영향을 미칠 수 있는데, -(CH2)n-0Ra 에서 n이 10 이하, 보다 구체적으로는 6 이하, 보다 더 구체적으로는 4 이하의 짧은 알킬 체인을 갖는 경우, 전체 중합 활성은 유지하면서 알파 올레핀 공단량체에 대한 공중합성 (comonomer incorporat ion)이 낮아져 다른 물성의 저하없이 공중합도가 조절된 폴리올레핀의 제조에 유리하다.
상기 화학식 4로 표시되는 제 3 메탈로센 화합물로는 예를 들어 하기 구조식들 중 하나로 표시되는 화합물일 수 있으나, 이에만 한정되는 것은
Figure imgf000028_0001
그리고. 상기 화학식 4로 표시되는 게 3 메탈로센 화합물은 알려진 유기 화합물 및 전이금속 화합물의 제조방법에 따라 제조될 수 있으며. 후술하는 실시예에서 보다 구체화하여 설명한다.
본 발명에서 사용되는 촉매 조성물은 상기 화학식 1로 표시되는 제 1 메탈로센 화합물 1종 이상, 상기 화학식 3으로 표시되는 제 2 메탈로센 화합물 1종 이상, 그리고 상기 화학식 4로 표시되는 제 3 메탈로센 화합물 1종 이상을 조촉매 화합물과 함께 담체에 담지한 것일 수 있다.
본 발명에 따른 담지 메탈로센 촉매에 있어서. 상기 담체로는 표면에 하이드록시기를 함유하는 담체를 사용할 수 있으며. 바람직하게는 건조되어 표면에 수분이 제거된, 반응성이 큰 하이드록시기와 실록산기를 가지고 있는 담체를 사용할 수 있다.
예컨대, 고온에서 건조된 실리카, 실리카 -알루미나, 및 실리카- 마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na20, K2C03 , BaS04 , 및 Mg(N03)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다. 상기 담체의 건조 은도는 200 내지 800 °C가 바람직하고, 300 내지 600 °C가 더욱 바람직하며, 300 내지 400 °C가 가장 바람직하다. 상기 담체의 건조 온도가 200°C 미만인 경우 수분이 너무 많아서 표면의 수분과 조촉매가 반응하게 되고, 8(xrc를 초과하는 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 줄어들며 . 또한 표면에 하이드록시기가 많이 없어지고 실록산기만 남게 되어 조촉매와의 반응자리가 감소하기 때문에 바람직하지 않다.
상기 딤-체 표면의 하이드록시기 양은 0. 1 내지 10 隱 ol /g어 바람직하며, 0.5 내지 5 隱 ol /g일 때 더욱 바람직하다. 상기 담체 표면에 있는 하이드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건. 예컨대 온도, 시간, .진공 또는 스프레이 건조 등에 의해 조절힐 수 있다. 상기 하이드록시기.와ᅳ .양이 .0. 1 隱 ol /g 미만이면 조촉매와의 반응자리가 적고, 10 :隱 ol /g을 초과하면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것일 가능성이 있기 때문에 바람직하지 않다.
상기 담지 메탈로센 촉매는 제조되는 올레핀 중합체 구체적으로는 에틸렌 /1-핵센 또는 에틸렌 /1-부텐 공중합체에서 LCB(Long Chain Branch)의 생성을 유도할 수 있다.
또, 본 발명에 따른 담지 메탈로센 촉매에 있어서, 상기 메탈로센 화합물을 활성화하기 위하여 담체에 함께 담지되는 조촉매로는 13족 금속을 포함하는 유기 금속 화합물로서, 일반적인 메탈로센 촉매 하에 을레핀을 중합할 때 사용될 수 있는 것이라면 특별히 한정되는 것은 아니다.
구체적으로. 상기 조촉매 화합물은 하기 화학식 5의 알루미늄 함유 제 1 조촉매, 및 하기 화학식 6의 보레이트계 제 2 조촉매 중 하나 이상을 포함할 수 있다:
[화학식 5] - [Al (R31)-0-]k- 화학식 5에서, R31은 각각 독립적으로 할로겐 할로겐 치환 또는 비치환된 탄소수 1 내지 20의 하이드로카빌기이고, k는 2 이상의 정수이고.
[화학식 6]
T+ [BG4]_
화학식 6에서, T+은 +1가의 다원자 이온이고, B는 +3 산화 상태의 붕소이고, G는 각각 독립적으로 하이드라이드, 디알킬아미도, 할라이드, 알콕사이드, 아릴옥사이드, 하이드로카빌, 할로카빌 및 할로-치환된 하이드로카빌로 이루어진 군에서 선택되고, 상기 G는 20개 이하의 탄소를 가지나, 단 하나 이하의 위치에서 G는 할라이드이다..
이러한 제 1 및 제 2 조촉매의 사용에 의해, 최종 제조된 폴리올레핀의 다분산지수가 보다 균일하게 되면서, 중합 활성이 향상될 수 있다.
상기 화학식 5의 제 1 조촉매는 선형, 원형 또는 망상형으 i : 반복단위가 결합된 알킬알루미녹산계 화합물로 될 수 있고, 이러한 제 1 조촉매의 구체적인 예로는, 메틸알루미녹산 (MA0) , 에틸알루미녹산. 이소부틸알루미녹산 또는 부틸알루미녹산 등을 들 수 있다.
또한, 상기 화학식 6의 제 2 조촉매.는 삼치환된 암모늄염, 또는 디알킬 암모늄염, 삼치환된 포스포늄염 형태의 보레이트계 화합물로 될 수 있다. 이러한 제 2 조촉매의 구체적인 예로는, 트리메탈암모늄 테트라페닐보레이트, 메틸디옥타데실암모늄 테트라페닐보레이트, 트리에틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리 (n—부틸)암모늄 테트라페닐보레이트, 메틸테트라데사이클로옥타데실암모늄 테트라페닐보레이트, Ν , Ν- 디메틸아닐늄 테트라페닐보레이트, Ν , Ν-디에틸아닐늄 테트라페닐보레이트, Ν , Ν-디메틸 (2,4,6—트리메틸아닐늄)테트라페닐보레이트, 트리메틸암모늄 테트라키스 (펜타플로오로페닐 )보레이트, 메틸디테트라데실암모늄 테트라키스 (펜타페닐)보레이트, 메틸디옥타데실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리에틸암모늄, 테트라키스 (펜타플루오로페닐)보레이트,
트리프로필암모늄테트라키스 (펜타프루오로페닐)보레이트, 트리 (η- 부틸)암모늄 테트라키스 (펜타플루오로페닐 )보레 o 트리 (2급- 부틸 )암모늄테트라키스 (펜타플루오로페닐 )보레이트ᅳ Ν , Ν-디메틸아닐늄 테트라키스 (펜타플루오로페닐)보레이트, .
디에틸아닐늄테트라키스 (펜타플루오로페닐)보레이트, Ν , Ν-디메틸 (2, 4 , 6— 트리메틸아닐늄)테트라키스 (펜타플루오로페닐)보레이트,
트리메틸암모늄테트라키스 (2, 3 , 4, 6-테트라플루오로페닐)보레이트,
트리에틸암모늄 테트라키스 (2 , 3 , 4 , 6-테트라플루오로페닐)보레이트, 트리프로필암모늄 테트라키스 (2, 3, 4, 6—테트라플루오로페닐)보레이트, 트리 (η-부틸)암모늄 테트라키스 (2, 3 , 4 , 6- ,테트라플루오로페닐)보레이트, 디메틸 ( t-부틸)암모늄 테트라키스 (2, 3, 4, 6ᅳ테트라플루오로페닐)보레이트, Ν , Ν-디메틸아닐늄 테트라키스 (2, 3.4 , 6-테트라플루오로페닐)보레이트, Ν , Ν- 디에틸아닐늄 테트라키스 (2 ; 3.4,6ᅳ테트라플루오로페닐)보레이트 또는 Ν , Ν 디메틸 -(2 , 4 , 6—.트리메틸아닐늄)테트라키스 -(2, 3 , 4, 6- 테트라플루오로페닐)보레이트 등의 삼치환된 암모늄염 형태의 보레이트계 화합물; 디옥타데실암모늄 테트라키스 (펜타플루오로페닐)보레이트 . 디테트라데실암모늄 테트라키스 (펜타플루오로페닐)보레이트 또는 디사이클로핵실암모늄 테트라키스 (펜타플루오로페닐)보레이트 등의 디알킬암모늄염 형태의 보레이트계 화합물; 또는 트리페닐포스포늄 테트라키스 (펜타플루오로페닐)보레이트, 메틸디옥타데실포스포늄 테트라키스 (펜타플루오로페닐)보레이트 또는 트리 (2 , 6- , 디메틸페닐)포스포늄 테트라키스 (펜타플루오로페닐)보레이트 등의 삼치환된 포스포늄염 형태의 보레이트계 화합물 등을 들 수 있다.
이러한 담지 메탈로센 촉매는, 예를 들면, 담체에 조촉매를 담지시키는 단계 및 조촉매 담지 담체에 제 1 내지 제 2의 메탈로센 화합물들을 순차로 담지시키는 단계로 제조될 수 있다. 이때 상기 메탈로센 화합물들의 담지 순서는 특별히 한정되지는 않으나, 분자 구조가 작은 제 2 메탈로센 화합물, 제 3 메탈로센 화합물 그리고 제 1메탈로센 화합물의 순서대로 담지할 수 있다.
또, 담체에 조촉매를 담지시키는 단계에서는, 고온에서 건조된 담체에 조촉매를 첨가하고, 이를 약 20 내지 120°C의 온도에서 교반하여 조촉매 담지 담체를 제조할 수 있다.
그리고, 조촉매 담지 담체에 촉매 전구체를 담지시키는 단계에서는 상기 담체에 조촉매를 담지시키는 단계에서 얻어진 조촉매 담지 담체에 전이 금속 화합물을 첨가하고, 다시 이를 약 20 내지 120 °C의 온도에서 교반하여 담지 촉매를 제조할 수 있다.
상기 조촉매 담지 담체에 촉매 전구체를 담지시키는 단계에서는 조촉매 담지 담체에 전이 금속 화합물을 첨가하여 교반한 후, 조촉매를 추가로 첨가하여 담지 촉매를 제조할 수 있다.
발명의 일 구현에에 따른 상기 촉매조성물에 있어서 사용되는 담체, 조촉매, 조촉매 담지 담체 및 전이 금속 화합물의 함량은 목적하는 담지 ' 촉매의 물성 또는 효과에 따라 적절하게 조절될 수 있다.
구체적으로, 발명 일 구현예에 따른 .상기 촉매 조성물에 있어서 .. 상기 제 1 메:탈로센 화합물 100중량부에 대하여 상기 제 2 및 제 3 메탈로센 화합물은 각각 독립적으로 50 내지 200중량부로 포함될 수 있고, 보다 구체적으로는 상기 제 2 메탈로센 화합물은 100 내지 170중량부, 상기 제 3 메탈로센 화합물은 100 내지 170중량부로 포함될 수 있다.. 상기한 혼합 중량비로 상기 제 1 내지 제 3의 메탈로센 화합물이 포함됨으로써, 우수한 가공성 및 치수 안정성을 갖는 올레핀 중합체의 제조에 보다 용이할 수 있다.
또, 발명 일 구현예에 따른 상기 촉매조성물에 있어서, 상기 제 1 내지 제 3 메탈로센 화합물을 포함하는 전체 메탈로센 화합물 대 담체의 중량비는 1:10 내지 1:1,000, 보다 구체적으로는 1:10 내지 1:500일 수 있다. 상기한 범위의 중랑비로 담체 및 메탈로센 화합물을 포함할 때, 최적의 형상을 나타낼 수 있다.
또, 상기 촉매조성물이 조촉매를 더 포함할 경우, 조촉매 대 담체의 중량비는 1:1 내지 1:100, 보다 구체적으로는 1:1 내지 1:50일 수 있다. 상기 중량비로 조촉매 및 담체를 포함할 때. 활성 및 고분자 미세구조를 최적화할 수 있다.
상기 촉매조성물 제조시에 반응 용매로는 펜탄, 핵산, 헵탄 등과 같은 탄화수소 용매, 또는 벤젠, 를루엔 등과 같은 방향족 용매가 사용될 수 있다.
상기 담지 촉매의 구체적인 제조 방법은 후술하는 실시예를 참고할 수 있다. 그러나, 담지 촉매의 제조 방법이 본 명세서에 기술한 내용에 한정되는 것은 아니며, 상기 제조 방법은 본 발명이 속한 기술분야에서 통상적으로 채용하는 단계를 추가로 채용할 수 있고, 상기 제조 방법의 단계 (들)는 통상적으로 변경 가능한 단계 (들)에 의하여 변경될 수 있다. 한편, 본 발명에 따른 올레핀 증합체는 상술한 담지 메탈로센 촉매의 존재 하에서, 올레핀 단량체를 중합시킴으로써 제조될 수 있다 .
중합 가능한 올레핀 단량체의 예로는 에틸렌. 알파-을레핀, 사이클릭 을레핀 등이 있으며, 이증 결합을 2개 이상 가지고 있는 다이엔 을레핀계 단량체 또는 트라이엔 을레핀계 단량체 등도 중합 가능하다. 상기 단량체의 구체적인 예로는 에틸렌 .프로필렌, 1—부텐, 1-펜텐, 4-메틸 -1—펜텐, 1 - 핵센, 1-헵텐, 1-옥텐, 1 -데센, 1-운데센, 1—도데센, 1ᅳ테트라데센. 1: 핵사데센, 1—아이토센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨. 비닐노보넨. 디사이클로펜타디엔 1 .4-부타디엔, 1 , 5-펜타디엔, 1,6- 핵사디엔, 스티렌' , 알파-메틸스티렌, 디비닐벤젠 , 3—클로로메틸스티렌 등이 있으며, 이들 단량체를 2 종 이상 흔합하여 공중합할 수도 있다. 상기 을레핀 중합체가 에틸렌과 다른 공단량체의 공중합체인 경우에, 상기 공단량체는 프로필렌, 1-부텐, 1-핵센, 4-메틸 -1-펜텐 및 1—옥텐으로 이루어진 군에서 선택된 하나 이상의 공단량체일 수 있으며. 보다 구체적으로는 1—부텐 또는 1-핵센일 수 있다.
상기 을레핀 단량체의 중합 반응을 위하여, 연속식 용액 중합 공정, 벌크 중합 공정, 현탁 중합 공정, 슬러리 중합 공정 또는 유화 중합 공정 등 을레핀 단량체의 중합 반응으로 알려진 다양한 중합 공정을 채용할 수 있다.
그리고, 상기 중합 온도는 약 25 내지 약 500 °C , 바람직하게는 약 25 내지 약 200°C . 보다 바람직하게는 약 50 내지 약 15CTC일 수 있다. 또한, 중합 압력은 약 1 내지 약 100 Kgf/ciif , 바람직하게는 약 1 내지 약 50 Kgf /cuf , 보다 바람직하게는 약 5 내지 약 30 Kgf /cui2일 수 있다.
또 상기 중합 반응은 수소 기체 하에서 수행될 수도 있다. 이때 상기 수소 기체는 메탈로센 촉매의 비활성 사이트를 활성화 시키고, 체인 이동 반웅을 일으켜 분자량을 조절하는 역할을 한다. 본 발명에서의 제 1 내지 제 3 메탈로센 화합물은 수소 반응성이 우수하기 때문에 중합 공정시 수소 기체 사용량의 조절에 의해 원하는 수준의 분자량과 용융지수를 갖는 올레핀 증합체를 효과적으로 제조할 수 있다. 구체적으로 상기 중합 반응시 수소 기체는 반응기 1 기압 하에서 0.01 내지 5 g/hr , 보다 구체적으로는 0. 1 내지 3.3 g/hr의 속도로 투입될 수 있다. 또, 상술한 담지 메탈로센 촉매는 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 핵산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 틀루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입할 수 있다. 여기에 사용되는 용매는 소량의 알킬 알루미^ 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기: 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다. 상기한 제조방법에 의해 제조되는 을레핀 증합체는 고분자량의 고분자 쇄를 주로 증합하는 화학식 1로 표시되는 제 1 메탈로센 화합물과, 저분자량의 고분자 쇄를 주로 중합하는 화학식 3으로 표시되는 제 2 메탈로센 화합물, 그리고 중저분자량의 고분자 쇄를 주로 중합하는 화학식 4로 표시되는 제 3 메탈로센 화합물의 상호 작용으로 인하여, 상기한 2L bloma swel l 특성을 충족하는 우수한 가공성 및 치수안정성을 나타낼 수 있다. 이에 따라 본 발명에 따른 올레핀 중합체는 고내압 난방관, mining 파이프 또는 대구경 파이프 등에 바람직하게 적용될 수 있다.
이에 따라 본 발명의 다른 일 구현예에 따르면 상기한 올레핀 중합체를 이용하여 제조된 성형품, 구체적으로는 고내압 난방관. mini ng 파이프 또는 대구경 파이프 등의 파이프를 제공한다.
또, 본 발명의 다른 일 구현예에 따르면, 고분자의 물성, 구체적으로는 치수안정성 및 가공성을 나타내는 Bloma swel l 특성을 예측하는 방법이 제공된다.
구체적으로, 상기 고분자의 물성을 예측하는 방법은, 측정 대상 고분자에 대해 capi l l ary rheometer를 이용한 Capi l l ary swe l l 값 및 은도 160°C에서 겔 투과 크로마토그라피 (GPC)를 이용한 Mz+1 값을 각각 측정하는 단계; 및 측정된 Capillary swell값과 Mz+1 값을 이용하여 하기 수학식 1에 따라 결정되는 2L Bloma swell 값으로부터 Bloma swell 특성을 예측하는 단계를 포함한다:
[수학식 1]
2ᄂ Bloma swell = (Capillary swell) cl + (Mz+1) x c2 +c3
상기 수학식 l에서, cl=1.27, c2=2.40E"7, 및 c3=-0.940이다.
발명의 일 구현예에 따른 상기 고분자의 물성을 예측하는 방법은, 가공시 치수에 영향을 미치는 swell 특성과 연신성을 고려함으로써, 고분자의 치수안정성 및 가공성 예측에 유용하다. 예를 들어, 상기한 촉매에 의해 제조되어 다분산지수 (PDI)가 2.5 내지 30, 보다 구체적으로는: 2.5 내지 25인 올레핀 증합체에 대해 가공성 및 치수안정성을 나타내는 Bloma swell 특성을 '높은 신뢰도로 평가할 수 있으며, 상기 수학식 1에: 따라 결정되는 2L Bloma swell 값이 1.2 내지 2.2일 때 우수한 치수안정성 및 가공성을 나타내는 것으로 예측할 수 있다.
이하 발명의 구체적인 실시예흩 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로. 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠힌- 의미로든 한정되는 것은 아니다.
Figure imgf000035_0001
1-1) 리간드 화합물의 제조
fluorene 2 g을 5 mL MTBE, hexane 100 mL에 녹여 2.5 M n-BuLi hexane solution 5.5 mL를 dry ice/acetone bath에서 적가하여 상은에서 밤새 교반하였다. (6-(tert-butoxy)hexyl)dichloro(methyl)silane 3.6 g을 핵산 (hexane) 50 mL에.. 녹여 dry ice/acetone bath하에서 f luorene-Li 슬러리를 30분 동안 transfer하여 상온에서 밤새 교반하였다. 이와 동시에 5 , 8-d i me t hy 1 -5 , 10-d i hydro i ndeno [ 1 , 2-b ] i ndo 1 e (12 nimol , 2.8 g) 또한 THF 60 mL에 녹여 2.5M n-BuLi hexane solution 5.5 mL를 dry ice/acetone bath에서 적가하여 상은에서 밤새 교반하였다. fluorene과 (6-(tert_ butoxy)hexyl)dichloro(methyl)silane 과의 반응 용액을 NMR 샘플링하여 반웅 완료를 확인한 후 5,8-diiiiethy 5,10-dihyclroindeno[l,2-b]inclole-Li solution올 dry ice/acetone bath하에서 transfer하였다. 상은에서 밤새 교반하였다. 반응. 후 ether/water로 추출 (extract ion)하여 유기층의 잔류수분을 MgS04로 제거 후 리간드 화합물 (Mw 597.90, 12 ol)을 얻었으며 이성질체 (isomer) 두 개가 생성되었음을 1H-NMR에서 확인할 수 있었다.
¾ NMR (500 MHz, d6— benzene): —0.30 - -0.18 (3H, d), 0.40 (2H. m), 0.65 ~ 1.45 (8H, m) , 1.12 (9H, d), 2.36 - 2.40 (3H, d), 3.17 (2 ,: m). 3.41 - 3.43 (3H, cl) , 4.17 ~ 4.21 (1H, cl), 4.34 -- 4.38 (1H, d), 6.90 ~ 7.80 (15H. m)
1-2) 메:탈로센 화합물의 제조
상기 1-1에서 합성한 리간드 화합물 Ί .2 g (12 mmol)을 diethylether 50 mL에 녹여 2.5 M n-BuL i hexane solution 11.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 진공 건조하여 갈색 (brown color)의 sticky oil을 얻었다. 를루엔에 녹여 슬러리를 얻었다. ZrCl4(THF)2를 준비하고 를루엔 50 tnL를 넣어 슬러리로 준비하였다. ZrCl4(THF)2의 50 mL '를루엔 슬러리를 dry ice/acetone bath에서 transfer하였다. 상온에서 밤새 교반함에 따라 보라색 (violet color)으로 변화하였다. 반응 용액을 필터하여 LiCl을 제거하였다. 여과액 (filtrate)의 를루엔을 진공 건조하여 제거한 후 핵산을 넣고 1시간 동안 sonication하였다. 슬러리를 필터하여 여과된 고체 (filtered solid)인 질은 보라색 (dark violet)의 메탈로센 화합물 6 g (Mw 758.02, 7.92 mmol , yield 66 mol%)을 얻었다. 1H-NMR상에서 두 개의 isomer가 관찰되었다.
¾ NMR (500 MHz, CDC13): 1.19 (9H, d), 1.71 (3H, d), 1.50 -- 1.70(4H, m), 1.79(2H, m), 1.98 ~ 2.19(4H, m) , 2.58(3H. s), 3.38 (2H m). 3.91 (3H. d), 6.66 - 7.88 (15H, m) 합성예 2: [tBu"(HCH2)6"C5H4]2ZrCl2]의 제 2 메탈로센 화합물 제조 6-클로로핵사놀 (6-chlorohexanol)을 사용하여 문헌 (Tetrahedron Lett .
2951 (1988))에 제사된 방법으로 t-Butyl_0-(CH2)6-Cl을 제조하고, 여기에 NaCp를 반웅시켜 t-Butyl-으 (CH2)6-C5H5를 얻었다 (수율 60%, b.p. 80°C/0.1 mmHg) .
또한. -78°C에서 t-Butyl-0-(CH2)6— (:5¾를 THF에 녹이고, 노르말 부틸리튬 (n-BuLi)을 천천히 가한 후, 실온으로 승온시킨 후, 8시간 반응시켰다. 그 용액을 다시 _78°C에서 ZrCl4(THF)2(1.70g. 4.50mmol)/THF(30in.O의 ./서스펜견 (suspension) 용액에 기 합성된 리름염 (lithium salt) 용액을 천천히 가하고 실은에서 6시간 동안 싀. 반웅시켰다,
모든 휘발성 물질을 진공 건조하고, 얻어진 오일성 액체 물질에 핵산 (hexane) 용매를 가하여 걸러내었다. 걸러낸 용액을 ^공 건조한 후, 핵산을 가해 저은 (—201 )에서 침전불을 유도하였다. 얻어진 침전물을 저온에서 걸러내어 흰색 고체 형태의 [tBu-0-(CH2)6-C5H4]2ZrCl2 화합물을 얻었다 (수율 92%).
¾ NMR (300 MHz, CDC13): 6.28 (t, J = 2.6 Hz, 2H) , 6.19 (t, J =
2.6 Hz, 2H), 3:.31 (t, 6.6 Hz, 2H), 2.62 (t, J = 8 Hz), 1.7 - 1.3 (m. 8H), 1.17 (s, 9H)
1C NMR (CDCls)- 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30.61, 30.14, 29.18, 27.58, 26.00 합성예 3: [(tBuKCi eXCiySKC CIfe XtBiHOTiC ]의 제조 상온에서 50 g의 Mg(s)를 10 L 반웅기에 가한 후, THF 300 mL을 가하였다. 12 0.5 g 정도를 가한 후, 반웅기 온도를 50 °C로 유지하였다. 반응기 온도가 안정화된 후 250 g의 6— t-부록시핵실 클로라이드 (6-t- buthoxyhexyl chloride)를 피딩펌프 (feeding pump)를 이용하여 5 mL/min의 속도로 반응기에 가하였다. 6— t-부록시핵실 클로라이드를 가함에 따라 반웅기 온도가 4 내지 5°C 정도 상승하는 것을 관찰하였다. 계속적으로 6- t-부톡시핵실 클로라이드을 가하면서 12시간 교반하였다. 반응 12시간 후 검은색의 반웅용액을 얻었다. 생성된 검은색의 용액 2 mL 취한 뒤 물을 가하여 유기층을 얻어 1H— NMR을 통해 6— t-부록시핵산 (6-t— buthoxyhexane)을 확인하였다. 상기 6-t-부특시핵산으로부터 그리냐드 (Gringanrd) 반웅이 잘 진행되었음을 알 수 있었다. 그리하여 6-t-부톡시핵실 마그네슘 클로라이드 (6十 buthoxyhexyl magnesium chloride)를 합성하였다.
MeSiCl3 500 g과 1 L의 THF를 반응기에 가한 후 반응기 온도를 - 20°C까지 넁각하였다. 합성한 6-t-부특시핵실 마그네슘 클로라이드 중 560 g을 피딩펌프를 이용하여 5 niL/min의 속도로 반웅기에 가하였다. 그리냐드. 시약 (Grignard reagent)와 피딩 (feeding)이 끝난 후 반응기 은도를 천¾히' 상온으로 을리면서 12시^ 교반하였다. 반웅 12시간 후 흰색의 MgCl2 염아,' 생성되는 것을 확인하였다. 핵산 4 L을 가하여 랩도리 (labclori)을 통해 염을 제거하여 필터용액을 얻었다. 얻은 필터용액을 반응기에 가한 후 7CTC에서 핵산을 제거하여 엷은 노란색의 액체를 얻었다.. 얻은 액체를 1H- NMR을 통해 원하는 메틸 (6-t-부록시 핵실)디클로로실란 {Methyi(6—t— -buthoxy¬ hexyl )dich lor os i lane} 화합물임을 확인하였다.
-丽 R (CDCls): 3.3 (-t, 2H), 1.5 Cm, 3H), 1.3 (m, 5H) , 1.2 (s, 9H). 1.1 (m, 2H), 0.7 (s, 3H)
테트라메틸시클로펜타디엔 (tetramethylcyclopenta(liene) 1.2 mol (150 g)와 2.4 L의 THF를 반응기에 가한 후 반응기 온도를 _20°C로 넁각하였다. n-BuLi 480 mL 피딩펌프를 이용하여 5 niL/min의 속도로 반응기에 가하였다. n-BuLi을 가한 후 반응기 온도를 천천히 상온으로 올리면서 12시간 교반하였다. 반응 12시간 후, 당량의 메틸 (6-t-부록시 핵실)디클로로실란 (MethyK6— t-buthoxy hexyl )dichlorosi lane) (326 g, 350 mL)을 빠르게 반응기에 가하였다. 반응기 온도를 천천히 상온으로 을리면서 12시간 교반한 후 다시 반응기 온도를 0°C로 넁각시킨 후 2당량의 t— BuNH2을 가하였다. 반응기 온도를 천천히 상온으로 올리면서 12시간 교반하였다. 반웅 12시간 후 THF을 제거하고 4 L의 핵산을 가하여 랩도리를 통해 염을 제거한 필터용액을 얻었다. 필터용액을 다시 반응기에 가한 후, 핵산을
70°C에서 제거하여 노란색의 용액을 얻었다. 얻을 노란색의 용액을 1H- NMR을 통해 메틸 (6-t-부톡시핵실) (테트라메틸 CpH)t- 부틸아미노실란 (Methyl ( 6- 1 -buthoxyhexyl ) (tetramethylCpH)t- Butyl am inosi lane) 화합물임을 확인하였다.
n-BuLi과 리간드 디메틸 (테트라메틸 CpH)tᅳ부틸아민실란
(Dimethyl (tetraniethylCpH)t-Butylaniinosi lane)로부터 THF용액에서 합성한 -78°C의 리간드의 디리튬염에 TiCl3(THF)3(10 瞧 ol)을 빠르게 가하였다. 반웅 용액을 천천히 -78°C에서 상은으로 을리면서 12시간 교반하였다. 12시간 교반 후, 상온에서 당량의 PbCl2(10 miiiol)를 반웅용액에 가한 후 12시간 교반하였다. 12시간 교반 후, 푸른색을 띠는 짙은 검은색의 용액을 얻었다. 생성된 반웅용액에서 THF를 제거한 후 핵산을 가하여 생성물을- 필터하였다. 얻을 필터용액에서 핵산을 제거한 후, 1H—NMR로부터 원하는 ( [ me thy 1(6十 buthoxyhexyl )si lyl ( n,5-tetramethylCp)(t- Butylamido)]TiCl2)인 (tBu-0-(C¾)6)(CH3)Si (C5(CH3)4)(tBu— N)TiCi2임을 확인하였다.
' ¾-NMR (CDCls): 3.3 (s, 4H), 2.2 (s, 6H); 2.1 (s, 6H) , 1.8 ― 0.8 (m). 1.4 (s, 9H), 1.2(s, 9H), 0.7 (s. 3H)
Figure imgf000039_0001
오븐에 건조한 250 mL schlenk flask에, bis(3-(6-(tert- butoxy)hexyl )-lH-inden-l-yl )dimethylsi lane 리간드 3.4 g (5.7 隱 ol)를 넣고 MTBECmethyl tertObutyl ether) 4당량과 를루엔 용액을 에테르에 녹인 다음, 2.1당량의 n-BuLi 용액을 가해 다음날까지 lithiation을 시켰다.
Glove box 내에서 2.1당량의 ZrCl4(THF)2를 취해 250 ml schlenk flask에 담고 에테르를 넣은 suspension을 준비하였다. 위 두 개의 flask 모두 -78°C까지 넁각시킨 후, ligand anion을 천천히 Zr suspension에 주입하였다. 주입이 완료된 후, 반웅 흔합물의 온도를 천천히 상은까지 증가시키고, 하룻동안 교반한 후, 흔합물 내의 에테르를 아르곤 하에서 filter하였다. 여과 후 filter 된 고체와 여과액을 모두 진공 감압 하에서 증발시켰다. 위에 남은 filter cake 와 Filtrate에 대해 각각 NMR을 통하여 촉매합성 여부를 확인하고, glove box 내에서 계량하고 sampling하여 수율 및 순도를 확인하였다.
확인 결과, Filtrate에서 3.4 g (5.7 隱 ol)의 bis(3_(4-(tert— butoxy)hexyl )-lH-inden-l-yl )dimethylsi lane 리간드로부터 상기: 화학구조를 갖는 3.6 g (5.58 mmol, 98.02%)의 촉매 전구체가 합성되었음을 확인하였다. 합성된 전이금속 화합물은 를루엔에 용해시켜 보관하였다 (2.0723 g/隱 ol).
NMR 기준 purity (wt%) = 100%. Mw = 641.05.
1H 醒 R (500 MHz, CDC13): 0.87 (6H, m), 1.14 (:18H, m), 1.11 - 1.59 (16H, m). 2.61, 2.81 (4H, m), 3.30 (4H, m), 5.54 (1H. s), 5.74 (1H, s), 6.88 (IH, in), 7.02 (1H, m), 7.28 (1H, m), 7.39 (1H, d), 7.47 (1H, t), 7.60 - 7.71 (1H, m) . 제조실시예 1 : 촉매조성물의 제조
20L sus 고압 반응기에 를루엔 용액 6.0 kg을 넣고 반응기 온도를 40°C로 유지하였다. 600°C의 온도에서 12시간 동안 진공을 가해 탈수시킨 실리카 (Grace Davison사 제조, SYL0P0L 948) 1,000 g을 반응기에 투입하고 실리카를 충분히 분산시킨 후, 상기 합성예 2의 제 2 메탈로센 화합물 100 g을 를루엔에 녹여 투입하고 40°C에서 2시간 동안 교반하여 반웅시켰다. 이후 교반을 중지하고 30분 동안 settling 시킨 후 반응 용액을 decant at ion 하였다.
반웅기에 를루엔 2.5 kg을 투입하고, 10 wt 메틸알루미녹산 (MAO)/를루엔 용액 9.4 kg을 투입한 후, 40°C에서 200 rpni으로 12시간 동안 교반하였다. 반웅 후, 교반을 중지하고 30분 동안 settling 시킨 후 반웅 용액을 decantation 하였다. 를루엔 3.0 kg을 투입하고 10분간 교반한 후, 교반을 중지하고 30분 동안 settling 시키고 를루엔 용액을 decant at ion하였다.
반웅기에 를루엔 3.0 kg을 투입하고, 29.2 ^%의 합성예 4의 제 3 메탈로센 화합물 /를루엔 용액 300 mL를 반웅기에 투입한 후, 40°C에서 200 rpm으로 12시간동안 교반하였다.
상기 합성예 1의 제 1 메탈로센 화합물 60g과 를루엔 1,000 mL를 플라스크에 담아서 용액을 준비하고, 30분간 sonication을 실시하였다. 이와 같이 준비된 제조예 1의 메탈로센 화합물 /를루엔 용액을 반응기에 투입하고 401:에서 200 rpm으로 2시간 동안 교반하여 반응시켰다. 반응거 온도를 상온으로 :낮'춘 후, 교반을 중지하고 30분 동안 settling 시킨 후 반응 용액을 decantation 하였다.
반웅기에 를루엔 2.0 kg을 투입하고 10분간 교반한 후, 교반을 중지하고 30분 동안 settling 시키고 를루엔 용액을 decantation 하였다. 반웅기에 /핵산 3.0 kg을 투입하고 핵산 슬러리를:—filter dryer로 이송하고 핵산 용액을 필터하였다. 40°C에서 4시간 동안 감압 하에 건조하여 890g-Si02 촉매조성물을 제조하였다. 제조실시예 2 : 촉매조성물의 제조
20L sus 고압 반웅기에 를루엔 용액 3.0 kg을 넣고 반응기 온도를 40°C로 유지하였다. 실리카 (Grace Davison, SP2212) 500 g을 반응기에 투입하고 실리카를 충분히 분산시킨 후, 10 wt% 메틸알루미녹산 (MA0)/를루엔 용액 2.78 kg을 투입하고, 80°C에서 200 rpm으로 15시간 이상 교반하였다. 반응기 온도를 40°C로 낮춘 후, 7.5 wt 합성예 1의 제 1 메탈로센 화합물 /를루엔 용액 200 g을 반응기에 투입하고 1시간 동안 200 rpm으로 교반하였다. 이어서 8.8 wt 합성예 2의 제 2 메탈로센 화합물 /를루엔 용액 250 g을 반웅기에 투입하고 1시간 동안 200 rpm으로 교반하였다. 상기 합성예 4의 제 3 메탈로센 화합물 (24 g)을 를루엔에 녹여 상기 반응기 내로 투입하고 2시간 동안 200 rpm으로 교반하였다. 조촉미] (ani 1 inium tetraki s(pentaf luorophenyl )borate) 70 g을 를루엔에 묽혀 반응기에 투입하고 15시간 이상 200 rpm으로 교반하였다. 반응기 은도를 상온으로 낮춘 후, 교반을 중지하고 30분 동안 set t l ing 시킨 후 반응 용액을 decant at ion 하였다.
를루엔 슬러리를 f i l ter dryer로 이송하고 필터하였다. 를루엔 3.0 kg을 투입하고 10분 동안 교반한 후, 교반을 중지하고 여과하였다. 반응기에 핵산 3.0 kg을 투입하고 10분 동안 교반한 다음, 교반을 중지하고 여과하였다. 50°C에서 4시간 동안 감압 하에 건조하여 500g-Si02 담지 촉매를 제조하였다. 제조비교예 1 : 담지 촉매의 제조
20L SLis 고압 반웅기에 를루엔 용액 6.0 kg을 넣고 반웅기 온도를 40°C로 유지하였다. 600°C의 온도에서 12시간 동안 진공을 가해 탈수시킨 실리카 (Grace Davi son사 제조, SYL0P0L 948) 1 , 000 g을 반웅기에 투입하고 실리카를 충분히 분산시킨 후, 상기 합성예 2의 제 2 메탈로센' 화합물 80 g을 를루엔에 녹여 투입하고 40°C에서 2시간 동안 교반하여 반응시켰다. 이후 교반을 중지하고 30분 동안 set t l ing시킨 후 반응 용액을 dec ant at ion하였다.
반응기에 를루엔 2.5 kg을 투입하고, 10 wt% 메틸알루미녹산 (MA0) /를루엔 용액 9.4 kg을 투입한 후, 40°C에서 200 rpm으로 12시간 동안 교반하였다. 반응 후, 교반을 중지하고 30분 동안 set t l ing 시킨 후 반응 용액을 clecantat ion 하였다. 를루엔 3.0 kg을 투입하고 10분간 교반한 후, .교반을 증지하고 30분 동안 set t l ing 시키고 를루엔 용액을 decant at ion하였다.
반응기에 를루엔 3.0 kg을 투입하고, 29.2 %의 합성예 3의 메탈로센 화합물 /를루엔 용액 200 mL를 반웅기에 투입한 후, 40°C에서 200 rpm으로 12시간 동안 교반하였다.
상기 합성예 1의 제 1 메탈로센 화합물 80g과 를루엔 1.000 mL를 플라스크에 담아서 용액을 준비하고, 30분간 sonication을 실시하였다. 이와 같이 준비된 제조예 1의 메탈로센 화합물 /를루엔 용액을 반응기에 투입하고 40t에서 200 rpni으로 2시간 동안 교반하여 반응시켰다. 반응기 은도를 상온으로 낮춘 후, 교반을 중지하고 30분 동안 settling 시킨 후 반응 용액을 decantation 하였다.
반응기에 를루엔 2.0 kg을 투입하고 10분간 교반한 후, 교반을 중지하고 30분 동안 settling 시키고 틀루엔 용액을 decantation 하였다. 반웅기에 핵산 3.0 kg을 투입하고 핵산 슬러리를 filter dryer로 이송하고 핵산 용액을 필터하였다. 40°C에서 4시간 동안 감압 하에 건조하여 700g-SiO2 촉매조성물을 제조하였다. 실시예 1 : 에틸렌 -부텐 공중합체
상기 제조실시예 1에서 제조한 촉매 조성물의 존재하에 hexane slurry stirred tank process 중합기를 이용하여, 반응기 1개로 unimodal 운전을 하여 올레핀 중합체를 제조하였다. 공단량체로는 1-부텐을 사용하였다. 실시예 2내지 6및 비교예 1, 2 : 에틸렌 /1-핵센 공중합체
하기 표 1에 기재된 조건으로 수행하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 에틸렌 /1-핵센 공중합체를 제조하였다.
【표 1】
실시예 실시예 실시예 실시예 실시예 실시예 비교예 비교예
1 .2 3 4 5 6 1 2 촉매 제조실 제조실 제조실 제조실 제조실 제조실 제조비 제조비 조성물 시예 1 시예 1 시예 2 시예 1 시예 1 시예 1 교예 1 교예 1 에틸렌 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 공급량
(kg/hr)
1-부텐 15.0 17.7 11.0 14.5 13.7 12.0 12.0 5.0 厂 ᄇ
(ml/min)
수소 1.4 3.3 0.10 1.2 1.3 1.4 0.70 1.11 투입량 (g/hr) 촉매활성 16.6 11.2 19.8 10.0 10.7 15.1 10.0 11.0
(kgPE/kg
cat . / r) 상기 표 1에서
* 촉매활성 (kgPE/gCat): 상기 실시예 및 비교예의 합성 반응에 이용된 촉매의 질량과 상기 반응으로부터 산출된 고분자의 질량을 측정하여 각 실시예 및 비교예들에서 사용한 촉매의 활성 (activity)을 산출하였다. 시험예 1
상기 실시예 1 내지 6, 및 비교예 1, 2에서 제조한 올레핀 중합체에 ·' 대해 Mz+1 및 capillary swell 측정 후, 2L bloma를 예측하고, 실제 2L bloma와 비교하였다. 그 결과를 하기 표 2 및 도 1에 각각 나타내었다.
(1) 분자량 측정 : 겔 투과 크로마토그래피 (GPC, gel permeation chromatography, Agilent사 제조)를 이용하여 Μζ+ι을 측정하였다. 분석 온도는 160 °C로 하였고, 용매는 트리클로로벤젠을 사용하였으며. 폴리스티렌으로 표준화하여 분자량을 구하였다.
(2) Capillary swell: capillary rheometer를 이용하여 온도 210 t:, shear rate=700/s의 조건에서 측정하였다.
(3) 2L blonia swell 값: capillary rheometer를 이용하여 측정 후 하기 수학식 1에 따라 2L bloma swell 값올 계산하였다.
[수학식 1]
2L Bloma swell = (Capillary swell) x cl + (Mz+1) x c2 +c3 상기 수학식 i에서, Cl=1.27, c2=2.40ET7, 및 c3=-0.940이다.
(4) 2L bloma 값 : Auto-blow molding m/c (블로마 엔지니어링, model: BM40DE70)의 도 2에 도시된 바와 같은 압출 다이 (die)를 통해 나오는 수지가 수직방향으로 60cm 떨어질 때 가운데 20 ~ 40cm 부분의 수지를 가위로 잘라 그 무게를 측정하여 하기 수학식 2에 따라 계산하였다. [수학식 2]
Die swell ratio = 자른 수지의 무게 (g) I기준 수지의 무게 (g) 상기 수학식 2에서, 자른 수지의 무게는, 압출 다이 (outer diameter: 9cm, inner diameter: 8.64cm)를 통해 나오는 수지가 수직 방향으로 60cm 떨어질 때 가운데 20 ~ 40cm의 수지 (길이 : 20cm)를 가위로 잘라 측정한 무게 (단위: g)이고 상기 기준 수지의 무게는, 압출된 수지가 팽창 (swell)이 없을 경우의 수지 (길이 : 20cm)에 해당하는 무게 (단위 : g)이다.
【표 2】
Figure imgf000045_0001
상기 수학식 1에 따라 계산한 올레핀 중합체의 2L bloma swell 값은 중합체의 치수 안정성을 나타내는 2L bloma 값과 거의 일치하였다. 이로부터 수학식 1에 따라 계산한 2L bloma swell 값으로부터 중합체의 bloma swell 특성, 구체적으로는 파이프 성형시의 가공성 및 치수안정성을 예측할 수 있음을 알 수 있다. 시험예 2: 올레핀 증합체의 물성 평가
상기 실시예 1 내지 6, 및 비교예 1, 2에서 제조한 올레핀 중합체의 물성을 하기 기재된 방법으로 측정하고, 상기 시험예 1에서 측정한 각각의 을레핀 중합체의 Capillary swell, 2L bl에 ia swell 값 및 2L bloma 값과 함께 하기 표 3에 나타내었다.
(1) 분자량 측정: 샘플을 PL-SP260을 이용하여 BHT 0.0125% 포함된 11
1,2,4- iT +richlorobenzene에서 160 °C , 10시간 동안 녹여 전처리하고, PLGPC220 —ᅳ을 이용하여 측정 온도 160°C에서 중량평균분자량 (Mw)과 수평균 분자량 (Mn Z-평균 분자량 (Mz+1)을 측정하였으며, 이로부터 다분산지수 (PDI, Mw/Mn)를 산출하였다. 폴리스티렌으로 표준화하여 분자량을 구하였다.
(2) MI2.16 및 MFRR (21.6/2.16): Melt Index (MI2.16)는 ASTM D1238 (조건 E, 190 °C, 2.16kg 하증) 규격에 따라 측정하였다. Melt Flow Rate 寸
Ratio (MFRR (21.6/2.16))는 MFR21.6을 MFR2.16으로 나누어 계산하였으며, o
MFR21.6은 ISO 1133에 따라 190°C의 온도 및 21.6kg의 하중 하에서 측정하고, MFR2.lfr ISO 1133에 따라 190°C의 온도 및 2.16kg의 하중 하에서 측정하였다.
(3) 밀도 (g/cm3): 올레핀 중합체의 밀도는 ASTM D792 규격에 따라 측정하였다.
【표 3]
실시예 실시예 실시예 실시예 실시예 실시예 비교예 비교예 1 2 3 4 5 6 1 2 ᄋ
Mn [g/mol] 16.200 11,300 15,800 12.900 23,300 35.400 o 17,800
337.00 290.00 136,00 356,00 328,00 388,00 268,00
Mw [g/mol ]
0 0 0 0 0 0 0
PDI 20.83 25.53 3.20 22.61 25.36 16.65 7.10 15.08
4,037, 3,686, 871,00 4,027, 4,080, 4,259, 4,266, 2,506. 000 000 0 000 000 000 000 000
0.027 0.044 0.593 0.027 0.033 0.018 0.244 0.131
MFRR
418 425 31 418 432 404 75 68 (21.6/2.16)
밀도 [g/cm3] 0.9411 0.9405 0.9400 0.9410 0.9410 0.9393 0.9415 0.9395
Capi 1 lary
1.61 1.48 1.91 1.56 1.50 1.60 2.32 2.30 swe 11값
2L bloma
2.07 1.82 1.69 2.00 1.94 2.11 3.03 2.58 swell 값 2L bloma ¾ 2.03 1.89 1.70 2.08 1.95 2. 14 3.05 2.65
실험결과, 본 발명에 따른 촉매 조성물을 이용하여 제조된 실시예 1 내지 6의 중합체는 우수한 기계적 강도 특성을 유지하면서도 우수한 가공성 및 치수안정성을 나타냄을 확인할 수 있다.

Claims

【청구의 범위】 【청구항 1】 하기 수학식 1에 따라 결정되는 2L Bloma swell 값이 1.2 내지 2.2인 을레핀 중합체:
[수학식 1]
2L Bloma swell = (Capillary swell) cl + (Mz+1) x c2 + c3 상기 수학식 1에서, cl=1.27, c2-2.40E~7, 및 c3=-0.940이다.
【청구항 2]
제 1 항에 있어서, Z 평균 분자량 (Mz+1)이 300,000 g/mol 내지
6,000,000 g/mol인 올레핀 중합체.
【청구항 3]
제 1 항에 있어서, Capillary swell이 1.3 내지 2.2인 을레핀 중합체.
【청구항 4]
제 1 항에 있어서, 밀도가 0.930 g/cm3 내지 0.960 g/cm¾ 올레핀 중합체.
【청구항 5】
제 1 항에 있어서, ASTM D1238 규격에 따라 190 °C의 은도 및 2.16 kg의 하중 하에서 측정된 용융 지수가 0.01 g/lOniin 내지 2 g/10min 인 을레핀 중합체 .
【청구항 6】
제 1 항에 있어서 , 다분산지수가 2.5 내지 30인 올레핀 중힙ᅳ체 .
【청구항 7】
제 1 항에 있어서, 애틸렌과 알파을레핀의 공중합체인 을레핀 중합처 j.
【청구항 8】
제 1 항에 있어서, 에틸렌괴- , 1-옥텐, 1-핵센 또는 1-부텐의 공증합체인 올레핀 중합체,
【청구항 9】
하기 화학식 1로 표시되는 제 1 메탈로센 화합물 1종 이상, 하기 화학식 3으로 표시되는 제 2 메탈로센 화합물 1종 이상, 및 하기 화학식 4로 표시되는 제 3 메탈로센 화합물 1종 이상을 포함하는 촉매 조성물의 존재 하에, 올레핀 단량체를 중합 반웅시키는 단계를 포함하는, 제 1항의 을레핀 중합체의 제조 방법 :
[
Figure imgf000049_0001
상기 화학식 1에서,
^는 수소. 할로겐, Ci— 20 알킬, C2-20 알케닐, 사이클로알킬, C6..2fi 아릴, C 20 알킬아릴, C 20 아릴알킬, 알콕시 , C220 알콕시알킬, 헤테로시클로알킬 , 또는 C 20 해테로아릴이고;
D는 -0-, -S -, -N(R)- 또는 -Si (R) (R ' )- 이고, 여기서 R 및 R '은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 에 알킬, C2-20 알케닐, C3-20 사이클로알킬, 또는 C6-20 아릴이고;
L은 d-u) 직쇄 또는 분지쇄 알킬렌이고;
B는 탄소, 실리콘 또는 게르마늄이고;
Q는 수소, 할로겐, 알킬, C3-20 사이클로알킬, C2-20 알케닐, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고;
M은 4족 전이금속이며;
Xii 및 2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, d-
20 알킬, C220 알케닐, 20 사이클로알킬, C6 20 아릴 , 니트로 , 아미도, 알킬실릴, 알콕시, 또는 d-20 술폰네이트이고; Ci 및 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 2a , 화학식 2b 및 하기 화학식 2c 중 어느 하나로 표시되고, 단, Ci 및 C2가 모두 화학식 2c인 경우는 제외하며;
Figure imgf000050_0001
'기 화학식 2a, 및 2c에서, Ri 내지 R17 및 ' 내지 R9 '는 서로 동일하거나 상이하고, 각각 독립적으로 수소 할로겐, ( 20 알킬, C2_20 알케닐, C3-20 사이클로알킬, d-20 알킬실릴, C -20 실릴알킬, d-20 알콕시실릴,
Cl-20 알큭시, C6-20 아릴, ( 20 알킬아릴, 또는 C720 아릴알킬이며, 상기 R10 내지 R17 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성하고;
[화학식 3]
Figure imgf000051_0001
상기 화학식 3에서,
¾은 4족 전이금속이고;
¾ι 내지 8 증 적어도 하나는 _(C¾)n-0Ra (이때, Ra는 .-6의 직쇄 또는 분지쇄 알킬기이고, n은 2 내지 10의 정수이디ᅳ)이고, 나머지는 서로 동일하거나 상이하고 각각 독립적으로, 수소, d-20 알킬, C2-20 알케닐, C3-2o 사이클로알킬 C6-2o 아릴, C7.-20 알킬아릴, 또는 C7-20 아릴알킬이거나, 또는 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성하고,
¾ι 및 ¾2는 서로 동일하거나 상이하고 각각 독립적으로, 할로겐, (小 20 앞킬, C2-10 알케닐, C3-20 사이클로알킬, C7-40 알킬아릴, ( 40 아릴알킬,
C6-20 아릴, C -20 알킬리덴, 아미노, C2-20 알킬알콕시, 또는 C고 40 아릴알콕시이고;
[화학식 4]
Figure imgf000051_0002
상기 화학식 4에서,
M2는 4족 전이 금속이고;
¾ι 내지 4 중 적어도 어느 하나는 -(CH2)n-0Ra (이때, Ra는 d-6의 직쇄 또는 분지쇄 알킬기이고, n은 2 내지 10의 정수이다)이고, 나머지는 서로 동일하거나 상이하고 각각 독립적으로, 수소, d-20 알킬, C2-20 알케닐,
Cs-20 사이클로알킬, C6-20 아릴. C7-20 알킬아릴, 또는 C7-20 아릴알킬이거나. 또는 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성하고.
¾ 및 RC는 서로 동일하거나 상이하고, 각각 독립적으로 수소, d-20 알킬 , C320 사이클로알킬 . Cwo 알콕시, C2-20 알콕시알킬, C6-20 아릴, C6-10 아릴옥시, C220 알케닐, C740 알킬아릴, C7-40 아릴알킬, C840 아릴알케닐, 또는 c2_10 알키닐이고;
X31 및 X32는' 서로 동일하거나 상이하고 각각 독립적으로, 할로겐, d-
20 알킬, C2-10 알케닐, C3-20 사아클로알킬, C7-40 알킬아릴, C7-40 아릴알킬, C6-2o 아릴, 20 알킬리덴, 아미노, C2-20 알킬알콕시, 또는 C7--40 아릴알콕시이고;
¾ 및 ¾는 서로. 동일하거나 상이하고 각각 독립적으로, 수소, 할로겐, C:-20 알킬, C2-20 알케닐, C3-20 사이클로알킬, C6-20 아릴, C7-¾ 알킬아릴, 또는' C7-20 아릴알킬이다.
【청구항 10]
제 9 항에 있어서, 상기 촉매 조성물은 상기 제 1 메탈로센 화합물 100중량부에 대하여 상기 제 2 및 제 3 메탈로센 화합물을 각각 독립적으로 50 내지 200증량부로 포함하는 올레핀 중합체의 제조방법 .
【청구항 111
제 9 항에 있어서, 상기 촉매 조성물은 하기 화학식 5의 알루미늄 함유 제 1 조촉매, 및 하기 화학식 6의 보레이트계 제 2 조촉매 중 하나 이상의 조촉매를 더 포함하는. 을레핀 중합체의 제조방법 :
[화학식 5] -[Al(R31)-0-]k- 화학식 5에서, R31은 각각 독립적으로 할로겐, 할로겐 치환 또는 비치환된 탄소수 1 내지 20의 하이드로카빌기이고, k는 2 이상의 정수이고, [화학식 6]
T+[BG4]"
화학식 6에서, T+은 +1가의 다원자 이온이고, B는 +3 산화 상태의 붕소이고, G는 각각 독립적으로 하이드라이드, 디알킬아미도, 할라이드, 알콕사이드, 아릴옥사이드, 하이드로카빌, 할로카빌 및 할로-치환된 하이드로카빌로 이루어진 군에서 선택되고, 상기 G는 20개 이하의 탄소를 가지나, 단 하나 이하의 위치에서 G는 할라이드이다.
【청구항 12】
제 9 항에 있어서, 상기 촉매 조성물은 담체를 더 포함하며, 상기 제 1, 제 2 및 제 3 메탈로센 화합물이 상기 담체에 담지되는 올레핀 중합체의 제조방법.
【청구항 13)
제 1 항의 올레핀 중합체를 포함하는 파이프. 【청구항 14】
측정 대상 고분자에 대해 캐필러리 레오미터를 이용한 Capillary swell 값 및 온도 160°C에서 겔 투과 크로마토그라피를 이용한 Mz+1 값을 각각 측정하는 단계; 및
측정된 Capillary swell 값과 Mz+1 값을 이용하여 하기 수학식 1에 따라 결정되는 2L Bloma swell 값으로부터 Bloma swell 특성을 예측하는 단계를 포함하는, 고분자의 물성을 예측하는 방법:
[수학식 1]
2L Bloma swell = (Capillary swell) x cl + (Mz+1) x c2 + c3 상기 수학식 l에서, Cl=1.2그 c2=2.40E— 7, 및 c3=— 0.940이다.
PCT/KR2017/014195 2017-01-12 2017-12-06 올레핀 중합체 및 이의 제조 방법 WO2018131793A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17890923.0A EP3476870A4 (en) 2017-01-12 2017-12-06 OLEFIN POLYMER AND METHOD FOR PRODUCING THE SAME
CN201780046384.2A CN109476782B (zh) 2017-01-12 2017-12-06 烯烃聚合物及其制备方法
US16/316,080 US20200123357A1 (en) 2017-01-12 2017-12-06 Olefin Polymer And Method For Preparing Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0005293 2017-01-12
KR20170005293 2017-01-12

Publications (1)

Publication Number Publication Date
WO2018131793A1 true WO2018131793A1 (ko) 2018-07-19

Family

ID=62840227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014195 WO2018131793A1 (ko) 2017-01-12 2017-12-06 올레핀 중합체 및 이의 제조 방법

Country Status (5)

Country Link
US (1) US20200123357A1 (ko)
EP (1) EP3476870A4 (ko)
KR (1) KR20180083247A (ko)
CN (1) CN109476782B (ko)
WO (1) WO2018131793A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220135712A1 (en) * 2019-02-20 2022-05-05 Lg Chem, Ltd. Polyethylene Having High Pressure Resistance and Crosslinked Polyethylene Pipe Comprising the Same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147968A1 (en) * 2017-02-13 2018-08-16 Univation Technologies, Llc Bimodal polyethylene resins
KR102178361B1 (ko) * 2019-02-20 2020-11-12 주식회사 엘지화학 고가교도를 갖는 폴리에틸렌 및 이를 포함하는 가교 폴리에틸렌 파이프

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307665A (ja) * 2003-04-08 2004-11-04 Idemitsu Petrochem Co Ltd ポリプロピレン樹脂組成物及びその発泡成形体
US20130075409A1 (en) * 2010-04-14 2013-03-28 Mridula Kapur Fuel containers made from polyethylene compositions with improved creep resistance
KR20150057974A (ko) * 2013-11-18 2015-05-28 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR20160121045A (ko) * 2015-04-09 2016-10-19 주식회사 엘지화학 중공 성형용 고밀도 폴리에틸렌 공중합체
KR20160147642A (ko) * 2015-06-15 2016-12-23 주식회사 엘지화학 메탈로센 담지 촉매의 제조 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214949B1 (en) * 1993-12-29 2001-04-10 Fina Technology, Inc. Polymerization of polyolefins having low melt flow and high molecular weight
US7432328B2 (en) 2005-06-14 2008-10-07 Univation Technologies, Llc Enhanced ESCR bimodal HDPE for blow molding applications
US7868092B2 (en) * 2005-06-14 2011-01-11 Univation Technologies, Llc Bimodal polyethylene compositions for blow molding applications
US8202940B2 (en) * 2004-08-19 2012-06-19 Univation Technologies, Llc Bimodal polyethylene compositions for blow molding applications
KR101725352B1 (ko) * 2014-09-30 2017-04-10 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR102002983B1 (ko) * 2016-02-24 2019-07-23 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
KR102073252B1 (ko) * 2016-12-05 2020-02-04 주식회사 엘지화학 올레핀 공중합체 합성용 촉매 조성물 및 올레핀 공중합체의 제조 방법
KR102073253B1 (ko) * 2016-12-19 2020-02-04 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307665A (ja) * 2003-04-08 2004-11-04 Idemitsu Petrochem Co Ltd ポリプロピレン樹脂組成物及びその発泡成形体
US20130075409A1 (en) * 2010-04-14 2013-03-28 Mridula Kapur Fuel containers made from polyethylene compositions with improved creep resistance
KR20150057974A (ko) * 2013-11-18 2015-05-28 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR20160121045A (ko) * 2015-04-09 2016-10-19 주식회사 엘지화학 중공 성형용 고밀도 폴리에틸렌 공중합체
KR20160147642A (ko) * 2015-06-15 2016-12-23 주식회사 엘지화학 메탈로센 담지 촉매의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3476870A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220135712A1 (en) * 2019-02-20 2022-05-05 Lg Chem, Ltd. Polyethylene Having High Pressure Resistance and Crosslinked Polyethylene Pipe Comprising the Same

Also Published As

Publication number Publication date
EP3476870A1 (en) 2019-05-01
KR20180083247A (ko) 2018-07-20
CN109476782A (zh) 2019-03-15
CN109476782B (zh) 2022-08-05
US20200123357A1 (en) 2020-04-23
EP3476870A4 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
KR102285480B1 (ko) 폴리에틸렌 공중합체 및 이의 제조 방법
KR101617870B1 (ko) 가공성이 우수한 올레핀계 중합체
KR101726820B1 (ko) 가공성 및 환경 응력 균열 저항성이 우수한 에틸렌/1-헥센 또는 에틸렌/1-부텐 공중합체
KR101891638B1 (ko) 가공성이 우수한 에틸렌/알파-올레핀 공중합체 공중합체
KR101592436B1 (ko) 내환경 응력 균열성이 우수한 폴리올레핀
JP6499195B2 (ja) ポリオレフィンの製造方法およびこれから製造されたポリオレフィン
EP3348585B1 (en) Supported hybrid metallocene catalyst and polyolefin preparation method using same
KR101709688B1 (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
EP3372620B1 (en) Catalyst composition for synthesizing olefin copolymer, and method for preparing olefin copolymer
KR101658172B1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법
JP6482564B2 (ja) 加工性に優れたエチレン/アルファ−オレフィン共重合体
EP3225638B1 (en) Ethylene/ -olefin copolymer having excellent processability and surface characteristics
KR20150058020A (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
WO2016167547A1 (ko) 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
WO2016167568A1 (ko) 가공성이 우수한 에틸렌 /알파-올레핀 공중합체
CN110869399B (zh) 聚乙烯共聚物及其制备方法
KR101606825B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법
WO2018131793A1 (ko) 올레핀 중합체 및 이의 제조 방법
KR20160121045A (ko) 중공 성형용 고밀도 폴리에틸렌 공중합체
WO2016060445A1 (ko) 가공성 및 환경 응력 균열 저항성이 우수한 에틸렌 /1-헥센 또는 에틸렌 /1-부텐 공중합체
KR102580844B1 (ko) 에틸렌-알파올레핀의 제조 방법 및 사출 성형품의 제조 방법
RU2773517C2 (ru) Полиэтиленовый сополимер и способ его получения

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017890923

Country of ref document: EP

Effective date: 20190123

NENP Non-entry into the national phase

Ref country code: DE