WO2016165137A1 - 射频测试座及测试探针 - Google Patents

射频测试座及测试探针 Download PDF

Info

Publication number
WO2016165137A1
WO2016165137A1 PCT/CN2015/076897 CN2015076897W WO2016165137A1 WO 2016165137 A1 WO2016165137 A1 WO 2016165137A1 CN 2015076897 W CN2015076897 W CN 2015076897W WO 2016165137 A1 WO2016165137 A1 WO 2016165137A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
test
metal dome
magnetic material
test probe
Prior art date
Application number
PCT/CN2015/076897
Other languages
English (en)
French (fr)
Inventor
郭钜添
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580037110.8A priority Critical patent/CN106662612B/zh
Priority to PCT/CN2015/076897 priority patent/WO2016165137A1/zh
Publication of WO2016165137A1 publication Critical patent/WO2016165137A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer

Definitions

  • Embodiments of the present invention relate to radio frequency testing technologies, and in particular, to an RF test socket and a test probe.
  • the radio terminal is usually equipped with a radio test socket as a test connector to test a circuit on the printed circuit board (PCB) of the wireless terminal.
  • PCB printed circuit board
  • the RF circuit is connected to other circuits on the PCB through shrapnel.
  • the shrapnel can be connected to the tester by disconnecting the shrapnel from the other circuit, so that the circuit is connected to the tester, thereby performing the circuit through the tester. test.
  • the test probe can usually be inserted into the test hole at the top of the RF test socket, and the test probe is pressed to disconnect the spring piece from the other circuit, and the test probe is in contact with the elastic piece.
  • flux and dust particles from the reflow and/or wave soldering stages enter the interior of the RF test socket through the opening to form a flux layer on the shrapnel.
  • the flux layer on the shrapnel may make the connection of the shrapnel to the components unreliable.
  • the embodiment of the invention provides a radio frequency test socket and a test probe to solve the problem that the elastic piece of the radio frequency test socket and the components are unreliable in the prior art.
  • an embodiment of the present invention provides a radio frequency test socket including an input pin, a metal dome, an output pin, a housing, and a metal mesa; wherein the metal dome is connected to the input pin The metal dome is in contact with the output pin; an insulating layer exists between the outer casing and the metal plate; the length of the metal dome is according to a distance between the metal dome and the metal plate, and The angle between the metal dome and the metal table is determined; the metal dome is adhered with a magnetic material; and the polarity of the magnetic material of the metal dome is opposite to the polarity of the magnetic material of the test probe.
  • the metal dome The side facing away from the metal table has a magnetic material.
  • the metal dome has a protrusion on one side of the metal table.
  • an embodiment of the present invention provides a test probe including a needle sleeve and a core; the needle sleeve is a grounding shell of the test probe; and the needle sleeve is sleeved outside the needle core; There is a magnetic material between the needle core and the needle sleeve; wherein the magnetic material of the test probe is opposite to the polarity of the magnetic material of the metal dome of the radio frequency test socket.
  • the test probe further includes: a flange; the flange is located outside the needle sleeve; the flange includes at least one pass hole;
  • the at least one through hole is for fixing the test probe and is mounted on the clamp.
  • a range of a predetermined distance between the needle core and the needle sleeve from the needle core of the needle core It has a magnetic material inside.
  • the RF test socket and the test probe can be provided with a magnetic material on the metal dome.
  • the test probe of the magnetic material of opposite polarity is placed in contact with the metal table, the magnetic material of the metal dome and the test probe are The magnetic materials are mutually attracted to each other, so that the metal dome is connected to the metal table, so that the test probe is connected to the metal dome through the metal table to form a test path.
  • the metal spring piece of the RF test socket and the test probe are magnetically connected without inserting the RF test socket through the opening of the metal table. Therefore, the metal table surface does not need to be provided with an opening, and the flux and/or dust particles cannot enter the hole.
  • the inside of the RF test socket ensures the reliability of the connection of the metal dome to the components of the RF test socket.
  • FIG. 1 is a cross-sectional structural view of a radio frequency test socket according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional structural diagram of a radio frequency test socket according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a test probe according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic cross-sectional structural view of another test probe according to Embodiment 3 of the present invention.
  • Embodiment 1 of the present invention provides a radio frequency test socket.
  • the RF test socket can be called a Radio Frequency Switch (RF-Switch) device.
  • the RF test stand can be used as a test connector integrated in the PCB of the wireless terminal during the manufacturing process of the wireless terminal.
  • FIG. 1 is a cross-sectional structural diagram of a radio frequency test socket according to Embodiment 1 of the present invention.
  • the RF test socket includes an input pin 101, a metal dome 102, an output pin 103, a housing 104, and a metal land 105.
  • the metal dome 102 is connected to the input pin 101; the metal dome 102 is in contact with the output pin 103.
  • An insulating layer 106 is disposed between the outer casing 104 and the metal mesa 105; the length of the metal dome 102 is determined according to the distance between the metal dome 102 and the metal mesa 105, and the angle between the metal dome 102 and the metal mesas 105.
  • the metal dome 102 is adhered with a magnetic material.
  • the polarity of the magnetic material of the metal dome 102 is opposite to the polarity of the magnetic material of the test probe.
  • the metal dome 102 can be connected to one end of the input pin 101 of the RF test socket.
  • the other end of the input pin 101 can be connected to a circuit to be tested, such as a radio frequency circuit, on the PCB board where the RF test socket is located.
  • the metal dome 102 may be in contact with one end of the output pin 103, and the other end of the output pin 103 may be another circuit corresponding to the one circuit, such as an antenna circuit.
  • the metal dome 102 can be fixedly coupled to the input pin 101. When the metal dome 102 is subjected to the attractive force of the test probe, the metal dome 102 is bent and deformed toward the metal land 105 to be connected to the metal table 105.
  • the metal dome 102 can also be movably connected to the input pin 101, for example, through a rotating shaft at the junction of the metal dome 102 and the input pin 101.
  • the metal dome 102 is subjected to the attractive force of the test probe, one end of the metal dome 102 can be Connected to the metal table 105.
  • the metal dome 102 is in contact connection with the output pin 103, and refers to the metal dome 102 and the output pin 103 being in contact with each other. Connected to electricity. Since the metal dome 102 is connected to the input pin 101 and is in contact with the output pin 103, the RF test socket can be in a test state, that is, when the test probe contacts the metal table 105, the metal dome 102 can be deformed by rotation or bending.
  • connection to the output pin 103 is broken and then connected to the metal mesa 105. Since the length of the metal dome 102 and the metal platen 105 is determined according to the distance between the metal dome 102 and the metal platen 105, and the angle between the metal dome 102 and the metal platen 105, the metal dome 102 is connected to the input pin 101. In the case, the metal dome 102 can be deformed by rotation or bending to come into contact with the metal mesas 105 to form an electrical connection.
  • the outer casing 104 may be a metal outer casing.
  • an insulating layer may be disposed between the outer casing 104 and the metal mesa 105.
  • the insulating layer may be composed of an insulating material.
  • a grounding shell may be disposed on the outer side of the metal mesa 105 on the outer casing 104 of the radio frequency test socket, or the outer casing 104 may be connected to the grounding end such that the outer casing 104 forms a grounding shell.
  • the metal dome 102 When the RF test socket 100 is in a normal working state, that is, the test probe is away from the metal table 105, there is no magnetic force between the magnetic material of the test probe and the magnetic material of the metal dome 102, and thus the metal dome 102 is in a normally closed state, that is, It is said that the metal dome 102 and the output pin 103 are in a connected state, thereby forming a working path between the input pin 101, the metal dome 102 and the output pin 103.
  • the test probe When the RF test socket 100 is in a test state, that is, the test probe contacts the metal table 105, the magnetic material of the test probe and the magnetic material of the metal dome 102 are mutually magnetically attracted due to opposite polarities, and the test probe can be
  • the magnetic force driving metal dome 102 is disconnected from the input pin 103, and the connection point of the metal dome 102 and the input pin 101 is a midpoint, and is rotated toward the test probe or toward the test probe. It is bent and deformed to be connected to the metal table 105.
  • the test probe Since the test probe contacts the metal mesa 105, that is, the test probe is connected to the metal mesa 105, the test probe can be connected to the metal dome 102 through the metal mesa 105 when the metal dome 102 is connected to the metal mesa 105. It should be noted that the test probe can be connected to at least the test circuit. At this time, the metal dome 102 and the circuit to be tested are always connected. When the test probe is connected to the test circuit, the test circuit can be sequentially connected to the circuit to be tested through the test probe, the metal surface 105, and the metal dome 102. Forming a test path of the circuit to be tested to the test circuit, so that the test circuit tests the circuit to be tested.
  • the radio frequency test socket provided by the first embodiment of the present invention can be provided with a magnetic material on a metal elastic piece.
  • a test probe of a magnetic material of opposite polarity When a test probe of a magnetic material of opposite polarity is placed in contact with the metal table, a magnetic force between the magnetic material of the metal dome and the magnetic material of the test probe is generated, thereby causing the metal dome to be connected to the metal table.
  • the test probe is connected to the metal dome through the metal table to form a test path.
  • the metal spring piece of the RF test socket and the test probe are magnetically connected without inserting the RF test socket through the opening of the metal table. Therefore, the metal table surface does not need to be configured with an opening, which makes the RF test socket a fully enclosed structure. . For a fully enclosed RF test socket, flux and/or dust particles cannot enter the interior of the RF test socket, thereby ensuring the reliability of the connection between the metal dome and the components inside the RF test socket.
  • the fully enclosed RF test socket is more inaccessible due to the inaccessibility of dirt.
  • the RF test socket can better ensure the test accuracy, especially for the higher the device integration degree, the higher the device density, and the smaller the device, the radio frequency.
  • the test stand can better guarantee the test accuracy.
  • Embodiment 2 of the present invention further provides an RF test socket.
  • FIG. 2 is a cross-sectional structural diagram of a radio frequency test socket according to Embodiment 2 of the present invention. As shown in FIG. 2, in the RF test socket of the first embodiment, the magnetic material 201 is adhered to one side of the metal dome 102 facing away from the metal surface 105.
  • the magnetic material 201 adheres to one side of the metal dome 102 toward the metal platen 105, when the test probe contacts the metal table 105, the magnetic force between the magnetic material 201 of the metal dome 102 and the magnetic material of the test probe generates a tensile force on the metal dome 102. Thus, the metal dome 102 is disconnected from the output pin 103 and connected to the metal land 105. However, when the number of times of testing the RF test socket exceeds a certain number of times, the tensile force generated by the magnetic force on the metal dome 102 may cause a gap between the metal dome 102 and the magnetic material 201 to be separated.
  • the magnetic material 201 is adhered to the side of the metal dome 102 facing away from the metal land 105. This is because when the magnetic material 201 adheres to the side of the metal dome 102 facing away from the metal land 105, the test probe contacts the metal table 105, the magnetic material between the magnetic material 201 of the metal dome 102 and the magnetic material of the test probe is applied to the metal dome. 102 generates a thrust that causes the metal dome 102 to be disconnected from the output pin 103 and connected to the metal table 105. This thrust can also make the connection between the magnetic material 201 and the metal dome 102 closer.
  • the metal dome 102 has a protrusion 202 on one side of the metal table 105.
  • the metal dome 102 can be connected to the metal table 105 as quickly as possible, and the contact point is more reliable, and the metal dome 102 can be directed to the metal table 105.
  • One side has a protrusion 202, and the connection of the metal dome 102 to the metal land 105 is achieved by the connection of the protrusion 202 to the metal land 105.
  • the RF test piece can be repeatedly tested and used, and the magnetic material of the metal elastic piece and the magnetic material of the test probe are used.
  • Embodiment 3 of the present invention also provides a test probe.
  • the test probe of the third embodiment of the present invention performs circuit test on the terminal by the radio frequency test socket according to any one of the foregoing Embodiment 1 or Embodiment 2.
  • 3 is a schematic cross-sectional view of a test probe according to a third embodiment of the present invention. As shown in FIG. 3, the test probe can include a needle sleeve 301 and a core 302.
  • the needle sleeve 301 is a grounding shell of the test probe; the needle sleeve 301 is sleeved on the outside of the core 302; and the magnetic material 303 is disposed between the core 302 and the needle sleeve 301.
  • the magnetic material 303 of the test probe is opposite in polarity to the magnetic material of the metal dome of the radio frequency test socket.
  • the test probe of the third embodiment of the present invention can perform circuit test on the terminal through the radio frequency test socket of the first embodiment or the second embodiment.
  • the beneficial effects are similar to those of the foregoing embodiment, and details are not described herein again.
  • test probe is also provided in the third embodiment of the present invention.
  • 4 is a schematic cross-sectional structural view of another test probe according to Embodiment 3 of the present invention. As shown in FIG. 4, the test probe further includes: a flange 401; the flange 401 is located outside the needle sleeve 301; and the flange 401 includes at least one through hole 402.
  • the at least one through hole is for fixing the test probe and is mounted on the clamp.
  • the through hole on the flange of the test probe can make the fixing of the test probe more stable and better ensure the test accuracy.
  • the needle core 302 and the needle sleeve 301 have a predetermined distance from the needle of the needle core 302. Magnetic material.
  • test probe provided in the third embodiment of the present invention can perform circuit test on the terminal through the radio frequency test socket of the first embodiment or the second embodiment.
  • the beneficial effects are similar to those of the foregoing embodiment, and details are not described herein again.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

一种射频测试座及测试探针。射频测试座包括输入引脚(101)、金属弹片(102)、输出引脚(103)、外壳(104)及金属台面(105);金属弹片(102)与输入引脚(101)连接;金属弹片(102)与所述输出引脚(103)接触连接;金属弹片(102)具有磁性材料;金属弹片(102)的磁性材料的极性与测试探针的磁性材料的极性相反。该实施例可保证射频测试座的弹片与各部件的连接可靠性。

Description

射频测试座及测试探针 技术领域
本发明实施例涉及射频测试技术,尤其涉及一种射频测试座及测试探针。
背景技术
无线终端内部通常都会配置射频测试座,作为测试连接器以对该无线终端的印制电路板(Printed Circuit Board,简称PCB)上的一个电路进行测试。在正常情况下,该射频电路通过弹片与该PCB上的其他电路连接。当对该一个电路进行测试时,可通过断开该弹片与该其他电路的连接,将该弹片与测试仪连接,使得该一个电路与该测试仪连接,从而通过该测试仪对该一个电路进行测试。
通常可将测试探针插入该射频测试座顶部的测试孔中,按压该测试探针,使得该弹片与该其他电路的连接断开,该测试探针与该弹片接触。在PCB制造过程中,回流焊和/或波峰焊等阶段的助焊剂以及粉尘颗粒,会通过该开孔进入该射频测试座的内部,从而在该弹片上形成助焊剂层。
然而,该弹片上的助焊剂层可能会使得该弹片与各部件的连接不可靠。
发明内容
本发明实施例提供一种射频测试座及测试探针,以解决现有技术中射频测试座的弹片与各部件连接不可靠的问题。
第一方面,本发明实施例提供一种射频测试座,所述射频测试座包括输入引脚、金属弹片、输出引脚、外壳及金属台面;其中,所述金属弹片与所述输入引脚连接;所述金属弹片与所述输出引脚接触连接;所述外壳与所述金属台面之间存在绝缘层;所述金属弹片的长度为根据所述金属弹片与所述金属台面间的距离,和所述金属弹片与所述金属台面的夹角确定的;所述金属弹片粘附有磁性材料;所述金属弹片的磁性材料的极性与测试探针的磁性材料的极性相反。
根据第一方面,在第一方面的第一种可能实现的方式中,所述金属弹片 背离所述金属台面的一面具有磁性材料。
根据第一方面或第一方面的第一种可能实现的方式,在第二种可能实现的方式中,所述金属弹片向所述金属台面的一面具有突起部。
第二方面,本发明实施例提供一种测试探针,包括针套、针芯;所述针套为所述测试探针的接地壳;所述针套套设在所述针芯的外部;所述针芯与所述针套之间具有磁性材料;其中,所述测试探针的磁性材料与射频测试座的金属弹片的磁性材料的极性相反。
根据第二方面,在第二方面的第一种可能实现的方式中,所述测试探针还包括:法兰;所述法兰位于所述针套的外部;所述法兰包括至少一个通孔;
所述至少一个通孔,用于对所述测试探针进行固定,并安装在夹具上。
根据第二方面或第二方面的第一种可能实现的方式,在第二种可能实现的方式中,所述针芯与所述针套之间距离所述针芯的针头预设距离的范围内具有磁性材料。
本发明实施例射频测试座及测试探针,可通过在金属弹片上设置磁性材料,当配置相反极性的磁性材料的测试探针接触金属台面时,该金属弹片的磁性材料与该测试探针的磁性材料之间即可产生相互吸引的磁力,从而使得金属弹片与金属台面连接,使得测试探针通过该金属台面与该金属弹片连接,形成测试通路。该射频测试座的金属弹片与测试探针通过磁力连接,而无需通过金属台面的开孔的插入该射频测试座,因而,该金属台面无需配置开孔,助焊剂和/或粉尘颗粒无法进入该射频测试座的内部,从而保证射频测试座的该金属弹片与各部件连接的可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的射频测试座的剖面结构示意图;
图2为本发明实施例二提供的射频测试座的剖面结构示意图;
图3为本发明实施例三提供的测试探针的剖面示意图;
图4为本发明实施例三提供的另一种测试探针的剖面结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
本发明实施例一提供一种射频测试座。该射频测试座可称为射频开关(Radio Frequency Switch,简称RF-Switch)器件。该射频测试座可作为测试连接器,在无线终端的制造过程中,集成在该无线终端的PCB板上。图1为本发明实施例一提供的射频测试座的剖面结构示意图。如图1所示,该射频测试座包括输入引脚101、金属弹片102、输出引脚103、外壳104及金属台面105。其中,金属弹片102与输入引脚101连接;金属弹片102与输出引脚103接触连接。外壳104与金属台面105之间存在绝缘层106;金属弹片102的长度为根据金属弹片102与金属台面105间的距离,和,金属弹片102与金属台面105的夹角确定。金属弹片102粘附有磁性材料。
金属弹片102的磁性材料的极性与测试探针的磁性材料的极性相反。
具体地,金属弹片102可以与该射频测试座的输入引脚101的一端连接,该输入引脚101的另一端可以与该射频测试座所在PCB板上的一个待测电路,如射频电路连接。金属弹片102可以与输出引脚103的一端接触连接,输出引脚103的另一端可以与该一个电路对应的另一电路,如天线电路。金属弹片102可以与输入引脚101固定连接,当金属弹片102受到测试探针的吸引力时,金属弹片102向金属台面105弯曲变形,从而与金属台面105连接。金属弹片102还可以是与输入引脚101活动连接,例如通过金属弹片102与输入引脚101连接处的转轴连接,当金属弹片102在受到测试探针的吸引力时,金属弹片102的一端可向金属台面105连接。金属弹片102与输出引脚103接触连接,指的是金属弹片102与输出引脚103通过相互接触从而形 成电连接。由于金属弹片102与输入引脚101连接,而与输出引脚103接触连接,可使得射频测试座处于测试状态下,即测试探针接触金属台面105时,金属弹片102可通过旋转或弯曲变形,断开与输出引脚103的连接,继而与金属台面105连接。由于金属弹片102与金属台面105的长度为根据金属弹片102与金属台面105间的距离,和,金属弹片102与金属台面105的夹角确定的,因而,金属弹片102在与输入引脚101连接的情况,金属弹片102可通过旋转或弯曲变形从而与金属台面105相接触,形成电连接。
外壳104可以为金属外壳,为避免外壳104与金属台面105之间产生短路,可在外壳104与金属台面105间设置绝缘层。其中,该绝缘层可以由绝缘材料组成。为了保证射频信号的屏蔽和阻抗匹配,还可在该射频测试座的外壳104上金属台面105的外侧设置接地壳,或者,将外壳104与接地端连接使得外壳104形成接地壳。
当射频测试座100处于正常工作状态,也就是测试探针远离金属台面105,测试探针的磁性材料与金属弹片102的磁力材料之间不存在磁力,因而金属弹片102处于常闭状态,也就是说,金属弹片102与输出引脚103之间是保持连接状态,从而形成输入引脚101、金属弹片102与输出引脚103之间的工作通路。
当射频测试座100处于测试状态,也就是该测试探针接触该金属台面105,测试探针的磁性材料与金属弹片102的磁力材料,由于极性相反产生相互吸附的磁力,该测试探针可通过该磁力驱动金属弹片102断开与输入引脚103的连接,以金属弹片102与输入引脚101的连接点为中点,朝靠近测试探针的方向旋转移动或朝靠近测试探针的方向弯曲变形,从而与金属台面105连接。由于测试探针接触金属台面105,即测试探针与金属台面105连接,当该金属弹片102与金属台面105连接时,该测试探针可通过金属台面105与金属弹片102连接。需要说明的是,该测试探针至少还可与测试电路连接。此时,金属弹片102与待测电路之间一直是保持连接状态,当测试探针连接测试电路时,该测试电路实际可依次通过测试探针、金属台面105、金属弹片102与待测电路连接,形成待测电路至测试电路的测试通路,以使得测试电路对该待测电路进行测试。
本发明实施例一所提供的射频测试座,可通过在金属弹片上设置磁性材 料,当配置相反极性的磁性材料的测试探针接触金属台面时,该金属弹片的磁性材料与该测试探针的磁性材料间产生相互吸引的磁力,从而使得金属弹片与金属台面连接,使得测试探针通过该金属台面与该金属弹片连接,形成测试通路。该射频测试座的金属弹片与测试探针通过磁力连接,而无需通过金属台面的开孔的插入该射频测试座,因而,该金属台面无需配置开孔,这使得射频测试座为全封闭的结构。对于全封闭的射频测试座,助焊剂和/或粉尘颗粒无法进入该射频测试座的内部,从而保证射频测试座的内部该金属弹片与各部件的连接可靠性。
同时,该全封闭的射频测试座由于脏污物无法进入,其测试的准确度也更高。
并且,由于金属台面与测试探针的接触面积越大,该射频测试座可更好地保证测试精度,特别是对于器件集成度越高,器件密度越高,器件越小的无线终端,该射频测试座可更好地保证测试精度。
实施例二
本发明实施例二还提供一种射频测试座。图2为本发明实施例二提供的射频测试座的剖面结构示意图。如图2所示,可选的,在上述实施例一的射频测试座中,金属弹片102背离金属台面105的一面粘附有磁性材料201。
若磁性材料201粘附在金属弹片102向金属台面105的一面,当测试探针接触金属台面105,金属弹片102的磁性材料201与测试探针的磁性材料之间的磁力对金属弹片102产生拉力,从而使得金属弹片102断开与输出引脚103的连接,而与金属台面105连接。然而,射频测试座的测试次数超过一定次数时,该磁力对金属弹片102产生的拉力,可能会使得金属弹片102与磁性材料201之间存在间隙,进而分离。
因而,为保证射频测试座反复测试使用过程中,金属弹片102的磁性材料201与测试探针磁性材料之间的相对位置的稳定性、金属弹片102的测试灵敏度以及射频测试座的使用寿命,可将磁性材料201粘附在金属弹片102背离金属台面105的一面。这是由于当磁性材料201粘附在金属弹片102背离金属台面105的一面时,测试探针接触金属台面105,金属弹片102的磁性材料201与测试探针的磁性材料之间的磁力对金属弹片102产生推力,该推力使得金属弹片102断开与输出引脚103的连接,而与金属台面105连接, 该推力还可使得磁性材料201与金属弹片102之间的连接更紧密。
可选的,金属弹片102向金属台面105的一面具有突起部202。
具体地,为保证射频测试座的测试灵敏度,使得测试探针接触金属台面105之后,金属弹片102可尽可能快的与金属台面105连接,且接触点更可靠,可金属弹片102向金属台面105的一面具有突起部202,通过突起部202与金属台面105的连接实现金属弹片102与金属台面105的连接。
本发明实施例二所提供射频测试座,由于在金属弹片背离金属台面的一面粘附有磁性材料,可保证射频测试座反复测试使用过程中,金属弹片的磁性材料与测试探针磁性材料之间的相对位置的稳定性、金属弹片的测试灵敏度以及射频测试座的使用寿命;同时,金属弹片上面向金属台面的一面具有突起部,还可使得测试探针接触金属台面之后,金属弹片可尽可能快的与金属台面连接且接触点更可靠,从而保证射频测试座的测试灵敏度。
实施例三
本发明实施例三还提供一种测试探针。本发明实施例三的测试探针通过对上述实施例一或实施例二中任一所述的射频测试座对终端的进行电路测试。图3为本发明实施例三提供的测试探针的剖面示意图。如图3所示,测试探针可包括针套301、针芯302。
针套301为测试探针的接地壳;针套301套设在针芯302的外部;针芯302与针套301之间具有磁性材料303。其中,测试探针的磁性材料303与射频测试座的金属弹片的磁性材料的极性相反。
本发明实施例三的测试探针,可通过上述实施例一或实施例二的射频测试座对终端进行电路测试,其有益效果与上述实施例类似,在此不再赘述。
本发明实施例三还提供另一种测试探针。图4为本发明实施例三提供的另一种测试探针的剖面结构示意图。如图4所示,测试探针在本发明实施例三上述方案的基础上,还包括:法兰401;法兰401位于针套301的外部;法兰401包括至少一个通孔402。
该至少一个通孔,用于对该测试探针进行固定,并安装在夹具上。
该测试探针的法兰上的通孔,可使得夹具对测试探针的固定更稳定,更好地保证测试精度。
该针芯302与针套301之间距离针芯302的针头预设距离的范围内具有 磁性材料。
本发明实施例三所提供的测试探针,可通过上述实施例一或实施例二的射频测试座对终端进行电路测试,其有益效果与上述实施例类似,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (6)

  1. 一种射频测试座,其特征在于,所述射频测试座包括输入引脚、金属弹片、输出引脚、外壳及金属台面;其中,所述金属弹片与所述输入引脚连接;所述金属弹片与所述输出引脚接触连接;所述外壳与所述金属台面之间存在绝缘层;所述金属弹片的长度为根据所述金属弹片与所述金属台面间的距离,和,所述金属弹片与所述金属台面的夹角确定;所述金属弹片黏附有磁性材料;所述金属弹片的磁性材料的极性与测试探针的磁性材料的极性相反。
  2. 根据权利要求1所述的射频测试座,其特征在于,所述金属弹片背离所述金属台面的一面粘附有磁性材料。
  3. 根据权利要求1或2所述的射频测试座,其特征在于,所述金属弹片向所述金属台面的一面具有突起部。
  4. 一种测试探针,其特征在于,包括针套、针芯;所述针套为所述测试探针的接地壳;所述针套套设在所述针芯的外部;所述针芯与所述针套之间具有磁性材料;所述测试探针的磁性材料与射频测试座的金属弹片的磁性材料的极性相反。
  5. 根据权利要求4所述的测试探针,其特征在于,所述测试探针还包括:法兰;所述法兰位于所述针套的外部;所述法兰包括至少一个通孔;
    所述至少一个通孔,用于对所述测试探针进行固定,并安装在夹具上。
  6. 根据权利要求4或5所述的测试探针,其特征在于,所述针芯与所述针套之间距离所述针芯的针头预设距离的范围内具有磁性材料。
PCT/CN2015/076897 2015-04-17 2015-04-17 射频测试座及测试探针 WO2016165137A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580037110.8A CN106662612B (zh) 2015-04-17 2015-04-17 射频测试座及测试探针
PCT/CN2015/076897 WO2016165137A1 (zh) 2015-04-17 2015-04-17 射频测试座及测试探针

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/076897 WO2016165137A1 (zh) 2015-04-17 2015-04-17 射频测试座及测试探针

Publications (1)

Publication Number Publication Date
WO2016165137A1 true WO2016165137A1 (zh) 2016-10-20

Family

ID=57125649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076897 WO2016165137A1 (zh) 2015-04-17 2015-04-17 射频测试座及测试探针

Country Status (2)

Country Link
CN (1) CN106662612B (zh)
WO (1) WO2016165137A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112652927A (zh) * 2019-10-10 2021-04-13 中兴通讯股份有限公司 射频传输装置及电子设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108957052B (zh) * 2018-04-26 2023-09-05 深圳市泰欣能源科技有限公司 一种精密材料电学参数的测试装置及其测试方法
CN109001500B (zh) * 2018-08-21 2024-01-02 淮阴师范学院 一种内嵌电感的射频器件测试探针
CN111856092A (zh) * 2019-04-30 2020-10-30 云谷(固安)科技有限公司 探针模组及其加工方法、测试方法
CN111830400A (zh) * 2020-08-19 2020-10-27 上海捷策创电子科技有限公司 一种芯片测试装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101368981A (zh) * 2007-08-14 2009-02-18 海华科技股份有限公司 射频模块测试平台
US20100178778A1 (en) * 2009-01-09 2010-07-15 Mitsubishi Electric Corporation Radiofrequency contactor
CN102142856A (zh) * 2010-01-29 2011-08-03 深圳富泰宏精密工业有限公司 便携式电子装置
CN102157870A (zh) * 2010-12-31 2011-08-17 上海航天科工电器研究院有限公司 磁性射频同轴连接器
CN103634062A (zh) * 2013-12-24 2014-03-12 深圳市双赢伟业科技股份有限公司 一种无线产品的无线性能测试方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201153076Y (zh) * 2007-12-29 2008-11-19 曾昌万 Rf测试开关
CN203365490U (zh) * 2013-07-18 2013-12-25 北京京东方光电科技有限公司 一种探针框架及基板测试设备
CN203491112U (zh) * 2013-10-19 2014-03-19 深圳市长盈精密技术股份有限公司 射频开关

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101368981A (zh) * 2007-08-14 2009-02-18 海华科技股份有限公司 射频模块测试平台
US20100178778A1 (en) * 2009-01-09 2010-07-15 Mitsubishi Electric Corporation Radiofrequency contactor
CN102142856A (zh) * 2010-01-29 2011-08-03 深圳富泰宏精密工业有限公司 便携式电子装置
CN102157870A (zh) * 2010-12-31 2011-08-17 上海航天科工电器研究院有限公司 磁性射频同轴连接器
CN103634062A (zh) * 2013-12-24 2014-03-12 深圳市双赢伟业科技股份有限公司 一种无线产品的无线性能测试方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112652927A (zh) * 2019-10-10 2021-04-13 中兴通讯股份有限公司 射频传输装置及电子设备

Also Published As

Publication number Publication date
CN106662612B (zh) 2019-06-18
CN106662612A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2016165137A1 (zh) 射频测试座及测试探针
US10197598B2 (en) Probe
KR102354793B1 (ko) 테스트 소켓 조립체 및 관련 방법
KR101900171B1 (ko) 무선주파수 테스트 소켓 및 무선주파수 테스트 케이블
JP2006098376A (ja) 検査ユニット
TWI233489B (en) Contact apparatus and test PCB including the contact apparatus used for testing microwave device, and manufacturing method of the test PCB
JP2010237133A (ja) 検査ソケットおよびその製法
TWI452947B (zh) 電路板
TW201308760A (zh) 電纜總成、連接器及半導體測試器
JP6710808B2 (ja) プローブホルダおよびプローブユニット
JP2001235486A (ja) 検査用プローブ、及び該検査用プローブを備えた検査装置
JP2007198835A (ja) 高周波特性測定治具
KR101641276B1 (ko) 반도체 패키지 검사용 소켓 및 그 제조 방법
TWI522623B (zh) Probe module (1)
US9545002B2 (en) Multilayer circuit board
TW201905479A (zh) 導電性接觸子單元
TWI522621B (zh) Test fixture
JP2010153154A (ja) コネクタ
US11994535B2 (en) Probe unit
KR102212872B1 (ko) 신호 전송 커넥터 및 그 제조방법
US20170146568A1 (en) Electronic test equipment
JP2003346963A (ja) 電気コネクタ
KR200492663Y1 (ko) 전도성 프로브의 탄성중합체 구조
US9702903B2 (en) Connector and electronic device
JP2009115798A (ja) Hピンブロック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888842

Country of ref document: EP

Kind code of ref document: A1