WO2016159391A1 - 肌焼鋼部品 - Google Patents

肌焼鋼部品 Download PDF

Info

Publication number
WO2016159391A1
WO2016159391A1 PCT/JP2016/061633 JP2016061633W WO2016159391A1 WO 2016159391 A1 WO2016159391 A1 WO 2016159391A1 JP 2016061633 W JP2016061633 W JP 2016061633W WO 2016159391 A1 WO2016159391 A1 WO 2016159391A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
steel
less
carburizing
case
Prior art date
Application number
PCT/JP2016/061633
Other languages
English (en)
French (fr)
Inventor
達也 小山
久保田 学
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020177026347A priority Critical patent/KR102006093B1/ko
Priority to CN201680016792.9A priority patent/CN107406943B/zh
Priority to EP16773270.0A priority patent/EP3279360B8/en
Priority to JP2017510276A priority patent/JP6399213B2/ja
Priority to US15/554,667 priority patent/US20180094345A1/en
Publication of WO2016159391A1 publication Critical patent/WO2016159391A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties

Definitions

  • the present invention relates to a case-hardened steel part. This application claims priority on March 31, 2015 based on Japanese Patent Application No. 2015-070701 for which it applied to Japan, and uses the content here.
  • Machine structural parts may be damaged by suddenly receiving large stress.
  • vehicle gears such as differential gears, transmission gears, and carburized shafts with gears
  • the tooth roots may be damaged due to impact destruction due to loads at the time of sudden start and stop of the vehicle.
  • impact value impact resistance
  • the amount of material used for the mechanical structural parts can be reduced, and the weight of the mechanical structural parts can be reduced.
  • crystal grain refinement is effective for improving the impact value.
  • the refinement of crystal grains can be realized by forming fine precipitates in steel in a large amount.
  • Patent Document 1 proposes a technique for dispersing AlN or AlN and Nb (CN) in steel in order to prevent grain coarsening during carburization.
  • AlN has low thermal stability, it easily dissolves in steel and coarsens, forming coarser precipitates than other precipitates formed in steel. Therefore, AlN has a poor crystal grain refining effect.
  • Nb necessary for forming Nb (CN) can form fine Nb (CN) in steel, while reducing the hot ductility of the steel material, during casting and during hot rolling. Since it causes the generation of flaws, it is not preferable to contain a large amount.
  • Patent Document 2 proposes a technique for obtaining fine AlN during carburizing by reducing the amount of AlN precipitation after hot forging.
  • AlN has low thermal stability and is easily coarsened, the effect of crystal grain refinement is poor.
  • Patent Document 1 and Patent Document 2 cannot sufficiently meet the need for obtaining a case-hardened steel part having an excellent impact value and high hot ductility.
  • an object of the present invention is to provide a case-hardened steel part having excellent impact resistance without impairing manufacturability.
  • the gist of the present invention is as follows.
  • a case-hardened steel part is a case-hardened steel part comprising a base material and a carburized layer, wherein the base material has a chemical composition of mass%, C: 0.16 to 0.30%, Si: 0.10 to 2.00%, Mn: 0.30 to 2.00%, Cr: 0.20 to 3.00%, S: 0.001 to 0.100%, N : 0.003 to 0.010%, Ti: 0.020 to 0.200%, Nb: 0.010% or more, less than 0.050%, B: 0.0005 to 0.0050%, Ni: 0 to 3.00%, Mo: 0 to 0.80%, Cu: 0 to 1.00%, Co: 0 to 3.00%, W: 0 to 1.00%, V: 0 to 0.30%, Pb: 0 to 0.50%, Ca: 0 to 0.0100%, Mg: 0 to 0.0100%, Zr: 0 to 0.0500%, Te: 0 to 0.1000%, and rare earth elements:
  • the chemical composition of the base material is, by mass, Ni: more than 0% and less than 3.00%, Mo: more than 0% and less than 0.80%. Cu: more than 0% to 1.00% or less, Co: more than 0% to 3.00% or less, W: more than 0% to 1.00% or less, and V: more than 0% to 0.30% or less You may contain 1 type, or 2 or more types selected from these.
  • the chemical composition of the base material is P%: more than 0% and not more than 0.50% and Ca: more than 0% and 0% by mass.
  • Mg more than 0% to 0.0100% or less
  • Zr more than 0% to 0.0500% or less
  • Te more than 0% to 0.1000% or less
  • rare earth elements more than 0% to 0.0050%
  • a case-hardened steel part having excellent impact resistance can be provided.
  • This case-hardened steel part reduces the amount of material used for machine structural parts and contributes to weight reduction of machine structural parts. Therefore, the industrial effect by this invention is very large.
  • the present inventors examined a method for realizing a case-hardened steel part having excellent impact resistance characteristics by causing a precipitate having high thermal stability to exist in the surface layer of the steel part without impairing manufacturability. . Specifically, gas carburizing and impact tests were performed on steels with a wide range and systematic changes in chemical composition and carburizing material properties. As a result, the following knowledge was obtained.
  • the factor controlling the refinement effect of the grain size after carburization by precipitates in steel is the precipitate during reverse transformation to ⁇ during heating in gas carburization, that is, at a temperature rise of 700 to 800 ° C. It was found that the distribution state of the steel and the stability of the precipitate during the temperature holding during the carburizing heating.
  • the present inventors show that during the gas carburizing heating, the N 2 gas contained in the carburizing gas atmosphere decomposes and N enters the steel, affecting the behavior during the reverse transformation to ⁇ . I found out.
  • the present inventors have conducted intensive studies on the influence of chemical components and carburizing heating conditions.
  • the present inventors contain Al in an amount exceeding 0.010%, the infiltrated N and Al react to form coarse AlN, while the Al content in the steel is 0.
  • the Ti content in the steel is 0.020% or less and the steel has a Ti content of 0.020% or more, the N infiltrated into the steel does not form coarse AlN, the crystal grains become finer, and the impact value is improved.
  • TiN is a Ti-based precipitate such as TiC, (Ti, Nb) (C, N), TiN, and Ti 4 C 2 S 2 , particularly a Ti-based precipitate mainly composed of Ti and N. It is presumed that the above-mentioned phenomenon has occurred because the effect of crystal grain refinement due to is hindered. Furthermore, the present inventors have optimized the diameter and number density of Ti-based precipitates and coarse AlN when the average heating rate in the range of 700 to 800 ° C. is 5 to 50 ° C./min, It was found that crystal grains can be refined.
  • the present inventors have found that the decrease in hot ductility due to Nb can be suppressed by limiting the Nb content to less than 0.050% and setting the Ti content to 0.020% or more. .
  • the case-hardened steel part according to this embodiment includes a base material and a carburized layer.
  • the case-hardened steel part according to this embodiment is obtained by processing steel having a predetermined chemical component and performing gas carburization on the steel.
  • the reason for limiting the chemical component (chemical composition) of the base material of the case-hardened steel part according to this embodiment will be described.
  • the chemical composition of the base metal is the same as that of the steel before processing.
  • “%”, which is a unit related to the content of the alloy element, indicates “mass%”.
  • C content determines the intensity
  • the lower limit of the C content is 0.16%.
  • the upper limit of the C content is set to 0.30%.
  • the minimum with preferable C content is 0.18%, and a more preferable minimum is 0.19%.
  • the upper limit with preferable C content is 0.26%, and a more preferable upper limit is 0.24%.
  • Si 0.10 to 2.00%
  • Si is an element effective for deoxidation of steel, and is an element effective for improving the hardenability of steel and ensuring the strength necessary for machine structural parts. If the Si content is less than 0.10%, the effect is insufficient. On the other hand, when the Si content exceeds 2.00%, decarburization during production becomes remarkable, and the strength and effective hardened layer depth of the carburized steel part (case-hardened steel part) are insufficient. For these reasons, the Si content needs to be in the range of 0.10 to 2.00%.
  • a preferable lower limit of the Si content is 0.15%, and a more preferable lower limit is 0.20%.
  • the upper limit with preferable Si content is 1.00%, and a more preferable upper limit is 0.50%.
  • Mn is an element effective for deoxidizing steel, and is an element effective for enhancing hardenability and imparting the necessary strength to steel. Further, Mn combines with S to form MnS in the steel and has an effect of improving machinability. If the Mn content is less than 0.30%, this effect is insufficient. On the other hand, when the Mn content exceeds 2.00%, the retained austenite is stably present in the steel, and the strength of the steel is lowered. For the above reasons, the Mn content needs to be in the range of 0.30 to 2.00%. The minimum with preferable Mn content is 0.35%, and a more preferable minimum is 0.40%. The upper limit with preferable Mn content is 1.50%, and a more preferable upper limit is 1.20%.
  • Cr 0.20 to 3.00%
  • Cr is an effective element for enhancing the hardenability and imparting the necessary strength to the steel. If the Cr content is less than 0.20%, the effect is insufficient. On the other hand, when the Cr content exceeds 3.00%, the effect is saturated. For the above reasons, the Cr content needs to be in the range of 0.20 to 3.00%.
  • the minimum with preferable Cr content is 0.50%, and a more preferable minimum is 0.80%.
  • the upper limit with preferable Cr content is 2.20%, and a more preferable upper limit is 2.00%.
  • S forms MnS in the steel, thereby improving the machinability of the steel. If the S content is less than 0.001%, the effect is insufficient. On the other hand, if the S content exceeds 0.100%, not only the effect is saturated, but rather S segregates at the grain boundaries and causes grain boundary embrittlement. For these reasons, the S content needs to be in the range of 0.001 to 0.100%.
  • a preferable lower limit of the S content is 0.010%, and a more preferable lower limit is 0.013%.
  • the upper limit with preferable S content is 0.050%, and a more preferable upper limit is 0.040%.
  • N (N: 0.003-0.010%) N is combined with Ti, Nb, V, and the like in the steel during solidification in the steel casting process to produce coarse nitrides. If this coarse nitride is present in a large amount, it becomes a starting point of destruction. Therefore, it is necessary to reduce the N content to 0.010% or less.
  • the Ti-based precipitates of the surface layer portion of the case-hardened steel part according to the present embodiment are mainly formed by N that penetrates into the steel during the carburizing process, and are formed by N contained in the steel before the carburizing process. Is not to be done. Therefore, the base material of the case-hardened steel part according to the present embodiment does not need to contain N.
  • the lower limit of the N content may be 0.003%.
  • the lower limit of the N content may be 0.0035% or 0.004%.
  • the upper limit with preferable N content is 0.009%, and a more preferable upper limit is 0.008%.
  • Ti generates fine Ti-based precipitates such as TiC, TiN, Ti (CN) and TiCS in steel, and contributes to refinement of crystal grains.
  • Ti combines with C and N that enter the steel during the carburizing process to generate Ti-based precipitates mainly composed of Ti and C and / or N, contributing to refinement of crystal grains.
  • Ti has the effect of improving the decrease in hot ductility due to Nb. These effects are insufficient when the Ti content is less than 0.020%. On the other hand, when the Ti content exceeds 0.200%, the effect is saturated. For these reasons, the Ti content needs to be in the range of 0.020 to 0.200%.
  • a preferred lower limit of the Ti content is 0.025%, and a more preferred lower limit is 0.030%.
  • the upper limit with preferable Ti content is 0.180%, and a more preferable upper limit is 0.160%.
  • Nb dissolves in the Ti-based precipitate, contributes to an increase in the amount of precipitate and refinement of the precipitate, and promotes refinement of crystal grains. This effect is insufficient when the Nb content is less than 0.010%. In order to obtain this effect, the Nb content is set to 0.010% or more. The minimum with preferable Nb content is 0.012%, and a more preferable minimum is 0.015%. On the other hand, Nb reduces the productivity of steel by reducing the hot ductility.
  • the steel base material By including 0.020% or more of Ti as in the steel base material according to the present embodiment, it is possible to suppress a decrease in hot ductility due to Nb, but when the Nb content is 0.050% or more, Ti is contained. Even if the amount is 0.020% or more, the hot ductility of the steel material is lowered, which causes the generation of flaws during casting and hot rolling. Therefore, the Nb content needs to be less than 0.050%.
  • the upper limit with preferable Nb content is 0.040%, and a more preferable upper limit is 0.030%.
  • B has a function of suppressing grain boundary segregation of P.
  • B also has the effect of improving the grain boundary strength and the intragranular strength, and the effect of improving the hardenability. These effects result in improved steel impact values. These effects cannot be sufficiently obtained when the B content is less than 0.0005%.
  • the B content exceeds 0.0050%, the effect is saturated.
  • the B content is set in the range of 0.0005 to 0.0050%.
  • the minimum with preferable B content is 0.0010%, More preferably, it is 0.0013%.
  • the upper limit with preferable B content is 0.0045%, More preferably, it is 0.0040%.
  • Al Al usually precipitates in the steel as AlN.
  • the case-hardened steel part according to the present embodiment is dissolved in steel by coexisting with Ti.
  • the Al content of steel before carburizing treatment (that is, the Al content of the base metal) has a great influence on the characteristics of the carburized layer.
  • the carburized layer 1 of the case-hardened steel part according to this embodiment has fine Ti-based precipitates 2 having a diameter (equivalent circle diameter) of 5 to 50 nm.
  • the Ti-based precipitate 2 is formed by C and N that enter the steel from the carburizing gas atmosphere during the gas carburizing heating.
  • the Al content of the steel before carburizing treatment exceeds 0.010%, as shown in FIG.
  • Coarse AlN3 is formed.
  • the upper limit with preferable Al content is 0.009%, More preferably, it is 0.007%. Since a lower Al content is preferred, the lower limit of the Al content is 0%.
  • O forms an oxide in the steel. This oxide may segregate at the grain boundaries to cause grain boundary embrittlement. O is an element that easily forms brittle fracture by forming hard oxide inclusions in steel. Therefore, the O content needs to be limited to 0.0050% or less.
  • the upper limit with preferable O content is 0.0030%, and a more preferable upper limit is 0.0025%. Since it is preferable that the O content is small, the lower limit of the O content is 0%.
  • P P segregates at the austenite grain boundaries during carburization, thereby causing grain boundary fracture. That is, P is an element that lowers the impact value of the carburized steel part. Therefore, it is necessary to limit the P content to 0.025% or less.
  • the upper limit with preferable P content is 0.022% or less, and a more preferable upper limit is 0.020%. Since it is preferable that the P content is small, the lower limit of the P content is 0%. However, if P is removed more than necessary, the manufacturing cost increases. Therefore, the substantial lower limit of the P content is usually about 0.004%.
  • the chemical composition of the base material of the case-hardened steel part according to this embodiment is basically composed of the above-described elements, Fe, and impurities.
  • Fe in addition to a part of Fe, one or more selected from the group consisting of Ni, Mo, Cu, Co, W, and V are contained. May be.
  • it may replace with one part of Fe and may contain 1 type, or 2 or more types selected from the group which consists of Pb, Ca, Mg, Zr, Te, and rare earth elements (REM).
  • Ni, Mo, Cu, Co, W, V, Pb, Ca, Mg, Zr, Te, and rare earth elements (REM) are all optional elements, and in the base material of the case-hardened steel part according to this embodiment It does not need to be contained in. That is, the lower limit of Ni, Mo, Cu, Co, W, V, Pb, Ca, Mg, Zr, Te, and rare earth element (REM) is 0%, but may be contained more than 0%.
  • Ni is an element effective for improving the hardenability and impact value of steel.
  • the preferable lower limit of the Ni content is 0.20%, and the more preferable lower limit is 0.50%.
  • the upper limit of Ni content shall be 3.00%.
  • the upper limit of the Ni content is preferably 2.00%, more preferably 1.80%.
  • Mo is an effective element for improving the impact value of steel because it suppresses the segregation of P to grain boundaries in addition to enhancing the hardenability of steel.
  • the preferable lower limit of the Mo content is 0.05%, and the more preferable lower limit is 0.10%.
  • the Mo content exceeds 0.80%, the effect is saturated. Therefore, even when the Mo content is included, the upper limit of the Mo content is set to 0.80%.
  • Cu is an element effective for improving the hardenability of steel.
  • the lower limit of the Cu content is preferably 0.05%, more preferably 0.10%.
  • the upper limit of the Cu content is set to 1.00%.
  • Co (Co: 0 to 3.00%) Co is an element effective for improving the hardenability of steel.
  • the preferable lower limit of the Co content is 0.05%, more preferably 0.10%.
  • the upper limit of the Co content is set to 3.00%.
  • W is an element effective for improving the hardenability of steel.
  • the preferable lower limit of the W content is 0.05%, more preferably 0.10%.
  • the upper limit of the W content is set to 1.00%.
  • V dissolves in the Ti-based precipitate and contributes to an increase in the amount of precipitate and refinement of the precipitate, and promotes refinement of crystal grains.
  • the preferable lower limit of the V content is 0.10%, and the more preferable lower limit is 0.20%.
  • the V content exceeds 0.30%, the precipitates become coarse during gas carburization and the crystal grains become coarse. Therefore, even when contained, the upper limit of the V content is 0.30%. .
  • Pb is an element that improves the machinability of steel by melting and embrittlement during cutting.
  • the preferable lower limit of the Pb content is 0.05%, and the more preferable lower limit is 0.10%.
  • the upper limit of the Pb content is 0.50%.
  • Ca (Ca: 0 to 0.0100%)
  • Ca has the effect of lowering the melting point of the oxide. Since the oxide containing Ca is softened by the temperature rise during the cutting process, the machinability of the steel is improved.
  • the preferable lower limit of the Ca content is 0.0003%, and the more preferable lower limit is 0.0005%.
  • the upper limit of Ca content shall be 0.0100%.
  • Mg is a deoxidizing element and generates an oxide in steel. Further, the Mg-based oxide formed by Mg tends to be a nucleus of MnS crystallization and / or precipitation. Further, the Mg sulfide becomes a composite sulfide of Mn and Mg, thereby spheroidizing MnS. Thus, Mg is an effective element for controlling the dispersion of MnS and improving the machinability of steel. When obtaining these effects, the preferred lower limit of the Mg content is 0.0005%, and the more preferred lower limit is 0.0010%.
  • the upper limit of the Mg content is 0.0100%.
  • the upper limit with preferable Mg content is 0.0080%, and a more preferable upper limit is 0.0060%.
  • Zr 0 to 0.0500%
  • Zr is a deoxidizing element and combines with O to generate an oxide.
  • the Zr-based oxide formed by Zr tends to be a nucleus of MnS crystallization and / or precipitation. Therefore, Zr is an effective element for controlling the dispersion of MnS and improving the machinability of steel.
  • the preferable lower limit of the Zr content is 0.0005%, and the more preferable lower limit is 0.0010%.
  • the Zr content exceeds 0.0500%, the effect is saturated. Therefore, even when it is contained, the upper limit of the Zr content is 0.0500%.
  • the upper limit with preferable Zr content is 0.0400%, and a more preferable upper limit is 0.0300%.
  • Te 0.1000% or less
  • Te is an element that promotes the spheroidization of MnS and improves the machinability of steel.
  • the preferable lower limit of the Te content is 0.0005%, and the more preferable lower limit is 0.0010%.
  • the Te content exceeds 0.1000%, the effect is saturated. Therefore, even when it is included, the upper limit of the Te content is set to 0.1000%.
  • a preferable upper limit of the Te content is 0.0800%, and a more preferable upper limit is 0.0600%.
  • Rare earth elements (Rare earth elements: 0 to 0.0050%)
  • Rare earth elements (REM) produce sulfides in the steel. This sulfide becomes a precipitation nucleus of MnS, thereby promoting the generation of MnS and improving the machinability of steel.
  • the total content of rare earth elements is preferably 0.0005%, more preferably 0.0010%.
  • the upper limit of the total content of rare earth elements is set to 0.0050%.
  • a preferable upper limit of the total content of rare earth elements is 0.0040%, and a more preferable upper limit is 0.0030%.
  • the rare earth element is obtained by adding yttrium (Y) and scandium (Sc) to 15 elements from atomic number 57 lanthanum (La) to atomic number 71 lutetium (Lu) in the periodic table 17
  • Y yttrium
  • Sc scandium
  • the rare earth element content means the total content of one or more of these elements.
  • the base material of the case-hardened steel part according to the present embodiment contains the above-described alloy components, and the balance contains Fe and impurities. It is permissible for elements other than the above-mentioned alloy components to be mixed into the steel as impurities from the raw materials and production equipment as long as the mixed amount is at a level that does not affect the properties of the steel.
  • the case-hardened steel component according to the present embodiment has a carburized layer formed by gas carburizing on the surface layer portion.
  • the carburized layer represents a region where the C content is higher than the C content of the base material and the C content is 0.60% or more.
  • the gas carburization referred to in this embodiment is carburization using an endothermic gas generated by mixing a gas such as propane and air, and contains N 2 in the atmosphere during gas carburization. This gas carburization does not include gas carbonitriding in which NH 3 is introduced into the atmosphere.
  • the depth of the carburized layer (effective hardened layer depth) is preferably at least 0.5 mm or more, more preferably 1.0 mm or more, for example, about 1.0 mm.
  • the Ti-based precipitate is a precipitate (a composite precipitate) that is a main component Ti such as TiC, (Ti, Nb) (C, N), TiN, and Ti 4 C 2 S 2. Means).
  • Ti-based precipitates having an equivalent circle diameter of 5 to 50 nm exhibit a pinning effect during phase transformation, and thus have an effect of refining crystal grains obtained after phase transformation. Refinement of crystal grains improves the impact value of steel.
  • the number density of Ti-based precipitates having an equivalent circle diameter of 5 to 50 nm in the region from the surface to a depth of 0.1 mm is less than 0.5 / ⁇ m 2 , a case-hardened steel part having a sufficient impact value can be obtained. Absent.
  • Ti-based precipitates having an equivalent circle diameter of less than 5 nm does not affect the characteristics of the case-hardened steel part according to this embodiment, it need not be considered. Further, Ti-based precipitates (coarse Ti-based precipitates) having an equivalent circle diameter of more than 50 nm do not have a crystal grain refining effect, and the number density of Ti-based precipitates having an equivalent circle diameter of 5 to 50 nm. It is better not to be included. However, as long as Ti-based precipitates with an equivalent circle diameter of 5 to 50 nm are sufficiently obtained, the inclusion of Ti-based precipitates with an equivalent circle diameter of more than 50 nm is allowed, so the equivalent circle diameter is more than 50 nm. The number density of Ti-based precipitates need not be considered. Further, since it is preferable that the number density of Ti-based precipitates having an equivalent circle diameter of 5 to 50 nm is large, the upper limit of the number density of Ti-based precipitates having an equivalent circle diameter of 5 to 50 nm is not particularly specified.
  • the number density of Ti-based precipitates having a circle-equivalent diameter of 5 to 50 nm contained in a region (surface region) from the surface to a depth of 0.1 mm can be measured, for example, by the following means. First, the steel is cut perpendicular to the surface of the steel part. Next, a sample capable of observing a region of 7 ⁇ m ⁇ 7 ⁇ m by FIB processing is taken from a part having a depth of 0.02 mm, 0.05 mm, and 0.09 mm from the surface of the steel part, and the thickness is 100 nm or more and 300 nm or less. Create a thin film sample.
  • AlN having an equivalent circle diameter of less than 50 nm does not affect the characteristics of the case-hardened steel part according to the present embodiment, and therefore need not be considered.
  • AlN having an equivalent circle diameter of more than 100 nm should not be included, but when the number density of AlN having an equivalent circle diameter of 50 nm to 100 nm is appropriately controlled, AlN having an equivalent circle diameter of more than 100 nm is Since it does not substantially occur, the number density of AlN having an equivalent circle diameter of more than 100 nm need not be considered. Since the number density of AlN having an equivalent circle diameter of 50 nm to 100 nm is preferably small, the lower limit of the number density of AlN having an equivalent circle diameter of 50 nm to 100 nm is 0 / ⁇ m 2 .
  • the number density of AlN having a circle-equivalent diameter of 50 to 100 nm included in a region from the surface to a depth of 0.1 mm can be measured by, for example, the following means. First, the steel is cut perpendicular to the surface of the steel part. Next, a sample capable of observing a region of 7 ⁇ m ⁇ 7 ⁇ m by FIB processing is taken from a part having a depth of 0.02 mm, 0.05 mm, and 0.09 mm from the surface of the steel part, and the thickness is 100 nm or more and 300 nm or less. Create a thin film sample.
  • the elemental mapping of Al and N in the thin film sample is within a range of 7 ⁇ m ⁇ 7 ⁇ m. create.
  • the number of detected Al and N is significantly higher than the place where no AlN is deposited. Therefore, the area where the number of detected Al and N is high is judged as AlN, and the equivalent circle diameter is Count the number of AlN regions that are 50 nm or more and 100 nm or less and divide this number by the observation area to obtain the number density of AlN having a circle-equivalent diameter of 50 to 100 nm at each depth position.
  • the number density of AlN having an equivalent circle diameter of 50 to 100 nm included in a region from the surface of the steel part to a depth of 0.1 mm can be obtained.
  • the manufacturing method of the case hardening steel part which concerns on this embodiment performs the process which manufactures the steel which has the chemical component of the base material of the case hardening steel part mentioned above, the process which processes this steel, and gas carburizing to this steel Process.
  • the process of manufacturing steel and the process of processing steel are not particularly limited. However, in order to increase the production efficiency in the process of processing steel, it is preferable to manufacture the steel so that the hardness of the steel before processing is lowered. In the gas carburizing step, it is preferable to perform gas carburizing under the following conditions.
  • the gas carburizing performed in the manufacture of the case-hardened steel part according to the present embodiment is carburizing using an endothermic gas generated by mixing a gas such as propane and air, and N in the atmosphere at the time of gas carburizing. 2 is contained.
  • This gas carburization does not include gas carbonitriding in which NH 3 is introduced into the atmosphere or vacuum carburization.
  • the atmospheric pressure may be substantially the same as the atmospheric pressure.
  • the partial pressure of N 2 in the atmosphere needs to be 40 to 50%. When the partial pressure of N 2 is less than 40%, a sufficient amount of N does not enter the steel, so that a Ti-based precipitate having an equivalent circle diameter of 5 to 50 nm is sufficiently generated to refine the crystal grains.
  • the intrusion amounts of C and N are affected by the rate of temperature rise, and are mainly governed by the average rate of temperature rise at 700 to 800 ° C. at which reverse transformation to ⁇ (austenite) occurs. Therefore, in the gas carburization included in the method of manufacturing the case-hardened steel part according to the present embodiment, it is necessary to strictly control the rate of temperature rise in the temperature range of 700 to 800 ° C. (the hatched range in FIG. 4).
  • the temperature of the test piece was measured three times every about 30 ° C. within the temperature range of 700 to 800 ° C. during the temperature rise of the carburizing treatment, and the slope obtained by applying the least square method to these measured temperatures was expressed as “ It is defined as “average rate of temperature increase in a temperature range of 700 to 800 ° C.”.
  • the average rate of temperature increase at 700 to 800 ° C. is higher than 50 ° C./min, the intrusion of C and N is reduced. There is no effect.
  • the average heating rate at 700 to 800 ° C. is lower than 5 ° C./min, the crystal grains are coarsened and the effect of improving the impact value cannot be obtained.
  • the upper limit of the average temperature rise rate at 700 to 800 ° C. during heating of the gas carburizing needs to be 50 ° C./min, and the lower limit needs to be 5 ° C./min.
  • a preferable upper limit of the average temperature rising rate is 40 / min, and a more preferable upper limit is 35 / min.
  • a preferable lower limit of the average temperature rising rate is 7 ° C./min, and a more preferable lower limit is 10 ° C./min.
  • the carburizing temperature T and the holding time t during gas carburizing affect the thickness of the carburized layer, thereby affecting the impact value of the case-hardened steel part.
  • the carburizing temperature T during gas carburizing needs to be 900 to 1050 ° C.
  • the holding time t needs to be 1 to 10 hours.
  • the carburizing temperature T is less than 900 ° C.
  • the carburized layer is not sufficiently formed, so that the hardness which is the basic performance as a case-hardened steel part is insufficient.
  • the carburized layer described here represents a region where the C content is higher than the C content of the base material and the C content is 0.60% or more.
  • the carburizing temperature T is higher than 1050 ° C.
  • the refractory in the carburizing furnace is significantly damaged, so that the gas carburizing process cannot be performed.
  • the holding time is long, precipitates may grow and the crystal grains may be coarsened.
  • the upper limit may be 10 hours.
  • tempering temperature is 150 ° C. and tempering time is 90 minutes.
  • C 0.20 mass%, Si: 0.24 mass%, Mn: 0.79 mass%, P: 0.020 mass%, S: 0.018 mass%, Cr: 1.06 mass%,
  • a carburizing steel containing Al: 0.032 mass%, N: 0.014 mass%, and O: 0.003 mass% with the balance being Fe and impurities was defined as a reference steel.
  • a Charpy impact test piece formed using the reference steel as a material is heated at a rate of temperature increase from 700 ° C. to 800 ° C. at 20 ° C./min, and then the processing temperature (carburizing temperature) is 930 ° C., and the processing time (Caring time) is 2 hours, and gas carburizing is performed under carburizing conditions (hereinafter also referred to as reference carburizing conditions) where the carbon potential is 0.8, and the tempering temperature is 150 ° C. and the tempering time. Was tempered for 90 minutes.
  • the carburized material was subjected to a Charpy impact test, and the absorbed energy was defined as a reference impact value.
  • the above-mentioned reference steel is a steel having a chemical composition corresponding to SCr420, which is generally used as a steel for gears. Same as 15 steel.
  • the gas carburizing performed under the above-mentioned standard carburizing conditions is a general carburizing process performed for the manufacture of machine structural parts.
  • FIG. 5 shows the side shape of the Charpy impact test piece described above (the shape of the cross section perpendicular to the extending direction of the notch).
  • the radius of curvature of the notch is 10 mm, and the depth of the notch is 2 mm.
  • the shape of the Charpy impact test piece is different from the shape of a general Charpy impact test piece (for example, the shape defined in JIS-Z2242 “Charpy impact test method for metal material”).
  • the Charpy impact test piece shown in FIG. 5 is intended to estimate the impact resistance characteristics of the tooth root when the steel to be tested is processed into a gear shape by simulating the gear tooth root. For example, as described in Japanese Patent Application Laid-Open No.
  • the value obtained by dividing the Charpy absorbed energy at 25 ° C. by the reference impact value of the carburized material obtained by carburizing and tempering the Charpy impact test specimens manufactured under various conditions is the impact value ratio under the conditions. It was defined to be.
  • the case-hardened steel parts with an impact value ratio of 1.20 or more have sufficiently improved impact resistance characteristics, so it is possible to use by applying the case-hardened steel parts with an impact value ratio of 1.20 or more.
  • the design of the part can be changed so that the impact fracture resistance is ensured while suppressing the amount of material.
  • the impact value is improved by 20% with respect to the above-mentioned reference impact value (impact value of SCr420 carburized under general carburizing conditions). It is said that it is necessary. Therefore, in the present invention, when the impact value ratio is 1.20 or more, it was determined that the impact resistance characteristics are excellent.
  • the present inventors manufactured test pieces simulating case-hardened steel parts under various conditions, and evaluated impact resistance characteristics. Specifically, first, various steel ingots having chemical components shown in Tables 1 and 2 were hot forged to a diameter of 35 mm. The heating temperature for hot forging was 1250 ° C. Then, after holding at 950 ° C. for 2 hours, after carrying out a normalizing process under the condition of air cooling, the outer dimensions shown in FIG. 1 are 10 mm ⁇ 10 mm ⁇ 55 mm, and the arc shape has a radius of curvature of 10 mm and a depth of 2 mm. It was processed into the shape of a Charpy impact test piece having a notch.
  • the shape of this test piece is the same as the Charpy impact test piece shown in FIG.
  • the Charpy impact test piece was carburized.
  • heating was performed up to 930 ° C. at a temperature increase rate shown in Table 3.
  • the temperature increase rate was measured by measuring the temperature of the test piece three times using a radiation thermometer between 700 and 800 ° C. at the time of temperature increase, and the gradient obtained by the least square method was defined as the temperature increase rate.
  • quenching was performed in 130 ° C. oil. Tempering was carried out under conditions where the tempering temperature was 150 ° C. and the tempering time was 90 minutes.
  • a Charpy impact test was performed after tempering to measure Charpy absorbed energy (impact value).
  • the Charpy impact test was performed according to the method prescribed in JIS-Z2242, except for the shape of the notch of the Charpy impact test piece.
  • the test temperature was 25 ° C.
  • test No. 15 is the reference steel described above.
  • the number of AlN deposited from the surface of each sample to a depth of 0.1 mm was measured using a test piece after the Charpy impact test.
  • the measurement method is as follows. First, in order to obtain a cross section at the bottom of the notch, the test piece was cut at a cross section perpendicular to the notch and including the longitudinal direction. Next, a sample capable of observing a 7 ⁇ m ⁇ 7 ⁇ m region by FIB processing from a depth of 0.02 mm, 0.05 mm, and 0.09 mm from the surface of the notch bottom, and a thin film sample having a thickness of 100 nm to 300 nm It was created.
  • elemental mapping of Al and N of the thin film sample was prepared in a range of 7 ⁇ m ⁇ 7 ⁇ m using a field emission transmission electron microscope and EDS (energy dispersive X-ray analysis) therein.
  • the number of detected Al and N is significantly higher than the place where no AlN is deposited. Therefore, the area where the number of detected Al and N is high is judged as AlN, and the equivalent circle diameter is By counting the number of AlN regions that are 50 nm or more and 100 nm or less, and dividing this number by the observation area, the number density of AlN at each depth position is obtained and averaged to obtain a depth of 0.1 mm from the surface. The number density of AlN contained in the above regions was determined.
  • the number density of Ti-based precipitates having an equivalent circle diameter of 5 to 50 nm contained in a region from the surface of the sample to a depth of 0.1 mm was measured.
  • the measurement method is as follows. First, in order to obtain a cross section at the bottom of the notch, the test piece was cut at a cross section perpendicular to the notch and including the longitudinal direction. Next, samples capable of observing a region of 7 ⁇ m ⁇ 7 ⁇ m by FIB processing were taken from locations having a depth of 0.02 mm, 0.05 mm, and 0.09 mm from the surface of the notch bottom, and the thickness was 100 nm to 300 nm. A thin film sample was prepared.
  • the crystal grain size of the prior austenite grains at a position of 0.05 mm from the surface was measured using the test piece after the Charpy impact test. Specifically, the prior austenite grain boundary appears on the cross-section of the notch bottom using a corrosive solution containing picric acid and hydrochloric acid, and five crystals are formed in accordance with the comparative method prescribed in JIS-G0551. The grain size was determined and averaged to evaluate the crystal grain size of the prior austenite grains.
  • test piece having a diameter of 10 mm and a length of 120 mm was cut out from the steel ingot.
  • the test piece was heated to 1350 ° C. under a vacuum atmosphere of 10 ⁇ 1 to 10 ⁇ 2 Pa, held for 1 minute, cooled to 800 ° C. at 1 ° C./s, and strain rate of 0.005 s ⁇
  • the diameter of the final fracture after the tensile test in 1 was measured to calculate the drawing, and this was used as an index of hot ductility.
  • a sample having a hot ductility of 50% or more was judged to have good hot ductility.
  • Table 3 shows the hot ductility of each sample, the surface layer AlN amount after carburization (that is, the number density of AlN included in the region from the surface to a depth of 0.1 mm), and the surface layer Ti-based precipitate amount after carburization (that is, 0 from the surface).
  • Test No. which is an example of the invention
  • the number density of AlN and Ti-based precipitates of a predetermined size was in an appropriate range in the surface layer region, crystal grains were refined, and good impact resistance characteristics were obtained. Moreover, hot ductility was also favorable.
  • test No. which is a comparative example. 15-22 did not have favorable characteristics.
  • Test No. 15 the Al content and N content of the base material were excessive, and AlN precipitated excessively during carburizing heating. Furthermore, test no. No. 15 did not contain Ti and Nb, so no Ti-based precipitate was produced. Furthermore, test no. 15 did not contain B. As a result, test no. 15 had only a low impact value compared to the example. Test No. 16 and test no. In No. 17, the Al content of the base material was excessive, and AlN was excessively precipitated during carburizing heating, so that it had only a low impact value as compared with the Examples.
  • Test No. No. 18 was unsuitable because the Ti content of the base material was insufficient, so that the decrease in hot ductility due to Nb was not suppressed and only low productivity was obtained. In addition, Test No. In No. 18, since the Ti content of the base material was insufficient, Ti-based precipitates were not generated, and the crystal grains were coarsened.
  • Test No. No. 19 was deficient in Ti, but the Nb content was small, so no reduction in hot ductility occurred. However, test no. No. 19 had a low impact value as compared with the example because Ti precipitates did not occur due to the lack of Ti and the crystal grains became coarse.
  • Test No. No. 20 had a low impact value compared to the examples because the heating rate at the time of carburization was insufficient and the precipitation amount of AlN increased, so that the crystal grains became coarse.
  • Test No. 22 did not contain B. As a result, test no. 22 had only a low impact value compared to the example.
  • a case-hardened steel part having excellent impact resistance can be provided.
  • This case-hardened steel part reduces the amount of material used for machine structural parts and contributes to weight reduction of machine structural parts. Therefore, the industrial effect by this invention is very large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

この肌焼鋼部品は、母材と浸炭層とを備える肌焼鋼部品であって、前記母材が所定の化学組成を有し、表面から0.1mm深さまでの表層領域において、円相当径5~50nmのTi系析出物の個数密度が0.5個/μm以上であり、前記表層領域において、円相当径が50nm以上100nm以下であるAlNの個数密度が0.5個/μm以下である。

Description

肌焼鋼部品
 本発明は、肌焼鋼部品に関する。
 本願は、2015年03月31日に、日本に出願された特願2015−070701号に基づき優先権を主張し、その内容をここに援用する。
 機械構造用部品は、急激に大きな応力を受けることによって破損する場合がある。特に、差動歯車、トランスミッション歯車、および歯車付き浸炭シャフトなどの車両用歯車では、車両の急発進および急停車の際の負荷により、歯元が衝撃破壊で破損することがある。このような現象を防止するために、特に差動歯車およびトランスミッション歯車においては、その衝撃値(耐衝撃特性)の向上がより一層望まれている。これら機械構造用部品の衝撃値を十分に向上させることにより、機械構造用部品に用いられる材料の量を減少させ、機械構造用部品の軽量化を達成することができる。
 衝撃値を向上させるには、結晶粒の微細化が有効であることが一般に知られている。結晶粒の微細化は、鋼中に析出物を微細かつ多量に形成することで実現できる。
 鋼中に析出物を微細かつ多量に析出させる従来の技術について以下に説明する。例えば、特許文献1では、浸炭時の結晶粒粗大化防止のため、鋼中にAlN、またはAlNとNb(CN)とを分散させる技術が提案されている。しかしながら、AlNは熱的安定性が低いので鋼中へ容易に溶体化して粗大化し、鋼中に形成する他の析出物よりも粗大な析出物を形成する。そのため、AlNは結晶粒の微細化効果に乏しい。またNb(CN)を形成させるために必要なNbは、微細なNb(CN)を鋼中に形成することができる一方で、鋼材の熱間延性を低下させ、鋳造時および熱間圧延時のきず発生の原因となるので、多量に含有させることは好ましくない。
 特許文献2では、熱間鍛造後のAlN析出量を低減することで浸炭中に微細なAlNを得る技術が提案されている。しかしながら、AlNは熱的安定性が低く粗大化しやすいので、結晶粒の微細化効果は乏しい。
 上述のように、特許文献1及び特許文献2の開示技術では、衝撃値に優れ、かつ高い熱間延性を有する肌焼鋼部品を得るというニーズには十分に応えることができなかった。
日本国特許第3738004号公報 日本国特許第3954772号公報
 上記の課題に鑑み、本発明は、製造性を損なうことなく、耐衝撃特性に優れる肌焼鋼部品を提供することを目的とする。
 本発明の要旨は以下の通りである。
 (1)本発明の一態様に係る肌焼鋼部品は、母材と浸炭層とを備える肌焼鋼部品であって、前記母材の化学組成が、質量%で、C:0.16~0.30%、Si:0.10~2.00%、Mn:0.30~2.00%、Cr:0.20~3.00%、S:0.001~0.100%、N:0.003~0.010%、Ti:0.020~0.200%、Nb:0.010%以上、0.050%未満、B:0.0005~0.0050%、Ni:0~3.00%、Mo:0~0.80%、Cu:0~1.00%、Co:0~3.00%、W:0~1.00%、V:0~0.30%、Pb:0~0.50%、Ca:0~0.0100%、Mg:0~0.0100%、Zr:0~0.0500%、Te:0~0.1000%、及び、希土類元素:0~0.0050%、を含有し、Al:0.010%以下、0:0.0050%以下、P:0.025%以下に制限し、残部がFe及び不純物であり、表面から0.1mm深さまでの表層領域において、円相当径5~50nmのTi系析出物の個数密度が0.5個/μm以上であり、前記表層領域において、円相当径が50nm以上100nm以下であるAlNの個数密度が0.5個/μm以下である。
 (2)上記(1)に記載の肌焼鋼部品は、前記母材の前記化学組成が、質量%で、Ni:0%超3.00%以下、Mo:0%超0.80%以下、Cu:0%超1.00%以下、Co:0%超3.00%以下、W:0%超1.00%以下、及び、V:0%超0.30%以下、からなる群から選択される1種又は2種以上を含有してもよい。
 (3)上記(1)または(2)に記載の肌焼鋼部品は、前記母材の前記化学組成が、質量%で、Pb:0%超0.50%以下、Ca:0%超0.0100%以下、Mg:0%超0.0100%以下、Zr:0%超0.0500%以下、Te:0%超0.1000%以下、及び、希土類元素:0%超0.0050%以下からなる群から選択される1種又は2種以上を含有してもよい。
 本発明の上記態様によれば、耐衝撃特性に優れる肌焼鋼部品を提供できる。この肌焼鋼部品は、機械構造用部品に用いられる材料の量を減少させ、機械構造用部品の軽量化に寄与する。そのため、本発明による産業上の効果は極めて大きい。
本実施形態に係る肌焼鋼部品の浸炭層の概念図である。 Al量が過剰な鋼から得られた肌焼鋼部品の浸炭層の概念図である。 不適切な浸炭処理によって得られた肌焼鋼部品の浸炭層の概念図である。 浸炭処理の際の温度変化を説明するグラフである。 衝撃値比を評価するために用いられる試験片の側面図である。
 本発明者らは、製造性を損なうことなく、熱的安定性の高い析出物を鋼部品の表層に存在させることで、優れた耐衝撃特性を有する肌焼鋼部品を実現する方法について検討した。具体的には、化学組成と浸炭材質特性とを広範囲かつ系統的に変化させた鋼に対してガス浸炭および衝撃試験を実施した。その結果、以下に説明する知見が得られた。
 本発明者らは、浸炭後の結晶粒径と鋼中の析出物との関係について調査した。その結果、鋼中の析出物による浸炭後の結晶粒径の微細化効果を制御する要因は、ガス浸炭における加熱時のγへの逆変態時、すなわち700~800℃の昇温時における析出物の分布状態、及び浸炭加熱の際の温度保持中の析出物の安定性であることを知見した。
 さらに、本発明者らは、ガス浸炭の加熱中に、浸炭ガス雰囲気に含まれるNガスが分解し、鋼中にNが浸入して、γへの逆変態時の挙動に影響を与えることを知見した。本発明者らは、この浸入するNを利用して結晶粒の微細化を行う方法を検討するため、化学成分および浸炭加熱条件の影響について鋭意調査を行った。その結果、本発明者らは、鋼中に0.010%を超えてAlを含有する場合は、浸入したNとAlとが反応し粗大なAlNを作る一方、鋼中のAl含有量が0.010%以下、かつ鋼中のTi含有量が0.020%以上の場合には、鋼中に浸入させたNは粗大なAlNを形成せず、かつ結晶粒が微細化し、衝撃値が向上することを知見した。
 本発明者らは、AlNが、TiC、(Ti,Nb)(C,N)、TiN、およびTi等のTi系析出物、特に主にTiおよびNからなるTi系析出物による結晶粒微細化効果を妨げるので、上述の現象が生じたものと推測する。さらに、本発明者らは、700~800℃の範囲内における平均昇温速度が5~50℃/minである場合に、Ti系析出物および粗大なAlNの、径および個数密度を最適化し、結晶粒を微細化できることを知見した。
 また、本発明者らは、Nbによる熱間延性の低下は、Nb含有量を0.050%未満に制限した上で、Ti含有量を0.020%以上とすることにより抑制できることを知見した。
 以下に、上述の知見に基づく本発明の一実施形態に係る肌焼鋼部品(本実施形態に係る肌焼鋼部品)について詳細に説明する。
 本実施形態に係る肌焼鋼部品は、母材と浸炭層とを備える。本実施形態に係る肌焼鋼部品は、所定の化学成分を有する鋼を加工し、この鋼にガス浸炭を行うことによって得られたものである。
 本実施形態に係る肌焼鋼部品の母材の化学成分(化学組成)の限定理由について説明する。母材の化学成分は、加工前の鋼と同じである。以下、合金元素の含有量に係る単位である「%」は、「質量%」を示す。
(C:0.16~0.30%)
 C含有量は、肌焼鋼部品の芯部(母材)の強度を決定し、さらに有効硬化層深さにも影響する。所要の芯部強度を確保するために、C含有量の下限を0.16%とする。一方、C含有量が多すぎると切削加工および冷間加工時の効率が低下する。そのため、C含有量の上限を0.30%とする。C含有量の好ましい下限は0.18%であり、さらに好ましい下限は0.19%である。C含有量の好ましい上限は0.26%であり、さらに好ましい上限は0.24%である。
(Si:0.10~2.00%)
 Siは、鋼の脱酸に有効な元素であるとともに、鋼の焼入れ性を向上させ、機械構造用部品として必要な強度を確保するために有効な元素である。Si含有量が0.10%未満では、その効果が不十分である。一方、Si含有量が2.00%を超えると、製造時の脱炭が著しくなり、浸炭鋼部品(肌焼鋼部品)の強度および有効硬化層深さが不足する。以上の理由によって、Si含有量を0.10~2.00%の範囲内にする必要がある。Si含有量の好ましい下限は0.15%であり、さらに好ましい下限は0.20%である。Si含有量の好ましい上限は1.00%であり、さらに好ましい上限は0.50%である。
(Mn:0.30~2.00%)
 Mnは鋼の脱酸に有効な元素であるとともに、焼入れ性を高め、鋼に必要な強度を付与するために有効な元素である。また、Mnは、Sと化合して鋼中にMnSを形成し、被削性を向上させる効果がある。Mn含有量が0.30%未満では、この効果が不十分である。一方、Mn含有量が2.00%を超えると、残留オーステナイトが安定的に鋼中に存在して、鋼の強度が低下する。以上の理由によって、Mn含有量を0.30~2.00%の範囲内にする必要がある。Mn含有量の好ましい下限は0.35%であり、さらに好ましい下限は0.40%である。Mn含有量の好ましい上限は1.50%であり、さらに好ましい上限は1.20%である。
(Cr:0.20~3.00%)
 Crは、焼入れ性を高め、鋼に必要な強度を付与するために有効な元素である。Cr含有量が0.20%未満では、その効果が不十分である。一方、Cr含有量が3.00%を超えると、その効果が飽和する。以上の理由によって、Cr含有量を0.20~3.00%の範囲内にする必要がある。Cr含有量の好ましい下限は0.50%であり、さらに好ましい下限は0.80%である。Cr含有量の好ましい上限は2.20%であり、さらに好ましい上限は2.00%である。
(S:0.001~0.100%)
 Sは、鋼中でMnSを形成し、これにより鋼の被削性を向上させる。S含有量が0.001%未満では、その効果は不十分である。一方、S含有量が0.100%を超えると、その効果が飽和するだけでなく、むしろSが粒界に偏析して粒界脆化の原因となる。以上の理由から、Sの含有量を0.001~0.100%の範囲内にする必要がある。S含有量の好ましい下限は0.010%であり、さらに好ましい下限は0.013%である。S含有量の好ましい上限は0.050%であり、さらに好ましい上限は0.040%である。
(N:0.003~0.010%)
 Nは、鋼の鋳造工程における凝固時に、鋼中でTi、Nb、およびV等と結合して粗大な窒化物を生成する。この粗大な窒化物は、多量に存在すると破壊の起点となる。そのため、N含有量を0.010%以下に低減する必要がある。本実施形態に係る肌焼鋼部品の表層部が有するTi系析出物は、主に浸炭処理時に鋼中に浸入するNによって形成されるものであり、浸炭処理前の鋼に含まれるNによって形成されるものではない。従って、本実施形態に係る肌焼鋼部品の母材は、Nを含有する必要がない。しかしながら、N含有量を0.003%未満へ低減することは製造上のコストが大きくなるので、N含有量の下限を0.003%としてもよい。N含有量の下限は0.0035%、または0.004%としてもよい。N含有量の好ましい上限は0.009%であり、さらに好ましい上限は0.008%である。
(Ti:0.020~0.200%)
 Tiは、鋼中で微細なTiC、TiN、Ti(CN)およびTiCS等のTi系析出物を生成し、結晶粒の微細化に寄与する。また、Tiは、浸炭処理時に鋼中に浸入するC、Nと結合して、主にTiと、C及び/又はNとからなるTi系析出物を生成し、結晶粒の微細化に寄与する。さらに、Tiは、Nbによる熱間延性の低下を改善する効果を有する。これらの効果は、Ti含有量が0.020%未満では不十分である。一方、Ti含有量が0.200%を超えると、その効果は飽和する。以上の理由から、Tiの含有量を0.020~0.200%の範囲内にする必要がある。Ti含有量の好ましい下限は0.025%であり、さらに好ましい下限は0.030%である。Ti含有量の好ましい上限は0.180%であり、さらに好ましい上限は0.160%である。
(Nb:0.010%以上、0.050%未満)
 Nbは、Ti系析出物に固溶して、析出物量の増加および析出物の微細化に寄与し、結晶粒の微細化を促進する。この効果はNb含有量が0.010%未満では不十分である。この効果を得るため、Nb含有量を0.010%以上とする。Nb含有量の好ましい下限は0.012%であり、さらに好ましい下限は0.015%である。一方、Nbは熱間延性を低下させることにより鋼の生産性を低下させる。本実施形態に係る鋼の母材のようにTiを0.020%以上含有させることにより、Nbによる熱間延性の低下を抑制できるが、Nb含有量が0.050%以上になると、Ti含有量が0.020%以上であっても、鋼材の熱間延性が低下し、鋳造時および熱間圧延時のきず発生の原因となる。そのため、Nb含有量を0.050%未満にする必要がある。Nb含有量の好ましい上限は0.040%であり、さらに好ましい上限は0.030%である。
(B:0.0005~0.0050%)
 Bは、Pの粒界偏析を抑制する働きを有する。また、Bは粒界強度および粒内強度の向上効果、及び焼入れ性の向上効果も有する。これらの効果は結果として、鋼の衝撃値を向上させる。これらの効果は、B含有量が0.0005%未満では十分に得られない。一方、B含有量が0.0050%を超えると、その効果は飽和する。以上の理由から、Bの含有量を0.0005~0.0050%の範囲内にする。B含有量の好ましい下限は0.0010%であり、さらに好ましくは0.0013%である。B含有量の好ましい上限は0.0045%であり、さらに好ましくは0.0040%である。
(Al:0.010%以下)
 Alは、通常AlNとなって鋼中に析出する。しかしながら、本実施形態に係る肌焼鋼部品においては、Tiと共存することで鋼中に固溶している。浸炭処理前の鋼のAl含有量(即ち母材のAl含有量)は、浸炭層の特性に大きな影響を与える。本実施形態に係る肌焼鋼部品の浸炭層1は、図1に示されるように、直径(円相当径)5~50nmである微細なTi系析出物2を有している。このTi系析出物2は、ガス浸炭の加熱中に浸炭ガス雰囲気から鋼中に浸入するC及びNによって形成される。しかしながら、浸炭処理前の鋼のAl含有量が0.010%を超えると、図2に示されるように、ガス浸炭の加熱中に、浸炭ガス雰囲気から浸入するNとAlとが化合して比較的粗大なAlN3が形成される。粗大なAlN3が形成された場合、十分な結晶粒の微細化効果が得られない。従って、Al含有量は0.010%以下に制限される必要がある。Al含有量の好ましい上限は0.009%であり、さらに好ましくは0.007%である。Al含有量は少ない方が好ましいので、Al含有量の下限は0%である。
(O:0.0050%以下)
 Oは、鋼中で酸化物を形成する。この酸化物は、粒界偏析して粒界脆化を起こす場合がある。また、Oは鋼中で硬い酸化物系介在物を形成して脆性破壊を起こしやすくする元素である。そのため、O含有量は0.0050%以下に制限される必要がある。O含有量の好ましい上限は0.0030%であり、さらに好ましい上限は0.0025%である。O含有量は少ない方が好ましいので、O含有量の下限は0%である。
(P:0.025%以下)
 Pは、浸炭時にオーステナイト粒界に偏析し、それにより粒界破壊を引き起こす。つまり、Pは浸炭鋼部品の衝撃値を低下させる元素である。したがって、P含有量を0.025%以下に制限する必要がある。P含有量の好ましい上限は0.022%以下であり、さらに好ましい上限は0.020%である。P含有量は少ない方が好ましいので、P含有量の下限は0%である。しかし、Pの除去を必要以上に行った場合、製造コストが増大する。従って、P含有量の実質的な下限は約0.004%となるのが通常である。
 本実施形態に係る肌焼鋼部品の母材の化学組成は、上述した元素とFe及び不純物とからなることを基本とする。しかしながら、焼入れ性または衝撃値を高めるために、さらに、Feの一部に代えて、Ni、Mo、Cu、Co、W、及び、Vからなる群から選択される1種又は2種以上を含有してもよい。また、Feの一部に代えて、Pb、Ca、Mg、Zr、Te及び希土類元素(REM)からなる群から選択される1種又は2種以上を含有してもよい。しかしながら、Ni、Mo、Cu、Co、W、V、Pb、Ca、Mg、Zr、Te及び希土類元素(REM)はいずれも任意元素であり、本実施形態に係る肌焼鋼部品の母材中に含有されなくてもよい。すなわち、Ni、Mo、Cu、Co、W、V、Pb、Ca、Mg、Zr、Te及び希土類元素(REM)の下限は0%であるが、0%超含有させてもよい。
(Ni:0~3.00%)
 Niは、鋼の焼入れ性及び衝撃値を向上させるために有効な元素である。Niを含有させて上述の効果を得る場合には、好ましいNi含有量の下限は0.20%であり、さらに好ましい下限は0.50%である。一方、Ni含有量が3.00%を超えると、残留オーステナイトが鋼中に安定的に存在して、鋼の強度が低下する。そのため、含有させる場合でも、Ni含有量の上限を3.00%とする。Ni含有量の上限は好ましくは、2.00%であり、さらに好ましくは1.80%である。
(Mo:0~0.80%)
 Moは、鋼の焼入れ性を高めることに加え、Pが粒界に偏析することを抑制するので、鋼の衝撃値の向上のために有効な元素である。Moを含有させて上述の効果を得る場合には、Mo含有量の好ましい下限は0.05%であり、さらに好ましい下限は0.10%である。一方、Mo含有量が0.80%を超えると、その効果が飽和するので、含有させる場合でも、Mo含有量の上限を0.80%とする。
(Cu:0~1.00%)
 Cuは、鋼の焼入れ性の向上に有効な元素である。Cuを含有させて上述の効果を得る場合には、Cu含有量の好ましい下限は0.05%であり、さらに好ましくは0.10%である。一方、Cu含有量が1.00%を超えると、熱間延性が低下するので、含有させる場合でも、Cu含有量の上限を1.00%とする。
(Co:0~3.00%)
 Coは、鋼の焼入れ性の向上に有効な元素である。Coを含有させて上述の効果を得る場合には、Co含有量の好ましい下限は0.05%であり、さらに好ましくは0.10%である。一方、Co含有量が3.00%を超えると、その効果が飽和するので、含有させる場合でも、Co含有量の上限を3.00%とする。
(W:0~1.00%)
 Wは、鋼の焼入れ性の向上に有効な元素である。Wを含有させて上述の効果を得る場合には、W含有量の好ましい下限は0.05%であり、さらに好ましくは0.10%である。一方、W含有量が1.00%を超えると、その効果が飽和するので、含有させる場合でも、W含有量の上限を1.00%とする。
(V:0~0.30%)
 Vは、Ti系析出物に固溶して、析出物量の増加、および析出物の微細化に寄与し、結晶粒の微細化を促進する。Vを含有させて上述の効果を得る場合には、V含有量の好ましい下限は0.10%であり、さらに好ましい下限は0.20%である。一方、V含有量が0.30%を超えると、ガス浸炭中に析出物が粗大化して、結晶粒が粗大化するので、含有させる場合でも、V含有量の上限を0.30%とする。
(Pb:0~0.50%)
 Pbは、切削時に溶融、脆化することで鋼の被削性を向上させる元素である。Pbを含有させて上述の効果を得る場合には、Pb含有量の好ましい下限は0.05%であり、さらに好ましい下限は0.10%である。一方、Pbを過剰に含有させると製造性が低下するので、含有させる場合でも、Pb含有量の上限を0.50%とする。
(Ca:0~0.0100%)
 Caは、酸化物の融点を低下させる効果を有する。Caを含む酸化物は、切削加工の際に温度上昇により軟質化するので、鋼の被削性を改善する。Caを含有させて上述の効果を得る場合には、Ca含有量の好ましい下限は0.0003%であり、さらに好ましい下限は0.0005%である。一方、Ca含有量が0.0100%を超えると、CaSが多量に生成されて、被削性が低下する。そのため、含有させる場合でも、Ca含有量の上限を0.0100%とする。
(Mg:0~0.0100%)
 Mgは脱酸元素であり、鋼中に酸化物を生成する。さらに、Mgが形成するMg系酸化物は、MnSの晶出および/または析出の核になりやすい。また、Mgの硫化物は、MnおよびMgの複合硫化物となることにより、MnSを球状化させる。このように、MgはMnSの分散を制御し、鋼の被削性を改善するために有効な元素である。これらの効果を得る場合、Mg含有量の好ましい下限は0.0005%であり、さらに好ましい下限は0.0010%である。一方、Mg含有量が0.0100%を超えると、MgSが大量に生成され、鋼の被削性が低下する。そのため、含有させる場合でも、Mg含有量の上限を0.0100%とする。Mg含有量の好ましい上限は0.0080%であり、さらに好ましい上限は0.0060%である。
(Zr:0~0.0500%)
 Zrは脱酸元素であり、Oと結合して酸化物を生成する。このZrが形成するZr系酸化物は、MnSの晶出および/または析出の核になりやすい。したがって、Zrは、MnSの分散を制御し、鋼の被削性を改善するために有効な元素である。この効果を得る場合、Zr含有量の好ましい下限は0.0005%であり、さらに好ましい下限は0.0010%である。一方、Zr含有量が0.0500%を超えると、その効果が飽和する。そのため、含有させる場合でも、Zr含有量の上限を0.0500%とする。Zr含有量の好ましい上限は0.0400%であり、さらに好ましい上限は0.0300%である。
(Te:0.1000%以下)
 Teは、MnSの球状化を促進し、鋼の被削性を改善する元素である。この効果を得る場合、Te含有量の好ましい下限は0.0005%であり、さらに好ましい下限は0.0010%である。一方、Te含有量が0.1000%を超えるとその効果が飽和するので、含有させる場合でも、Te含有量の上限を0.1000%とする。Te含有量の好ましい上限は0.0800%であり、さらに好ましい上限は0.0600%である。
(希土類元素:0~0.0050%)
 希土類元素(REM)は、鋼中に硫化物を生成する。この硫化物は、MnSの析出核となることで、MnSの生成を促進し、鋼の被削性を改善する。この効果を得る場合、希土類元素の合計含有量は、好ましくは0.0005%であり、さらに好ましくは0.0010%である。一方、希土類元素の合計含有量が0.0050%を超えると、硫化物が粗大になり、鋼の疲労強度を低下させる。そのため、含有させる場合でも、希土類元素の合計含有量の上限を0.0050%とする。希土類元素の合計含有量の好ましい上限は0.0040%であり、さらに好ましい上限は0.0030%である
 本実施形態において、希土類元素は、周期律表中の原子番号57のランタン(La)から原子番号71のルテチウム(Lu)までの15元素に、イットリウム(Y)及びスカンジウム(Sc)を加えた17元素の総称である。希土類元素の含有量は、これらの1種又は2種以上の元素の合計含有量を意味する。
 本実施形態に係る肌焼鋼部品の母材は、上述の合金成分を含有し、残部がFeおよび不純物を含む。上述の合金成分以外の元素が、不純物として、原材料および製造装置から鋼中に混入することは、その混入量が鋼の特性に影響を及ぼさない水準である限り許容される。
 (浸炭層)
 本実施形態に係る肌焼鋼部品は、表層部にガス浸炭によって形成された浸炭層を有する。本実施形態において、浸炭層とは、C含有量が母材のC含有量よりも高い領域であり、かつC含有量が0.60%以上である領域を表す。本実施形態でいうガス浸炭とは、プロパン等のガスと空気とを混合して発生させた吸熱型のガスを用いた浸炭であり、ガス浸炭時の雰囲気中にNを含有する。このガス浸炭には、雰囲気にNHを投入するガス浸炭窒化は含まれない。
 浸炭層の深さ(有効硬化層深さ)は、少なくとも0.5mm以上が好ましく、より好ましくは1.0mmまたはそれ以上、例えば1.0mm程度である。
(円相当径5~50nmのTi系析出物の個数密度:表面から0.1mm深さまでの領域において0.5個/μm以上)
 図1に示されるように、本実施形態に係る肌焼鋼部品の浸炭層1には、円相当径5~50nmである微細なTi系析出物2が分散されている。本実施形態において、Ti系析出物とは、TiC、(Ti,Nb)(C,N)、TiN、およびTi等の、主な成分Tiである析出物(複合析出物を含む)を意味する。円相当径5~50nmのTi系析出物は、相変態時にピン止め効果を発揮するので、相変態後に得られる結晶粒を微細化させる効果を有する。結晶粒の微細化は、鋼の衝撃値を向上させる。表面から0.1mm深さまでの領域において円相当径5~50nmのTi系析出物の個数密度が0.5個/μm未満である場合、十分な衝撃値を有する肌焼鋼部品が得られない。
 円相当径が5nm未満であるTi系析出物は、本実施形態に係る肌焼鋼部品の特性に影響を及ぼさないので、考慮しなくてもよい。また、円相当径が50nm超であるTi系析出物(粗大なTi系析出物)は、結晶粒の微細化効果を有せず、さらに円相当径5~50nmのTi系析出物の個数密度を減少させるので、含まれないほうが良い。しかし、円相当径5~50nmのTi系析出物が十分に得られている限り、円相当径が50nm超であるTi系析出物の含有は許容されるので、円相当径が50nm超であるTi系析出物の個数密度は考慮しなくても良い。また、円相当径5~50nmのTi系析出物の個数密度は多い方が好ましいので、円相当径5~50nmのTi系析出物の個数密度の上限は特に規定されない。
 表面から0.1mm深さまでの領域(表層領域)に含まれる円相当径5~50nmのTi系析出物の個数密度は、例えば以下の手段により計測可能である。まず、鋼部品の表面に対して垂直に鋼を切断する。次に、鋼部品の表面から0.02mm、0.05mm、及び0.09mmの深さの箇所から、FIB加工により7μm×7μmの領域を観察できるサンプルを採取し、厚さ100nm以上300nm以下の薄膜試料を作成する。その後、各深さ位置の試料を、電界放出形透過電子顕微鏡でHAADF−STEM法を用いて、倍率20万倍で7μm×7μmの領域を観察し、円相当径で5~50nmの、Feではない相に対してEDS分析を行い、これら相のうちTiが検出されるものの個数を数える。この個数を観察面積で割って得た値を、各深さ位置でのTi系析出物の個数密度とし、これらを平均した値を、鋼部品の表面から0.1mm深さまでの領域に含まれる円相当径5~50nmのTi系析出物の個数密度とすることができる。
(円相当径が50nm以上100nm以下であるAlNの個数密度:0.5個/μm以下)
 上述のように、ガス浸炭の昇温加熱中に鋼中にC及びNが浸入する。浸入したNが鋼中に固溶したAlと化合してAlNが析出した場合、AlNが粗大な析出物となる。この場合、結晶粒が十分に微細化しなくなり、靱性が低下する。これは、AlNがTi系析出物、特に主にTiおよびNからなるTi系析出物による結晶粒微細化効果を阻害するからであると推定される。靱性の低下を回避するためには、円相当径で50nm以上100nm以下の粗大なAlNが0.5個/μm以下である必要がある。この特徴は、鋼の母材のAl含有量(即ち、浸炭処理前の鋼のAl含有量)を0.010%以下に制限するとともに、浸炭時の昇温速度を適切に制御することにより得られる。
 円相当径が50nm未満であるAlNは、本実施形態に係る肌焼鋼部品の特性に影響を及ぼさないので、考慮しなくてもよい。また、円相当径が100nm超であるAlNは含まれないほうが良いが、円相当径が50nm以上100nm以下であるAlNの個数密度を適切に制御した場合、円相当径が100nm超であるAlNは実質的に生じないので、円相当径が100nm超であるAlNの個数密度は考慮しなくても良い。円相当径が50nm以上100nm以下であるAlNの個数密度は少ない方が好ましいので、円相当径が50nm以上100nm以下であるAlNの個数密度の下限は0個/μmである。
 表面から0.1mm深さまでの領域に含まれる円相当径50~100nmのAlNの個数密度は、例えば以下の手段により計測可能である。まず、鋼部品の表面に対して垂直に鋼を切断する。次に、鋼部品の表面から0.02mm、0.05mm、及び0.09mmの深さの箇所から、FIB加工により7μm×7μmの領域を観察できるサンプルを採取し、厚さ100nm以上300nm以下の薄膜試料を作成する。その後、各深さ位置の試料を、電界放出形透過電子顕微鏡とその中のEDS(エネルギー分散型X線分析)とを用いて、薄膜試料のAlおよびNの元素マッピングを7μm×7μmの範囲で作成する。AlNが析出している場所では、析出していない場所と比較してAlおよびNの検出数が顕著に高くなるので、AlおよびNの検出数が高い領域をAlNと判断し、円相当径が50nm以上100nm以下であるAlN領域の個数を計数し、この個数を観察面積で割ることで、各深さ位置での円相当径50~100nmのAlNの個数密度を求め、これらの平均値を、鋼部品の表面から0.1mm深さまでの領域に含まれる円相当径50~100nmのAlNの個数密度とすることができる。
 次に、本実施形態に係る肌焼鋼部品の好ましい製造方法について説明する。本実施形態に係る肌焼鋼部品の製造方法は、上述した肌焼鋼部品の母材の化学成分を有する鋼を製造する工程と、この鋼を加工する工程と、この鋼にガス浸炭を行う工程とを含む。鋼を製造する工程、および鋼を加工する工程は特に限定されない。しかしながら、鋼を加工する工程における生産効率を高めるためには、加工前の鋼の硬度が低くなるように鋼の製造を行うことが好ましい。
 また、ガス浸炭を行う工程では、以下の条件でガス浸炭を行うことが好ましい。
(ガス浸炭の雰囲気:Nの分圧が40~50%)
 本実施形態に係る肌焼鋼部品の製造において行うガス浸炭は、プロパン等のガスと空気とを混合して発生させた吸熱型のガスを用いた浸炭であり、ガス浸炭時の雰囲気中にNを含有する。このガス浸炭には、雰囲気にNHを投入するガス浸炭窒化や、真空浸炭は含まない。雰囲気の圧力は、大気圧と略同一とすればよい。雰囲気中のNの分圧は、40~50%とする必要がある。Nの分圧が40%未満であった場合、鋼中に十分な量のNが浸入しないので、円相当径が5~50nmのTi系析出物を十分に生成させて結晶粒を微細化することができなくなる。一方、Nの分圧が50%超であった場合、鋼中にNが過剰に浸入して、Ti系析出物が粗大化し、円相当径が5~50nmのTi系析出物の量が不足するので、結晶粒を微細化することができなくなる。
(ガス浸炭時の昇温速度:700~800℃の温度範囲において5℃/min~50℃/min)
 ガス浸炭時は、図4に示されるように、鋼(鋼部品の素材)が浸炭温度まで加熱され、浸炭温度において一定の温度で保定され、その後冷却される。ガス浸炭時の昇温過程では、浸炭ガス雰囲気中のC、Nが鋼中に浸入すると同時に、鋼の組織においてγへの逆変態が生じる。浸入したC、Nは、AlNおよびTi系析出物等の析出に影響することで、結晶粒径に影響を与える。C、Nの浸入量は昇温速度の影響を受け、特に、γ(オーステナイト)への逆変態が生じる700~800℃における平均昇温速度に主に支配される。従って、本実施形態に係る肌焼鋼部品の製造方法が含むガス浸炭では、700~800℃の温度範囲(図4の、ハッチングされた範囲)における昇温速度を厳密に制御する必要がある。
 以降、浸炭処理の昇温中に700~800℃の温度範囲内で試験片の温度を約30℃毎に3回測定し、これら測定温度に最小二乗法を適用して得られた傾きを「700~800℃の温度範囲での平均昇温速度」と定義する。本実施形態に係る肌焼鋼部品の製造方法において、700~800℃における平均昇温速度が50℃/minより高い場合は、浸入するC、Nが少なくなるので、組織微細化による衝撃値向上効果は得られない。700~800℃における平均昇温速度が5℃/minより低い場合は結晶粒が粗大化し、衝撃値向上効果が得られない。この現象は、浸入するC、Nが多くなりすぎるので、図3に示されるようにTi系析出物2が粗大化し、5~50nmの結晶粒径を有するTi系析出物の個数密度が不足したために起こると考えられる。このことから、ガス浸炭の加熱時の700~800℃における平均昇温速度の上限は50℃/min、下限は5℃/minである必要がある。平均昇温速度の好ましい上限は40/min、さらに好ましい上限は35/minである。平均昇温速度の好ましい下限は7℃/minで、さらに好ましい下限は10℃/minである。室温から700℃までの加熱時の昇温速度は問わず、700℃未満であれば予熱のため保定を行ってもよい。
(ガス浸炭時の浸炭温度:900~1050℃)
(ガス浸炭時の保定時間:1~10時間)
 ガス浸炭時の浸炭温度Tおよび保定時間tは、浸炭層の厚さに影響し、これにより肌焼鋼部品の衝撃値等に影響する。本実施形態に係る肌焼鋼部品の製造方法において、ガス浸炭時の浸炭温度Tは900~1050℃とする必要があり、保定時間tは1~10時間とする必要がある。浸炭温度Tが900℃未満である場合、または保定時間tが1時間未満である場合、浸炭層が十分に形成されないので、肌焼鋼部品としての基本性能である硬さが不足する。ここで述べる浸炭層とは、C含有量が母材のC含有量よりも高い領域であり、かつC含有量が0.60%以上である領域を表す。一方、浸炭温度Tが1050℃超である場合、浸炭炉内の耐火物の損傷が著しくなるため、ガス浸炭処理を実施できない。また、保定時間が長時間になると、析出物が成長して結晶粒が粗大化するおそれがあるが、保定時間が10時間以下の場合はこのような問題が見られなかったので、保定時間の上限を10時間とすればよい。
 ガス浸炭の実施後は、肌焼鋼部品に、例えば焼戻し温度が150℃であり且つ焼戻し時間が90分である焼戻しを行って、肌焼鋼部品の靱性を確保することが好ましい。
 次に、本発明の実施例について説明する。実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。すなわち、本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。
 まず、本発明者らが、浸炭材の耐衝撃特性を評価するために行った検討の内容を以下に説明する。
 まず、C:0.20質量%、Si:0.24質量%、Mn:0.79質量%、P:0.020質量%、S:0.018質量%、Cr:1.06質量%、Al:0.032質量%、N:0.014質量%、およびO:0.003質量%を含有し、残部がFeおよび不純物である浸炭用鋼を基準鋼と定義した。次に、図1に示される、外形寸法が10mm×10mm×55mmであり、且つ曲率半径10mmおよび深さ2mmの円弧状の切欠き(ノッチ)を有するシャルピー衝撃試験片を、本実施形態におけるシャルピー衝撃試験片と定義した。基準鋼を材料として形成されたシャルピー衝撃試験片に対して、700℃から800℃までの昇温速度を20℃/minとして加熱し、次いで処理温度(浸炭温度)が930℃であり、処理時間(保定時間)が2時間であり、且つカーボンポテンシャルが0.8である浸炭条件(以下、基準浸炭条件と称する場合がある)でガス浸炭を行い、さらに焼戻し温度が150℃であり且つ焼戻し時間が90分である焼戻しを行った。そしてこの浸炭材に対し、シャルピー衝撃試験を行い、その吸収エネルギーを、基準衝撃値と定義した。
 上述の基準鋼は、歯車用鋼として一般に用いられる、SCr420に相当する化学組成を有する鋼であり、後述する試験No.15の鋼と同一である。上述の基準浸炭条件の下で行われるガス浸炭は、機械構造用部品の製造のために行われる一般的な浸炭処理である。
 上述のシャルピー衝撃試験片の側面形状(切欠きの延伸方向に垂直な断面の形状)を図5に示す。切欠きの曲率半径は10mmであり、切欠きの深さは2mmである。シャルピー衝撃試験片の形状は、一般的なシャルピー衝撃試験片の形状(例えば、JIS−Z2242「金属材料のシャルピー衝撃試験方法」中に規定された形状)とは異なる。図5に記載のシャルピー衝撃試験片は、歯車の歯元部を模擬することにより、試験対象となる鋼を歯車形状に加工した際の歯元部の耐衝撃特性を推定することを意図しており、例えば日本国特開2013−40376号公報に記載されているように、浸炭した鋼材の耐衝撃特性を測定する試験片形状としては広く用いられている。シャルピー吸収エネルギーの測定は、シャルピー衝撃試験片の形状以外は、JIS−Z2242「金属材料のシャルピー衝撃試験方法」に準じて行われた。シャルピー衝撃試験の実施温度は25℃とした。シャルピー衝撃試験片は機械加工によって作成された。
 さらに、各種の条件で製造したシャルピー衝撃試験片に浸炭および焼戻しを行って得られた浸炭材の、25℃でのシャルピー吸収エネルギーを基準衝撃値で除した値を、その条件における衝撃値比であると定義した。
 衝撃値比が、1.20以上である肌焼鋼部品は、耐衝撃特性が十分に向上しているので、衝撃値比が1.20以上である肌焼鋼部品を適用することで、使用材料量を抑制しながらも耐衝撃破壊性が確保されるように、部品の設計を変更することができる。機械構造部品の技術分野では、このような設計変更を実施するためには、上述した基準衝撃値(一般的な浸炭条件で浸炭されたSCr420の衝撃値)に対して、衝撃値が20%向上している必要があるとされている。そのため、本発明において、衝撃値比が1.20以上であれば、耐衝撃特性に優れると判断した。
 上述の方法に基づいて、本発明者らは、種々の条件で肌焼鋼部品を模擬した試験片を製造し、耐衝撃特性の評価を行った。
 具体的には、まず、表1及び表2に示す化学成分を有する種々の鋼塊を直径35mmに熱間鍛造した。熱間鍛造の加熱温度は1250℃とした。その後、950℃で2時間保持後、空冷する条件で焼準処理を施してから、図1に示す、外形寸法が10mm×10mm×55mmであり、且つ曲率半径10mmおよび深さ2mmの円弧状の切欠き(ノッチ)を有するシャルピー衝撃試験片の形状に加工した。この試験片形状は、図5に記載のシャルピー衝撃試験片と同一である。次に、このシャルピー衝撃試験片に浸炭処理を施した。浸炭処理は、表3に示す昇温速度で930℃まで加熱した。昇温速度は、昇温時の700から800℃の間で放射温度計を用いて試験片の温度を3回測定し、最小二乗法で求めた傾きを昇温速度とした。カーボンポテンシャルを0.8とし、浸炭温度での保持を2時間行った後に、130℃の油中で焼入れを行った。焼戻しは、焼戻し温度が150℃であり且つ焼戻し時間が90分である条件下で実施した。焼戻し後にシャルピー衝撃試験を実施して、シャルピー吸収エネルギー(衝撃値)を測定した。シャルピー衝撃試験は、シャルピー衝撃試験片のノッチの形状以外はJIS−Z2242に規定の方法に則って行った。また、試験温度は25℃とした。
 さらに、各試料の衝撃値を試験No.15の衝撃値で除すことにより、各試料の衝撃値比を算出した。試験No.15の鋼は、上述した基準鋼である。
 また、シャルピー衝撃試験後の試験片を用い、各試料の表面から0.1mm深さまでのAlNの析出個数を計測した。計測方法は以下の通りである。まず、ノッチ底の断面を得るため、ノッチに対して垂直であり、かつ長手方向を含む断面で、試験片の切断を行った。次に、ノッチ底の表面から0.02mm、0.05mm、及び0.09mmの深さから、FIB加工により7μm×7μmの領域を観察できるサンプルを採取し、厚さ100nm以上300nm以下の薄膜試料を作成した。その後、電界放出形透過電子顕微鏡とその中のEDS(エネルギー分散型X線分析)とを用いて、薄膜試料のAlおよびNの元素マッピングを7μm×7μmの範囲で作成した。AlNが析出している場所では、析出していない場所と比較してAlおよびNの検出数が顕著に高くなるので、AlおよびNの検出数が高い領域をAlNと判断し、円相当径が50nm以上100nm以下であるAlN領域の個数を計数し、この個数を観察面積で割ることで、各深さ位置でのAlNの個数密度を求め、これらを平均することで、表面から0.1mm深さまでの領域が含むAlNの個数密度を求めた。
 また、シャルピー衝撃試験後の試験片を用い、試料の表面から0.1mm深さまでの領域に含まれる円相当径5~50nmのTi系析出物の個数密度を計測した。計測方法は以下の通りである。まず、ノッチ底の断面を得るため、ノッチに対して垂直であり、かつ長手方向を含む断面で、試験片の切断を行った。次に、ノッチ底の表面から0.02mm、0.05mm、及び0.09mmの深さの箇所から、FIB加工により7μm×7μmの領域を観察できるサンプルを採取し、厚さ100nm以上300nm以下の薄膜試料を作成した。その後、電界放出形透過電子顕微鏡でHAADF−STEM法を用いて、倍率20万倍で7μm×7μmの領域を観察し、円相当径で5~50nmの、Feではない相に対してEDS分析を行い、これら相のうちTiが検出されるものの個数を数えた。この個数を観察面積で割って得た値を、各深さ位置での円相当径5~50nmのTi系析出物の個数密度とし、これらを平均することで、表面から0.1mm深さまでの領域に含まれる円相当径5~50nmのTi系析出物の個数密度とした。
 また、シャルピー衝撃試験後の試験片を用いて、表面から0.05mmの位置の旧オーステナイト粒の結晶粒度の測定を行った。具体的には、上記のノッチ底の断面に対し、ピクリン酸と塩酸とを含む腐食液を用いて旧オーステナイト粒界を現出し、JIS−G0551に規定の比較法に準拠して5ヶ所の結晶粒度を求め、これらを平均することで旧オーステナイト粒の結晶粒度を評価した。
 また、鋼塊の熱間延性を評価するために、鋼塊から直径10mmで長さが120mmの試験片を切り出した。この試験片に通電加熱を行って10−1~10−2Paの真空雰囲気下で1350℃まで加熱して1分保持後、1℃/sで800℃まで冷却し、歪速度0.005s−1で引張試験を行った後の最終破断部の径を測定して絞りを計算し、これを熱間延性の指標とした。50%以上の熱間延性を有する試料は、良好な熱間延性を有すると判断した。
 表3に各試料の熱間延性、浸炭後の表層AlN量(即ち、表面から0.1mm深さまでの領域が含むAlNの個数密度)、浸炭後の表層Ti系析出物量(即ち、表面から0.1mm深さまでの領域が含むTi系析出物の個数密度)、結晶粒度、及び衝撃値比を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 発明例である試験No.1~14、23は、表層領域において、所定のサイズのAlN、Ti系析出物の個数密度が適切な範囲であり、結晶粒が微細化され、良好な耐衝撃特性を有していた。また、熱間延性も良好であった。これに対し、比較例である試験No.15~22は好ましい特性を有しなかった。
 試験No.15は、母材のAl含有量およびN含有量が過剰であり、浸炭加熱時にAlNが過剰に析出した。さらに、試験No.15はTiおよびNbを含まなかったので、Ti系析出物が生じなかった。さらに試験No.15はBを含まなかった。これにより、試験No.15は実施例と比較して低い衝撃値しか有しなかった。試験No.16および試験No.17は、母材のAl含有量が過剰であり、浸炭加熱時にAlNが過剰に析出したので、実施例と比較して低い衝撃値しか有しなかった。
 試験No.18は、母材のTi含有量が不足したので、Nbによる熱間延性の低下が抑制されず、低い製造性しか有しないので、不適であった。また、試験No.18は、母材のTi含有量が不足したので、Ti系析出物が生じず結晶粒が粗大化したので、実施例と比較して低い衝撃値しか有しなかった。
 試験No.19は、Tiが不足したが、Nb含有量が少なかったので、熱間延性の低下は生じなかった。しかしながら、試験No.19は、Ti不足によりTi系析出物が生じず結晶粒が粗大化したので、実施例と比較して低い衝撃値しか有しなかった。
 試験No.20は、浸炭時の昇温速度が不足し、AlNの析出量が増大したので、結晶粒が粗大化して、実施例と比較して低い衝撃値しか有しなかった。
 試験No.21は、浸炭時の昇温速度が大きすぎて、昇温時に浸入するNが少なくなったので、Ti系析出物が少なくなり、その結果、結晶粒が肥大化して実施例と比較して低い衝撃値しか有しなかった。
 試験No.22は、Bを含まなかった。これにより、試験No.22は実施例と比較して低い衝撃値しか有しなかった。
 本発明によれば、耐衝撃特性に優れる肌焼鋼部品を提供できる。この肌焼鋼部品は、機械構造用部品に用いられる材料の量を減少させ、機械構造用部品の軽量化に寄与する。そのため、本発明による産業上の効果は極めて大きい。
1 浸炭層
2 Ti系析出物
3 粗大なAlN

Claims (3)

  1.  母材と浸炭層とを備える肌焼鋼部品であって、
     前記母材の化学組成が、質量%で、
     C:0.16~0.30%、
     Si:0.10~2.00%、
     Mn:0.30~2.00%、
     Cr:0.20~3.00%、
     S:0.001~0.100%、
     N:0.003~0.010%、
     Ti:0.020~0.200%、
     Nb:0.010%以上、0.050%未満、
     B:0.0005~0.0050%、
     Ni:0~3.00%、
     Mo:0~0.80%、
     Cu:0~1.00%、
     Co:0~3.00%、
     W:0~1.00%、
     V:0~0.30%、
     Pb:0~0.50%、
     Ca:0~0.0100%、
     Mg:0~0.0100%、
     Zr:0~0.0500%、
     Te:0~0.1000%、及び、
     希土類元素:0~0.0050%、
    を含有し、
     Al:0.010%以下、
     O:0.0050%以下、
     P:0.025%以下
    に制限し、残部がFe及び不純物であり、
     表面から0.1mm深さまでの表層領域において、円相当径5~50nmのTi系析出物の個数密度が0.5個/μm以上であり、
     前記表層領域において、円相当径が50nm以上100nm以下であるAlNの個数密度が0.5個/μm以下である
    ことを特徴とする肌焼鋼部品。
  2.  前記母材の前記化学組成が、質量%で、
     Ni:0%超3.00%以下、
     Mo:0%超0.80%以下、
     Cu:0%超1.00%以下、
     Co:0%超3.00%以下、
     W:0%超1.00%以下、及び、
     V:0%超0.30%以下、
    からなる群から選択される1種又は2種以上を含有する
    ことを特徴とする請求項1に記載の肌焼鋼部品。
  3.  前記母材の前記化学組成が、質量%で、
     Pb:0%超0.50%以下、
     Ca:0%超0.0100%以下、
     Mg:0%超0.0100%以下、
     Zr:0%超0.0500%以下、
     Te:0%超0.1000%以下、及び、
     希土類元素:0%超0.0050%以下
    からなる群から選択される1種又は2種以上を含有する
    ことを特徴とする請求項1又は2に記載の肌焼鋼部品。
PCT/JP2016/061633 2015-03-31 2016-03-31 肌焼鋼部品 WO2016159391A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177026347A KR102006093B1 (ko) 2015-03-31 2016-03-31 기소강 부품
CN201680016792.9A CN107406943B (zh) 2015-03-31 2016-03-31 表面硬化钢部件
EP16773270.0A EP3279360B8 (en) 2015-03-31 2016-03-31 Case-hardened steel component
JP2017510276A JP6399213B2 (ja) 2015-03-31 2016-03-31 肌焼鋼部品
US15/554,667 US20180094345A1 (en) 2015-03-31 2016-03-31 Case-hardened steel component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015070701 2015-03-31
JP2015-070701 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159391A1 true WO2016159391A1 (ja) 2016-10-06

Family

ID=57004782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061633 WO2016159391A1 (ja) 2015-03-31 2016-03-31 肌焼鋼部品

Country Status (6)

Country Link
US (1) US20180094345A1 (ja)
EP (1) EP3279360B8 (ja)
JP (1) JP6399213B2 (ja)
KR (1) KR102006093B1 (ja)
CN (1) CN107406943B (ja)
WO (1) WO2016159391A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107854842A (zh) * 2017-12-16 2018-03-30 苏州胤宗智能科技有限公司 一种耐寒双人秋千及其加工工艺
KR102463278B1 (ko) * 2018-03-23 2022-11-07 닛폰세이테츠 가부시키가이샤 강재
CN109457168B (zh) * 2018-12-24 2021-07-06 宁波正直科技有限公司 家用燃气灶燃气管合金及其制备方法和燃气管
CN117089771B (zh) * 2023-10-19 2023-12-15 北京科技大学 镁碲复合微合金化齿轮钢

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183773A (ja) * 2001-12-14 2003-07-03 Honda Motor Co Ltd 冷間加工性および焼入れ性に優れた肌焼鋼,肌焼鋼鋼材および機械構造部品
JP2005200667A (ja) * 2004-01-13 2005-07-28 Kobe Steel Ltd 高温浸炭用鋼およびその製造方法
JP2005240175A (ja) * 2004-01-29 2005-09-08 Nippon Steel Corp 浸炭時の粗大粒防止特性と疲労特性に優れた肌焼鋼とその製造方法
JP2009293070A (ja) * 2008-06-04 2009-12-17 Sanyo Special Steel Co Ltd 低サイクルねじり疲労強度に優れたシャフト用はだ焼鋼
JP2010059484A (ja) * 2008-09-03 2010-03-18 Sanyo Special Steel Co Ltd 静的強度に優れた浸炭部品
JP2010163666A (ja) * 2009-01-16 2010-07-29 Nippon Steel Corp 浸炭時の粗大粒防止特性と疲労特性に優れた肌焼鋼とその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2852680B2 (ja) * 1990-01-23 1999-02-03 新日本製鐵株式会社 肌焼鋼の浸炭熱処理方法
JPH09256054A (ja) * 1996-03-25 1997-09-30 Nippon Steel Corp 靭性の良い表層硬化鋼材の高効率製造方法
JPH1030151A (ja) * 1996-05-14 1998-02-03 Hino Motors Ltd 肌焼鋼材及びこれを用いた強化歯車並びにその歯面強度の判定方法
JP3512608B2 (ja) * 1997-09-29 2004-03-31 日野自動車株式会社 歯車対
JP3764586B2 (ja) * 1998-05-22 2006-04-12 新日本製鐵株式会社 冷間加工性と低浸炭歪み特性に優れた肌焼鋼の製造方法
JP3954772B2 (ja) 2000-04-26 2007-08-08 新日本製鐵株式会社 結晶粒粗大化防止特性に優れた高温浸炭部品用素形材とその製造方法
JP3738004B2 (ja) 2002-12-24 2006-01-25 新日本製鐵株式会社 冷間加工性と浸炭時の粗大粒防止特性に優れた肌焼用鋼材とその製造方法
JP4725401B2 (ja) * 2006-04-14 2011-07-13 住友金属工業株式会社 鋼製部品及びその製造方法
KR101367350B1 (ko) * 2009-04-06 2014-02-26 신닛테츠스미킨 카부시키카이샤 냉간 가공성, 절삭성, 침탄 담금질 후의 피로 특성이 우수한 표면 경화 강 및 그 제조 방법
JP5649886B2 (ja) * 2010-03-26 2015-01-07 Jfeスチール株式会社 肌焼鋼およびその製造方法
US9422613B2 (en) * 2012-01-26 2016-08-23 Nippon Steel & Sumitomo Metal Corporation Case hardened steel having reduced thermal treatment distortion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183773A (ja) * 2001-12-14 2003-07-03 Honda Motor Co Ltd 冷間加工性および焼入れ性に優れた肌焼鋼,肌焼鋼鋼材および機械構造部品
JP2005200667A (ja) * 2004-01-13 2005-07-28 Kobe Steel Ltd 高温浸炭用鋼およびその製造方法
JP2005240175A (ja) * 2004-01-29 2005-09-08 Nippon Steel Corp 浸炭時の粗大粒防止特性と疲労特性に優れた肌焼鋼とその製造方法
JP2009293070A (ja) * 2008-06-04 2009-12-17 Sanyo Special Steel Co Ltd 低サイクルねじり疲労強度に優れたシャフト用はだ焼鋼
JP2010059484A (ja) * 2008-09-03 2010-03-18 Sanyo Special Steel Co Ltd 静的強度に優れた浸炭部品
JP2010163666A (ja) * 2009-01-16 2010-07-29 Nippon Steel Corp 浸炭時の粗大粒防止特性と疲労特性に優れた肌焼鋼とその製造方法

Also Published As

Publication number Publication date
EP3279360B1 (en) 2019-10-09
EP3279360B8 (en) 2019-11-13
KR20170118843A (ko) 2017-10-25
KR102006093B1 (ko) 2019-07-31
CN107406943A (zh) 2017-11-28
CN107406943B (zh) 2019-06-07
US20180094345A1 (en) 2018-04-05
JP6399213B2 (ja) 2018-10-03
JPWO2016159391A1 (ja) 2018-01-25
EP3279360A4 (en) 2018-08-22
EP3279360A1 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
JP5432105B2 (ja) 肌焼鋼およびその製造方法
JP5862802B2 (ja) 浸炭用鋼
JP4699341B2 (ja) 疲労限度比に優れた高強度熱間鍛造非調質鋼部品
JP6057014B2 (ja) 高周波焼入れ用鋼材
JP5858204B2 (ja) 熱間鍛造用鋼材およびその製造方法ならびにその鋼材を用いた熱間鍛造素形材の製造方法
JP2007162128A (ja) 鍛造性と結晶粒粗大化防止特性に優れた肌焼鋼およびその製造方法並びに浸炭部品
JP4964063B2 (ja) 冷間鍛造性および結晶粒粗大化防止特性に優れた肌焼鋼およびそれから得られる機械部品
JP6399213B2 (ja) 肌焼鋼部品
WO2017090738A1 (ja) 鋼、浸炭鋼部品、及び浸炭鋼部品の製造方法
JP4502929B2 (ja) 転動疲労特性および結晶粒粗大化防止特性に優れた肌焼用鋼
JP6301145B2 (ja) スリーブ・ドッグギヤ
WO2016186033A1 (ja) ばね鋼
JP4347763B2 (ja) 高温浸炭用鋼およびその製造方法
JP5643622B2 (ja) 肌焼鋼、およびこれを用いた機械構造部品
JP4807949B2 (ja) 高温浸炭特性に優れた肌焼用圧延棒鋼
JP6639839B2 (ja) 耐白色組織変化はく離寿命に優れる軸受用鋼
JP2015140449A (ja) 高温での結晶粒度特性に優れた肌焼鋼
JP7464832B2 (ja) ボルト、及びボルト用鋼材
TW201843317A (zh) 滾動疲勞壽命的穩定性優異的鋼材、及滲碳鋼零件以及這些的製造方法
JP2024077551A (ja) 真空浸炭用鋼および真空浸炭鋼部品
JP2014047357A (ja) 鋼材
JP2011241424A (ja) 被削性及び制振性に優れた鋼材
JP2002069567A (ja) 冷間加工性に優れた機械構造用鋼
JP2011241425A (ja) 被削性及び制振性に優れた鋼材
JP2003239038A (ja) 快削鋼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773270

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15554667

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016773270

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017510276

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177026347

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE