KR20160121045A - 중공 성형용 고밀도 폴리에틸렌 공중합체 - Google Patents

중공 성형용 고밀도 폴리에틸렌 공중합체 Download PDF

Info

Publication number
KR20160121045A
KR20160121045A KR1020150050440A KR20150050440A KR20160121045A KR 20160121045 A KR20160121045 A KR 20160121045A KR 1020150050440 A KR1020150050440 A KR 1020150050440A KR 20150050440 A KR20150050440 A KR 20150050440A KR 20160121045 A KR20160121045 A KR 20160121045A
Authority
KR
South Korea
Prior art keywords
aryl
alkyl
alpha
alkenyl
ethylene
Prior art date
Application number
KR1020150050440A
Other languages
English (en)
Inventor
선순호
최이영
이기수
송은경
이현섭
이명한
유영석
조솔
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020150050440A priority Critical patent/KR20160121045A/ko
Priority to PCT/KR2016/003718 priority patent/WO2016163810A1/ko
Publication of KR20160121045A publication Critical patent/KR20160121045A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2140/00Compositions for moulding powders
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 에틸렌/알파-올레핀 공중합체에 관한 것으로, 본 발명에 따른 에틸렌/알파-올레핀 공중합체는 높은 Mp 값과 우수한 다이 팽윤 특성을 가져, 연료 탱크와 같은 중공 성형품의 제조에 바람직하게 적용될 수 있다.

Description

중공 성형용 고밀도 폴리에틸렌 공중합체{High density polyethylene copolymer for blow molding}
본 발명은 중공 성형용 고밀도 폴리에틸렌 공중합체에 관한 것으로, 특히 die swell 특성이 우수한 고밀도 폴리에틸렌 공중합체에 관한 것이다.
올레핀 중합 촉매계는 지글러 나타 및 메탈로센 촉매계로 분류할 수 있으며, 이 두 가지의 고활성 촉매계는 각각의 특징에 맞게 발전되어 왔다. 지글러 나타 촉매는 50년대 발명된 이래 기존의 상업 프로세스에 널리 적용되어 왔으나, 활성점이 여러 개 혼재하는 다활성점 촉매(multi-site catalyst)이기 때문에, 중합체의 분자량 분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다.
한편, 메탈로센 촉매는 전이금속 화합물이 주성분인 주촉매와 알루미늄이 주성분인 유기 금속 화합물인 조촉매의 조합으로 이루어지며, 이와 같은 촉매는 균일계 착체 촉매로 단일 활성점 촉매(single-site catalyst)이며, 단일 활성점 특성에 따라 분자량 분포가 좁으며, 공단량체의 조성 분포가 균일한 고분자가 얻어지며, 촉매의 리간드 구조 변형 및 중합 조건의 변경에 따라 고분자의 입체 규칙도, 공중합 특성, 분자량, 결정화도 등을 변화시킬 수 있는 특성을 가지고 있다.
미국 특허 제5,914,289호에는 각각의 담체에 담지된 메탈로센 촉매를 이용하여 고분자의 분자량 및 분자량 분포를 제어하는 방법이 기재되어 있으나, 담지촉매 제조시 사용된 용매의 양 및 제조시간이 많이 소요되고, 사용되는 메탈로센 촉매를 담체에 각각 담지시켜야 하는 번거로움이 따랐다.
대한민국 특허 출원 제2003-12308호에는 담체에 이중핵 메탈로센 촉매와 단일핵 메탈로센 촉매를 활성화제와 함께 담지하여 반응기 내 촉매의 조합을 변화시키며 중합함으로써 분자량 분포를 제어하는 방안을 개시하고 있다. 그러나, 이러한 방법은 각각의 촉매의 특성을 동시에 구현하기에 한계가 있으며, 또한 완성된 촉매의 담체 성분에서 메탈로센 촉매 부분이 유리되어 반응기에 파울링(fouling)을 유발하는 단점이 있다.
따라서, 상기한 단점들을 해결하기 위해서 간편하게 활성이 우수한 혼성 담지 메탈로센 촉매를 제조하여 원하는 물성의 올레핀계 중합체를 제조하는 방법에 대한 요구가 계속되고 있다.
한편, 선형 저밀도 폴리에틸렌은 중합촉매를 사용하여 저압에서 에틸렌과 알파 올레핀을 공중합하여 제조되어, 분자량 분포가 좁고 일정한 길이의 단쇄분지를 가지며, 장쇄분지가 없는 수지이다. 선형 저밀도 폴리에틸렌 필름은 일반 폴리에틸렌의 특성과 더불어 파단강도와 신율이 높고, 인열강도, 낙추충격강도 등이 우수하여 기존의 저밀도 폴리에틸렌이나 고밀도 폴리에틸렌의 적용이 어려운 스트레치 필름, 오버랩 필름 등에의 사용이 증가하고 있다.
그런데, 1-부텐 또는 1-헥센을 공단량체로 사용하는 선형 저밀도 폴리에틸렌은 대부분 단일 기상반응기 또는 단일 루프 슬러리 반응기에서 제조되며, 1-옥텐 공단량체를 사용하는 공정 대비 생산성은 높으나, 이러한 제품 역시 사용 촉매기술 및 공정기술의 한계로 물성이 1-옥텐 공단량체 사용시보다 크게 열세하고, 분자량 분포가 좁아 가공성이 불량한 문제가 있다. 이러한 문제의 개선을 위해 많은 노력이 진행되고 있으며,
미국 특허 제4,935,474호에는 2종 또는 그 이상의 메탈로센 화합물이 사용되어 넓은 분자량 분포를 갖는 폴리에틸렌 제조법에 대해 보고되어 있다. 미국 특허 제6,828,394호에는 공단량체 결합성이 좋은 것과 그렇지 않은 것을 혼합사용해 가공성이 우수하고 특히 필름용에 적합한 폴리에틸렌 제조방법에 대해 보고되어 있다. 또한, 미국 특허 제6,841,631호, 미국 특허 제6,894,128호에는 적어도 2종의 메탈 컴파운드가 사용된 메탈로센계 촉매로 이정 또는 다정 분자량분포를 갖는 폴리에틸렌을 제조하여, 필름, 블로우몰딩, 파이프 등의 용도에 적용이 가능하다고 보고되어 있다. 하지만 이러한 제품들은 가공성은 개선되었으나 단위 입자 내의 분자량별 분산상태가 균일하지 못해 비교적 양호한 압출조건에서도 압출외관이 거칠고 물성이 안정적이지 못한 문제가 있다.
이러한 배경에서 물성과 가공성 간의 균형이 이루어진 보다 우수한 제품의 제조가 끊임없이 요구되고 있으며, 특히 중공 성형을 위하여 다이 팽윤(die swell) 특성이 우수하고 높은 Mp(molecular weight of maximum peak) 값을 가지는 폴리에틸렌 공중합체의 제조가 필요한 상태이다.
상기 종래기술의 문제점을 해결하기 위해, 본 발명은 중공 성형을 위하여 다이 팽윤(die swell) 특성이 우수하고 높은 Mp(molecular weight of maximum peak) 값을 가지는 폴리에틸렌 공중합체를 제공하고자 한다.
상기 과제를 해결하기 위하여, 본 발명은 하기의 조건을 만족하는 에틸렌/알파-올레핀 공중합체를 제공한다:
중량 평균 분자량(g/mol)이 200,000 내지 300,000이고,
Mp(molecular weight of maximum peak)가 50,000 내지 150,000이고,
하기 관계식 1의 N1(normal stress) 값이 1.5 이상인,
에틸렌/알파-올레핀 공중합체:
[관계식 1]
N1(normal stress) = N1(first normal stress difference) / SS(shear stress)
상기 식에서,
N1(제1 수직 응력차 계수; first normal stress difference) 및 SS(전단 응력; shear stress)는 각각 shear rate가 1/s이고 190℃에서 측정한다.
본 발명에 따른 에틸렌/알파-올레핀 공중합체는, 중공 성형에 유리한 물성을 가지고 있다. 중공 성형(blow molding)이란, 크게 압출 블로우, 사출 블로우, 사출 연신 블로우 방법이 있는데, 모두 고분자를 중공 파이프 모양(패리슨 또는 플랫폼)과 같이 만든 다음 몰드에 위치시키고 공기를 불어 넣어 성형품을 제조하는 공정이다. 이때 공기를 불어 넣었을 때 고분자 중공 파이프가 몰드 쪽으로 잘 연신되어야 하고, 또한 형상을 유지하지 못하고 처지는 현상이 없도록 용융 상태의 물성이 중요하다. 본 발명에서는 이러한 물성을 가질 수 있도록, 이하 설명할 바와 같은 Mp 및 Normal stress 값을 가진다.
상기 normal stress(N1)는, 상기 에틸렌/알파-올레핀 공중합체의 다이 팽윤(die swell) 물성을 의미한다. 다이 팽윤이란 고분자 수지가 직경이 작은 다이를 통과하였을 때 다이의 직경보다 더 크게 부풀어져서 압출되는 팽창 현상을 의미하는 것으로, 고분자 수지가 받는 힘의 방향에 대하여 직각 방향으로 힘이 발생하는 것에 기인한다.
압출 성형 공정에서는, 고분자의 다이 팽윤 특성이 너무 높으면 성형품의 형상 예측이 어렵고 불량이 발생할 가능성이 높아져 바람직하지 않다. 그러나, 본 발명과 같이 중공 성형에서는, 고분자 중공 파이프가 몰드 쪽으로 잘 연신되어야 하는데, 고분자 수지가 받는 힘의 방향으로 연신되어야 할 뿐만 아니라, 이의 직각 방향으로도 잘 연신되어야 하므로, 중공 성형에 있어서는 다이 팽윤 특성이 우수하여야 한다. 특히, 내부 공간이 넓은 연료 탱크와 같은 중공 성형품을 제조하는 경우에는 다이 팽윤 특성이 보다 중요하게 고려된다.
본 발명에서는 상기 에틸렌/알파-올레핀 공중합체의 분자량 및 Mp를 조절하여 높은 N1(normal stress) 값을 가지는 것을 특징으로 한다. 다이 팽윤은 고분자가 받는 압력과 이의 직각 방향으로 받는 압력을 고려하여야 하며, 본 발명에서는 상기 관계식 1에 따른 N1(normal stress) 값으로 다이 팽윤 특성을 평가한다. 상기 관계식 1에서, N1(First Normal Stress Difference) 및 SS(전단 응력; Shear Stress)는 각각 전단 변형률(shear rate)가 1/s이고 190℃에서 측정한다.
상기 N1의 측정 방법은, 에틸렌/알파-올레핀 공중합체에 회전력(토크)을 주고, 이에 따른 전단 응력(shear stress)과, 회전축과 평행 방향의 수직 응력(normal stress)를 측정하여, 상기 관계식 1에 따른 N1(normal stress) 값을 측정한다. 회전력 및 온도에 따라 N1 값이 달라지기 때문에, 본 발명에서는 shear rate가 1/s이고 190℃에서 측정하는 것을 기준으로 한다.
본 발명에 따른 에틸렌/알파-올레핀 공중합체는, 상기 방법에 의한 N1 값이 1.5 이상이다. 상기 범위의 N1 값을 가짐으로써, 중공 성형시 고분자 중공 파이프가 몰드 쪽으로 잘 연신되어 연료 탱크와 같이 내부 공간이 넓은 중공 성형품을 제조할 수 있다. 바람직하게는, 상기 N1 값은 1.5 내지 5이다.
또한, 상기 Mp는 상기 에틸렌/알파-올레핀 공중합체의 GPC 커브를 측정하였을 때 가장 높은 peak를 나타내는 지점의 분자량을 의미하며, 상기 당이 팽윤에 영향을 준다. 특히, 본 발명에 따른 에틸렌/알파-올레핀은 연료 탱크와 같은 중공 성형품을 제조하기 위한 것으로, 높은 Mp 값은 중공 성형품의 기계적 물성을 높일 수 있다.
본 발명에 따른 에틸렌/알파-올레핀 공중합체는, 상기 Mp 값이 50,000 내지 150,000이다. 상기 범위의 Mp 값을 가짐으로써, 우수한 다이 팽윤 특성과 중공 성형품의 기계적 물성을 향상시킬 수 있다.
바람직하게는, 상기 에틸렌/알파-올레핀 공중합체의 밀도(g/㎤)가 0.930 내지 0.970이고, 보다 바람직하게는 0.940 내지 0.960이다.
바람직하게는, 상기 에틸렌/알파-올레핀 공중합체의 HLMI(ASTM D1238에 의거하여 190℃, 21.6kg 하중에서 측정된 용융 유동 지수)는 1 내지 10 g/10 min이고, 보다 바람직하게는 4 내지 8 g/10 min 이다.
바람직하게는, 상기 에틸렌/알파-올레핀 공중합체의 분자량 분포(Mw/Mn) 가 1 내지 20으로서, 넓은 분자량 분포를 보여 우수한 가공성을 나타낼 수 있다.
본 발명에 따른 에틸렌/알파-올레핀 공중합체에서, 상기 알파-올레핀 단량체의 구체적인 예로는 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이토센 등이 있으며, 이들을 2종 이상 사용할 수도 있다. 바람직하게는, 상기 알파-올레핀 단량체로 1-부텐을 사용할 수 있다.
상기 에틸렌/알파-올레핀 공중합체에서, 상기 공단량체인 알파-올레핀의 함량은 특별히 제한되는 것은 아니며, 공중합체의 용도, 목적 등에 따라 적절하게 선택할 수 있다. 보다 구체적으로는 0 초과 99 몰% 이하일 수 있다.
상기와 같은 에틸렌/알파-올레핀 공중합체는 메탈로센 촉매를 이용하여 제조할 수 있다. 상기 사용할 수 있는 메탈로센 촉매는 하기 화학식 1로 표시되는 제1 메탈로센 화합물 1종 이상; 및 하기 화학식 3 내지 5로 표시되는 화합물 중에서 선택되는 제2 메탈로센 화합물 1종 이상의 혼합물일 수 있다.
[화학식 1]
Figure pat00001
상기 화학식 1에서,
A는 수소, 할로겐, C1 -20 알킬, C2 -20 알케닐, C6 -20 아릴, C7 -20 알킬아릴, C7 -20 아릴알킬, C1 -20 알콕시, C2 -20 알콕시알킬, C3 -20 헤테로시클로알킬, 또는 C5 -20 헤테로아릴이고;
D는 -O-, -S-, -N(R)- 또는 -Si(R)(R')-이고, 여기서 R 및 R'은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 -20 알킬, C2 -20 알케닐, 또는 C6 -20 아릴이고;
L은 C1 -10 직쇄 또는 분지쇄 알킬렌이고;
B는 탄소, 실리콘 또는 게르마늄이고;
Q는 수소, 할로겐, C1 -20 알킬, C2 -20 알케닐, C6 -20 아릴, C7 -20 알킬아릴, 또는 C7-20 아릴알킬이고;
M은 4족 전이금속이며;
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 -20 알킬, C2-20 알케닐, C6 -20 아릴, 니트로, 아미도, C1 -20 알킬실릴, C1 -20 알콕시, 또는 C1 -20 술폰네이트이고;
C1 및 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 2a, 화학식 2b 또는 하기 화학식 2c 중 하나로 표시되고, 단, C1 및 C2가 모두 화학식 2c인 경우는 제외하며;
[화학식2a]
Figure pat00002
[화학식 2b]
Figure pat00003
[화학식 2c]
Figure pat00004
상기 화학식 2a, 2b 및 2c에서, R1 내지 R17 및 R1' 내지 R9'는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 -20 알킬, C2 -20 알케닐, C1 -20 알킬실릴, C1 -20 실릴알킬, C1 -20 알콕시실릴, C1 -20 알콕시, C6 -20 아릴, C7 -20 알킬아릴, 또는 C7-20 아릴알킬이며, 상기 R10 내지 R17 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고;
[화학식 3]
(Cp1Ra)n(Cp2Rb)M1Z1 3 -n
상기 화학식 3에서,
M1은 4족 전이금속이고;
Cp1 및 Cp2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디엔닐, 인데닐, 4,5,6,7-테트라하이드로-1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 -20 알킬, C1 -10 알콕시, C2 -20 알콕시알킬, C6 -20 아릴, C6 -10 아릴옥시, C2 -20 알케닐, C7 -40 알킬아릴, C7-40 아릴알킬, C8 -40 아릴알케닐, 또는 C2 -10 알키닐이고;
Z1은 할로겐 원자, C1 -20 알킬, C2 -10 알케닐, C7 -40 알킬아릴, C7 -40 아릴알킬, C6-20 아릴, 치환되거나 치환되지 않은 C1 -20 알킬리덴, 치환되거나 치환되지 않은 아미노, C2 -20 알킬알콕시, 또는 C7 -40 아릴알콕시이고;
n은 1 또는 0이고;
[화학식 4]
(Cp3Rc)mB1(Cp4Rd)M2Z2 3 -m
상기 화학식 4에서,
M2는 4족 전이 금속이고;
Cp3 및 Cp4는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로-1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 -20 알킬, C1 -10 알콕시, C2 -20 알콕시알킬, C6 -20 아릴, C6 -10 아릴옥시, C2 -20 알케닐, C7 -40 알킬아릴, C7-40 아릴알킬, C8 -40 아릴알케닐, 또는 C2 -10 알키닐이고;
Z2는 할로겐 원자, C1 -20 알킬, C2 -10 알케닐, C7 -40 알킬아릴, C7 -40 아릴알킬, C6-20 아릴, 치환되거나 치환되지 않은 C1 -20 알킬리덴, 치환되거나 치환되지 않은 아미노, C2 -20 알킬알콕시, 또는 C7 -40 아릴알콕시이고;
B1은 Cp3Rc 고리와 Cp4Rd 고리를 가교 결합시키거나, 하나의 Cp4Rd 고리를 M2에 가교 결합시키는, 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼 중 하나 이상 또는 이들의 조합이고;
m은 1 또는 0이고;
[화학식 5]
(Cp5Re)B2(J)M3Z3 2
상기 화학식 5에서,
M3은 4족 전이 금속이고;
Cp5는 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로-1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
Re는 수소, C1 -20 알킬, C1 -10 알콕시, C2 -20 알콕시알킬, C6 -20 아릴, C6 -10 아릴옥시, C2 -20 알케닐, C7 -40 알킬아릴, C7 -40 아릴알킬, C8 -40 아릴알케닐, 또는 C2 -10 알키닐이고;
Z3은 할로겐 원자, C1 -20 알킬, C2 -10 알케닐, C7 -40 알킬아릴, C7 -40 아릴알킬, C6-20 아릴, 치환되거나 치환되지 않은 C1 -20 알킬리덴, 치환되거나 치환되지 않은 아미노, C2 -20 알킬알콕시, 또는 C7 -40 아릴알콕시이고;
B2는 Cp5Re 고리와 J를 가교 결합시키는 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼중 하나 이상 또는 이들의 조합이고;
J는 NRf, O, PRf 및 S로 이루어진 군에서 선택된 어느 하나이고, 상기 Rf는 C1-20 알킬, 아릴, 치환된 알킬 또는 치환된 아릴이다.
상기 화학식 1, 3, 4 및 5의 치환기들을 보다 구체적으로 설명하면 하기와 같다.
상기 C1 -20 알킬로는, 직쇄 또는 분지쇄의 알킬을 포함하고, 구체적으로 메틸, 에틸, 프로필, 이소프로필, n-부틸, tert-부틸, 펜틸, 헥실, 헵틸, 옥틸 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C2 -20 알케닐로는, 직쇄 또는 분지쇄의 알케닐을 포함하고, 구체적으로 알릴, 에테닐, 프로페닐, 부테닐, 펜테닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C6 -20 아릴로는, 단환 또는 축합환의 아릴을 포함하고, 구체적으로 페닐, 비페닐, 나프틸, 페난트레닐, 플루오레닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C5 -20 헤테로아릴로는, 단환 또는 축합환의 헤테로아릴을 포함하고, 카바졸릴, 피리딜, 퀴놀린, 이소퀴놀린, 티오페닐, 퓨라닐, 이미다졸, 옥사졸릴, 티아졸릴, 트리아진, 테트라하이드로피라닐, 테트라하이드로퓨라닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C1 -20 알콕시로는, 메톡시, 에톡시, 페닐옥시, 시클로헥실옥시 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 4족 전이금속으로는 티타늄, 지르코늄, 하프늄 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 화학식 2a, 2b 및 2c의 R1 내지 R17 및 R1' 내지 R9'는 각각 독립적으로 수소, 메틸, 에틸, 프로필, 이소프로필, n-부틸, tert-부틸, 펜틸, 헥실, 헵틸, 옥틸, 페닐, 할로겐, 트리메틸실릴, 트리에틸실릴, 트리프로필실릴, 트리부틸실릴, 트리이소프로필실릴, 트리메틸실릴메틸, 메톡시, 또는 에톡시인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다.
상기 화학식 1의 L은 C4 -8 직쇄 또는 분지쇄 알킬렌인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다. 또한, 상기 알킬렌기는 C1 -20 알킬, C2 -20 알케닐, 또는 C6 -20 아릴로 치환 또는 비치환될 수 있다.
또한, 상기 화학식 1의 A는 수소, 메틸, 에틸, 프로필, 이소프로필, n-부틸, tert-부틸, 메톡시메틸, tert-부톡시메틸, 1-에톡시에틸, 1-메틸-1-메톡시에틸, 테트라하이드로피라닐, 또는 테트라하이드로퓨라닐인 것이 바람직하나, 이에만 한정되는 것은 아니다.
또한, 상기 화학식 1의 B는 실리콘인 것이 바람직하나, 이에만 한정되는 것은 아니다.
상기 화학식 1의 제1 메탈로센 화합물은 인데노 인돌(indeno indole) 유도체 및/또는 플루오렌(fluorene) 유도체가 브릿지에 의해 가교된 구조를 형성하며, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써 담체의 루이스 산 특성을 지니는 표면에 담지되어 담지 시에도 높은 중합 활성을 나타낸다. 또한 전자적으로 풍부한 인데노 인돌기 및/또는 플루오렌기를 포함함에 따라 활성이 높고, 적절한 입체 장애와 리간드의 전자적인 효과로 인해 수소 반응성이 낮을 뿐 아니라 수소가 존재하는 상황에서도 높은 활성이 유지된다. 또한 인데노 인돌 유도체의 질소 원자가 자라나는 고분자 사슬의 beta-hydrogen을 수소결합에 의해 안정화시켜 beta-hydrogen elimination을 억제하여 초고분자량의 올레핀계 중합체를 중합할 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 2a로 표시되는 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은 아니다.
Figure pat00005
Figure pat00006
Figure pat00007
Figure pat00008

본 발명의 일 실시예에 따르면, 상기 화학식 2b로 표시되는 화합물의 구체적인 예로는 하기 구조식 들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은 아니다.
Figure pat00009
Figure pat00010
Figure pat00011
Figure pat00013

본 발명의 일 실시예에 따르면, 상기 화학식 2c로 표시되는 화합물의 구체적인 예로는 하기 구조식 들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은 아니다.
Figure pat00014
Figure pat00015
Figure pat00016

본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 제1 메탈로센 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 이에만 한정되는 것은 아니다.
Figure pat00017
Figure pat00018
Figure pat00019
Figure pat00020
Figure pat00021
Figure pat00022
Figure pat00023
Figure pat00024
Figure pat00025
Figure pat00026
Figure pat00027
Figure pat00028
Figure pat00029
Figure pat00030
Figure pat00031
Figure pat00032
Figure pat00033
Figure pat00034
Figure pat00035

상기 화학식 1의 제1 메탈로센 화합물은 활성이 우수하고 고분자량의 에틸렌/알파-올레핀 공중합체를 중합할 수 있다. 특히, 담체에 담지하여 사용할 경우에도 높은 중합 활성을 나타내어, 초고분자량의 에틸렌/알파-올레핀 공중합체를 제조할 수 있다.
또한, 고분자량과 동시에 넓은 분자량 분포를 갖는 에틸렌/알파-올레핀 공중합체를 제조하기 위해 수소를 포함하여 중합 반응을 진행하는 경우에도, 본 발명에 따른 화학식 1의 제1 메탈로센 화합물은 낮은 수소 반응성을 나타내어 여전히 높은 활성으로 초고분자량의 에틸렌/알파-올레핀 공중합체의 중합이 가능하다. 따라서, 다른 특성을 갖는 촉매와 혼성으로 사용하는 경우에도 활성의 저하 없이 고분자량의 특성을 만족시키는 에틸렌/알파-올레핀 공중합체를 제조할 수 있어, 고분자의 에틸렌/알파-올레핀 공중합체를 포함하면서 넓은 분자량 분포를 갖는 에틸렌/알파-올레핀 공중합체를 용이하게 제조할 수 있다.
상기 화학식 1의 제1 메탈로센 화합물은 인데노인돌 유도체 및/또는 플루오렌 유도체를 브릿지 화합물로 연결하여 리간드 화합물로 제조한 다음, 금속 전구체 화합물을 투입하여 메탈레이션(metallation)을 수행함으로써 수득될 수 있다. 상기 제1 메탈로센 화합물의 제조방법은 후술하는 실시예에 구체화하여 설명한다.
상기 화학식 3으로 표시되는 화합물로는 예를 들어 하기 구조식들 중 하나로 표시되는 화합물일 수 있으나, 이에만 한정되는 것은 아니다.
Figure pat00036
Figure pat00037
Figure pat00038
Figure pat00039
Figure pat00040

상기 화학식 4에서, m이 1인 경우는 Cp3Rc 고리와 Cp4Rd 고리 또는 Cp4Rd 고리와 M2가 B1에 의해 가교 결합된 브릿지 화합물 구조인 것을 의미하며, m이 0인 경우는 비가교 화합물 구조를 의미한다.
상기 화학식 4로 표시되는 화합물로는 예를 들어 하기 구조식들 중 하나로 표시되는 화합물일 수 있으나, 이에만 한정되는 것은 아니다.
Figure pat00041
Figure pat00042
Figure pat00043
Figure pat00044

또한, 화학식 5로 표시되는 화합물로는 예를 들어 하기 구조식으로 표시되는 화합물일 수 있으나, 이에만 한정되는 것은 아니다.
Figure pat00045
Figure pat00046
Figure pat00047

본 발명에서 사용되는 메탈로센 촉매는 상기 화학식 1로 표시되는 제1 메탈로센 화합물의 1종 이상, 및 상기 화학식 3 내지 화학식 5로 표시되는 화합물 중 선택되는 제2 메탈로센 화합물의 1종 이상을 조촉매 화합물과 함께 담체에 담지한 것일 수 있다.
또한, 상기 담지 메탈로센 촉매는 제조되는 에틸렌/알파-올레핀 공중합체에서 LCB(Long Chain Branch)의 생성을 유도할 수 있다.
본 발명에 따른 담지 메탈로센 촉매에 있어서, 상기 메탈로센 화합물을 활성화하기 위하여 담체에 함께 담지되는 조촉매로는 13족 금속을 포함하는 유기 금속 화합물로서, 일반적인 메탈로센 촉매 하에 올레핀을 중합할 때 사용될 수 있는 것이라면 특별히 한정되는 것은 아니다.
구체적으로, 상기 조촉매 화합물은 하기 화학식 6의 알루미늄 함유 제1 조촉매, 및 하기 화학식 7의 보레이트계 제2 조촉매 중 하나 이상을 포함할 수 있다.
[화학식 6]
-[Al(R18)-O-]k-
화학식 6에서, R18은 각각 독립적으로 할로겐, 할로겐 치환 또는 비치환된 탄소수 1 내지 20의 하이드로카빌기이고, k는 2 이상의 정수이고,
[화학식 7]
T+[BG4]-
화학식 7에서, T+은 +1가의 다원자 이온이고, B는 +3 산화 상태의 붕소이고, G는 각각 독립적으로 하이드라이드, 디알킬아미도, 할라이드, 알콕사이드, 아릴옥사이드, 하이드로카빌, 할로카빌 및 할로-치환된 하이드로카빌로 이루어진 군에서 선택되고, 상기 G는 20개 이하의 탄소를 가지나, 단 하나 이하의 위치에서 G는 할라이드이다.
이러한 제1 및 제2 조촉매의 사용에 의해, 최종 제조된 폴리올레핀의 분자량 분포가 보다 균일하게 되면서, 중합 활성이 향상될 수 있다.
상기 화학식 6의 제1 조촉매는 선형, 원형 또는 망상형으로 반복단위가 결합된 알킬알루미녹산계 화합물로 될 수 있고, 이러한 제1 조촉매의 구체적인 예로는, 메틸알루미녹산(MAO), 에틸알루미녹산, 이소부틸알루미녹산 또는 부틸알루미녹산 등을 들 수 있다.
또한, 상기 화학식 7의 제2 조촉매는 삼치환된 암모늄염, 또는 디알킬 암모늄염, 삼치환된 포스포늄염 형태의 보레이트계 화합물로 될 수 있다. 이러한 제2 조촉매의 구체적인 예로는, 트리메탈암모늄 테트라페닐보레이트, 메틸디옥타데실암모늄 테트라페닐보레이트, 트리에틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리(n-부틸)암모늄 테트라페닐보레이트, 메틸테트라데사이클로옥타데실암모늄 테트라페닐보레이트, N,N-디메틸아닐늄 테트라페닐보레이트, N,N-디에틸아닐늄 테트라페닐보레이트, N,N-디메틸(2,4,6-트리메틸아닐늄)테트라페닐보레이트, 트리메틸암모늄 테트라키스(펜타플로오로페닐)보레이트, 메틸디테트라데실암모늄 테트라키스(펜타페닐)보레이트, 메틸디옥타데실암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리에틸암모늄, 테트라키스(펜타플루오로페닐)보레이트, 트리프로필암모늄테트라키스(펜타프루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(2급-부틸)암모늄테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디에틸아닐늄테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸(2,4,6-트리메틸아닐늄)테트라키스(펜타플루오로페닐)보레이트, 트리메틸암모늄테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리에틸암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리프로필암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(2,3,4,6-,테트라플루오로페닐)보레이트, 디메틸(t-부틸)암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, N,N-디메틸아닐늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, N,N-디에틸아닐늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트 또는 N,N-디메틸-(2,4,6-트리메틸아닐늄)테트라키스-(2,3,4,6-테트라플루오로페닐)보레이트 등의 삼치환된 암모늄염 형태의 보레이트계 화합물; 디옥타데실암모늄 테트라키스(펜타플루오로페닐)보레이트, 디테트라데실암모늄 테트라키스(펜타플루오로페닐)보레이트 또는 디사이클로헥실암모늄 테트라키스(펜타플루오로페닐)보레이트 등의 디알킬암모늄염 형태의 보레이트계 화합물; 또는 트리페닐포스포늄 테트라키스(펜타플루오로페닐)보레이트, 메틸디옥타데실포스포늄 테트라키스(펜타플루오로페닐)보레이트 또는 트리(2,6-디메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트 등의 삼치환된 포스포늄염 형태의 보레이트계 화합물 등을 들 수 있다.
본 발명에 따른 담지 메탈로센 촉매에 있어서, 화학식 1로 표시되는 제1 메탈로센 화합물, 또는 화학식 3 내지 5로 표시되는 제2 메탈로센 화합물에 포함되는 전체 전이금속 대 담체의 질량비는 1 : 10 내지 1 : 1,000 일 수 있다. 상기 질량비로 담체 및 메탈로센 화합물을 포함할 때, 최적의 형상을 나타낼 수 있다. 또한, 조촉매 화합물 대 담체의 질량비는 1 : 1 내지 1 : 100 일 수 있다.
본 발명에 따른 담지 메탈로센 촉매에 있어서, 상기 담체로는 표면에 하이드록시기를 함유하는 담체를 사용할 수 있으며, 바람직하게는 건조되어 표면에 수분이 제거된, 반응성이 큰 하이드록시기와 실록산기를 가지고 있는 담체를 사용할 수 있다.
예컨대, 고온에서 건조된 실리카, 실리카-알루미나, 및 실리카-마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na2O, K2CO3, BaSO4, 및 Mg(NO3)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다.
상기 담체의 건조 온도는 200 내지 800℃가 바람직하고, 300 내지 600℃가 더욱 바람직하며, 300 내지 400℃가 가장 바람직하다. 상기 담체의 건조 온도가 200℃ 미만인 경우 수분이 너무 많아서 표면의 수분과 조촉매가 반응하게 되고, 800℃를 초과하는 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 줄어들며, 또한 표면에 하이드록시기가 많이 없어지고 실록산기만 남게 되어 조촉매와의 반응자리가 감소하기 때문에 바람직하지 않다.
상기 담체 표면의 하이드록시기 양은 0.1 내지 10 mmol/g이 바람직하며, 0.5 내지 5 mmol/g일 때 더욱 바람직하다. 상기 담체 표면에 있는 하이드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건, 예컨대 온도, 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다.
상기 하이드록시기의 양이 0.1 mmol/g 미만이면 조촉매와의 반응자리가 적고, 10 mmol/g을 초과하면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것일 가능성이 있기 때문에 바람직하지 않다.
한편, 본 발명에 따른 에틸렌/알파-올레핀 공중합체는, 상술한 담지 메탈로센 촉매의 존재 하에서, 에틸렌 및 알파-올레핀을 중합시킴으로써 제조할 수 있다.
상기 중합 반응은 하나의 연속식 슬러리 중합 반응기, 루프 슬러리 반응기, 기상 반응기 또는 용액 반응기를 이용하여 에틸렌 및 알파-올레핀을 공중합하여 진행할 수 있다.
그리고, 상기 중합 온도는 약 25 내지 약 500℃, 바람직하게는 약 25 내지 약 200℃, 보다 바람직하게는 약 50 내지 약 150℃일 수 있다. 또한, 중합 압력은 약 1 내지 약 100 Kgf/㎠, 바람직하게는 약 1 내지 약 50 Kgf/㎠, 보다 바람직하게는 약 5 내지 약 30 Kgf/㎠일 수 있다.
상기 담지 메탈로센 촉매는 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 헥산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 톨루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입할 수 있다. 여기에 사용되는 용매는 소량의 알킬 알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다.
본 발명에 따른 에틸렌/알파-올레핀 공중합체는 저분자량의 고분자 쇄를 주로 중합하는 화학식 3 내지 5의 촉매와, 고분자량의 고분자 쇄를 주로 중합하는 화학식 1의 촉매를 함께 사용하여, 에틸렌 및 알파-올레핀 단량체를 공중합하여 제조된다. 이러한 2종 이상의 촉매의 상호 작용으로 인하여, 전체적으로 분자량 분포가 넓으면서도, 고분자량 영역에 있는 고분자 쇄들이 보다 높은 함량으로 포함된 중합체가 얻어질 수 있다.
그 결과, 상기 에틸렌/알파-올레핀 공중합체는, 예를 들어, 도 1에 도시된 바와 같은 분자량 분포 곡선을 나타낼 수 있으며, 높은 Mp 값을 가질 수 있다. 또한 도 2에 도시된 바와 같이, 높은 Normal Stress 값을 가져, 연료 탱크와 같은 중공 성형품의 제조에 바람직하게 적용될 수 있다.
본 발명에 따른 에틸렌/알파-올레핀 공중합체는, 높은 Mp 값과 우수한 다이 팽윤 특성을 가져, 연료 탱크와 같은 중공 성형품의 제조에 바람직하게 적용될 수 있다.
도 1은, 본 발명의 비교예 및 실시예에서 제조한 중합체의 GPC 커브를 나타낸 것이다.
도 2는, 본 발명의 비교예 및 실시예에서 제조한 중합체의 Normal Stress 측정 결과를 나타낸 것이다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
제조예 1
단계 1) 리간드 화합물의 제조
Fluorene 2 g을 5 mL MTBE, hexane 100 mL에 녹여 2.5 M n-BuLi hexane solution 5.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. (6-(tert-butoxy)hexyl)dichloro(methyl)silane 3.6 g을 헥산(hexane) 50 mL에 녹여 dry ice/acetone bath하에서 fluorene-Li 슬러리를 30분 동안 transfer하여 상온에서 밤새 교반하였다. 이와 동시에 5,8-dimethyl-5,10-dihydroindeno[1,2-b]indole (12 mmol, 2.8 g) 또한 THF 60 mL에 녹여 2.5M n-BuLi hexane solution 5.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. fluorene과 (6-(tert-butoxy)hexyl)dichloro(methyl)silane 과의 반응 용액을 NMR 샘플링하여 반응 완료를 확인한 후 5,8-dimethyl-5,10-dihydroindeno[1,2-b]indole-Li solution을 dry ice/acetone bath하에서 transfer하였다. 상온에서 밤새 교반하였다. 반응 후 ether/water로 추출(extraction)하여 유기층의 잔류수분을 MgSO4로 제거 후 리간드 화합물(Mw 597.90, 12 mmol)을 얻었으며 이성질체(isomer) 두 개가 생성되었음을 1H-NMR에서 확인할 수 있었다.
1H NMR (500 MHz, d6-benzene): -0.30 ~ -0.18 (3H, d), 0.40 (2H, m), 0.65 ~ 1.45 (8H, m), 1.12 (9H, d), 2.36 ~ 2.40 (3H, d), 3.17 (2H, m), 3.41 ~ 3.43 (3H, d), 4.17 ~ 4.21 (1H, d), 4.34 ~ 4.38 (1H, d), 6.90 ~ 7.80 (15H, m)
단계 2) 메탈로센 화합물의 제조
상기 단계 1에서 합성한 리간드 화합물 7.2 g (12 mmol)을 diethylether 50 mL에 녹여 2.5 M n-BuLi hexane solution 11.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 진공 건조하여 갈색(brown color)의 sticky oil을 얻었다. 톨루엔에 녹여 슬러리를 얻었다. ZrCl4(THF)2를 준비하고 톨루엔 50 mL를 넣어 슬러리로 준비하였다. ZrCl4(THF)2의 50 mL 톨루엔 슬러리를 dry ice/acetone bath에서 transfer하였다. 상온에서 밤새 교반함에 따라 보라색(violet color)으로 변화하였다. 반응 용액을 필터하여 LiCl을 제거하였다. 여과액(filtrate)의 톨루엔을 진공 건조하여 제거한 후 헥산을 넣고 1시간 동안 sonication하였다. 슬러리를 필터하여 여과된 고체(filtered solid)인 짙은 보라색(dark violet)의 메탈로센 화합물 6 g (Mw 758.02, 7.92 mmol, yield 66 mol%)을 얻었다. 1H-NMR상에서 두 개의 isomer가 관찰되었다.
1H NMR (500 MHz, CDCl3): 1.19 (9H, d), 1.71 (3H, d), 1.50 ~ 1.70(4H, m), 1.79(2H, m), 1.98 ~ 2.19(4H, m), 2.58(3H, s), 3.38 (2H, m), 3.91 (3H, d), 6.66 ~ 7.88 (15H, m)
제조예 2
6-클로로헥사놀(6-chlorohexanol)을 사용하여 문헌(Tetrahedron Lett. 2951 (1988))에 제시된 방법으로 t-Butyl-O-(CH2)6-Cl을 제조하고, 여기에 NaCp를 반응시켜 t-Butyl-O-(CH2)6-C5H5를 얻었다(수율 60%, b.p. 80℃ / 0.1 mmHg).
또한, -78℃에서 t-Butyl-O-(CH2)6-C5H5를 THF에 녹이고, 노르말 부틸리튬(n-BuLi)을 천천히 가한 후, 실온으로 승온시킨 후, 8시간 반응시켰다. 그 용액을 다시 -78℃에서 ZrCl4(THF)2(1.70g, 4.50mmol)/THF(30 ㎖)의 서스펜젼(suspension) 용액에 기 합성된 리튬염(lithium salt) 용액을 천천히 가하고 실온에서 6시간 동안 더 반응시켰다.
모든 휘발성 물질을 진공 건조하고, 얻어진 오일성 액체 물질에 헥산(hexane) 용매를 가하여 걸러내었다. 걸러낸 용액을 진공 건조한 후, 헥산을 가해 저온(-20℃)에서 침전물을 유도하였다. 얻어진 침전물을 저온에서 걸러내어 흰색 고체 형태의 [tBu-O-(CH2)6-C5H4]2ZrCl2 화합물을 얻었다(수율 92%).
1H NMR (300 MHz, CDCl3): 6.28 (t, J = 2.6 Hz, 2 H), 6.19 (t, J = 2.6 Hz, 2 H), 3.31 (t, 6.6 Hz, 2 H), 2.62 (t, J = 8 Hz), 1.7 - 1.3 (m, 8 H), 1.17 (s, 9 H).
13C NMR (CDCl3): 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30.61, 30.14, 29.18, 27.58, 26.00.
실시예 : 담지 촉매의 제조
단계 1) 담지체 건조
실리카(Grace Davison사 제조 SYLOPOL 948)를 400℃의 온도에서 15시간 동안 진공을 가한 상태에서 탈수하였다.
단계 2) 담지 촉매 제조
상기 단계 1의 건조된 실리카 10 g를 유리 반응기에 넣고, 톨루엔 100 mL을 추가로 넣고 교반을 한다. 10 wt% 메틸알루미녹산(MAO)/톨루엔 용액을 50 mL를 가하여 40℃에서 교반하며 천천히 반응시켰다. 이 후 충분한 양의 톨루엔으로 세척하여 반응하지 않은 알루미늄 화합물을 제거하고, 감압하여 남아 있는 톨루엔을 제거하였다. 다시 톨루엔 100 mL를 투입한 후, 상기 제조예 1에서 제조된 메탈로센 촉매 0.25 mmol을 톨루엔에 녹여 같이 투입하여 1시간 동안 반응을 시켰다. 반응이 끝난 후, 상기 제조예 2에서 제조된 메탈로센 촉매 0.25 mmol을 톨루엔에 녹여 투입한 후, 1시간 동안 반응을 추가로 시켰다. 반응이 끝난 후, 교반을 멈추고 톨루엔층을 분리제거 후, 아닐리늄 보레이트(N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate, AB) 1.0 mmol을 투입하고 1시간 동안 교반을 시킨 후, 50℃에서 감압하여 톨루엔을 제거하여, 담지 촉매를 제조하였다.
비교예
실시예의 단계 1의 건조된 실리카 10 g를 유리 반응기에 넣고, 톨루엔 100 mL을 추가로 넣고 교반하였다. 10 wt% 메틸알루미녹산(MAO)/톨루엔 용액을 50 mL를 가하여 40℃에서 교반하며 천천히 반응시켰다. 이후 충분한 양의 톨루엔으로 세척하여 반응하지 않은 알루미늄 화합물을 제거하고, 감압하여 남아 있는 톨루엔을 제거하였다. 다시 톨루엔 100 mL를 투입한 후, 상기 제조예 2에서 제조된 메탈로센 촉매 0.25 mmol을 톨루엔에 녹여 같이 투입하여 1시간 동안 반응을 시켰다. 반응이 끝난 후, 50℃에서 감압하여 톨루엔을 제거하여, 담지 촉매를 제조하였다.
실험예
단계 1) 에틸렌/1-부텐 공중합
상기 실시예 및 비교예에서 제조한 각각의 담지 촉매 50 mg을 드라이 박스에서 정량하여 50 mL의 유리병에 각각 담은 후 고무 격막으로 밀봉하여 드라이 박스에서 꺼내어 주입할 촉매를 준비하였다. 중합은 기계식 교반기가 장착된 온도 조절이 가능하고 고압에서 이용되는 2L 금속 합금 반응기에서 수행하였다.
상기 반응기에 1.0 mmol 트리에틸알루미늄(triethylaluminum)이 들어 있는 헥산 1 L와 1-부텐(5 mL)을 주입하고, 상기 준비한 각각의 담지 촉매를 반응기에 공기 접촉 없이 투입한 후, 80℃에서 기체 에틸렌 단량체를 9 Kgf/㎠의 압력으로 계속적으로 가하면서 1시간 동안 중합하였다. 중합의 종결은 먼저 교반을 멈춘 후 에틸렌을 배기시켜 제거함으로써 완료시켰다. 상기 얻어진 중합체에서 중합 용매를 여과시켜 대부분 제거한 후 80℃ 진공 오븐에서 4시간 동안 건조시켰다.
단계 2) 중합체의 물성 평가
상기 실시예 및 비교예에서 제조된 중합체를 하기의 방법으로 물성을 평가하였다.
1) 밀도: ASTM 1505
2) 용융지수(MFR, 5 kg/21.6 kg): 측정 온도 190℃, ASTM 1238
3) MFRR(MFR21 .6/MFR5): MFR21 .6 용융지수(MI, 21.6kg 하중)를 MFR5(MI, 5kg 하중)으로 나눈 비율이다.
4) Mn, Mw, MWD, GPC 커브: 샘플을 PL-SP260을 이용하여 BHT 0.0125% 포함된 1,2,4-Trichlorobenzene에서 160℃, 10시간 동안 녹여 전처리하고, PL-GPC220을 이용하여 측정 온도 160℃에서 수 평균분자량, 중량 평균분자량을 측정하였다. 분자량 분포는 중량 평균분자량과 수 평균분자량의 비로 나타내었다.
5) N1(normal stress): ARES(advanced rheometric expansion system, TA instrument) 장비를 사용하여, 중합체를 190℃에서 5분 동안 용융 시킨 후, shear rate 0.01/s ~ 1/s 영역의 rotational test를 진행하였으며, shear rate 1/s에서의 N112 값을 N1으로 하였다.
상기 결과를 하기 표 1에 나타내었다. 또한, 각 공중합체의 GPC 커브를 도 1에 나타내었고, N1(normal stress) 측정 결과를 도 2에 나타내었다.
단위 비교예 실시예
밀도 g/㎤ 0.946 0.946
HLMI g/10 min 7 6
Mp - 46,000 114,000
Mw - 250,000 260,000
MWD - 15.5 15.0
Die Swell % 130 190
N1 - 1.4 1.7
상기 표 1 및 도 1에 나타난 바와 같이, 비교예에 비하여 실시예의 Mp가 보다 고분자량 쪽으로 이동한 것을 확인할 수 있다. 또한, 도 2에 나타난 바와 같이, 비교예에 비하여 실시예의 N112(N1)의 값이 shear rate가 증가함에 따라 보다 높음을 확인할 수 있었다.

Claims (7)

  1. 중량 평균 분자량(g/mol)이 200,000 내지 300,000이고,
    Mp(molecular weight of maximum peak)가 50,000 내지 150,000이고,
    하기 관계식 1의 N1(normal stress) 값이 1.5 이상인,
    에틸렌/알파-올레핀 공중합체:
    [관계식 1]
    N1(normal stress) = N1(first normal stress difference) / SS(shear stress)
    상기 식에서,
    N1(First Normal Stress Difference) 및 SS(전단 응력; Shear Stress)는 각각 Shear rate가 1/s이고 190℃에서 측정한다.
  2. 제1항에 있어서,
    상기 N1 값이 1.5 내지 5인 것을 특징으로 하는,
    에틸렌/알파-올레핀 공중합체.
  3. 제1항에 있어서,
    상기 에틸렌/알파-올레핀 공중합체의 밀도(g/㎤)가 0.930 내지 0.970인 것을 특징으로 하는,
    에틸렌/알파-올레핀 공중합체.
  4. 제1항에 있어서,
    상기 HLMI(ASTM D1238에 의거하여 190℃, 2.16kg 하중에서 측정된 용융 유동 지수)는 1 내지 10 g/10 min인 것을 특징으로 하는,
    에틸렌/알파-올레핀 공중합체.
  5. 제1항에 있어서,
    상기 에틸렌/알파-올레핀 공중합체의 분자량 분포(Mw/Mn)가 1 내지 20인 것을 특징으로 하는,
    에틸렌/알파-올레핀 공중합체.
  6. 제1항에 있어서,
    상기 알파-올레핀은, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센 및 1-아이토센으로 구성되는 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는,
    에틸렌/알파-올레핀 공중합체.
  7. 제1항에 있어서, 상기 에틸렌/알파-올레핀 공중합체는 하기 화학식 1로 표시되는 제1 메탈로센 화합물 1종 이상; 및 하기 화학식 3 내지 5로 표시되는 화합물 중에서 선택되는 제2 메탈로센 화합물 1종 이상의 존재 하에, 에틸렌 및 알파-올레핀을 중합시킴으로써 제조되는, 에틸렌/알파-올레핀 공중합체:
    [화학식 1]
    Figure pat00048

    상기 화학식 1에서,
    A는 수소, 할로겐, C1 -20 알킬, C2 -20 알케닐, C6 -20 아릴, C7 -20 알킬아릴, C7 -20 아릴알킬, C1 -20 알콕시, C2 -20 알콕시알킬, C3 -20 헤테로시클로알킬, 또는 C5 -20 헤테로아릴이고;
    D는 -O-, -S-, -N(R)- 또는 -Si(R)(R')-이고, 여기서 R 및 R'은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 -20 알킬, C2 -20 알케닐, 또는 C6 -20 아릴이고;
    L은 C1 -10 직쇄 또는 분지쇄 알킬렌이고;
    B는 탄소, 실리콘 또는 게르마늄이고;
    Q는 수소, 할로겐, C1 -20 알킬, C2 -20 알케닐, C6 -20 아릴, C7 -20 알킬아릴, 또는 C7-20 아릴알킬이고;
    M은 4족 전이금속이며;
    X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 -20 알킬, C2-20 알케닐, C6 -20 아릴, 니트로, 아미도, C1 -20 알킬실릴, C1 -20 알콕시, 또는 C1 -20 술폰네이트이고;
    C1 및 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 2a, 화학식 2b 또는 하기 화학식 2c 중 하나로 표시되고, 단, C1 및 C2가 모두 화학식 2c인 경우는 제외하며;
    [화학식2a]
    Figure pat00049

    [화학식 2b]
    Figure pat00050

    [화학식 2c]
    Figure pat00051

    상기 화학식 2a, 2b 및 2c에서, R1 내지 R17 및 R1' 내지 R9'는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 -20 알킬, C2 -20 알케닐, C1 -20 알킬실릴, C1 -20 실릴알킬, C1 -20 알콕시실릴, C1 -20 알콕시, C6 -20 아릴, C7 -20 알킬아릴, 또는 C7-20 아릴알킬이며, 상기 R10 내지 R17 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고;
    [화학식 3]
    (Cp1Ra)n(Cp2Rb)M1Z1 3 -n
    상기 화학식 3에서,
    M1은 4족 전이금속이고;
    Cp1 및 Cp2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디엔닐, 인데닐, 4,5,6,7-테트라하이드로-1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
    Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 -20 알킬, C1 -10 알콕시, C2 -20 알콕시알킬, C6 -20 아릴, C6 -10 아릴옥시, C2 -20 알케닐, C7 -40 알킬아릴, C7-40 아릴알킬, C8 -40 아릴알케닐, 또는 C2 -10 알키닐이고;
    Z1은 할로겐 원자, C1 -20 알킬, C2 -10 알케닐, C7 -40 알킬아릴, C7 -40 아릴알킬, C6-20 아릴, 치환되거나 치환되지 않은 C1 -20 알킬리덴, 치환되거나 치환되지 않은 아미노, C2 -20 알킬알콕시, 또는 C7 -40 아릴알콕시이고;
    n은 1 또는 0이고;
    [화학식 4]
    (Cp3Rc)mB1(Cp4Rd)M2Z2 3 -m
    상기 화학식 4에서,
    M2는 4족 전이 금속이고;
    Cp3 및 Cp4는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로-1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
    Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 -20 알킬, C1 -10 알콕시, C2 -20 알콕시알킬, C6 -20 아릴, C6 -10 아릴옥시, C2 -20 알케닐, C7 -40 알킬아릴, C7-40 아릴알킬, C8 -40 아릴알케닐, 또는 C2 -10 알키닐이고;
    Z2는 할로겐 원자, C1 -20 알킬, C2 -10 알케닐, C7 -40 알킬아릴, C7 -40 아릴알킬, C6-20 아릴, 치환되거나 치환되지 않은 C1 -20 알킬리덴, 치환되거나 치환되지 않은 아미노, C2 -20 알킬알콕시, 또는 C7 -40 아릴알콕시이고;
    B1은 Cp3Rc 고리와 Cp4Rd 고리를 가교 결합시키거나, 하나의 Cp4Rd 고리를 M2에 가교 결합시키는, 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼 중 하나 이상 또는 이들의 조합이고;
    m은 1 또는 0이고;
    [화학식 5]
    (Cp5Re)B2(J)M3Z3 2
    상기 화학식 5에서,
    M3은 4족 전이 금속이고;
    Cp5는 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로-1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며;
    Re는 수소, C1 -20 알킬, C1 -10 알콕시, C2 -20 알콕시알킬, C6 -20 아릴, C6 -10 아릴옥시, C2 -20 알케닐, C7 -40 알킬아릴, C7 -40 아릴알킬, C8 -40 아릴알케닐, 또는 C2 -10 알키닐이고;
    Z3은 할로겐 원자, C1 -20 알킬, C2 -10 알케닐, C7 -40 알킬아릴, C7 -40 아릴알킬, C6-20 아릴, 치환되거나 치환되지 않은 C1 -20 알킬리덴, 치환되거나 치환되지 않은 아미노, C2 -20 알킬알콕시, 또는 C7 -40 아릴알콕시이고;
    B2는 Cp5Re 고리와 J를 가교 결합시키는 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼중 하나 이상 또는 이들의 조합이고;
    J는 NRf, O, PRf 및 S로 이루어진 군에서 선택된 어느 하나이고, 상기 Rf는 C1-20 알킬, 아릴, 치환된 알킬 또는 치환된 아릴이다.
KR1020150050440A 2015-04-09 2015-04-09 중공 성형용 고밀도 폴리에틸렌 공중합체 KR20160121045A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020150050440A KR20160121045A (ko) 2015-04-09 2015-04-09 중공 성형용 고밀도 폴리에틸렌 공중합체
PCT/KR2016/003718 WO2016163810A1 (ko) 2015-04-09 2016-04-08 중공 성형용 고밀도 폴리에틸렌 공중합체

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150050440A KR20160121045A (ko) 2015-04-09 2015-04-09 중공 성형용 고밀도 폴리에틸렌 공중합체

Publications (1)

Publication Number Publication Date
KR20160121045A true KR20160121045A (ko) 2016-10-19

Family

ID=57071949

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150050440A KR20160121045A (ko) 2015-04-09 2015-04-09 중공 성형용 고밀도 폴리에틸렌 공중합체

Country Status (2)

Country Link
KR (1) KR20160121045A (ko)
WO (1) WO2016163810A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131793A1 (ko) * 2017-01-12 2018-07-19 주식회사 엘지화학 올레핀 중합체 및 이의 제조 방법
WO2022071744A1 (ko) * 2020-09-29 2022-04-07 주식회사 엘지화학 시공성 및 가공성이 우수한 에틸렌/1-헥센 공중합체

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3656529B1 (en) * 2017-08-22 2023-08-09 LG Chem, Ltd. Method for evaluating injection physical property of a polyethylene resin
CN111881613B (zh) * 2020-08-05 2021-04-06 武汉市政工程设计研究院有限责任公司 一种正应力和剪应力不同权重三维应力场反演方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010022941A1 (en) * 2008-08-29 2010-03-04 Basell Polyolefine Gmbh Polyethylene for injection moldings
US8288487B2 (en) * 2010-07-06 2012-10-16 Chevron Phillips Chemical Company Lp Catalysts for producing broad molecular weight distribution polyolefins in the absence of added hydrogen
US9422385B2 (en) * 2013-01-30 2016-08-23 Exxonmobil Chemical Patents Inc. Polyethylene copolymers with vinyl terminated macromonomers as comonomers
KR101650092B1 (ko) * 2013-08-01 2016-08-22 주식회사 엘지화학 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀계 중합체의 제조방법
KR101709688B1 (ko) * 2013-09-30 2017-02-23 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131793A1 (ko) * 2017-01-12 2018-07-19 주식회사 엘지화학 올레핀 중합체 및 이의 제조 방법
WO2022071744A1 (ko) * 2020-09-29 2022-04-07 주식회사 엘지화학 시공성 및 가공성이 우수한 에틸렌/1-헥센 공중합체
CN114599692A (zh) * 2020-09-29 2022-06-07 株式会社Lg化学 具有改善的柔韧性和可加工性的乙烯/1-己烯共聚物
CN114599692B (zh) * 2020-09-29 2024-02-02 株式会社Lg化学 具有改善的柔韧性和可加工性的乙烯/1-己烯共聚物

Also Published As

Publication number Publication date
WO2016163810A1 (ko) 2016-10-13

Similar Documents

Publication Publication Date Title
KR101617870B1 (ko) 가공성이 우수한 올레핀계 중합체
KR101726820B1 (ko) 가공성 및 환경 응력 균열 저항성이 우수한 에틸렌/1-헥센 또는 에틸렌/1-부텐 공중합체
KR101891638B1 (ko) 가공성이 우수한 에틸렌/알파-올레핀 공중합체 공중합체
KR101592436B1 (ko) 내환경 응력 균열성이 우수한 폴리올레핀
KR101691628B1 (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR101709688B1 (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
CN108401432B (zh) 用于合成烯烃共聚物的催化剂组合物和制备烯烃共聚物的方法
KR101747401B1 (ko) 가공성이 우수한 에틸렌/알파-올레핀 공중합체
KR102260362B1 (ko) 올레핀 공중합체
KR101831418B1 (ko) 가공성 및 표면 특성이 우수한 에틸렌/알파-올레핀 공중합체
KR101593666B1 (ko) 가공성이 우수한 올레핀계 중합체
KR102064990B1 (ko) 에틸렌 슬러리 중합용 혼성 담지 촉매 시스템 및 이를 이용한 에틸렌 중합체의 제조 방법
KR20160121940A (ko) 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
KR102234944B1 (ko) 올레핀 공중합체
KR20160123172A (ko) 가공성이 우수한 에틸렌/알파-올레핀 공중합체
KR102073253B1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
KR20160121045A (ko) 중공 성형용 고밀도 폴리에틸렌 공중합체
KR20180099269A (ko) 올레핀 공중합체 합성용 촉매 조성물 및 올레핀 공중합체의 제조 방법
KR20180083247A (ko) 올레핀 중합체 및 이의 제조 방법
KR20180068715A (ko) 가공성 및 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
KR20180046291A (ko) 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
KR101725352B1 (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR102215024B1 (ko) 폴리올레핀의 제조 방법

Legal Events

Date Code Title Description
WITB Written withdrawal of application