WO2016167255A1 - デキストリン脂肪酸エステル及び化粧料 - Google Patents

デキストリン脂肪酸エステル及び化粧料 Download PDF

Info

Publication number
WO2016167255A1
WO2016167255A1 PCT/JP2016/061826 JP2016061826W WO2016167255A1 WO 2016167255 A1 WO2016167255 A1 WO 2016167255A1 JP 2016061826 W JP2016061826 W JP 2016061826W WO 2016167255 A1 WO2016167255 A1 WO 2016167255A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
dextrin
acid ester
saturated fatty
oil
Prior art date
Application number
PCT/JP2016/061826
Other languages
English (en)
French (fr)
Inventor
鈴木 挙直
大亮 加藤
Original Assignee
千葉製粉株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千葉製粉株式会社 filed Critical 千葉製粉株式会社
Priority to EP16780046.5A priority Critical patent/EP3296308B1/en
Priority to US15/566,080 priority patent/US20180085299A1/en
Priority to KR1020177028844A priority patent/KR102670062B1/ko
Priority to CN201680021366.4A priority patent/CN107428790B/zh
Publication of WO2016167255A1 publication Critical patent/WO2016167255A1/ja
Priority to US16/781,383 priority patent/US11986546B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • C07H13/04Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
    • C07H13/06Fatty acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/31Hydrocarbons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/732Starch; Amylose; Amylopectin; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/04Preparations containing skin colorants, e.g. pigments for lips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/08Preparations containing skin colorants, e.g. pigments for cheeks, e.g. rouge
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/10Preparations containing skin colorants, e.g. pigments for eyes, e.g. eyeliner, mascara
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/12Degraded, destructured or non-chemically modified starch, e.g. mechanically, enzymatically or by irradiation; Bleaching of starch
    • C08B30/18Dextrin, e.g. yellow canari, white dextrin, amylodextrin or maltodextrin; Methods of depolymerisation, e.g. by irradiation or mechanically

Definitions

  • the present invention relates to a dextrin fatty acid ester and a cosmetic containing a dextrin fatty acid ester.
  • dextrin fatty acid esters are used as gelling agents for gelling oil agents.
  • Oils gelled with dextrin fatty acid esters are used as cosmetic materials because they are excellent in transparency, gloss, and feel.
  • thixotropy is one of the important performances.
  • the thixotropy is a performance in which the viscosity of a substance is reduced when a certain force is applied and the viscosity is restored when the force is not applied.
  • Cosmetics with high thixotropic properties exhibit effects such as good elongation because the viscosity decreases when the cosmetic is applied.
  • the viscosity of the cosmetic is restored, so that it does not easily flow down, and the state when the application of the cosmetic is completed is easily maintained.
  • Patent Document 1 describes a dextrin fatty acid ester that imparts high thixotropy to cosmetics and the use of this dextrin fatty acid ester in cosmetics.
  • the types of cosmetics containing dextrin fatty acid esters are increasing, and accordingly, the physical properties required for dextrin fatty acid esters are also new. That is, even when high thixotropic properties are imparted to the cosmetic by the dextrin fatty acid ester, in a scene where cosmetics such as body oil and hair treatment gel are used, the cosmetic is applied after the cosmetic is applied. If the time required for the viscosity to recover is prolonged, the cosmetics taken in the hand or the cosmetics placed on the skin will be washed away, which is not practical. In addition, in a cosmetic for forming a cosmetic film on the skin such as a lip color or lip gloss (hereinafter referred to as makeup cosmetic), the finished state is difficult to be maintained. Therefore, a new physical property that shortens the time required for the viscosity of the cosmetic to recover is desired for the dextrin fatty acid ester that is a constituent of such a cosmetic.
  • An object of the present invention is to provide a dextrin fatty acid ester having a restoring force and giving a cosmetic with low release properties, and a cosmetic using the dextrin fatty acid ester.
  • the dextrin fatty acid ester has an average sugar polymerization degree of dextrin of 3 to 100, and the fatty acid is one or more linear saturated fatty acids having 14 to 18 carbon atoms and 14 to 18 carbon atoms. 1 or more of the branched saturated fatty acids, the molar fraction of the linear saturated fatty acids in the fatty acid is 0.75 or more and 0.95 or less, and the average substitution degree of the fatty acid per glucose unit is 1.5. It is 2.0 or less.
  • the cosmetic is an oil agent and a dextrin fatty acid ester, wherein the dextrin has an average sugar polymerization degree of 3 or more and 100 or less, and the fatty acid is a linear saturated fatty acid having 14 to 18 carbon atoms. 1 or more types and one or more types of branched saturated fatty acids having 14 to 18 carbon atoms, the molar fraction of the linear saturated fatty acid in the fatty acid is 0.75 or more and 0.95 or less, and the glucose unit per glucose unit Dextrin fatty acid ester having an average substitution degree of fatty acid of 1.5 or more and 2.0 or less.
  • the restoring force can be improved while the gelled oil agent is in a smooth state. Furthermore, by making the average substitution degree of the fatty acid per glucose unit 1.5 or more and 2.0 or less, it is possible to reduce the syneresis property.
  • the dextrin fatty acid ester may have an average sugar polymerization degree of 3 to 50. In this case, a soft gel can be obtained and the solubility of the dextrin fatty acid ester in the oil agent can be increased.
  • the dextrin fatty acid ester has a molar fraction of the linear saturated fatty acid in the fatty acid of 0.8 or more and 0.9 or less, and an average substitution degree of the fatty acid per glucose unit of 1.65 or more. It may be 1.80 or less.
  • the linear saturated fatty acid may be palmitic acid
  • the branched saturated fatty acid may be isopalmitic acid
  • the said cosmetics may contain volatile hydrocarbon oil in the oil agent.
  • the dextrin fatty acid ester having the property of imparting an excellent restoring force to the cosmetic can impart the restoring force to the volatile hydrocarbon oil even if the content of the volatile hydrocarbon oil having a low viscosity is small. it can. Therefore, the effect can be exhibited especially, for example, the degree of freedom for prescription of cosmetics is increased.
  • Examples 10 is a table showing production conditions for Examples 1 to 6 and Comparative Examples 1 to 9 of dextrin fatty acid esters.
  • surface which shows the molar fraction of the linear saturated fatty acid of the dextrin fatty acid ester of Examples 1-6 and Comparative Examples 1-9 and a branched saturated fatty acid, the average substitution degree per glucose unit, and a yield.
  • surface which shows the density
  • surface which shows the evaluation about the cleansing gel using the dextrin fatty acid ester of an Example and a comparative example The table
  • surface which shows the evaluation about the beauty oil using the dextrin fatty acid ester of an Example and a comparative example The table
  • dextrin fatty acid ester is an esterified product of dextrin and fatty acid, and has a structure represented by the following chemical formula 1.
  • n represents the degree of polymerization of dextrin
  • A represents the fatty acid skeleton or hydrogen
  • dextrin of dextrin fatty acid ester a decomposition product of starch can be used.
  • starch those made from wheat, potato, corn, rice, cassava, mung beans and the like can be used.
  • decomposition method a conventional method can be used. For example, one or more of acid treatment, alkali treatment, and enzyme treatment can be used.
  • the dextrin fatty acid ester includes at least the dextrin fatty acid ester shown below.
  • the average sugar polymerization degree of dextrin is 3 or more and 100 or less, particularly preferably 10 or more and 50 or less. If the average sugar polymerization degree is 3 or more, the dextrin fatty acid ester becomes wax-like, thereby preventing the soft gel from being obtained. Moreover, if the average sugar polymerization degree is 100 or less, problems such as excessively low solubility of dextrin fatty acid ester in the oil due to high dissolution temperature of dextrin fatty acid ester in the oil can be suppressed. .
  • the fatty acid of the dextrin fatty acid ester is composed of one or more linear saturated fatty acids having 14 to 18 carbon atoms and one or more branched saturated fatty acids having 14 to 18 carbon atoms.
  • specific examples of the linear saturated fatty acid having 14 to 18 carbon atoms include myristic acid (carbon number 14), pentadecanoic acid (carbon number 15), palmitic acid (carbon number 16), heptadecanoic acid (carbon number 17), Examples include stearic acid (carbon number 18). Of these linear saturated fatty acids, palmitic acid is preferred. If carbon number of a linear saturated fatty acid is 14 or more, the force which gelatinizes an oil agent will become strong.
  • the gelled oil agent is suppressed from becoming clouded, and the transparency of the oil agent is ensured.
  • C16 is excellent in both the force which gelatinizes an oil agent, and transparency.
  • branched saturated fatty acids having 14 to 18 carbon atoms are isomyristic acid (14 carbon atoms), isopentadecanoic acid (15 carbon atoms), isopalmitic acid (16 carbon atoms), isoheptadecanoic acid (17 carbon atoms). ) And isostearic acid (carbon number 18). Of these branched saturated fatty acids, isopalmitic acid is preferred. If the number of carbon atoms of the branched saturated fatty acid is 14 or more, sufficient viscosity can be imparted to an oil agent having a low viscosity.
  • the number of carbon atoms of the branched saturated fatty acid is 18 or less, the bulk of the branched saturated fatty acid with respect to the dextrin is suppressed, and it is possible to suppress the difficulty of binding the branched saturated fatty acid to the dextrin during the esterification reaction. Moreover, even if the branched saturated fatty acid is bonded to the dextrin, the bulk of the branched saturated fatty acid is suppressed, so that the reaction efficiency may be lowered due to the difficulty of bonding the linear saturated fatty acid to the dextrin. It can be suppressed. In particular, branched saturated fatty acids having 14 to 16 carbon atoms have high reaction efficiency because their bulkiness is suppressed.
  • Isomyristic acid is composed of one or more isomyristic acids. Examples include 11-methyltridecanoic acid, 12-methyltridecanoic acid and the like, but are not limited thereto.
  • Isopalmitic acid consists of one or more isopalmitic acids. Examples include 14-methylpentadecanoic acid and 2-hexyldecanoic acid, but are not limited thereto.
  • Isostearic acid is composed of one or more isostearic acids.
  • 5,7,7-trimethyl-2- (1,3,3-trimethylbutyl) -octanoic acid is an aldol-type isostearic acid and can be produced as follows. First, a branched aldehyde having 9 carbon atoms is obtained by an oxo reaction of an isobutylene dimer. A branched unsaturated aldehyde having 18 carbon atoms is obtained by the aldol condensation between the branched aldehydes. The resulting branched unsaturated aldehyde can be produced by hydrogenation and oxidation.
  • 2-heptylundecanoic acid can be produced by subjecting nonyl alcohol to a Guerbet reaction and oxidation.
  • Methyl-branched isostearic acid in which the branched chain is a methyl group is obtained, for example, as a by-product during the production of dimer of oleic acid (for example, J. Amer. Oil Chem. Soc., 51, 522 (1974)).
  • Etc. (hereinafter abbreviated as emery type).
  • the starting material of dimer acid which is a starting material of emery type isostearic acid may include not only oleic acid but also linoleic acid, linolenic acid and the like.
  • the molar fraction of the linear fatty acid skeleton in the fatty acid skeleton constituting the dextrin fatty acid ester is 0.75 or more and 0.95 or less, and particularly preferably 0.80 or more and 0.90 or less. That is, the molar ratio between the linear saturated fatty acid and the branched saturated fatty acid in the dextrin fatty acid ester is in the range of 75:25 to 95: 5, and particularly preferably 80:20 to 90:10.
  • the gelled oil agent is suppressed from becoming clouded, and the transparency of the oil agent is ensured. In addition, it is possible to suppress the formation of a crunchy and non-smooth gel due to the small ratio of the branched saturated fatty acid. Since the molar fraction with respect to the linear saturated fatty acid with respect to the whole fatty acid is 0.75 or more, it is suppressed that the force which gelatinizes an oil agent too much originates in the ratio of a branched saturated fatty acid being excessively high.
  • the dextrin fatty acid ester by blending the dextrin fatty acid ester with the oil agent at a high concentration in order to gel the oil agent, it is possible to suppress a decrease in the viscosity when the force is applied and to lose the restoring force.
  • the restoring force is such that when the force applied to the oil containing the dextrin fatty acid ester is released, the viscosity is set to 50% or more of the viscosity immediately before the release in a short time of 20 seconds or less. The power that can be greatly increased.
  • the average substitution degree of fatty acid per glucose unit of dextrin fatty acid ester is 1.5 or more and 2.0 or less, and particularly preferably 1.65 or more and 1.80 or less. If average substitution degree is 1.5 or more, it can suppress that the force which gelatinizes an oil agent falls. Also, due to the low solubility of dextrin fatty acid esters in oils, separation of the oil is likely to occur, which is the property that the oil floats on the surface of the cosmetic film or separates during storage. Is also suppressed. If the average substitution degree is 2.0 or less, it is possible to suppress an excessive increase in fatty acid binding to dextrin, and thus the heat resistance of the gel can be maintained, for example, at about 50 ° C. That is, a stable gel cannot be produced if the average degree of substitution of fatty acids is too large or too small.
  • dextrin fatty acid ester As dextrin fatty acid ester, the following are mentioned, for example.
  • dextrin fatty acid ester As a method for producing dextrin fatty acid ester, a conventional production method can be used. For example, it can be produced by adding a fatty acid chloride to dextrin in the presence of a basic catalyst such as pyridine, triethylamine or 3-methylpyridine.
  • a basic catalyst such as pyridine, triethylamine or 3-methylpyridine.
  • the oil agent combined with the dextrin fatty acid ester is an oil agent that can be used as a cosmetic material, and is particularly limited if it can be combined with the dextrin fatty acid ester to obtain an effect such as excellent restoring force and low release property.
  • one type of oil may be used, or a plurality of types of oil may be mixed and used.
  • these oil agents include those having high viscosity (for example, polybutene, castor oil, etc.) alone or solid (for example, higher fatty acid, waxes, etc.). It can also be used in combination.
  • hydrocarbon oils include liquid paraffin, squalane, isoparaffin, isododecane, isohexadecane, heavy liquid isoparaffin, polybutene, petrolatum and the like.
  • Ester oils include glyceryl tri-2-ethylhexanoate, glyceryl tri (caprylic acid / capric acid), mono, di, tri, diglyceryl tetraisostearate, polyglyceryl isostearate, neopentyl glycol dioctanoate, neopentyl dicaprate Glycol, cetyl 2-ethylhexanoate, isopropyl myristate, isopropyl palmitate, butyl stearate, 2-ethylhexyl palmitate, isononyl isononanoate, isotridecyl isononanoate, stearyl stearate, isostearyl myristate, o
  • higher fatty acids examples include myristic acid, palmitic acid, stearic acid, oleic acid, behenic acid, isostearic acid, erucic acid, linoleic acid, and linolenic acid.
  • higher alcohol examples include lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, behenyl alcohol, 2-hexyldecanol, 2-octyldecanol, oleyl alcohol, and isostearyl alcohol.
  • Animal and vegetable oils include olive oil, coconut oil, soybean oil, cottonseed oil, sesame oil, safflower oil, wheat germ oil, rice quinine oil, rice oil, jojoba oil, castor oil, linseed oil, corn oil, rapeseed oil, coconut oil, palm oil, Examples include squalene, liquid lanolin, mink oil, egg yolk oil, wool oil and the like.
  • waxes include paraffin wax, microcrystalline wax, ceresin wax, beeswax, carnauba wax, candelilla wax, hydrogenated castor oil, and rosin.
  • silicone oil include dimethylpolysiloxane, cyclic silicone, methylphenylpolysiloxane, and modified silicone.
  • the volatile hydrocarbon oil combined with the dextrin fatty acid ester means a hydrocarbon oil having a kinematic viscosity (37.8 ° C.) in the range of 0.5 mm 2 / s to 15 mm 2 / s.
  • the volatile hydrocarbon oil any of linear or branched ones can be used. Examples of such a volatile hydrocarbon oil include isoparaffin hydrocarbon oils such as isodecane, isododecane, isohexadecane, and isoparaffin.
  • Examples of these products are Permethyl 99A, Permethyl 101A, Permethyl 102A (made by Press Perth), Isopar A, Isopar C, Isopar D, Isopar E, Isopar G, Isopar H, Isopar K, Isopar L, Isopar M ( Exxon), Shellsol 71 (Shell), Saltroll 100, Saltroll 130, Saltroll 220 (Philip Co.), Isosol 400 (Nippon Petrochemical Co., Ltd.), Pearl Ream 4 (NOF ( Co., Ltd.), IP solvent 1016, IP solvent 1620, IP solvent 2028 (manufactured by Idemitsu Petrochemical Co., Ltd.), isohexadecane, tetraisobutane 90 (manufactured by Bayer) and the like.
  • cosmetic containing this dextrin fatty acid ester general components that can be blended in the cosmetic can be added as needed within the range that does not impair the effect of adding the dextrin fatty acid ester.
  • cosmetic ingredients for example, cosmetic ingredients, surfactants, film forming agents, water-based components, oil-based components, preservatives, antioxidants, ultraviolet absorbers, ultraviolet scattering agents, fragrances, powders and the like can be mentioned. Beauty ingredients include vitamins, anti-inflammatory agents, herbal medicines and the like.
  • surfactant examples include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants.
  • nonionic surfactant examples include glycerin fatty acid ester and its alkylene glycol adduct, polyglycerin fatty acid ester and its alkylene glycol adduct, propylene glycol fatty acid ester and its alkylene glycol adduct, sorbitan fatty acid ester and its alkylene glycol addition.
  • Sorbitol fatty acid ester and its alkylene glycol adduct polyalkylene glycol fatty acid ester, sucrose fatty acid ester, polyoxyalkylene alkyl ether, glycerin alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene hydrogenated castor oil, lanolin alkylene Glycol adduct, polyoxyalkylene alkyl co-modified silicone, polyether-modified silicone And the like.
  • anionic surfactant examples include inorganic and organic salts of fatty acids such as stearic acid and lauric acid, alkylbenzene sulfates, alkyl sulfonates, ⁇ -olefin sulfonates, dialkyl sulfosuccinates, ⁇ -sulfonated fatty acids.
  • acylmethyl taurate N-methyl-N-alkyl taurine
  • polyoxyethylene alkyl ether sulfate polyoxyethylene alkyl phenyl ether sulfate, alkyl phosphate, polyoxyethylene alkyl ether phosphate, polyoxyethylene alkyl
  • Examples include phenyl ether phosphate, N-acyl amino acid salt, N-acyl-N-alkyl amino acid salt, o-alkyl substituted malate, alkyl sulfosuccinate and the like.
  • Examples of the cationic surfactant include alkylamine salts, polyamines and alkanolamine fatty acid derivatives, alkyl quaternary ammonium salts, and cyclic quaternary ammonium salts.
  • amphoteric surfactant there are amino acid type and betaine type carboxylic acid type, sulfate ester type, sulfonic acid type and phosphate ester type, and those which are safe for human body can be used.
  • Examples include dialkyl-N, N-bis (polyoxyethylene sulfate) ammonium betaine, 2-alkyl-1-hydroxyethyl-1-carboxymethylimidazolinium betaine, and lecithin.
  • Film forming agents include polymer emulsions such as alkyl acrylate copolymer emulsion, alkyl acrylate / styrene copolymer emulsion, polyvinyl acetate emulsion, vinyl pyrrolidone / styrene copolymer emulsion, trimethylsiloxysilicic acid, and trimethylsiloxysilyl.
  • polymer emulsions such as alkyl acrylate copolymer emulsion, alkyl acrylate / styrene copolymer emulsion, polyvinyl acetate emulsion, vinyl pyrrolidone / styrene copolymer emulsion, trimethylsiloxysilicic acid, and trimethylsiloxysilyl.
  • silicone resins such as propylcarbamic acid, fluorine-modified silicone, and acrylic silicone
  • latexes such as polyvinyl alcohol, polyviny
  • aqueous components include lower alcohols such as ethyl alcohol and butyl alcohol, glycols such as propylene glycol, 1,3-butylene glycol, 1,2-pentanediol, dipropylene glycol, and polyethylene glycol, glycerin, diglycerin, and polyglycerin.
  • Plant extracts such as glycerols such as aloe vera, witch hazel, hamamelis, cucumber, lemon, lavender and rose.
  • water-soluble polymers examples include guar gum, sodium chondroitin sulfate, sodium hyaluronate, gum arabic, sodium alginate, carrageenan and other semi-synthetic compounds such as methyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, carboxyvinyl polymer, Synthetic compounds such as alkyl-added carboxyvinyl polymer and sodium polyacrylate can be mentioned.
  • Examples include protein, mucopolysaccharide, collagen, elastin, keratin and the like.
  • oil-based component examples include other dextrin fatty acid esters other than the above dextrin fatty acid esters.
  • dextrin palmitate examples of dextrin myristate, (palmitate / ethylhexanoate) dextrin, dextrin isostearate and the like.
  • oil components include inulin fatty acid esters such as inulin stearate.
  • Examples of the preservative include p-hydroxybenzoate, phenoxyethanol, and 1,2 pentanediol.
  • Examples of the antioxidant include ⁇ -tocopherol and ascorbic acid.
  • ultraviolet absorber examples include benzophenone series, PABA series, cinnamic acid series, salicylic acid series, 4-tert-butyl-4'-methoxydibenzoylmethane, and oxybenzone.
  • Powders include titanium oxide, zinc oxide, yellow iron oxide, black iron oxide, red iron oxide, bengara, carbon black, mica, sericite, talc, kaolin, barium sulfate, bentonite, smectite, boron nitride, conjugate, ultramarine, bismuth oxychloride , Mica titanium, aluminum powder, magnesium stearate, zinc stearate, N-acyl lysine, nylon, organic pigment, organic dye, nylon powder, urethane powder, spherical silicone resin powder, and the like.
  • These powders can also be treated with a fluorine compound, silicone oil, metal soap, surfactant, dextrin fatty acid ester, inulin fatty acid ester, fat or the like.
  • This dextrin fatty acid ester is contained in one or more cosmetics based on oil.
  • the content of the dextrin fatty acid ester in the cosmetic is preferably 1% by weight or more and 20% by weight or less.
  • a gel having a restoring force can be produced.
  • the content is 20% by weight or less, the gel becomes soft, and when a force is applied, the gel is in a fluid state and can be changed from a gel to a sol.
  • the oil agent that dissolves the dextrin fatty acid ester is a volatile hydrocarbon oil
  • the volatile hydrocarbon oil has a low viscosity. Therefore, in order to create a gel having a restoring force, the content is, for example, 3% by weight or more 20% It is preferable that the amount is less than other oil agents such as mineral oil, such as not more than% by weight.
  • the cosmetics containing the above-mentioned dextrin fatty acid ester have both excellent restoring power and low release properties.
  • the cosmetic is in a gel state when no force is applied. When the gel is broken by applying force, the cosmetic is in a sol state from the gel and becomes thick. If the cosmetic is left untreated, it returns to the gel state.
  • oils added with the above dextrin fatty acid esters can provide a restoring force that cannot be obtained with oils added with conventional dextrin fatty acid esters. For this reason, when using the said dextrin fatty acid ester for cosmetics, the addition amount for obtaining practical viscosity as cosmetics may be less than before.
  • the viscosity of the cosmetic is reduced by applying force, the cosmetic is well stretched and easy to apply. For this reason, in cosmetics for forming a cosmetic film on eyelashes, skin, nails, etc. such as mascara, lip color, lip gloss, oil foundation, liquid rouge, eyeliner, nail polish, etc., the cosmetic has a desired thickness. Since it becomes easy to apply evenly, a beautiful finish can be obtained. In addition, since the viscosity of the cosmetic is restored when the application of the cosmetic is completed, it is possible to suppress the flow-down or bleeding, and it is easy to maintain the state of the cosmetic film when the application is completed.
  • cosmetics for forming a cosmetic film on eyelashes, skin, nails, etc. such as mascara, lip color, lip gloss, oil foundation, liquid rouge, eyeliner, nail polish, etc.
  • the lip and the periphery of the eyes on which the decorative film is formed move immediately even if the viscosity decreases, so that the decorative film is prevented from peeling off or collapsing. Can improve the sustainability. Therefore, the state of the decorative film at the time of finishing is maintained over time due to the excellent restoring force by the dextrin fatty acid ester and the low release property.
  • dextrin fatty acid ester is a gelling agent which provides a restoring force.
  • a cosmetic containing the above dextrin fatty acid ester can have a practical viscosity as a cosmetic. Moreover, it has high transparency, and is excellent in stability at high temperature that can maintain the shape even at a high temperature such as 50 ° C., and solubility in a plurality of types of oils. For this reason, dextrin fatty acid ester can be used for various cosmetics. The practicality of dextrin fatty acid esters for various cosmetics can also be improved by adjusting the blending of each component constituting the cosmetics.
  • the table of FIG. 1 shows the production conditions of Examples 1 to 6 and Comparative Examples 1 to 9 of dextrin fatty acid esters.
  • the table in FIG. 2 shows the molar fraction, average substitution degree, and yield of the synthesized products of Examples 1 to 6 and Comparative Examples 1 to 9.
  • the mole fraction is shown in the table in terms of percentage.
  • the analytical instruments used in this example were as follows.
  • GC analysis GC instrument Shimadzu gas chromatograph GC-2010 Column: InertCap FFAP GL Sciences Inc.
  • Detector FID (Return degree measurement)
  • Viscoelasticity measuring device MCR100 manufactured by Pearl Physica Measurement jig: CP25-2 [Example 1] 73 g of dextrin having an average polymerization degree of 20 is dispersed at 219 g of dimethylformamide as a solvent and 99 g of pyridine as a basic catalyst at 80 ° C., 223 g of palmitic acid chloride as a linear saturated fatty acid chloride, and isopalmitic acid chloride as a branched saturated fatty acid chloride. 52 g was added dropwise over 60 minutes.
  • Isopalmitic acid chloride is 2-hexyldecanoic acid chloride.
  • the mole fractions of the straight chain saturated fatty acid and the branched saturated fatty acid to be dropped were converted to percentages and were 81% and 19%, respectively.
  • the reaction temperature was 95 ° C. and the reaction was performed for 4 hours.
  • the reaction solution was precipitated with methanol and then filtered, and the solid content was washed with methanol and dried to obtain 220 g of white powder.
  • the dextrin fatty acid ester recovered by saponification value measurement and GC analysis after alkaline decomposition had an average substitution degree of fatty acid of 1.67, and the molar fraction of linear saturated fatty acid bonded to dextrin with respect to fatty acid was 85. %, The molar fraction of the branched saturated fatty acid bonded to dextrin with respect to the fatty acid was 15% with respect to the fatty acid.
  • Example 2 72 g of dextrin having an average polymerization degree of 3 is dispersed at 80 ° C. in 72 g of heptane as a solvent and 116 g of ⁇ -picoline as a basic catalyst, and 207 g of myristic acid chloride as a linear saturated fatty acid chloride and emery type isostearin as a branched saturated fatty acid chloride. 48 g of acid chloride was added dropwise over 60 minutes. The mole fractions of the straight chain saturated fatty acid and the branched saturated fatty acid to be dropped were 84% and 16%, respectively, in terms of percentage. After completion of the dropping, the reaction temperature was 95 ° C. and the reaction was performed for 4 hours.
  • the reaction solution was precipitated with methanol and then filtered, and the solid content was washed with methanol and dried to obtain 205 g of a white powder.
  • the recovered dextrin fatty acid ester has an average substitution degree of fatty acid of 1.73, and the molar fraction of linear saturated fatty acid bonded to dextrin is 88%, It was confirmed that the molar fraction of branched saturated fatty acid bound to dextrin was 12%.
  • Example 3 68 g of dextrin having an average polymerization degree of 50 is dispersed at 80 ° C. in 135 g of N-methylpyrrolidone as a solvent and 116 g of ⁇ -picoline as a basic catalyst, and 206 g of stearic acid chloride as a linear saturated fatty acid chloride and as a branched saturated fatty acid chloride. 79 g of isomyristic acid chloride (12-methyltridecanoic acid chloride) was added dropwise over 60 minutes. The mole fractions of the linear saturated fatty acid and the branched saturated fatty acid to be dropped were 68% and 32%, respectively, in terms of percentage.
  • the reaction temperature was 95 ° C. and the reaction was performed for 4 hours.
  • the reaction solution was precipitated with methanol and then filtered, and the solid content was washed with methanol and dried to obtain 251 g of a white powder.
  • the recovered dextrin fatty acid ester has an average degree of substitution of fatty acid of 1.99, a molar fraction of linear saturated fatty acid bound to dextrin is 75%, dextrin It was confirmed that the molar fraction of the branched saturated fatty acid bonded to was 25%.
  • Example 4 77 g of dextrin having an average degree of polymerization of 20 is dispersed in 193 g of dimethylformamide as a solvent and 116 g of ⁇ -picoline as a basic catalyst at 80 ° C., 253 g of palmitic acid chloride as a linear saturated fatty acid chloride, and emery type as a branched saturated fatty acid chloride. 24 g of isostearic acid chloride was added dropwise over 60 minutes. The mole fractions of the linear saturated fatty acid and the branched saturated fatty acid to be dropped were 92% and 8%, respectively, in terms of percentage. After completion of the dropping, the reaction temperature was 95 ° C. and the reaction was performed for 4 hours.
  • the reaction solution was precipitated with methanol and then filtered, and the solid content was washed with methanol and dried to obtain 203 g of white powder.
  • the recovered dextrin fatty acid ester has an average degree of substitution of fatty acid of 1.52, the molar fraction of linear saturated fatty acid bonded to dextrin is 95%, dextrin It was confirmed that the molar fraction of the branched saturated fatty acid bonded to was 5%.
  • Example 5 70 g of dextrin having an average polymerization degree of 20 is dispersed at 80 ° C. in 211 g of dimethylformamide as a solvent and 116 g of ⁇ -picoline as a basic catalyst, and 93 g of myristic acid chloride as a linear saturated fatty acid chloride and palmitic as a linear saturated fatty acid chloride. 103 g of acid chloride and 69 g of isopalmitic acid chloride as a branched saturated fatty acid chloride were added dropwise over 60 minutes. Isopalmitic acid chloride is 2-hexyldecanoic acid chloride.
  • the mole fractions of the straight chain saturated fatty acid and the branched saturated fatty acid to be dropped were converted to percentages and 75% and 25%, respectively.
  • the reaction temperature was 95 ° C. and the reaction was performed for 4 hours.
  • the reaction solution was precipitated with methanol and then filtered, and the solid content was washed with methanol and dried to obtain 192 g of a white powder.
  • the recovered dextrin fatty acid ester has an average degree of substitution of fatty acid of 1.80, and the molar fraction of linear saturated fatty acid bonded to dextrin is 80%. It was confirmed that the molar fraction of the branched saturated fatty acid bonded to was 20%.
  • Example 6 74 g of dextrin having an average degree of polymerization of 10 is dispersed in 221 g of dimethylformamide as a solvent and 116 g of ⁇ -picoline as a basic catalyst at 80 ° C., 237 g of palmitic acid chloride as a linear saturated fatty acid chloride, and isopalmitin as a branched saturated fatty acid chloride. 39 g of acid chloride was added dropwise over 60 minutes. Isopalmitic acid chloride is 2-hexyldecanoic acid chloride. The molar fractions of the linear saturated fatty acid and the branched saturated fatty acid to be dropped were converted to percentages and 86% and 14%, respectively.
  • the reaction temperature was 95 ° C. and the reaction was performed for 4 hours.
  • the reaction solution was precipitated with methanol and then filtered, and the solid content was washed with methanol and dried to obtain 211 g of a white powder.
  • the recovered dextrin fatty acid ester has an average degree of substitution of fatty acid of 1.61, the molar fraction of linear saturated fatty acid bonded to dextrin is 90%, dextrin It was confirmed that the molar fraction of the branched saturated fatty acid bonded to was 10%.
  • the reaction temperature was 95 ° C. and the reaction was performed for 4 hours.
  • the reaction solution was precipitated with methanol and then filtered, and the solid content was washed with methanol and dried to obtain 230 g of a white powder.
  • the recovered dextrin fatty acid ester has an average degree of substitution of fatty acid of 1.80, a molar fraction of linear saturated fatty acid bonded to dextrin is 83%, dextrin It was confirmed that the molar fraction of the branched saturated fatty acid bonded to was 17%.
  • the reaction solution was precipitated with methanol and then filtered, and the solid content was washed with methanol and dried to obtain 205 g of a white powder.
  • the recovered dextrin fatty acid ester has an average degree of substitution of fatty acid of 1.50 and a molar fraction of linear saturated fatty acid bonded to dextrin of 100%. It was confirmed.
  • the recovered dextrin fatty acid ester has an average degree of substitution of fatty acid of 1.50, a molar fraction of linear saturated fatty acid bonded to dextrin is 87%, dextrin It was confirmed that the molar fraction of the branched saturated fatty acid bonded to was 13%.
  • the reaction temperature was 95 ° C. and the reaction was performed for 4 hours.
  • the reaction solution was precipitated with methanol and then filtered, and the solid content was washed with methanol and dried to obtain 201 g of a white powder.
  • the recovered dextrin fatty acid ester has an average degree of substitution of fatty acid of 2.06, a molar fraction of linear saturated fatty acid bonded to dextrin of 83%, and dextrin. It was confirmed that the molar fraction of the branched saturated fatty acid bonded to was 17%.
  • the reaction temperature was 95 ° C. and the reaction was performed for 4 hours.
  • the reaction solution was precipitated with methanol and then filtered, and the solid content was washed with methanol and dried to obtain 189 g of a white powder.
  • the recovered dextrin fatty acid ester has an average degree of substitution of fatty acid of 1.43, a molar fraction of linear saturated fatty acid bonded to dextrin is 87%, dextrin It was confirmed that the molar fraction of the branched saturated fatty acid bonded to was 13%.
  • the reaction temperature was 95 ° C. and the reaction was performed for 4 hours.
  • the reaction solution was precipitated with methanol and then filtered, and the solid content was washed with methanol and dried to obtain 169 g of a white powder.
  • the recovered dextrin fatty acid ester has an average substitution degree of fatty acid of 1.62, a molar fraction of linear saturated fatty acid bonded to dextrin is 88%, dextrin It was confirmed that the molar fraction of the branched saturated fatty acid bonded to was 12%.
  • the reaction solution was precipitated with methanol and then filtered, and the solid content was washed with methanol and dried to obtain 190 g of white powder.
  • the recovered dextrin fatty acid ester has an average degree of substitution of fatty acid of 2.20 and a molar fraction of linear saturated fatty acid bonded to dextrin of 100%. It was confirmed.
  • the reaction temperature was 95 ° C. and the reaction was performed for 4 hours.
  • the reaction solution was precipitated with methanol and then filtered, and the solid content was washed with methanol and dried to obtain 172 g of a white powder.
  • the recovered dextrin fatty acid ester has an average degree of substitution of fatty acid of 1.90, a molar fraction of linear saturated fatty acid bonded to dextrin is 63%, dextrin It was confirmed that the molar fraction of the branched saturated fatty acid bonded to was 37%.
  • the reaction temperature was 95 ° C. and the reaction was performed for 4 hours.
  • the reaction solution was precipitated with methanol and then filtered, and the solid content was washed with methanol and dried to obtain 171 g of a white powder.
  • the recovered dextrin fatty acid ester has an average degree of substitution of fatty acid of 1.70, a molar fraction of linear saturated fatty acid bonded to dextrin is 70%, dextrin It was confirmed that the molar fraction of the branched saturated fatty acid bonded to was 30%.
  • Examples 1 to 6 and Comparative Examples 1 to 9 were evaluated. First, using the dextrin fatty acid esters of Examples 1 to 6 and the dextrin fatty acid esters of Comparative Examples 1 to 9, a measurement sample based on a general oil agent, a measurement sample based on a volatile hydrocarbon oil, was made. Volatile hydrocarbon oils volatilize after application of cosmetics, and are used, for example, in oil foundations, mascaras, eyeliners, and the like.
  • Mineral oil was used as a general oil agent. To the mineral oil at 90 ° C., the dextrin fatty acid esters of Examples 1 to 6 and the dextrin fatty acid esters of Comparative Examples 1 to 9 were separately added and dissolved by heating. 20 g of the lysate was filled in a 30 ml vial (manufactured by Niommen Kagaku) and allowed to gel for 10 days at room temperature. After 10 days, the gel was broken by stirring to obtain 6 measurement samples using the dextrin fatty acid esters of Examples 1 to 6 and 9 measurement samples using the dextrin fatty acid esters of Comparative Examples 1 to 9. .
  • Isododecane was used as the volatile hydrocarbon oil.
  • the dextrin fatty acid ester of Examples 1 to 6 and the dextrin fatty acid ester of Comparative Examples 1 to 9 are separately added to 70 ° C. isododecane and dissolved by heating. And left at room temperature for 10 days. After 10 days, the gel was broken by stirring to obtain 6 measurement samples using the dextrin fatty acid esters of Examples 1 to 6 and 9 measurement samples using the dextrin fatty acid esters of Comparative Examples 1 to 9. .
  • the table in FIG. 3 shows the dissolution concentrations of the dextrin fatty acid esters of Examples 1 to 6 and the dextrin fatty acid esters of Comparative Examples 1 to 9, and the viscosities of the measurement samples.
  • (Return degree) Next, the degree of restoration was measured for each measurement sample based on mineral oil and each measurement sample based on isododecane.
  • the restoring force is an increase in viscosity per unit time of the measurement sample when the force is applied to each gelled measurement sample and no force is applied.
  • the sample was rotated by a measurement jig for 4 minutes at a rotational speed of 0.1 (s ⁇ 1 ), 2 minutes at 100 (s ⁇ 1 ), and 8 minutes at 0.1 (s ⁇ 1 ).
  • the viscosity (Pa ⁇ s) was then measured.
  • a rotation speed of 0.1 (s ⁇ 1 ) corresponds to a stationary state
  • a rotation speed of 100 (s ⁇ 1 ) corresponds to a stirring state.
  • FIG. 4 the graph which illustrated the thixotropic property about the measurement sample using the dextrin fatty acid ester of Example 1 and the measurement sample using the dextrin fatty acid ester of Comparative Examples 2 and 3 is shown.
  • the vertical axis represents viscosity (Pa ⁇ s), and the horizontal axis represents time.
  • the viscosity In the measurement sample of Example 1, when the rotational speed was changed from 0.1 (s ⁇ 1 ) to 100 (s ⁇ 1 ), the viscosity decreased to almost “0 Pa ⁇ s” and the rotational speed was 100 (s ⁇ 1 ). From 0.1 to (s ⁇ 1 ), the viscosity once returns to the vicinity of the original viscosity.
  • the viscosity of the measurement samples of Comparative Examples 2 and 3 increases when the rotational speed is changed from 100 (s ⁇ 1 ) to 0.1 (s ⁇ 1 ). Remarkably small.
  • the recovery time of the measurement sample of Example 4 is more than 10 seconds and within 20 seconds. In all cases, the viscosity reached half of the initial viscosity within 10 seconds. In the measurement sample of Comparative Example 7, the viscosity reaches half of the initial viscosity within 10 seconds, and in the measurement samples of Comparative Examples 1, 2, 4, and 6, the viscosity exceeds half of the initial viscosity within 20 seconds beyond 10 seconds. Reached. The measurement samples of Comparative Examples 3, 5, 8, and 9 did not reach half the initial viscosity within 20 seconds. The measurement sample of Comparative Example 9 did not have sufficient viscosity and did not gel.
  • the recovery time of the measurement sample of Example 3 was over 10 seconds and within 20 seconds, and in all other cases, the viscosity was half of the initial viscosity within 10 seconds. Reached.
  • the measurement sample of Comparative Example 7 reached half the initial viscosity within 10 seconds.
  • the viscosity reached half of the initial viscosity within 20 seconds beyond 10 seconds.
  • the measurement samples of Comparative Examples 2, 3, 5, 8, and 9 did not reach half the initial viscosity within 20 seconds.
  • the level that dissolves in mineral oil at 90 ° C is “ ⁇ ”
  • the level that dissolves in mineral oil at 100 ° C is “ ⁇ ”
  • the mineral oil is heated to a temperature higher than 100 ° C.
  • the level of dissolution was designated as “x”.
  • the level dissolved in isododecane at 75 ° C. is “ ⁇ ”
  • the level dissolved in isododecane at 85 ° C. is“ ⁇ ”
  • dissolved in isododecane at a temperature higher than 85 ° C. was set to “x”.
  • the dextrin fatty acid esters of Examples 1, 2, 5 and 6 were dissolved in 90 ° C. mineral oil, and the dextrin fatty acid esters of Examples 3 and 4 were dissolved in 100 ° C. mineral oil.
  • the dextrin fatty acid esters of Comparative Examples 1, 7 to 9 were dissolved in 90 ° C. mineral oil, and the dextrin fatty acid esters of Comparative Examples 2, 3, 5, and 6 were dissolved in 100 ° C. mineral oil.
  • the dextrin fatty acid ester of Comparative Example 4 was dissolved in mineral oil at a temperature higher than 100 ° C.
  • the dextrin fatty acid esters of Examples 1, 2, 5, and 6 were dissolved in 75 ° C. isododecane, and the dextrin fatty acid esters of Examples 3 and 4 were dissolved in 85 ° C. isododecane.
  • the dextrin fatty acid esters of Comparative Examples 1, 3, 8, and 9 were dissolved in isododecane at 75 ° C., and the isododecanes of Comparative Examples 2 and 5 to 7 were dissolved in 85 ° C. isododecane.
  • the dextrin fatty acid ester of Comparative Example 4 was dissolved in isododecane at a temperature higher than 85 ° C.
  • Example A Cosmetics: Mascara Ingredients (1) Dextrin fatty acid ester (2) Isododecane (Permethyl 99A manufactured by Prispers) (3) Polyethylene (Performeren PL New Phase Technology) (4) Microcrystalline wax (Multiwax W-445 manufactured by SONNEBORN) (5) Candelilla wax (refined candelilla wax special name made by Celerica NODA) (6) Trimethylsiloxysilicic acid (X-21-5595, manufactured by Shin-Etsu Chemical Co., Ltd.) (7) Isododecane (X-21-5595, manufactured by Shin-Etsu Chemical Co., Ltd.) (8) Iron oxide black (Tarox BL-100 manufactured by Titanium Industry Co., Ltd.) (9) Talc (Talc JA-13R Asada Flour Mills) (10) Nylon-12 (Orgasol 2002 Arkema) Components (6) and (7) are sold as premixed products (X-21-5595, manufactured
  • component (1) was prepared by using the dextrin fatty acid esters of Examples 1, 3, 4 and Comparative Examples 2, 3, 7-9, respectively, and Examples A1-A3 and Comparative Examples A1- A5.
  • Components (1) and (2) were heated and mixed, and components (3) to (10) were added and mixed.
  • the mixture was filled in a container to obtain eight evaluation samples (mascara).
  • a usability test was conducted with 10 subjects.
  • the subjects were “very good” “5 points”, “excellent” “4 points”, “normal” “3 points”, “inferior” “2 points”, “very good” "Inferior to” is given as “1 point”, and points are given to the sample, and the average score of 10 subjects is "4.0 to 5.0 points” as " ⁇ ", "3.0 to less than 4.0 points""","2.0 or more and less than 3.0 points” was “ ⁇ ", and "1.0 or more and less than 2.0 points” was "x".
  • the mascaras of Examples A1 to A3 and Comparative Examples A1 to A3 have a high evaluation of “friction resistance”, and the mascaras of Comparative Examples A4 and A5 have a stickiness even after volatilization of isododecane because the dextrin fatty acid ester itself is soft.
  • the evaluation of “friction” was low.
  • the mascaras of Examples A1 to A3 are all “ ⁇ ” except that the “volume-up effect” of the mascara of Example A2 is “ ⁇ ”, and the evaluation is generally higher than the mascara of Comparative Examples A1 to A5. It was.
  • Example B Cosmetics: Body oil Ingredients (1) Dextrin fatty acid ester (2) Squalane (3) Octyldodecyl myristate (4) Isotridecyl isononanoate (5) Cetyl ethylhexanoate (6) Trioctanoin (7) Tocopherol
  • component (1) the dextrin fatty acid esters of Examples 1, 3, 4 and Comparative Examples 2, 3, 7-9 were used as Examples B1-B3 and Comparative Examples B1-B5, respectively.
  • Example C Cosmetic: Cleansing Gel Ingredient (wt%) (1) dextrin fatty acid ester (2) mineral oil (3) isotridecyl isononanoate (4) squalane (5) octyldodecanol (6) trioctanoin (7) sorbes tetraoleate-40 (UNIOX ST-40E NOF (Made by Co., Ltd.) (8) Water As shown in FIG. 8, the component (1) was prepared by using the dextrin fatty acid esters of Examples 1, 3, 4 and Comparative Examples 2, 3, 7-9, respectively. Comparative Examples C1 to C6 were used.
  • the component (8) was added little by little with stirring to the components (1) to (7) dissolved by heating. The mixture was further cooled to room temperature with stirring to obtain a cleansing gel. A usability test was conducted with 10 subjects. The evaluation method is the same as in Example A.
  • Example D Cosmetics: Hair treatment gel Ingredients (1) Dextrin fatty acid ester (2) Olefin oligomer (manufactured by NEXBASE 2004FG Nisshin Oillio Group) (3) Isononyl isononanoate (4) Octyldodecanol (5) Lauroyl glutamate di (phytosteryl / octyldodecyl) (Eldou PS-203, Ajinomoto Co., Inc.) (6) Isostearoyl hydrolyzed silk, isostearic acid (Promois EF-118 IS manufactured by Seiwa Kasei Co., Ltd.) As shown in FIG. 9, the component (1) was prepared using Examples D1 to D3 and Comparative Examples D1 to D3 using the dextrin fatty acid esters of Examples 1, 3, 4 and Comparative Examples 2, 3, 7 to 9, respectively. D6.
  • Example E Cosmetics: Lip color Ingredients (1) Dextrin fatty acid ester (2) Trioctanoin (3) Dimethicone copolyol (KF-6017 manufactured by Shin-Etsu Chemical Co., Ltd.) (4) Cyclomethicone (5) Butylene glycol (6) Water (7) Pigment As shown in FIG. 10, component (1) is the dextrin of Examples 1, 3, 4 and Comparative Examples 2, 3, 7-9. The fatty acid esters were used as Examples E1 to E3 and Comparative Examples E1 to E6, respectively.
  • the component (7) was dispersed in a part of the component (2), and the remaining amounts of the components (1) and (2) and the components (3) and (4) were dissolved by heating.
  • component (2) in which component (7) is dispersed a mixture of components (1) to (4) is added with stirring, and mixed and dispersed uniformly.
  • components (5) and (6) were dissolved by heating and emulsified at 80 ° C. while adding components (1) to (4) mixed and dispersed, and cooled to obtain a lip color. .
  • Example F Cosmetics: Lip gloss Ingredients (1) Dextrin fatty acid ester (2) Mineral oil (3) Hydrogenated pentaerythrityl rosinate, octyldodecyl isostearate (GEL-ISOD Shinei Chemical Co., Ltd.) (4) Diisostearyl malate (5) Diphenylsiloxyphenyl trimethicone (KF-56A manufactured by Shin-Etsu Chemical Co., Ltd.) (6) Hydrogenated polyisobutene (Pearl Ream NOF Corporation) (7) Pigment As shown in FIG. 11, component (1) was prepared by using the dextrin fatty acid esters of Examples 1, 3, 4 and Comparative Examples 2, 3, 7-9, respectively. Comparative Examples F1 to F6 were used.
  • Example G Cosmetic: Oil Foundation Ingredient (wt%) (1) Dextrin fatty acid ester (2) Mineral oil (3) Isotridecyl isononanoate (4) Squalane (5) Diphenylsiloxyphenyl trimethicone (KF-56A manufactured by Shin-Etsu Chemical Co., Ltd.) (6) Isododecane (Permethyl 99A manufactured by Prispers) (7) Pigment As shown in FIG. 12, the component (1) was prepared by using the dextrin fatty acid esters of Examples 1, 3, 4 and Comparative Examples 2, 3, 7-9, respectively. Comparative examples G1 to G6 were used.
  • the components (1) to (5) were dissolved by heating, and the component (7) was further added to uniformly disperse the component (7). While cooling this, component (6) was added at 50 ° C. and cooled to obtain an oil foundation.
  • Example H Cosmetics: Beauty oil Ingredients (1) Dextrin fatty acid ester (2) Barley oil (3) Isotridecyl isononanoate (4) Jojoba oil (5) Trioctanoin (6) Mineral oil (7) Squalane (8) Olive oil (9) avocado oil (10) Tocopherol As shown in FIG. 13, the component (1) was prepared by using the dextrin fatty acid esters of Examples 1, 3, 4 and Comparative Examples 2, 3, 7-9, respectively. And Comparative Examples H1 to H6.
  • Example J Cosmetics: Liquid Rouge Ingredients (1) Dextrin fatty acid ester (2) Dextrin isostearate (3) Diisostearyl malate (4) Isododecane (Permethyl 99A manufactured by Prispers) (5) Hydrogenated polyisobutene (Pearl Ream NOF Corporation) (6) Silica (Sunsphere L-51 AGC S-Tech Co., Ltd.) (7) Mica (Mica SA-350 made by Yamaguchi Mica) (8) Pearl agent (9) Pigment As shown in FIG. 14, the component (1) was prepared using the dextrin fatty acid esters of Examples 1, 3, 4 and Comparative Examples 2, 3, 7 to 9, respectively. J1 to J3 and comparative examples J1 to J6.
  • Example K Cosmetics: Gel eyeliner Ingredients (1) Dextrin fatty acid ester (2) Polyethylene (made by Performalen PL New Phase Technology) (3) Microcrystalline wax (manufactured by Multiwax W-445 SONNEBORN) (4) Light liquid isoparaffin (IP solvent 1620, manufactured by Idemitsu Petrochemical Co., Ltd.) (5) Decamethylcyclopentasiloxane (6) Polymethylsilsesquioxane (KMP-590 manufactured by Shin-Etsu Chemical Co., Ltd.) (7) Trimethylsiloxysilicic acid (X-21-5595, manufactured by Shin-Etsu Chemical Co., Ltd.) (8) Isododecane (Permethyl 99A manufactured by Prispers) (9) Pigment As shown in FIG. 15, the component (1) was prepared by using the dextrin fatty acid esters of Examples 1, 3, 4 and Comparative Examples 2, 3, 7-9, respectively. Comparative examples K1 to K6 were used.
  • the effects listed below can be obtained.
  • the average sugar polymerization degree of dextrin in the dextrin fatty acid ester is 3 or more and 100 or less, it is possible to prevent the soft gel from being obtained, and the solubility of the dextrin fatty acid ester in the oil agent is excessive. It can suppress becoming low.
  • the carbon number of the linear saturated fatty acid bonded to dextrin is 14 or more and 18 or less, the restoring force is increased, and when the branched saturated fatty acid is 14 or more and 18 or less, the reaction between dextrin and fatty acid.
  • An appropriate viscosity can be imparted to the oil agent while improving the efficiency.
  • the restoring force can be improved while the gelled oil agent is in a smooth state. Furthermore, by making the average substitution degree of the fatty acid per glucose unit 1.5 or more and 2.0 or less, it is possible to reduce the syneresis property.
  • Cosmetics using this dextrin fatty acid ester have both excellent restoring force and low release properties, so when applying force to the cosmetics to remove the cosmetics from the storage container containing the cosmetics, the viscosity Decreases. For this reason, even if it is a highly viscous cosmetic, it is easy to take out cosmetics. In addition, it is difficult to flow down when the cosmetic is picked up or placed on the face or limbs. Furthermore, since the separation is suppressed during storage, storage stability can be improved. Furthermore, in cosmetics for forming a cosmetic film on the skin, eyelashes, etc., such as lip gloss and mascara, the viscosity of the cosmetics is reduced by applying force, and therefore the elongation is good and easy to apply. For this reason, it becomes easy to apply cosmetics uniformly. Further, since the viscosity is restored when the application of the cosmetic is completed, it is difficult to flow down and the state of the cosmetic film when the application is completed is easily maintained.
  • the molar fraction of the linear saturated fatty acid in the fatty acid of the dextrin fatty acid ester is in the range of 0.8 to 0.9, and the average substitution degree of the fatty acid per glucose unit is 1.65 to 1.80.
  • the dextrin fatty acid ester has both the power and transparency of gelling an oil agent because the linear saturated fatty acid is palmitic acid having 16 carbon atoms and the branched saturated fatty acid is isopalmitic acid having 16 carbon atoms. Can be made particularly excellent.
  • the dextrin fatty acid ester having the property of imparting an excellent restoring force can impart a restoring force to the volatile hydrocarbon oil even when the content of the dextrin fatty acid ester with respect to the volatile hydrocarbon oil having a low viscosity is small. Therefore, the effect can be exhibited especially, for example, the degree of freedom for prescription of cosmetics is increased.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Cosmetics (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

デキストリン脂肪酸エステルにおいて、デキストリンの平均糖重合度は3以上100以下である。脂肪酸は、炭素数14以上18以下の直鎖飽和脂肪酸の1種以上と、炭素数14以上18以下の分岐飽和脂肪酸の1種以上とからなる。脂肪酸における直鎖飽和脂肪酸のモル分率は0.75以上0.95以下であり、グルコース単位あたりの前記脂肪酸の平均置換度は1.5以上2.0以下である。

Description

デキストリン脂肪酸エステル及び化粧料
 本発明は、デキストリン脂肪酸エステル、及びデキストリン脂肪酸エステルを含有する化粧料に関する。
 従来、デキストリン脂肪酸エステルは、油剤をゲル化するゲル化剤として使用されている。デキストリン脂肪酸エステルによってゲル化された油剤は、透明性、ツヤ、感触などに優れるため、化粧料の材料として用いられている。
 化粧料において、チキソトロピー性は重要な性能の一つである。チキソトロピー性とは、物質が一定の力を加えられるとその粘度が低下し、力を加えられなくなるとその粘度が復帰する性能である。チキソトロピー性が高い化粧料は、化粧料を塗布する際に粘度が低下するため、例えば、伸びがよいなどの効果を奏する。また、化粧料を塗布した後は、化粧料の粘度が復帰するため、流れ落ちにくく、化粧料の塗布が完了したときの状態が維持されやすくなる。
 特許文献1には、化粧料に高いチキソトロピー性を付与するデキストリン脂肪酸エステルと、このデキストリン脂肪酸エステルを化粧料に用いることとが記載されている。
特許第3019191号公報
 ところで、デキストリン脂肪酸エステルを含む化粧料の種類は増加する一方であり、それに伴い、デキストリン脂肪酸エステルに求められる物性も新たなものとなっている。すなわち、デキストリン脂肪酸エステルによって化粧料に高いチキソトロピー性が付与される場合であっても、ボディオイルやヘアトリートメントジェルなどの化粧料が使用されるシーンにおいては、化粧料が塗布された後、化粧料の粘度が復帰するのに要する時間が長くなると、手に取った化粧料や肌の上にのせた化粧料が流れ落ちてしまうなど実用性に欠けることとなる。また、リップカラーやリップグロスなどのように肌などに化粧膜を形成するための化粧料(以下、メイクアップ化粧料)においては、仕上がりの状態が維持されにくくなる。それゆえに、こうした化粧料の構成成分であるデキストリン脂肪酸エステルには、化粧料の粘度が復帰するのに要する時間をより短時間とする新たな物性が望まれている。
 さらに、化粧料から油がにじみ出す性質(以下、離漿性)が高いと、その外観が損なわれるほか、保存時の安定性が低下してしまうため、化粧料が低い離漿性を兼ね備えていることも望まれている。
 本発明の目的は、復帰力を備え、かつ、離漿性が低い化粧料を与えるデキストリン脂肪酸エステルと、そのデキストリン脂肪酸エステルを用いた化粧料とを提供することにある。
 一態様では、デキストリン脂肪酸エステルは、デキストリンの平均糖重合度が3以上100以下であり、前記脂肪酸が、炭素数14以上18以下の直鎖飽和脂肪酸の1種以上と、炭素数14以上18以下の分岐飽和脂肪酸の1種以上とからなり、前記脂肪酸における前記直鎖飽和脂肪酸のモル分率が0.75以上0.95以下であり、グルコース単位あたりの前記脂肪酸の平均置換度が1.5以上2.0以下である。
 別の態様では、化粧料は、油剤と、デキストリン脂肪酸エステルであって、前記デキストリンの平均糖重合度が3以上100以下であり、前記脂肪酸が、炭素数14以上18以下の直鎖飽和脂肪酸の1種以上及び炭素数14以上18以下の分岐飽和脂肪酸の1種以上からなり、前記脂肪酸における前記直鎖飽和脂肪酸のモル分率が0.75以上0.95以下であり、グルコース単位あたりの前記脂肪酸の平均置換度が1.5以上2.0以下であるデキストリン脂肪酸エステルと、を含む。
 発明者の鋭意研究により、化粧料に高いチキソトロピー性を付与するデキストリン脂肪酸エステルのなかでも、直鎖飽和脂肪酸及び分岐飽和脂肪酸の両方を含み、それらの炭素数、直鎖飽和脂肪酸及び分岐飽和脂肪酸のモル分率、及び平均置換度が上記範囲のものが、化粧料に復帰力と、低い離漿性との両方を付与する性質を兼ね備えていることが判明した。復帰力は、デキストリン脂肪酸エステルを含む油剤に加えられた力が解除されたときに、20秒以内という短い時間で、解除直前の粘度に対し50%以上の粘度になるように、粘度を大きく増加させることのできる力をいう。すなわち、デキストリン脂肪酸エステルにおけるデキストリンの平均糖重合度が3以上100以下であることによって、軟らかなゲルが得ることができなくなることを抑制するとともに、デキストリン脂肪酸エステルの油剤への溶解性が過剰に低くなることを抑制できる。また、直鎖飽和脂肪酸の炭素数を14以上18以下とすることで、化粧品に付与される復帰力を高め、分岐飽和脂肪酸の炭素数を14以上18以下とすることで、デキストリンと脂肪酸との反応効率を良好にしつつ、油剤に適切な粘性を付与することができる。また、脂肪酸における直鎖飽和脂肪酸のモル分率を0.75以上0.95以下とすることによって、ゲル化した油剤を滑らかな状態としつつ、復帰力を向上することができる。さらにグルコース単位あたりの脂肪酸の平均置換度を1.5以上2.0以下とすることにより、離漿性を低下させることができる。
 一実施形態では、上記デキストリン脂肪酸エステルは、前記デキストリンの平均糖重合度が3以上50以下であってよい。
 この場合、軟らかなゲルが得ることができるとともに、デキストリン脂肪酸エステルの油剤への溶解性を高めることができる。
 一実施形態では、上記デキストリン脂肪酸エステルは、前記脂肪酸における前記直鎖飽和脂肪酸のモル分率が0.8以上0.9以下であり、グルコース単位あたりの前記脂肪酸の平均置換度が1.65以上1.80以下であってよい。
 この場合、デキストリン脂肪酸エステルを含む油剤の復帰力を向上するとともに離漿性を低下させることができる。
 一実施形態では、上記デキストリン脂肪酸エステルは、直鎖飽和脂肪酸がパルミチン酸であって、前記分岐飽和脂肪酸がイソパルミチン酸であってよい。
 この場合、油剤をゲル化する力及び透明性の両方を特に優れたものとすることができる。
 一実施形態では、上記化粧料は、油剤に揮発性炭化水素油を含んでいてもよい。
 この場合、化粧料に優れた復帰力を付与する性質を備えるデキストリン脂肪酸エステルは、粘度が低い揮発性炭化水素油に対する含有率が少なくても、揮発性炭化水素油に復帰力を付与することができる。そのため、化粧料の処方の自由度が高められるなど、特に効果を発揮できる。
デキストリン脂肪酸エステルの実施例1~6及び比較例1~9の作製条件を示す表。 実施例1~6及び比較例1~9のデキストリン脂肪酸エステルの直鎖飽和脂肪酸及び分岐飽和脂肪酸のモル分率、グルコース単位あたりの平均置換度、及び収量を示す表。 実施例1~6及び比較例1~9のデキストリン脂肪酸エステルをミネラルオイル及びイソドデカンに溶解した試料についての濃度及び初期粘度を示す表。 静置状態のデキストリン脂肪酸エステルの粘度、撹拌状態のデキストリン脂肪酸エステルの粘度を例示したグラフ。 実施例1~6及び比較例1~9のデキストリン脂肪酸エステルをミネラルオイル及びイソドデカンに溶解した試料についての評価を示す表。 実施例及び比較例のデキストリン脂肪酸エステルを用いたマスカラについての評価を示す表。 実施例及び比較例のデキストリン脂肪酸エステルを用いたボディオイルについての評価を示す表。 実施例及び比較例のデキストリン脂肪酸エステルを用いたクレンジングジェルについての評価を示す表。 実施例及び比較例のデキストリン脂肪酸エステルを用いたヘアトリートメントジェルについての評価を示す表。 実施例及び比較例のデキストリン脂肪酸エステルを用いたリップカラーについての評価を示す表。 実施例及び比較例のデキストリン脂肪酸エステルを用いたリップグロスについての評価を示す表。 実施例及び比較例のデキストリン脂肪酸エステルを用いたオイルファンデーションについての評価を示す表。 実施例及び比較例のデキストリン脂肪酸エステルを用いた美容オイルについての評価を示す表。 実施例及び比較例のデキストリン脂肪酸エステルを用いたリキッドルージュについての評価を示す表。 実施例及び比較例のデキストリン脂肪酸エステルを用いたジェル状アイライナーについての評価を示す表。
 以下、デキストリン脂肪酸エステル、及びデキストリン脂肪酸エステルを含有する化粧料について、一実施形態を説明する。
 デキストリン脂肪酸エステルは、デキストリンと脂肪酸とのエステル化物であり、下記化学式1に示される構造である。
Figure JPOXMLDOC01-appb-C000001
 上記化学式1では、「n」がデキストリンの重合度を示し、「A」が脂肪酸骨格又は水素を示している。
 デキストリン脂肪酸エステルのデキストリンとしては、澱粉の分解物を用いることができる。澱粉としては、小麦、馬鈴薯、コーン、米、キャッサバ、緑豆などを原料とするものを用いることができる。分解方法としては、従来の方法を使用することができ、例えば、酸処理、アルカリ処理、及び酵素処理のうち一乃至複数を使用することができる。
 デキストリン脂肪酸エステルは、少なくとも以下に示すデキストリン脂肪酸エステルを含む。
 デキストリンの平均糖重合度は、3以上100以下であり、特に10以上50以下が好ましい。平均糖重合度が3以上であれば、デキストリン脂肪酸エステルがワックス様となるので、それによって、軟らかなゲルが得られないことを抑制できる。また、平均糖重合度が100以下であれば、デキストリン脂肪酸エステルの油剤への溶解温度が高いことに起因してデキストリン脂肪酸エステルの油剤への溶解性が過剰に低くなることなどの問題を抑えられる。
 また、デキストリン脂肪酸エステルの脂肪酸は、炭素数14以上18以下の直鎖飽和脂肪酸の1種以上と、炭素数14以上18以下の分岐飽和脂肪酸の1種以上とからなる。
 炭素数14以上18以下の直鎖飽和脂肪酸は、具体的には、ミリスチン酸(炭素数14)、ペンタデカン酸(炭素数15)、パルミチン酸(炭素数16)、ヘプタデカン酸(炭素数17)、ステアリン酸(炭素数18)が挙げられる。これらの直鎖飽和脂肪酸のなかでも、パルミチン酸が好ましい。直鎖飽和脂肪酸の炭素数が14以上であれば、油剤をゲル化する力が強くなる。直鎖飽和脂肪酸の炭素数が18以下であれば、ゲル化された油剤が白濁することが抑えられ、油剤の透明性が確保される。また、炭素数14以上18以下のなかでも、炭素数16が油剤をゲル化する力及び透明性の両方で優れている。
 炭素数14以上18以下の分岐飽和脂肪酸は、具体的には、イソミリスチン酸(炭素数14)、イソペンタデカン酸(炭素数15)、イソパルミチン酸(炭素数16)、イソヘプタデカン酸(炭素数17)、イソステアリン酸(炭素数18)が挙げられる。これらの分岐飽和脂肪酸のなかでも、イソパルミチン酸が好ましい。分岐飽和脂肪酸の炭素数が14以上であれば、粘度が低い油剤へも十分な粘性を付与することができる。分岐飽和脂肪酸の炭素数が18以下であれば、デキストリンに対する分岐飽和脂肪酸の嵩高さが抑制され、エステル化反応時において分岐飽和脂肪酸がデキストリンに結合しにくいことが抑えられる。また、分岐飽和脂肪酸がデキストリンに結合しても、分岐飽和脂肪酸の嵩高さが抑制されるために、直鎖飽和脂肪酸がデキストリンに結合しにくいことに起因して反応効率が低下してしまうことが抑えられる。特に炭素数14以上16以下の分岐飽和脂肪酸は、その嵩高さが抑制されるために反応効率がよい。
 イソミリスチン酸は、1乃至複数のイソミリスチン酸からなる。例えば、11-メチルトリデカン酸、12-メチルトリデカン酸などが挙げられるがこれらに限定されない。イソパルミチン酸は、1乃至複数のイソパルミチン酸からなる。例えば、14-メチルペンタデカン酸、2-ヘキシルデカン酸などが挙げられるがこれらに限定されない。
 イソステアリン酸は、1乃至複数のイソステアリン酸からなる。例えば、5,7,7-トリメチル-2-(1,3,3-トリメチルブチル)-オクタン酸は、アルドール型イソステアリン酸であり、次のように製造することができる。まずイソブチレン2量体のオキソ反応により、炭素数9の分岐アルデヒドを得る。そして、この分岐アルデヒド間のアルドール縮合により、炭素数18の分岐不飽和アルデヒドを得る。得られた分岐不飽和アルデヒドの水素添加、及び酸化により製造することができる。
 別のイソステアリン酸として、2-ヘプチルウンデカン酸は、ノニルアルコールを、ガーベット(Guerbet)反応に付し、酸化することにより製造することができる。
 分岐鎖がメチル基であるメチル分岐イソステアリン酸は、例えばオレイン酸のダイマー製造時の副産物として得られるもので(例えばJ. Amer. Oil Chem. Soc., 51,522(1974))、例えばエメリー社などから市販されていたものがあげられる(以下エメリー型と略す)。エメリー型イソステアリン酸の出発物質であるダイマー酸の出発物質には、オレイン酸だけでなく、リノール酸、リノレン酸等も含まれる場合がある。
 デキストリン脂肪酸エステルを構成する脂肪酸骨格のなかで直鎖脂肪酸骨格の有するモル分率は、0.75以上0.95以下であり、特に好ましくは0.80以上0.90以下である。すなわち、デキストリン脂肪酸エステルの直鎖飽和脂肪酸と分岐飽和脂肪酸とのモル比は、75対25から95対5の範囲内であり、特に80対20から90対10が好ましい。
 脂肪酸全体に対する直鎖飽和脂肪酸に対するモル分率が0.95以下であるから、ゲル化した油剤が白濁することが抑えられ、油剤の透明性が確保される。また、分岐飽和脂肪酸の比率が少ないことに起因し、ザクザクとした滑らかではないゲルとなることも抑えられる。脂肪酸全体に対する直鎖飽和脂肪酸に対するモル分率が0.75以上であるため、分岐飽和脂肪酸の比率が過剰に高いことに起因して油剤をゲル化する力が低過ぎることも抑えられる。また、油剤をゲル化させるためにデキストリン脂肪酸エステルを油剤に高い濃度で配合することによって、力を加えたときの粘度の低下の度合いが小さく復帰力が失われることも抑えられる。なお、復帰力は、デキストリン脂肪酸エステルを含む油剤に加えられた力が解除されたときに、20秒以内という短い時間で、解除直前の粘度に対し50%以上の粘度になるように、粘度を大きく増加させることのできる力をいう。
 デキストリン脂肪酸エステルのグルコース単位あたりの脂肪酸の平均置換度は、1.5以上2.0以下であり、特に好ましくは、1.65以上1.80以下である。平均置換度が1.5以上であれば、油剤をゲル化する力が低下してしまうことを抑えられる。また、デキストリン脂肪酸エステルの油剤への溶解性が低いことに起因し、化粧膜の表面に油が浮いたり、保存時に油が分離したりする性質である離漿(離しょう)が生じやすくなることも抑えられる。平均置換度が2.0以下であれば、デキストリンに結合する脂肪酸が過剰に多くなることを抑えられるため、例えば50℃程度においてもゲルを保てるというゲルの耐熱性が得られる。すなわち、脂肪酸の平均置換度が大きすぎても小さすぎても安定なゲルは作製できない。
 デキストリンの平均糖重合度、直鎖飽和脂肪酸エステルの炭素数、分岐飽和脂肪酸エステルの炭素数、直鎖飽和脂肪酸エステル及び分岐飽和脂肪酸エステルのモル分率、平均置換度を上記した範囲とすることによって、化粧料に優れた復帰力及び低い離漿性の両方を付与する性質を兼ね備えたデキストリン脂肪酸エステルを得ることができる。
 デキストリン脂肪酸エステルとしては、例えば、以下のものが挙げられる。
 (ミリスチン酸/12-メチルトリデカン酸)デキストリン
 (ミリスチン酸/2-ヘキシルデカン酸)デキストリン
 (ミリスチン酸/エメリー型イソステアリン酸)デキストリン
 (パルミチン酸/2-ヘキシルデカン酸)デキストリン
 (パルミチン酸/2-ヘプチルウンデカン酸)デキストリン
 (ステアリン酸/5,7,7-トリメチル-2-(1,3,3-トリメチルブチル)-オクタン酸)デキストリン
 (パルミチン酸/2-ヘキシルデカン酸/エメリー型イソステアリン酸)デキストリン
 (ミリスチン酸/パルミチン酸/2-ヘキシルデカン酸)デキストリン
 特に、デキストリンに結合する直鎖飽和脂肪酸としてパルミチン酸を含むことが好ましく、分岐飽和脂肪酸エステルとして2-ヘキシルデカン酸などのイソパルミチン酸を含むことが好ましい。
 デキストリン脂肪酸エステルの製造方法としては、従来の製造方法を用いることができる。例えば、ピリジンやトリエチルアミン、3-メチルピリジンなどの塩基性触媒の存在下で、デキストリンに脂肪酸クロライドを添加して製造することができる。
 デキストリン脂肪酸エステルと組み合わせる油剤は、化粧料の材料として使用可能な油剤であって、デキストリン脂肪酸エステルと組み合わせることで、優れた復帰力及び低い離漿性といった効果を得ることが可能であれば特に限定されず、1種類の油剤を用いてもよいし、複数の種類の油剤を混合して用いてもよい。なお、これら油剤の中には、単独では高粘度(例えばポリブテン、ひまし油等)、または固体状(例えば、高級脂肪酸、ワックス類等)であるものが含まれるが、液状の油剤、デキストリン脂肪酸エステルと組み合わせて用いるなどして使用することもできる。
 例えば、炭化水素油としては、流動パラフィン、スクワラン、イソパラフィン、イソドデカン、イソヘキサデカン、重質流動イソパラフィン、ポリブテン、ワセリンなどが挙げられる。エステル油としては、トリ-2-エチルヘキサン酸グリセリル、トリ(カプリル酸・カプリン酸)グリセリル、モノ、ジ、トリ、テトライソステアリン酸ジグリセリル、イソステアリン酸ポリグリセリル、ジオクタン酸ネオペンチルグリコール、ジカプリン酸ネオペンチルグリコール、2-エチルヘキサン酸セチル、ミリスチン酸イソプロピル、パルミチン酸イソプロピル、ステアリン酸ブチル、パルミチン酸2-エチルヘキシル、イソノナン酸イソノニル、イソノナン酸イソトリデシル、ステアリン酸ステアリル、ミリスチン酸イソステアリル、ミリスチン酸オクチルドデシル、オレイン酸オクチルドデシル、リンゴ酸ジイソステアリル、12-ヒドロキシステアリン酸コレステリルなどが挙げられる。高級脂肪酸としては、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、ベヘニン酸、イソステアリン酸、エルカ酸、リノール酸、リノレン酸などが挙げられる。高級アルコールとしては、ラウリルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール、ベヘニルアルコール、2-ヘキシルデカノール、2-オクチルデカノール、オレイルアルコール、イソステアリルアルコールなどが挙げられる。動植物油としては、オリーブ油、椿油、大豆油、綿実油、ゴマ油、サフラワー油、小麦胚芽油、ヨクイニン油、米油、ホホバ油、ヒマシ油、亜麻仁油、コーン油、菜種油、椰子油、パーム油、スクワレン、液状ラノリン、ミンクオイル、卵黄油、羊毛油などが挙げられる。ワックス類としては、パラフィンワックス、マイクロクリスタリンワックス、セレシンワックス、蜜ロウ、カルナウバワックス、キャンデリラワックス、硬化ヒマシ油、ロジンなどが挙げられる。シリコーン油としては、ジメチルポリシロキサン、環状シリコーン、メチルフェニルポリシロキサン、変性シリコーンなどが挙げられる。
 デキストリン脂肪酸エステルと組み合わせる揮発性炭化水素油は、動粘度(37.8℃)が0.5mm/s以上15mm/s以下の範囲である炭化水素油を意味する。揮発性炭化水素油としては、直鎖状、分岐鎖状、いずれのものも用いることができる。このような揮発性炭化水素油としては、イソデカン、イソドデカン、イソヘキサデカン、イソパラフィン等のイソパラフィン系炭化水素油が挙げられる。これらの商品例を挙げると、パーメチル99A、パーメチル101A、パーメチル102A(プレスパース社製)、アイソパーA、アイソパーC、アイソパーD、アイソパーE、アイソパーG、アイソパーH、アイソパーK、アイソパーL、アイソパーM(エクソン社製)、シェルゾール71(シェル社製)、ソルトロール100、ソルトロール130、ソルトロール220(フィリップ社製)、アイソゾール400(日本石油化学(株)製)、パールリーム4(日油(株)製)、IPソルベント1016、IPソルベント1620、IPソルベント2028(出光石油化学(株)製)、イソヘキサデカン、テトライソブタン90(バイエル社製)などが挙げられる。
 このデキストリン脂肪酸エステルを含有する化粧料においては、デキストリン脂肪酸エステルを添加することによる効果を損なわない範囲で、化粧料に配合され得る一般的な成分を必要に応じて添加することができる。例えば、美容成分、界面活性剤、皮膜形成剤、水系成分、油系成分、防腐剤、酸化防止剤、紫外線吸収剤、紫外線散乱剤、香料、粉体などが挙げられる。美容成分としては、ビタミン類、消炎剤、生薬などが挙げられる。
 界面活性剤としては、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤などが挙げられる。
 非イオン界面活性剤としては、例えば、グリセリン脂肪酸エステル及びそのアルキレングリコール付加物、ポリグリセリン脂肪酸エステル及びそのアルキレングリコール付加物、プロピレングリコール脂肪酸エステル及びそのアルキレングリコール付加物、ソルビタン脂肪酸エステル及びそのアルキレングリコール付加物、ソルビトールの脂肪酸エステル及びそのアルキレングリコール付加物、ポリアルキレングリコール脂肪酸エステル、蔗糖脂肪酸エステル、ポリオキシアルキレンアルキルエーテル、グリセリンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン硬化ヒマシ油、ラノリンのアルキレングリコール付加物、ポリオキシアルキレンアルキル共変性シリコーン、ポリエーテル変性シリコーン等が挙げられる。
 アニオン界面活性剤としては、例えば、ステアリン酸、ラウリン酸のような脂肪酸の無機及び有機塩、アルキルベンゼン硫酸塩、アルキルスルホン酸塩、α-オレフィンスルホン酸塩、ジアルキルスルホコハク酸塩、α-スルホン化脂肪酸塩、アシルメチルタウリン塩、N-メチル-N-アルキルタウリン塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩、アルキル燐酸塩、ポリオキシエチレンアルキルエーテル燐酸塩、ポリオキシエチレンアルキルフェニルエーテル燐酸塩、N-アシルアミノ酸塩、N-アシル-N-アルキルアミノ酸塩、ο-アルキル置換リンゴ酸塩、アルキルスルホコハク酸塩等が挙げられる。
 カチオン界面活性剤としては、例えば、アルキルアミン塩、ポリアミン及びアルカノールアミン脂肪酸誘導体、アルキル四級アンモニウム塩、環式四級アンモニウム塩等が挙げられる。
 両性界面活性剤としては、アミノ酸タイプやベタインタイプのカルボン酸型、硫酸エステル型、スルホン酸型、リン酸エステル型のものがあり、人体に対して安全とされるものが使用できる。例えば、N,N-ジメチル-N-アルキル-N-カルボキシルメチルアンモニウムベタイン、N,N-ジアルキルアミノアルキレンカルボン酸、N,N,N-トリアルキル-N-スルフォアルキレンアンモニウムベタイン、N,N-ジアルキル-N,N-ビス(ポリオキシエチレン硫酸)アンモニウムベタイン、2-アルキル-1-ヒドロキシエチル-1-カルボキシメチルイミダゾリニウムベタイン、レシチン等が挙げられる。
 皮膜形成剤としては、アクリル酸アルキル共重合体エマルション、アクリル酸アルキル・スチレン共重合体エマルション、ポリ酢酸ビニルエマルション、ビニルピロリドン・スチレン共重合体エマルションなどのポリマーエマルション、トリメチルシロキシケイ酸、トリメチルシロキシシリルプロピルカルバミド酸、フッ素変性シリコーン、アクリルシリコーンなどのシリコーン系樹脂、ポリビニルアルコール、ポリ酢酸ビニル、ポリ酢酸アルキルなどのラテックス類、デキストリン、アルキルセルロース、ニトロセルロースなどのセルロース誘導体が挙げられる。
 水系成分としては、エチルアルコール、ブチルアルコール等の低級アルコール、プロピレングリコール、1,3-ブチレングリコール、1,2-ペンタンジオール、ジプロピレングリコール、ポリエチレングリコール等のグリコール類、グリセリン、ジグリセリン、ポリグリセリン等のグリセロール類、アロエベラ、ウイッチヘーゼル、ハマメリス、キュウリ、レモン、ラベンダー、ローズ等の植物抽出液が挙げられる。水溶性高分子としては、グアーガム、コンドロイチン硫酸ナトリウム、ヒアルロン酸ナトリウム、アラビアガム、アルギン酸ナトリウム、カラギーナン等の天然系のもの、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース等の半合成系のもの、カルボキシビニルポリマー、アルキル付加カルボキシビニルポリマー、ポリアクリル酸ナトリウム等の合成系のものを挙げることができる。タンパク質、ムコ多糖、コラーゲン、エラスチン、ケラチンなどが挙げられる。
 油系成分としては、上記したデキストリン脂肪酸エステル以外の別のデキストリン脂肪酸エステルが挙げられる。例えば、パルミチン酸デキストリン、ミリスチン酸デキストリン、(パルミチン酸/エチルヘキサン酸)デキストリン、イソステアリン酸デキストリンなどが挙げられる。ほかにも油系成分として、ステアリン酸イヌリンなどのイヌリン脂肪酸エステルなどが挙げられる。
 防腐剤としては、パラオキシ安息香酸エステル、フェノキシエタノール、1,2ペンタンジオールなどが挙げられる。
 酸化防止剤としては、α-トコフェロール、アスコルビン酸などが挙げられる。
 紫外線吸収剤としては、ベンゾフェノン系、PABA系、けい皮酸系、サリチル酸系、4-tert-ブチル-4’-メトキシジベンゾイルメタン、オキシベンゾンなどが挙げられる。
 粉体としては、酸化チタン、酸化亜鉛、黄酸化鉄、黒酸化鉄、ベンガラ、カーボンブラック、マイカ、セリサイト、タルク、カオリン、硫酸バリウム、ベントナイト、スメクタイト、窒化硼素、コンジョウ、群青、オキシ塩化ビスマス、雲母チタン、アルミニウムパウダー、ステアリン酸マグネシウム、ステアリン酸亜鉛、N-アシルリジン、ナイロン、有機顔料、有機色素、ナイロン粉末、ウレタンパウダー、球状シリコーン樹脂粉末などが挙げられる。
 また、これら粉体はフッ素化合物、シリコーン油、金属石ケン、界面活性剤、デキストリン脂肪酸エステル、イヌリン脂肪酸エステル、油脂などで処理したものも使用することができる。
 このデキストリン脂肪酸エステルは、油剤をベースとする化粧料に1乃至複数含有される。デキストリン脂肪酸エステルは、化粧料に対する含有率が、1重量%以上20重量%以下が好ましい。含有率が1重量%以上であると、復帰力があるゲルを作成することができる。また含有率が20重量%以下であると、ゲルが軟らかくなり、力を加えると流動性のある状態であって、ゲルからゾルの状態にすることができる。デキストリン脂肪酸エステルを溶解する油剤が揮発性炭化水素油である場合、揮発性炭化水素油は粘度が低いため、復帰力があるゲルを作成するためには、含有率は、例えば3重量%以上20重量%以下など、ミネラルオイルなどの他の油剤よりも多くすることが好ましい。
 上述したデキストリン脂肪酸エステルを含有する化粧料は、優れた復帰力及び低い離漿性を兼ね備えている。この化粧料は、力が加えられていないときはゲルの状態であり、力を加えることによりゲルを壊すと、ゲルからゾルの状態であって、とろみのある状態となる。さらにその化粧料を放置すると、ゲルの状態に戻る。
 従来のデキストリン脂肪酸エステルは、化粧料に高いチキソトロピー性を付与できるものの、上記デキストリン脂肪酸エステルを添加した油剤のほうが従来のデキストリン脂肪酸エステルを添加した油剤では得られない復帰力が得られる。このため、上記デキストリン脂肪酸エステルを化粧料に使用する際、化粧料として実用的な粘度を得るための添加量は従来よりも少なくて済む。
 上記デキストリン脂肪酸エステルによる復帰力により、例えば、化粧料を収容した保存容器から、化粧料を取り出すために化粧料に力を加えたときには粘度が低下する。このため、高粘度の化粧料であっても保存容器から化粧料を出しやすい。また、取り出した化粧料を手に取ったときや、顔や肢体などにのせたときに流れ落ちにくい。保存容器を振ることによって分散媒に分散質を分散させて使用するタイプの化粧料では、撹拌中は粘度が低下する一方、撹拌を終了してから短時間で粘度が復帰するため、分散質が均一に分散した状態の化粧料を保存容器から取り出すことができる。さらに、保存時には、離漿が抑制されるので、保存安定性を向上することができる。
 また、化粧料に高いチキソトロピー性を付与する従来のデキストリン脂肪酸エステルは、メイクアップ化粧料に多く使用されるイソドデカンのような揮発性の低粘度油剤に対しては増粘効果が低く添加量を多くする必要があった。それゆえ、従来のデキストリン脂肪酸エステルを含有する化粧料は、デキストリン脂肪酸エステルの添加量が多くなり、力を加えたときの粘度があまり低下しなかった。これに対し、上述した優れた復帰力と低い離漿性との両方を付与する性質を有するデキストリン脂肪酸エステルは、低い含有率でも復帰力を得られるため、化粧料の処方の自由度が高められる。
 さらに、力を加えることにより化粧料の粘度が低下するため、化粧料の伸びがよく、塗りやすい。このため、マスカラ、リップカラー、リップグロス、オイルファンデーション、リキッドルージュ、アイライナー、マニキュアなど、まつ毛、肌、爪などの上に化粧膜を形成するための化粧料においては、化粧料を所望の厚さで均一に塗布することが容易となるため、きれいな仕上がりとすることができる。また、化粧料の塗布が完了したときには化粧料の粘度が復帰するため、流れ落ちたり、滲んだりすることが抑制され、塗布を完了したときの化粧膜の状態が維持されやすい。さらに形成された化粧膜においては、化粧膜が形成された唇、目の周りなどが動くことによって粘度が低下してもすぐに復帰するので、化粧膜の剥がれ、崩れなどが抑制され、化粧膜の持続性(もち)をよくすることができる。したがって、仕上がりのときの化粧膜の状態が、デキストリン脂肪酸エステルによる優れた復帰力及び低い離漿性によって、経時的に維持されることとなる。
 上述した各効果は、デキストリン脂肪酸エステルが復帰力を付与するゲル化剤であることによって得られるものである。
 また上記デキストリン脂肪酸エステルを含有する化粧料は、化粧料として実用的な粘度を備えることができる。また、高い透明度を有するとともに、例えば50℃などの高温下でも形状を保つことができる高温時安定性、複数種の油剤への溶解性などにも優れている。このため、デキストリン脂肪酸エステルを多様な化粧料に使用することができる。なお、多様な化粧料に対するデキストリン脂肪酸エステルの実用性は、化粧料を構成する各成分の配合調整によっても改善することは可能である。ただし、こうした配合調整は、結局のところ、化粧料ごとに他成分の選定や配合について多大な試行錯誤を強いるものである。上述したデキストリン脂肪酸エステルの構成は、各化粧料におけるこうした煩わしさを、デキストリン脂肪酸エステルの特性によって軽減することができる。
 [実施例]
 以下、図1~図15を参照して実施例及び比較例について説明する。なお、本発明は、以下の実施例に限定されるものではない。
 図1の表に、デキストリン脂肪酸エステルの実施例1~6、及び比較例1~9の作製条件を示した。
 図2の表に、実施例1~6、及び比較例1~9の合成物のモル分率、平均置換度、及び収量について示した。なお、モル分率は百分率に換算して表に示した。また、本実施例で使用した分析機器は以下の通りであった。
 (平均置換度)
 アルカリ分解に要したアルカリの量の測定、いわゆるけん化価測定から求めた。
 (合成物の脂肪酸のモル分率)
 アルカリ分解後の脂肪酸のGC測定から求めた。
 GC分析
 GC機器:島津製作所製ガスクロマトグラフGC-2010
 カラム:InertCap FFAP GLサイエンス社製
 検出器:FID
 (復帰度測定)
 粘弾性測定装置:パールフィジカ社製 MCR100
 測定ジグ:CP25-2
 [実施例1]
 平均重合度20のデキストリン73gを、溶媒であるジメチルホルムアミド219g及び塩基性触媒であるピリジン99gに80℃で分散させ、直鎖飽和脂肪酸クロライドとしてパルミチン酸クロライド223g、分岐飽和脂肪酸クロライドとしてイソパルミチン酸クロライド52gを60分間で滴下した。イソパルミチン酸クロライドは、2-ヘキシルデカン酸クロライドである。滴下する直鎖飽和脂肪酸と分岐飽和脂肪酸とのモル分率は、百分率に換算してそれぞれ81%、19%とした。滴下終了後、反応温度を95℃として、4時間反応させた。反応液をメタノールで沈殿させた後、濾過し、固形分をメタノールで洗浄し、乾燥して、白色の粉体220gを得た。けん化価測定、及びアルカリ分解後のGC分析によって、回収されたデキストリン脂肪酸エステルは、脂肪酸の平均置換度が1.67であり、デキストリンに結合した直鎖飽和脂肪酸の脂肪酸に対するモル分率は、85%、デキストリンに結合した分岐飽和脂肪酸の脂肪酸に対するモル分率が脂肪酸に対して15%であることを確認した。
 [実施例2]
 平均重合度3のデキストリン72gを、溶媒であるヘプタン72g及び塩基性触媒であるβ-ピコリン116gに80℃で分散させ、直鎖飽和脂肪酸クロライドとしてミリスチン酸クロライド207g、分岐飽和脂肪酸クロライドとしてエメリー型イソステアリン酸クロライド48gを60分間で滴下した。滴下する直鎖飽和脂肪酸と分岐飽和脂肪酸とのモル分率は、百分率に換算してそれぞれ84%,16%とした。滴下終了後、反応温度を95℃として、4時間反応させた。反応液をメタノールで沈殿させた後、濾過し、固形分をメタノールで洗浄し、乾燥して、白色の粉体205gを得た。けん化価測定、及びアルカリ分解後のGC分析から、回収されたデキストリン脂肪酸エステルは、脂肪酸の平均置換度が1.73であり、デキストリンに結合した直鎖飽和脂肪酸のモル分率が、88%、デキストリンに結合した分岐飽和脂肪酸のモル分率が12%であることを確認した。
 [実施例3]
 平均重合度50のデキストリン68gを、溶媒であるN-メチルピロリドン135g及び塩基性触媒であるβ-ピコリン116gに80℃で分散させ、直鎖飽和脂肪酸クロライドとしてステアリン酸クロライド206g、分岐飽和脂肪酸クロライドとしてイソミリスチン酸クロライド(12-メチルトリデカン酸クロライド)79gを60分間で滴下した。滴下する直鎖飽和脂肪酸と分岐飽和脂肪酸とのモル分率は、百分率に換算してそれぞれ68%,32%とした。滴下終了後、反応温度を95℃として、4時間反応させた。反応液をメタノールで沈殿させた後、濾過し、固形分をメタノールで洗浄し、乾燥して、白色の粉体251gを得た。けん化価測定、及びアルカリ分解後のGC分析から、回収されたデキストリン脂肪酸エステルは、脂肪酸の平均置換度が1.99であり、デキストリンに結合した直鎖飽和脂肪酸のモル分率が75%、デキストリンに結合した分岐飽和脂肪酸のモル分率が25%であることを確認した。
 [実施例4]
 平均重合度20のデキストリン77gを、溶媒であるジメチルホルムアミド193g及び塩基性触媒であるβ-ピコリン116gに80℃で分散させ、直鎖飽和脂肪酸クロライドとしてパルミチン酸クロライド253g、分岐飽和脂肪酸クロライドとしてエメリー型イソステアリン酸クロライド24gを60分間で滴下した。滴下する直鎖飽和脂肪酸と分岐飽和脂肪酸とのモル分率は、百分率に換算してそれぞれ92%,8%とした。滴下終了後、反応温度を95℃として、4時間反応させた。反応液をメタノールで沈殿させた後、濾過し、固形分をメタノールで洗浄し、乾燥して、白色の粉体203gを得た。けん化価測定、及びアルカリ分解後のGC分析から、回収されたデキストリン脂肪酸エステルは、脂肪酸の平均置換度が1.52であり、デキストリンに結合した直鎖飽和脂肪酸のモル分率が95%、デキストリンに結合した分岐飽和脂肪酸のモル分率が5%であることを確認した。
 [実施例5]
 平均重合度20のデキストリン70gを、溶媒であるジメチルホルムアミド211g及び塩基性触媒であるβ-ピコリン116gに80℃で分散させ、直鎖飽和脂肪酸クロライドとしてミリスチン酸クロライド93g、直鎖飽和脂肪酸クロライドとしてパルミチン酸クロライド103g、分岐飽和脂肪酸クロライドとしてイソパルミチン酸クロライド69gを60分間で滴下した。イソパルミチン酸クロライドは、2-ヘキシルデカン酸クロライドである。滴下する直鎖飽和脂肪酸と分岐飽和脂肪酸とのモル分率は、百分率に換算してそれぞれ75%,25%とした。滴下終了後、反応温度を95℃として、4時間反応させた。反応液をメタノールで沈殿させた後、濾過し、固形分をメタノールで洗浄し、乾燥して、白色の粉体192gを得た。けん化価測定、及びアルカリ分解後のGC分析から、回収されたデキストリン脂肪酸エステルは、脂肪酸の平均置換度が1.80であり、デキストリンに結合した直鎖飽和脂肪酸のモル分率が80%、デキストリンに結合した分岐飽和脂肪酸のモル分率が20%であることを確認した。
 [実施例6]
 平均重合度10のデキストリン74gを、溶媒であるジメチルホルムアミド221g及び塩基性触媒であるβ-ピコリン116gに80℃で分散させ、直鎖飽和脂肪酸クロライドとしてパルミチン酸クロライド237g、分岐飽和脂肪酸クロライドとしてイソパルミチン酸クロライド39gを60分間で滴下した。イソパルミチン酸クロライドは、2-ヘキシルデカン酸クロライドである。滴下する直鎖飽和脂肪酸と分岐飽和脂肪酸とのモル分率は、百分率に換算してそれぞれ86%,14%とした。滴下終了後、反応温度を95℃として、4時間反応させた。反応液をメタノールで沈殿させた後、濾過し、固形分をメタノールで洗浄し、乾燥して、白色の粉体211gを得た。けん化価測定、及びアルカリ分解後のGC分析から、回収されたデキストリン脂肪酸エステルは、脂肪酸の平均置換度が1.61であり、デキストリンに結合した直鎖飽和脂肪酸のモル分率が90%、デキストリンに結合した分岐飽和脂肪酸のモル分率が10%であることを確認した。
 [比較例1]
 平均重合度2のデキストリン74gを、溶媒であるジメチルホルムアミド221g及び塩基性触媒であるβ-ピコリン116gに80℃で分散させ、直鎖飽和脂肪酸クロライドとしてパルミチン酸クロライド220g、分岐飽和脂肪酸クロライドとしてイソパルミチン酸クロライド55gを60分間で滴下した。イソパルミチン酸クロライドは、2-ヘキシルデカン酸クロライドである。滴下する直鎖飽和脂肪酸と分岐飽和脂肪酸とのモル分率は、百分率に換算してそれぞれ80%,20%とした。滴下終了後、反応温度を95℃として、4時間反応させた。反応液をメタノールで沈殿させた後、濾過し、固形分をメタノールで洗浄し、乾燥して、白色の粉体230gを得た。けん化価測定、及びアルカリ分解後のGC分析から、回収されたデキストリン脂肪酸エステルは、脂肪酸の平均置換度が1.80であり、デキストリンに結合した直鎖飽和脂肪酸のモル分率が83%、デキストリンに結合した分岐飽和脂肪酸のモル分率17%であることを確認した。
 [比較例2]
 平均重合度20のデキストリン77gを、溶媒であるジメチルホルムアミド232g及び塩基性触媒であるβ-ピコリン116gに80℃で分散させ、直鎖飽和脂肪酸クロライドとしてパルミチン酸クロライド275gを60分間で滴下した。すなわち、滴下する直鎖飽和脂肪酸と分岐飽和脂肪酸とのモル分率は、百分率に換算してそれぞれ100%,0%である。滴下終了後、反応温度を95℃として、4時間反応させた。反応液をメタノールで沈殿させた後、濾過し、固形分をメタノールで洗浄し、乾燥して、白色の粉体205gを得た。けん化価測定、及びアルカリ分解後のGC分析から、回収されたデキストリン脂肪酸エステルは、脂肪酸の平均置換度が1.50であり、デキストリンに結合した直鎖飽和脂肪酸のモル分率が100%であることを確認した。
 [比較例3]
 平均重合度20のデキストリン77gを、溶媒であるジメチルホルムアミド232g及び塩基性触媒であるβ-ピコリン116gに80℃で分散させ、直鎖飽和脂肪酸クロライドとしてパルミチン酸クロライド206g、分岐飽和脂肪酸クロライドとして炭素数8の2-エチルヘキサン酸クロライド41gを60分間で滴下した。滴下する直鎖飽和脂肪酸と分岐飽和脂肪酸とのモル分率は、百分率に換算してそれぞれ75%,25%とした。滴下終了後、反応温度を95℃として、4時間反応させた。反応液をメタノールで沈殿させた後、濾過し、固形分をメタノールで洗浄し、乾燥して、白色の粉体185gを得た。けん化価測定、及びアルカリ分解後のGC分析から、回収されたデキストリン脂肪酸エステルは、脂肪酸の平均置換度が1.50であり、デキストリンに結合した直鎖飽和脂肪酸のモル分率が87%、デキストリンに結合した分岐飽和脂肪酸のモル分率が13%であることを確認した。
 [比較例4]
 平均重合度20のデキストリン56gを、溶媒であるジメチルホルムアミド168g及び塩基性触媒であるβ-ピコリン116gに80℃で分散させ、直鎖飽和脂肪酸クロライドとしてパルミチン酸クロライド217g、分岐飽和脂肪酸クロライドとしてイソパルミチン酸クロライド58gを60分間で滴下した。イソパルミチン酸クロライドは、2-ヘキシルデカン酸クロライドである。滴下する直鎖飽和脂肪酸と分岐飽和脂肪酸とのモル分率は、百分率に換算してそれぞれ79%,21%とした。滴下終了後、反応温度を95℃として、4時間反応させた。反応液をメタノールで沈殿させた後、濾過し、固形分をメタノールで洗浄し、乾燥して、白色の粉体201gを得た。けん化価測定、及びアルカリ分解後のGC分析から、回収されたデキストリン脂肪酸エステルは、脂肪酸の平均置換度が2.06であり、デキストリンに結合した直鎖飽和脂肪酸のモル分率が83%、デキストリンに結合した分岐飽和脂肪酸のモル分率が17%であることを確認した。
 [比較例5]
 平均重合度20のデキストリン81gを、溶媒であるジメチルホルムアミド243g及び塩基性触媒であるβ-ピコリン116gに80℃で分散させ、直鎖飽和脂肪酸クロライドとしてパルミチン酸クロライド231g、分岐飽和脂肪酸クロライドとしてイソパルミチン酸クロライド44gを60分間で滴下した。イソパルミチン酸クロライドは、2-ヘキシルデカン酸クロライドである。滴下する直鎖飽和脂肪酸と分岐飽和脂肪酸とのモル分率は、百分率に換算してそれぞれ84%,16%とした。滴下終了後、反応温度を95℃として、4時間反応させた。反応液をメタノールで沈殿させた後、濾過し、固形分をメタノールで洗浄し、乾燥して、白色の粉体189gを得た。けん化価測定、及びアルカリ分解後のGC分析から、回収されたデキストリン脂肪酸エステルは、脂肪酸の平均置換度が1.43であり、デキストリンに結合した直鎖飽和脂肪酸のモル分率が87%、デキストリンに結合した分岐飽和脂肪酸のモル分率が13%であることを確認した。
 [比較例6]
 平均重合度20のデキストリン72gを、溶媒であるジメチルホルムアミド216g及び塩基性触媒であるβ-ピコリン116gに80℃で分散させ、直鎖飽和脂肪酸クロライドとして炭素数12のラウリン酸184g、分岐飽和脂肪酸クロライドとしてイソパルミチン酸クロライド44gを60分間で滴下した。イソパルミチン酸クロライドは、2-ヘキシルデカン酸クロライドである。滴下する直鎖飽和脂肪酸と分岐飽和脂肪酸とのモル分率は、百分率に換算してそれぞれ84%,16%とした。滴下終了後、反応温度を95℃として、4時間反応させた。反応液をメタノールで沈殿させた後、濾過し、固形分をメタノールで洗浄し、乾燥して、白色の粉体169gを得た。けん化価測定、及びアルカリ分解後のGC分析から、回収されたデキストリン脂肪酸エステルは、脂肪酸の平均置換度が1.62であり、デキストリンに結合した直鎖飽和脂肪酸のモル分率が88%、デキストリンに結合した分岐飽和脂肪酸のモル分率が12%であることを確認した。
 [比較例7]
 平均重合度20のデキストリン52gを、溶媒であるジメチルホルムアミド157g及び塩基性触媒であるβ-ピコリン116gに80℃で分散させ、直鎖飽和脂肪酸クロライドとしてパルミチン酸275gを60分間で滴下した。すなわち、滴下する直鎖飽和脂肪酸と分岐飽和脂肪酸とのモル分率は、百分率に換算してそれぞれ100%,0%である。滴下終了後、反応温度を95℃として、4時間反応させた。反応液をメタノールで沈殿させた後、濾過し、固形分をメタノールで洗浄し、乾燥して、白色の粉体190gを得た。けん化価測定、及びアルカリ分解後のGC分析から、回収されたデキストリン脂肪酸エステルは、脂肪酸の平均置換度が2.20であり、デキストリンに結合した直鎖飽和脂肪酸のモル分率が100%であることを確認した。
 [比較例8]
 平均重合度20のデキストリン60gを、溶媒であるジメチルホルムアミド180g及び塩基性触媒であるβ-ピコリン116gに80℃で分散させ、直鎖飽和脂肪酸クロライドとしてパルミチン酸165g、分岐飽和脂肪酸クロライドとしてイソパルミチン酸クロライド110gを60分間で滴下した。イソパルミチン酸クロライドは、2-ヘキシルデカン酸クロライドである。滴下する直鎖飽和脂肪酸と分岐飽和脂肪酸とのモル分率は、百分率に換算してそれぞれ60%,40%とした。滴下終了後、反応温度を95℃として、4時間反応させた。反応液をメタノールで沈殿させた後、濾過し、固形分をメタノールで洗浄し、乾燥して、白色の粉体172gを得た。けん化価測定、及びアルカリ分解後のGC分析から、回収されたデキストリン脂肪酸エステルは、脂肪酸の平均置換度が1.90であり、デキストリンに結合した直鎖飽和脂肪酸のモル分率が63%、デキストリンに結合した分岐飽和脂肪酸のモル分率が37%であることを確認した。
 [比較例9]
 平均重合度20のデキストリン66gを、溶媒であるジメチルホルムアミド199g及び塩基性触媒であるβ-ピコリン116gに80℃で分散させ、直鎖飽和脂肪酸クロライドとしてミリスチン酸クロライド161g、分岐飽和脂肪酸クロライドとしてイソパルミチン酸クロライド96gを60分間で滴下した。イソパルミチン酸クロライドは、2-ヘキシルデカン酸クロライドである。滴下する直鎖飽和脂肪酸と分岐飽和脂肪酸とのモル分率は、百分率に換算してそれぞれ65%,35%とした。滴下終了後、反応温度を95℃として、4時間反応させた。反応液をメタノールで沈殿させた後、濾過し、固形分をメタノールで洗浄し、乾燥して、白色の粉体171gを得た。けん化価測定、及びアルカリ分解後のGC分析から、回収されたデキストリン脂肪酸エステルは、脂肪酸の平均置換度が1.70であり、デキストリンに結合した直鎖飽和脂肪酸のモル分率が70%、デキストリンに結合した分岐飽和脂肪酸のモル分率が30%であることを確認した。
 [評価]
 次に、実施例1~6、比較例1~9について評価を行った。
 まず、実施例1~6のデキストリン脂肪酸エステル、及び比較例1~9のデキストリン脂肪酸エステルを用いて、一般的な油剤をベースとする測定試料と、揮発性炭化水素油をベースとする測定試料とを作製した。揮発性炭化水素油は、化粧料の塗布後に揮発するものであり、例えばオイルファンデーション、マスカラ、アイライナーなどに用いられる。
 一般的な油剤としてはミネラルオイルを用いた。90℃のミネラルオイルに、実施例1~6のデキストリン脂肪酸エステル、及び比較例1~9のデキストリン脂肪酸エステルをそれぞれ別に加えて加熱溶解した。溶解物を30mlのバイアル瓶(日電理化製)に20g充填し、室温にて10日間放置してゲル化させた。10日間経過後、撹拌してゲルを破壊し、実施例1~6のデキストリン脂肪酸エステルを用いた6つの測定試料と、比較例1~9のデキストリン脂肪酸エステルを用いた9つの測定試料を得た。
 揮発性炭化水素油としては、イソドデカンを用いた。70℃のイソドデカンに、実施例1~6のデキストリン脂肪酸エステル、及び比較例1~9のデキストリン脂肪酸エステルをそれぞれ別に加えて加熱溶解し、溶解物を30mlのバイアル瓶(日電理化製)に20g充填し、室温にて10日間放置した。10日間経過後、撹拌してゲルを破壊し、実施例1~6のデキストリン脂肪酸エステルを用いた6つの測定試料と、比較例1~9のデキストリン脂肪酸エステルを用いた9つの測定試料を得た。
 図3の表に、実施例1~6のデキストリン脂肪酸エステル及び比較例1~9のデキストリン脂肪酸エステルの溶解濃度と、測定試料の粘度を示した。
 (復帰度)
 次に、ミネラルオイルを基材とした各測定試料と、イソドデカンを基材とした各測定試料とについて、復帰度を測定した。復帰力は、ゲル化した各測定試料に力を加えた状態から、力を加えない状態にしたときの測定試料の単位時間あたりにおける粘度の増加量である。
 測定温度25℃にて、測定ジグによって試料を、回転速度0.1(s-1)で4分間、100(s-1)で2分間、0.1(s-1)で8分間回転させながら、粘度(Pa・s)を測定した。回転速度0.1(s-1)は、静置状態に相当し、回転速度100(s-1)は撹拌状態に相当する。
 図4に、実施例1のデキストリン脂肪酸エステルを用いた測定試料、及び比較例2,3のデキストリン脂肪酸エステルを用いた測定試料についてのチキソトロピー性を例示したグラフを示す。縦軸は粘度(Pa・s)であり、横軸は時間を示す。実施例1の測定試料では、回転速度が0.1(s-1)から100(s-1)になると、粘度がほぼ「0Pa・s」まで低下し、回転速度が100(s-1)から0.1(s-1)になると、粘度は、元の粘度付近まで一旦戻る。一方、比較例2,3の測定試料の粘度は、回転速度が100(s-1)から0.1(s-1)になると高くなるものの、実施例1に比較すると、粘度の変化量は著しく小さい。
 回転速度が0.1(s-1)から100(s-1)になる直前(開始時間T0)の粘度を、初期粘度としたとき、回転速度が100(s-1)から0.1(s-1)に変化した時点(終了時間T1)から、粘度が初期粘度の半分に到達するまでに要した復帰時間を測定した。
 そして、復帰時間が10秒以内であれば「◎」、10秒超20秒以内であれば「○」とし、20秒を超えた、若しくは粘度が初期粘度の半分まで到達しなかったときを「×」とした。すなわち、「◎」又は「○」である測定試料は、復帰力を備える。
 図5に示す表で示されるように、ミネラルオイルをベースとした実施例1~6の測定試料のうち、実施例4の測定試料の復帰時間が10秒を超え20秒以内であり、その他はいずれも10秒以内に粘度が初期粘度の半分に到達した。比較例7の測定試料は10秒以内に粘度が初期粘度の半分に到達し、比較例1,2,4,6の測定試料は、10秒を超えて20秒以内に粘度が初期粘度の半分に到達した。比較例3,5,8,9の測定試料は、20秒以内に粘度が初期粘度の半分に到達しなかった。比較例9の測定試料は、十分な粘度が得られず、ゲル化しなかった。
 また、イソドデカンをベースとした実施例1~6の測定試料は、実施例3の測定試料の復帰時間が10秒を超え20秒以内となり、その他はいずれも10秒以内に粘度が初期粘度の半分に到達した。比較例7の測定試料は、10秒以内に粘度が初期粘度の半分に到達した。比較例1,4,6の測定試料は、10秒を超えて20秒以内に粘度が初期粘度の半分に到達した。比較例2,3,5,8,9の測定試料は、20秒以内に粘度が初期粘度の半分に到達しなかった。
 (離漿性)
 ミネラルオイルをベースとした実施例1~6の測定試料及び比較例1~9の測定試料と、イソドデカンをベースとした実施例1~6の測定試料及び比較例1~9の測定試料について、撹拌してゲルを破壊後、25℃の温度下で静置して離漿の有無を確認した。1週間経過後も離漿が認められない状態を「◎」、1週間後に離漿がわずかにあるものの殆ど認められない状態を「○」、1日経過後に離漿が認められた状態を「×」とした。
 ミネラルオイルをベースとした実施例1,5,6の測定試料は、いずれも離漿が認められず、実施例2~4の測定試料は離漿が殆ど認められなかった。ミネラルオイルをベースとした比較例8,9の測定試料は離漿が認められず、比較例3の測定試料は離漿が殆ど認められず、残りの比較例1,2,4~7の測定試料は、1日経過後に離漿が認められた。
 イソドデカンをベースとした実施例1,4~6の測定試料は、いずれも離漿が認められず、実施例2~4の測定試料は離漿が殆ど認められなかった。イソドデカンをベースとした比較例8,9の測定試料は、いずれも離漿が認められず、比較例3の測定試料は離漿が殆ど認められず、残りの比較例1,2,4~7は、1日経過後に離漿が認められた。
 したがって、実施例1~6の測定試料のいずれもが、ミネラルオイル及びイソドデカンの両方の溶媒において、復帰度が「◎」又は「○」の評価であり、且つ離漿性の低さが「◎」又は「○」の評価であり、優れた復帰力及び低い離漿性を兼ね備えていた。一方、比較例1~9はいずれもが、ミネラルオイルを溶媒とした場合において、復帰度及び離漿性の両方、又はそれらのいずれか一方が「×」の評価であって劣るものであった。また、比較例1~9はいずれもが、イソドデカンを溶媒とした場合においても、復帰度及び離漿性の両方、又はそれらのいずれか一方が「×」の評価であって劣るものであった。
 (粘度)
 ミネラルオイルをベースとした実施例1~6の測定試料、及び比較例1~9の測定試料と、イソドデカンをベースとした実施例1~6の測定試料、及び比較例1~9の測定試料とについて、粘弾性測定装置を用いてゲル破壊時の粘度を測定した。撹拌してゲルを破壊したとき流動性のある液状となる水準を「◎」、ゲルを破壊したときとろみのある液状になる水準を「○」、ゲルを破壊したときほとんど流動しない水準を「×」とした。
 ミネラルオイルをベースとした実施例1~6の測定試料のいずれもが、ゲルを破壊したときの粘度が「◎」又は「○」であった。一方、比較例2,4,6,7の測定試料は、ゲルを破壊したときの粘度が「○」であったが、残りの比較例1,3,5,8,9の測定試料は、ゲルを破壊したときの粘度が「×」であった。
 イソドデカンをベースとした実施例1~6の測定試料のいずれもが、ゲルを破壊したときの粘度が「◎」又は「○」であった。一方、比較例7の測定試料は、ゲルを破壊したときの粘度が「◎」であり、比較例2,4,6の測定試料は、ゲルを破壊したときの粘度が「○」であったが、残りの比較例1,3,5,8,9の測定試料は、ゲルを破壊したときの粘度が「×」であった。
 (透明度)
 ミネラルオイルをベースとした実施例1~6の測定試料、及び比較例1~9の測定試料と、イソドデカンをベースとした実施例1~6の測定試料、及び比較例1~9の測定試料とについて、目視にて透明度を確認した。目視にて濁りが認められない状態を「◎」、わずかに濁りがある状態を「○」、濁りがあると認められる状態を「×」とした。
 ミネラルオイルをベースとした実施例1~6の測定試料のいずれもが、濁りが認められなかった。比較例3,6,8,9の測定試料については、濁りが認められなかった。比較例1の測定試料は、わずかに濁りがあり、比較例2,4,5,7の測定試料は、濁りが認められた。
 イソドデカンをベースとした実施例1~6の測定試料のいずれもが、濁りが認められなかった。比較例3,6,8,9の測定試料については、濁りが認められなかった。比較例1の測定試料は、わずかに濁りがあり、比較例2,4,5,7の測定試料は、濁りが認められた。
 (溶解温度)
 実施例1~6のデキストリン脂肪酸エステル及び比較例1~9のデキストリン脂肪酸エステルのミネラルオイルに対する溶解温度について評価した。また、実施例1~6のデキストリン脂肪酸エステル及び比較例1~9のデキストリン脂肪酸エステルのイソドデカンに対する溶解温度について評価した。
 ミネラルオイルにデキストリン脂肪酸エステルを溶解した場合は、90℃のミネラルオイルに溶解する水準を「◎」、100℃のミネラルオイルに溶解する水準を「○」、100℃よりも高い温度でミネラルオイルに溶解する水準を「×」とした。
 また、イソドデカンにデキストリン脂肪酸エステルを溶解した場合は、75℃のイソドデカンに溶解する水準を「◎」、85℃のイソドデカンに溶解する水準を「○」、85℃よりも高い温度でイソドデカンに溶解する水準を「×」とした。
 実施例1,2,5,6のデキストリン脂肪酸エステルは、90℃のミネラルオイルに溶解し、実施例3,4のデキストリン脂肪酸エステルは、100℃のミネラルオイルに溶解した。比較例1,7~9のデキストリン脂肪酸エステルは、90℃のミネラルオイルに溶解し、比較例2,3,5,6のデキストリン脂肪酸エステルは、100℃のミネラルオイルに溶解した。比較例4のデキストリン脂肪酸エステルは、100℃よりも高い温度でミネラルオイルに溶解した。
 実施例1,2,5,6のデキストリン脂肪酸エステルは、75℃のイソドデカンに溶解し、実施例3,4のデキストリン脂肪酸エステルは、85℃のイソドデカンに溶解した。比較例1,3,8,9のデキストリン脂肪酸エステルは、75℃のイソドデカンに溶解し、比較例2,5~7のイソドデカンは、85℃のイソドデカンに溶解した。比較例4のデキストリン脂肪酸エステルは、85℃よりも高い温度でイソドデカンに溶解した。
 以下、図6~図15を参照して、実施例のデキストリン脂肪酸エステルを使用して製造された化粧料の実施例について説明する。なお、図6~図15において、各成分の比率は、「重量%」で示している。
 (実施例A)
 化粧料:マスカラ
 成分
 (1)デキストリン脂肪酸エステル
 (2)イソドデカン(パーメチル99A プリスパース社製)
 (3)ポリエチレン(パフォーマレンPL ニューフェーズテクノロジー社製)
 (4)マイクロクリスタリンワックス(マルチワックスW-445 SONNEBORN社製)
 (5)キャンデリラロウ(精製キャンデリラワックス特号 セラリカNODA社製)
 (6)トリメチルシロキシケイ酸(X-21-5595 信越化学工業株式会社製)
 (7)イソドデカン(X-21-5595 信越化学工業株式会社製)
 (8)酸化鉄黒(タロックスBL-100 チタン工業社製)
 (9)タルク(タルクJA-13R 浅田製粉社製)
 (10)ナイロン-12(ORGASOL2002 アルケマ社製)
 なお、成分(6)及び(7)は、予め混合された商品(X-21-5595 信越化学工業株式会社製)として販売されている。
 図6に示すように、成分(1)は、実施例1,3,4及び比較例2,3,7~9のデキストリン脂肪酸エステルをそれぞれ用いて、実施例A1~A3、及び比較例A1~A5とした。
 成分(1),(2)を加熱混合し、成分(3)~(10)を加え混合した。その混合物を容器に充填し、8つの評価試料(マスカラ)を得た。
 また、10名の被験者による使用性試験を行った。評価にあたっては、被験者が「非常に優れている」を「5点」、「優れている」を「4点」、「普通」を「3点」、「劣る」を「2点」、「非常に劣る」を「1点」として試料に点数を付与し、10名の被験者の平均点数が「4.0以上5.0点以下」を「◎」、「3.0以上4.0点未満」を「○」、「2.0以上3.0点未満」を「△」、「1.0以上2.0点未満」を「×」とした。
 (評価項目)
 (a)保存安定性
 50℃の恒温器に2週間静置した後、外観を目視で観察し、油分の分離がない状態を「5点」、若干、油分の分離が見られる状態を「4点」、少し油分が分離している状態を「3点」、油分がかなり分離している状態を「2点」、油分が分離しており使用困難な状態を「1点」として採点を行った。
 (b)ブラシへの付着性:ブラシへの適度な付着性
 (c)化粧効果・ツヤ:塗布後のきれいさ、ツヤの良さについて評価した。
 (d)塗布時のノビ:塗布時の塗りやすさについて評価した。
 (e)ボリュームアップ効果:睫毛への付着量の多さについて評価した。
 (f)セパレート効果:睫毛の一本一本の離れやすさについて評価した。
 (g)耐摩擦性:塗布1時間後、ティッシュで擦ったときの色落ちの無さについて評価した。
 実施例A1~A3のマスカラは、油の分離がみられず、比較例A2は油の分離が若干確認された。また、比較例A3~A5は油の分離が少し確認され、比較例A1は油の分離により使用困難であった。また、実施例A1~A3のマスカラは、優れた復帰力のため「ブラシへの付着性」及び「セパレート性」の評価が高く、比較例A1~A5のマスカラは「ブラシへの付着性」及び「セパレート性」の評価が実施例A1~A3よりも低かった。実施例A1~A3及び比較例A1~A3のマスカラは「耐摩擦性」の評価が高く、比較例A4、A5のマスカラはデキストリン脂肪酸エステル自体が軟らかくイソドデカンが揮発した後もべたつきがあったため「耐摩擦性」の評価が低かった。実施例A1~A3のマスカラは、実施例A2のマスカラの「ボリュームアップ効果」が「○」である以外、すべて「◎」であり、比較例A1~A5のマスカラに比べ総合的に評価が高かった。
 (実施例B)
 化粧料:ボディオイル
 成分
 (1)デキストリン脂肪酸エステル
 (2)スクワラン
 (3)ミリスチン酸オクチルドデシル
 (4)イソノナン酸イソトリデシル
 (5)エチルヘキサン酸セチル
 (6)トリオクタノイン
 (7)トコフェロール
 図7に示すように、成分(1)は、実施例1,3,4及び比較例2,3,7~9のデキストリン脂肪酸エステルをそれぞれ用いて、実施例B1~B3、及び比較例B1~B5とした。
 上記成分(1)~(7)を加温溶解し、ボディオイルを得た。
 また、10名の被験者による使用性試験を行った。評価方法は実施例Aと同様である。
 (評価項目)
 (a)保存安定性:実施例Aと同様に評価した。
 (b)垂れ落ちの無さ:容器から取るときの手からの垂れ落ちやすさについて評価した。
 (c)伸び広がり:塗布時の伸び広がり易さについて評価した。
 (d)使用感:べたつきの無さ、手触り感の良さについて評価した。
 (e)透明性:濁りや白濁の無さについて評価した。
 実施例B1~B3のボディオイルは、いずれの項目も「◎」であった。比較例B1~B5のボディオイルは、項目によっては「◎」の評価であるものもあるが、実施例B1~B3のボディオイルよりも総合的に評価が低かった。
 (実施例C)
 化粧料:クレンジングジェル
 成分(重量%)
 (1)デキストリン脂肪酸エステル
 (2)ミネラルオイル
 (3)イソノナン酸イソトリデシル
 (4)スクワラン
 (5)オクチルドデカノール
 (6)トリオクタノイン
 (7)テトラオレイン酸ソルベス-40(ユニオックスST-40E 日油株式会社製)
 (8)水
 図8に示すように、成分(1)は、実施例1,3,4及び比較例2,3,7~9のデキストリン脂肪酸エステルをそれぞれ用いて、実施例C1~C3、及び比較例C1~C6とした。
 上記成分(1)~(7)を加温溶解したものに、成分(8)を撹拌しながら少しずつ加えた。さらにその混合物を撹拌しながら室温まで冷却してクレンジングジェルを得た。
 また、10名の被験者による使用性試験を行った。評価方法は実施例Aと同様である。
 (評価項目)
 (a)保存安定性:実施例Aと同様に評価した。
 (b)透明性:濁りや白濁の無さについて評価した。
 (c)垂れ落ちの無さ:容器から取るときの手からの垂れ落ちやすさについて評価した。
 (d)伸び広がり:クレンジングの際に、均一且つ容易に伸び広がるかについて評価した。
 (e)使用感:べたつきの無さ、手触り感の良さについて評価した。
 実施例C1~C3のクレンジングジェルは、いずれの項目も「◎」であった。比較例C1~C5のクレンジングジェルは、項目によっては「◎」の評価であるものもあるが、実施例C1~C3のクレンジングジェルよりも総合的に評価が低かった。
 (実施例D)
 化粧料:ヘアトリートメントジェル
 成分
 (1)デキストリン脂肪酸エステル
 (2)オレフィンオリゴマー(NEXBASE 2004FG 日清オイリオグループ製)
 (3)イソノナン酸イソノニル
 (4)オクチルドデカノール
 (5)ラウロイルグルタミン酸ジ(フィトステリル/オクチルドデシル)(エルデュウPS-203 味の素株式会社製)
 (6)イソステアロイル加水分解シルク、イソステアリン酸(プロモイスEF-118 IS 株式会社成和化成製)
 図9に示すように、成分(1)は、実施例1,3,4及び比較例2,3,7~9のデキストリン脂肪酸エステルをそれぞれ用いて、実施例D1~D3、及び比較例D1~D6とした。
 上記成分(1)~(6)を加温溶解し、ヘアトリートメントジェルを得た。
 また、10名の被験者による使用性試験を行った。評価方法は実施例Aと同様である。
 (評価項目)
 (a)保存安定性:実施例Aと同様に評価した。
 (b)透明性:濁りや白濁の無さについて評価した。
 (c)垂れ落ちの無さ:容器から取るときの手からの垂れ落ちやすさについて評価した。
 (d)伸び広がり:塗布時に、均一且つ容易に伸び広がるかについて評価した。
 (e)使用感:べたつきの無さ、手触り感の良さについて評価した。
 実施例D1~D3のヘアトリートメントジェルについては、「透明感」の評価が「○」であるものの、その他の項目はいずれも「◎」の評価であった。また比較例D1~D5のヘアトリートメントジェルは、「○」、「△」、又は「×」の評価であり、実施例D1~D3のヘアトリートメントジェルよりも総合的に評価が低かった。
 (実施例E)
 化粧料:リップカラー
 成分
 (1)デキストリン脂肪酸エステル
 (2)トリオクタノイン
 (3)ジメチコンコポリオール(KF-6017 信越化学工業株式会社製)
 (4)シクロメチコン
 (5)ブチレングリコール
 (6)水
 (7)顔料
 図10に示すように、成分(1)は、実施例1,3,4及び比較例2,3,7~9のデキストリン脂肪酸エステルをそれぞれ用いて、実施例E1~E3、及び比較例E1~E6とした。
 上記成分(2)の一部に成分(7)を分散し、成分(1)と成分(2)の残量と、成分(3),(4)とを加温溶解した。成分(7)を分散した成分(2)に、成分(1)~(4)を混合したものを撹拌しながら加え、均一に混合及び分散する。次いで、成分(5),(6)を加温溶解し、80℃にて、成分(1)~(4)を混合及び分散したものに添加しながら乳化させ、冷却してリップカラーを得た。
 また、10名の被験者による使用性試験を行った。評価方法は実施例Aと同様である。
 (評価項目)
 (a)保存安定性:実施例Aと同様に評価した。
 (b)塗布具による取り出しやすさ:ブラシなどの塗布具によって容易に取り出せるかどうかについて評価した。
 (c)使用時の伸び:唇への伸びのよさについて評価した。
 (d)にじみにくさ:塗布後3時間経過後のにじみの状態について評価した。
 実施例E1~E3のリップカラーは、いずれの項目も「◎」の評価であった。比較例E1~E5のリップカラーは、比較例E1のリップカラーの保存安定性が「◎」である以外、いずれも「○」、「△」、又は「×」であり、実施例E1~E3のリップカラーよりも総合的に評価が低かった。
 (実施例F)
 化粧料:リップグロス
 成分
 (1)デキストリン脂肪酸エステル
 (2)ミネラルオイル
 (3)水添ロジン酸ペンタエリスリチル、イソステアリン酸オクチルドデシル(GEL-ISOD 進栄化学株式会社製)
 (4)リンゴ酸ジイソステアリル
 (5)ジフェニルシロキシフェニルトリメチコン(KF-56A信越化学工業株式会社製)
 (6)水添ポリイソブテン(パールリーム 日油株式会社製)
 (7)顔料
 図11に示すように、成分(1)は、実施例1,3,4及び比較例2,3,7~9のデキストリン脂肪酸エステルをそれぞれ用いて、実施例F1~F3、及び比較例F1~F6とした。
 上記成分(1)~(5)を加温溶解し、さらに成分(6)を加え加温溶解する。溶解したものに成分(7)を加え、加温し、均一に分散後、冷却してリップグロスを得た。
 また、10名の被験者による使用性試験を行った。評価方法は実施例Aと同様である。
 (評価項目)
 (a)保存安定性:実施例Aと同様に評価した。
 (b)塗布具による取り出しやすさ:ブラシなどの塗布具によって容易に取り出せるかどうかについて評価した。
 (c)使用時の伸び:唇への伸びのよさについて評価した。
 (d)にじみにくさ:塗布後3時間経過後のにじみの状態について評価した。
 実施例F1~F3のリップグロスは、いずれの項目も「◎」の評価であった。比較例F1~F5のリップグロスは、いずれの評価項目も「○」、「△」であり、実施例F1~F3のリップグロスよりも総合的に評価が低かった。
 (実施例G)
 化粧料:オイルファンデーション
 成分(重量%)
 (1)デキストリン脂肪酸エステル
 (2)ミネラルオイル
 (3)イソノナン酸イソトリデシル
 (4)スクワラン
 (5)ジフェニルシロキシフェニルトリメチコン(KF-56A信越化学工業株式会社製)
 (6)イソドデカン(パーメチル99A プリスパース社製)
 (7)顔料
 図12に示すように、成分(1)は、実施例1,3,4及び比較例2,3,7~9のデキストリン脂肪酸エステルをそれぞれ用いて、実施例G1~G3、及び比較例G1~G6とした。
 上記成分(1)~(5)を加温溶解し、さらに成分(7)を加えて、成分(7)を均一に分散した。これを冷却しながら50℃にて成分(6)を加え、冷却してオイルファンデーションを得た。
 また、10名の被験者による使用性試験を行った。評価方法は実施例Aと同様である。
 (評価項目)
 (a)保存安定性:実施例Aと同様に評価した。
 (b)垂れ落ちの無さ:容器から取るときの手からの垂れ落ちやすさについて評価した。
 (c)化粧もち:3時間後の化粧膜について、もちの良さ、崩れの少なさについて評価した。
 (d)使用感:べたつきの無さについて評価した。
 実施例G1~G3のオイルファンデーションは、いずれの項目も「◎」の評価であった。比較例G1~G5のオイルファンデーションは、比較例G1、G2のオイルファンデーションの「化粧もち」が「◎」の評価である以外、いずれも「○」、「△」、又は「×」であり、実施例G1~G3のオイルファンデーションよりも総合的に評価が低かった。
 (実施例H)
 化粧料:美容オイル
 成分
 (1)デキストリン脂肪酸エステル
 (2)ハトムギ油
 (3)イソノナン酸イソトリデシル
 (4)ホホバ油
 (5)トリオクタノイン
 (6)ミネラルオイル
 (7)スクワラン
 (8)オリーブ油
 (9)アボカド油
 (10)トコフェロール
 図13に示すように、成分(1)は、実施例1,3,4及び比較例2,3,7~9のデキストリン脂肪酸エステルをそれぞれ用いて、実施例H1~G3、及び比較例H1~H6とした。
 成分(1)~(10)を加温溶解し、美容オイルを得た。
 また、10名の被験者による使用性試験を行った。評価方法は実施例Aと同様である。
 (評価項目)
 (a)保存安定性:実施例Aと同様に評価した。
 (b)透明性:濁りや白濁の無さについて評価した。
 (c)垂れ落ちの無さ:容器から取るときの手からの垂れ落ちやすさについて評価した。
 (d)伸び広がり:使用時に、均一且つ容易に伸び広がるかについて評価した。
 (e)使用感:べたつきの無さ、手触り感の良さについて評価した。
 実施例H1~H3の美容オイルは、「透明性」が「○」の評価である以外、いずれの項目も「◎」の評価であった。これは、材料に「オリーブ油、アボカド油などの植物油」を含むために透明性が低下したものであり、美容オイルの機能としては問題がない。比較例H1~H5の美容オイルは、比較例H1の保存安定性が「◎」である以外、いずれも「○」、「△」、又は「×」であり、実施例H1~H3よりも総合的に評価が低かった。
 (実施例J)
 化粧料:リキッドルージュ
 成分
 (1)デキストリン脂肪酸エステル
 (2)イソステアリン酸デキストリン
 (3)リンゴ酸ジイソステアリル
 (4)イソドデカン(パーメチル99A プリスパース社製)
 (5)水添ポリイソブテン(パールリーム 日油株式会社製)
 (6)シリカ(サンスフェアL-51 AGCエスアイテック社製)
 (7)マイカ(マイカSA-350 ヤマグチマイカ社製)
 (8)パール剤
 (9)顔料
 図14に示すように、成分(1)は、実施例1,3,4及び比較例2,3,7~9のデキストリン脂肪酸エステルをそれぞれ用いて、実施例J1~J3、及び比較例J1~J6とした。
 成分(1)~(10)を加温溶解し、リキッドルージュを得た。
 また、10名の被験者による使用性試験を行った。評価方法は実施例Aと同様である。
 (評価項目)
 (a)保存安定性:実施例Aと同様に評価した。
 (b)塗布具による取り出しやすさ:ブラシなどの塗布具によって容易に取り出せるかどうかについて評価した。
 (c)塗りやすさ:唇へのノリの良さ、スムースに塗布できるかについて評価した。
 (d)にじみにくさ:塗布後3時間経過後のにじみの状態について評価した。
 実施例J1~J3のリキッドルージュは、いずれの項目も「◎」の評価であった。比較例J1~J5のリキッドルージュは、比較例J1のリキッドルージュの「保存安定性」が「◎」である以外、いずれも「○」、「△」、又は「×」であり、実施例J1~J3のリキッドルージュよりも総合的に評価が低かった。
 (実施例K)
 化粧料:ジェル状アイライナー
 成分
 (1)デキストリン脂肪酸エステル
 (2)ポリエチレン(パフォーマレンPL ニューフェーズテクノロジー社製)
 (3)マイクロクリスタリンワックス(マルチワックスW-445 SONNEBORN社製)
 (4)軽質流動イソパラフィン(IPソルベント1620 出光石油化学社製)
 (5)デカメチルシクロペンタシロキサン
 (6)ポリメチルシルセスキオキサン(KMP-590 信越化学工業株式会社製)
 (7)トリメチルシロキシケイ酸(X-21-5595 信越化学工業株式会社製)
 (8)イソドデカン(パーメチル99A プリスパース社製)
 (9)顔料
 図15に示すように、成分(1)は、実施例1,3,4及び比較例2,3,7~9のデキストリン脂肪酸エステルをそれぞれ用いて、実施例K1~K3、及び比較例K1~K6とした。
 成分(1)~(4)を加温溶解したものに、成分(5)~(9)を加えて加温し、均一に分散後、冷却してジェル状アイライナーを得た。
 また、10名の被験者による使用性試験を行った。評価方法は実施例Aと同様である。
 (評価項目)
 (a)保存安定性:実施例Aと同様に評価した。
 (b)垂れ落ちの無さ:容器から取るときの手からの垂れ落ちやすさについて評価した。
 (c)使用時の伸び:使用時のまぶたへの伸びやすさについて評価した。
 (d)にじみにくさ:塗布後3時間経過後のにじみの状態について評価した。
 実施例K1~K3のジェル状アイライナーは、いずれの項目も「◎」の評価であった。比較例K1~K5のジェル状アイライナーは、比較例K1のジェル状アイライナーの「保存安定性」が「◎」である以外、いずれも「○」、「△」、又は「×」であり、実施例K1~K3のジェル状アイライナーよりも総合的に評価が低かった。
 以上説明したように、上記実施形態によれば、以下に列挙する効果が得られるようになる。
 (1)デキストリン脂肪酸エステルにおけるデキストリンの平均糖重合度が3以上100以下とすることによって、軟らかなゲルが得ることができなくなることを抑制するとともに、デキストリン脂肪酸エステルの油剤への溶解性が過剰に低くなることを抑制できる。また、デキストリンに結合する直鎖飽和脂肪酸の炭素数を14以上18以下とすることで、復帰力を高め、分岐飽和脂肪酸の炭素数を14以上18以下とすることで、デキストリンと脂肪酸との反応効率を良好にしつつ、油剤に適切な粘性を付与することができる。また、脂肪酸における直鎖飽和脂肪酸のモル分率を0.75以上0.95以下とすることによって、ゲル化した油剤を滑らかな状態としつつ、復帰力を向上することができる。さらにグルコース単位あたりの脂肪酸の平均置換度を1.5以上2.0以下とすることにより、離漿性を低下させることができる。
 このデキストリン脂肪酸エステルを使用した化粧料は、優れた復帰力及び低い離漿性を兼ね備えているので、化粧料を収容した保存容器から、化粧料を取り出すために化粧料に力を加えたときには粘度が低下する。このため、高粘度の化粧料であっても化粧料を出しやすい。また、化粧料を手に取ったときや、顔や肢体などにのせたときに流れ落ちにくい。さらに、保存時には、離漿が抑制されるので、保存安定性を向上することができる。さらに、リップグロス、マスカラなど、肌やまつ毛などの上に化粧膜を形成するための化粧料においては、力を加えることにより化粧料の粘度が低下するため、伸びがよく、塗りやすい。このため、化粧料を均一に塗布することが容易となる。また、化粧料の塗布が完了したときには粘度が復帰するため、流れ落ちにくくなり塗布を完了したときの化粧膜の状態が維持されやすい。
 (2)デキストリン脂肪酸エステルにおけるデキストリンの平均糖重合度が3以上50以下であることによって、軟らかなゲルが得ることができるとともに、デキストリン脂肪酸エステルの油剤への溶解性を高めることができる。
 (3)デキストリン脂肪酸エステルの脂肪酸における直鎖飽和脂肪酸のモル分率が0.8以上0.9以下の範囲であって、グルコース単位あたりの前記脂肪酸の平均置換度が1.65以上1.80以下であることによって、デキストリン脂肪酸エステルを含む油剤の復帰力を向上するとともに離漿性を低下させることができる。
 (4)デキストリン脂肪酸エステルは、直鎖飽和脂肪酸が炭素数16のパルミチン酸であって、分岐飽和脂肪酸が炭素数16のイソパルミチン酸であることによって、油剤をゲル化する力及び透明性の両方を特に優れたものとすることができる。
 (5)優れた復帰力を付与する性質を備える上記デキストリン脂肪酸エステルは、粘度が低い揮発性炭化水素油に対する含有率が少なくても、揮発性炭化水素油に復帰力を付与することができる。そのため、化粧料の処方の自由度が高められるなど、特に効果を発揮できる。

Claims (6)

  1.  デキストリン脂肪酸エステルであって、前記デキストリンの平均糖重合度が3以上100以下であり、前記脂肪酸が、炭素数14以上18以下の直鎖飽和脂肪酸の1種以上及び炭素数14以上18以下の分岐飽和脂肪酸の1種以上からなり、前記脂肪酸における前記直鎖飽和脂肪酸のモル分率が0.75以上0.95以下であり、グルコース単位あたりの前記脂肪酸の平均置換度が1.5以上2.0以下である
     デキストリン脂肪酸エステル。
  2.  前記デキストリンの平均糖重合度が3以上50以下である
     請求項1に記載のデキストリン脂肪酸エステル。
  3.  前記脂肪酸における前記直鎖飽和脂肪酸のモル分率が0.8以上0.9以下であり、グルコース単位あたりの前記脂肪酸の平均置換度が1.65以上1.80以下である
     請求項1又は2に記載のデキストリン脂肪酸エステル。
  4.  前記直鎖飽和脂肪酸がパルミチン酸であって、前記分岐飽和脂肪酸がイソパルミチン酸である
     請求項1~3のいずれか1項に記載のデキストリン脂肪酸エステル。
  5.  油剤と、
     デキストリン脂肪酸エステルであって、前記デキストリンの平均糖重合度が3以上100以下であり、前記脂肪酸が、炭素数14以上18以下の直鎖飽和脂肪酸の1種以上及び炭素数14以上18以下の分岐飽和脂肪酸の1種以上からなり、前記脂肪酸における前記直鎖飽和脂肪酸のモル分率が0.75以上0.95以下であり、グルコース単位あたりの前記脂肪酸の平均置換度が1.5以上2.0以下であるデキストリン脂肪酸エステルと、を含む
     化粧料。
  6.  前記油剤は、揮発性炭化水素油を含む
     請求項5に記載の化粧料。
PCT/JP2016/061826 2015-04-13 2016-04-12 デキストリン脂肪酸エステル及び化粧料 WO2016167255A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16780046.5A EP3296308B1 (en) 2015-04-13 2016-04-12 Dextrin fatty acid ester and cosmetic
US15/566,080 US20180085299A1 (en) 2015-04-13 2016-04-12 Dextrin fatty acid ester and cosmetic
KR1020177028844A KR102670062B1 (ko) 2015-04-13 2016-04-12 덱스트린 지방산 에스테르 및 화장료
CN201680021366.4A CN107428790B (zh) 2015-04-13 2016-04-12 糊精脂肪酸酯及化妆品
US16/781,383 US11986546B2 (en) 2015-04-13 2020-02-04 Dextrin fatty acid ester and cosmetic

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015081477A JP6181697B2 (ja) 2015-04-13 2015-04-13 デキストリン脂肪酸エステル及び化粧料
JP2015-081477 2015-04-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/566,080 A-371-Of-International US20180085299A1 (en) 2015-04-13 2016-04-12 Dextrin fatty acid ester and cosmetic
US16/781,383 Division US11986546B2 (en) 2015-04-13 2020-02-04 Dextrin fatty acid ester and cosmetic

Publications (1)

Publication Number Publication Date
WO2016167255A1 true WO2016167255A1 (ja) 2016-10-20

Family

ID=57126771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061826 WO2016167255A1 (ja) 2015-04-13 2016-04-12 デキストリン脂肪酸エステル及び化粧料

Country Status (6)

Country Link
US (2) US20180085299A1 (ja)
EP (1) EP3296308B1 (ja)
JP (1) JP6181697B2 (ja)
KR (1) KR102670062B1 (ja)
CN (1) CN107428790B (ja)
WO (1) WO2016167255A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11986546B2 (en) 2015-04-13 2024-05-21 Chiba Flour Milling Co., Ltd. Dextrin fatty acid ester and cosmetic

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102463230B1 (ko) * 2015-09-30 2022-11-04 (주)아모레퍼시픽 투명한 액상 유분산 제형의 아이메이크업 조성물
JP6400799B2 (ja) * 2017-07-19 2018-10-03 千葉製粉株式会社 化粧料
CN112399845B (zh) * 2018-07-10 2023-12-29 株式会社资生堂 化妆品
JP7144841B2 (ja) * 2018-09-27 2022-09-30 株式会社アリミノ 毛髪用バーム
CN111154004A (zh) * 2020-01-17 2020-05-15 勤生高新材料科技(广州)有限公司 糊精棕榈酸酯的制备方法
JP2023529521A (ja) * 2020-04-17 2023-07-11 トータルエナジーズ ワンテック 直鎖又は分岐脂肪酸及び誘導体で官能化された糖のモノマー、オリゴマー及びポリマー、それらの組成物及び使用
CA3234945A1 (en) 2021-10-27 2023-05-04 Integrity Bio-Chemicals Llc Compositions comprising reaction products of saccharide polymers and fatty esters formulated with a neutral surfactant
WO2023164418A1 (en) * 2022-02-23 2023-08-31 Integrity Bio-Chemicals, Llc Emulsifying compositions comprising fatty acid or fatty ester reaction products of saccharide polymers formulated with mixed surfactants
JP7437827B1 (ja) 2023-03-30 2024-02-26 千葉製粉株式会社 デキストリン脂肪酸エステルの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277302A (ja) * 1995-04-05 1996-10-22 Chiba Seifun Kk 新規デキストリン脂肪酸エステル及びその用途
JP2000072646A (ja) * 1998-08-27 2000-03-07 Chiba Flour Milling Co Ltd 油中水型乳化化粧料
JP2005145851A (ja) * 2003-11-13 2005-06-09 Chiba Flour Milling Co Ltd オイルゲル化剤、その製造方法並びにそれを含有するオイルゲル及び化粧料
JP2011213662A (ja) * 2010-03-31 2011-10-27 Kose Corp 新規デキストリン脂肪酸エステル表面処理粉体及びその用途
JP2011225562A (ja) * 2010-03-31 2011-11-10 Kose Corp 油性化粧料
JP2012201663A (ja) * 2011-03-28 2012-10-22 Kose Corp セラミド含有組成物
JP2014196263A (ja) * 2013-03-29 2014-10-16 株式会社コーセー 粉体化粧料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3019191U (ja) 1993-10-30 1995-12-12 在▲徳▼ 金 装飾用ステッカーが着いた絵葉書
EP1386600A1 (en) * 2002-08-02 2004-02-04 L'oreal Composition gelled with a dextrin ester
EP2537865B1 (en) * 2010-02-19 2017-02-08 Chiba Flour Milling Co., Ltd Novel dextrin fatty acid ester that does not cause gelation of liquid oil, and uses thereof
JP6181697B2 (ja) 2015-04-13 2017-08-16 千葉製粉株式会社 デキストリン脂肪酸エステル及び化粧料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277302A (ja) * 1995-04-05 1996-10-22 Chiba Seifun Kk 新規デキストリン脂肪酸エステル及びその用途
JP2000072646A (ja) * 1998-08-27 2000-03-07 Chiba Flour Milling Co Ltd 油中水型乳化化粧料
JP2005145851A (ja) * 2003-11-13 2005-06-09 Chiba Flour Milling Co Ltd オイルゲル化剤、その製造方法並びにそれを含有するオイルゲル及び化粧料
JP2011213662A (ja) * 2010-03-31 2011-10-27 Kose Corp 新規デキストリン脂肪酸エステル表面処理粉体及びその用途
JP2011225562A (ja) * 2010-03-31 2011-11-10 Kose Corp 油性化粧料
JP2012201663A (ja) * 2011-03-28 2012-10-22 Kose Corp セラミド含有組成物
JP2014196263A (ja) * 2013-03-29 2014-10-16 株式会社コーセー 粉体化粧料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3296308A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11986546B2 (en) 2015-04-13 2024-05-21 Chiba Flour Milling Co., Ltd. Dextrin fatty acid ester and cosmetic

Also Published As

Publication number Publication date
US20180085299A1 (en) 2018-03-29
US20200170917A1 (en) 2020-06-04
US11986546B2 (en) 2024-05-21
EP3296308B1 (en) 2023-03-29
CN107428790A (zh) 2017-12-01
EP3296308A1 (en) 2018-03-21
CN107428790B (zh) 2020-10-23
KR20170132200A (ko) 2017-12-01
KR102670062B1 (ko) 2024-05-29
JP2016199698A (ja) 2016-12-01
JP6181697B2 (ja) 2017-08-16
EP3296308A4 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
JP6181697B2 (ja) デキストリン脂肪酸エステル及び化粧料
JP4124560B2 (ja) 非揮発性シリコーン化合物と該シリコーン化合物と非融和性の非揮発性炭化水素系油を含有する耐移り性化粧品組成物
JP4118540B2 (ja) 非揮発性シリコーン化合物、非揮発性炭化水素系油及び不活性な粒子相を含有する耐移り性化粧品組成物
JP3388194B2 (ja) 一部不揮発性の液体脂肪相中の非フィルム形成性ポリマ―粒子分散物を含む転移のない化粧品組成物
KR19990063331A (ko) 액체 지방상에 중합체 입자의 분산물을 포함하는 묻어나지 않는 화장품용 조성물
JP2000119124A (ja) 脂肪相に界面安定性ポリマ―粒子を分散させたものを含有するエマルションの形態の化粧品用組成物
JPH11310511A (ja) 分枝の炭素数24から28の脂肪アルコ―ルまたは酸エステルを含有する局所組成物
KR19990063332A (ko) 액체 지방상중의 중합체 입자 분산 및 지용성 중합체를 포함하는 묻어나지 않는 화장 조성물
JP2010280692A (ja) 透明オイルゲル化系
JPH11322576A (ja) 新規な顔料を含む化粧品組成物
JP2004131475A (ja) デキストリンエステルでゲル化された組成物
US20030082125A1 (en) Matt cosmetic composition comprising a non-volatile hydrocarbon oil and an inert particulate phase
JP4801918B2 (ja) 油性睫用化粧料
JP5784932B2 (ja) 油性固形化粧料
JP5770488B2 (ja) 油性スティック状口唇化粧料
JP2003212710A (ja) 非揮発性炭化水素油、微粒子相及び特定の分散剤を含むケラチン物質のためのケア又はメイクアップ組成物
JP2008273943A (ja) 水性メイクアップ化粧料
JP2006241003A (ja) 油性固形化粧料
KR20140145124A (ko) 수지 조성물 및 해당 수지 조성물을 배합하는 화장료
JP2000302623A (ja) 油性化粧料
JP6400799B2 (ja) 化粧料
JP2003212724A (ja) 非揮発性シリコーン化合物、非シリコーン脂溶性ポリマー及び特定の分散剤を含むケラチン物質のためのケア又はメイクアップ組成物
JP2013194035A (ja) 油性スティック状口紅
JP2003113034A (ja) 水中油型化粧料
JP2001279040A (ja) 油性透明組成物及びこれを含有する化粧料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16780046

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177028844

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15566080

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE