JPWO2016167117A1 - 電力変換装置および電力システム - Google Patents
電力変換装置および電力システム Download PDFInfo
- Publication number
- JPWO2016167117A1 JPWO2016167117A1 JP2016557165A JP2016557165A JPWO2016167117A1 JP WO2016167117 A1 JPWO2016167117 A1 JP WO2016167117A1 JP 2016557165 A JP2016557165 A JP 2016557165A JP 2016557165 A JP2016557165 A JP 2016557165A JP WO2016167117 A1 JPWO2016167117 A1 JP WO2016167117A1
- Authority
- JP
- Japan
- Prior art keywords
- converter
- arm
- converter cell
- bridge
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 226
- 238000006243 chemical reaction Methods 0.000 claims abstract description 71
- 238000004146 energy storage Methods 0.000 claims abstract description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 239000003990 capacitor Substances 0.000 description 31
- 238000010586 diagram Methods 0.000 description 15
- 230000002441 reversible effect Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 229910002601 GaN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/18—Arrangements for adjusting, eliminating or compensating reactive power in networks
- H02J3/1821—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
- H02J3/1835—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
- H02J3/1842—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
- H02J3/1857—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters wherein such bridge converter is a multilevel converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/4835—Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/49—Combination of the output voltage waveforms of a plurality of converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0095—Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/325—Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
Description
変換器を多重化する方法として、複数の変換器の出力をカスケード接続したモジュラーマルチレベル変換器がある。モジュラーマルチレベル変換器の各アームは、複数の変換器セルがカスケード接続されて構成されている。
また、上記特許文献1に示すモジュラーマルチレベル変換器を用いた場合、直流短絡時に短絡電流を抑制することはできる。しかしながら、各変換器セルがフルブリッジ回路で構成されているため、半導体スイッチング素子の数が増加し、装置構成が大型化するという問題点があった。
また、上記非特許文献2記載のモジュラーマルチレベル変換器を用いた従来の電力変換装置では、多相交流と直流との間の電力変換に用いることはできない。
エネルギ蓄積要素と、上アーム、下アーム共に半導体スイッチング素子を有する第1ブリッジとを備えた変換器セルが、それぞれ1あるいは複数直列接続されて成る第1アームと第2アームとが直列接続され、その接続点が各相交流端子に接続される複数のレグ回路を正負の直流端子間に並列接続して備え、多相交流と直流との間で電力変換を行う電力変換器と、該電力変換器を制御する制御装置とを備えた電力変換装置において、
前記各レグ回路の前記第1アーム内の前記変換器セルは、前記エネルギ蓄積要素と、前記第1ブリッジと、上アーム、下アーム共に半導体スイッチング素子を有する第2ブリッジとを備えたフルブリッジ構成の第1変換器セルであり、前記第2アーム内の前記変換器セルは、前記エネルギ蓄積要素と、前記第1ブリッジとを備えるハーフブリッジ構成の第2変換器セルである。
また、本発明に係る電力システムは、上記のように構成された電力変換装置を複数個備え、各前記電力変換装置の前記電力変換器における前記直流端子が互いに接続されたものである。
また、この発明に係る電力システムによれば、直流端子間が短絡した際の短絡電流を抑制することの可能な複数個の電力変換装置を直流側で接続して構成されるものなので、大きな直流電力を扱える信頼性の高い電力システムを提供することができる。
以下、本発明の実施の形態1による電力変換装置100について図を用いて説明する。
図1は、本発明の実施の形態1による電力変換装置100を示す概略構成図である。
図に示すように、電力変換装置100は、主回路である電力変換器1と、電力変換器1を制御する制御装置2とを備える。電力変換器1は、多相交流としての3相交流と、直流との間で電力変換を行うものであり、交流側は各交流端子U、V、Wに接続され、直流側は各直流端子P、Nにそれぞれ接続される。
各第1アーム4には正側リアクトルLpが直列接続され、各第2アーム5には負側リアクトルLnが直列接続される。
直流端子P側には電流検出器11が接続されており、直流端子Pに流れる電流を検出している。
第2変換器セル15A、15Bは、それぞれが、エネルギ蓄積要素としてのキャパシタ40と、このキャパシタ40に並列接続された第1ブリッジとしてのLegAaとを備えるハーフブリッジ構成である。
図1に示すように、第2変換器セル15の正極の出力端子Poは、他の変換器セル15の負極の出力端子Noへ接続される。
なお、上記の各半導体スイッチング素子には、IGBT(Insulated−Gate Bipolar Transistor)、GCT(Gate Commutated Turn−off thyristor)、MOSFET(Metal−Oxide−Semiconductor Field−Effect Transistor)などの半導体スイッチング素子が使用される。また、ダイオード(ボディダイオード)が内在する半導体スイッチング素子を用いる場合では、上記の還流ダイオードを省略してもよい。
図4は、本発明の実施の形態1による第1変換器セル10の各半導体スイッチング素子21s〜24sのスイッチング状態(図においてSW状態として示す)と、第1変換器セル10の出力状態(図において動作モードとして示す)とを示す図である。
半導体スイッチング素子21s、24sがオン状態、半導体スイッチング素子22s、23sがオフ状態の場合、第1変換器セル10の出力端子Po、No間にはキャパシタ20の両端電圧が出力される(モード1)。
半導体スイッチング素子22s、24sがオン状態、半導体スイッチング素子21s、23sがオフ状態の場合、零電圧出力となる(モード2)。
半導体スイッチング素子21s、23sがオン状態、半導体スイッチング素子22s、24sがオフ状態の場合、零電圧出力となる(モード3)。
半導体スイッチング素子22s、23sがオン状態、半導体スイッチング素子21s、24sがオフ状態の場合、第1変換器セル10Aの出力端子間にはキャパシタ20の負の両端電圧が出力される(モード4)。
全ての半導体スイッチング素子21s、22s、23s、24sがオフ状態の場合は保護モードとなり、ダイオード整流器として動作する(モード5)。この保護モードの詳細については後述する。
また、PWM(Pulse−Width Modulation)制御を用いれば、スイッチング1周期の平均電圧を、所望の電圧(発明者所望の電圧指令)と等しくすることができる。例えば、図4に示すモード1とモード4とを時間比率1:1で切りかえれば、平均出力電圧は零となるので、図4のモード2、モード3と同等の出力を得ることができる。
図5は、本発明の実施の形態1による第2変換器セル15Aの各半導体スイッチング素子41s、42s、第2変換器セル15Bの各半導体スイッチング素子51s、52sのスイッチング状態(図においてSWとして示す)と、第2変換器セル15A、15Bの出力状態(図において動作モードとして示す)とを示す図である。
半導体スイッチング素子41s(52s)がオン状態、半導体スイッチング素子42s(51s)がオフ状態の場合、第2変換器セル15A、15Bの出力端子Po、No間にはキャパシタ40の両端電圧が出力される(モード1)。
半導体スイッチング素子42s(51s)がオン状態、半導体スイッチング素子41s(52s)がオフ状態の場合、零電圧出力となる(モード2)。
全ての半導体スイッチング素子41s、42s、51s、52sがオフ状態の場合は保護モードとなる(モード3)。
定常運転時では、第1変換器セル10Aの第2ブリッジLegBにおける半導体スイッチング素子23s、24sをオン状態またはオフ状態に固定してスイッチング動作を行わない状態にすると、第1変換器セル10Aの第1ブリッジLegAのスイッチング制御は、第2変換器セル15Aの第1ブリッジLegAaのスイッチング制御と等価になる。これにより、フルブリッジ構成の第1変換器セル10Aをハーフブリッジ構成の第2変換器セル15Aと同様に制御できる。
定常運転時では、第1変換器セル10Bの第2ブリッジLegBにおける半導体スイッチング素子21s、22sをオン状態またはオフ状態に固定してスイッチング動作を行わない状態にすると、第1変換器セル10Bの第1ブリッジLegAのスイッチング制御は、第2変換器セル15Bの第1ブリッジLegAaのスイッチング制御と等価になる。これにより、フルブリッジ構成の第1変換器セル10Bをハーフブリッジ構成の第2変換器セル15Bと同様に制御できる。
図6は、本発明の実施の形態1による電力変換装置100の制御動作を示すフロー図である。
運転開始指令が出力されると(ステップS1)、制御装置2は定常運転を開始する(ステップS2)。この定常運転において制御装置2は、第1アーム4内の第1変換器セル10A(10B)の第2ブリッジLegBにおける半導体スイッチング素子23s(22s)をオフ固定素子としてオフ状態に固定し、半導体スイッチング素子24s(21s)をオン固定素子としてオン状態に固定する。そして制御装置2は、第1アーム4内の第1変換器セル10Aの第1ブリッジLegAにおける半導体スイッチング素子21s、22s(22s、24s)と、第2アーム5内の第2変換器セル15A(15B)の第1ブリッジLegAaにおける半導体スイッチング素子41s、42s(51s、52s)とを前述の電圧指令に基づいて、PWM制御によりスイッチング制御する(ステップS2)。
次に、制御装置2の短絡判別部が、検出した電流値に基づいて、直流端子P、N間での短絡発生の有無を判別する(ステップS4)。この短絡判別部は、検出した電流値が所定値以上の場合に、直流端子P、N間で短絡が発生したと判別する(単に過電流である場合も含む)。
ステップS4にて、制御装置2の短絡判別部が直流端子P、N間の短絡を検出しなかった場合は、ステップS3に戻り、電流検出(ステップS3)と短絡判別(ステップS4)とを周期的に繰り返し行う。
図7は、本発明の実施の形態1による電力変換器1において、直流端子P、N間が短絡した際の短絡電流iaの経路を示す図である。
図8は、本発明の実施の形態1による第1変換器セル10A(10B)において、直流端子P、N間が短絡した際の短絡電流iaの経路を示す図である。
図9は、本発明の実施の形態1による第2変換器セル15A、15Bにおいて、直流端子P、N間が短絡した際の短絡電流iaの経路を示す図である。
図8に示すように、フルブリッジ構成の第1変換器セル10では、直流端子P、N間の短絡が発生した際に半導体スイッチング素子21s〜24sを全てオフとすると、ダイオード整流器のような短絡電流経路となる。この場合、第1変換器セル10の出力端子No、Po間の電圧が、キャパシタ20の電圧を上回らなければ、還流ダイオード23d、22dは導通せず、短絡電流iaは流れない。
第1変換器セル10の出力端子Po、Noは直列に接続されているので、電力変換器1全体で考えると、短絡電流経路内に接続される第1アーム4内の各第1変換器セル10のキャパシタ20の電圧の総和が、交流端子間の電圧より高ければ短絡電流iaは流れない。
すなわち、「交流端子間電圧の最大値」÷「各変換器セル10のキャパシタ20の電圧」で求められる変換器セル数よりも多くの第1変換器セル10を、第1アーム4内に有していれば短絡電流iaは流れない。
なお、ここでいうキャパシタ20の電圧とは、製品カタログ上の定格使用電圧ではなく、電力変換装置100を実際に使用した状態におけるキャパシタ20の充電電圧(使用電圧)である。
この場合、第2変換器セル15A(15B)の半導体スイッチング素子をオフさせるのは、スイッチング動作による交流端子U、V、Wへの影響を低減するためであり、短絡電流iaの抑制には寄与しない。
さらに、電力変換装置の定常運転時において、第2ブリッジLegBの半導体スイッチング素子の一方をオン固定素子とし、他方をオフ固定素子として制御し、スイッチング動作をさせない。このため制御装置2における制御回路の簡素化を図ることができる。これにより、更に電力変換装置100を小型化することができる。
定格電流を小さくする方法としては、例えば半導体素子のチップ面積を小さくするなどがある。
このように、上記各レグ回路3を構成する正負のアームの一方が、フルブリッジ構成の第1変換器セル10で構成され、他方がハーフブリッジ構成の第2変換器セル15で構成されていればよい。
図1では、電流検出器11を正側の直流端子P側に設けたが、負側の直流端子N側に設けても良い。
電流検出器11は、直流端子P、N間の短絡を検出する為に、少なくとも電力変換器1内の半導体スイッチング素子に流れる電流を直接、或いは間接に検出できるものであれば良い。
以下、本実施の形態における電力変換器の他の回路構成例を図に基づいて説明する。
図10〜図12は、本発明の実施の形態1による電力変換器の回路構成例を示す図である。
以下、本発明の実施の形態2を、上記実施の形態1と異なる箇所を中心に図を用いて説明する。上記実施の形態1と同様の部分は同一符号を付して説明を省略する。
図13は、本発明の実施の形態2による電力変換装置の制御動作を示すフロー図である。
以下、本発明の実施の形態2による電力変換装置の制御動作について説明する。
実施の形態1に示した、ステップS1〜ステップS4までの制御動作は本実施の形態についても同様のものであり、説明は省略する。
本実施の形態では、直流端子P、N間が短絡した際にも、交流端子U、V、W側に対して無効電力を出力することができる点が実施の形態1と異なる。
ステップS4において、制御装置2の短絡判別部が直流端子P、N間の短絡を検出すると、制御装置2は保護モードの運転を開始する。この保護モードにおいて、制御装置2は、各レグ回路3の第1アーム4に対し、第1変換器セル10内の全ての半導体スイッチング素子21s〜24sをオフさせると共に、第2アーム5に対し、無効電力保障動作をするように各第2変換器セル15を出力制御する(ステップS15)。
保護モードの運転を開始した場合は、交流端子U、V、Wと直流端子P、Nとの間の電力のやり取りを行う動作の再開である再起動を待つ(ステップS6)。
制御装置2は、各第2変換器セル15のキャパシタ電圧を制御しつつ、所望の交流電圧の無効電力を交流端子U、V、Wに発生させるように電圧指令を演算する。そして、演算された電圧指令に基づいて、各第2変換器セル15内の各半導体スイッチング素子をPWM制御によりスイッチング制御することにより、第2アーム5の各第2変換器セル15は、無効電力補償動作を行う。
こうして、上記非特許文献2に記載の技術を用い、更に第2変換器セル15の出力に直流電圧成分を重畳する制御を追加することで、第2アーム5内の第2変換器セル15をSTATCOMとして動作させることが可能になる。
さらに、直流端子P、N間の短絡時において、第2アーム5内の第2変換器セル15をSTATCOMとして動作させる。そのため、短絡が発生した場合においても継続的に交流端子U、V、Wに対して無効電力を出力することができ、電力変換装置の高性能化が可能となる。
以下、本発明の実施の形態3を、上記実施の形態1、2と異なる箇所を中心に図を用いて説明する。上記実施の形態1、2と同様の部分は説明を省略する。
図14は、本発明の実施の形態3による電力変換装置100aを示す概略構成図である。
本実施の形態では、電力変換器1dの直流端子P側に開閉部としての開閉器8が接続されている。なお、開閉器8は、電力変換装置100aに内在してもよいし、電力変換装置100a自体には備えず外付けで接続するものでもよい。
図15は、本発明の実施の形態3による電力変換装置100aの制御動作を示すフロー図である。
本実施の形態では、直流端子P、N間が短絡した際に、第2アーム5内の第2変換器セル15だけでなく、さらに第1アーム4内の第1変換器セル10をSTATCOMとして運転させて、交流端子U、V、W側に対して無効電力を出力する点が実施の形態2と異なる。
次に、制御装置12は、電圧指令12aに基づいて、第1アーム4に対し、無効電力保障動作をするように各第1変換器セル10を出力制御する(ステップS17)。
次に、交流端子U、V、Wと直流端子P、Nとの間の電力のやり取りを行う動作の再開である再起動を待つ(ステップS18)。
実施の形態2に示したような第2アーム内の第2変換器セル15のみをSTATCOMとして動作をさせる場合では、重畳された直流電圧により零相電圧が発生する。
通常、この零相電圧は問題とはならないが、稀に、電力変換装置の交流端子U、V、Wに、リアクトルや変圧器等で三相の中性点を形成し、その中性点を接地する場合がある。その場合、上記の零相電圧によって、対地電流に相当する零相電流が流れることがある。
こうして、短絡が発生した場合においても、継続的に交流端子U、V、Wに対して無効電力を出力することができるので、電力変換装置100aの高性能化が可能となる。
また、本実施の形態では、開閉器8を正側の直流端子Pに接続したが、負側の直流端子Nに接続するものでもよく、あるいは正側の直流端子Pと負側の直流端子Nとの両方に接続するものでもよい。
またステップS15の制御の後にステップ16の開閉器8を開状態にする制御を行うものとしたがこれに限らない。一般的に開閉器8が実際に開状態(オフ)に動作するまでは5ms〜10msの時間を有するため、ステップS15において保護モードでの制御を開始する際に、同時に開閉器8をオフさせる指令を出力させてもよい。
以下、本発明の実施の形態4を、上記実施の形態1、2、3と異なる箇所を中心に図を用いて説明する。上記実施の形態1、2、3と同様の部分は説明を省略する。
本実施の形態では、直流端子P、N間が短絡した際に、第1アーム4内の第1変換器セル10のみがSTATCOMとして運転を行うステップを有する点が他の実施の形態と異なる。
以下、本発明の実施の形態4による電力変換装置の制御動作について図に基づいて説明する。
図16は、本発明の実施の形態4による電力変換装置の制御動作を示すフロー図である。
本実施の形態のステップS15、ステップS16も、実施の形態3のステップS15、ステップS16と同様である。制御装置12の短絡判別部が直流端子P、N間の短絡を検出すると、制御装置12は、各レグ回路3の第1アーム4に対し、第1変換器セル10内の全ての半導体スイッチング素子21s〜24sをオフさせると共に、電圧指令12aに基づいて、第2アーム5に対し、無効電力保障動作をするように各第2変換器セル15を出力制御する。そして制御装置12の短絡判別部が、開閉器8を開状態に動作させて開閉器8をオフにする。
次に、交流端子U、V、Wと直流端子P、Nとの間の電力のやり取りを行う動作の再開である再起動を待つ(ステップS18)。
次に、この発明の実施の形態5による電力変換装置を説明する。この実施の形態5の電力変換装置は、大電流容量用途に対応するため、実施の形態1の第1変換器セル10および第2変換器セル15の各第1ブリッジLegA、第2ブリッジLegB、第1ブリッジLegAaにおける半導体スイッチング素子の数を増やして、並列接続する構成としたものである。
第1変換器セル10および第2変換器セル15の構成以外は、上記実施の形態1と同様である。また、この実施の形態で示す第1変換器セル10および第2変換器セル15の構成は、上記実施の形態1および実施の形態2で説明した電力変換装置100、100aの制御に、同様に適用できる。
図17は第1変換器セル10C(10D)の構成を示す回路図である。この第1変換器セル10C(10D)は、図2で示した第1変換器セル10A(10B)の各アームの半導体素子を2個ずつ並列接続したものである。
図17に示すように、第1変換器セル10C(10D)は、第1変換器セル10A(10B)と同様に、上下アーム共に半導体スイッチで構成された第1ブリッジであるLegAと、上下アーム共に半導体スイッチで構成された第2ブリッジであるLegBと、キャパシタ20とを備える。そしてこの第1ブリッジLegAと第2ブリッジLegBとをキャパシタ20に並列接続したフルブリッジ回路である。
第1変換器セル10Dでは、第1ブリッジLegAの中間点である半導体スイッチの接続点には負極の出力端子Noが接続される。また、第2ブリッジLegBの中間点である半導体スイッチの接続点には正極の出力端子Poが接続される。
各半導体スイッチ211、212、221、222、231、232、241、242は、各々、半導体スイッチング素子211s、212s、221s、222s、231s、232s、241s、242sと、それらに各々逆並列に接続された還流ダイオード211d、212d、221d、222d、231d、232d、241d、242dとで構成される。
図18に示す第1変換器セル10Eは、図17で示した第1変換器セル10Cの並列接続された半導体スイッチ231、232を1素子の半導体スイッチ23に置き換えたものである。また、図19に示す第1変換器セル10Fは、図17で示した第1変換器セル10Dの並列接続された半導体スイッチ221、222を1素子の半導体スイッチ22に置き換えたものである。
このように、1素子の半導体スイッチ23(22)を用いる事で、第1変換器セル10E、10Fは、電流容量の増加が図れると共に、素子数を低減でき小型化が図れる。
この場合、第1ブリッジLegAは上下アームとも素子の2並列構成で、第2ブリッジLegBは上下アームとも並列させない1素子構成である。これにより、第1変換器セル10G、10Hは、電流容量の増加が図れると共に、さらに素子数を低減でき小型化が図れる。
図22(a)に示す第2変換器セル15Cは、図3(a)で示した第2変換器セル15Aの各アームの半導体スイッチを2個ずつ並列接続したものである。
図22(b)に示す第2変換器セル15Dは、図3(b)で示した第2変換器セル15Bの各アームの半導体スイッチを2個ずつ並列接続したものである。
第2変換器セル15Cの第1ブリッジLegAaの上アームは半導体スイッチ411、412を並列接続して備え、下アームは半導体スイッチ421、422を並列接続して備える。
第2変換器セル15Dの第1ブリッジLegAaの上アームは半導体スイッチ511、512を並列接続して備え、下アームは半導体スイッチ521、522を並列接続して備える。
なお、第2変換器セル15C、15D内の各半導体スイッチング素子には、IGBT、GCT、MOSFETなどの自己消弧型の半導体スイッチング素子が使用される。また、半導体スイッチング素子にダイオード(ボディダイオード)が内在する場合は、還流ダイオードを省略してもよい。
このように、第2変換器セル15C、15Dを、各アームの半導体スイッチを2個ずつ並列接続して構成する。そして、並列接続された半導体スイッチング素子を同時にオン、オフ制御することで電流容量の増加が図れる。
なお、並列接続する場合、素子の2並列を示したが、3以上の素子を並列接続しても良い。その場合も、第1変換器セル10の第2ブリッジLegBのオフ固定素子の並列数は、第1ブリッジLegA、第2ブリッジLegB内の他の半導体スイッチング素子の並列数以下にできる。こうして、第1変換器セル10の第2ブリッジLegBのオン固定素子の並列数は、第1ブリッジLegA内の各アームの半導体スイッチング素子の並列数以下となる。即ち、第2ブリッジLegB内のオン固定素子の並列数を、第2ブリッジLegB内のオフ固定素子の並列数以上に、かつ第1ブリッジLegA内の半導体スイッチング素子の並列数以下に構成することができる。
このように効果的に素子数を削減することで、大電流容量の用途に適した電力変換装置を、効率的に小型化することができる。
上記各実施の形態において、電力変換器1、1a〜1d内の各半導体スイッチング素子には、ゲート駆動回路14が設けられている。図23に示すようにゲート駆動回路14は、ゲート抵抗17と、各半導体スイッチング素子をオンオフさせるためのトランジスタ等を有するゲートドライブ部16とを備える。そして各ゲート駆動回路14は、制御装置2、12からの制御信号2a、12aに基づいて、各半導体スイッチング素子を駆動する。第1変換器セル10の第2ブリッジLegB内のゲート駆動回路14は、第1、第2変換器セル10、15の第1ブリッジLegA、第1ブリッジLegAa内のゲート駆動回路14に比べ、ゲート抵抗17の値を大きくできる。
ゲート駆動回路14のゲート抵抗17の値を大きくすると、半導体スイッチング素子のスイッチング速度が遅くなって、電流遮断時(ターンオフ時)のサージ電圧を抑制できると共に、1回のスイッチング当りのスイッチング損失が増加する。第2ブリッジLegB内の半導体スイッチング素子は、定常モードではオン状態またはオフ状態に固定されてスイッチングを行わない。そのため、ゲート抵抗17の値を大きくしてもスイッチング損失を増加させずにサージ電圧を抑制できる。このため、第1変換器セル10の第2ブリッジLegBの半導体スイッチング素子の並列数を削減しても、大きな電流遮断能力を確保することができる。
ワイドバンドギャップ半導体を使用すると、半導体素子の高耐圧化が可能なため、変換器セルの直列台数を低減できる。さらに、ワイドバンドギャップ半導体はスイッチング損失を低減できる。
また、ワイドバンドギャップ半導体は、チップ面積を大きくすることで、導通損失を低減することができる。これを用いると、定常状態で常時オンとする半導体スイッチング素子のみをワイドバンドギャップ半導体とすることで、導通損失を低減することができる。
全ての半導体素子をワイドバンドギャップ半導体とすれば、前述の両方の効果を得ることができる。
以下、本発明の実施の形態6を、上記実施の形態1〜5と異なる箇所を中心に図を用いて説明する。上記実施の形態1〜5と同様の部分は説明を省略する。
図24は、本発明の実施の形態6による制御装置2の制御ブロック図である。
本実施の形態では、電圧利用率を改善させる目的で、上記制御装置2が、全相U、V、Wで共通の交流成分を重畳した電圧指令を用いて半導体スイッチング素子を制御をする点が他の実施の形態と異なる。
図24において、第1アーム4の半導体スイッチング素子に対する電圧指令の上記直流成分をVdc+*として示し、上記基本波交流成分をVacu+*、Vacv+*、Vacw+*として示す。また、第2アーム5の半導体スイッチング素子に対する電圧指令の上記直流成分をVdc−*として示し、上記基本波交流成分をVacu−*、Vacv−*、Vacw−*として示す。
そして、本実施の形態では、この基本波交流成分(Vacu+*、Vacv+*、Vacw+*、Vacu−*、Vacv−*、Vacw−*)に対して、全相U、V、Wで共通の交流成分(V3nf)を重畳する。これにさらに、直流成分(Vdc+*、Vdc−*)を可算して生成された電圧指令(Vu+*、Vv+*、Vw+*、Vu−*、Vv−*、Vw−*)に基づいて、半導体スイッチング素子がPWM制御によりスイッチング制御される。
本実施の形態では、全相U、V、Wで共通の交流成分(V3nf)として、基本波の3倍の周波数の3次高調波を用いる。
交流成分(V3nf)が重畳されていない電圧指令を用いた場合では、電圧指令の最大値付近において電圧指令が搬送波より大きくなり、電圧指令の最小値付近において電圧指令が搬送波より小さくなることがある。この場合、各半導体スイッチング素子がオンまたはオフ動作せず過変調となり、出力電圧の高調波成分の増加、あるいは所望の動作をしないという恐れが生じる。
なお、重畳された交流電圧により零相電圧が発生するが、交流系統へは影響を与えない。重畳された交流電圧成分は直流系統側に出力され、その周波数および大きさは設定可能である。
以下、上記実施の形態1〜6に示す電力変換装置を用いた電力システムについて図を用いて説明する。上記実施の形態1と同様の部分は同一符号を付して説明を省略する。
図25は、本実施の形態7における電力システム1000の回路構成例を示す図である。
図25に示すように、送配電等を行う電力システム1000は、実施の形態1に示す電力変換器1と制御装置2とを有する電力変換装置100を複数個(ここでは3個)用いて構成されている。そして、各電力変換装置100の電力変換器1の直流端子P、Nが、直流母線712を介して互いに接続されている。こうして電力変換装置100間で直流電力の授受を行うことが可能であり、また、大きな直流電力を扱うことができる。
なお、電力システム1000は、実施の形態1に示した電力変換装置100を用いる構成に限定するものではなく、上記実施の形態1〜6に示したいずれの電力変換装置を用いてもよい。
直流電力が分岐される分岐点Eから図中左側の直流母線712を直流母線712aとし、分岐点Eから図中右側の直流母線712を直流母線712bとして示す。分岐点Eの図中左側には、直流母線712aを712bから切り離し可能な開閉器713が備えられている。このような構成の電力システム1000aの動作について以下にて説明する。
こうして、電力変換装置100(X)の直流端子P、N間で短絡が発生した場合においても、短絡の発生していない電力変換装置100(Y、Z)間で直流電力の授受を行うことができる。
エネルギ蓄積要素と、上アーム、下アーム共に半導体スイッチング素子を有する第1ブリッジとを備えた変換器セルをそれぞれ備える第1アームと第2アームとが直列接続されたレグ回路を、多相交流の各相にそれぞれ備え、各相の前記レグ回路が正負の直流端子間に並列接続されて、前記多相交流と直流との間で電力変換を行う電力変換器と、該電力変換器を制御する制御装置とを備えた電力変換装置において、
前記各レグ回路の前記第1アーム内の前記変換器セルは、前記エネルギ蓄積要素と、前記第1ブリッジと、上アーム、下アーム共に半導体スイッチング素子を有する第2ブリッジとを備えたフルブリッジ構成の第1変換器セルであり、前記第2アーム内の前記変換器セルは、前記エネルギ蓄積要素と、前記第1ブリッジとを備えるハーフブリッジ構成の第2変換器セルであり、
前記制御装置は、前記電力変換器の定常運転時において、前記各レグ回路の前記第1アームおよび前記第2アームの電圧指令をそれぞれ生成して、前記第1アーム内の前記第1変換器セルおよび前記第2アーム内の第2変換器セルの前記各第1ブリッジにおける前記半導体スイッチング素子を前記電圧指令に基づいてスイッチング制御すると共に、前記第1変換器セルの前記第2ブリッジにおける前記上アームの半導体スイッチング素子、前記下アームの半導体スイッチング素子のいずれか一方をオン固定素子としてオン状態に固定し、他方をオフ固定素子としてオフ状態に固定するものである。
また、本発明に係る電力システムは、上記のように構成された電力変換装置を複数個備え、各前記電力変換装置の前記電力変換器における前記直流端子が互いに接続されたものである。
Claims (17)
- エネルギ蓄積要素と、上アーム、下アーム共に半導体スイッチング素子を有する第1ブリッジとを備えた変換器セルをそれぞれ備える第1アームと第2アームとが直列接続され、その接続点が各相交流端子に接続される複数のレグ回路を正負の直流端子間に並列接続して備え、多相交流と直流との間で電力変換を行う電力変換器と、該電力変換器を制御する制御装置とを備えた電力変換装置において、
前記各レグ回路の前記第1アーム内の前記変換器セルは、前記エネルギ蓄積要素と、前記第1ブリッジと、上アーム、下アーム共に半導体スイッチング素子を有する第2ブリッジとを備えたフルブリッジ構成の第1変換器セルであり、前記第2アーム内の前記変換器セルは、前記エネルギ蓄積要素と、前記第1ブリッジとを備えるハーフブリッジ構成の第2変換器セルである、
電力変換装置。 - 前記各レグ回路の前記第1アーム内の前記変換器セルは、全て前記第1変換器セルであり、前記第2アーム内の前記変換器セルは、全て前記第2変換器セルである、
請求項1に記載の電力変換装置。 - 前記制御装置は、前記電力変換器の定常運転時において、前記各レグ回路の前記第1アームおよび前記第2アームの電圧指令をそれぞれ生成して、前記第1アーム内の前記第1変換器セルおよび前記第2アーム内の第2変換器セルの前記各第1ブリッジにおける前記半導体スイッチング素子を前記電圧指令に基づいてスイッチング制御すると共に、前記第1変換器セルの前記第2ブリッジにおける前記上アームの半導体スイッチング素子、前記下アームの半導体スイッチング素子のいずれか一方をオン固定素子としてオン状態に固定し、他方をオフ固定素子としてオフ状態に固定する、
請求項1または請求項2に記載の電力変換装置。 - 前記第1変換器セルの前記第1ブリッジの前記上アームおよび前記下アームは、前記半導体スイッチング素子を複数個並列接続して備え、前記第2ブリッジの前記上アーム、前記下アームの一方は、前記オン固定素子を1個あるいは複数個並列接続して備え、他方は前記オフ固定素子を1個あるいは複数個並列接続して備え、前記第2ブリッジの前記オン固定素子の並列数は、前記オフ固定素子の並列数以上であり、かつ前記第1ブリッジの前記半導体スイッチング素子の並列数以下である、
請求項3に記載の電力変換装置。 - 前記第1変換器セルおよび前記第2変換器セルは、前記各半導体スイッチング素子をそれぞれ駆動するゲート駆動回路を備え、前記第1変換器セルの前記第2ブリッジ内の前記ゲート駆動回路は、前記第1変換器セルおよび前記第2変換器セルの前記第1ブリッジ内の前記ゲート駆動回路に比べ、ゲート抵抗値が大きい、
請求項1から請求項4のいずれか1項に記載の電力変換装置。 - 前記各第1変換器セル内の前記第2ブリッジの半導体スイッチング素子の定格電流は、前記第1ブリッジの半導体スイッチング素子の定格電流より小さい、
請求項1から請求項5のいずれか1項に記載の電力変換装置。 - 前記制御装置は、前記直流端子間の短絡を検出すると、前記各レグ回路の前記第1アームに対し、前記各第1変換器セル内の全ての前記半導体スイッチング素子をオフさせる、
請求項1から請求項6のいずれか1項に記載の電力変換装置。 - 前記直流端子の少なくとも一方は開閉部に接続され、
前記制御装置は、前記直流端子間の短絡を検出すると、前記第1アームに対し、前記各第1変換器セル内の全ての前記半導体スイッチング素子をオフさせた後、前記開閉部を開状態に動作させる、
請求項7に記載の電力変換装置。 - 前記制御装置は、前記直流端子間の短絡を検出すると、前記第2アームに対し、無効電力補償動作をするように前記各第2変換器セルを出力制御する、
請求項1から請求項8のいずれか1項に記載の電力変換装置。 - 前記制御装置は、前記開閉部を開状態に動作させた後、前記第1アームに対し、無効電力補償動作をするように前記各第1変換器セルを出力制御する、
請求項8に記載の電力変換装置。 - 前記制御装置は、前記開閉部を開状態に動作させた後、前記第1アームと前記第2アームに対し、無効電力補償動作をするように前記各第1変換器セルと前記各第2変換器セルとを出力制御する、
請求項8に記載の電力変換装置。 - 前記制御装置は、全相で共通の直流電圧を重畳した電圧指令を用いて前記無効電力補償動作を制御する、
請求項9または請求項11に記載の電力変換装置。 - 前記制御装置は、全相で共通の交流電圧を重畳した電圧指令を用いて前記無効電力補償動作を制御する、
請求項9から請求項12のいずれか1項に記載の電力変換装置。 - 前記直流端子間が短絡した際における前記電力変換器の短絡電流経路内に接続される前記各第1変換器セルの前記エネルギ蓄積要素の充電電圧の総和が、前記交流端子間の電圧より高い、
請求項7に記載の電力変換装置。 - 前記開閉部は、前記電力変換器の定格直流電流の2倍よりも小さい電流を遮断可能とする、
請求項8、請求項10、請求項11のいずれか1項に記載の電力変換装置。 - 前記変換器セルの前記半導体スイッチング素子は、珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体によって形成されている、
請求項1から請求項15のいずれか1項に記載の電力変換装置。 - 請求項1から請求項16のいずれか1項に記載の電力変換装置を複数個備え、各前記電力変換装置の前記電力変換器における前記直流端子が互いに接続される電力システム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015081549 | 2015-04-13 | ||
JP2015081549 | 2015-04-13 | ||
PCT/JP2016/060187 WO2016167117A1 (ja) | 2015-04-13 | 2016-03-29 | 電力変換装置および電力システム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6062132B1 JP6062132B1 (ja) | 2017-01-18 |
JPWO2016167117A1 true JPWO2016167117A1 (ja) | 2017-04-27 |
Family
ID=57125873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016557165A Active JP6062132B1 (ja) | 2015-04-13 | 2016-03-29 | 電力変換装置および電力システム |
Country Status (4)
Country | Link |
---|---|
US (1) | US10128773B2 (ja) |
EP (1) | EP3285389B1 (ja) |
JP (1) | JP6062132B1 (ja) |
WO (1) | WO2016167117A1 (ja) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10404064B2 (en) * | 2015-08-18 | 2019-09-03 | Virginia Tech Intellectual Properties, Inc. | Modular multilevel converter capacitor voltage ripple reduction |
DE102016106359A1 (de) * | 2016-04-07 | 2017-10-12 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Modul für einen Multilevelkonverter |
US10468972B2 (en) * | 2016-05-25 | 2019-11-05 | Mitsubishi Electric Corporation | Power converter including a plurality of converter cells connected in multiple series |
US20190118654A1 (en) * | 2016-05-27 | 2019-04-25 | Mitsubishi Electric Corporation | Electric-vehicle propulsion control apparatus |
SE539711C2 (en) * | 2016-06-15 | 2017-11-07 | Abb Schweiz Ag | Modular multilevel converter and cell for reducing current conduction losses |
EP3499700A4 (en) * | 2016-08-10 | 2019-07-31 | Mitsubishi Electric Corporation | POWER CONVERSION DEVICE |
EP3544171B1 (en) | 2016-11-21 | 2023-07-19 | Mitsubishi Electric Corporation | Power conversion device |
US10411587B2 (en) * | 2016-12-14 | 2019-09-10 | Abb Schweiz Ag | Fault isolation and system restoration using power converter |
EP3605822B1 (en) * | 2017-03-22 | 2022-03-02 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Power conversion device |
EP3382880B1 (en) * | 2017-03-27 | 2021-05-05 | General Electric Technology GmbH | Improvements in or relating to the control of voltage source converters |
EP3613132B1 (en) * | 2017-04-28 | 2021-09-29 | ABB Power Grids Switzerland AG | Power module based on normally-on semiconductor switches |
JP6957196B2 (ja) * | 2017-05-17 | 2021-11-02 | 株式会社東芝 | 電力変換装置 |
KR101943884B1 (ko) * | 2017-06-02 | 2019-01-30 | 효성중공업 주식회사 | Mmc 컨버터 및 그의 서브모듈 |
US10992219B2 (en) | 2017-06-27 | 2021-04-27 | Mitsubishi Electric Corporation | Power conversion device |
EP3691108B1 (en) * | 2017-09-26 | 2022-08-24 | Mitsubishi Electric Corporation | Power conversion device |
JP6440923B1 (ja) * | 2017-09-26 | 2018-12-19 | 三菱電機株式会社 | 電力変換装置 |
EP3713073A1 (de) * | 2019-03-19 | 2020-09-23 | Siemens Aktiengesellschaft | Stromrichter und verfahren zu dessen regelung |
US20230087350A1 (en) * | 2020-02-14 | 2023-03-23 | Ecole De Technologie Superieure | Three-phase multilevel electric power converter |
WO2021181583A1 (ja) * | 2020-03-11 | 2021-09-16 | 三菱電機株式会社 | 電力変換装置 |
EP4027506A1 (de) * | 2021-01-08 | 2022-07-13 | Siemens Energy Global GmbH & Co. KG | Stromrichter und verfahren zum betreiben des stromrichters |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2289163B1 (en) * | 2008-06-09 | 2013-09-04 | ABB Technology AG | A voltage source converter |
JP2011010404A (ja) * | 2009-06-24 | 2011-01-13 | Hitachi Ltd | 電力変換器およびそれを用いた電動機駆動装置、輸送装置 |
EP2460265A1 (en) | 2009-07-31 | 2012-06-06 | Alstom Grid UK Limited | Converter with active fault current limitation |
EP2302772A1 (en) * | 2009-09-28 | 2011-03-30 | ABB Oy | Inverter |
JP5707762B2 (ja) * | 2010-07-26 | 2015-04-30 | 日産自動車株式会社 | 電力変換装置及び電力変換方法 |
KR101797796B1 (ko) * | 2010-07-30 | 2017-11-15 | 제네럴 일렉트릭 테크놀러지 게엠베하 | Dc측 단락을 핸들링하기 위해 풀브리지 셀을 포함하는 hvdc 컨버터 |
CA2853868A1 (en) * | 2011-11-15 | 2013-05-23 | Alstom Technology Ltd | A power electronic module |
JP5894777B2 (ja) | 2011-12-07 | 2016-03-30 | 株式会社日立製作所 | 電力変換装置 |
GB201209110D0 (en) * | 2012-05-24 | 2012-07-04 | Alstom Technology Ltd | Method of fault clearance |
US20150222201A1 (en) * | 2012-08-10 | 2015-08-06 | Mitsubishi Electric Corporation | Dual-element power module and three-level power converter using the same |
JP2014079048A (ja) * | 2012-10-09 | 2014-05-01 | Toyota Motor Corp | 電力変換装置 |
US9716425B2 (en) | 2013-01-21 | 2017-07-25 | Abb Schweiz Ag | Multilevel converter with hybrid full-bridge cells |
WO2014111595A1 (en) * | 2013-01-21 | 2014-07-24 | Abb Technology Ltd | A multilevel converter with hybrid full-bridge cells |
EP2768133B1 (en) * | 2013-02-14 | 2015-11-04 | ABB Technology Ltd | Converter cell with reduced power losses, high voltage multilevel converter and associated method |
JP2015012726A (ja) | 2013-06-28 | 2015-01-19 | 株式会社東芝 | 電力変換装置 |
WO2015110185A1 (en) * | 2014-01-21 | 2015-07-30 | Abb Technology Ltd | A multilevel converter with reduced ac fault handling rating |
US9800171B2 (en) * | 2014-02-14 | 2017-10-24 | Mitsubishi Electric Corporation | Protection system for DC power transmission system, AC-DC converter, and method of interrupting DC power transmission system |
CN103915808B (zh) * | 2014-03-07 | 2018-07-31 | 南方电网科学研究院有限责任公司 | 基于电压源型换流器的直流融冰装置及其控制方法 |
CN105099242B (zh) * | 2014-05-09 | 2018-09-11 | 南京南瑞继保电气有限公司 | 电压源型多电平换流器、直流输电系统、故障处理方法和装置 |
-
2016
- 2016-03-29 WO PCT/JP2016/060187 patent/WO2016167117A1/ja active Application Filing
- 2016-03-29 JP JP2016557165A patent/JP6062132B1/ja active Active
- 2016-03-29 EP EP16779908.9A patent/EP3285389B1/en active Active
- 2016-03-29 US US15/564,402 patent/US10128773B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP3285389B1 (en) | 2020-11-25 |
EP3285389A4 (en) | 2019-01-02 |
US10128773B2 (en) | 2018-11-13 |
WO2016167117A1 (ja) | 2016-10-20 |
US20180138826A1 (en) | 2018-05-17 |
EP3285389A1 (en) | 2018-02-21 |
JP6062132B1 (ja) | 2017-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6062132B1 (ja) | 電力変換装置および電力システム | |
EP3285388B1 (en) | Electric power conversion device | |
JP6180693B1 (ja) | 電力変換装置 | |
CA2903362C (en) | Power conversion device | |
EP3251201B1 (en) | A method of controlling an uninterruptible power supply to clear a shorted load | |
US10128741B2 (en) | Power conversion device | |
US9276496B2 (en) | Power conversion apparatus including an inverter-converter combination | |
EP2471164B1 (en) | Converter cell module with autotransformer bypass, voltage source converter system comprising such a module and a method for controlling such a system | |
US20150003134A1 (en) | Modular multilevel converter using asymmetry | |
US10367423B1 (en) | Power conversion device | |
WO2015098146A1 (ja) | 電力変換装置 | |
KR20160109137A (ko) | 인버터 시스템 | |
US10530243B2 (en) | Power conversion device with malfunction detection | |
US20160006368A1 (en) | Power Converter | |
JP2015156740A (ja) | 電力変換装置 | |
JP5971685B2 (ja) | 電力変換装置 | |
Katebi et al. | Advanced three level active neutral point converter with fault tolerant capabilities | |
JP6371254B2 (ja) | 電力変換装置 | |
JP6700578B2 (ja) | 無停電電源装置 | |
Vasanthi et al. | A Three Phase Multi level Diode Clamped Inverter for fault-tolerant operation | |
WO2018131260A1 (ja) | 電力変換装置および直流送電システム | |
Elserougi et al. | Enhancing the DC voltage utilization of twelve-switch voltage source inverter feeding symmetrical/asymmetrical nine-phase loads | |
JP2001028881A (ja) | 電圧型インバータ回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20161026 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161115 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6062132 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |