WO2016167117A1 - 電力変換装置および電力システム - Google Patents
電力変換装置および電力システム Download PDFInfo
- Publication number
- WO2016167117A1 WO2016167117A1 PCT/JP2016/060187 JP2016060187W WO2016167117A1 WO 2016167117 A1 WO2016167117 A1 WO 2016167117A1 JP 2016060187 W JP2016060187 W JP 2016060187W WO 2016167117 A1 WO2016167117 A1 WO 2016167117A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- converter
- arm
- converter cell
- bridge
- power
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/18—Arrangements for adjusting, eliminating or compensating reactive power in networks
- H02J3/1821—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
- H02J3/1835—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
- H02J3/1842—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
- H02J3/1857—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters wherein such bridge converter is a multilevel converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/4835—Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/49—Combination of the output voltage waveforms of a plurality of converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0095—Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/325—Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
Definitions
- the present invention relates to a power conversion device that performs power conversion between multiphase alternating current and direct current, and more particularly to a large-capacity power conversion device in which converters are multiplexed and a power system including the power conversion device. .
- the first arm and the second arm of each phase formed between the AC terminal and the positive and negative DC terminals of each phase each include a chopper cell (converter cell) and a reactor.
- a chopper cell inverter cell
- two semiconductor switching elements are connected in series, and a DC capacitor is connected in parallel thereto.
- the same number of chopper cells are connected in series via respective output terminals. Then, by using on / off control of the semiconductor switching elements in the chopper cells in the first arm and the second arm using the voltage commands of the first arm and the second arm, respectively, the AC voltage is applied to the AC terminal.
- a DC voltage is generated (see, for example, Non-Patent Document 1).
- STATCOM self-excited reactive power compensator
- the present invention has been made to solve the above-described problems, and can convert large-capacity power between multiphase AC and DC, and can suppress a short-circuit current at the time of short-circuit between DC terminals.
- An object of the present invention is to provide a small-sized and low-cost power conversion device.
- the power converter according to the present invention is A first arm and a second arm, each of which includes one or a plurality of series-connected converter cells each having an energy storage element and a first bridge having a semiconductor switching element in both the upper arm and the lower arm, A power converter for converting power between multi-phase AC and DC, and having a plurality of leg circuits whose connection points are connected to each phase AC terminal in parallel between positive and negative DC terminals, and the power conversion
- a power conversion device comprising a control device for controlling the device
- the converter cell in the first arm of each leg circuit comprises a full bridge configuration comprising the energy storage element, the first bridge, and a second bridge having semiconductor switching elements in both upper and lower arms.
- the converter cell in the second arm is a second converter cell in a half-bridge configuration comprising the energy storage element and the first bridge.
- the electric power system which concerns on this invention is provided with two or more power converter devices comprised as mentioned above, and the said DC terminal in the said power converter of each said power converter device is mutually connected.
- the power conversion device of the present invention it is possible to suppress a short-circuit current when the DC terminals are short-circuited. Further, the device configuration can be reduced in size and cost, and a highly reliable power conversion device can be provided. Further, according to the power system according to the present invention, since a plurality of power conversion devices capable of suppressing a short-circuit current when the DC terminals are short-circuited are connected on the DC side, a large DC A highly reliable power system that can handle power can be provided.
- FIG. 1 is a schematic configuration diagram showing a power conversion device 100 according to Embodiment 1 of the present invention.
- the power conversion device 100 includes a power converter 1 that is a main circuit and a control device 2 that controls the power converter 1.
- the power converter 1 performs power conversion between a three-phase alternating current as a multiphase alternating current and a direct current, and the alternating current side is connected to each alternating current terminal U, V, W, and the direct current side is each direct current terminal.
- P and N are connected respectively.
- the power converter 1 includes three leg circuits 3 of U phase, V phase, and W phase.
- Each leg circuit 3 includes a first arm 4 in which a plurality of first converter cells 10 are connected in series, and a second arm 5 in which a plurality of second converter cells 15 are connected in series. The first arm and the second arm are connected in series.
- Each leg circuit 3 is connected in parallel between the positive and negative DC terminals P and N.
- a connection point between the first arm 4 and the second arm 5 of each leg circuit 3 is connected to each phase AC terminal U, V, W.
- the first arm 4 of each leg circuit 3 is configured by a plurality of converter cells 10, but may include only one first converter cell 10.
- the second arm 5 of each leg circuit 3 may include not only a plurality of converter cells 15 but also a single second converter cell 15.
- Each first arm 4 is connected in series with a positive reactor Lp, and each second arm 5 is connected in series with a negative reactor Ln.
- a current detector 11 is connected to the DC terminal P side and detects a current flowing through the DC terminal P.
- FIGS. 2 (a) and 2 (b) are diagrams showing a circuit configuration of each first converter cell 10 in the first arm 4 according to the first embodiment of the present invention. Since the first converter cell 10 uses another circuit configuration in the embodiments described later, the first converter cell 10 used in the present embodiment is shown as the first converter cells 10A and 10B.
- the first converter cell 10A includes a capacitor 20 as an energy storage element, and two bridges connected in parallel to the capacitor 20 (LegA as a first bridge, as a second bridge).
- LegB The first bridge LegA includes, on the upper arm, a semiconductor switch 21 in which a free-wheeling diode 21d is connected in reverse parallel to the semiconductor switching element 21s.
- the first bridge LegA includes, on the lower arm, a semiconductor switch 22 in which a free wheel diode 22d is connected in reverse parallel to the semiconductor switching element 22s.
- the semiconductor switch 21 and the semiconductor switch 22 are connected in series.
- the second bridge LegB includes, on the upper arm, a semiconductor switch 23 in which a free-wheeling diode 23d is connected in reverse parallel to the semiconductor switching element 23s. Further, the second bridge LegB includes, on the lower arm, a semiconductor switch 24 in which a reflux diode 24d is connected in reverse parallel to the semiconductor switching element 24s. The semiconductor switch 23 and the semiconductor switch 24 are connected in series.
- the first converter cell 10B is obtained by reversing the first bridge LegA and the second bridge LegB of the first converter cell 10A. That is, the first converter cell 10B includes semiconductor switching elements 21s and 22s, the bridge connected to the positive output terminal Po is LegB as the second bridge, the semiconductor switching elements 23s and 24s, and the negative electrode The bridge connected to the output terminal No. is LegA as the first bridge.
- the first converter cell 10A and the first converter cell 10B having different configurations are shown as the first converter cell 10 as described above, but whichever is used for the power converter 1.
- the effect in the present embodiment is the same.
- the first converter cell 10A and the first converter cell 10B they are simply referred to as the first converter cell 10.
- connection point between the semiconductor switch 21 and the semiconductor switch 22 is provided with the positive output terminal Po of the first converter cell 10, and the connection point between the semiconductor switch 23 and the semiconductor switch 24 is connected to the first converter cell 10.
- the negative output terminal No. is provided. As shown in FIG. 1, the positive output terminal Po of the first converter cell 10 is connected to the negative output terminal No of another converter cell 10.
- 3 (a) and 3 (b) are diagrams showing a circuit configuration of each second converter cell 15 in the second arm 5 according to the first embodiment of the present invention.
- the second converter cell 15 uses other circuit configurations in the embodiments described later, and shows two types of circuit configurations in the present embodiment. For this reason, the 2nd converter cell 15 used by this Embodiment is shown as the 2nd converter cell 15A and the 2nd converter cell 15B.
- Each of the second converter cells 15A and 15B has a half-bridge configuration including a capacitor 40 as an energy storage element and LegAa as a first bridge connected in parallel to the capacitor 40.
- the first bridge LegAa of the second converter cell 15A shown in FIG. 3A includes a semiconductor switch 41 in which a free-wheeling diode 41d is connected in reverse parallel to the semiconductor switching element 41s in the upper arm. Further, the first bridge LegAa includes, on the lower arm, a semiconductor switch 42 in which a free-wheeling diode 42d is connected in reverse parallel to the semiconductor switching element 42s. The semiconductor switch 41 and the semiconductor switch 42 are connected in series. A connection point between the semiconductor switch 41 and the semiconductor switch 42 is provided with a positive output terminal Po of the second converter cell 15A. Further, a negative output terminal No. of the second converter cell 15A is provided at a connection point between the emitter side of the semiconductor switching element 42s and the capacitor 40.
- the first bridge LegAa of the second converter cell 15B shown in FIG. 3B includes a semiconductor switch 51 in which a free-wheeling diode 51d is connected in reverse parallel to the semiconductor switching element 51s in the upper arm. Further, the first bridge LegAa includes a semiconductor switch 52 in which a free-wheeling diode 52d is connected in reverse parallel to the semiconductor switching element 52s in the lower arm. The semiconductor switch 51 and the semiconductor switch 52 are connected in series. A connection point between the semiconductor switch 51 and the semiconductor switch 52 is provided with a negative output terminal No. of the second converter cell 15B. In addition, a positive output terminal No. of the second converter cell 15A is provided at a connection point between the collector side of the semiconductor switching element 51s and the capacitor 40.
- the second converter cell 15 includes the second converter cell 15 ⁇ / b> A and the second converter cell 15 ⁇ / b> B having different circuit configurations, but which is used for the power converter 1.
- the effect in this embodiment is the same.
- the second converter cell 15A and the second converter cell 15B they are simply referred to as the second converter cell 15.
- the positive output terminal Po of the second converter cell 15 is connected to the negative output terminal No of another converter cell 15.
- all of the converter cells in the first arm 4 are the first converter cells 10 having the above-described full bridge configuration, and all of the converter cells in the second arm 5 are the above-described half bridge configuration.
- each of the semiconductor switching elements is an IGBT (Insulated-Gate Bipolar Transistor), a GCT (Gate Committed Turn-off Thyristor), or a MOSFET (Metal-Oxide-Semiconductor Transistor-Effect Semiconductor-Transistor-Transistor-Transistor element).
- IGBT Insulated-Gate Bipolar Transistor
- GCT Gate Committed Turn-off Thyristor
- MOSFET Metal-Oxide-Semiconductor Transistor-Effect Semiconductor-Transistor-Transistor-Transistor element.
- the above-described freewheeling diode may be omitted.
- FIG. 4 shows the switching state (shown as SW state in the figure) of each semiconductor switching element 21s to 24s of the first converter cell 10 according to Embodiment 1 of the present invention, and the output state of the first converter cell 10 (FIG. Are shown as operation modes in FIG.
- the semiconductor switching elements 21s and 24s are on and the semiconductor switching elements 22s and 23s are off
- the voltage across the capacitor 20 is output between the output terminals Po and No of the first converter cell 10 (mode 1).
- mode 2 When the semiconductor switching elements 22s and 24s are in the on state and the semiconductor switching elements 21s and 23s are in the off state, a zero voltage output is obtained (mode 2).
- the semiconductor switching elements 21s and 22s of the first bridge LegA and the semiconductor switching elements 23s and 24s of the second bridge LegB are all turned off.
- PWM Pulse-Width Modulation
- the average voltage of one switching cycle can be made equal to a desired voltage (inventor's desired voltage command). For example, if mode 1 and mode 4 shown in FIG. 4 are switched at a time ratio of 1: 1, the average output voltage becomes zero, so that outputs equivalent to those in modes 2 and 3 in FIG. 4 can be obtained.
- FIG. 5 shows the switching states (shown as SW in the figure) of the semiconductor switching elements 41s and 42s of the second converter cell 15A and the semiconductor switching elements 51s and 52s of the second converter cell 15B according to the first embodiment of the present invention. ) And output states of the second converter cells 15A and 15B (shown as operation modes in the figure).
- the semiconductor switching element 41s (52s) is on and the semiconductor switching element 42s (51s) is off, the voltage across the capacitor 40 is output between the output terminals Po and No of the second converter cells 15A and 15B. (Mode 1).
- the output voltage of the first converter cell 10A shown in FIG. 4 in mode 1 is the second converter cells 15A and 15B shown in FIG. Is equivalent to the output voltage of mode 1 (the voltage across the capacitor 40 is output).
- the output voltage of mode 2 and mode 3 (zero voltage output) of the first converter cell 10A shown in FIG. 4 is the output of mode 2 (zero voltage output) of the second converter cells 15A and 15B shown in FIG. It is equivalent to voltage.
- the first converter cell 10A is controlled using only mode 1, mode 2, and mode 5. In this way, when the first converter cell 10A is controlled only in mode 1, mode 2, and mode 5, the semiconductor switching element 23s in the second bridge LegB of the first converter cell 10A is always fixed to the off state. The In this case, the semiconductor switching element 24s is always fixed in the on state during the steady operation other than the protection mode, and the switching operation is not performed. The protection mode is control used in the case of a short circuit between DC terminals described later. At the time of steady operation, if the semiconductor switching elements 23s and 24s in the second bridge LegB of the first converter cell 10A are fixed to the on state or the off state and the switching operation is not performed, the first converter cell 10A has a first state.
- the switching control of the 1 bridge LegA is equivalent to the switching control of the first bridge LegAa of the second converter cell 15A.
- the 1st converter cell 10A of a full bridge structure can be controlled similarly to the 2nd converter cell 15A of a half bridge structure.
- the first converter cell 10B is controlled using only mode 1, mode 3, and mode 5.
- the semiconductor switching element 22s in the second bridge LegB of the first converter cell 10B is always fixed in the off state.
- the semiconductor switching element 21s is always fixed in the on state during the steady operation other than the protection mode, and the switching operation is not performed.
- the semiconductor switching elements 21s and 22s in the second bridge LegB of the first converter cell 10B are fixed to the on state or the off state and the switching operation is not performed, the first converter cell 10B has the first state.
- the switching control of the 1 bridge LegA is equivalent to the switching control of the first bridge LegAa of the second converter cell 15B.
- the 1st converter cell 10B of a full bridge structure can be controlled similarly to the 2nd converter cell 15B of a half bridge structure.
- the first converter cell 10 can control the second bridge LegB in a fixed manner and control it similarly to the second converter cell 15 having a half bridge configuration. Control is performed as follows using the control method described.
- the control device 2 calculates a voltage command for each of the converter cells (the first converter cell 10 and the second converter cell 15) of the first arm 4 and the second arm 5.
- the voltage command of each converter cell controls the capacitor voltage by means of average value control that causes the DC voltage average value of each converter cell to follow the capacitor voltage command value, and balance control that equalizes the DC voltage of each converter cell. Meanwhile, calculation is performed so as to generate a desired AC voltage and DC voltage.
- the control device 2 determines the first bridge LegA and the second converter cell 15 of the first converter cell 10 based on the calculated voltage command, that is, the respective semiconductors in the first bridge LegA and the first bridge LegAa.
- a control signal for switching control of the switching element by PWM is generated. This control signal is output as a control signal 2a from the control device 2 to each converter cell (first converter cell 10 and second converter cell 15) together with a control signal for fixedly controlling LegB.
- a switching element fixed in the on state in the second bridge LegB is referred to as an on-fixing element
- an element fixed in the off state is referred to as an off-fixing element.
- FIG. 6 is a flowchart showing a control operation of power conversion device 100 according to Embodiment 1 of the present invention.
- the control device 2 starts a steady operation (step S2).
- the control device 2 fixes the semiconductor switching element 23s (22s) in the second bridge LegB of the first converter cell 10A (10B) in the first arm 4 to the OFF state as the OFF fixing element, and performs semiconductor switching.
- the element 24s (21s) is fixed to the on state as the on-fixing element.
- control device 2 includes the semiconductor switching elements 21s and 22s (22s and 24s) in the first bridge LegA of the first converter cell 10A in the first arm 4 and the second converter cell 15A (in the second arm 5). 15B), the semiconductor switching elements 41s and 42s (51s and 52s) in the first bridge LegAa are subjected to switching control by PWM control based on the voltage command described above (step S2).
- the current flowing through the DC terminal P is detected by the current detector 11 (step S3).
- the short circuit determination unit of the control device 2 determines whether or not a short circuit has occurred between the DC terminals P and N based on the detected current value (step S4).
- the short-circuit determining unit determines that a short-circuit has occurred between the DC terminals P and N when the detected current value is equal to or greater than a predetermined value (including a case where the current is simply an overcurrent).
- the control device 2 When the short-circuit determining unit of the control device 2 detects a short circuit between the DC terminals P and N (step S4, Yes), the control device 2 starts operation in the protection mode. In this protection mode, the control device 2 turns off all the semiconductor switching elements 21 s to 24 s in the first converter cell 10 with respect to the first arm 4 of each leg circuit 3, and the second circuit of each leg circuit 3. For the arm 5, all the semiconductor switching elements 41s and 42s (51s and 52s) in the second converter cell 15A (15B) are turned off (step S5).
- step S6 When the operation in the protection mode is started, the system waits for the restart that is the resumption of the operation of exchanging power between the AC terminals U, V, W and the DC terminals P, N (step S6).
- step S4 when the short circuit determination unit of the control device 2 does not detect a short circuit between the DC terminals P and N, the process returns to step S3, and the current detection (step S3) and the short circuit determination (step S4) are performed periodically. Repeat repeatedly.
- FIG. 7 is a diagram illustrating a path of the short-circuit current ia when the DC terminals P and N are short-circuited in the power converter 1 according to the first embodiment of the present invention.
- FIG. 8 is a diagram illustrating a path of the short-circuit current ia when the DC terminals P and N are short-circuited in the first converter cell 10A (10B) according to Embodiment 1 of the present invention.
- FIG. 9 is a diagram illustrating a path of the short-circuit current ia when the DC terminals P and N are short-circuited in the second converter cells 15A and 15B according to Embodiment 1 of the present invention.
- a short circuit current ia flows through a path as indicated by an arrow in each figure.
- the first converter cell 10 having the full bridge configuration when all of the semiconductor switching elements 21s to 24s are turned off when a short circuit occurs between the DC terminals P and N, a short circuit like a diode rectifier is performed. It becomes a current path. In this case, unless the voltage between the output terminals No and Po of the first converter cell 10 exceeds the voltage of the capacitor 20, the free-wheeling diodes 23d and 22d do not conduct and the short-circuit current ia does not flow.
- each first converter cell in the first arm 4 connected in the short-circuit current path. If the sum of the voltages of the ten capacitors 20 is higher than the voltage between the AC terminals, the short-circuit current ia does not flow. That is, there are more first converter cells 10 in the first arm 4 than the number of converter cells determined by “the maximum value of the voltage between the AC terminals” ⁇ “the voltage of the capacitor 20 of each converter cell 10”. If so, the short circuit current ia does not flow.
- the voltage of the capacitor 20 here is not the rated operating voltage in the product catalog but the charging voltage (usage voltage) of the capacitor 20 in a state where the power converter 100 is actually used.
- the semiconductor switching elements 41s and 42s (51s and 52s) are turned off. There is a current path through the freewheeling diode 42d (51d). For this reason, if the short-circuit current ia flows, it flows from the output terminal No to the output terminal Po via the freewheeling diode 42d (51d). In this case, the semiconductor switching element of the second converter cell 15A (15B) is turned off in order to reduce the influence on the AC terminals U, V, and W due to the switching operation, and contributes to the suppression of the short-circuit current ia. do not do.
- the sum of the voltages of the capacitors 20 is connected to the voltage between the AC terminals (for example, the system voltage) for the purpose of maintaining normal operation of the power converter 1 during steady operation. In this case, it is set to be higher than the system voltage). Therefore, in principle, if the semiconductor switching elements 21s to 24s of the first converter cell 10 are all turned off during the operation in the protection mode, the short circuit current ia does not flow. Even if the short-circuit current ia flows, the capacitor 20 works to suppress the current, so that the short-circuit current ia is suppressed and is slight.
- the power converter 1 is arranged between the DC terminals P, N and the AC terminals U, V, W, and the positive DC terminal P And a second arm 5 connected to the negative DC terminal N, enabling large-capacity power conversion between DC and AC, and
- Each leg circuit 3 of the power converter 1 uses a first converter cell 10 having a full bridge configuration for the first arm 4 and a second converter cell 15 having a half bridge configuration for the second arm 5. For this reason, when a short circuit occurs between the DC terminals P and N, the short circuit current ia is suppressed by turning off all the semiconductor switching elements 21s to 24s in the first converter cell 10 in the first arm 4. It becomes possible.
- the converter cells constituting the second arm 5 use the second converter cells 15A and 15B having the half bridge configuration, and do not use the converter cells having the full bridge configuration. For this reason, the number of semiconductor switching elements to be used can be reduced, the device can be miniaturized, and the cost can be reduced.
- the number of points used can be reduced while preventing deterioration of the semiconductor switching element. Therefore, the failure rate of the semiconductor switching element is reduced, and the reliability of the power conversion device 100 can be improved. Further, during the steady operation of the power conversion device, one of the semiconductor switching elements of the second bridge LegB is controlled as an on-fixing element and the other is controlled as an off-fixing element, and the switching operation is not performed. For this reason, the control circuit in the control device 2 can be simplified. Thereby, the power converter device 100 can be further reduced in size.
- a current flows through the off-fixed element (semiconductor switching element 23s (22s)) that is fixed in the off state in the second bridge Leg B only in a short time in the protection mode. .
- the off-fixed element semiconductor switching element 23s (22s)
- it is more off than the rated current of other semiconductor switching elements (on-fixed elements or semiconductor switching elements in the first bridge LegA (LegAa)) in which the current steadily flows and the free-wheeling diodes connected in reverse parallel thereto.
- the rated current of the fixed element can be set small. As a method for reducing the rated current, for example, the chip area of the semiconductor element is reduced.
- the first arm 4 constituted by the first converter cell 10 having the full bridge configuration is connected to the DC terminal P on the positive side, and the second arm constituted by the second transducer cell 15 having the half bridge configuration.
- the arm 5 has been described using an example in which the arm 5 is connected to the negative DC terminal N, but this may be reversed. That is, the first arm 4 constituted by the first converter cell 10 having the full bridge configuration is connected to the negative DC terminal N, and the second arm 5 constituted by the second transducer cell 15 having the half bridge configuration is connected. It may be connected to the positive DC terminal P.
- one of the positive and negative arms constituting each leg circuit 3 is constituted by the first converter cell 10 having a full bridge configuration, and the other is constituted by the second converter cell 15 having a half bridge configuration. That's fine.
- the configuration of the positive side reactor Lp and the negative side reactor Ln and the configuration of the current detector 11 are not limited to those shown in FIG. In FIG. 1, the current detector 11 is provided on the positive DC terminal P side, but may be provided on the negative DC terminal N side.
- the current detector 11 may be any one that can directly or indirectly detect at least the current flowing through the semiconductor switching element in the power converter 1 in order to detect a short circuit between the DC terminals P and N.
- 10 to 12 are diagrams showing circuit configuration examples of the power converter according to the first embodiment of the present invention.
- a three-terminal reactor Lpn in which a positive reactor and a negative reactor are coupled is connected to the AC terminal side. Further, current detectors 11U, 11V, and 11W are provided on the positive side of the positive arm of each phase (in this case, the first arm 4).
- the positive side reactor Lp and the negative side reactor Ln only have to have an inductance component, and the inductance of wiring such as a cable may be used.
- the power converter 1c shown in FIG. 12 has a configuration in which the inductance of the wiring is used without connecting a reactor.
- FIG. 13 is a flowchart showing a control operation of the power conversion device according to the second embodiment of the present invention.
- the control operation from step S1 to step S4 shown in the first embodiment is the same as that of the present embodiment, and the description thereof is omitted.
- the present embodiment is different from the first embodiment in that reactive power can be output to the AC terminals U, V, and W even when the DC terminals P and N are short-circuited.
- step S4 when the short circuit determination unit of the control device 2 detects a short circuit between the DC terminals P and N, the control device 2 starts operation in the protection mode.
- the control device 2 turns off all the semiconductor switching elements 21s to 24s in the first converter cell 10 with respect to the first arm 4 of each leg circuit 3, and The output of each second converter cell 15 is controlled so as to perform the reactive power guarantee operation (step S15).
- the system waits for the restart that is the resumption of the operation of exchanging power between the AC terminals U, V, W and the DC terminals P, N (step S6).
- the control device 2 operates the second converter cell 15 in the second arm 5 as a STATCOM (Static Synchronous Compensator).
- STATCOM Static Synchronous Compensator
- the second converter cells 15 for the three phases of the second arm 5 are the same as the star-connected modular multilevel converter. It becomes the composition of.
- control is performed as follows using the control method described in Non-Patent Document 2.
- the control device 2 calculates a voltage command so that reactive power of a desired AC voltage is generated at the AC terminals U, V, and W while controlling the capacitor voltage of each second converter cell 15. Based on the calculated voltage command, each semiconductor switching element in each second converter cell 15 is subjected to switching control by PWM control, so that each second converter cell 15 of the second arm 5 has reactive power. Perform compensation operation.
- the second converter cell 15 has a half-bridge configuration, and the second converter cell 15 can only output a positive voltage. Therefore, the control device 2 controls the reactive power guarantee operation using a voltage command in which a DC voltage common to all phases U, V, and W is superimposed. As a result, a DC voltage component is superimposed on the output of each second converter cell 15, and an AC voltage can be output from the second converter cell 15. A zero-phase voltage is generated by the superimposed DC voltage, but does not affect the AC voltage.
- the second converter cell 15 in the second arm 5 is added to the output of the second converter cell 15 by using the technique described in Non-Patent Document 2 above, and by adding control for superimposing the DC voltage component on the output of the second converter cell 15. It becomes possible to operate as STATCOM.
- the power conversion device of the present embodiment configured as described above, when the DC terminals P and N are short-circuited with the same effect as in the first embodiment, the first conversion in the first arm 4 is performed. All the semiconductor switching elements 21s to 24s in the cell 10A are turned off. Therefore, it is possible to suppress the short circuit current ia. Thereby, deterioration of the element in the power converter device by the short circuit current ia can be prevented, and the energy can be reduced while improving the durability of the power converter device. Further, the number of semiconductor switching elements to be used can be reduced, the device can be downsized, and the cost can be reduced. Therefore, the failure rate of the semiconductor switching element is reduced, and the reliability of the power conversion device can be improved.
- the second converter cell 15 in the second arm 5 is operated as STATCOM. Therefore, even when a short circuit occurs, reactive power can be continuously output to the AC terminals U, V, and W, and the power converter can be improved in performance.
- step S15 the control for turning off all the semiconductor switching elements 21s to 24s in the first converter cell 10 in the first arm 4 and the reactive power guarantee operation for the second arm 5 are performed.
- the control for controlling the output of the two converter cells 15 may be performed simultaneously, or the order may be changed.
- FIG. 14 is a schematic configuration diagram showing a power conversion device 100a according to Embodiment 3 of the present invention.
- a switch 8 as a switch is connected to the DC terminal P side of the power converter 1d.
- the switch 8 may be included in the power conversion apparatus 100a, or may be connected externally without being provided in the power conversion apparatus 100a itself.
- FIG. 15 is a flowchart showing a control operation of power conversion device 100a according to the third embodiment of the present invention.
- the DC terminals P and N are short-circuited, not only the second converter cell 15 in the second arm 5 but also the first converter cell 10 in the first arm 4 is set as STATCOM.
- the second embodiment is different from the second embodiment in that the reactive power is output to the AC terminals U, V, W side by operating.
- step S11 when an operation start command is output (step S11), the control device 2 operates the switch 8 in a closed state to start steady operation of the power conversion device 100a.
- the control operations from step S11 to step S15 in the present embodiment are the same as those in steps S1 to S15 in the second embodiment. For this reason, description of steps S11 to S13 is omitted.
- step 4 of the second embodiment when the short circuit determination unit of the control device 12 detects a short circuit between the DC terminals P and N in step S14 of the present embodiment, the control device 12 starts operation in the protection mode. To do. Then, the control device 12 turns off all the semiconductor switching elements 21s to 24s in the first converter cell 10 with respect to the first arm 4 of each leg circuit 3, and based on the voltage command 12a, the second arm 5 On the other hand, the output control of each second converter cell 15 is performed so as to perform the reactive power guarantee operation (step S15).
- control device 12 operates the switch 8 in the open state (off state) (step S16).
- control device 12 controls the output of each first converter cell 10 so that the first arm 4 performs a reactive power guarantee operation (step S17).
- a restart which is a restart of an operation for exchanging power between the AC terminals U, V, W and the DC terminals P, N (step S18).
- the short circuit state between the DC terminals P and N is eliminated by opening the switch 8. This eliminates the need to turn off all the semiconductor switching elements 21s to 24s of the first converter cell 10. Thereby, the first converter cell 10 can be operated as STATCOM in the same manner as the second converter cell 15.
- the control device 2 uses the all phases U, V, and W for both the second converter cell 15 in the second arm 5 and the first converter cell 10 in the first arm 4.
- the reactive power guarantee operation is controlled using a voltage command in which a common DC voltage is superimposed. The effect of this will be described below.
- a zero-phase voltage is generated by the superimposed DC voltage. Normally, this zero-phase voltage is not a problem, but in rare cases, a three-phase neutral point is formed at the AC terminals U, V, W of the power converter by a reactor, a transformer, etc. May be grounded. In that case, a zero-phase current corresponding to the ground current may flow due to the above-described zero-phase voltage.
- the power conversion device 100a of the present embodiment configured as described above, all the semiconductor switching elements 21s in the first converter cell 10 in the first arm 4 when the DC terminals P and N are short-circuited.
- the switch 8 is opened after ⁇ 24 s is turned off. Thereby, an excessive short circuit current ia does not flow, and the same effects as those of the first and second embodiments can be obtained, and deterioration of the elements in the power converter 1 due to the short circuit current ia can be prevented.
- Energy can be reduced while improving the durability of the apparatus 100a.
- the number of semiconductor switching elements to be used can be reduced, the device can be downsized, and the cost can be reduced. Therefore, the failure rate of the number of semiconductor switching elements is reduced, and the reliability of the power conversion device 100a can be improved.
- the switch 8 connected to the DC terminal P in the open state even when a short circuit occurs between the DC terminals P and N, the first converter cells 10 in the first arm 4
- Each second converter cell 15 in the second arm 5 can be operated as STATCOM.
- reactive power can be continuously output to the AC terminals U, V, and W, so that the power converter 100a can be improved in performance.
- control device 2 operates both the first converter cell 10 and the second converter cell 15 as STATCOM.
- the control device 2 can cancel the zero-phase voltage because the DC voltage component is superimposed on the output of each first converter cell 10 and the output of each second converter cell 15. Thereby, it can prevent that a ground current flows, and the reliability of the power converter device 100a improves.
- the control device 12 turns off all the semiconductor switching elements 21s to 24s in the first converter cell 10A in the first arm to suppress the short circuit current ia, and then operates the switch 8 in the open state.
- the switch 8 when the switch 8 is in the open state (off), the short circuit current ia is suppressed, and therefore the switch 8 only needs to cut off the zero current or the extremely small short circuit current ia. Therefore, the current interrupting capability of the switch 8 may be small.
- the switch 8 may be capable of interrupting a current smaller than twice the rated DC current of the power converter 1a. The reason for “double” here is that the current interruption capability of a general power conversion device can cut off about twice the rated DC current.
- the switch may be a circuit breaker or a disconnector, may be a mechanical type, or may be a semiconductor element.
- the switch 8 used in the present embodiment means a switch having a function of separating the potentials of two conductors at the same potential. In this embodiment, the switch 8 is connected to the positive DC terminal P. However, the switch 8 may be connected to the negative DC terminal N, or the positive DC terminal P and the negative DC terminal N may be connected. It may be connected to both.
- step S15 the control for turning off all the semiconductor switching elements 21s to 24s in the first converter cell 10A in the first arm 4 and the second power guarantee operation for the second arm 5 are performed.
- the control for controlling the output of the converter cell 15 may be performed simultaneously, or the order may be changed.
- control which makes the switch 8 of step 16 open after control of step S15 was performed it is not restricted to this.
- the switch 8 since the switch 8 has a time of 5 ms to 10 ms until it actually operates in the open state (off), a command to turn off the switch 8 at the same time when the control in the protection mode is started in step S15. May be output.
- the second converter cell 15 is continuously operated as STATCOM, the second converter cell 15 is stopped only when the short-circuit between the DC terminals P and N is eliminated. It may be operated as STATCOM.
- FIG. 16 is a flowchart showing a control operation of the power conversion device according to the fourth embodiment of the present invention.
- step S11 to step S16 in the present embodiment are the same as those in steps S11 to S16 in the third embodiment.
- Steps S15 and S16 in the present embodiment are the same as steps S15 and S16 in the third embodiment.
- the short circuit determination unit of the control device 12 detects a short circuit between the DC terminals P and N
- the control device 12 performs all the semiconductor switching elements in the first converter cell 10 with respect to the first arm 4 of each leg circuit 3. 21 s to 24 s are turned off, and each second converter cell 15 is output-controlled so as to perform a reactive power guarantee operation on the second arm 5 based on the voltage command 12 a.
- determination part of the control apparatus 12 operates the switch 8 to an open state, and turns off the switch 8.
- control device 12 turns off all the semiconductor switching elements in the second converter cell 15 for the first arm 4 of each leg circuit 3 and performs a reactive power guarantee operation for the first arm 4.
- the output of each first converter cell 10 is controlled (step S17).
- it waits for a restart which is a restart of an operation for exchanging power between the AC terminals U, V, W and the DC terminals P, N (step S18).
- the first converter cell 10 in the first arm 4 is operated as STATCOM. Since the first converter cell 10 has a full bridge configuration and outputs both positive and negative voltages and can output an AC voltage, it is not necessary to superimpose a DC voltage on the output of the first converter cell 10 as a zero-phase voltage. .
- the power conversion device of the present embodiment configured as described above, when the DC terminals P and N are short-circuited, all the semiconductor switching elements 21s to 21s in the first converter cell 10 in the first arm 4 are connected. After the switch 24s is turned off, the switch 8 is opened. Accordingly, an excessive short circuit current ia does not flow, and the same effects as those of the first, second, and third embodiments can be obtained, and deterioration of elements in the power converter 1 due to the short circuit current ia can be prevented. Therefore, energy can be reduced while improving the durability of the power converter. Further, the number of semiconductor switching elements to be used can be reduced, the device can be downsized, and the cost can be reduced. Therefore, the failure rate of the number of semiconductor switching elements is reduced, and the reliability of the power conversion device can be improved.
- each first converter cell 10 in the first arm 4 is operated as STATCOM in the protection mode.
- reactive power can be continuously output to the AC terminals U, V, and W without generating a zero-phase voltage due to a DC voltage component. High performance is possible.
- Embodiment 5 a power converter according to Embodiment 5 of the present invention will be described. Since the power conversion device of the fifth embodiment corresponds to a large current capacity application, the first bridge LegA, the second bridge LegB of the first converter cell 10 and the second converter cell 15 of the first embodiment, The number of semiconductor switching elements in the first bridge LegAa is increased, and the first bridge LegAa is configured to be connected in parallel. Except for the configuration of the first converter cell 10 and the second converter cell 15, it is the same as in the first embodiment. In addition, the configuration of the first converter cell 10 and the second converter cell 15 shown in this embodiment is the same as the control of the power conversion devices 100 and 100a described in the first embodiment and the second embodiment. Applicable.
- FIG. 17 is a circuit diagram showing a configuration of the first converter cell 10C (10D).
- the first converter cell 10C (10D) is obtained by connecting two semiconductor elements of each arm of the first converter cell 10A (10B) shown in FIG. 2 in parallel.
- the first converter cell 10C (10D) is similar to the first converter cell 10A (10B) in that the upper and lower arms are LegA, which is a first bridge composed of semiconductor switches. Both are provided with Leg B, which is a second bridge composed of semiconductor switches, and a capacitor 20. This is a full bridge circuit in which the first bridge LegA and the second bridge LegB are connected to the capacitor 20 in parallel.
- a positive output terminal Po is connected to a connection point of the semiconductor switch which is an intermediate point of the first bridge LegA.
- the negative output terminal No is connected to the connection point of the semiconductor switch, which is an intermediate point of the second bridge LegB.
- the negative output terminal No is connected to the connection point of the semiconductor switch, which is the intermediate point of the first bridge LegA.
- a positive output terminal Po is connected to a connection point of the semiconductor switch which is an intermediate point of the second bridge LegB.
- the upper arm of the first bridge LegA of the first converter cell 10C includes semiconductor switches 211 and 212 connected in parallel.
- the lower arm of the first bridge LegA includes semiconductor switches 221 and 222 connected in parallel.
- the upper arm of the second bridge LegB includes semiconductor switches 231 and 232 connected in parallel.
- the lower arm of the second bridge LegB includes semiconductor switches 241 and 242 connected in parallel.
- the semiconductor switches 211, 212, 221, 222, 231, 232, 241, and 242 are respectively connected to the semiconductor switching elements 211s, 212s, 221s, 222s, 231s, 232s, 241s, and 242s in antiparallel.
- the return diodes 211d, 212d, 221d, 222d, 231d, 232d, 241d, and 242d are configured.
- the upper arm of the second bridge LegB of the first converter cell 10D includes semiconductor switches 211 and 212 connected in parallel.
- the lower arm of the second bridge LegB includes semiconductor switches 221 and 222 connected in parallel.
- the upper arm of the first bridge LegA includes semiconductor switches 231 and 232 connected in parallel.
- the lower arm of the first bridge LegA includes semiconductor switches 241 and 242 connected in parallel.
- the control device 2 simultaneously controls on / off of the semiconductor switching elements connected in parallel.
- the first converter cell 10C is controlled in the same manner as the first converter cell 10A shown in the first embodiment, and the first converter cell 10D is controlled in the same manner as the first converter cell 10B.
- a self-extinguishing type semiconductor switching element such as IGBT, GCT, or MOSFET is used for each semiconductor switching element in the first converter cell 10C (10D).
- a diode body diode
- the free wheel diode may be omitted.
- the first converter cell 10C (10D) is configured by connecting two semiconductor elements of each arm in parallel, and the parallel switching of the semiconductor switching elements is simultaneously turned on and off to control the current capacity. Increase.
- the off-fixing elements semiconductor switching elements 231s and 232s (221s and 222s) used for the second bridge LegB of the first converter cell 10 are relatively short in the protection mode. Current flows only in time. For this reason, in the first converter cell 10C (10D), even if the semiconductor switches 231 and 232 (221 and 222) including off-fixed elements connected in parallel in the second bridge Leg B are used as one element, an increase in heat generation and loss is not caused. Almost negligible.
- a first converter cell 10E shown in FIG. 18 is obtained by replacing the semiconductor switches 231 and 232 connected in parallel with each other in the first converter cell 10C shown in FIG. Further, the first converter cell 10F shown in FIG.
- the first converter cells 10E and 10F can increase the current capacity, reduce the number of elements, and can be downsized.
- the second bridge LegB of the first converter cell 10 is a control for fixing the semiconductor switching element to the on state / off state.
- the semiconductor switching element in the second bridge LegB has a smaller switching loss than the semiconductor switching element in the first bridge LegA.
- the parallel number of the semiconductor switching elements in the second bridge LegB can be made equal to or less than the parallel number of the semiconductor switching elements in the first bridge LegA. Therefore, in the first converter cell 10E (10F), the semiconductor switches 241 and 242 (211 and 212) of the ON-fixed elements connected in parallel in the second bridge LegB are used as one element, and the semiconductor in the first bridge LegA. It is possible to make the number of switching elements parallel or less.
- a first converter cell 10G shown in FIG. 20 is obtained by replacing the on-fixed element semiconductor switches 241 and 242 connected in parallel with the first converter cell 10E shown in FIG. is there. Further, the first converter cell 10H shown in FIG. 21 is obtained by replacing the semiconductor switches 211 and 212 of the on-fixed elements connected in parallel with the first converter cell 10F shown in FIG. It is.
- the first bridge LegA has a two-element configuration of the upper and lower arms, and the second bridge LegB has a one-element configuration that is not paralleled with the upper and lower arms.
- the first converter cells 10G and 10H can increase the current capacity, and can further reduce the number of elements and can be downsized.
- the second converter cell 15C shown in FIG. 22A is obtained by connecting two semiconductor switches of each arm of the second converter cell 15A shown in FIG. 3A in parallel.
- the second converter cell 15D shown in FIG. 22B is obtained by connecting two semiconductor switches of each arm of the second converter cell 15B shown in FIG. 3B in parallel.
- the second converter cell 15C includes a LegAa that is a first bridge that is configured by a semiconductor switch in both upper and lower arms, and a capacitor 40.
- the first bridge LegAa is a half bridge circuit in which the capacitor 40 is connected in parallel.
- a positive output terminal Po is connected to a connection point of the semiconductor switch, which is an intermediate point of the first bridge LegAa.
- a negative output terminal No is connected to a connection point between the lower arm semiconductor switch and the capacitor 40.
- the upper arm of the first bridge LegAa of the second converter cell 15C includes semiconductor switches 411 and 412 connected in parallel, and the lower arm includes semiconductor switches 421 and 422 connected in parallel.
- the second converter cell 15D includes a LegAa that is a first bridge that is configured by a semiconductor switch in both upper and lower arms, and a capacitor 40.
- the first bridge LegAa is a half bridge circuit in which the capacitor 40 is connected in parallel.
- the negative output terminal No is connected to the connection point of the semiconductor switch, which is the middle point of the first bridge LegAa, and the positive output terminal Po is connected to the connection point of the upper arm semiconductor switch and the capacitor 40.
- the upper arm of the first bridge LegAa of the second converter cell 15D includes semiconductor switches 511 and 512 connected in parallel, and the lower arm includes semiconductor switches 521 and 522 connected in parallel.
- Each of the semiconductor switches 411, 412, 421, 422 (511, 512, 521, 522) of the second converter cell 15C (15D) has semiconductor switching elements 411s, 412s, 421s, 422s (511s, 512s, 521s, respectively). 522s) and free-wheeling diodes 411d, 412d, 421d, and 422d (511d, 512d, 521d, and 522d) connected to them in reverse parallel, respectively.
- a self-extinguishing type semiconductor switching element such as IGBT, GCT, or MOSFET is used.
- the free wheel diode may be omitted.
- control apparatus 2 carries out the on-off control of the semiconductor switching elements connected in parallel at the same time, and similarly to the second converter cell 15A (15B) shown in the first embodiment, the second converter cell 15C (15D) is controlled.
- the second converter cells 15C and 15D are configured by connecting two semiconductor switches of each arm in parallel. The current capacity can be increased by simultaneously controlling on and off of the semiconductor switching elements connected in parallel.
- the number of semiconductor switching elements in each of the first bridge LegA, the second bridge LegB, and the first bridge LegAa of the first converter cell 10 and the second converter cell 15 is increased. Connected in parallel. Therefore, it is possible to realize a power conversion device suitable for use with a large current capacity.
- parallel connection two parallel elements are shown, but three or more elements may be connected in parallel.
- the parallel number of the off-fixed elements of the second bridge LegB of the first converter cell 10 can be less than or equal to the parallel number of the other semiconductor switching elements in the first bridge LegA and the second bridge LegB.
- the parallel number of the ON-fixed elements of the second bridge LegB of the first converter cell 10 is equal to or less than the parallel number of the semiconductor switching elements of the respective arms in the first bridge LegA. That is, the parallel number of the on-fixed elements in the second bridge LegB is configured to be greater than or equal to the parallel number of the off-fixed elements in the second bridge LegB and less than or equal to the parallel number of the semiconductor switching elements in the first bridge LegA. it can. By effectively reducing the number of elements in this way, it is possible to efficiently reduce the size of a power conversion device suitable for high current capacity applications.
- FIG. 23 is a diagram showing an outline of a circuit configuration of the gate drive circuit 14 for driving the semiconductor switching elements in the power converters 1, 1a to 1d.
- each semiconductor switching element in the power converters 1, 1 a to 1 d is provided with a gate drive circuit 14.
- the gate drive circuit 14 includes a gate resistor 17 and a gate drive unit 16 having a transistor and the like for turning on and off each semiconductor switching element.
- Each gate drive circuit 14 drives each semiconductor switching element based on control signals 2 a and 12 a from the control devices 2 and 12.
- the gate drive circuit 14 in the second bridge LegB of the first converter cell 10 has a gate compared to the gate drive circuit 14 in the first bridge LegA and the first bridge LegAa of the first and second converter cells 10 and 15.
- the value of the resistor 17 can be increased.
- the switching speed of the semiconductor switching element is reduced, and the surge voltage at the time of current interruption (turn-off) can be suppressed, and the switching loss per switching is increased.
- the semiconductor switching element in the second bridge LegB is fixed to the on state or the off state in the steady mode and does not perform switching. Therefore, even if the value of the gate resistor 17 is increased, the surge voltage can be suppressed without increasing the switching loss. For this reason, even if the number of parallel semiconductor switching elements of the second bridge LegB of the first converter cell 10 is reduced, a large current interruption capability can be ensured.
- a wide band gap semiconductor may be used as a material for all or a part of the semiconductor elements (semiconductor switching elements, diodes) in the first and second converter cells 10 and 15. Silicon is often used as a material for semiconductor elements. Examples of the material of the wide band gap semiconductor include silicon carbide, a gallium nitride material, and diamond. When a wide band gap semiconductor is used, the breakdown voltage of the semiconductor element can be increased, so that the number of converter cells in series can be reduced. Furthermore, wide band gap semiconductors can reduce switching losses.
- a wide band gap semiconductor may be used only for a semiconductor switching element that performs a switching operation in a steady state and a free-wheeling diode that is connected in reverse parallel thereto.
- wide band gap semiconductors can reduce conduction loss by increasing the chip area. When this is used, the conduction loss can be reduced by using only the semiconductor switching element that is always on in the steady state as the wide band gap semiconductor. If all the semiconductor elements are wide band gap semiconductors, both of the effects described above can be obtained.
- FIG. 24 is a control block diagram of the control device 2 according to the sixth embodiment of the present invention.
- the control device 2 controls the semiconductor switching element using a voltage command in which an alternating current component common to all phases U, V, and W is superimposed. Different from other embodiments.
- the semiconductor switching element in each converter cell of the power converter 1 is controlled based on a voltage command including a DC component and a fundamental AC component.
- a voltage command including a DC component and a fundamental AC component.
- the DC component of the voltage command for the semiconductor switching element of the first arm 4 is shown as Vdc ++
- the fundamental AC components are shown as Vacu ++, Vacv ++, and Vacw ++.
- the DC component of the voltage command for the semiconductor switching element of the second arm 5 is indicated as Vdc- *
- the fundamental AC component is indicated as Vacu- *, Vacv- *, and Vacw- *.
- common AC is applied to all phases U, V, and W with respect to the fundamental AC components (Vacu + *, Vacv + *, Vacw + *, Vacu- *, Vacv- *, Vacw- *).
- the component (V3nf) is superimposed. Further, based on voltage commands (Vu + *, Vv + *, Vw + *, Vu- *, Vv- *, Vw- *) generated by adding DC components (Vdc + *, Vdc- *)
- the switching element is switching-controlled by PWM control.
- a third harmonic having a frequency three times that of the fundamental wave is used as an AC component (V3nf) common to all phases U, V, and W.
- the semiconductor switching element By using the voltage command (Vu + *, Vv ++ *, Vw + *, Vu- *, Vv- *) in which the common AC component (V3nf) is superimposed on all phases U, V, W, the semiconductor switching element The effect of controlling the above will be described below in comparison with the case where the AC component (V3nf) is not superimposed.
- the voltage command may be larger than the carrier wave near the maximum value of the voltage command, and the voltage command may be smaller than the carrier wave near the minimum value of the voltage command. .
- each semiconductor switching element does not operate on or off and is overmodulated, which may increase the harmonic component of the output voltage or not perform a desired operation.
- the AC voltage component (V3nf) whose initial phase is the same as the fundamental wave and whose frequency is triple is the maximum value of the fundamental AC components (Vacu + *, Vacv + *, Vacw + *, Vacu- *, Vacv- *, Vacw- *). In the vicinity of the minimum value, the polarity is opposite to that of the fundamental wave. That is, by superimposing the AC voltage component (V3nf) on the fundamental AC components (Vacu + *, Vacv + *, Vacw + *, Vacu- *, Vacv- *, Vacw- *), voltage commands (Vu + *, Vv ++ *, The maximum value of Vw + *, Vu ⁇ *, and Vv ⁇ * is small and the minimum value is large.
- a voltage margin until overmodulation can be secured, and the voltage utilization rate can be improved.
- a zero-phase voltage is generated by the superimposed AC voltage, but it does not affect the AC system.
- the superimposed AC voltage component is output to the DC system side, and its frequency and magnitude can be set.
- the control device 2 is common to all phases U, V, and W for the purpose of ensuring the output possible range of the second converter cell 15 having the half-bridge configuration.
- the voltage command with the DC voltage superimposed was used.
- the DC voltage component common to all phases U, V, and W is included in the DC component (Vdc ⁇ *) of the voltage command for the converter cell of the second arm 5.
- the DC voltage component common to the above-described all phases U, V, and W is used as the DC component (Vdc) of the voltage command for the converter cell of the second arm 5. -*). In this way, it is possible to secure the output possible range of the second converter cell 15 having the half bridge configuration in the reactive power compensation operation while suppressing the overmodulation state of the power converter 1.
- the frequency that is three times the fundamental wave is used as the AC voltage component (V3nf) to be superimposed, but an odd multiple that is three times the fundamental wave may be used.
- a voltage component (V3nf) may be used.
- FIG. 25 is a diagram illustrating a circuit configuration example of the power system 1000 according to the seventh embodiment.
- a power system 1000 that performs power transmission / distribution and the like is configured by using a plurality (three in this case) of power converters 100 including the power converter 1 and the controller 2 described in the first embodiment.
- the DC terminals P and N of the power converter 1 of each power conversion device 100 are connected to each other via a DC bus 712. In this way, DC power can be exchanged between the power converters 100, and large DC power can be handled.
- Power system 1000 is not limited to the configuration using power conversion device 100 shown in the first embodiment, and any power conversion device shown in the first to sixth embodiments may be used.
- FIG. 26 is a diagram showing a configuration of a power system 1000a having a configuration different from that of the power system 1000 shown in FIG.
- the DC bus 712 on the left side in the figure from the branch point E where the DC power is branched is shown as a DC bus 712a
- the DC bus 712 on the right side in the figure from the branch point E is shown as a DC bus 712b.
- a switch 713 capable of disconnecting the DC bus 712a from 712b is provided on the left side of the branch point E in the drawing. The operation of the power system 1000a having such a configuration will be described below.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
Description
変換器を多重化する方法として、複数の変換器の出力をカスケード接続したモジュラーマルチレベル変換器がある。モジュラーマルチレベル変換器の各アームは、複数の変換器セルがカスケード接続されて構成されている。
また、上記特許文献1に示すモジュラーマルチレベル変換器を用いた場合、直流短絡時に短絡電流を抑制することはできる。しかしながら、各変換器セルがフルブリッジ回路で構成されているため、半導体スイッチング素子の数が増加し、装置構成が大型化するという問題点があった。
また、上記非特許文献2記載のモジュラーマルチレベル変換器を用いた従来の電力変換装置では、多相交流と直流との間の電力変換に用いることはできない。
エネルギ蓄積要素と、上アーム、下アーム共に半導体スイッチング素子を有する第1ブリッジとを備えた変換器セルが、それぞれ1あるいは複数直列接続されて成る第1アームと第2アームとが直列接続され、その接続点が各相交流端子に接続される複数のレグ回路を正負の直流端子間に並列接続して備え、多相交流と直流との間で電力変換を行う電力変換器と、該電力変換器を制御する制御装置とを備えた電力変換装置において、
前記各レグ回路の前記第1アーム内の前記変換器セルは、前記エネルギ蓄積要素と、前記第1ブリッジと、上アーム、下アーム共に半導体スイッチング素子を有する第2ブリッジとを備えたフルブリッジ構成の第1変換器セルであり、前記第2アーム内の前記変換器セルは、前記エネルギ蓄積要素と、前記第1ブリッジとを備えるハーフブリッジ構成の第2変換器セルである。
また、本発明に係る電力システムは、上記のように構成された電力変換装置を複数個備え、各前記電力変換装置の前記電力変換器における前記直流端子が互いに接続されたものである。
また、この発明に係る電力システムによれば、直流端子間が短絡した際の短絡電流を抑制することの可能な複数個の電力変換装置を直流側で接続して構成されるものなので、大きな直流電力を扱える信頼性の高い電力システムを提供することができる。
以下、本発明の実施の形態1による電力変換装置100について図を用いて説明する。
図1は、本発明の実施の形態1による電力変換装置100を示す概略構成図である。
図に示すように、電力変換装置100は、主回路である電力変換器1と、電力変換器1を制御する制御装置2とを備える。電力変換器1は、多相交流としての3相交流と、直流との間で電力変換を行うものであり、交流側は各交流端子U、V、Wに接続され、直流側は各直流端子P、Nにそれぞれ接続される。
各第1アーム4には正側リアクトルLpが直列接続され、各第2アーム5には負側リアクトルLnが直列接続される。
直流端子P側には電流検出器11が接続されており、直流端子Pに流れる電流を検出している。
第2変換器セル15A、15Bは、それぞれが、エネルギ蓄積要素としてのキャパシタ40と、このキャパシタ40に並列接続された第1ブリッジとしてのLegAaとを備えるハーフブリッジ構成である。
図1に示すように、第2変換器セル15の正極の出力端子Poは、他の変換器セル15の負極の出力端子Noへ接続される。
なお、上記の各半導体スイッチング素子には、IGBT(Insulated-Gate Bipolar Transistor)、GCT(Gate Commutated Turn-off thyristor)、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)などの半導体スイッチング素子が使用される。また、ダイオード(ボディダイオード)が内在する半導体スイッチング素子を用いる場合では、上記の還流ダイオードを省略してもよい。
図4は、本発明の実施の形態1による第1変換器セル10の各半導体スイッチング素子21s~24sのスイッチング状態(図においてSW状態として示す)と、第1変換器セル10の出力状態(図において動作モードとして示す)とを示す図である。
半導体スイッチング素子21s、24sがオン状態、半導体スイッチング素子22s、23sがオフ状態の場合、第1変換器セル10の出力端子Po、No間にはキャパシタ20の両端電圧が出力される(モード1)。
半導体スイッチング素子22s、24sがオン状態、半導体スイッチング素子21s、23sがオフ状態の場合、零電圧出力となる(モード2)。
半導体スイッチング素子21s、23sがオン状態、半導体スイッチング素子22s、24sがオフ状態の場合、零電圧出力となる(モード3)。
半導体スイッチング素子22s、23sがオン状態、半導体スイッチング素子21s、24sがオフ状態の場合、第1変換器セル10Aの出力端子間にはキャパシタ20の負の両端電圧が出力される(モード4)。
全ての半導体スイッチング素子21s、22s、23s、24sがオフ状態の場合は保護モードとなり、ダイオード整流器として動作する(モード5)。この保護モードの詳細については後述する。
また、PWM(Pulse-Width Modulation)制御を用いれば、スイッチング1周期の平均電圧を、所望の電圧(発明者所望の電圧指令)と等しくすることができる。例えば、図4に示すモード1とモード4とを時間比率1:1で切りかえれば、平均出力電圧は零となるので、図4のモード2、モード3と同等の出力を得ることができる。
図5は、本発明の実施の形態1による第2変換器セル15Aの各半導体スイッチング素子41s、42s、第2変換器セル15Bの各半導体スイッチング素子51s、52sのスイッチング状態(図においてSWとして示す)と、第2変換器セル15A、15Bの出力状態(図において動作モードとして示す)とを示す図である。
半導体スイッチング素子41s(52s)がオン状態、半導体スイッチング素子42s(51s)がオフ状態の場合、第2変換器セル15A、15Bの出力端子Po、No間にはキャパシタ40の両端電圧が出力される(モード1)。
半導体スイッチング素子42s(51s)がオン状態、半導体スイッチング素子41s(52s)がオフ状態の場合、零電圧出力となる(モード2)。
全ての半導体スイッチング素子41s、42s、51s、52sがオフ状態の場合は保護モードとなる(モード3)。
定常運転時では、第1変換器セル10Aの第2ブリッジLegBにおける半導体スイッチング素子23s、24sをオン状態またはオフ状態に固定してスイッチング動作を行わない状態にすると、第1変換器セル10Aの第1ブリッジLegAのスイッチング制御は、第2変換器セル15Aの第1ブリッジLegAaのスイッチング制御と等価になる。これにより、フルブリッジ構成の第1変換器セル10Aをハーフブリッジ構成の第2変換器セル15Aと同様に制御できる。
定常運転時では、第1変換器セル10Bの第2ブリッジLegBにおける半導体スイッチング素子21s、22sをオン状態またはオフ状態に固定してスイッチング動作を行わない状態にすると、第1変換器セル10Bの第1ブリッジLegAのスイッチング制御は、第2変換器セル15Bの第1ブリッジLegAaのスイッチング制御と等価になる。これにより、フルブリッジ構成の第1変換器セル10Bをハーフブリッジ構成の第2変換器セル15Bと同様に制御できる。
図6は、本発明の実施の形態1による電力変換装置100の制御動作を示すフロー図である。
運転開始指令が出力されると(ステップS1)、制御装置2は定常運転を開始する(ステップS2)。この定常運転において制御装置2は、第1アーム4内の第1変換器セル10A(10B)の第2ブリッジLegBにおける半導体スイッチング素子23s(22s)をオフ固定素子としてオフ状態に固定し、半導体スイッチング素子24s(21s)をオン固定素子としてオン状態に固定する。そして制御装置2は、第1アーム4内の第1変換器セル10Aの第1ブリッジLegAにおける半導体スイッチング素子21s、22s(22s、24s)と、第2アーム5内の第2変換器セル15A(15B)の第1ブリッジLegAaにおける半導体スイッチング素子41s、42s(51s、52s)とを前述の電圧指令に基づいて、PWM制御によりスイッチング制御する(ステップS2)。
次に、制御装置2の短絡判別部が、検出した電流値に基づいて、直流端子P、N間での短絡発生の有無を判別する(ステップS4)。この短絡判別部は、検出した電流値が所定値以上の場合に、直流端子P、N間で短絡が発生したと判別する(単に過電流である場合も含む)。
ステップS4にて、制御装置2の短絡判別部が直流端子P、N間の短絡を検出しなかった場合は、ステップS3に戻り、電流検出(ステップS3)と短絡判別(ステップS4)とを周期的に繰り返し行う。
図7は、本発明の実施の形態1による電力変換器1において、直流端子P、N間が短絡した際の短絡電流iaの経路を示す図である。
図8は、本発明の実施の形態1による第1変換器セル10A(10B)において、直流端子P、N間が短絡した際の短絡電流iaの経路を示す図である。
図9は、本発明の実施の形態1による第2変換器セル15A、15Bにおいて、直流端子P、N間が短絡した際の短絡電流iaの経路を示す図である。
図8に示すように、フルブリッジ構成の第1変換器セル10では、直流端子P、N間の短絡が発生した際に半導体スイッチング素子21s~24sを全てオフとすると、ダイオード整流器のような短絡電流経路となる。この場合、第1変換器セル10の出力端子No、Po間の電圧が、キャパシタ20の電圧を上回らなければ、還流ダイオード23d、22dは導通せず、短絡電流iaは流れない。
第1変換器セル10の出力端子Po、Noは直列に接続されているので、電力変換器1全体で考えると、短絡電流経路内に接続される第1アーム4内の各第1変換器セル10のキャパシタ20の電圧の総和が、交流端子間の電圧より高ければ短絡電流iaは流れない。
すなわち、「交流端子間電圧の最大値」÷「各変換器セル10のキャパシタ20の電圧」で求められる変換器セル数よりも多くの第1変換器セル10を、第1アーム4内に有していれば短絡電流iaは流れない。
なお、ここでいうキャパシタ20の電圧とは、製品カタログ上の定格使用電圧ではなく、電力変換装置100を実際に使用した状態におけるキャパシタ20の充電電圧(使用電圧)である。
この場合、第2変換器セル15A(15B)の半導体スイッチング素子をオフさせるのは、スイッチング動作による交流端子U、V、Wへの影響を低減するためであり、短絡電流iaの抑制には寄与しない。
さらに、電力変換装置の定常運転時において、第2ブリッジLegBの半導体スイッチング素子の一方をオン固定素子とし、他方をオフ固定素子として制御し、スイッチング動作をさせない。このため制御装置2における制御回路の簡素化を図ることができる。これにより、更に電力変換装置100を小型化することができる。
定格電流を小さくする方法としては、例えば半導体素子のチップ面積を小さくするなどがある。
このように、上記各レグ回路3を構成する正負のアームの一方が、フルブリッジ構成の第1変換器セル10で構成され、他方がハーフブリッジ構成の第2変換器セル15で構成されていればよい。
図1では、電流検出器11を正側の直流端子P側に設けたが、負側の直流端子N側に設けても良い。
電流検出器11は、直流端子P、N間の短絡を検出する為に、少なくとも電力変換器1内の半導体スイッチング素子に流れる電流を直接、或いは間接に検出できるものであれば良い。
以下、本実施の形態における電力変換器の他の回路構成例を図に基づいて説明する。
図10~図12は、本発明の実施の形態1による電力変換器の回路構成例を示す図である。
以下、本発明の実施の形態2を、上記実施の形態1と異なる箇所を中心に図を用いて説明する。上記実施の形態1と同様の部分は同一符号を付して説明を省略する。
図13は、本発明の実施の形態2による電力変換装置の制御動作を示すフロー図である。
以下、本発明の実施の形態2による電力変換装置の制御動作について説明する。
実施の形態1に示した、ステップS1~ステップS4までの制御動作は本実施の形態についても同様のものであり、説明は省略する。
本実施の形態では、直流端子P、N間が短絡した際にも、交流端子U、V、W側に対して無効電力を出力することができる点が実施の形態1と異なる。
ステップS4において、制御装置2の短絡判別部が直流端子P、N間の短絡を検出すると、制御装置2は保護モードの運転を開始する。この保護モードにおいて、制御装置2は、各レグ回路3の第1アーム4に対し、第1変換器セル10内の全ての半導体スイッチング素子21s~24sをオフさせると共に、第2アーム5に対し、無効電力保障動作をするように各第2変換器セル15を出力制御する(ステップS15)。
保護モードの運転を開始した場合は、交流端子U、V、Wと直流端子P、Nとの間の電力のやり取りを行う動作の再開である再起動を待つ(ステップS6)。
制御装置2は、各第2変換器セル15のキャパシタ電圧を制御しつつ、所望の交流電圧の無効電力を交流端子U、V、Wに発生させるように電圧指令を演算する。そして、演算された電圧指令に基づいて、各第2変換器セル15内の各半導体スイッチング素子をPWM制御によりスイッチング制御することにより、第2アーム5の各第2変換器セル15は、無効電力補償動作を行う。
こうして、上記非特許文献2に記載の技術を用い、更に第2変換器セル15の出力に直流電圧成分を重畳する制御を追加することで、第2アーム5内の第2変換器セル15をSTATCOMとして動作させることが可能になる。
さらに、直流端子P、N間の短絡時において、第2アーム5内の第2変換器セル15をSTATCOMとして動作させる。そのため、短絡が発生した場合においても継続的に交流端子U、V、Wに対して無効電力を出力することができ、電力変換装置の高性能化が可能となる。
以下、本発明の実施の形態3を、上記実施の形態1、2と異なる箇所を中心に図を用いて説明する。上記実施の形態1、2と同様の部分は説明を省略する。
図14は、本発明の実施の形態3による電力変換装置100aを示す概略構成図である。
本実施の形態では、電力変換器1dの直流端子P側に開閉部としての開閉器8が接続されている。なお、開閉器8は、電力変換装置100aに内在してもよいし、電力変換装置100a自体には備えず外付けで接続するものでもよい。
図15は、本発明の実施の形態3による電力変換装置100aの制御動作を示すフロー図である。
本実施の形態では、直流端子P、N間が短絡した際に、第2アーム5内の第2変換器セル15だけでなく、さらに第1アーム4内の第1変換器セル10をSTATCOMとして運転させて、交流端子U、V、W側に対して無効電力を出力する点が実施の形態2と異なる。
次に、制御装置12は、電圧指令12aに基づいて、第1アーム4に対し、無効電力保障動作をするように各第1変換器セル10を出力制御する(ステップS17)。
次に、交流端子U、V、Wと直流端子P、Nとの間の電力のやり取りを行う動作の再開である再起動を待つ(ステップS18)。
実施の形態2に示したような第2アーム内の第2変換器セル15のみをSTATCOMとして動作をさせる場合では、重畳された直流電圧により零相電圧が発生する。
通常、この零相電圧は問題とはならないが、稀に、電力変換装置の交流端子U、V、Wに、リアクトルや変圧器等で三相の中性点を形成し、その中性点を接地する場合がある。その場合、上記の零相電圧によって、対地電流に相当する零相電流が流れることがある。
こうして、短絡が発生した場合においても、継続的に交流端子U、V、Wに対して無効電力を出力することができるので、電力変換装置100aの高性能化が可能となる。
また、本実施の形態では、開閉器8を正側の直流端子Pに接続したが、負側の直流端子Nに接続するものでもよく、あるいは正側の直流端子Pと負側の直流端子Nとの両方に接続するものでもよい。
またステップS15の制御の後にステップ16の開閉器8を開状態にする制御を行うものとしたがこれに限らない。一般的に開閉器8が実際に開状態(オフ)に動作するまでは5ms~10msの時間を有するため、ステップS15において保護モードでの制御を開始する際に、同時に開閉器8をオフさせる指令を出力させてもよい。
以下、本発明の実施の形態4を、上記実施の形態1、2、3と異なる箇所を中心に図を用いて説明する。上記実施の形態1、2、3と同様の部分は説明を省略する。
本実施の形態では、直流端子P、N間が短絡した際に、第1アーム4内の第1変換器セル10のみがSTATCOMとして運転を行うステップを有する点が他の実施の形態と異なる。
以下、本発明の実施の形態4による電力変換装置の制御動作について図に基づいて説明する。
図16は、本発明の実施の形態4による電力変換装置の制御動作を示すフロー図である。
本実施の形態のステップS15、ステップS16も、実施の形態3のステップS15、ステップS16と同様である。制御装置12の短絡判別部が直流端子P、N間の短絡を検出すると、制御装置12は、各レグ回路3の第1アーム4に対し、第1変換器セル10内の全ての半導体スイッチング素子21s~24sをオフさせると共に、電圧指令12aに基づいて、第2アーム5に対し、無効電力保障動作をするように各第2変換器セル15を出力制御する。そして制御装置12の短絡判別部が、開閉器8を開状態に動作させて開閉器8をオフにする。
次に、交流端子U、V、Wと直流端子P、Nとの間の電力のやり取りを行う動作の再開である再起動を待つ(ステップS18)。
次に、この発明の実施の形態5による電力変換装置を説明する。この実施の形態5の電力変換装置は、大電流容量用途に対応するため、実施の形態1の第1変換器セル10および第2変換器セル15の各第1ブリッジLegA、第2ブリッジLegB、第1ブリッジLegAaにおける半導体スイッチング素子の数を増やして、並列接続する構成としたものである。
第1変換器セル10および第2変換器セル15の構成以外は、上記実施の形態1と同様である。また、この実施の形態で示す第1変換器セル10および第2変換器セル15の構成は、上記実施の形態1および実施の形態2で説明した電力変換装置100、100aの制御に、同様に適用できる。
図17は第1変換器セル10C(10D)の構成を示す回路図である。この第1変換器セル10C(10D)は、図2で示した第1変換器セル10A(10B)の各アームの半導体素子を2個ずつ並列接続したものである。
図17に示すように、第1変換器セル10C(10D)は、第1変換器セル10A(10B)と同様に、上下アーム共に半導体スイッチで構成された第1ブリッジであるLegAと、上下アーム共に半導体スイッチで構成された第2ブリッジであるLegBと、キャパシタ20とを備える。そしてこの第1ブリッジLegAと第2ブリッジLegBとをキャパシタ20に並列接続したフルブリッジ回路である。
第1変換器セル10Dでは、第1ブリッジLegAの中間点である半導体スイッチの接続点には負極の出力端子Noが接続される。また、第2ブリッジLegBの中間点である半導体スイッチの接続点には正極の出力端子Poが接続される。
各半導体スイッチ211、212、221、222、231、232、241、242は、各々、半導体スイッチング素子211s、212s、221s、222s、231s、232s、241s、242sと、それらに各々逆並列に接続された還流ダイオード211d、212d、221d、222d、231d、232d、241d、242dとで構成される。
図18に示す第1変換器セル10Eは、図17で示した第1変換器セル10Cの並列接続された半導体スイッチ231、232を1素子の半導体スイッチ23に置き換えたものである。また、図19に示す第1変換器セル10Fは、図17で示した第1変換器セル10Dの並列接続された半導体スイッチ221、222を1素子の半導体スイッチ22に置き換えたものである。
このように、1素子の半導体スイッチ23(22)を用いる事で、第1変換器セル10E、10Fは、電流容量の増加が図れると共に、素子数を低減でき小型化が図れる。
この場合、第1ブリッジLegAは上下アームとも素子の2並列構成で、第2ブリッジLegBは上下アームとも並列させない1素子構成である。これにより、第1変換器セル10G、10Hは、電流容量の増加が図れると共に、さらに素子数を低減でき小型化が図れる。
図22(a)に示す第2変換器セル15Cは、図3(a)で示した第2変換器セル15Aの各アームの半導体スイッチを2個ずつ並列接続したものである。
図22(b)に示す第2変換器セル15Dは、図3(b)で示した第2変換器セル15Bの各アームの半導体スイッチを2個ずつ並列接続したものである。
第2変換器セル15Cの第1ブリッジLegAaの上アームは半導体スイッチ411、412を並列接続して備え、下アームは半導体スイッチ421、422を並列接続して備える。
第2変換器セル15Dの第1ブリッジLegAaの上アームは半導体スイッチ511、512を並列接続して備え、下アームは半導体スイッチ521、522を並列接続して備える。
なお、第2変換器セル15C、15D内の各半導体スイッチング素子には、IGBT、GCT、MOSFETなどの自己消弧型の半導体スイッチング素子が使用される。また、半導体スイッチング素子にダイオード(ボディダイオード)が内在する場合は、還流ダイオードを省略してもよい。
このように、第2変換器セル15C、15Dを、各アームの半導体スイッチを2個ずつ並列接続して構成する。そして、並列接続された半導体スイッチング素子を同時にオン、オフ制御することで電流容量の増加が図れる。
なお、並列接続する場合、素子の2並列を示したが、3以上の素子を並列接続しても良い。その場合も、第1変換器セル10の第2ブリッジLegBのオフ固定素子の並列数は、第1ブリッジLegA、第2ブリッジLegB内の他の半導体スイッチング素子の並列数以下にできる。こうして、第1変換器セル10の第2ブリッジLegBのオン固定素子の並列数は、第1ブリッジLegA内の各アームの半導体スイッチング素子の並列数以下となる。即ち、第2ブリッジLegB内のオン固定素子の並列数を、第2ブリッジLegB内のオフ固定素子の並列数以上に、かつ第1ブリッジLegA内の半導体スイッチング素子の並列数以下に構成することができる。
このように効果的に素子数を削減することで、大電流容量の用途に適した電力変換装置を、効率的に小型化することができる。
上記各実施の形態において、電力変換器1、1a~1d内の各半導体スイッチング素子には、ゲート駆動回路14が設けられている。図23に示すようにゲート駆動回路14は、ゲート抵抗17と、各半導体スイッチング素子をオンオフさせるためのトランジスタ等を有するゲートドライブ部16とを備える。そして各ゲート駆動回路14は、制御装置2、12からの制御信号2a、12aに基づいて、各半導体スイッチング素子を駆動する。第1変換器セル10の第2ブリッジLegB内のゲート駆動回路14は、第1、第2変換器セル10、15の第1ブリッジLegA、第1ブリッジLegAa内のゲート駆動回路14に比べ、ゲート抵抗17の値を大きくできる。
ゲート駆動回路14のゲート抵抗17の値を大きくすると、半導体スイッチング素子のスイッチング速度が遅くなって、電流遮断時(ターンオフ時)のサージ電圧を抑制できると共に、1回のスイッチング当りのスイッチング損失が増加する。第2ブリッジLegB内の半導体スイッチング素子は、定常モードではオン状態またはオフ状態に固定されてスイッチングを行わない。そのため、ゲート抵抗17の値を大きくしてもスイッチング損失を増加させずにサージ電圧を抑制できる。このため、第1変換器セル10の第2ブリッジLegBの半導体スイッチング素子の並列数を削減しても、大きな電流遮断能力を確保することができる。
ワイドバンドギャップ半導体を使用すると、半導体素子の高耐圧化が可能なため、変換器セルの直列台数を低減できる。さらに、ワイドバンドギャップ半導体はスイッチング損失を低減できる。
また、ワイドバンドギャップ半導体は、チップ面積を大きくすることで、導通損失を低減することができる。これを用いると、定常状態で常時オンとする半導体スイッチング素子のみをワイドバンドギャップ半導体とすることで、導通損失を低減することができる。
全ての半導体素子をワイドバンドギャップ半導体とすれば、前述の両方の効果を得ることができる。
以下、本発明の実施の形態6を、上記実施の形態1~5と異なる箇所を中心に図を用いて説明する。上記実施の形態1~5と同様の部分は説明を省略する。
図24は、本発明の実施の形態6による制御装置2の制御ブロック図である。
本実施の形態では、電圧利用率を改善させる目的で、上記制御装置2が、全相U、V、Wで共通の交流成分を重畳した電圧指令を用いて半導体スイッチング素子を制御をする点が他の実施の形態と異なる。
図24において、第1アーム4の半導体スイッチング素子に対する電圧指令の上記直流成分をVdc+*として示し、上記基本波交流成分をVacu+*、Vacv+*、Vacw+*として示す。また、第2アーム5の半導体スイッチング素子に対する電圧指令の上記直流成分をVdc-*として示し、上記基本波交流成分をVacu-*、Vacv-*、Vacw-*として示す。
そして、本実施の形態では、この基本波交流成分(Vacu+*、Vacv+*、Vacw+*、Vacu-*、Vacv-*、Vacw-*)に対して、全相U、V、Wで共通の交流成分(V3nf)を重畳する。これにさらに、直流成分(Vdc+*、Vdc-*)を可算して生成された電圧指令(Vu+*、Vv+*、Vw+*、Vu-*、Vv-*、Vw-*)に基づいて、半導体スイッチング素子がPWM制御によりスイッチング制御される。
本実施の形態では、全相U、V、Wで共通の交流成分(V3nf)として、基本波の3倍の周波数の3次高調波を用いる。
交流成分(V3nf)が重畳されていない電圧指令を用いた場合では、電圧指令の最大値付近において電圧指令が搬送波より大きくなり、電圧指令の最小値付近において電圧指令が搬送波より小さくなることがある。この場合、各半導体スイッチング素子がオンまたはオフ動作せず過変調となり、出力電圧の高調波成分の増加、あるいは所望の動作をしないという恐れが生じる。
なお、重畳された交流電圧により零相電圧が発生するが、交流系統へは影響を与えない。重畳された交流電圧成分は直流系統側に出力され、その周波数および大きさは設定可能である。
以下、上記実施の形態1~6に示す電力変換装置を用いた電力システムについて図を用いて説明する。上記実施の形態1と同様の部分は同一符号を付して説明を省略する。
図25は、本実施の形態7における電力システム1000の回路構成例を示す図である。
図25に示すように、送配電等を行う電力システム1000は、実施の形態1に示す電力変換器1と制御装置2とを有する電力変換装置100を複数個(ここでは3個)用いて構成されている。そして、各電力変換装置100の電力変換器1の直流端子P、Nが、直流母線712を介して互いに接続されている。こうして電力変換装置100間で直流電力の授受を行うことが可能であり、また、大きな直流電力を扱うことができる。
なお、電力システム1000は、実施の形態1に示した電力変換装置100を用いる構成に限定するものではなく、上記実施の形態1~6に示したいずれの電力変換装置を用いてもよい。
直流電力が分岐される分岐点Eから図中左側の直流母線712を直流母線712aとし、分岐点Eから図中右側の直流母線712を直流母線712bとして示す。分岐点Eの図中左側には、直流母線712aを712bから切り離し可能な開閉器713が備えられている。このような構成の電力システム1000aの動作について以下にて説明する。
こうして、電力変換装置100(X)の直流端子P、N間で短絡が発生した場合においても、短絡の発生していない電力変換装置100(Y、Z)間で直流電力の授受を行うことができる。
Claims (17)
- エネルギ蓄積要素と、上アーム、下アーム共に半導体スイッチング素子を有する第1ブリッジとを備えた変換器セルをそれぞれ備える第1アームと第2アームとが直列接続され、その接続点が各相交流端子に接続される複数のレグ回路を正負の直流端子間に並列接続して備え、多相交流と直流との間で電力変換を行う電力変換器と、該電力変換器を制御する制御装置とを備えた電力変換装置において、
前記各レグ回路の前記第1アーム内の前記変換器セルは、前記エネルギ蓄積要素と、前記第1ブリッジと、上アーム、下アーム共に半導体スイッチング素子を有する第2ブリッジとを備えたフルブリッジ構成の第1変換器セルであり、前記第2アーム内の前記変換器セルは、前記エネルギ蓄積要素と、前記第1ブリッジとを備えるハーフブリッジ構成の第2変換器セルである、
電力変換装置。 - 前記各レグ回路の前記第1アーム内の前記変換器セルは、全て前記第1変換器セルであり、前記第2アーム内の前記変換器セルは、全て前記第2変換器セルである、
請求項1に記載の電力変換装置。 - 前記制御装置は、前記電力変換器の定常運転時において、前記各レグ回路の前記第1アームおよび前記第2アームの電圧指令をそれぞれ生成して、前記第1アーム内の前記第1変換器セルおよび前記第2アーム内の第2変換器セルの前記各第1ブリッジにおける前記半導体スイッチング素子を前記電圧指令に基づいてスイッチング制御すると共に、前記第1変換器セルの前記第2ブリッジにおける前記上アームの半導体スイッチング素子、前記下アームの半導体スイッチング素子のいずれか一方をオン固定素子としてオン状態に固定し、他方をオフ固定素子としてオフ状態に固定する、
請求項1または請求項2に記載の電力変換装置。 - 前記第1変換器セルの前記第1ブリッジの前記上アームおよび前記下アームは、前記半導体スイッチング素子を複数個並列接続して備え、前記第2ブリッジの前記上アーム、前記下アームの一方は、前記オン固定素子を1個あるいは複数個並列接続して備え、他方は前記オフ固定素子を1個あるいは複数個並列接続して備え、前記第2ブリッジの前記オン固定素子の並列数は、前記オフ固定素子の並列数以上であり、かつ前記第1ブリッジの前記半導体スイッチング素子の並列数以下である、
請求項3に記載の電力変換装置。 - 前記第1変換器セルおよび前記第2変換器セルは、前記各半導体スイッチング素子をそれぞれ駆動するゲート駆動回路を備え、前記第1変換器セルの前記第2ブリッジ内の前記ゲート駆動回路は、前記第1変換器セルおよび前記第2変換器セルの前記第1ブリッジ内の前記ゲート駆動回路に比べ、ゲート抵抗値が大きい、
請求項1から請求項4のいずれか1項に記載の電力変換装置。 - 前記各第1変換器セル内の前記第2ブリッジの半導体スイッチング素子の定格電流は、前記第1ブリッジの半導体スイッチング素子の定格電流より小さい、
請求項1から請求項5のいずれか1項に記載の電力変換装置。 - 前記制御装置は、前記直流端子間の短絡を検出すると、前記各レグ回路の前記第1アームに対し、前記各第1変換器セル内の全ての前記半導体スイッチング素子をオフさせる、
請求項1から請求項6のいずれか1項に記載の電力変換装置。 - 前記直流端子の少なくとも一方は開閉部に接続され、
前記制御装置は、前記直流端子間の短絡を検出すると、前記第1アームに対し、前記各第1変換器セル内の全ての前記半導体スイッチング素子をオフさせた後、前記開閉部を開状態に動作させる、
請求項7に記載の電力変換装置。 - 前記制御装置は、前記直流端子間の短絡を検出すると、前記第2アームに対し、無効電力補償動作をするように前記各第2変換器セルを出力制御する、
請求項1から請求項8のいずれか1項に記載の電力変換装置。 - 前記制御装置は、前記開閉部を開状態に動作させた後、前記第1アームに対し、無効電力補償動作をするように前記各第1変換器セルを出力制御する、
請求項8に記載の電力変換装置。 - 前記制御装置は、前記開閉部を開状態に動作させた後、前記第1アームと前記第2アームに対し、無効電力補償動作をするように前記各第1変換器セルと前記各第2変換器セルとを出力制御する、
請求項8に記載の電力変換装置。 - 前記制御装置は、全相で共通の直流電圧を重畳した電圧指令を用いて前記無効電力補償動作を制御する、
請求項9または請求項11に記載の電力変換装置。 - 前記制御装置は、全相で共通の交流電圧を重畳した電圧指令を用いて前記無効電力補償動作を制御する、
請求項9から請求項12のいずれか1項に記載の電力変換装置。 - 前記直流端子間が短絡した際における前記電力変換器の短絡電流経路内に接続される前記各第1変換器セルの前記エネルギ蓄積要素の充電電圧の総和が、前記交流端子間の電圧より高い、
請求項7に記載の電力変換装置。 - 前記開閉部は、前記電力変換器の定格直流電流の2倍よりも小さい電流を遮断可能とする、
請求項8、請求項10、請求項11のいずれか1項に記載の電力変換装置。 - 前記変換器セルの前記半導体スイッチング素子は、珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体によって形成されている、
請求項1から請求項15のいずれか1項に記載の電力変換装置。 - 請求項1から請求項16のいずれか1項に記載の電力変換装置を複数個備え、各前記電力変換装置の前記電力変換器における前記直流端子が互いに接続される電力システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/564,402 US10128773B2 (en) | 2015-04-13 | 2016-03-29 | Electric power conversion device and electric power system |
EP16779908.9A EP3285389B1 (en) | 2015-04-13 | 2016-03-29 | Electric power conversion device and electric power system |
JP2016557165A JP6062132B1 (ja) | 2015-04-13 | 2016-03-29 | 電力変換装置および電力システム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-081549 | 2015-04-13 | ||
JP2015081549 | 2015-04-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016167117A1 true WO2016167117A1 (ja) | 2016-10-20 |
Family
ID=57125873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/060187 WO2016167117A1 (ja) | 2015-04-13 | 2016-03-29 | 電力変換装置および電力システム |
Country Status (4)
Country | Link |
---|---|
US (1) | US10128773B2 (ja) |
EP (1) | EP3285389B1 (ja) |
JP (1) | JP6062132B1 (ja) |
WO (1) | WO2016167117A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6180693B1 (ja) * | 2016-11-21 | 2017-08-16 | 三菱電機株式会社 | 電力変換装置 |
JP6359213B1 (ja) * | 2017-06-27 | 2018-07-18 | 三菱電機株式会社 | 電力変換装置 |
WO2018173144A1 (ja) * | 2017-03-22 | 2018-09-27 | 東芝三菱電機産業システム株式会社 | 電力変換装置 |
JP2018196237A (ja) * | 2017-05-17 | 2018-12-06 | 株式会社東芝 | 電力変換装置 |
JP6440923B1 (ja) * | 2017-09-26 | 2018-12-19 | 三菱電機株式会社 | 電力変換装置 |
WO2019064705A1 (ja) * | 2017-09-26 | 2019-04-04 | 三菱電機株式会社 | 電力変換装置 |
JP2020518226A (ja) * | 2017-04-28 | 2020-06-18 | アーベーベー・シュバイツ・アーゲー | ノーマリオンの半導体スイッチに基づく電源モジュール |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10404064B2 (en) * | 2015-08-18 | 2019-09-03 | Virginia Tech Intellectual Properties, Inc. | Modular multilevel converter capacitor voltage ripple reduction |
DE102016106359A1 (de) * | 2016-04-07 | 2017-10-12 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Modul für einen Multilevelkonverter |
EP3468026A4 (en) * | 2016-05-25 | 2020-03-18 | Mitsubishi Electric Corporation | POWER CONVERTER |
US20190118654A1 (en) * | 2016-05-27 | 2019-04-25 | Mitsubishi Electric Corporation | Electric-vehicle propulsion control apparatus |
SE539711C2 (en) * | 2016-06-15 | 2017-11-07 | Abb Schweiz Ag | Modular multilevel converter and cell for reducing current conduction losses |
US10432101B2 (en) * | 2016-08-10 | 2019-10-01 | Mitsubishi Electric Corporation | Power conversion apparatus |
US10411587B2 (en) * | 2016-12-14 | 2019-09-10 | Abb Schweiz Ag | Fault isolation and system restoration using power converter |
EP3382880B1 (en) * | 2017-03-27 | 2021-05-05 | General Electric Technology GmbH | Improvements in or relating to the control of voltage source converters |
KR101943884B1 (ko) * | 2017-06-02 | 2019-01-30 | 효성중공업 주식회사 | Mmc 컨버터 및 그의 서브모듈 |
EP3713073A1 (de) * | 2019-03-19 | 2020-09-23 | Siemens Aktiengesellschaft | Stromrichter und verfahren zu dessen regelung |
WO2021159219A1 (en) * | 2020-02-14 | 2021-08-19 | Ecole De Technologie Superieure | Three-phase multilevel electric power converter |
JP6771707B1 (ja) * | 2020-03-11 | 2020-10-21 | 三菱電機株式会社 | 電力変換装置 |
EP4027506A1 (de) * | 2021-01-08 | 2022-07-13 | Siemens Energy Global GmbH & Co. KG | Stromrichter und verfahren zum betreiben des stromrichters |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012029490A (ja) * | 2010-07-26 | 2012-02-09 | Nissan Motor Co Ltd | 電力変換装置及び電力変換方法 |
JP2013121223A (ja) * | 2011-12-07 | 2013-06-17 | Hitachi Ltd | 電力変換装置 |
JP2014079048A (ja) * | 2012-10-09 | 2014-05-01 | Toyota Motor Corp | 電力変換装置 |
WO2014111595A1 (en) * | 2013-01-21 | 2014-07-24 | Abb Technology Ltd | A multilevel converter with hybrid full-bridge cells |
JP2015012726A (ja) * | 2013-06-28 | 2015-01-19 | 株式会社東芝 | 電力変換装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101183507B1 (ko) * | 2008-06-09 | 2012-09-20 | 에이비비 테크놀로지 아게 | 전압원 컨버터 |
JP2011010404A (ja) * | 2009-06-24 | 2011-01-13 | Hitachi Ltd | 電力変換器およびそれを用いた電動機駆動装置、輸送装置 |
CN102549907B (zh) | 2009-07-31 | 2015-01-21 | 阿尔斯通技术有限公司 | 具有主动故障电流限制的变换器 |
EP2302772A1 (en) * | 2009-09-28 | 2011-03-30 | ABB Oy | Inverter |
CN103141018B (zh) * | 2010-07-30 | 2015-12-16 | 阿尔斯通技术有限公司 | 包括用于处理dc侧短路的全桥单元的hvdc转换器 |
CN103947099B (zh) * | 2011-11-15 | 2017-04-05 | 阿尔斯通技术有限公司 | 功率电子模块 |
GB201209110D0 (en) * | 2012-05-24 | 2012-07-04 | Alstom Technology Ltd | Method of fault clearance |
CN104521127B (zh) * | 2012-08-10 | 2017-05-10 | 三菱电机株式会社 | 双元件功率模块及使用该双元件功率模块的三电平功率转换装置 |
EP2946464B1 (en) | 2013-01-21 | 2019-12-18 | ABB Schweiz AG | A multilevel converter with hybrid full-bridge cells |
EP2768133B1 (en) * | 2013-02-14 | 2015-11-04 | ABB Technology Ltd | Converter cell with reduced power losses, high voltage multilevel converter and associated method |
WO2015110185A1 (en) * | 2014-01-21 | 2015-07-30 | Abb Technology Ltd | A multilevel converter with reduced ac fault handling rating |
EP3107172B1 (en) * | 2014-02-14 | 2022-06-01 | Mitsubishi Electric Corporation | Protection system for dc power transmission system, ac/dc converter, and dc power transmission system breaking method |
CN103915808B (zh) * | 2014-03-07 | 2018-07-31 | 南方电网科学研究院有限责任公司 | 基于电压源型换流器的直流融冰装置及其控制方法 |
CN105099242B (zh) * | 2014-05-09 | 2018-09-11 | 南京南瑞继保电气有限公司 | 电压源型多电平换流器、直流输电系统、故障处理方法和装置 |
-
2016
- 2016-03-29 EP EP16779908.9A patent/EP3285389B1/en active Active
- 2016-03-29 US US15/564,402 patent/US10128773B2/en active Active
- 2016-03-29 JP JP2016557165A patent/JP6062132B1/ja active Active
- 2016-03-29 WO PCT/JP2016/060187 patent/WO2016167117A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012029490A (ja) * | 2010-07-26 | 2012-02-09 | Nissan Motor Co Ltd | 電力変換装置及び電力変換方法 |
JP2013121223A (ja) * | 2011-12-07 | 2013-06-17 | Hitachi Ltd | 電力変換装置 |
JP2014079048A (ja) * | 2012-10-09 | 2014-05-01 | Toyota Motor Corp | 電力変換装置 |
WO2014111595A1 (en) * | 2013-01-21 | 2014-07-24 | Abb Technology Ltd | A multilevel converter with hybrid full-bridge cells |
JP2015012726A (ja) * | 2013-06-28 | 2015-01-19 | 株式会社東芝 | 電力変換装置 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018092303A1 (ja) * | 2016-11-21 | 2018-05-24 | 三菱電機株式会社 | 電力変換装置 |
US11070124B2 (en) | 2016-11-21 | 2021-07-20 | Mitsubishi Electric Corporation | Power conversion device |
JP6180693B1 (ja) * | 2016-11-21 | 2017-08-16 | 三菱電機株式会社 | 電力変換装置 |
JPWO2018173144A1 (ja) * | 2017-03-22 | 2020-01-16 | 東芝三菱電機産業システム株式会社 | 電力変換装置 |
WO2018173144A1 (ja) * | 2017-03-22 | 2018-09-27 | 東芝三菱電機産業システム株式会社 | 電力変換装置 |
JP2020518226A (ja) * | 2017-04-28 | 2020-06-18 | アーベーベー・シュバイツ・アーゲー | ノーマリオンの半導体スイッチに基づく電源モジュール |
JP7221877B2 (ja) | 2017-04-28 | 2023-02-14 | ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト | ノーマリオンの半導体スイッチに基づく電源モジュール |
JP2018196237A (ja) * | 2017-05-17 | 2018-12-06 | 株式会社東芝 | 電力変換装置 |
WO2019003290A1 (ja) * | 2017-06-27 | 2019-01-03 | 三菱電機株式会社 | 電力変換装置 |
US10992219B2 (en) | 2017-06-27 | 2021-04-27 | Mitsubishi Electric Corporation | Power conversion device |
JP6359213B1 (ja) * | 2017-06-27 | 2018-07-18 | 三菱電機株式会社 | 電力変換装置 |
WO2019064705A1 (ja) * | 2017-09-26 | 2019-04-04 | 三菱電機株式会社 | 電力変換装置 |
JP6440923B1 (ja) * | 2017-09-26 | 2018-12-19 | 三菱電機株式会社 | 電力変換装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3285389A4 (en) | 2019-01-02 |
JP6062132B1 (ja) | 2017-01-18 |
US10128773B2 (en) | 2018-11-13 |
US20180138826A1 (en) | 2018-05-17 |
JPWO2016167117A1 (ja) | 2017-04-27 |
EP3285389B1 (en) | 2020-11-25 |
EP3285389A1 (en) | 2018-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6062132B1 (ja) | 電力変換装置および電力システム | |
EP3285388B1 (en) | Electric power conversion device | |
JP6180693B1 (ja) | 電力変換装置 | |
JP6261491B2 (ja) | 電力変換装置 | |
EP3251201B1 (en) | A method of controlling an uninterruptible power supply to clear a shorted load | |
CA2903362C (en) | Power conversion device | |
US10128741B2 (en) | Power conversion device | |
EP2471164B1 (en) | Converter cell module with autotransformer bypass, voltage source converter system comprising such a module and a method for controlling such a system | |
US9276496B2 (en) | Power conversion apparatus including an inverter-converter combination | |
US10367423B1 (en) | Power conversion device | |
JP2011114920A (ja) | 電力変換装置 | |
KR20160109137A (ko) | 인버터 시스템 | |
JP6359205B1 (ja) | 電力制御システム、および制御装置 | |
JP2011193589A (ja) | 電力変換装置 | |
JP2015156740A (ja) | 電力変換装置 | |
JP5971685B2 (ja) | 電力変換装置 | |
WO2016170672A1 (ja) | 電力変換装置 | |
JP6371254B2 (ja) | 電力変換装置 | |
JP6700578B2 (ja) | 無停電電源装置 | |
KR20170011899A (ko) | 고효율 단상 태양광 인버터 | |
CN116566222A (zh) | 模块化多电平变换器及其控制方法 | |
Elserougi et al. | Enhancing the DC voltage utilization of twelve-switch voltage source inverter feeding symmetrical/asymmetrical nine-phase loads | |
JP2001028881A (ja) | 電圧型インバータ回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016557165 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16779908 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15564402 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2016779908 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |