KR101592436B1 - 내환경 응력 균열성이 우수한 폴리올레핀 - Google Patents

내환경 응력 균열성이 우수한 폴리올레핀 Download PDF

Info

Publication number
KR101592436B1
KR101592436B1 KR1020150083314A KR20150083314A KR101592436B1 KR 101592436 B1 KR101592436 B1 KR 101592436B1 KR 1020150083314 A KR1020150083314 A KR 1020150083314A KR 20150083314 A KR20150083314 A KR 20150083314A KR 101592436 B1 KR101592436 B1 KR 101592436B1
Authority
KR
South Korea
Prior art keywords
group
polyolefin
molecular weight
formula
metallocene
Prior art date
Application number
KR1020150083314A
Other languages
English (en)
Other versions
KR20150144281A (ko
Inventor
이예진
최이영
이기수
송기헌
김세영
선순호
김선미
유영석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/304,459 priority Critical patent/US20170044278A1/en
Priority to JP2016571697A priority patent/JP2017518423A/ja
Priority to EP15809691.7A priority patent/EP3130616B1/en
Priority to PCT/KR2015/006008 priority patent/WO2015194813A1/ko
Priority to CN201580020304.7A priority patent/CN106232638B/zh
Publication of KR20150144281A publication Critical patent/KR20150144281A/ko
Application granted granted Critical
Publication of KR101592436B1 publication Critical patent/KR101592436B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/02Cp or analog bridged to a non-Cp X anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/06Cp analog where at least one of the carbon atoms of the non-coordinating part of the condensed ring is replaced by a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/10Heteroatom-substituted bridge, i.e. Cp or analog where the bridge linking the two Cps or analogs is substituted by at least one group that contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/17Viscosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2390/00Containers

Abstract

본 발명은 큰 분자량, 넓은 분자량 분포 및 높은 긴 사슬 곁가지 함량을 가짐에 따라, 내환경 응력 균열성 및 가공성이 우수한 폴리올레핀에 관한 것이다. 본 발명의 폴리올레핀에 따르면, 가공성 및 안정성이 우수하여 식품 용기, 보틀캡 등으로 바람직하게 사용 가능하다.

Description

내환경 응력 균열성이 우수한 폴리올레핀{POLYOLEFIN HAVING AN EXCELLENT ENVIROMENTAL STRESS CRACK RESISTANCE}
본 발명은 내환경 응력 균열성(ESCR: environmental stress crack resistance)이 우수한 폴리올레핀에 관한 것이다. 보다 상세하게는, 큰 분자량, 넓은 분자량 분포 및 높은 긴 사슬 곁가지 함량을 가짐에 따라, 내환경 응력 균열성 및 가공성이 우수하여 식품 용기 등으로 바람직하게 사용 가능한 폴리올레핀에 관한 것이다.
식품 용기 등으로 사용되는 수지의 경우, 우수한 가공성, 기계적 물성 및 내응력 균열성이 요구된다. 따라서, 이전부터 큰 분자량, 보다 넓은 분자량 분포 및 바람직한 공단량체 분포 등을 충족하여, 용기나 보틀캡 등으로 바람직하게 사용 가능한 폴리올레핀의 제조에 관한 기술이 계속적으로 요구되고 있다.
한편, 4족 전이금속을 이용한 메탈로센 촉매는 기존의 지글러 나타 촉매에 비해 폴리올레핀의 분자량 및 분자량 분포 등을 제어하기 쉽고, 고분자의 공단량체 분포를 조절할 수 있어, 기계적 물성 및 가공성이 동시에 향상된 폴리올레핀 등을 제조하는데 사용되어 왔다. 그러나, 메탈로센 촉매를 사용하여 제조된 폴리올레핀은 좁은 분자량 분포로 인해 가공성이 떨어지는 문제가 있다.
일반적으로 분자량 분포가 넓을수록 전단속도(shear rate)에 따른 점도저하 정도가 커져 가공영역에서 우수한 가공성을 나타내는데, 메탈로센 촉매로 제조된 폴리올레핀은 상대적으로 좁은 분자량 분포 등으로 인해, 높은 전단속도에서 점도가 높아 압출시 부하나 압력이 많이 걸리게 되어 압출 생산성이 저하되고, 블로우몰딩 가공시 버블 안정성이 크게 떨어지며, 제조된 성형품 표면이 불균일해져 투명성 저하 등을 초래하는 단점이 있다.
이에, 이전부터 메탈로센 촉매로 넓은 분자량 분포를 갖는 폴리올레핀 등을 얻기 위해 복수의 반응기를 포함하는 다단 반응기가 사용되어 왔으며, 이러한 복수의 반응기에서의 각 중합 단계를 통해, 보다 넓은 다봉 분자량 분포 및 큰 분자량을 동시에 충족하는 폴리올레핀을 얻고자 시도되어 왔다.
그러나, 메탈로센 촉매의 큰 반응성 등으로 인해, 전단의 반응기에서의 중합 지속 시간 등에 따라 후단의 반응기에서 제대로 중합이 이루어지기 어려웠고, 그 결과 충분히 큰 분자량 및 보다 넓은 다봉 분자량 분포를 동시에 충족하는 폴리올레핀을 제조하는데 한계가 있었던 것이 사실이다. 이에 큰 분자량 및 보다 넓은 다봉 분자량 분포를 가짐에 따라, 기계적 물성 및 가공성 등을 동시에 충족할 수 있고 제품용으로 바람직하게 사용 가능한 폴리올레핀을 보다 효과적으로 제조할 수 있는 기술의 개발이 계속적으로 요구되고 있다.
미국 특허 제6,180,736호는 1종의 메탈로센 촉매를 사용하여 단일 기상 반응기 또는 연속 슬러리 반응기에서 폴리에틸렌을 제조하는 방법에 대해 기재하고 있다. 이 방법을 이용시 폴리에틸렌 제조원가가 낮고 파울링이 거의 발생하지 않으며 중합 활성이 안정적인 장점이 있다. 또한, 미국 특허 제6,911.508호는 새로운 메탈로센 촉매 화합물을 사용하고, 1-헥센을 공단량체로 하여 단일 기상 반응기에서 중합한 유변물성이 개선된 폴리에틸렌 제조에 대해 기재하고 있다. 그러나, 상기 특허들에서 생성된 폴리에틸렌 역시 좁은 분자량 분포를 가져, 충분한 충격 강도 및 가공성을 나타내기 어렵다는 단점을 가지고 있다.
미국 특허 제4,935,474호에는 2종 또는 그 이상의 메탈로센 화합물을 사용하여 넓은 분자량 분포를 갖는 폴리에틸렌을 제조하는 방법이 기재되어 있다. 또한, 미국 특허 제6,841,631호, 미국 특허 제6,894,128호에는 적어도 2종의 금속 화합물이 사용된 메탈로센계 촉매로 이정 또는 다정의 분자량 분포를 갖는 폴리에틸렌을 제조하여, 상기 폴리에틸렌이 필름, 파이프, 중공성형품 등의 제조에 적용이 가능하다고 기재되어 있다. 그러나, 이렇게 제조된 폴리에틸렌은 개선된 가공성을 가지나, 단위 입자 내의 분자량별 분산 상태가 균일하지 못해 비교적 양호한 가공 조건에서도 외관이 거칠고 물성이 안정적이지 못한 문제점이 있다.
이러한 배경에서 제반물성간, 또는 제반물성과 가공성 간의 균형이 이루어진, 보다 우수한 수지의 제조가 끊임없이 요구되고 있으며, 이에 대한 연구가 더욱 필요한 상태이다.
이에 본 발명은 큰 분자량, 넓은 분자량 분포 및 높은 긴 사슬 곁가지 함량을 가짐에 따라, 내환경 응력 균열성 및 가공성이 우수하여 식품 용기, 보틀캡 등으로 바람직하게 사용 가능한 폴리올레핀을 제공하고자 한다.
이에 본 발명은,
분자량 분포(PDI)가 15 내지 30이고;
용융 유동율비(MFR21.6/MFR2.16)가 200 내지 400이며;
주쇄 탄소 1,000개 당 탄소수 8 이상의 긴 사슬 곁가지(Long Chain Branch, LCB) 함량이 2개 이상인 폴리올레핀을 제공한다.
본 발명에 따르면, 넓은 분자량 분포, 높은 긴 사슬 곁가지 함량, 높은 내환경 응력 균열성 및 용융 유동율비를 가짐에 따라, 가공성 및 안정성이 우수하여 식품 용기, 보틀캡 등으로 바람직하게 사용 가능한 폴리올레핀을 제공할 수 있다.
도 1은 본 발명의 실시예 및 비교예에 따른 폴리올레핀의 van Gurp-Palmen 그래프이다.
본 발명에서, 제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.
또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 발명의 구체적인 구현예에 따른 폴리올레핀에 대해 설명하기로 한다.
본 발명의 일 구현예에 따르면, 분자량 분포(PDI)가 15 내지 30이고; 용융 유동율비(MFR21 .6/MFR2 .16)가 200 내지 400이며; 주쇄 탄소 1,000개 당 탄소수 8 이상의 긴 사슬 곁가지(Long Chain Branch, LCB) 함량이 2개 이상인 폴리올레핀을 제공한다.
폴리올레핀 수지는 촉매의 존재 하에서 올레핀계 단량체인 에틸렌을 중합하거나, 또는 에틸렌과 알파 올레핀 공단량체를 공중합하여 얻어지는 수지로 뛰어난 물성으로 여러 분야에서 사용되고 있다.
폴리올레핀의 분자량 및 분자량 분포는 고분자의 물리적 특성, 고분자의 가공성에 영향을 미치는 유동 및 기계적 특성을 결정하는데 중요한 인자가 된다. 다양한 폴리올레핀 제품을 만들기 위해서는 분자량 분포 조절을 통하여 용융 가공성을 향상시키는 것이 중요한 인자이다. 따라서 이정 또는 넓은 분자량 분포를 가지는 폴리올레핀을 제조함으로써 고분자량의 수지에서 가지는 기계적인 물성과 저분자량 부분에서의 가공성을 향상시키는 방법이 제시되고 있다.
한편 내환경 응력 균열성은 특히 식품 용기, 보틀캡 등으로 사용되는 수지의 매우 중요한 성질 중 하나로 알려져 있으며, 식품 등에 함유된 오일과 지방에 대한 수지의 안정성 및 내성을 판단할 수 있는 지표로, 수지의 지속적인 성능을 보장하는데 있어 중요하다.
고분자량 중합체는 저분자량의 중합체에 비하여 향상된 기계적 특성을 가지는 것으로 일반적으로 알려져 있으며, 이에 따라 폴리올레핀 수지의 내환경 응력 균열성은 중합체의 분자량이 증가됨에 따라 향상될 수 있다. 그러나, 폴리올레핀의 분자량이 증가됨에 따라 가공성, 유동성이 감소되며, 가공성이 좋지 않은 폴리올레핀 수지는 원하는 형태로의 성형이 쉽지 않으므로, 제품에 적용하기에 어려움이 있다.
그러나 본 발명의 폴리올레핀 수지는 향상된 내환경 응력 균열성을 가지면서도 높은 분자량 분포와 용융 유동율비로 가공성이 좋아 성형에 유리하며, 고기능성 수지로 다양한 분야에 이용할 수 있다.
상기 본 발명의 폴리올레핀은 고분자량, 넓은 분자량 분포 및 높은 긴 사슬 곁가지 함량을 가지며 물성 및 가공성이 우수한 효과가 있다.
즉, 본 발명의 올레핀계 공중합체는, 알려진 올레핀계 공중합체에 비해 넓은 분자량 분포, 높은 긴 사슬 곁가지 함량과 함께 높은 용융 유동률비(MFRR)를 가져 유동성이 현저히 향상되어 보다 우수한 가공성을 나타낼 수 있다.
먼저, 본 발명의 폴리올레핀의 분자량 분포(PDI)는 약 15 내지 약 30, 바람직하게는 약 18 내지 약 20로, 넓은 분자량 분포를 갖는다.
또한, 본 발명의 폴리올레핀은 높은 곁가지(branch) 함량을 갖는다. 상기 곁가지란, 1-부텐, 1-헥센, 1-옥텐과 같은 알파-올레핀 공단량체(comonomer)가 중합 공정 중 주쇄의 탄소 사슬에 혼입되어 분지 형태로 생성되는 것으로, 곁가지는 주쇄 탄소 1,000개 당 탄소수 2 내지 7의 짧은 사슬 곁가지(Short Chain Branch, SCB) 및 탄소수 8 이상의 긴 사슬 곁가지(Long Chain Branch, LCB)를 모두 포함한다. 폴리올레핀의 중합 공정시 공단량체의 공중합성이 높을수록 곁가지 함량이 높으며, 곁가지 함량이 높을수록 양호한 가공성을 나타낼 수 있다.
본 발명의 폴리올레핀은 높은 곁가지 함량을 가지며, 특히 긴 사슬 곁가지 함량(LCB)이 높은 특징을 나타낸다.
일반적으로 폴리올레핀에서 LCB의 존재 여부는 레오미터(rheometer) 장비를 이용하여 측정한 van Gurp-Palmen 그래프에서 변곡점을 갖는지의 여부로 판단할 수 있다. 상기 van Gurp-Palmen 그래프의 x-축은 복소 탄성률(complex modulus, G*, 단위: dyn/cm2)의 절대값이며, y-축은 위상각(phase angle, δ, 단위: rad)이다.
본 발명의 일 실시예 따른 폴리올레핀의 van Gurp-Palmen 그래프를 나타낸 도 1을 참조하면, 실시예 1 및 2의 폴리올레핀은 높은 복소 탄성률 지점에서 변곡점을 가지는 특징이 있으나, 비교예 1 및 2의 폴리올레핀은 변곡점을 갖지 않는다. 이러한 그래프의 특징은 폴리올레핀의 LCB에 의해 나타나는 것으로, LCB를 주쇄 탄소 1,000개 당 적어도 2개 이상 포함하는 본 발명의 폴리올레핀은 팽윤(swelling) 특성, 기포 안정성(bubble stability), 용융 파괴성(melt fracture), 처짐(sagging) 특성 등이 우수하여, 용도에 따라 다양하게 적용될 수 있으며, 향상된 물성을 갖는 제품을 제공할 수 있다.
본 발명의 폴리올레핀은 주쇄 탄소 1,000개 당 2개 이상의 긴 사슬 곁가지(LCB) 함량을 갖는다. 보다 구체적으로 본 발명의 일 실시예에 따르면, 주쇄 탄소 1,000개 당 2개 이상, 또는 3개 이상, 또는 4개 이상의 LCB 함량을 가질 수 있다. 또한 LCB 함량의 상한에 대해서는 특별히 제한되지는 않으나 20개 이하, 또는 15개 이하, 또는 10개 이하 또는 8개 이하가 될 수 있다.
또한, 본 발명의 폴리올레핀은 주쇄 탄소 1,000개 당 짧은 사슬 곁가지(SCB)와 긴 사슬 곁가지(LCB)를 더한 곁가지의 총 함량은 4개 이상이 될 수 있다. 보다 구체적으로 본 발명의 일 실시예에 따르면, 주쇄 탄소 1,000개 당 4개 이상, 또는 5개 이상, 또는 6개 이상, 또는 7개 이상의 곁가지 함량을 가질 수 있다. 또한 곁가지 함량의 상한에 대해서는 특별히 제한되지는 않으나 20개 이하, 또는 15개 이하, 또는 10개 이하가 될 수 있다.
또한, 본 발명의 폴리올레핀의 용융 유동율비(MFRR, melt flow rate ratio, MFR21.6/MFR2.16)는 약 200 내지 약 400, 바람직하게는 약 220 내지 약 400, 보다 바람직하게는 약 220 내지 약 300일 수 있다.
본 발명의 폴리올레핀은 이와 같이 매우 넓은 분자량 분포, 높은 긴 사슬 곁가지 함량 및 높은 용융 유동율비를 가짐으로써 높은 가공성을 나타낼 수 있다.
또한, 본 발명의 폴리올레핀은 ASTM D 1693에 따라 측정한 내환경 응력 균열성(ESCR)이 약 150시간 이상, 바람직하게는 약 200시간 이상일 수 있다. 내환경 응력 균열성(ESCR)이 150시간 이상이면 식품 용기 등의 용도의 사용 상태에서 안정적으로 성능 유지가 가능하므로 상한값은 실질적으로 크게 의미가 없으나, 예를 들어 약 150 내지 약 10,000시간, 또는 약 200 내지 약 10,000시간, 또는 약 200 내지 약 1,000시간, 또는 약 200 내지 약 500시간일 수 있다. 이와 같이 고성능의 내환경 응력 균열성을 나타내므로, 제품으로 성형하였을 때 안정성이 높아 지속적인 성능을 유지할 수 있다.
요컨대 상기와 같은 범위의 분자량 분포, 내환경 응력 균열성, 및 용융 유동율비를 갖는 본 발명에 따른 폴리올레핀은 가공성이 우수하며, 성형성, 물리적 강도, 안정성 등이 우수하여 다양한 분야에 응용가능하며, 특히 식품 용기, 보틀캡 등의 제품을 생산하는데 사용할 수 있다
또한, 본 발명에 따른 폴리올레핀은 ASTM 1238에 따라 190℃, 2.16kg 하중 조건에서 측정한 용융 흐름 지수(MI)가 약 0.1 내지 약 0.9 g/10min, 바람직하게는 약 0.3 내지 약 0.5 g/10min일 수 있으나, 이에 한정되는 것은 아니다.
또한, 본 발명의 폴리올레핀의 밀도(density)는 약 0.940 내지 약 0.949 g/cc, 바람직하게는 약 0.945 내지 약 0.949 g/cc 일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 따른 폴리올레핀의 중량 평균 분자량은 약 15만 내지 약 25만 g/mol, 바람직하게는 약 18만 내지 약 20만 g/mol일 수 있으나, 이에만 한정되는 것은 아니다.
다만 상기와 같이 용융 흐름 지수, 밀도, 중량 평균 분자량 등이 상술한 범위에 있을 때, 물성이 보다 최적화되어 높은 충격 강도 및 양호한 기계적 물성을 달성할 수 있다.
본 발명에 따른 폴리올레핀은 올레핀계 단량체인 에틸렌과 알파 올레핀 공단량체의 공중합체인 것이 바람직하다.
상기 알파 올레핀 공단량체로는 탄소수 4 이상인 알파 올레핀이 사용될 수 있다. 탄소수 4 이상의 알파 올레핀으로는 1-부텐, 1-펜텐, 1-헥센, 4-메틸-1-펜텐, 1-옥텐, 1-데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-옥타데센, 또는 1-에이코센 등이 있으나, 이에만 한정되는 것은 아니다. 이 중 탄소수 4 내지 10의 알파 올레핀이 바람직하며, 1종 또는 여러 종류의 알파 올레핀이 함께 공단량체로 사용될 수도 있다.
상기 에틸렌 및 알파 올레핀계 공단량체의 공중합체에 있어서, 알파 올레핀 공단량체의 함량은 약 0.1 내지 약 45 중량%, 바람직하게는 약 0.1 내지 약 10 중량% 일 수 있다.
상술한 특징을 갖는 본 발명에 따른 폴리올레핀은 서로 다른 구조의 메탈로센 화합물을 2종 이상으로 포함하는 혼성 메탈로센 화합물을 촉매로 사용하여, 에틸렌 및 알파 올레핀과의 공중합으로 얻을 수 있으며, 이러한 폴리올레핀은 전술한 바와 같은 범위의 분자량 분포, 용융 유동율비, 및 내환경 응력 균열성 값을 가질 수 있다.
보다 구체적으로 본 발명의 폴리올레핀은, 하기 화학식 1로 표시되는 1종 이상의 제 1 메탈로센 화합물, 1종 이상의 제 2 메탈로센 화합물 및 조촉매를 포함하는 혼성 메탈로센 촉매의 존재 하에, 올레핀계 단량체를 중합함으로써 제조될 수 있다.
[화학식 1]
Figure 112015056820494-pat00001
상기 화학식 1에서,
A는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C3 내지 C20의 헤테로시클로알킬기, 또는 C5 내지 C20의 헤테로아릴기이고;
D는 -O-, -S-, -N(R)- 또는 -Si(R)(R')- 이고, 여기서 R 및 R'은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, 또는 C6 내지 C20의 아릴기이고;
L은 C1 내지 C10의 직쇄 또는 분지쇄 알킬렌기이고;
B는 탄소, 실리콘 또는 게르마늄이고;
Q는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고;
M은 4족 전이금속이며;
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고;
C1 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 2a, 화학식 2b 또는 하기 화학식 2c 중 하나로 표시되고, 단, C1 C2가 모두 화학식 2c인 경우는 제외하며;
[화학식 2a]
Figure 112015056820494-pat00002
[화학식 2b]
Figure 112015056820494-pat00003
[화학식 2c]
Figure 112015056820494-pat00004
상기 화학식 2a, 2b 및 2c에서,
R1 내지 R17 및 R1' 내지 R9'는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이며, 상기 R10 내지 R17 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있다.
일 구현예의 폴리올레핀의 제조 방법에서는, 상기 화학식 1의 제 1 메탈로센 화합물과, 제 2 메탈로센 화합이 담지된 혼성 담지 메탈로센 촉매의 존재 하에 올레핀계 단량체를 중합하여 폴리올레핀을 제조한다.
이러한 제조 방법에서, 상기 화학식 1의 제 1 메탈로센 화합물은 인데노 인돌(indeno indole) 유도체 및/또는 플루오렌(fluorene) 유도체가 브릿지에 의해 가교된 구조를 형성하며, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써, 담체의 루이스 산 특성을 지니는 표면에 담지되어 보다 높은 중합 활성을 나타낼 수 있다. 또한, 전자적으로 풍부한 인데노 인돌기 및/또는 플루오렌기를 포함함에 따라 활성이 높고, 적절한 입체 장애와 리간드의 전자적인 효과로 인해 수소 반응성이 낮고 높은 활성을 유지할 수 있다. 또, 인데노 인돌 유도체의 질소 원자가 자라나는 고분자 사슬의 beta-hydrogen을 수소결합에 의해 안정화시켜 beta-hydrogen elimination을 억제할 수 있으므로, 보다 높은 분자량의 폴리올레핀의 제조를 가능케 한다.
더 나아가, 이러한 화학식 1의 제 1 메탈로센 화합물에 더하여, 중분자량 또는 저분자량 폴리올레핀을 제조할 수 있는 제 2 메탈로센 화합물을 포함한 혼성 담지 메탈로센 촉매와 함께, 선택적으로 분자량 조절제 및 수소를 적절히 사용함에 따라, 기존에 메탈로센 촉매를 사용하여 제조되기 어려웠던 고분자량, 넓은 분자량 분포를 가지면서도 높은 내환경 응력 균열성을 만족하는 폴리올레핀을 제조할 수 있다.
또한 이정 및 다정의 분자량 분포를 가지는 폴리올레핀 수지를 합성하기 위해서 종래 기술로는 2개 이상의 반응기를 이용하여야 하는 공정의 문제점을 가지고 있었으나, 본 발명에서는 단일 반응기로도 제조하고자 하는 분자량 분포를 갖는 폴리올레핀을 구현할 수 있다. 따라서, 종래 기술로는 이정 또는 다정의 분자량 분포 및 우수한 특성을 갖는 제품을 생산할 수 없었던 단일 기상 반응기나 단일 루프 슬러리 중합공정에서도 원하는 물성을 갖는 폴리올레핀 제품을 제조할 수 있다.
한편, 상기 화학식 1의 제 1 메탈로센 화합물에서, 각 치환기들에 대해 보다 구체적으로 설명하면 하기와 같다.
상기 C1 내지 C20의 알킬기로는 직쇄 또는 분지쇄의 알킬기를 포함하고, 구체적으로 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C2 내지 C20의 알케닐기로는 직쇄 또는 분지쇄의 알케닐기를 포함하고, 구체적으로 알릴기, 에테닐기, 프로페닐기, 부테닐기, 펜테닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C6 내지 C20의 아릴기로는 단환 또는 축합환의 아릴기를 포함하고, 구체적으로 페닐기, 비페닐기, 나프틸기, 페난트레닐기, 플루오레닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C5 내지 C20의 헤테로아릴기로는 단환 또는 축합환의 헤테로아릴기를 포함하고, 카바졸릴기, 피리딜기, 퀴놀린기, 이소퀴놀린기, 티오페닐기, 퓨라닐기, 이미다졸기, 옥사졸릴기, 티아졸릴기, 트리아진기, 테트라하이드로피라닐기, 테트라하이드로퓨라닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C1 내지 C20의 알콕시기로는 메톡시기, 에톡시기, 페닐옥시기, 시클로헥실옥시기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 4족 전이금속으로는 티타늄, 지르코늄, 하프늄 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
그리고, 상기 화학식 1에 포함되는 리간드 유래 구조인 상기 화학식 2a, 2b 및 2c에서, R1 내지 R17 및 R1' 내지 R9'는 각각 독립적으로 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기, 페닐기, 할로겐기, 트리메틸실릴기, 트리에틸실릴기, 트리프로필실릴기, 트리부틸실릴기, 트리이소프로필실릴기, 트리메틸실릴메틸기, 메톡시기, 또는 에톡시기인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다.
또, 상기 화학식 1의 L은 C4 내지 C8의 직쇄 또는 분지쇄 알킬렌기인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다. 또한, 상기 알킬렌기는 C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, 또는 C6 내지 C20의 아릴기로 치환 또는 비치환될 수 있다.
또한, 상기 화학식 1의 A는 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 메톡시메틸기, tert-부톡시메틸기, 1-에톡시에틸기, 1-메틸-1-메톡시에틸기, 테트라하이드로피라닐기, 또는 테트라하이드로퓨라닐기인 것이 바람직하나, 이에만 한정되는 것은 아니다.
그리고, 상기 화학식 1의 B는 실리콘인 것이 바람직하나, 이에만 한정되는 것은 아니다.
발명의 일 실시예에 따르면, 상기 화학식 2a로 표시되는 구조의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 구조를 들 수 있으나, 이에만 한정되는 것은 아니다.
Figure 112015056820494-pat00005
Figure 112015056820494-pat00006
Figure 112015056820494-pat00007
Figure 112015056820494-pat00008
그리고, 상기 화학식 2b로 표시되는 구조의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 구조를 들 수 있으나, 이에만 한정되는 것은 아니다.
Figure 112015056820494-pat00009
Figure 112015056820494-pat00010
Figure 112015056820494-pat00011
Figure 112015056820494-pat00012
Figure 112015056820494-pat00013
또한, 상기 화학식 2c로 표시되는 구조의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 구조를 들 수 있으나, 이에만 한정되는 것은 아니다.
Figure 112015056820494-pat00014
Figure 112015056820494-pat00015
Figure 112015056820494-pat00016
부가하여, 상기 화학식 1로 표시되는 제 1 메탈로센 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 이에만 한정되는 것은 아니다.
Figure 112015056820494-pat00017
Figure 112015056820494-pat00018
Figure 112015056820494-pat00019
Figure 112015056820494-pat00020
Figure 112015056820494-pat00021
Figure 112015056820494-pat00022
Figure 112015056820494-pat00023
Figure 112015056820494-pat00024
Figure 112015056820494-pat00025
Figure 112015056820494-pat00026
Figure 112015056820494-pat00027
Figure 112015056820494-pat00028
Figure 112015056820494-pat00029
Figure 112015056820494-pat00030
Figure 112015056820494-pat00031
Figure 112015056820494-pat00032
Figure 112015056820494-pat00033
Figure 112015056820494-pat00034
Figure 112015056820494-pat00035
상술한 화학식 1의 제 1 메탈로센 화합물은 활성이 우수하고 고분자량의 폴리올레핀을 제조할 수 있다. 특히, 담체에 담지하여 사용할 경우에도 높은 중합 활성을 나타내어, 고분자량의 폴리올레핀의 제조를 가능케 한다.
또한, 고분자량과 동시에 넓은 분자량 분포를 갖는 폴리올레핀을 제조하기 위해 수소를 포함하여 중합 반응을 진행하는 경우에도, 본 발명에 따른 메탈로센 화합물은 낮은 수소 반응성을 나타내어 여전히 높은 활성으로 고분자량의 폴리올레핀의 중합이 가능하다. 따라서, 다른 특성을 갖는 촉매와 혼성으로 사용하는 경우에도 활성의 저하 없이 고분자량의 특성을 만족시키는 폴리올레핀을 제조할 수 있어, 고분자의 폴리올레핀을 포함하면서 넓은 분자량 분포를 갖는 폴리올레핀을 용이하게 제조할 수 있다.
상기 화학식 1의 제 1 메탈로센 화합물은 인데노인돌 유도체 및/또는 플루오렌 유도체를 브릿지 화합물로 연결하여 리간드 화합물로 제조한 다음, 금속 전구체 화합물을 투입하여 메탈레이션(metallation)을 수행함으로써 수득될 수 있다. 상기 제 1 메탈로센 화합물의 제조방법은 후술하는 실시예에 구체화하여 설명한다.
한편 본 발명의 폴리올레핀의 제조 방법에 있어서, 상기 메탈로센 담지 촉매는, 상기 화학식 1로 표시되는 제 1 메탈로센 화합물 1종 이상, 제 2 메탈로센 화합물 1종 이상, 조촉매 화합물 및 담체를 포함하는 혼성 담지 메탈로센 촉매일 수 있으며, 상기 제 2 메탈로센 화합물은 하기 화학식 3 내지 화학식 5로 표시되는 화합물 중 선택되는 것일 수 있다.
[화학식 3]
(Cp1Ra)n(Cp2Rb)M1Z1 3 -n
상기 화학식 3에서,
M1은 4족 전이금속이고;
Cp1 및 Cp2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디엔닐, 인데닐, 4,5,6,7-테트라하이드로-1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
Z1은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시, 또는 C7 내지 C40의 아릴알콕시이고;
n은 1 또는 0 이고;
[화학식 4]
(Cp3Rc) mB1(Cp4Rd)M2Z2 3 -m
상기 화학식 4에서,
M2는 4족 전이 금속이고;
Cp3 및 Cp4는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로-1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
Z2는 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시, 또는 C7 내지 C40의 아릴알콕시이고;
B1은 Cp3Rc 고리와 Cp4Rd 고리를 가교 결합시키거나, 하나의 Cp4Rd 고리를 M2에 가교 결합시키는, 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼 중 하나 이상 또는 이들의 조합이고;
m은 1 또는 0 이고;
[화학식 5]
(Cp5Re)B2(J)M3Z3 2
상기 화학식 5에서,
M3은 4족 전이 금속이고;
Cp5는 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로-1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Re는 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고;
Z3은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시, 또는 C7 내지 C40의 아릴알콕시이고;
B2는 Cp5Re 고리와 J를 가교 결합시키는 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼중 하나 이상 또는 이들의 조합이고;
J는 NRf, O, PRf 및 S로 이루어진 군에서 선택된 어느 하나이고, 상기 Rf는 C1 내지 C20의 알킬, 아릴, 치환된 알킬 또는 치환된 아릴이다.
상기 화학식 4에서, m이 1인 경우는 Cp3Rc 고리와 Cp4Rd 고리 또는 Cp4Rd 고리와 M2가 B1에 의해 가교 결합된 브릿지 화합물 구조인 것을 의미하며, m이 0인 경우는 비가교 화합물 구조를 의미한다.
상기 화학식 3으로 표시되는 제 2 메탈로센 화합물로는 예를 들어 하기 구조식으로 표시되는 화합물일 수 있으나, 이에만 한정되는 것은 아니다.
Figure 112015056820494-pat00036
Figure 112015056820494-pat00037
Figure 112015056820494-pat00038
Figure 112015056820494-pat00039
Figure 112015056820494-pat00040
상기 화학식 4로 표시되는 제 2 메탈로센 화합물로는 예를 들어 하기 구조식으로 표시되는 화합물일 수 있으나, 이에만 한정되는 것은 아니다.
Figure 112015056820494-pat00041
Figure 112015056820494-pat00042
Figure 112015056820494-pat00043
Figure 112015056820494-pat00044
Figure 112015056820494-pat00045
또한, 화학식 5로 표시되는 제 2 메탈로센 화합물로는 예를 들어 하기 구조식으로 표시되는 화합물일 수 있으나, 이에만 한정되는 것은 아니다.
Figure 112015056820494-pat00046
Figure 112015056820494-pat00047
Figure 112015056820494-pat00048
상기 혼성 담지 메탈로센 촉매는 상기 화학식 1로 표시되는 제 1 메탈로센 화합물의 1종 이상과, 상기 화학식 3 내지 화학식 5로 표시되는 화합물 중 선택되는 제 2 메탈로센 화합물의 1종 이상을 조촉매 화합물과 함께 담체에 혼성 담지한 것이다.
상기 혼성 담지 메탈로센 촉매의 화학식 1로 표시되는 제 1 메탈로센 화합물은 주로 높은 곁가지 함량을 가지는 고분자량의 공중합체를 만드는데 기여하고, 화학식 3으로 표시되는 제 2 메탈로센 화합물은 주로 낮은 곁가지 함량을 가지는 저분자량의 공중합체를 만드는데 기여할 수 있다. 또한, 화학식 4 또는 5로 표시되는 제 2 메탈로센 화합물은 중간 정도의 곁가지 함량을 가지는 저분자량의 공중합체를 만드는데 기여할 수 있다.
상기 혼성 담지 메탈로센 촉매에 있어서, 상기 제 1 메탈로센 화합물은 인데노 인돌 유도체와 플루오렌 유도체가 브릿지 화합물에 의해 가교된 리간드 구조를 형성하며, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써 담체의 루이스 산 특성을 지니는 표면에 담지되어 담지 시에도 높은 중합 활성을 나타낸다. 또한 전자적으로 풍부한 인데노 인돌기 및/또는 플루오렌기를 포함함에 따라 활성이 높고, 적절한 입체 장애와 리간드의 전자적인 효과로 인해 수소 반응성이 낮을 뿐 아니라 수소가 존재하는 상황에서도 높은 활성이 유지된다. 따라서, 이러한 전이금속 화합물을 이용하여 혼성 담지 메탈로센 촉매를 만드는 경우, 인데노인돌 유도체의 질소 원자가 자라나는 고분자 사슬의 베타-수소를 수소결합에 의해 안정화시켜 고분자량의 폴리올레핀을 중합할 수 있다.
또한, 발명의 혼성 담지 베탈로센 촉매에서는 상기 화학식 1로 표시되는 제 1 메탈로센 화합물 및 상기 화학식 3 내지 5로 표시되는 화합물 중 선택되는 제 2 메탈로센 화합물을 포함하여, 서로 다른 종류의 메탈로센 화합물을 적어도 2종 이상 포함함으로써 높은 곁가지 함량을 가지는 고분자량의 올레핀계 공중합체이면서, 동시에 분자량 분포가 넓어 물성이 우수할 뿐만 아니라 가공성도 우수한 올레핀 중합체를 제조할 수 있다.
본 발명에 따른 폴리올레핀의 제조방법에 있어서, 상기 제 1 및 제 2 메탈로센 화합물을 활성화하기 위하여 담체에 함께 담지되는 조촉매로는 13족 금속을 포함하는 유기 금속 화합물로서, 일반적인 메탈로센 촉매 하에 올레핀을 중합할 때 사용될 수 있는 것이라면 특별히 한정되는 것은 아니다.
본 발명의 일 실시예에 따르면, 특히 상기 조촉매 화합물은 하기 화학식 6의 알루미늄 함유 제 1 조촉매, 및 하기 화학식 7의 보레이트계 제 2 조촉매 중 하나 이상을 포함할 수 있다.
[화학식 6]
-[Al(R18)-O-]k-
화학식 6에서, R18은 각각 독립적으로 할로겐, 할로겐 치환 또는 비치환된 탄소수 1 내지 20의 하이드로카빌기이고, k는 2 이상의 정수이고,
[화학식 7]
T+[BG4]-
화학식 7에서, T+은 +1가의 다원자 이온이고, B는 +3 산화 상태의 붕소이고, G는 각각 독립적으로 하이드라이드기, 디알킬아미도기, 할라이드기, 알콕사이드기, 아릴옥사이드기, 하이드로카빌기, 할로카빌기 및 할로-치환된 하이드로카빌기로 이루어진 군에서 선택되고, 상기 G는 20개 이하의 탄소를 가지나, 단 하나 이하의 위치에서 G는 할라이드기이다.
이러한 제 1 및 제 2 조촉매의 사용에 의해, 최종 제조된 폴리올레핀의 분자량 분포가 보다 균일하게 되면서, 중합 활성이 향상될 수 있다.
상기 화학식 6의 제 1 조촉매는 선형, 원형 또는 망상형으로 반복단위가 결합된 알킬알루미녹산계 화합물로 될 수 있고, 이러한 제 1 조촉매의 구체적인 예로는, 메틸알루미녹산(MAO), 에틸알루미녹산, 이소부틸알루미녹산 또는 부틸알루미녹산 등을 들 수 있다.
또한, 상기 화학식 7의 제 2 조촉매는 삼치환된 암모늄염, 또는 디알킬 암모늄염, 삼치환된 포스포늄염 형태의 보레이트계 화합물로 될 수 있다. 이러한 제 2 조촉매의 구체적인 예로는, 트리메탈암모늄 테트라페닐보레이트, 메틸디옥타데실암모늄 테트라페닐보레이트, 트리에틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리(n-부틸)암모늄 테트라페닐보레이트, 메틸테트라데사이클로옥타데실암모늄 테트라페닐보레이트, N,N-디메틸아닐늄 테트라페닐보레이트, N,N-디에틸아닐늄 테트라페닐보레이트, N,N-디메틸(2,4,6-트리메틸아닐늄)테트라페닐보레이트, 트리메틸암모늄 테트라키스(펜타플로오로페닐)보레이트, 메틸디테트라데실암모늄 테트라키스(펜타페닐)보레이트, 메틸디옥타데실암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리에틸암모늄, 테트라키스(펜타플루오로페닐)보레이트, 트리프로필암모늄테트라키스(펜타프루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(2급-부틸)암모늄테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디에틸아닐늄테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸(2,4,6-트리메틸아닐늄)테트라키스(펜타플루오로페닐)보레이트, 트리메틸암모늄테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리에틸암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리프로필암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(2,3,4,6-,테트라플루오로페닐)보레이트, 디메틸(t-부틸)암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, N,N-디메틸아닐늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, N,N-디에틸아닐늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트 또는 N,N-디메틸-(2,4,6-트리메틸아닐늄)테트라키스-(2,3,4,6-테트라플루오로페닐)보레이트 등의 삼치환된 암모늄염 형태의 보레이트계 화합물; 디옥타데실암모늄 테트라키스(펜타플루오로페닐)보레이트, 디테트라데실암모늄 테트라키스(펜타플루오로페닐)보레이트 또는 디사이클로헥실암모늄 테트라키스(펜타플루오로페닐)보레이트 등의 디알킬암모늄염 형태의 보레이트계 화합물; 또는 트리페닐포스포늄 테트라키스(펜타플루오로페닐)보레이트, 메틸디옥타데실포스포늄 테트라키스(펜타플루오로페닐)보레이트 또는 트리(2,6-, 디메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트 등의 삼치환된 포스포늄염 형태의 보레이트계 화합물 등을 들 수 있다.
상기 혼성 담지 메탈로센 촉매에 있어서, 제 1 및 제 2 메탈로센 화합물에 포함되는 전체 전이금속 대 담체의 질량비는 1 : 10 내지 1 : 1,000 일 수 있다. 상기 질량비로 담체 및 메탈로센 화합물을 포함할 때, 최적의 형상을 나타낼 수 있다.
또한, 조촉매 화합물 대 담체의 질량비는 1 : 1 내지 1 : 100 일 수 있다. 또한, 제 1 및 제 2 메탈로센 화합물의 질량비는 10 : 1 내지 1 : 10, 바람직하게는 5 : 1 내지 1 : 5 일 수 있다. 상기 질량비로 조촉매 및 메탈로센 화합물을 포함할 때, 활성 및 고분자 미세구조를 최적화할 수 있다.
그리고, 상기 폴리올레핀의 제조 방법에서, 상기 담체로는 표면에 하이드록시기를 함유하는 담체를 사용할 수 있으며, 바람직하게는 건조되어 표면에 수분이 제거된, 반응성이 큰 하이드록시기와 실록산기를 가지고 있는 담체를 사용할 수 있다.
예컨대, 고온에서 건조된 실리카, 실리카-알루미나, 및 실리카-마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na2O, K2CO3, BaSO4, 및 Mg(NO3)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다.
상기 담체의 건조 온도는 약 200 내지 800℃가 바람직하고, 약 300 내지 600℃가 더욱 바람직하며, 약 300 내지 400℃가 가장 바람직하다. 상기 담체의 건조 온도가 약 200℃ 미만인 경우 수분이 너무 많아서 표면의 수분과 조촉매가 반응하게 되고, 약 800℃를 초과하는 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 줄어들며, 또한 표면에 하이드록시기가 많이 없어지고 실록산기만 남게 되어 조촉매와의 반응자리가 감소하기 때문에 바람직하지 않다.
상기 담체 표면의 하이드록시기 양은 약 0.1 내지 10 mmol/g이 바람직하며, 약 0.5 내지 1 mmol/g일 때 더욱 바람직하다. 상기 담체 표면에 있는 하이드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건, 예컨대 온도, 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다.
상기 하이드록시기의 양이 약 0.1 mmol/g 미만이면 조촉매와의 반응자리가 적고, 약 10 mmol/g을 초과하면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것일 가능성이 있기 때문에 바람직하지 않다.
상기 혼성 담지 메탈로센 촉매에 있어서, 제 1 및 제 2 메탈로센 화합물에 포함되는 전체 전이금속 : 담체의 질량비는 약 1 : 10 내지 1 : 1,000 일 수 있다. 상기 질량비로 담체 및 메탈로센 화합물을 포함할 때, 최적의 형상을 나타낼 수 있다.
한편, 일 구현예의 폴리올레핀의 제조 방법에서는, 상술한 메탈로센 담지 촉매에 더하여, 필요에 따라 수소 및/또는 분자량 조절제의 존재 하에 올레핀계 단량체를 중합하여 폴리올레핀을 제조할 수 있다.
본 발명의 일 실시예에 따르면, 상기 분자량 조절제는 하기 화학식 8의 시클로펜타디에닐 금속 화합물과, 하기 화학식 9의 유기 알루미늄 화합물의 혼합물 또는 이들의 반응 생성물을 포함할 수 있다.
[화학식 8]
Cp6Cp7M4X'2
상기 화학식 8에서,
Cp6 및 Cp7은 각각 독립적으로 치환 또는 비치환된 시클로펜타디에닐기, 치환 또는 비치환된 인데닐기 또는 치환 또는 비치환된 플루오레닐기를 포함하는 리간드이고, M'는 4족 전이금속 원소이며, X'는 할로겐이며;
[화학식 9]
RfRgRhAl
상기 화학식 9에서,
Rf, Rg, 및 Rh는 각각 독립적으로 탄소수 4 내지 20의 알킬기 또는 할로겐이며, Rf, Rg, 및 Rh 중 적어도 하나는 탄소수 4 내지 20의 알킬기이다.
상술한 바와 같은 혼성 메탈로센 담지 촉매는 담체에 조촉매를 담지시키고, 이에 상기 제 1 및 제 2 메탈로센 화합물을 추가 담지시킴으로서 제조될 수 있고, 선택적으로 상기 분자량 조절제를 상기 제 1 및 제 2 메탈로센 화합물과 함께, 혹은 상기 제 1 및 제 2 메탈로센 화합물 담지 전 또는 후에 담지시킴으로서 제조될 수 있다. 각 성분의 담지 방법은 통상적인 메탈로센 담지 촉매의 제조 공정 및 조건에 따르므로, 이에 관한 추가 설명은 생략하기로 한다.
상술한 혼성 담지 메탈로센 촉매와, 선택적으로 분자량 조절제를 포함하는 반응기에서, 올레핀계 단량체를 공급하여 중합이 진행될 수 있다.
이때, 본 발명의 일 구현예에 따르면 수소 기체의 존재 하에 올레핀계 단량체를 공급하여 중합이 진행될 수 있다.
이때, 상기 수소 기체는 중합 초기의 메탈로센 촉매의 급격한 반응을 억제하는 역할을 하여 고분자량 폴리올레핀이 보다 많은 양으로 생성될 수 있도록 한다. 따라서, 이러한 수소 기체의 사용에 의해, 보다 큰 분자량 및 넓은 분자량 분포를 갖는 폴리올레핀이 효과적으로 얻어질 수 있다.
한편, 상기 반응기에는, 반응기 내의 수분을 제거하기 위한 유기 알루미늄 화합물이 더욱 투입되어, 이의 존재 하에 중합 반응이 진행될 수 있다. 이러한 유기 알루미늄 화합물의 구체적인 예로는, 트리알킬알루미늄, 디알킬 알루미늄 할라이드, 알킬 알루미늄 디할라이드, 알루미늄 디알킬 하이드라이드 또는 알킬 알루미늄 세스퀴 할라이드 등을 들 수 있으며, 이의 보다 구체적인 예로는, Al(C2H5)3, Al(C2H5)2H, Al(C3H7)3, Al(C3H7)2H, Al(i-C4H9)2H, Al(C8H17)3, Al(C12H25)3, Al(C2H5)(C12H25)2, Al(i-C4H9)(C12H25)2, Al(i-C4H9)2H, Al (i-C4H9)3, (C2H5)2AlCl, (i-C3H9)2AlCl 또는 (C2H5)3Al2Cl3 등을 들 수 있다. 이러한 유기 알루미늄 화합물은 반응기에 연속적으로 투입될 수 있고, 적절한 수분 제거를 위해 반응기에 투입되는 반응 매질의 1kg 당 약 0.1 내지 10몰의 비율로 투입될 수 있다.
한편, 일 구현예의 폴리올레핀의 제조 방법에서, 상기 올레핀계 단량체는 에틸렌, 알파-올레핀, 사이클릭 올레핀, 이중 결합을 2개 이상 가지고 있는 디엔 올레핀 또는 트리엔 올레핀일 수 있다.
상기 올레핀계 단량체의 구체적인 예로서, 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠, 3-클로로메틸스티렌 등을 들 수 있으며, 이들 단량체를 2종 이상 혼합하여 공중합할 수도 있다.
상기 중합 반응은 하나의 연속식 슬러리 중합 반응기, 루프 슬러리 반응기, 기상 반응기 또는 용액 반응기를 이용하여 하나의 올레핀계 단량체로 호모중합하거나 또는 2종 이상의 단량체로 공중합하여 진행할 수 있다.
또, 상기 메탈로센 담지 촉매는 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 헥산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 톨루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 반응계에 주입할 수 있다. 여기에 사용되는 용매는 소량의 알킬 알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다.
이와 같은 일 구현예의 제조 방법에 따라 수득된 폴리올레핀은 전술한 바와 같이 분자량 분포(PDI)가 15 내지 30이고; 용융 유동율비(MFR21.6/MFR2.16)가 200 내지 400이며; 주쇄 탄소 1,000개 당 탄소수 8 이상의 긴 사슬 곁가지(Long Chain Branch, LCB) 함량이 2개 이상인 것으로 될 수 있다.
이러한 고분자량 폴리올레핀은 매우 넓은 분자량 분포, 높은 긴 사슬 곁가지 함량 및 높은 분자량을 가져 우수한 가공성을 발현할 수 있고, 향상된 내환경 응력 균열성을 나타내어 식품 용기 등의 용도로 대해 매우 바람직하게 사용될 수 있다.
이하, 발명의 실시예를 통해 본 발명에 대해 상세히 설명한다. 그러나, 이러한 실시예들은 여러 가지 형태로 변형될 수 있으며, 발명의 범위가 아래에서 상술하는 실시예들로 인하여 한정되는 식으로 해석되어서는 안 된다.
< 실시예 >
제 1 메탈로센 화합물의 제조
합성예 1
Figure 112015056820494-pat00049
1-1 리간드 화합물의 합성
fluorene 2 g을 5 mL MTBE, hexane 100 mL에 녹여 2.5 M n-BuLi hexane solution 5.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. (6-(tert-butoxy)hexyl)dichloro(methyl)silane 3.6 g을 헥산(hexane) 50 mL에 녹여 dry ice/acetone bath하에서 fluorene-Li 슬러리를 30분 동안 transfer하여 상온에서 밤새 교반하였다. 이와 동시에 5,8-dimethyl-5,10-dihydroindeno[1,2-b]indole (12 mmol, 2.8 g) 또한 THF 60 mL에 녹여 2.5M n-BuLi hexane solution 5.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. fluorene과 (6-(tert-butoxy)hexyl)dichloro(methyl)silane 과의 반응 용액을 NMR 샘플링하여 반응 완료를 확인한 후 5,8-dimethyl-5,10-dihydroindeno[1,2-b]indole-Li solution을 dry ice/acetone bath하에서 transfer하였다. 상온에서 밤새 교반하였다. 반응 후 ether/water로 추출(extraction)하여 유기층의 잔류수분을 MgSO4로 제거 후 리간드 화합물(Mw 597.90, 12 mmol)을 얻었으며 이성질체(isomer) 두 개가 생성되었음을 1H-NMR에서 확인할 수 있었다.
1H NMR (500 MHz, d6-benzene): -0.30 ~ -0.18 (3H, d), 0.40 (2H, m), 0.65 ~ 1.45 (8H, m), 1.12 (9H, d), 2.36 ~ 2.40 (3H, d), 3.17 (2H, m), 3.41 ~ 3.43 (3H, d), 4.17 ~ 4.21 (1H, d), 4.34 ~ 4.38 (1H, d), 6.90 ~ 7.80 (15H, m)
1-2 메탈로센 화합물의 합성
상기 1-1에서 합성한 리간드 화합물 7.2 g (12 mmol)을 diethylether 50 mL에 녹여 2.5 M n-BuLi hexane solution 11.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 진공 건조하여 갈색(brown color)의 sticky oil을 얻었다. 톨루엔에 녹여 슬러리를 얻었다. ZrCl4(THF)2를 준비하고 톨루엔 50 mL를 넣어 슬러리로 준비하였다. ZrCl4(THF)2의 50 mL 톨루엔 슬러리를 dry ice/acetone bath에서 transfer하였다. 상온에서 밤새 교반함에 따라 보라색(violet color)으로 변화하였다. 반응 용액을 필터하여 LiCl을 제거하였다. 여과액(filtrate)의 톨루엔을 진공 건조하여 제거한 후 헥산을 넣고 1시간 동안 sonication하였다. 슬러리를 필터하여 여과된 고체(filtered solid)인 짙은 보라색(dark violet)의 메탈로센 화합물 6 g (Mw 758.02, 7.92 mmol, yield 66mol%)을 얻었다. 1H-NMR상에서 두 개의 isomer가 관찰되었다.
1H NMR (500 MHz, CDCl3): 1.19 (9H, d), 1.71 (3H, d), 1.50 ~ 1.70(4H, m), 1.79(2H, m), 1.98 ~ 2.19(4H, m), 2.58(3H, s), 3.38 (2H, m), 3.91 (3H, d), 6.66 ~ 7.88 (15H, m)
합성예 2
Figure 112015056820494-pat00050
2-1 리간드 화합물의 합성
250 mL flask에 5-methyl-5,10-dihydroindeno[1,2-b]indole 2.63 g (12 mmol)을 넣고 THF 50 mL에 녹인 후 2.5M n-BuLi hexane solution 6 mL를 dr yice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 또 다른 250 mL flask에 (6-(tert-butoxy)hexyl)dichloro(methyl)silane 1.62 g(6 mmol)을 hexane 100 mL에 녹여 준비한 후 dry ice/acetone bath 하에서 5-methyl-5,10-dihydroindeno[1,2-b]indole의 lithiated solution에 천천히 적가하여 상온에서 밤새 교반하였다. 반응 후 ether/water로 추출하여 유기층의 잔류수분을 MgSO4로 제거 후 진공 건조하여 리간드 화합물 3.82 g (6 mmol)을 얻었으며 이를 1H-NMR에서 확인하였다.
1H NMR (500 MHz, CDCl3): -0.33 (3H, m), 0.86~ 1.53 (10H, m), 1.16 (9H, d), 3.18 (2H, m), 4.07 (3H, d), 4.12 (3H, d), 4.17 (1H, d), 4.25 (1H, d), 6.95~ 7.92 (16H, m)
2-2 메탈로센 화합물의 합성
상기 2-1에서 합성한 리간드 화합물 3.82 g (6 mmol)을 toluene 100 mL와 MTBE 5 mL에 녹인 후 2.5M n-BuLi hexane solution 5.6 mL(14 mmol)를 dryice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 또 다른 flask에 ZrCl4(THF)2 2.26 g (6 mmol)을 준비하고 toluene 100 ml를 넣어 슬러리로 준비하였다. ZrCl4(THF)2의 toluene slurry를 litiation된 리간드에 dry ice/acetone bath에서 transfer하였다. 상온에서 밤새 교반하였고 violet color로 변화하였다. 반응 용액을 필터하여 LiCl을 제거한 후 얻어진 여액을 진공 건조하여 hexane을 넣고 sonication하였다. 슬러리를 필터하여 filtered solid인 dark violet 의 메탈로센 화합물 3.40 g (yield 71.1mol%)을 얻었다.
1H NMR (500 MHz, CDCl3): 1.74 (3H, d), 0.85~2.33(10H, m), 1.29(9H, d), 3.87 (3H, s), 3.92 (3H, s), 3.36(2H, m), 6.48~ 8.10 (16H, m)
제 2 메탈로센 화합물의 제조
합성예 3
( tBu -O-( CH 2 ) 6 )( CH 3 ) Si ( C 5 ( CH 3 ) 4 )( tBu -N) TiCl 2 합성
상온에서 50 g의 Mg(s)를 10 L 반응기에 가한 후, THF 300 mL을 가하였다. I2 0.5 g 정도를 가한 후, 반응기 온도를 50 ℃로 유지하였다. 반응기 온도가 안정화된 후 250 g의 6-t-부톡시헥실 클로라이드(6-t-buthoxyhexyl chloride)를 피딩펌프(feeding pump)를 이용하여 5 mL/min의 속도로 반응기에 가하였다. 6-t-부톡시헥실 클로라이드를 가함에 따라 반응기 온도가 4 내지 5℃정도 상승하는 것을 관찰하였다. 계속적으로 6-t-부톡시헥실 클로라이드을 가하면서 12 시간 교반하였다. 반응 12시간 후 검은색의 반응용액을 얻었다. 생성된 검은색의 용액 2 mL 취한 뒤 물을 가하여 유기층을 얻어 1H-NMR을 통해 6-t-부톡시헥산(6-t-buthoxyhexane)을 확인하였다. 상기 6-t-부톡시헥산으로부터 그리냐드(Gringanrd) 반응이 잘 진행되었음을 알 수 있었다. 그리하여 6-t-부톡시헥실 마그네슘 클로라이드(6-t-buthoxyhexyl magnesium chloride)를 합성하였다.
MeSiCl3 500 g과 1 L의 THF를 반응기에 가한 후 반응기 온도를 -20℃까지 냉각하였다. 합성한 6-t-부톡시헥실 마그네슘 클로라이드 중 560 g을 피딩펌프를 이용하여 5 mL/min의 속도로 반응기에 가하였다. 그리냐드 시약(Grignard reagent)의 피딩(feeding)이 끝난 후 반응기 온도를 천천히 상온으로 올리면서 12시간 교반하였다. 반응 12시간 후 흰색의 MgCl2염이 생성되는 것을 확인하였다. 헥산 4 L을 가하여 랩도리(labdori)을 통해 염을 제거하여 필터용액을 얻었다. 얻은 필터용액을 반응기에 가한 후 70℃에서 헥산을 제거하여 엷은 노란색의 액체를 얻었다. 얻은 액체를 1H-NMR을 통해 원하는 메틸(6-t-부톡시 헥실)디클로로실란{Methyl(6-t-buthoxy hexyl)dichlorosilane} 화합물임을 확인하였다.
1H-NMR (CDCl3): 3.3 (t, 2H), 1.5 (m, 3H), 1.3 (m, 5H), 1.2 (s, 9H), 1.1 (m, 2H), 0.7 (s, 3H)
테트라메틸시클로펜타디엔(tetramethylcyclopentadiene) 1.2 mol (150 g)와 2.4 L의 THF를 반응기에 가한 후 반응기 온도를 -20℃로 냉각하였다. n-BuLi 480 mL 피딩펌프를 이용하여 5 mL/min의 속도로 반응기에 가하였다. n-BuLi을 가한 후 반응기 온도를 천천히 상온으로 올리면서 12시간 교반하였다. 반응 12시간 후, 당량의 메틸(6-t-부톡시 헥실)디클로로실란(Methyl(6-t-buthoxy hexyl)dichlorosilane) (326 g, 350 mL)을 빠르게 반응기에 가하였다. 반응기 온도를 천천히 상온으로 올리면서 12시간 교반한 후 다시 반응기 온도를 0℃로 냉각시킨 후 2당량의 t-BuNH2을 가하였다. 반응기 온도를 천천히 상온으로 올리면서 12시간 교반하였다. 반응 12시간 후 THF을 제거하고 4 L의 헥산을 가하여 랩도리를 통해 염을 제거한 필터용액을 얻었다. 필터용액을 다시 반응기에 가한 후, 헥산을 70℃에서 제거하여 노란색의 용액을 얻었다. 얻을 노란색의 용액을 1H-NMR을 통해 메틸(6-t-부톡시헥실)(테트라메틸CpH)t-부틸아미노실란(Methyl(6-t-buthoxyhexyl)(tetramethylCpH)t-Butylaminosilane) 화합물임을 확인하였다.
n-BuLi과 리간드 디메틸(테트라메틸CpH)t-부틸아민실란 (Dimethyl(tetramethylCpH)t-Butylaminosilane)로부터 THF 용액에서 합성한 -78℃의 리간드의 디리튬염에 TiCl3(THF)3(10 mmol)을 빠르게 가하였다. 반응용액을 천천히 -78℃에서 상온으로 올리면서 12시간 교반하였다. 12시간 교반 후, 상온에서 당량의 PbCl2(10mmol)를 반응용액에 가한 후 12시간 교반하였다. 12시간 교반 후, 푸른색을 띠는 짙은 검은색의 용액을 얻었다. 생성된 반응용액에서 THF를 제거한 후 헥산을 가하여 생성물을 필터하였다. 얻을 필터용액에서 헥산을 제거한 후, 1H-NMR로부터 원하는 ([methyl(6-t-buthoxyhexyl)silyl(η5-tetramethylCp)(t-Butylamido)]TiCl2)인 (tBu-O-(CH2)6)(CH3)Si(C5(CH3)4)(tBu-N)TiCl2 임을 확인하였다.
1H-NMR (CDCl3): 3.3 (s, 4H), 2.2 (s, 6H), 2.1 (s, 6H), 1.8 ~ 0.8 (m), 1.4 (s, 9H), 1.2(s, 9H), 0.7 (s, 3H)
<혼성 담지 촉매의 제조예 >
제조예 1
1-1 담지체 건조
실리카(Grace Davison사 제조 SYLOPOL 948)를 400℃의 온도에서 15 시간 동안 진공을 가한 상태에서 탈수하였다.
1-2 담지 촉매 제조
건조된 실리카 10 g를 유리 반응기에 넣고, 톨루엔 100 mL을 추가로 넣고 교반을 한다. 10 wt% 메틸알루미녹산(MAO)/톨루엔 용액을 50 mL를 가하여 40℃에서 교반하며 천천히 반응시켰다. 이 후 충분한 양의 톨루엔으로 세척하여 반응하지 않은 알루미늄 화합물을 제거하고, 감압하여 남아 있는 톨루엔을 제거하였다. 다시 톨루엔 100 mL를 투입한 후, 상기 합성예 2에서 제조된 메탈로센 촉매 0.25 mmol을 톨루엔에 녹여 같이 투입하여 1시간 동안 반응을 시킨 후, 합성예 1의 메탈로센 촉매 0.25 mmol 반응 1시간을 추가로 진행하였다. 이 반응이 끝난 후, 상기 합성예 3에서 제조된 메탈로센 촉매 0.25 mmol을 톨루엔에 녹여 투입한 후, 1시간 동안 반응을 추가로 시켰다. 반응이 끝난 후, 교반을 멈추고 톨루엔층을 분리제거 후, 아닐리늄 보레이트 (N, N-dimethylanilinium tetrakis(pentafluorophenyl)borate, AB) 1.0 mmol을 투입하고 1시간 동안 교반을 시킨 후, 50℃에서 감압하여 톨루엔을 제거하여, 담지 촉매를 제조하였다.
폴리올레핀 중합
실시예 1 및 2
상기 제조예 1의 혼성 담지 촉매를 단일 반응기의 슬러리 중합 공정에 투입하여 정법에 따라 폴리올레핀을 제조하였다. 공단량체로는 1-부텐을 사용하였다. 실시예 1 및 2는 중합 반응 시간만 달리하여 진행하였다.
얻어진 폴리올레핀 공중합체에 산화방지제(SONGNOX21B, SONGWON사) 1,000ppm과 가공조제(SC110, Ca-St, 두분유화(주)) 1,500ppm을 첨가하고 이축 압출기(W&P Twin Screw Extruder, 75 파이, L/D = 36)를 사용하여 170 ~ 220℃의 압출 온도에서 펠렛 압출 성형하였다. 폴리올레핀 중합체의 원료 물성 및 압출 성형품의 제반 물성을 특성 평가방법에 따라 실시하였다.
비교예 1
지글러-나타 촉매 및 직렬연결된 2개 이상의 반응기를 이용하여 얻어지는 상업용 제품인 폴리올레핀(상품명 CAP508S3, 제조사: INEOS)을 준비하여 실시예 1과 같은 방법으로 압출 성형하였다.
비교예 2
지글러-나타 촉매 및 직렬연결된 2개 이상의 반응기를 이용하여 얻어지는 상업용 제품인 폴리올레핀(상품명 ME1000B2, 제조사: ㈜엘지화학)을 준비하여 실시예 1과 같은 방법으로 압출 성형하였다.
< 실험예 >
하기와 같은 방법으로 실시예 및 비교예에서 수득된 폴리올레핀 및 압출 성형품의 물성을 측정하여 하기 표 1에 나타냈다.
또한 실시예 및 비교예에서 수득된 폴리올레핀의 van Gurp-Palmen 그래프를 도 1에 나타내었다.
1) 밀도: ASTM 1505
2) 용융 흐름 지수(MI, 2.16 kg/10분): 측정 온도 190℃, ASTM 1238
3) 용융 흐름 지수(MI, 21.6 kg/10분): 측정 온도 190℃, ASTM 1238
4) 분자량, 및 분자량분포: 측정 온도 160℃, 겔투과 크로마토그라피-에프티아이알(GPC-FTIR)을 이용하여 수 평균 분자량, 중량 평균분자량, Z 평균분자량을 측정하였다. 분자량 분포는 중량 평균분자량과 수 평균분자량의 비로 나타내었다.
5) 내환경응력균열성(ESCR)
ASTM D1693, 10% Igepal CO-630 Solution을 사용하여 온도 50℃ 조건하에서 F50 (50% 파괴)까지의 시간을 측정하였다.
6) 곁가지(branch) 함량
폴리올레핀을 PL-SP260을 이용하여 BHT 0.0125%가 포함된 1, 2, 4-Trichlorobenzene에서 160℃, 10시간 동안 녹여 전처리한 후, 고온 GPC(PL-GPC220)와 연결된 PerkinElmer Spectrum 100 FT-IR을 이용하여 160℃에서 탄소 1,000개 당 곁가지 함량(단위: 개)를 측정하였다.
실시예 1 실시예 2 비교예 1 비교예 2
중량평균분자량
(g/mol)
203,400 194,200 165,600 110,900
분자량분포(PDI) 19.37 19.23 15.62 10.87
Branch/1,000C
(단위: 개)
C4(1-butene) branch 2.6
3.0 0.8 0.9
C8(1-octene)
이상 branch
4.9 5.3 1.6 1.7
용융 흐름 지수(MI, 2.16 kg/10분) 0.25 0.35 0.89 1.75
용융유동율비(MFR21 .6/MFR2 .16) 240 280 70 50
밀도(g/cc) 0.949 0.949 0.952 0.951
내환경 응력 균열성(ESCR, 시간) >250 250 50 100
도 1은 본 발명의 실시예 1 및 2와, 비교예 1 및 2에 따른 폴리올레핀의 van Gurp-Palmen 그래프를 나타낸 것이다.
도 1의 그래프를 참조하면, 실시예 1 및 2의 폴리올레핀은 높은 긴 사슬 곁가지(LCB)의 존재로 인하여 높은 복소 탄성률 지점에서 변곡점을 가지는 특징이 있으나, 비교예 1 및 2의 폴리올레핀은 변곡점을 나타내지 않음을 알 수 있다.

Claims (13)

  1. 분자량 분포(PDI)가 15 내지 30이고;
    용융 유동율비(MFR21.6/MFR2.16)가 200 내지 400이며;
    주쇄 탄소 1,000개 당 탄소수 8 이상의 긴 사슬 곁가지(Long Chain Branch, LCB) 함량이 2개 이상인 폴리올레핀.
  2. 제1항에 있어서, 주쇄 탄소 1,000개 당 곁가지(Branch) 함량이 4개 이상인 폴리올레핀.
  3. 제1항에 있어서, ASTM D 1693에 따라 측정한 내환경 응력 균열성(ESCR: environmental stress crack resistance)이 150 시간 이상인 폴리올레핀.
  4. 제1항에 있어서, ASTM 1238에 따라 190℃, 2.16kg 하중 조건에서 측정한 용융 흐름 지수(MI)가 0.1 내지 0.9 g/10min인 폴리올레핀.
  5. 제1항에 있어서, 밀도(density)가 0.940 내지 0.949 g/cc인 폴리올레핀.
  6. 제1항에 있어서, 중량 평균 분자량(Mw)이 15만 내지 25만 g/mol인 폴리올레핀.
  7. 제1항에 있어서, 상기 폴리올레핀은 하기 화학식 1로 표시되는 1종 이상의 제 1 메탈로센 화합물, 1종 이상의 제 2 메탈로센 화합물 및 조촉매를 포함하는 혼성 메탈로센 촉매의 존재 하에 올레핀계 단량체를 중합함으로써 제조되는, 폴리올레핀:
    [화학식 1]
    Figure 112015123588221-pat00051

    상기 화학식 1에서,
    A는 C1 내지 C20의 알킬기이고;
    D는 -O- 이고;
    L은 C1 내지 C10의 직쇄 또는 분지쇄 알킬렌기이고;
    B는 실리콘이고;
    Q는 C1 내지 C20의 알킬기이고;
    M은 4족 전이금속이며;
    X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐이고;
    C1 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 2a, 화학식 2b 또는 하기 화학식 2c 중 하나로 표시되고, 단, C1 C2가 모두 화학식 2c인 경우는 제외하며;
    [화학식 2a]
    Figure 112015123588221-pat00052

    [화학식 2b]
    Figure 112015123588221-pat00053

    [화학식 2c]
    Figure 112015123588221-pat00054

    상기 화학식 2a, 2b 및 2c에서,
    R1 내지 R17 및 R1' 내지 R9'는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 또는 C1 내지 C20의 알킬기이다.
  8. 제7항에 있어서, 상기 제 2 메탈로센 화합물은 (tBu-O-(CH2)6)(CH3)Si(C5(CH3)4)(tBu-N)TiCl2인, 폴리올레핀.
  9. 제7항에 있어서, 상기 화학식 1로 표시되는 메탈로센 화합물은 하기 구조식들로 이루어진 군에서 선택되는 것인, 폴리올레핀:
    Figure 112015123588221-pat00055
    Figure 112015123588221-pat00056

    Figure 112015123588221-pat00060
    Figure 112015123588221-pat00061

    Figure 112015123588221-pat00064
    Figure 112015123588221-pat00066

    Figure 112015123588221-pat00069
    Figure 112015123588221-pat00070

  10. 제7항에 있어서, 상기 메탈로센 촉매는 상기 제 1 메탈로센 화합물, 제 2 메탈로센 화합물 및 조촉매가 담체에 담지된 혼성 담지 메탈로센 촉매인, 폴리올레핀.
  11. 제7항에 있어서, 상기 조촉매는 하기 화학식 6의 알루미늄 함유 제 1 조촉매와, 하기 화학식 6의 보레이트계 제 2 조촉매를 포함하는 폴리올레핀:
    [화학식 6]
    -[Al(R18)-O-]k-
    화학식 6에서, R18은 각각 독립적으로 할로겐, 할로겐 치환 또는 비치환된 탄소수 1 내지 20의 하이드로카빌기이고, k는 2 이상의 정수이고,
    [화학식 7]
    T+[BG4]-
    화학식 7에서, T+은 +1가의 다원자 이온이고, B는 +3 산화 상태의 붕소이고, G는 각각 독립적으로 하이드라이드기, 디알킬아미도기, 할라이드기, 알콕사이드기, 아릴옥사이드기, 하이드로카빌기, 할로카빌기 및 할로-치환된 하이드로카빌기로 이루어진 군에서 선택되고, 상기 G는 20개 이하의 탄소를 가지나, 단 하나 이하의 위치에서 G는 할라이드기이다.
  12. 제7항에 있어서, 상기 올레핀계 단량체는 에틸렌, 프로필렌, 1-부텐, 1-헥센, 1-옥텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-데센, 1-운데센, 1-도데센, 노보넨, 에틸리덴노보넨, 스티렌, 알파-메틸스티렌 및 3-클로로메틸스티렌으로 이루어진 군으로부터 선택된 1종 이상의 단량체를 포함하는, 폴리올레핀.
  13. 제1항에 있어서, 식품 용기, 또는 보틀캡(bottle cap)으로 사용되는 폴리올레핀.
KR1020150083314A 2014-06-16 2015-06-12 내환경 응력 균열성이 우수한 폴리올레핀 KR101592436B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/304,459 US20170044278A1 (en) 2014-06-16 2015-06-15 Polyolefin having excellent environmental stress crack resistance
JP2016571697A JP2017518423A (ja) 2014-06-16 2015-06-15 耐環境応力亀裂性に優れたポリオレフィン
EP15809691.7A EP3130616B1 (en) 2014-06-16 2015-06-15 Polyolefin having excellent environmental stress crack resistance
PCT/KR2015/006008 WO2015194813A1 (ko) 2014-06-16 2015-06-15 내환경 응력 균열성이 우수한 폴리올레핀
CN201580020304.7A CN106232638B (zh) 2014-06-16 2015-06-15 具有优异耐环境应力开裂性的聚烯烃

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140072808 2014-06-16
KR20140072808 2014-06-16

Publications (2)

Publication Number Publication Date
KR20150144281A KR20150144281A (ko) 2015-12-24
KR101592436B1 true KR101592436B1 (ko) 2016-02-05

Family

ID=55084302

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150083314A KR101592436B1 (ko) 2014-06-16 2015-06-12 내환경 응력 균열성이 우수한 폴리올레핀

Country Status (5)

Country Link
US (1) US20170044278A1 (ko)
EP (1) EP3130616B1 (ko)
JP (1) JP2017518423A (ko)
KR (1) KR101592436B1 (ko)
CN (1) CN106232638B (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190063794A (ko) 2017-11-30 2019-06-10 롯데케미칼 주식회사 응력 저항성이 향상된 폴리올레핀 조성물
KR20200064286A (ko) 2018-11-29 2020-06-08 롯데케미칼 주식회사 응력 저항성이 향상된 폴리올레핀 조성물
US10774163B2 (en) 2016-12-09 2020-09-15 Lg Chem, Ltd. Ethylene/1-hexene copolymer having excellent processability and mechanical properties
US10815324B2 (en) 2016-11-15 2020-10-27 Lg Chem, Ltd. Ethylene/alpha-olefin copolymer having excellent environmental stress crack resistance

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101747401B1 (ko) * 2014-12-08 2017-06-14 주식회사 엘지화학 가공성이 우수한 에틸렌/알파-올레핀 공중합체
KR101969123B1 (ko) 2016-02-17 2019-08-20 주식회사 엘지화학 고강성 및 에너지 절감 발포용 폴리프로필렌
KR102002983B1 (ko) 2016-02-24 2019-07-23 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
KR101692346B1 (ko) * 2016-04-27 2017-01-03 한화케미칼 주식회사 혼성 담지 메탈로센 촉매를 이용한 고밀도 에틸렌계 중합체 및 제조방법
KR102228534B1 (ko) * 2016-10-27 2021-03-15 주식회사 엘지화학 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
KR101958015B1 (ko) 2016-11-08 2019-07-04 주식회사 엘지화학 에틸렌/알파-올레핀 공중합체
KR102234944B1 (ko) * 2016-12-13 2021-03-31 주식회사 엘지화학 올레핀 공중합체
KR102229002B1 (ko) * 2016-12-14 2021-03-16 주식회사 엘지화학 가공성 및 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
KR102260362B1 (ko) * 2017-03-09 2021-06-02 주식회사 엘지화학 올레핀 공중합체
WO2019124835A1 (ko) 2017-12-20 2019-06-27 주식회사 엘지화학 폴리에틸렌 공중합체 및 이의 제조 방법
KR102459861B1 (ko) 2017-12-21 2022-10-27 주식회사 엘지화학 가공성이 우수한 에틸렌/1-부텐 공중합체
WO2019182352A1 (ko) 2018-03-21 2019-09-26 주식회사 엘지화학 폴리올레핀계 수지 조성물 및 이를 이용한 스트레치 필름
US20220389350A1 (en) * 2021-06-04 2022-12-08 W.M. Barr & Company, Inc. Cleaning composition and method for removal of stains from roof shingles
EP4105188A1 (en) 2021-06-15 2022-12-21 Evonik Corporation Composition for manufacturing sheet molding compounds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012515821A (ja) 2009-01-23 2012-07-12 エボニック オクセノ ゲゼルシャフト ミット ベシュレンクテル ハフツング 3置換c4−10アルケンとのポリオレフィン気相重合
KR101218000B1 (ko) 2005-06-14 2013-01-02 유니베이션 테크놀로지즈, 엘엘씨 블로우 성형 용도를 위한 증진된 escr 이봉 hdpe
JP5351010B2 (ja) 2006-04-07 2013-11-27 ダウ グローバル テクノロジーズ エルエルシー ポリオレフィン組成物、それらから製造される物品およびそれらの調製方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5468707A (en) * 1992-12-01 1995-11-21 Merck Patent Gesellschaft Mit Beschrankter Haftung Coordination catalyst systems
JP3662729B2 (ja) * 1996-10-24 2005-06-22 日本ポリオレフィン株式会社 エチレン系重合体及び中空成形体
US6204346B1 (en) * 1998-12-17 2001-03-20 Phillips Petroleum Co. Polymerization process
WO2003016366A1 (fr) * 2001-08-17 2003-02-27 Idemitsu Petrochemical Co., Ltd. Copolymere ethylenique et film comprenant ledit copolymere
US7473745B2 (en) * 2005-09-02 2009-01-06 Equistar Chemicals, Lp Preparation of multimodal polyethylene
KR101359198B1 (ko) * 2009-03-30 2014-02-05 미쓰이 가가쿠 가부시키가이샤 올레핀과 공액 다이엔의 공중합체, 및 그의 제조 방법
CN103145897B (zh) * 2012-04-20 2017-12-29 华东理工大学 一种负载型金属氧化物双活性中心乙烯聚合催化剂的制备及应用
KR101631700B1 (ko) * 2013-10-18 2016-06-17 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법
JP6499195B2 (ja) * 2013-11-21 2019-04-10 エルジー・ケム・リミテッド ポリオレフィンの製造方法およびこれから製造されたポリオレフィン
KR101705340B1 (ko) * 2014-06-03 2017-02-09 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR101617870B1 (ko) * 2014-09-05 2016-05-03 주식회사 엘지화학 가공성이 우수한 올레핀계 중합체

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101218000B1 (ko) 2005-06-14 2013-01-02 유니베이션 테크놀로지즈, 엘엘씨 블로우 성형 용도를 위한 증진된 escr 이봉 hdpe
JP5351010B2 (ja) 2006-04-07 2013-11-27 ダウ グローバル テクノロジーズ エルエルシー ポリオレフィン組成物、それらから製造される物品およびそれらの調製方法
JP2012515821A (ja) 2009-01-23 2012-07-12 エボニック オクセノ ゲゼルシャフト ミット ベシュレンクテル ハフツング 3置換c4−10アルケンとのポリオレフィン気相重合

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10815324B2 (en) 2016-11-15 2020-10-27 Lg Chem, Ltd. Ethylene/alpha-olefin copolymer having excellent environmental stress crack resistance
US10774163B2 (en) 2016-12-09 2020-09-15 Lg Chem, Ltd. Ethylene/1-hexene copolymer having excellent processability and mechanical properties
KR20190063794A (ko) 2017-11-30 2019-06-10 롯데케미칼 주식회사 응력 저항성이 향상된 폴리올레핀 조성물
KR20200064286A (ko) 2018-11-29 2020-06-08 롯데케미칼 주식회사 응력 저항성이 향상된 폴리올레핀 조성물
KR102474477B1 (ko) 2018-11-29 2022-12-05 롯데케미칼 주식회사 응력 저항성이 향상된 폴리올레핀 조성물

Also Published As

Publication number Publication date
CN106232638B (zh) 2019-08-23
CN106232638A (zh) 2016-12-14
EP3130616A4 (en) 2018-01-10
EP3130616A1 (en) 2017-02-15
KR20150144281A (ko) 2015-12-24
JP2017518423A (ja) 2017-07-06
EP3130616B1 (en) 2021-06-09
US20170044278A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
KR101592436B1 (ko) 내환경 응력 균열성이 우수한 폴리올레핀
KR101617870B1 (ko) 가공성이 우수한 올레핀계 중합체
KR101726820B1 (ko) 가공성 및 환경 응력 균열 저항성이 우수한 에틸렌/1-헥센 또는 에틸렌/1-부텐 공중합체
KR101691628B1 (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR101709688B1 (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
CN108401432B (zh) 用于合成烯烃共聚物的催化剂组合物和制备烯烃共聚物的方法
KR101549209B1 (ko) 가공성이 우수한 올레핀계 중합체
KR102260362B1 (ko) 올레핀 공중합체
KR101658172B1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법
KR101850985B1 (ko) 메탈로센 담지 촉매의 제조 방법
EP3225638B1 (en) Ethylene/ -olefin copolymer having excellent processability and surface characteristics
KR101670468B1 (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
WO2016036204A1 (ko) 가공성이 우수한 올레핀계 중합체
KR20160123172A (ko) 가공성이 우수한 에틸렌/알파-올레핀 공중합체
KR20160121940A (ko) 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
KR20180067944A (ko) 올레핀 공중합체
KR20160121045A (ko) 중공 성형용 고밀도 폴리에틸렌 공중합체
KR20180083247A (ko) 올레핀 중합체 및 이의 제조 방법
KR20180068715A (ko) 가공성 및 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
KR20180099269A (ko) 올레핀 공중합체 합성용 촉매 조성물 및 올레핀 공중합체의 제조 방법
WO2015194813A1 (ko) 내환경 응력 균열성이 우수한 폴리올레핀
KR101725352B1 (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR20180062116A (ko) 폴리올레핀의 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200116

Year of fee payment: 5