WO2016158864A1 - 感光性樹脂組成物、導電性パターンの製造方法、基板、タッチパネル及びディスプレイ - Google Patents

感光性樹脂組成物、導電性パターンの製造方法、基板、タッチパネル及びディスプレイ Download PDF

Info

Publication number
WO2016158864A1
WO2016158864A1 PCT/JP2016/059937 JP2016059937W WO2016158864A1 WO 2016158864 A1 WO2016158864 A1 WO 2016158864A1 JP 2016059937 W JP2016059937 W JP 2016059937W WO 2016158864 A1 WO2016158864 A1 WO 2016158864A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
photosensitive resin
group
composition according
meth
Prior art date
Application number
PCT/JP2016/059937
Other languages
English (en)
French (fr)
Inventor
小林康宏
諏訪充史
山舖有香
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020177024041A priority Critical patent/KR20170132726A/ko
Priority to CN201680014153.9A priority patent/CN107407870B/zh
Priority to JP2017509980A priority patent/JP6202228B2/ja
Publication of WO2016158864A1 publication Critical patent/WO2016158864A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding

Definitions

  • the present invention relates to a photosensitive resin composition, a method for producing a conductive pattern, a substrate, a touch panel, and a display.
  • the demand for miniaturization of electronic wiring has increased with the increase in the definition of displays and the miniaturization or increase in density of electronic components.
  • a method for producing a conductive pattern used for electronic wiring by using a resin composition containing conductive particles the conductive particles are brought into contact by heating after forming the pattern on the substrate.
  • a method for obtaining a pattern is common.
  • the method for forming a pattern on the substrate include a screen printing method, an ink jet method, and a photolithography method. Among them, the screen printing method and the ink jet method are not suitable for forming a fine pattern, and the photolithography method is suitable for forming the fine pattern.
  • the photolithographic method is a method of forming an exposed portion and an unexposed portion on a coating film by irradiating ultraviolet rays or the like through a photomask on which the shape of a fine wiring pattern is drawn after application and drying of the photosensitive composition. By developing it with a developer, a fine pattern is formed on the substrate. And it is a method of forming a fine electroconductive pattern by subsequent electroconductivity processing.
  • the photosensitive composition used in this method is composed of conductive particles, a photosensitive agent, a resin, and the like (Patent Document 1).
  • the present invention was devised in view of the drawbacks of the related art, and the object of the present invention is to provide a photosensitive resin composition capable of achieving both fine pattern resolution and residue suppression on a substrate. Is to provide. By using such a photosensitive resin composition, a fine conductive pattern having a very good appearance and high reliability can be obtained.
  • the present inventors have found that it is extremely effective for the photosensitive resin composition to contain the organotin compound (C) in solving the above problems.
  • this invention contains electroconductive particle (A), alkali-soluble resin (B), and an organic tin compound (C), and the primary particle diameter of the said electroconductive particle (A) is 0.7 micrometer or less.
  • a photosensitive resin composition is provided.
  • the photosensitive resin composition of the present invention it is possible to obtain a fine conductive pattern with good appearance and high reliability.
  • the photosensitive resin composition of the present invention contains conductive particles (A), an alkali-soluble resin (B) and an organotin compound (C), and the primary particle diameter of the conductive particles (A) is 0.00. It is 7 ⁇ m or less.
  • the photosensitivity in the photosensitive resin composition may be positive photosensitivity or negative photosensitivity, but is preferably negative photosensitivity.
  • Conductive particles (A) examples include gold (Au), silver (Ag), copper (Cu), nickel (Ni), tin (Sn), bismuth (Bi), lead (Pb), and zinc (Zn). , Palladium (Pd), platinum (Pt), aluminum (Al), tungsten (W), molybdenum (Mo), and the like.
  • metal fine particles containing at least one element selected from the group consisting of gold, silver, copper, nickel, tin, bismuth, lead, zinc, palladium, platinum, aluminum and carbon are preferable. More preferably.
  • the primary particle diameter of the conductive particles (A) needs to be 0.7 ⁇ m or less in order to form a fine conductive pattern having desired conductivity.
  • the primary particle diameter of the conductive particles (A) can be calculated from an average value of the particle diameters of 100 primary particles randomly selected using a scanning electron microscope.
  • the particle diameter of each primary particle can be calculated from the average value obtained by measuring the major and minor diameters of the primary particles.
  • the primary particle diameter of the conductive particles (A) is preferably 10 to 200 nm, more preferably 10 to 60 nm.
  • the conductive particle (A) is preferably a particle whose surface is coated with a carbon simple substance and / or a carbon compound. Due to the presence of a layer (hereinafter referred to as “surface coating layer”) that covers the surface of the conductive particles (A) made of a simple substance of carbon and / or a carbon compound, the fusion of the conductive particles (A) with each other at a low temperature. Wear can be suppressed.
  • a method of coating the particle surface with a carbon simple substance and / or a carbon compound for example, a method of contacting a reactive gas when producing conductive particles (A) by a thermal plasma method (Japanese Patent Laid-Open No. 2007-138287) Gazette).
  • the surface of the conductive particles (A) is preferably completely covered. However, as long as this object is achieved, the presence of partially incompletely covered particles is allowed.
  • the average thickness of the surface coating layer is preferably 0.1 to 10 nm. Within this range, the fine pattern processability can be improved by suppressing the fusion of the conductive fine particles, and desired conductivity can be exhibited by heat treatment at a temperature of 300 ° C. or lower.
  • the average thickness of the surface coating layer is determined by measuring the mass loss of the conductive particles (A) surface-coated with the carbon simple substance and / or the carbon compound by the thermobalance, and assuming that all the values are due to carbon combustion.
  • the average thickness of the surface coating layer can be calculated from the particle diameter, assuming that the carbon density is 2.0. It is assumed that the conductive particles (A) whose particle diameter (Dp) is known are coated with carbon with an average thickness A ( ⁇ m). Let n be the number of particles coated with carbon.
  • W 1 (g) is the mass weighed first in the thermobalance measurement
  • W 2 (g) is the mass where carbon is completely blown
  • is the density of the conductive particles (A)
  • Dp is If W 2 is known, n can be calculated.
  • W 2 ⁇ / 6 ⁇ Dp 3 ⁇ ⁇ n
  • the average thickness A of a surface coating layer is computable from the following formula
  • the content of the conductive particles (A) in the photosensitive resin composition is preferably 65 to 95% by mass, more preferably 70 to 95% by mass, and 70 to 90% by mass. Is more preferable. By containing within the range, pattern workability and expression of electroconductivity can be made compatible.
  • the total solid content means all components excluding the solvent among the components contained in the photosensitive resin composition.
  • the ratio of the conductive particles (A) in the total solid content can be calculated by quantitatively analyzing all the components of the photosensitive resin composition. In addition, the ratio of each component mentioned later can be calculated by the same method.
  • the method for analyzing all components of the photosensitive resin composition is as follows.
  • the photosensitive resin composition is diluted with an organic solvent, and its outline is examined by 1 H-NMR measurement, GC measurement, and GC / MS measurement.
  • the photosensitive resin composition is extracted with an organic solvent and then centrifuged to separate soluble and insoluble components.
  • the insoluble matter is extracted with a highly polar organic solvent and then centrifuged to further separate the soluble and insoluble matters.
  • IIv Perform IR measurement, 1 H-NMR measurement and GC / MS measurement on the mixture of the soluble components obtained in (ii) and (iii) above. Further, the above mixed solution is collected by GPC.
  • the obtained fraction is subjected to IR measurement and 1 H-NMR measurement. Moreover, about this fraction, GC measurement, GC / MS measurement, pyrolysis GC / MS measurement, and MALDI / MS measurement are performed as needed.
  • V Perform IR measurement or TOF-SIMS measurement on the insoluble matter obtained in (iii) above. When it is confirmed that organic substances are present, pyrolysis GC / MS or TPD / MS measurement is performed.
  • Vi By comprehensively determining the measurement results of (i), (iv) and (v) above, the content of each component contained in the photosensitive resin composition can be determined. In addition, as a highly polar organic solvent used by said (iii), chloroform or methanol is preferable.
  • the alkali-soluble resin (B) is generally obtained by copolymerizing a compound containing a carboxyl group and another monomer.
  • the alkali-soluble resin (B) is preferably a (meth) acrylic copolymer.
  • the (meth) acrylic copolymer refers to a copolymer containing at least a (meth) acrylic monomer as a copolymerization component.
  • Examples of the (meth) acrylic monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, and sec-butyl.
  • a compound having a carbon-carbon double bond can be used as the copolymer component other than the (meth) acrylic monomer.
  • examples of such compounds include aromatic vinyl compounds such as styrene, p-methylstyrene, o-methylstyrene, m-methylstyrene, and ⁇ -methylstyrene, (meth) acrylamide, N-methylol (meth) acrylamide, or Amide unsaturated compounds such as N-vinylpyrrolidone, (meth) acrylonitrile, allyl alcohol, vinyl acetate, cyclohexyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, 2-hydroxyethyl Examples include vinyl ether or 4-hydroxybutyl vinyl ether.
  • Examples of the copolymer component that imparts alkali solubility to the alkali-soluble resin (B) include a carboxyl group-containing compound such as (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid or fumaric acid, or acids thereof. Anhydrides are mentioned.
  • a (meth) acrylic copolymer in order to increase the speed of the curing reaction by exposure of the photosensitive resin composition, a (meth) acrylic compound having a carbon-carbon double bond in the side chain or molecular end It is preferable to use a copolymer.
  • the functional group having a carbon-carbon double bond include a vinyl group, an allyl group, and a (meth) acryl group.
  • Examples of the compound having a glycidyl group and a carbon-carbon double bond include glycidyl (meth) acrylate, allyl glycidyl ether or glycidyl ethyl acrylate, crotonyl glycidyl ether, glycidyl crotonate or glycidyl isocrotonate.
  • Examples of the compound having an isocyanate group and a carbon-carbon double bond include (meth) acryloyl isocyanate or (meth) acryloyloxyethyl isocyanate.
  • the alkali-soluble resin (B) is preferably an alkali-soluble resin having an acid dissociable group.
  • the alkali-soluble resin having an acid dissociable group is generally obtained by copolymerizing a compound having a carboxyl group and a compound having an acid dissociable group. More specific examples include copolymerization of a (meth) acrylic acid compound containing a carboxyl group and a (meth) acrylic acid ester having an acid dissociable group.
  • the acid dissociable group is preferably an organic group having 4 to 15 carbon atoms, more preferably an organic group having 6 to 15 carbon atoms. If the acid dissociable group has less than 4 carbon atoms, it will be vaporized at a low temperature after desorption, so that large bubbles are generated in the film, preventing the conductive particles (A) from contacting each other, and the conductivity deteriorates. There is a case. On the other hand, if the number of carbon atoms of the acid dissociable group exceeds 15, the dissociable group may remain in the film after desorption, preventing contact between the conductive particles (A), and the conductivity may be deteriorated. is there.
  • the acid-dissociable group of the acid-dissociable group is an organic group having 6 to 15 carbon atoms, even if bubbles are generated in the film, they can be easily eliminated by post-baking and have good conductivity. A conductive pattern can be formed.
  • Examples of the acid dissociable group include a tert-butyl group, a tert-butoxycarbonyl group, a benzyl group, a methyladamantyl group, and a tetrahydropyranyl group.
  • Examples of the (meth) acrylic acid ester having an acid dissociable group include 1-methyladamantyl (meth) acrylate, tert-butyl (meth) acrylate, benzyl (meth) acrylate or tetrahydropyrani (meth) acrylate. Le.
  • the content of the alkali-soluble resin (B) is preferably in the range of 5 to 30% by mass with respect to the total solid content in consideration of the expression of photosensitivity.
  • the alkali-soluble resin (B) is preferably an alkali-soluble resin obtained by radical copolymerization of a compound having an acid dissociable group in an amount of 20 to 80 mol%.
  • (meth) acrylic acid ester having an acid dissociable group is preferably contained in an alkali-soluble resin as a monomer component in an amount of 20 to 80 mol%.
  • the carboxylic acid equivalent of the alkali-soluble resin (B) is preferably 200 to 1,400 g / mol, more preferably 400 to 1,000 g / mol.
  • the carboxylic acid equivalent of the acrylic resin can be calculated by measuring the acid value.
  • the double bond equivalent of the alkali-soluble resin (B) is preferably 150 to 10,000 g / mol because both hardness and crack resistance can be achieved at a high level.
  • the double bond equivalent of the acrylic resin can be calculated by measuring the iodine value.
  • the weight average molecular weight (Mw) of the alkali-soluble resin (B) is preferably 1,000 to 100,000 in terms of polystyrene measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the organotin compound (C) refers to an organic acid salt of tin or a compound in which at least one carbon atom is bonded to a tin atom.
  • organic tin compounds include organic acid salts such as tin 2-ethylhexanoate or tin dilaurate, or dibutyltin diacetate, dibutyltin dilaurate, dibutyltin maleate, dibutyltin bis (2-ethylhexyl mercaptoacetate), dibutyltin bis (Isooctyl mercaptoacetate), dioctyltin diacetate, dioctyltin dilaurate, dioctyltin maleate, dimethyltin diacetate, dimethyltin dilaurate, dimethyltin maleate, diphenyltin diacetate, diphenyltin dilaurate, diphenyltin dilau
  • the organotin compound (C) is preferably a compound represented by the general formula (1).
  • R 1 and R 2 each independently represent an organic group
  • X 1 and X 2 each independently represent a monovalent anion.
  • X 1 and X 2 are linked to each other. It doesn't matter.
  • the organic group for R 1 and R 2 include an alkyl group, an alkenyl group, and an aryl group.
  • the alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an octyl group.
  • alkenyl group include a vinyl group, an acryloxypropyl group, and a methacryloxypropyl group.
  • a aryl group a phenyl group, a tolyl group, or a naphthyl group is mentioned, for example.
  • Examples of the monovalent anion in X 1 and X 2 include fluoride ion, chloride ion, bromide ion, iodide ion, hydroxide ion, nitrate ion or carboxylate ion.
  • Specific examples of the compound represented by the general formula (1) include, for example, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin maleate, dibutyltin bis (2-ethylhexyl mercaptoacetate), dibutyltin bis (isooctyl mercaptoacetate), and diacetic acid.
  • the proportion of the organotin compound (C) in the total solid content is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass, and 0.1 to 5% by mass. More preferably it is.
  • the content of the organotin compound (C) is 0.01% by mass or more, the effect of suppressing residues on the substrate becomes more remarkable.
  • the content of the organotin compound (C) is 10% by mass or less, the conductivity is high and a fine pattern can be formed.
  • the photosensitive resin composition of the present invention may contain a dispersant. By containing the dispersant, the conductive particles (A) can be stably present in the photosensitive resin composition.
  • the dispersant is preferably an amine-based one.
  • examples of commercially available amine-based dispersants include DISPERBYK (registered trademark) 106, 108, 112, 116, 142, 145, 166, 180, 2001, 2008, 2022, 2150, 6919, or 21116 (all of which are Big Chemie). (Made by Japan) or Efka (registered trademark) 4300, 4400, 4401, 4403, 4406, 4510, 4570, 4800, 5054, 5055, or 5207 (all are made by BASF).
  • the dispersant preferably has an acrylic block copolymer structure.
  • acrylic block copolymer structure examples include DISPERBYK (registered trademark) 2001, 2008, 2022, 2150, 6919, or 21116, or Efka (registered trademark) 4300.
  • the dispersion of the conductive particles (A) is good, finer pattern processing is possible, and the contact and fusion of the conductive particles (A) proceed.
  • 1 to 7 parts by mass is preferable with respect to 100 parts by mass in total of the conductive particles (A) and other particles described later.
  • the photosensitive resin composition of the present invention may contain a photopolymerization initiator. By containing a photopolymerization initiator, negative photosensitivity can be imparted to the photosensitive resin composition.
  • Examples of the photopolymerization initiator include acetophenone compounds, benzophenone compounds, benzoin ether compounds, ⁇ -aminoalkylphenone compounds, thioxanthone compounds, organic peroxides, imidazole compounds, titanocene compounds, and triazine compounds.
  • an acyl phosphine oxide compound, a quinone compound or an oxime ester-based compound may be mentioned, but an oxime ester-based compound having a high sensitivity even if added in a small amount is preferable, and an oxime ester-based compound having a carbazole skeleton is more preferable.
  • Examples of the oxime ester compound having no carbazole skeleton include Irgacure (registered trademark) OXE01 (manufactured by BASF), and examples of the oxime ester compound having a carbazole skeleton include Irgacure (registered trademark) OXE02 ( BASF), Adekaoptomer (registered trademark) N1919 (produced by ADEKA) or Adeka Arcles (registered trademark) NCI-831 (produced by ADEKA).
  • the photosensitive resin composition of the present invention may contain a solvent.
  • solvent examples include propylene glycol monomethyl ether, propylene glycol monobutyl ether, 2-heptanol, cyclohexanol, cyclopentanol, 2-butanol, 2-pentanol, t-butanol, diacetone alcohol, ⁇ -terpineol, 2- Methyl hydroxyisoisobutyrate, ethyl 2-hydroxyisoisobutyrate, propylene glycol monoethyl ether acetate, ethyl acetoacetate, methyl acetoacetate, methyl-3-methoxypropionate, 3-methyl-3-methoxybutylacetate, cyclopentanone, Cyclohexanone, benzyl ethyl ether, dihexyl ether, acetonyl acetone, isophorone, benzyl acetate, ethyl benzoate, diethyl oxalate, diethyl male
  • the photosensitive resin composition of the present invention may contain particles other than (A) conductive fine particles for improving dispersibility and controlling conductivity.
  • examples of the other particles include metal fine particles or metal oxide fine particles, organic pigments, or inorganic pigments that are not surface-coated.
  • the particle diameter of these other particles is preferably 10 to 100 nm.
  • the particle diameter is less than 10 nm, the use of a dispersant for stabilizing the dispersion increases, and it may be difficult to obtain desired conductivity.
  • the particle diameter exceeds 100 nm, the resolution of the pattern is lowered, and it may be difficult to form an ultrafine pattern of 5 ⁇ m or less.
  • These other particles are preferably carbon black, which contributes to conductivity control.
  • Examples of carbon black include MA77, 7, 8, 11, 100, 100R, 100S, 230, 220, or 14 (all of which are manufactured by Mitsubishi Chemical Corporation), # 52, 47, 45, 45L, 44, 40. 33, 32, 30, 25, 20, 10, 5, 95, 85 or 260 (all are manufactured by Mitsubishi Chemical Corporation), Special Black 100, 250, 350 or 550 (all are manufactured by Evonik Degussa) Or Printex95, 90, 55, 45, 40, P, 60, L6, L, 300, 30, ES23, 9, ES22, 35, 25, 200, A or G (all of which are manufactured by Evonik Degussa) be able to.
  • MA77, 7, 8, 11, 100, 100R, 100S, 230, 220, or 14 or Special Black 100, 250, 350, or 550 having a pH value of 4 or less is preferable.
  • the pH value of carbon black can be measured according to JIS K5101.
  • the photosensitive resin composition of the present invention may contain a photoacid generator and / or a thermal acid generator.
  • the alkali-soluble resin (B) is an alkali-soluble resin having an acid-dissociable group, decomposition of the acid-dissociable group is promoted by the generated acid, and the heat treatment temperature under air can be lowered.
  • thermal acid generator that is a compound that generates an acid by heat
  • examples of the thermal acid generator that is a compound that generates an acid by heat include SI-60, SI-80, SI-100, SI-110, SI-145, SI-150, SI-60L, SI-80L, SI-100L, SI-110L, SI-145L, SI-150L, SI-160L, SI-180L or SI-200 (all of which are manufactured by Sanshin Chemical Industry Co., Ltd.), 4-hydroxyphenyldimethylsulfonium, benzyl -4-hydroxyphenylmethylsulfonium, 2-methylbenzyl-4-hydroxyphenylmethylsulfonium, 2-methylbenzyl-4-acetylphenylmethylsulfonium, 2-methylbenzyl-4-benzoyloxyphenylmethylsulfonium, or methanesulfonic acid thereof Salt
  • trifluoromethanes Hong salts include camphorsulfonate or p- toluenesul
  • Phenylmethylsulfonium or a methanesulfonate, trifluoromethanesulfonate, camphorsulfonate or p-toluenesulfonate can be preferably used.
  • the content of the thermal acid generator in the photosensitive resin composition is such that the decomposition of the acid dissociable group in the alkali-soluble resin having an acid dissociable group is promoted and the contact between the conductive particles (A) is hindered.
  • 0.01 to 20 parts by mass is preferable with respect to 100 parts by mass of the alkali-soluble resin (B).
  • the acid generated from the photoacid generator that is a compound that generates an acid by light is preferably a strong acid such as perfluoroalkylsulfonic acid or p-toluenesulfonic acid in order to promote the decomposition of the acid dissociable group.
  • Examples of the photoacid generator include SI-101, SI-105, SI-106, SI-109, PI-105, PI-106, PI-109, NAI-100, NAI-1002, NAI-1003, and NAI. -1004, NAI-101, NAI-105, NAI-106, NAI-109, NDI-101, NDI-105, NDI-106, NDI-109, PAI-01, PAI-101, PAI-106 or PAI-1001 (All as above, manufactured by Midori Chemical Co., Ltd.), SP-077 or SP-082 (all as described above, manufactured by ADEKA), TPS-PFBS (manufactured by Toyo Gosei Co., Ltd.), CGI-MDT or CGI -NIT (all of which are manufactured by Ciba Japan) or WPAG-281, WPAG-336, WPAG 339, WPAG-342, WPAG-344, WPAG-350, WPAG-370, W
  • disassembly of the acid dissociable group in the alkali-soluble resin which has an acid dissociable group is accelerated
  • 0.01 to 20 parts by mass is preferable with respect to 100 parts by mass of the alkali-soluble resin (B).
  • a thermal acid generator and a photo acid generator may be used in combination.
  • the photosensitive resin composition of the present invention contains a photoacid generator
  • the photosensitive resin composition may further contain a sensitizer.
  • the sensitizer is preferably vaporized by heat treatment or discolored by light irradiation even when it remains in the cured film, and more preferably discolored by light irradiation from the viewpoint of high resolution in pattern processing. preferable.
  • coumarin such as 3,3′-carbonylbis (diethylaminocoumarin)
  • anthraquinone such as 9,10-anthraquinone
  • benzophenone 4,4 ′.
  • -Aromatic ketones such as dimethoxybenzophenone, acetophenone, 4-methoxyacetophenone or benzaldehyde or biphenyl, 1,4-dimethylnaphthalene, 9-fluorenone, fluorene, phenanthrene, triphenylene, pyrene, anthracene, 9-phenylanthracene, 9-methoxyanthracene 9,10-diphenylanthracene, 9,10-bis (4-methoxyphenyl) anthracene, 9,10-bis (triphenylsilyl) anthracene, 9,10-dimethoxyanthracene 9,10-diethoxyanthracene, 9,10-dipropoxyanthracene (DPA; manufactured by Kawasaki Kasei Co., Ltd.), 9,10-dibutoxyanthracene (DBA; manufactured by Kawasaki Kasei Co., Ltd.), 9,10-dipenta Examples include
  • the sensitizer that is vaporized by the heat treatment a sensitizer that sublimates, evaporates or thermally decomposes by thermal decomposition is sublimated or evaporated by the heat treatment is preferable.
  • the vaporization temperature of the sensitizer is preferably 150 to 300 ° C. because it does not vaporize at the pre-baking temperature, but decomposes and vaporizes at the time of thermosetting to contact and fuse the conductive particles (A).
  • the sensitizer is preferably an anthracene-based compound in that it can achieve high sensitivity and high resolution, and dimerizes and fades when irradiated with light, and is stable to heat.
  • 9,10-disubstituted An anthracene compound is preferable, and from the viewpoint of improving the solubility of the sensitizer and the reactivity of the photodimerization reaction, the 9,10-dialkoxy anthracene compound represented by the general formula (2) is preferable. Further preferred.
  • R 3 ⁇ R 10 each independently represent hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, an alkenyl group, an ethynyl group, an aryl group or an acyl group or an organic group which they are substituted
  • R 11 And R 12 each independently represents an alkoxy group substituted with an alkoxy group having 1 to 20 carbon atoms or other organic group.
  • Examples of the alkyl group for R 3 to R 10 include a methyl group, an ethyl group, and an n-propyl group.
  • the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a pentyloxy group.
  • alkenyl group examples include a vinyl group, an acryloxypropyl group, and a methacryloxypropyl group.
  • aryl group a phenyl group, a tolyl group, or a naphthyl group is mentioned, for example.
  • acyl group examples include an acetyl group.
  • R 3 to R 10 are preferably hydrogen or an organic group having 1 to 6 carbon atoms, and R 3 , R 6 , R 7 and R 10 More preferably, is hydrogen.
  • Examples of the alkoxy group in this case include methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, methoxyethoxy group, 1-methoxy-2-propoxy group or 1-acetyl-2-propoxy group.
  • a propoxy group or a butoxy group is preferable from the viewpoint of the solubility of the compound and the fading reaction due to photodimerization.
  • the sensitization effect for sensitizing the photoacid generator is sufficient, and contact between the conductive particles (A) is not hindered, and higher conductivity is obtained. Therefore, the amount is preferably 0.001 to 20 parts by weight, more preferably 0.005 to 15 parts by weight with respect to 100 parts by weight of the alkali-soluble resin (B).
  • the photosensitive resin composition of the present invention may contain a pigment and / or dye that absorbs visible light as long as the contact and fusion between the conductive particles (A) are not inhibited. Visible light reflection of the conductive pattern after post-baking can be suppressed because the photosensitive resin composition contains a pigment and / or dye that absorbs visible light.
  • pigments that absorb visible light include lactam pigments, perylene pigments, phthalocyanine pigments, isoindoline pigments, diaminoanthraquinone pigments, dioxazine pigments, indanthrone pigments, carbon black, and inorganic pigments. It is done.
  • Examples of blue pigments include C.I. I. Pigment Blue (hereinafter “PB”) 15, PB15: 1, PB15: 2, PB15: 3, PB15: 4, PB15: 5, PB15: 6, PB16 or PB60.
  • Examples of purple pigments include C.I. I. Pigment violet (hereinafter referred to as “PV”) 19, PV23 or PV37.
  • Examples of red pigments include C.I. I. Pigment red (hereinafter “PR”) 149, PR166, PR177, PR179, PR209, or PR254.
  • Examples of the green pigment include C.I. I. Pigment Green (hereinafter referred to as “PG”) 7, PG36 or PG58.
  • Examples of yellow pigments include C.I. I.
  • Pigment yellow (hereinafter “PY”) 150, PY138, PY139, or PY185.
  • the black pigment include furnace black such as HCF, MCF, LFF, RCF, SAF, ISAF, HAF, XCF, FEF, GPF or SRF, thermal black such as FT or MT, carbon such as channel black or acetylene black.
  • black or lactam pigments for example, “Irgaphor” (registered trademark) black S0100CF; manufactured by BASF).
  • carbon black excellent in heat resistance, light resistance and visible light absorption is preferable, and furnace black or lactam pigment is more preferable from the viewpoint of conductivity and dispersibility.
  • Examples of carbon black include MA77, 7, 8, 11, 100, 100R, 100S, 230, 220, or 14 (all of which are manufactured by Mitsubishi Chemical Corporation), # 52, 47, 45, 45L, 44, 40. 33, 32, 30, 25, 20, 10, 5, 95, 85 or 260 (all are manufactured by Mitsubishi Chemical Corporation), Special Black 100, 250, 350 or 550 (all are manufactured by Evonik Degussa) Or Printex 95, 90, 55, 45, 40, P, 60, L6, L, 300, 30, ES23, 9, ES22, 35, 25, 200, A or G.
  • MA77, 7, 8, 11, 100, 100R, 100S, 230, 220, or 14, or Special Black 100, 250, 350, or 550 having a pH value of 4 or less is preferable.
  • the pH value of carbon black can be measured according to JIS K5101.
  • the addition amount of the pigment having absorption in visible light in the photosensitive resin composition is preferably 0.1 to 10% by mass with respect to the total solid content in the composition.
  • dyes that absorb visible light include, for example, ferrocene dyes, fluorenone dyes, perylene dyes, triphenylmethane dyes, coumarin dyes, diphenylamine dyes, quinacridone dyes, quinophthalone dyes, phthalocyanine dyes or Xanthene dyes may be mentioned, but black dyes having excellent heat resistance, light resistance and absorption of visible light are preferable.
  • VALIFAST registered trademark
  • VALIFAST registered trademark
  • VALIFAST registered trademark
  • VALIFAST registered trademark
  • Black 3830 VALIFAST (registered trademark) Black 3830
  • NUBIAN registered trademark
  • Black PA- 2802 or OIL Black 860 is preferred.
  • the addition amount of the dye having absorption in visible light in the photosensitive resin composition is preferably 0.1 to 10% by mass with respect to the total solid content in the composition.
  • the photosensitive resin composition of the present invention contains an acrylic monomer within a range that does not impede contact and fusion between the conductive particles (A) from the viewpoint of adjusting the photosensitive performance and improving pattern processability. It doesn't matter.
  • acrylic monomer examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol penta (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, or diester.
  • Pentaerythritol penta (meth) acrylate or an alkyl modified product, an alkyl ether modified product or an alkyl ester modified product thereof may be mentioned.
  • the photosensitive resin composition of the present invention may further contain an adhesion improver, a surfactant, a polymerization inhibitor or the like, if necessary.
  • adhesion improving agent examples include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-amino Ethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl
  • silane coupling agents such as trimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and 3-mercaptopropyltrimethoxysilane.
  • the surfactant examples include an anionic surfactant such as ammonium lauryl sulfate or polyoxyethylene alkyl ether sulfate triethanolamine, a cationic surfactant such as stearylamine acetate or lauryltrimethylammonium chloride, lauryldimethylamine oxide, or lauryl.
  • Amphoteric surfactants such as carboxymethylhydroxyethyl imidazolium betaine
  • nonionic surfactants such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether or sorbitan monostearate, fluorosurfactants or silicon surfactants Can be mentioned.
  • the addition amount of the surfactant in the photosensitive resin composition is preferably 0.001 to 10% by mass with respect to the entire composition in order to improve the coating property and the uniformity of the coating film surface, and 0.01 More preferably, it is ⁇ 1% by mass.
  • the addition amount is less than 0.001% by mass, the effect of coating property and coating surface uniformity may be insufficient.
  • the addition amount exceeds 10% by mass, coating film defects such as cissing and dents and particle aggregation may occur.
  • polymerization inhibitor examples include hydroquinone, catechol, phosphorus, sulfur, amine or hindered phenol compounds.
  • hydroquinone and catechol-based compounds are preferably hydroquinone-based or catechol-based compounds that do not inhibit solubility in solvents and pigment dispersion stability.
  • Hydroquinone, tert-butylhydroquinone, 2,5-bis ( 1,1,3,3-tetramethylbutyl) hydroquinone, 2,5-bis (1,1-dimethylbutyl) hydroquinone, catechol or tert-butylcatechol is more preferred.
  • the photosensitive resin composition of the present invention is produced using a dispersing machine such as a ball mill, a sand grinder, a 3 roll mill, a mild disperser, or a medialess disperser.
  • a dispersing machine such as a ball mill, a sand grinder, a 3 roll mill, a mild disperser, or a medialess disperser.
  • a dispersing machine such as a ball mill, a sand grinder, a 3 roll mill, a mild disperser, or a medialess disperser.
  • the dispersion of the conductive particles (A) is preferably dispersed using a mild disperser or a medialess disperser, and is dispersed using a medialess disperser. Is more preferable.
  • the dispersion of the conductive particles (A) may be a dispersion machine such as a mild disperser Nanogetter (registered trademark) (Ashizawa Finetech Co., Ltd.) or a high-pressure wet medialess atomizer Nanomizer (Nanomizer Co., Ltd.). It is produced by dispersing conductive particles (A) in an organic solvent.
  • the method for producing a conductive pattern of the present invention comprises a coating step of applying the photosensitive resin composition of the present invention on a substrate surface, a pre-baking step of drying the substrate, a step of exposing and developing it to form a pattern (exposure Step, development step) and a post-baking step for post-baking the same.
  • Examples of the substrate used in the coating process include a silicon wafer, a ceramic substrate, and an organic substrate.
  • the ceramic substrate include glass substrates such as soda glass, non-alkali glass, borosilicate glass, and quartz glass, alumina substrates, aluminum nitride substrates, and silicon carbide substrates.
  • the organic substrate include an epoxy substrate, a polyetherimide resin substrate, a polyether ketone resin substrate, a polysulfone resin substrate, a polyimide film, and a polyester film.
  • Examples of the method for coating the photosensitive resin composition of the present invention on a substrate surface include coating using a spin coater, bar coater, blade coater, roll coater, die coater, calendar coater or meniscus coater, screen printing, and spraying. Application or dip coating may be mentioned.
  • drying method in the pre-baking step examples include hot plate, hot air dryer (oven), vacuum drying, vacuum drying, and drying by infrared irradiation.
  • the prebaking temperature and time may be appropriately determined depending on the composition of the photosensitive resin composition and the thickness of the coating film to be dried, but it is preferably heated at a temperature range of 50 to 150 ° C. for 10 seconds to 30 minutes.
  • the ultimate pressure for drying under reduced pressure is preferably 10 to 200 Pa, more preferably 30 to 100 Pa.
  • a j-line, i-line, h-line or g-line of a mercury lamp is preferable.
  • alkaline substance used for the alkaline developer in the development step examples include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium silicate, sodium metasilicate, or aqueous ammonia, ethylamine, or n-propyl.
  • inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium silicate, sodium metasilicate, or aqueous ammonia, ethylamine, or n-propyl.
  • Primary amines such as amines, secondary amines such as diethylamine or di-n-propylamine, tertiary amines such as triethylamine or methyldiethylamine, tetraalkylammonium hydroxides such as tetramethylammonium hydroxide (TMAH) , Quaternary ammonium salts such as choline, triethanolamine, diethanolamine, monoethanolamine, alcoholamines such as dimethylaminoethanol or diethylaminoethanol, or pillows And organic alkalis such as cyclic amines such as piperidine, 1,8-diazabicyclo [5,4,0] -7-undecene, 1,5-diazabicyclo [4,3,0] -5-nonane or morpholine.
  • a water-soluble organic solvent such as ethanol, ⁇ -butyrolactone, dimethylformamide, or N-methyl-2-pyrrolidone may be appropriately added thereto.
  • a surfactant such as a nonionic surfactant to these alkaline developers.
  • drying method in the post-bake process examples include the same as those in the pre-bake process.
  • the post-baking atmosphere, temperature, and time may be appropriately determined depending on the composition of the photosensitive resin composition and the thickness of the coating film to be dried, but in the temperature range of 100 to 300 ° C. for 5 to 120 minutes. It is preferable to heat.
  • the conductive pattern is formed in a mesh shape on the substrate, it can be used as a transparent conductive wiring provided in a touch panel, a display panel such as liquid crystal or organic EL, or a wearable terminal.
  • the conductive pattern is not transparent, if the pattern width is large, the user of the device can visually recognize the wiring. For this reason, it is preferable that the width
  • [Conductive particles (A)] (A-1) Silver particles having a primary particle size of 0.7 ⁇ m (manufactured by Mitsui Metals) (A-2) Silver particles having a primary particle diameter of 0.2 ⁇ m (manufactured by Mitsui Metals) (A-3) Silver particles (manufactured by Nisshin Engineering Co., Ltd.) having an average thickness of the surface carbon coating layer of 1 nm and a primary particle diameter of 40 nm.
  • Irgacure registered trademark
  • OXE02 oxime ester compound
  • Example 1 In a clean bottle, 25.0 g of a solution (40% by mass) of alkali-soluble resin (B-1), 1.0 g of organotin compound (C-1), 1.5 g of photopolymerization initiator, 5.5 g An acrylic monomer and 2.0 g of a dispersant were added and mixed with an auto-revolution mixer “Awatori Nertaro” (registered trademark) (ARE-310; manufactured by Shinkey Co., Ltd.) to obtain a resin solution 1.
  • B-1 alkali-soluble resin
  • C-1 organotin compound
  • photopolymerization initiator 1.5 g
  • An acrylic monomer and 2.0 g of a dispersant were added and mixed with an auto-revolution mixer “Awatori Nertaro” (registered trademark) (ARE-310; manufactured by Shinkey Co., Ltd.) to obtain a resin solution 1.
  • the photosensitive resin composition 1 was screen-printed on an alkali-free glass substrate (OA-10; manufactured by Nippon Electric Glass Co., Ltd.) so that the dry film thickness was 2 ⁇ m, and the obtained coating film was heated to 100 ° C. Pre-baked for 5 minutes in a hot air oven. The obtained pre-baked film was exposed with a gap of 50 ⁇ m through a gray scale mask for sensitivity measurement using PLA with an ultrahigh pressure mercury lamp as a light source. Thereafter, using an automatic developing device (AD-2000; manufactured by Takizawa Sangyo Co., Ltd.), the film was shower-developed with a 0.2% by mass aqueous sodium carbonate solution for 30 seconds and then rinsed with water for 30 seconds.
  • AD-2000 automatic developing device
  • the exposure amount (hereinafter referred to as “optimum exposure amount”) for forming a 5 ⁇ m line-and-space pattern in a one-to-one width was defined as sensitivity.
  • the exposure amount was measured with an I-line illuminometer. Then, the minimum pattern size after development at the optimum exposure amount was measured to obtain the resolution.
  • the photosensitive resin composition 1 was separately screen-printed on a non-alkali glass substrate so that the dry film thickness was 2 ⁇ m, and the obtained coating film was pre-baked in a hot air oven at 100 ° C. for 5 minutes.
  • the obtained prebaked film was exposed with a gap of 50 ⁇ m through a photomask having a rectangular translucent pattern (10 mm ⁇ 15 mm) using PLA as a light source with an ultrahigh pressure mercury lamp.
  • the film was shower-developed with a 0.2% by mass aqueous sodium carbonate solution for 30 seconds and then rinsed with water for 30 seconds.
  • post-baking was performed at 230 ° C. for 30 minutes (in air) using an oven (“IHPS-222”; manufactured by Espec Corp.) to obtain a volume resistivity evaluation pattern.
  • the surface resistance value ⁇ s ( ⁇ / ⁇ ) measured with a surface resistance measuring machine (Loresta (registered trademark) -FP; manufactured by Mitsubishi Yuka Co., Ltd.) and a surface roughness shape measuring machine The film thickness t (cm) measured by (Surfcom (registered trademark) 1400D; manufactured by Tokyo Seimitsu Co., Ltd.) was measured, and the volume resistivity ( ⁇ ⁇ cm) was calculated by multiplying both values.
  • substrate was evaluated by transmittance
  • the transmittance at 400 nm before and after film formation was measured for the unexposed part using a spectrophotometer (U-3410; manufactured by Hitachi, Ltd.).
  • the transmittance change represented by the formula (T 0 -T) / T 0 was calculated, where T 0 is the transmittance before film formation and T is the transmittance after film formation. If the change in transmittance is less than 1%, it can be determined that the effect of suppressing residue is sufficient.
  • Table 1 shows the measured resolution and the calculated volume resistivity and transmittance change results.
  • Example 2 A solution of 160.0 g of conductive particles (A), 50.0 g of alkali-soluble resin (B-2) (40% by mass), 4.0 g of a dispersant and 486.0 g of PGMEA were added at 1200 rpm using a homogenizer. Then, the mixture was mixed for 30 minutes, and further dispersed using a high-pressure wet medialess atomizer Nanomizer (Nanomizer Co., Ltd.) to obtain a silver particle dispersion 2. 350.0 g of silver particle dispersion 2, 1.0 g of organotin compound (C-1), 1.5 g of photopolymerization initiator, 5.5 g of acrylic monomer and 142.0 g of PGMEA are mixed and stirred. Thereby, the photosensitive resin composition 2 was obtained.
  • the photosensitive resin composition 2 was spin-coated on an alkali-free glass substrate using a spin coater at 500 rpm for 10 seconds and 1000 rpm for 4 seconds, and then pre-baked at 90 ° C. for 2 minutes using a hot plate. Thus, a prebaked film having a thickness of 1 ⁇ m was obtained. The obtained prebaked film was exposed and developed in the same manner as in Example 1, and the volume resistivity and transmittance change were calculated. The evaluation results are shown in Table 1.
  • Example 1 A photosensitive resin composition having the composition shown in Table 1 was obtained in the same manner as in Example 1, and each photosensitive resin composition was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.
  • Example 6 to 8 and 10 to 12 and Comparative Example 2 A photosensitive resin composition having the composition shown in Table 1 was obtained in the same manner as in Example 2, and each photosensitive resin composition was evaluated in the same manner as in Example 2. The evaluation results are shown in Table 1.
  • Comparative Examples 1 and 2 did not contain an organic tin compound, and thus the effect of suppressing residue was insufficient.
  • the photosensitive resin composition of the present invention can be suitably used for forming a conductive pattern used for a touch panel, a display, an image sensor, organic electroluminescence illumination, a solar cell, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Materials For Photolithography (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Electroluminescent Light Sources (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

微細パターンの解像性と基板上の残渣抑制とを両立させることが可能な、感光性樹脂組成物を提供する。導電性粒子(A)、アルカリ可溶性樹脂(B)及び有機スズ化合物(C)を含有し、上記導電性粒子(A)の1次粒子径が、0.7μm以下である、感光性樹脂組成物。

Description

感光性樹脂組成物、導電性パターンの製造方法、基板、タッチパネル及びディスプレイ
 本発明は、感光性樹脂組成物、導電性パターンの製造方法、基板、タッチパネル及びディスプレイに関する。
 近年、ディスプレイの高精細化、電子部品の小型化又は高密度化等に伴い、電子配線の微細化に対する要求が高まっている。電子配線に用いられる導電性パターンを、導電性粒子を含有する樹脂組成物を用いて作製する方法としては、パターンを基板上に形成した後、加熱することにより導電性粒子を接触させ、導電性パターンを得る方法が一般的である。基板上にパターンを形成する方法としては、例えば、スクリーン印刷法、インクジェット法又はフォトリソグラフィー法が挙げられる。中でもスクリーン印刷法やインクジェット法は、微細パターンを形成するには不向きであり、微細パターンの形成にはフォトリソグラフィー法が適しているとされている。
 フォトリソグラフィー法は、感光性組成物の塗布及び乾燥後、微細配線パターンの形状が描かれたフォトマスクを介して紫外線等を照射することで、塗膜に露光部及び未露光部を形成し、それを現像液により現像することで、基板上に微細パターンを形成する。そして、その後の導電化処理によって、微細の導電性パターンを形成する方法である。この方法に用いられる感光性組成物は、導電性粒子、感光剤及び樹脂等で構成される(特許文献1)。
 さらに5μm以下の超微細パターンを形成するためには、導電性粒子としてより微小な粒径を有する粒子を使用する必要がある。その場合、パターンの表面平滑性及び側面直線性の観点から、求められる配線幅に対し、粒子径が十分に小さい微粒子を用いなければならない。ここで粒子径が十分に小さい微粒子を用いた感光性樹脂組成物としては、表面被覆された銀微粒子(特許文献2)を用いた感光性樹脂組成物が知られている。
特開2000-199954号公報 特開2013-196997号公報
 しかしながら、銀微粒子を用いた感光性樹脂組成物においては、パターン形成の際に基板上に残渣が生じやすく、得られたパターンは外観不良又は信頼性低下等の問題を抱えるものであった。
 本発明は、係る従来技術の欠点に鑑み創案されたもので、その目的とするところは、微細パターンの解像性と基板上の残渣抑制とを両立させることが可能な、感光性樹脂組成物を提供することにある。このような感光性樹脂組成物を用いることにより、外観が極めて良好で信頼性の高い、微細な導電性パターンを得ることができる。
 本発明者らは、鋭意検討した結果、感光性樹脂組成物に有機スズ化合物(C)を含有させることが、上記課題の解決に極めて有効であることを見出した。
 すなわち本発明は、導電性粒子(A)、アルカリ可溶性樹脂(B)及び有機スズ化合物(C)を含有し、上記導電性粒子(A)の1次粒子径が、0.7μm以下である、感光性樹脂組成物を提供する。
 本発明の感光性樹脂組成物によれば、外観良好でかつ信頼性が高い、微細な導電パターンを得ることが可能となる。また本発明によれば、エッチング法による導電性の硬化膜パターン形成が不要であるため、作業工程の簡素化が可能であり、かつエッチング時の薬液やプラズマによる配線部の劣化を回避することができる。
 本発明の感光性樹脂組成物は、導電性粒子(A)、アルカリ可溶性樹脂(B)及び有機スズ化合物(C)を含有し、上記導電性粒子(A)の1次粒子径が、0.7μm以下であることを特徴とする。なお、この感光性樹脂組成物における感光性はポジ型感光性でもネガ型感光性でも構わないが、ネガ型感光性であることが好ましい。
 (導電性粒子(A))
 導電性粒子(A)としては、例えば、金(Au)、銀(Ag)、銅(Cu)、ニッケル(Ni)、錫(Sn)、ビスマス(Bi)、鉛(Pb)、亜鉛(Zn)、パラジウム(Pd)、白金(Pt)、アルミニウム(Al)、タングステン(W)又はモリブデン(Mo)等の金属微粒子が挙げられる。中でも金、銀、銅、ニッケル、錫、ビスマス、鉛、亜鉛、パラジウム、白金、アルミニウム及び炭素からなる群から選ばれる少なくとも一つの元素を含有する金属微粒子であることが好ましく、銀の金属微粒子であることがより好ましい。
 導電性粒子(A)の1次粒子径は、所望の導電性を有する微細な導電パターンを形成するため、0.7μm以下であることが必要である。ここで導電性粒子(A)の1次粒子径とは、走査型電子顕微鏡を用いて無作為に選択した100個の1次粒子の粒子径の平均値により算出することができる。それぞれの1次粒子の粒子径は、1次粒子における長径と短径を測定し、その平均値から算出することができる。導電性粒子(A)の1次粒子径は、10~200nmが好ましく、10~60nmがより好ましい。
 導電性粒子(A)は、炭素単体物及び/又は炭素化合物で表面被覆された粒子であることが好ましい。炭素単体物及び/又は炭素化合物からなる、導電性粒子(A)の表面を被覆する層(以下、「表面被覆層」)が存在することにより、低温での導電性粒子(A)同士の融着を抑制することができる。
 粒子表面を炭素単体物及び/又は炭素化合物で被覆する方法としては、例えば、熱プラズマ法により導電性粒子(A)を作製する際に、反応性ガスと接触させる方法(特開2007-138287号公報)が挙げられる。導電性粒子(A)の表面は、完全に被覆されていることが好ましいが、本目的が達成される限りにおいては、一部に被覆が不完全な粒子が存在することは許容される。
 表面被覆層の平均厚みは、0.1~10nmが好ましい。この範囲であれば、導電性微細粒子同士の融着を抑制することで、微細パターン加工性を向上させ、かつ300℃以下の温度で熱処理することにより所望の導電性を発現することができる。
 表面被覆層の平均厚みは、炭素単体物及び/又は炭素化合物で表面被覆された導電性粒子(A)の熱天秤による質量減少を測定し、その値がすべて炭素の燃焼によるものと仮定し、粒子径から表面被覆層の平均厚みを炭素の密度を2.0として算出することができる。粒子径(Dp)が分かっている導電性粒子(A)に炭素を平均厚みA(μm)で被覆したとする。炭素被覆した粒子の個数をnとする。熱天秤測定で最初に秤取した質量をW(g)、完全に炭素を飛ばした質量をW(g)、導電性粒子(A)の密度をρとすると、以下の式からDpとWとが分かればnを算出することができる。
=π/6×Dpρ×n
 そして、以下の式から表面被覆層の平均厚みAを算出することができる。
-W={4/3×π(Dp/2+A)-π/6×Dp}×2.0×n
 感光性樹脂組成物中の導電性粒子(A)の含有量としては、65~95質量%であることが好ましく、70~95質量%であることがより好ましく、70~90質量%であることがさらに好ましい。その範囲内で含有することで、パターン加工性と導電性の発現とを両立させることができる。ここで全固形分とは、感光性樹脂組成物が含有する成分の内、溶剤を除く全成分をいう。
 全固形分に占める導電性粒子(A)の割合は、感光性樹脂組成物の全成分を定量分析することにより算出することができる。なお、後述する各成分の割合も同様の方法で算出することができる。
 感光性樹脂組成物の全成分分析方法は以下のとおりである。
(i) 感光性樹脂組成物を有機溶媒で希釈し、H-NMR測定、GC測定及びGC/MS測定をしてその概要を調べる。
(ii) 感光性樹脂組成物を有機溶媒抽出した後に遠心分離を行い、可溶分と不溶分とを分離する。
(iii) 上記不溶分について、高極性有機溶媒で抽出した後に遠心分離を行い、可溶分と不溶分とをさらに分離する。
(iv) 上記(ii)及び(iii)で得られた可溶分の混合液について、IR測定、H-NMR測定及びGC/MS測定を行う。さらに、上記混合液をGPC分取する。得られた分取物についてIR測定及びH-NMR測定を行う。また、該分取物については、必要に応じてGC測定、GC/MS測定、熱分解GC/MS測定及びMALDI/MS測定を行う。
(v) 上記(iii)で得られた不溶分についてIR測定又はTOF-SIMS測定を行う。有機物が存在することが確認された場合には、熱分解GC/MS又はTPD/MS測定を行う。
(vi) 上記(i)、(iv)及び(v)の測定結果を総合的に判断することで、感光性樹脂組成物が含有する各成分の含有率を求めることができる。なお、上記(iii)で用いる高極性有機溶媒としては、クロロホルム又はメタノール等が好ましい。
 (アルカリ可溶性樹脂)
 アルカリ可溶性樹脂(B)は、一般的に、カルボキシル基を含有する化合物と他モノマとを共重合させることにより得られる。アルカリ可溶性樹脂(B)は、(メタ)アクリル系共重合体であることが好ましい。ここで(メタ)アクリル系共重合体とは、共重合成分に少なくとも(メタ)アクリル系モノマを含む共重合体をいう。ここで(メタ)アクリル系モノマとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、アリル(メタ)アクリレート、ベンジル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ブトキシトリエチレングリコール(メタ)アクリレート、シクロへキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、グリセロール(メタ)アクリレート、グリシジル(メタ)アクリレート、ヘプタデカフロロデシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、イソボニル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、イソデキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、オクタフロロペンチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ステアリル(メタ)アクリレート、トリフロロエチル(メタ)アクリレート、(メタ)アクリルアミド、アミノエチル(メタ)アクリレート、フェニル(メタ)アクリレート、1-ナフチル(メタ)アクリレート、2-ナフチル(メタ)アクリレート、チオフェノール(メタ)アクリレート又はベンジルメルカプタン(メタ)アクリレートが挙げられる。
 (メタ)アクリル系モノマ以外の共重合成分としては、炭素-炭素二重結合を有する化合物が使用可能である。そのような化合物としては、例えば、スチレン、p-メチルスチレン、o-メチルスチレン、m-メチルスチレン若しくはα-メチルスチレン等の芳香族ビニル化合物、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド若しくはN-ビニルピロリドン等のアミド系不飽和化合物、(メタ)アクリロニトリル、アリルアルコール、酢酸ビニル、シクロヘキシルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、2-ヒドロキシエチルビニルエーテル又は4-ヒドロキシブチルビニルエーテルが挙げられる。
 アルカリ可溶性樹脂(B)にアルカリ可溶性を付与する共重合成分である、カルボキシル基を含有する化合物としては、例えば、(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸若しくはフマル酸又はこれらの酸無水物が挙げられる。
 (メタ)アクリル系共重合体を用いる場合、感光性樹脂組成物の露光による硬化反応の速度を大きくするためには、側鎖又は分子末端に炭素-炭素二重結合を有する(メタ)アクリル系共重合体とすることが好ましい。炭素-炭素二重結合を有する官能基としては、例えば、ビニル基、アリル基又は(メタ)アクリル基が挙げられる。このような官能基を(メタ)アクリル系共重合体に付加させるには、(メタ)アクリル系共重合体中のメルカプト基、アミノ基、水酸基又はカルボキシル基に対して、グリシジル基若しくはイソシアネート基と、炭素-炭素二重結合とを有する化合物又は(メタ)アクリル酸クロライド若しくはアリルクロライドを付加反応させる方法がある。
 グリシジル基と炭素-炭素二重結合とを有する化合物としては、例えば、グリシジル(メタ)アクリレート、アリルグリシジルエーテル又はグリシジルエチルアクリレート、クロトニルグリシジルエーテル、グリシジルクロトネート又はグリシジルイソクロトネートが挙げられる。イソシアネート基と炭素-炭素二重結合とを有する化合物としては、例えば、(メタ)アクリロイルイソシアネート又は(メタ)アクリロイルオキシエチルイソシアネートが挙げられる。
 アルカリ可溶性樹脂(B)は、酸解離性基を有するアルカリ可溶性樹脂であることが好ましい。酸解離性基を有するアルカリ可溶性樹脂は、一般的に、カルボキシル基を含有する化合物と酸解離性基を有する化合物とを共重合することにより得られる。より具体的な例としては、カルボキシル基を含有する(メタ)アクリル酸化合物と、酸解離性基を有する(メタ)アクリル酸エステルとの共重合が挙げられる。
 酸解離性基が脱離後分解や気化するためには、酸解離性基が炭素数4~15の有機基であることが好ましく、6~15の有機基であることがより好ましい。酸解離性基の炭素数が4未満であると、脱離後、低温で気化するため、膜中に大きな気泡が発生して導電性粒子(A)同士の接触を妨げ、導電性が悪化する場合がある。一方で、酸解離性基の炭素数が15を超えると、脱離後、解離性基が膜中に残存して導電性粒子(A)同士の接触を妨げ、やはり導電性が悪化する場合がある。なお、酸解離性基の酸解離性基が炭素数6~15の有機基である場合には、膜中に気泡が発生してもポストベークによって消失させることが容易であり、導電性が良好な導電性パターンを形成可能である。
 酸解離性基としては、例えば、tert-ブチル基、tert-ブトキシカルボニル基、ベンジル基、メチルアダマンチル基又はテトラヒドロピラニル基が挙げられる。
 酸解離性基を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸1-メチルアダマンチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ベンジル又は(メタ)アクリル酸テトラヒドロピラニルが挙げられる。
 本発明の感光性樹脂組成物において、アルカリ可溶性樹脂(B)の含有量は、感光性発現を考慮した場合、全固形分に対し5~30質量%の範囲内であることが好ましい。
 アルカリ可溶性樹脂(B)は、酸解離性基を有する化合物を20~80モル%ラジカル共重合したアルカリ可溶性樹脂であることが好ましい。特に、酸解離性基を有する(メタ)アクリル酸エステルをアルカリ可溶性樹脂中にモノマ成分として20~80モル%含有することが好ましい。このような酸解離性基を有するアルカリ可溶性樹脂を用いることで、空気下、100~300℃で、酸解離性基が容易に熱酸化分解及び脱離し、膜が大きく収縮して、全固形分中の導電性粒子(A)濃度を容易に上昇させることができる。そしてその結果として、比抵抗10~1,000μΩ・cmの所望の導電性を得ることが容易となる。この場合、後述する光酸発生剤及び/又は熱酸発生剤を併用すると、その効果はさらに顕著となる。
 アルカリ可溶性樹脂(B)のカルボン酸当量は、200~1,400g/molが好ましく、400~1,000g/molがより好ましい。アクリル樹脂のカルボン酸当量は、酸価を測定することで算出することができる。また、アルカリ可溶性樹脂(B)の二重結合当量は、硬度と耐クラック性とを高いレベルで両立できるため、150~10,000g/molであることが好ましい。アクリル樹脂の二重結合当量は、ヨウ素価を測定することで算出することができる。
 アルカリ可溶性樹脂(B)の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリスチレン換算で、1,000~100,000であることが好ましい。重量平均分子量(Mw)を上記範囲とすることで、良好な塗布特性が得られ、パターン形成する際の現像液への溶解性も良好となる。
 (有機スズ化合物)
 有機スズ化合物(C)とは、スズの有機酸塩又はスズ原子に少なくとも1つの炭素原子が結合している化合物をいう。有機スズ化合物としては、例えば、2-エチルヘキサン酸スズ若しくはジラウリン酸スズ等の有機酸塩、又は、二酢酸ジブチルスズ、ジラウリン酸ジブチルスズ、マレイン酸ジブチルスズ、ジブチルスズビス(メルカプト酢酸2-エチルヘキシル)、ジブチルスズビス(メルカプト酢酸イソオクチル)、二酢酸ジオクチルスズ、ジラウリン酸ジオクチルスズ、マレイン酸ジオクチルスズ、二酢酸ジメチルスズ、ジラウリン酸ジメチルスズ、マレイン酸ジメチルスズ、二酢酸ジフェニルスズ、ジラウリン酸ジフェニルスズ、マレイン酸ジフェニルスズ、ジクロロジブチルスズ、ジクロロジプロピルスズ、ジクロロジエチルスズ、ジクロロジメチルスズ、トリクロロブチルスズ、トリクロロメチルスズ、ジクロロジフェニルスズ、ジブチルスズオキシド、ジメチルスズオキシド、ジオクチルスズオキシド、テトラブチルスズ、テトラメチルスズ、テトラフェニルスズ、アレニルトリブチルスズ、アリルトリブチルスズ、アリルトリフェニルスズ若しくはジエチルスズ等のスズ原子に少なくとも1つの炭素原子が結合している化合物が挙げられる。感光性樹脂組成物が有機スズ化合物(C)を含有することにより、基板上の残渣抑制の効果が顕著なものとなる。
 有機スズ化合物(C)は、一般式(1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
(式中、R及びRはそれぞれ独立して、有機基を表し、X及びXはそれぞれ独立して、1価の陰イオンを表す。X及びXは互いに連結していても構わない。)
 R及びRにおける有機基としては、例えば、アルキル基、アルケニル基又はアリール基が挙げられる。アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基又はオクチル基が挙げられる。アルケニル基としては、例えば、ビニル基、アクリロキシプロピル基又はメタクリロキシプロピル基が挙げられる。アリール基としては、例えば、フェニル基、トリル基又はナフチル基が挙げられる。
 X及びXにおける1価の陰イオンとしては、例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、水酸化物イオン、硝酸イオン又はカルボン酸イオンが挙げられる。
 一般式(1)で表される具体的な化合物としては、例えば、二酢酸ジブチルスズ、ジラウリン酸ジブチルスズ、マレイン酸ジブチルスズ、ジブチルスズビス(メルカプト酢酸2-エチルヘキシル)、ジブチルスズビス(メルカプト酢酸イソオクチル)、二酢酸ジオクチルスズ、ジラウリン酸ジオクチルスズ、マレイン酸ジオクチルスズ、二酢酸ジメチルスズ、ジラウリン酸ジメチルスズ、マレイン酸ジメチルスズ、二酢酸ジフェニルスズ、ジラウリン酸ジフェニルスズ、マレイン酸ジフェニルスズ、ジクロロジブチルスズ、ジクロロジプロピルスズ、ジクロロジエチルスズ、ジクロロジメチルスズ又はジクロロジフェニルスズが挙げられる。中でも、二酢酸ジブチルスズ、ジラウリン酸ジブチルスズ、マレイン酸ジブチルスズ、ジブチルスズビス(メルカプト酢酸2-エチルヘキシル)、ジブチルスズビス(メルカプト酢酸イソオクチル)、二酢酸ジオクチルスズ、ジラウリン酸ジオクチルスズ、マレイン酸ジオクチルスズ、二酢酸ジメチルスズ、ジラウリン酸ジメチルスズ、マレイン酸ジメチルスズ、二酢酸ジフェニルスズ、ジラウリン酸ジフェニルスズ、マレイン酸ジフェニルスズが好ましい。
 全固形分に占める有機スズ化合物(C)の割合は、0.01~10質量%であることが好ましく、0.05~5質量%であることがより好ましく、0.1~5質量%であることがさらに好ましい。有機スズ化合物(C)含有量が0.01質量%以上であると、基板上の残渣抑制の効果がさらに顕著なものとなる。一方で、有機スズ化合物(C)含有量が10質量%以下であると、導電性が高く、かつ微細なパターンを形成することができる。
 (分散剤)
 本発明の感光性樹脂組成物は、分散剤を含有しても構わない。分散剤を含有することで、感光性樹脂組成物中に導電性粒子(A)を安定的に存在させることができる。
 分散剤としては、アミン系のものが好ましい。市販のアミン系の分散剤としては、例えば、DISPERBYK(登録商標)106、108、112、116、142、145、166、180、2001、2008、2022、2150、6919若しくは21116(以上、いずれもビックケミー・ジャパン製)又はEfka(登録商標)4300、4400、4401、4403、4406、4510、4570、4800、5054、5055若しくは5207(以上、いずれもBASF製)が挙げられる。
 さら分散性を向上させるため、分散剤は、アクリル系ブロック共重合体構造を有することが好ましい。アクリル系ブロック共重合体構造を有する市販のアミン系の分散剤としては、例えば、DISPERBYK(登録商標)2001、2008、2022、2150、6919若しくは21116又はEfka(登録商標)4300が挙げられる。
 感光性樹脂組成物中の分散剤の含有量としては、導電性粒子(A)の分散が良好で、より微細なパターン加工が可能で、導電性粒子(A)の接触及び融着が進み、より高い導電性を得るため、導電性粒子(A)と後述する他の粒子との合計100質量部に対し、1~7質量部が好ましい。
 (光重合開始剤)
 本発明の感光性樹脂組成物は、光重合開始剤を含有しても構わない。光重合開始剤を含有することで、感光性樹脂組成物にネガ型感光性を付与することができる。
 光重合開始剤としては、例えば、アセトフェノン系化合物、ベンゾフェノン系化合物、ベンゾインエーテル系化合物、α-アミノアルキルフェノン系化合物、チオキサントン系化合物、有機過酸化物、イミダゾール系化合物、チタノセン系化合物、トリアジン系化合物、アシルホスフィンオキシド化合物、キノン化合物又はオキシムエステル系化合物が挙げられるが、少量の添加であっても感度の高い、オキシムエステル系化合物が好ましく、カルバゾール骨格を有するオキシムエステル系化合物がより好ましい。カルバゾール骨格を有さないオキシムエステル系化合物としては、例えば、イルガキュア(登録商標)OXE01(BASF社製)が挙げられ、カルバゾール骨格を有するオキシムエステル系化合物としては、例えば、イルガキュア(登録商標)OXE02(BASF社製)、アデカオプトマー(登録商標)N1919(株式会社ADEKA製)又はアデカアークルズ(登録商標)NCI-831(株式会社ADEKA製)が挙げられる。
 (溶剤)
 本発明の感光性樹脂組成物は、溶剤を含有しても構わない。
 溶剤としては、例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、2-ヘプタノール、シクロヘキサノール、シクロペンタノール、2-ブタノール、2-ペンタノール、t-ブタノール、ダイアセトンアルコール、α-テルピネオール、2-ヒドロキシイソイソ酪酸メチル、2-ヒドロキシイソイソ酪酸エチル、プロピレングリコールモノエチルエーテルアセテート、アセト酢酸エチル、アセト酢酸メチル、メチル-3-メトキシプロピオネート、3-メチル-3-メトキシブチルアセテート、シクロペンタノン、シクロヘキサノン、ベンジルエチルエーテル、ジヘキシルエーテル、アセトニルアセトン、イソホロン、酢酸ベンジル、安息香酸エチル、シュウ酸ジエチル、マレイン酸ジエチル、炭酸エチレン、炭酸プロピレン、メチルベンゾエート、エチルベンゾエート、マロン酸ジエチル、β-プロピオラクトン、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジプロピレングリコールメチルエーテルアセテート、ジプロピレングリコールジメチルエーテル、プロピレングリコールジアセテート、1,3-ブチレングリコールジアセテート、シクロヘキサノールアセテート、ジメチルスルホキシド、メチルエチルケトン、酢酸イソブチル、酢酸イソブチル、酢酸ブチル、酢酸プロピル、酢酸イソプロピル、アセチルアセトン、トリアセチン又は2-ヘプタノンが挙げられる。
 (他の粒子)
 本発明の感光性樹脂組成物は、分散性向上や、導電性コントロールのため、(A)導電微粒子以外の他の粒子を含有しても構わない。他の粒子としては、例えば、表面被覆されていない金属微粒子若しくは金属酸化物微粒子、有機顔料又は無機顔料が挙げられる。
 これら他の粒子の粒子径は、10~100nmが好ましい。粒子径が10nm未満であると、分散安定化のための分散剤使用が多くなり、所望の導電性を得ることが難しくなる場合がある。一方で、粒子径が100nmを超えると、パターンの解像度が低下し、5μm以下の超微細パターン形成が難しくなる場合がある。
 これらその他の粒子としては、導電性コントロールに資する、カーボンブラックが好ましい。
 カーボンブラックとしては、例えば、MA77、7、8、11、100、100R、100S、230、220若しくは14(以上、いずれも三菱化学株式会社製)、#52、47、45、45L、44、40、33、32、30、25、20、10、5、95、85若しくは260(以上、いずれも三菱化学株式会社製)、Special Black100、250、350若しくは550(以上、いずれもエボニックデグサ社製)又はPrintex95、90、55、45、40、P、60、L6、L、300、30、ES23、9、ES22、35、25,200、A若しくはG(以上、いずれもエボニックデグサ社製)を挙げることができる。中でもpH値が4以下である、MA77、7、8、11、100、100R、100S、230、220若しくは14又はSpecial Black100、250、350若しくは550が好ましい。なお、カーボンブラックのpH値は、JIS K5101に準拠して測定することができる。
 (光酸発生剤及び熱酸発生剤)
 本発明の感光性樹脂組成物は、光酸発生剤及び/又は熱酸発生剤を含有しても構わない。アルカリ可溶性樹脂(B)が酸解離性基を有するアルカリ可溶性樹脂である場合、発生した酸によって、酸解離性基の分解が促進され、空気下での熱処理温度を低下させることが可能となる。
 熱により酸を発生する化合物である熱酸発生剤としては、例えば、SI-60、SI-80、SI-100、SI-110、SI-145、SI-150、SI-60L、SI-80L、SI-100L、SI-110L、SI-145L、SI-150L、SI-160L、SI-180L若しくはSI-200(以上、いずれも三新化学工業(株)製)、4-ヒドロキシフェニルジメチルスルホニウム、ベンジル-4-ヒドロキシフェニルメチルスルホニウム、2-メチルベンジル-4-ヒドロキシフェニルメチルスルホニウム、2-メチルベンジル-4-アセチルフェニルメチルスルホニウム若しくは2-メチルベンジル-4-ベンゾイルオキシフェニルメチルスルホニウム又はこれらのメタンスルホン酸塩、トリフルオロメタンスルホン酸塩、カンファースルホン酸塩若しくはp-トルエンスルホン酸塩が挙げられる。中でも4-ヒドロキシフェニルジメチルスルホニウム、ベンジル-4-ヒドロキシフェニルメチルスルホニウム、2-メチルベンジル-4-ヒドロキシフェニルメチルスルホニウム、2-メチルベンジル-4-アセチルフェニルメチルスルホニウム若しくは2-メチルベンジル-4-ベンゾイルオキシフェニルメチルスルホニウム又はこれらのメタンスルホン酸塩、トリフルオロメタンスルホン酸塩、カンファースルホン酸塩若しくはp-トルエンスルホン酸塩が好ましく使用できる。
 感光性樹脂組成物中の熱酸発生剤の含有量としては、酸解離性基含を有するアルカリ可溶性樹脂中の酸解離性基の分解を促進し、導電性粒子(A)同士の接触を妨げず、より高い導電性を得るため、アルカリ可溶性樹脂(B)100質量部に対し、0.01~20質量部が好ましい。
 光により酸を発生する化合物である光酸発生剤から発生する酸は、酸解離性基の分解を促進するため、パーフルオロアルキルスルホン酸又はp-トルエンスルホン酸等の強酸が好ましい。
 光酸発生剤としては、例えば、SI-101、SI-105、SI-106、SI-109、PI-105、PI-106、PI-109、NAI-100、NAI-1002、NAI-1003、NAI-1004、NAI-101、NAI-105、NAI-106、NAI-109、NDI-101、NDI-105、NDI-106、NDI-109、PAI-01、PAI-101、PAI-106若しくはPAI-1001(以上、いずれもみどり化学(株)製)、SP-077若しくはSP-082(以上、いずれも(株)ADEKA製)、TPS-PFBS(東洋合成工業(株)製)、CGI-MDT若しくはCGI-NIT(以上、いずれもチバジャパン(株)製)又はWPAG-281、WPAG-336、WPAG-339、WPAG-342、WPAG-344、WPAG-350、WPAG-370、WPAG-372、WPAG-449、WPAG-469、WPAG-505若しくはWPAG-506(以上、いずれも和光純薬工業(株)製)が挙げられる。
 感光性樹脂組成物中の光酸発生剤の含有量としては、酸解離性基を有するアルカリ可溶性樹脂中の酸解離性基の分解を促進し、導電性粒子(A)同士の接触を妨げず、より高い導電性を得るため、アルカリ可溶性樹脂(B)100質量部に対し、0.01~20質量部が好ましい。
 また、酸解離性基の分解をより促進するために、熱酸発生剤と光酸発生剤とを併用しても構わない。
 (増感剤)
 本発明の感光性樹脂組成物が光酸発生剤を含有する場合、感光性樹脂組成物はさらに増感剤を含有しても構わない。増感剤は、熱処理により気化するもの、又は、硬化膜に残存した場合においても、光照射によって退色するものが好ましく、パターン加工における高解像性の観点から、光照射によって退色するものがより好ましい。
 熱処理により気化する、又は、光照射によって退色する増感剤としては、例えば、3,3’-カルボニルビス(ジエチルアミノクマリン)等のクマリン、9,10-アントラキノン等のアントラキノン、ベンゾフェノン、4,4’-ジメトキシベンゾフェノン、アセトフェノン、4-メトキシアセトフェノン若しくはベンズアルデヒド等の芳香族ケトン又はビフェニル、1,4-ジメチルナフタレン、9-フルオレノン、フルオレン、フェナントレン、トリフェニレン、ピレン、アントラセン、9-フェニルアントラセン、9-メトキシアントラセン、9,10-ジフェニルアントラセン、9,10-ビス(4-メトキシフェニル)アントラセン、9,10-ビス(トリフェニルシリル)アントラセン、9,10-ジメトキシアントラセン、9,10-ジエトキシアントラセン、9,10-ジプロポキシアントラセン(DPA;川崎化成(株)製)、9,10-ジブトキシアントラセン(DBA;川崎化成(株)製)、9,10-ジペンタオキシアントラセン、2-t-ブチル-9,10-ジブトキシアントラセン若しくは9,10-ビス(トリメチルシリルエチニル)アントラセン等の縮合芳香族が挙げられる。
 熱処理により気化する増感剤としては、熱処理により昇華、蒸発又は熱分解による熱分解物が昇華若しくは蒸発するものが好ましい。増感剤の気化温度としては、プリベーク温度では気化せず、熱硬化時に分解及び気化して導電性粒子(A)を接触及び融着させるため、150~300℃が好ましい。
 また、増感剤は高感度及び高解像度を達成できるという点、並びに、光照射によって二量化して退色するという点から、アントラセン系化合物が好ましく、熱に安定である、9,10-二置換アントラセン系化合物であることが好ましく、増感剤の溶解性の向上と光二量化反応の反応性の観点から、一般式(2)で表される9,10-ジアルコキシアントラセン系化合物であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000003
(R~R10はそれぞれ独立して、水素、炭素数1~20のアルキル基、アルコキシ基、アルケニル基、エチニル基、アリール基若しくはアシル基又はそれらが置換された有機基を表し、R11及びR12はそれぞれ独立して、炭素数1~20のアルコキシ基又はその他の有機基で置換されたアルコキシ基を表す。)
 R~R10におけるアルキル基としては、例えば、メチル基、エチル基又はn-プロピル基が挙げられる。アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基又はペンチルオキシ基が挙げられる。アルケニル基としては、例えば、ビニル基、アクリロキシプロピル基又はメタクリロキシプロピル基が挙げられる。アリール基としては、例えば、フェニル基、トリル基又はナフチル基が挙げられる。アシル基としては、例えば、アセチル基が挙げられる。なお、化合物の気化性及び光二量化の反応性の観点から、R~R10は水素又は炭素数は1~6の有機基であることが好ましく、R、R、R及びR10は水素であることがより好ましい。
 R11及びR12においてアルコキシ基を置換する置換基としては、例えば、アルコキシ基又はアシル基が挙げられる。この場合のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、メトキシエトキシ基、1-メトキシ-2-プロポキシ基又は1-アセチル-2-プロポキシ基が挙げられるが、化合物の溶解性及び光二量化による退色反応の観点から、プロポキシ基又はブトキシ基が好ましい。
 感光性樹脂組成物中の増感剤含有量としては、光酸発生剤を感光するための増感効果が十分となり、導電性粒子(A)同士の接触を妨げず、より高い導電性を得るため、アルカリ可溶性樹脂(B)100質量部に対し、0.001~20質量部が好ましく、0.005~15質量部がより好ましい。
 (可視光に吸収を有する顔料及び/又は染料)
 本発明の感光性樹脂組成物は、可視光に吸収を有する顔料及び/又は染料を、導電性粒子(A)同士の接触及び融着を阻害しない範囲で含有しても構わない。感光性樹脂組成物が可視光に吸収を有する顔料及び/又は染料を含有することより、ポストベーク後の導電性パターンの可視光反射を抑制できる。
 可視光に吸収を有する顔料としては、例えば、ラクタム系顔料、ペリレン系顔料、フタロシアニン系顔料、イソインドリン系顔料、ジアミノアントラキノン系顔料、ジオキサジン系顔料、インダントロン系顔料、カーボンブラック又は無機顔料が挙げられる。
 青色の顔料としては、例えば、C.I.ピグメントブルー(以下、「PB」)15、PB15:1、PB15:2、PB15:3、PB15:4、PB15:5、PB15:6、PB16又はPB60が挙げられる。紫色の顔料としては、例えば、C.I.ピグメントバイオレット(以下、「PV」)19、PV23又はPV37が挙げられる。赤色の顔料としては、例えば、C.I.ピグメントレッド(以下、「PR」)149、PR166、PR177、PR179、PR209又はPR254が挙げられる。緑色の顔料としては、例えば、C.I.ピグメントグリーン(以下、「PG」)7、PG36又はPG58が挙げられる。黄色の顔料としては、例えば、C.I.ピグメントイエロー(以下、「PY」)150、PY138、PY139又はPY185が挙げられる。黒色の顔料としては、例えば、HCF、MCF、LFF、RCF、SAF、ISAF、HAF、XCF、FEF、GPF若しくはSRF等のファーネスブラック、FT若しくはMT等のサーマルブラック、チャンネルブラック又はアセチレンブラック等のカーボンブラックあるいはラクタム系顔料(例えば、“Irgaphor”(登録商標)ブラックS0100CF;BASF社製)が挙げられる。中でも、耐熱性、耐光性及び可視光の吸収性に優れるカーボンブラックが好ましく、導電性及び分散性の観点から、ファーネスブラック又はラクタム系顔料がより好ましい。
 カーボンブラックとしては、例えば、MA77、7、8、11、100、100R、100S、230、220若しくは14(以上、いずれも三菱化学株式会社製)、#52、47、45、45L、44、40、33、32、30、25、20、10、5、95、85若しくは260(以上、いずれも三菱化学株式会社製)、Special Black100、250、350若しくは550(以上、いずれもエボニックデグサ社製)、又は、Printex95、90、55、45、40、P、60、L6、L、300、30、ES23、9、ES22、35、25,200、A若しくはGが挙げられる。中でもpH値が4以下である、MA77、7、8、11、100、100R、100S、230、220若しくは14、又は、Special Black100、250、350若しくは550が好ましい。カーボンブラックのpH値は、JIS K5101に準拠して測定することができる。
 感光性樹脂組成物中の可視光に吸収を有する顔料の添加量としては、組成物中の全固形分に対し、0.1~10質量%が好ましい。
 可視光に吸収を有する染料としては、例えば、フェロセン系染料、フルオレノン系染料、ペリレン系染料、トリフェニルメタン系染料、クマリン系染料、ジフェニルアミン系染料、キナクリドン系染料、キノフタロン系染料、フタロシアニン系染料又はキサンテン系染料が挙げられるが、耐熱性、耐光性及び可視光の吸収性に優れる黒色染料が好ましく、VALIFAST(登録商標) Black 1888、VALIFAST(登録商標) Black 3830、NUBIAN(登録商標) Black PA-2802又はOIL Black 860が好ましい。
 感光性樹脂組成物中の可視光に吸収を有する染料の添加量としては、組成物中の全固形分に対し、0.1~10質量%が好ましい。
 (その他の成分)
 本発明の感光性樹脂組成物は、感光性能を調整し、パターン加工性を向上する観点から、アクリルモノマを、導電性粒子(A)同士の接触及び融着を阻害しない範囲内で含有しても構わない。
 アクリルモノマとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート若しくはジペンタエリスリトールペンタ(メタ)アクリレート又はこれらのアルキル変性物、アルキルエーテル変性物若しくはアルキルエステル変性物が挙げられる。
 本発明の感光性樹脂組成物は、さらに必要に応じて、密着改良剤、界面活性剤又は重合禁止剤等を含有しても構わない。
 密着改良剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン又は3-メルカプトプロピルトリメトキシシラン等のシランカップリング剤が挙げられる。
 界面活性剤としては、例えば、ラウリル硫酸アンモニウム若しくはポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン等の陰イオン界面活性剤、ステアリルアミンアセテート若しくはラウリルトリメチルアンモニウムクロライド等の陽イオン界面活性剤、ラウリルジメチルアミンオキサイド若しくはラウリルカルボキシメチルヒドロキシエチルイミダゾリウムベタイン等の両性界面活性剤、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル若しくはソルビタンモノステアレート等の非イオン界面活性剤、フッ素系界面活性剤又はシリコン系界面活性剤が挙げられる。
 感光性樹脂組成物中の界面活性剤の添加量としては、塗布性及び塗膜表面の均一性を良好にするため、組成物全体に対し、0.001~10質量%が好ましく、0.01~1質量%がより好ましい。添加量が0.001質量%より少ないと、塗布性及び塗膜表面の均一性の効果が不十分となる場合がある。一方で、添加量が10質量%を超えると、ハジキや凹み等の塗膜欠陥や、粒子の凝集が起こる場合がある。
 重合禁止剤としては、例えば、ヒドロキノン系、カテコール系、リン系、イオウ系、アミン系又はヒンダードフェノール系の化合物が挙げられる。これらの中でもヒドロキノン系とカテコール系のものが、溶剤への溶解性や顔料の分散安定性を阻害しない、ヒドロキノン系又はカテコール系の化合物が好ましく、ヒドロキノン、tert-ブチルヒドロキノン、2,5-ビス(1,1,3,3-テトラメチルブチル)ヒドロキノン、2,5-ビス(1,1-ジメチルブチル)ヒドロキノンやカテコール又はtert-ブチルカテコールがより好ましい。
 (感光性樹脂組成物の製造方法)
 本発明の感光性樹脂組成物は、ボールミルや、サンドグラインダー、3本ロールミル、マイルド分散機、メディアレス分散機等の分散機を用いて製造される。導電性粒子(A)を均一に分散したい場合は、分散剤を用いて、予め有機溶剤中に導電性粒子(A)を分散させた分散液を調製し、この分散液を、モノマ、ポリマー、密着改良剤、界面活性剤及び重合禁止剤等を含有する溶液と混合する方法により製造しても良い。導電性粒子(A)の分散液は、表面被覆層が損傷を受けるのを防ぐために、マイルド分散機又はメディアレス分散機を用いて分散させることが好ましく、メディアレス分散機を用いて分散させることがより好ましい。導電性粒子(A)の分散液は、例えば、マイルド分散機ナノゲッター(登録商標)(アシザワファインテック(株))又は高圧湿式メディアレス微粒化装置ナノマイザー(ナノマイザー(株))等の分散機を用いて、有機溶剤中に導電性粒子(A)を分散させて製造される。
 (導電性パターンの製造方法)
 次に、本発明の感光性樹脂組成物を用いた、フォトリソ法による導電性パターンの製造方法について説明する。
 本発明の導電性パターンの製造方法は、本発明の感光性樹脂組成物を基板面上に塗布する塗布工程、それを乾燥するプリベーク工程、それを露光及び現像してパターンを形成する工程(露光工程、現像工程)、及び、それをポストベークするポストベーク工程を備えるプロセスにより行われる。
 塗布工程で用いる基板としては、例えば、シリコンウエハー、セラミックス基板又は有機系基板が挙げられる。セラミックス基板としては、例えば、ソーダガラス、無アルカリガラス、ホウケイ酸ガラス若しくは石英ガラス等のガラス基板、アルミナ基板、窒化アルミニウム基板又は炭化ケイ素基板が挙げられる。有機系基板としては、例えば、エポキシ基板、ポリエーテルイミド樹脂基板、ポリエーテルケトン樹脂基板、ポリサルフォン系樹脂基板、ポリイミドフィルム又はポリエステルフィルムが挙げられる。
 本発明の感光性樹脂組成物を基板面上に塗布する方法としては、例えば、スピンコーター、バーコーター、ブレードコーター、ロールコーター、ダイコーター、カレンダーコーター若しくはメニスカスコーターを用いた塗布、スクリーン印刷、スプレー塗布又はディップコートが挙げられる。
 プリベーク工程における乾燥方法としては、例えば、ホットプレート、熱風乾燥機(オーブン)、減圧乾燥、真空乾燥又は赤外線照射による乾燥が挙げられる。
 プリベークの温度及び時間は、感光性樹脂組成物の組成や、乾燥する塗布膜の膜厚によって適宜決定すればよいが、50~150℃の温度範囲で10秒~30分加熱することが好ましい。
 中でも、ホットプレート又は熱風乾燥機(オーブン)での加熱と、減圧乾燥とを併用することが、塗布膜が含有する樹脂の熱硬化を抑制しながら、溶剤を乾燥除去できるため、好ましい。減圧乾燥の到達圧力としては、10~200Paが好ましく、30~100Paがより好ましい。
 露光工程で用いる光源としては、例えば、水銀灯のj線、i線、h線又はg線が好ましい。
 現像工程でアルカリ性現像液に用いるアルカリ性物質としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム若しくはアンモニア水等の無機アルカリ類、エチルアミン若しくはn-プロピルアミン等の1級アミン類、ジエチルアミン若しくはジ-n-プロピルアミン等の2級アミン類、トリエチルアミン若しくはメチルジエチルアミン等の3級アミン類、テトラメチルアンモニウムヒドロキシド(TMAH)等のテトラアルキルアンモニウムヒドロキシド類、コリン等の4級アンモニウム塩、トリエタノールアミン、ジエタノールアミン、モノエタノールアミン、ジメチルアミノエタノール若しくはジエチルアミノエタノール等のアルコールアミン類又はピロール、ピペリジン、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン、1,5-ジアザビシクロ[4,3,0]-5-ノナン若しくはモルホリン等の環状アミン類等の有機アルカリ類が挙げられるが、これらにエタノール、γーブチロラクトン、ジメチルホルムアミド又はN-メチル-2-ピロリドン等の水溶性有機溶剤を適宜加えても構わない。
 また、より良好な導電性パターンを得るため、これらのアルカリ性現像液にさらに非イオン系界面活性剤等の界面活性剤を0.01~1質量%添加することも好ましい。
 ポストベーク工程における乾燥方法としては、プリベーク工程と同様のものが挙げられる。ポストベークの雰囲気、温度及び時間は、感光性樹脂組成物の組成や、乾燥する塗布膜の膜厚によって適宜決定すればよいが、空気中、100~300℃の温度範囲で、5~120分加熱することが好ましい。
 導電性パターンを基板上にメッシュ状に形成すれば、タッチパネル、液晶若しくは有機EL等のディスプレイパネル又はウェアラブル端末等が具備する、透明導電配線として使用することができる。
 上記導電性パターンは透明ではないので、パターンの幅が大きいと機器のユーザーに配線を視認されてしまう。このため、導電性パターンの幅は、5μm以下であることが好ましい。
 以下、本発明の実施例について説明する。まず、実施例及び比較例で用いた材料について説明する。
 [導電性粒子(A)]
(A-1)1次粒子径が0.7μmの銀粒子(三井金属(株)製)
(A-2)1次粒子径が0.2μmの銀粒子(三井金属(株)製)
(A-3)表面炭素被覆層の平均厚みが1nmで、1次粒子径が40nmの銀粒子(日清エンジニアリング株式会社製)。
 [アルカリ可溶性樹脂(B)]
(B-1)
500mLのフラスコに2,2’-アゾビス(イソブチロニトリル)を2g、PGMEAを50g仕込んだ。その後、メタクリル酸を15.69g、スチレンを37.45g、ジシクロペンタニルメタクリレートを46.86g仕込み、室温でしばらく撹拌し、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを10.46g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、アクリル樹脂(B-1)の溶液を得た。得られたアクリル樹脂(B-1)の溶液に固形分濃度が40質量%になるようにPGMEAを加えた。アクリル樹脂(B-1)の重量平均分子量(Mw)は25,000であった。
(B-2)
500mLのフラスコに2,2’-アゾビス(イソブチロニトリル)を2g、PGMEA(プロピレングリコールメチルエーテルアセテート)を50g仕込んだ。その後、メタクリル酸を23.26g、ベンジルメタクリレートを31.46g、ジシクロペンタニルメタクリレートを32.80g仕込み、室温でしばらく撹拌し、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを12.69g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、アクリル樹脂(B-2)の溶液を得た。得られたアクリル樹脂(B-2)の溶液に固形分濃度が40質量%になるようにPGMEAを加えた。アクリル樹脂(B-2)の重量平均分子量(Mw)は24,000であった。
 [有機スズ化合物(C)]
(C-1)2-エチルヘキサン酸スズ(和光純薬(株)製)
(C-2)テトラブチルスズ(東京化成工業(株)製)
(C-3)ジラウリン酸ジブチルスズ(東京化成工業(株)製)
(C-4)二酢酸ジブチルスズ(東京化成工業(株)製)。
 [分散剤]
DISPERBYK(登録商標)140(ビックケミー・ジャパン株式会社製)(アミン価:146mgKOH/g)。
 [溶剤]
PGMEA:プロピレングリコールモノメチルエーテルアセテート(東京化成工業(株)製)
CA:ジエチレングリコールモノエチルエーテルアセテート(東京化成工業(株)製)。
 [光重合開始剤]
イルガキュア(登録商標)OXE02(オキシムエステル系化合物;BASF社製)。
 [アクリルモノマ]
ライトアクリレート(登録商標)PE-4A(共栄社化学社製)。
 (実施例1)
 クリーンボトルに、25.0gのアルカリ可溶性樹脂(B-1)の溶液(40質量%)、1.0gの有機スズ化合物(C-1)、1.5gの光重合開始剤、5.5gのアクリルモノマ及び2.0gの分散剤を入れ、自転公転ミキサー“あわとり練太郎”(登録商標)(ARE-310;(株)シンキー製)で混合して、樹脂溶液1を得た。
 得られた樹脂溶液1に、80.0gの導電性粒子(A-1)を加え、さらにCAを固形分比率が80質量%になるように加えた後に混ぜ合わせ、3本ローラー(EXAKT M-50;EXAKT社製)を用いて混練することで、感光性樹脂組成物1を得た。
 感光性樹脂組成物1を無アルカリガラス基板(OA-10;日本電気硝子株式会社製)上に、乾燥膜の膜厚が2μmになるようにスクリーン印刷し、得られた塗布膜を100℃の熱風オーブン内で5分間プリベークした。得られたプリベーク膜を、PLAを用いて超高圧水銀灯を光源として、感度測定用のグレースケールマスクを介して50μmのギャップで露光した。その後、自動現像装置(AD-2000;滝沢産業(株)製)を用いて、0.2質量%炭酸ナトリウム水溶液で30秒間シャワー現像し、次いで水で30秒間リンスした。露光、現像後、5μmのラインアンドスペースパターンを1対1の幅に形成する露光量(以下、「最適露光量」)を感度とした。露光量はI線照度計で測定した。そして、最適露光量における現像後の最小パターン寸法を測定し、解像度とした。
 また、感光性樹脂組成物1を別途、無アルカリガラス基板上に乾燥膜の膜厚が2μmになるようにスクリーン印刷し、得られた塗布膜を100℃の熱風オーブン内で5分間プリベークした。得られたプリベーク膜を、PLAを用いて超高圧水銀灯を光源として、長方形の透光パターン(10mm×15mm)を有するフォトマスクを介して50μmのギャップで露光した。その後、自動現像装置を用いて、0.2質量%炭酸ナトリウム水溶液で30秒間シャワー現像し、次いで水で30秒間リンスした。その後、オーブン(「IHPS-222」;エスペック(株)製)を用いて、230℃で30分(空気中)ポストベークを施すことで、体積抵抗率評価パターンを得た。
 得られた体積抵抗率評価パターンについて、表面抵抗測定機(ロレスタ(登録商標)-FP;三菱油化株式会社製)で測定した表面抵抗値ρs(Ω/□)と、表面粗さ形状測定機(サーフコム(登録商標)1400D;株式会社東京精密製)にて測定した膜厚t(cm)とを測定し、両値を乗算することで、体積抵抗率(μΩ・cm)を算出した。
 さらに、上記の体積抵抗率評価パターンが形成された基板の未露光部分について、透過率評価により、基板上の残渣を評価した。具体的には、未露光部分について、膜形成前後の400nmにおける透過率を、分光光度計(U-3410;日立製作所株式会社製)を用いて測定した。そして、膜形成前の透過率をT、膜形成後の透過率をTとしたときに、式(T-T)/Tで表される透過率変化を算出した。透過率変化が1%未満である場合は、残渣抑制の効果が十分であると判断可能である。測定した解像度並びに算出した体積抵抗率及び透過率変化の結果を、表1に示す。
 (実施例2)
 160.0gの導電性粒子(A)、50.0gのアルカリ可溶性樹脂(B-2)の溶液(40質量%)、4.0gの分散剤及び486.0gのPGMEAを、ホモジナイザーを用いて1200rpm、30分の条件で混合処理し、さらに、高圧湿式メディアレス微粒化装置ナノマイザー(ナノマイザー(株))を用いて分散して、銀粒子分散体2を得た。350.0gの銀粒子分散体2、1.0gの有機スズ化合物(C-1)、1.5gの光重合開始剤、5.5gのアクリルモノマ及び142.0gのPGMEAを混合して撹拌することにより、感光性樹脂組成物2を得た。
 感光性樹脂組成物2を無アルカリガラス基板上にスピンコーター(ミカサ(株)製「1H-360S(商品名)」)を用いて500rpmで10秒、1000rpmで4秒の条件でスピンコートした後、ホットプレート(SCW-636;大日本スクリーン製造(株)製)を用いて90℃で2分間プリベークし、膜厚1μmのプリベーク膜を得た。得られたプリベーク膜を、実施例1と同様に露光、現像し、解像度を測定した。評価結果を、表1に示す。
 また、感光性樹脂組成物2を別途、無アルカリガラス基板上にスピンコーターを用いて500rpmで10秒、1000rpmで4秒の条件でスピンコートした後、ホットプレートを用いて90℃で2分間プリベークし、膜厚1μmのプリベーク膜を得た。得られたプリベーク膜を、実施例1と同様に露光、現像し、体積抵抗率及び透過率変化を算出した。評価結果を、表1に示す。
 (実施例3~5及び9並びに比較例1)
 実施例1と同様の方法で、表1記載の組成の感光性樹脂組成物を得て、それぞれの感光性樹脂組成物について実施例1と同様の評価をした。評価結果を、表1に示す。
 (実施例6~8及び10~12並びに比較例2)
 実施例2と同様の方法で、表1記載の組成の感光性樹脂組成物を得て、それぞれの感光性樹脂組成物について実施例2と同様の評価をした。評価結果を、表1に示す。
[規則91に基づく訂正 29.07.2016] 
Figure WO-DOC-TABLE-1
 実施例1~12は、有機スズ化合物添加により残渣抑制の効果が十分となっており、かつ、解像度が5μm以下であった。
 一方で、比較例1及び2は、有機スズ化合物を添加していないため、残渣抑制の効果が不十分であった。
 本発明の感光性樹脂組成物は、タッチパネル、ディスプレイ、イメージセンサ、有機エレクトロルミネッセンス照明又は太陽電池等に用いられる導電性パターンの形成に、好適に利用できる。

Claims (13)

  1.  導電性粒子(A)、アルカリ可溶性樹脂(B)及び有機スズ化合物(C)を含有し、
     前記導電性粒子(A)の1次粒子径が、0.7μm以下である、感光性樹脂組成物。
  2.  前記導電性粒子(A)が、銀粒子である、請求項1記載の感光性樹脂組成物。
  3.  前記導電性粒子(A)が、炭素単体物及び/又は炭素化合物で表面被覆された粒子である、請求項1又は2記載の感光性樹脂組成物。
  4.  前記有機スズ化合物(C)として、下記一般式(1)で表される化合物を含有する、請求項1~3のいずれか一項記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R及びRはそれぞれ独立して、有機基を表し、X及びXはそれぞれ独立して、1価の陰イオンを表す。X及びXは互いに連結していても構わない。)
  5.  前記アルカリ可溶性樹脂(B)が、酸解離性基を有するアルカリ可溶性樹脂である、請求項1~4のいずれか一項記載の感光性樹脂組成物。
  6.  請求項1~5のいずれか一項記載の感光性樹脂組成物を基板上に塗布して塗布膜を得る、塗布工程と、
     前記塗布膜を乾燥して乾燥膜を得る、乾燥工程と、
     前記乾燥膜を露光及び現像してパターンを形成する、露光現像工程と、
     前記パターンをポストベークして導電性パターンを得る、ポストベーク工程と、を備える、導電性パターンの製造方法。
  7.  請求項6記載の導電性パターンを具備する、基板。
  8.  前記導電性パターンの幅が、5μm以下である、請求項6記載の製造方法。
  9.  請求項1~5のいずれか一項記載の感光性樹脂組成物を用いて、少なくとも現像工程を備えることを特徴とする、タッチパネルの製造方法。
  10.  請求項1~5のいずれか一項記載の感光性樹脂組成物を用いて、少なくとも現像工程を備えることを特徴とする、ディスプレイの製造方法。
  11.  請求項1~5のいずれか一項記載の感光性樹脂組成物を用いて、少なくとも現像工程を備えることを特徴とする、イメージセンサの製造方法。
  12.  請求項1~5のいずれか一項記載の感光性樹脂組成物を用いて、少なくとも現像工程を備えることを特徴とする、有機エレクトロルミネッセンス照明の製造方法。
  13.  請求項1~5のいずれか一項記載の感光性樹脂組成物を用いて、少なくとも現像工程を備えることを特徴とする、太陽電池の製造方法。
PCT/JP2016/059937 2015-04-01 2016-03-28 感光性樹脂組成物、導電性パターンの製造方法、基板、タッチパネル及びディスプレイ WO2016158864A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177024041A KR20170132726A (ko) 2015-04-01 2016-03-28 감광성 수지 조성물, 도전성 패턴의 제조 방법, 기판, 터치패널 및 디스플레이
CN201680014153.9A CN107407870B (zh) 2015-04-01 2016-03-28 感光性树脂组合物、导电性图案的制造方法、基板、触摸面板及显示器
JP2017509980A JP6202228B2 (ja) 2015-04-01 2016-03-28 感光性樹脂組成物、導電性パターンの製造方法、基板、タッチパネル及びディスプレイ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015074975 2015-04-01
JP2015-074975 2015-04-01

Publications (1)

Publication Number Publication Date
WO2016158864A1 true WO2016158864A1 (ja) 2016-10-06

Family

ID=57007124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059937 WO2016158864A1 (ja) 2015-04-01 2016-03-28 感光性樹脂組成物、導電性パターンの製造方法、基板、タッチパネル及びディスプレイ

Country Status (5)

Country Link
JP (1) JP6202228B2 (ja)
KR (1) KR20170132726A (ja)
CN (1) CN107407870B (ja)
TW (1) TWI648595B (ja)
WO (1) WO2016158864A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018084067A1 (ja) * 2016-11-01 2018-05-11 東レ株式会社 タッチパネル、タッチパネルの製造方法
KR20190058465A (ko) 2016-09-30 2019-05-29 도레이 카부시키가이샤 감광성 수지 조성물, 도전성 패턴의 제조 방법, 기판, 터치 패널 및 디스플레이
KR20200126884A (ko) * 2019-04-30 2020-11-09 삼성에스디아이 주식회사 반도체 포토 레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR20220035748A (ko) * 2020-09-14 2022-03-22 삼성에스디아이 주식회사 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR102671848B1 (ko) 2020-09-14 2024-05-31 삼성에스디아이 주식회사 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11609494B2 (en) 2019-04-30 2023-03-21 Samsung Sdi Co., Ltd. Semiconductor photoresist composition and method of forming patterns using the composition
KR102446459B1 (ko) * 2019-10-15 2022-09-21 삼성에스디아이 주식회사 반도체 포토 레지스트용 조성물 및 이를 이용한 패턴 형성 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011584A (ja) * 2003-06-17 2005-01-13 Taiyo Ink Mfg Ltd 光硬化性樹脂組成物及びプラズマディスプレイパネル用前面基板
WO2005116763A1 (ja) * 2004-05-31 2005-12-08 Fujifilm Corporation グラフトパターン形成方法、グラフトパターン材料、リソグラフィ方法、導電性パターン形成方法、導電性パターン、カラーフィルタの製造方法、カラーフィルタ、及びマイクロレンズの製造方法
JP2010070614A (ja) * 2008-09-17 2010-04-02 Sekisui Chem Co Ltd マイクロパターン形成用材料、マイクロパターン複合材及びその製造方法並びに微小3次元構造基板の製造方法
JP2010129344A (ja) * 2008-11-27 2010-06-10 Mitsubishi Chemicals Corp 下引き層用組成物、有機薄膜パターニング用基板、有機電界発光素子、有機el表示装置および有機el照明
JP2011122109A (ja) * 2009-12-14 2011-06-23 Nippon Kayaku Co Ltd 感光性樹脂及びそれを含有する感光性樹脂組成物
JP2013543993A (ja) * 2010-11-19 2013-12-09 エルジー・ケム・リミテッド アクリレート系化合物を含む感光性組成物
WO2014136738A1 (ja) * 2013-03-07 2014-09-12 東レ株式会社 ブラックマトリクス基板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4062805B2 (ja) * 1999-01-06 2008-03-19 東レ株式会社 焼成用感光性導電ペーストおよび微細電極パターン形成方法
TW200722795A (en) * 2005-11-02 2007-06-16 Fujifilm Corp Substrate with dividing walls for an inkjet color filter, method for manufacturing the substrate, color filter including the substrate with dividing walls for an inkjet color filter and method of menufacturing the color filter, and liquid crystal display
JP5115046B2 (ja) * 2007-06-14 2013-01-09 東洋インキScホールディングス株式会社 感光性黒色組成物およびカラーフィルタ
JP5428592B2 (ja) * 2009-07-03 2014-02-26 日油株式会社 導電性ハードコートフィルム及び反射防止フィルム
JP2013196997A (ja) * 2012-03-22 2013-09-30 Toray Ind Inc 導電性組成物
CN104204946A (zh) * 2012-03-22 2014-12-10 东丽株式会社 感光性导电浆料和导电图案的制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011584A (ja) * 2003-06-17 2005-01-13 Taiyo Ink Mfg Ltd 光硬化性樹脂組成物及びプラズマディスプレイパネル用前面基板
WO2005116763A1 (ja) * 2004-05-31 2005-12-08 Fujifilm Corporation グラフトパターン形成方法、グラフトパターン材料、リソグラフィ方法、導電性パターン形成方法、導電性パターン、カラーフィルタの製造方法、カラーフィルタ、及びマイクロレンズの製造方法
JP2010070614A (ja) * 2008-09-17 2010-04-02 Sekisui Chem Co Ltd マイクロパターン形成用材料、マイクロパターン複合材及びその製造方法並びに微小3次元構造基板の製造方法
JP2010129344A (ja) * 2008-11-27 2010-06-10 Mitsubishi Chemicals Corp 下引き層用組成物、有機薄膜パターニング用基板、有機電界発光素子、有機el表示装置および有機el照明
JP2011122109A (ja) * 2009-12-14 2011-06-23 Nippon Kayaku Co Ltd 感光性樹脂及びそれを含有する感光性樹脂組成物
JP2013543993A (ja) * 2010-11-19 2013-12-09 エルジー・ケム・リミテッド アクリレート系化合物を含む感光性組成物
WO2014136738A1 (ja) * 2013-03-07 2014-09-12 東レ株式会社 ブラックマトリクス基板

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11422464B2 (en) 2016-09-30 2022-08-23 Toray Industries, Inc. Photosensitive resin composition, method of producing electrically conductive pattern, substrate, touch panel, and display
KR20190058465A (ko) 2016-09-30 2019-05-29 도레이 카부시키가이샤 감광성 수지 조성물, 도전성 패턴의 제조 방법, 기판, 터치 패널 및 디스플레이
TWI736700B (zh) * 2016-11-01 2021-08-21 日商東麗股份有限公司 觸控面板、觸控面板之製造方法
KR20190077363A (ko) * 2016-11-01 2019-07-03 도레이 카부시키가이샤 터치 패널, 터치 패널의 제조 방법
JPWO2018084067A1 (ja) * 2016-11-01 2019-09-19 東レ株式会社 タッチパネル、タッチパネルの製造方法
WO2018084067A1 (ja) * 2016-11-01 2018-05-11 東レ株式会社 タッチパネル、タッチパネルの製造方法
KR102338021B1 (ko) * 2016-11-01 2021-12-10 도레이 카부시키가이샤 터치 패널, 터치 패널의 제조 방법
CN109891375B (zh) * 2016-11-01 2022-04-12 东丽株式会社 触摸面板、触摸面板的制造方法
CN109891375A (zh) * 2016-11-01 2019-06-14 东丽株式会社 触摸面板、触摸面板的制造方法
KR20200126884A (ko) * 2019-04-30 2020-11-09 삼성에스디아이 주식회사 반도체 포토 레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR102606844B1 (ko) * 2019-04-30 2023-11-27 삼성에스디아이 주식회사 반도체 포토 레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR20220035748A (ko) * 2020-09-14 2022-03-22 삼성에스디아이 주식회사 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR102586099B1 (ko) 2020-09-14 2023-10-05 삼성에스디아이 주식회사 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
KR102671848B1 (ko) 2020-09-14 2024-05-31 삼성에스디아이 주식회사 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법

Also Published As

Publication number Publication date
JPWO2016158864A1 (ja) 2017-08-17
TW201704861A (zh) 2017-02-01
TWI648595B (zh) 2019-01-21
KR20170132726A (ko) 2017-12-04
CN107407870A (zh) 2017-11-28
CN107407870B (zh) 2018-12-14
JP6202228B2 (ja) 2017-09-27

Similar Documents

Publication Publication Date Title
JP6202228B2 (ja) 感光性樹脂組成物、導電性パターンの製造方法、基板、タッチパネル及びディスプレイ
JP6481608B2 (ja) 感光性樹脂組成物、導電性パターンの製造方法、基板、素子およびタッチパネル
KR102399714B1 (ko) 감광성 수지 조성물, 도전성 패턴의 제조 방법, 기판, 터치 패널 및 디스플레이
KR101998449B1 (ko) 감광성 흑색 수지 조성물 및 수지 블랙 매트릭스 기판
JP2013196997A (ja) 導電性組成物
JP6604251B2 (ja) 感光性樹脂組成物、導電性パターンの製造方法、基板、タッチパネルおよびディスプレイ
JP7060166B1 (ja) 感光性樹脂組成物、導電パターン付き基板、アンテナ素子、画像表示装置の製造方法およびタッチパネルの製造方法
JP7095803B2 (ja) 樹脂組成物、配線基板及び導電性パターンの製造方法
WO2018029747A1 (ja) 感光性樹脂組成物、導電性パターンの製造方法、基板、タッチパネル及びディスプレイ
JPWO2020203447A1 (ja) 導電層付き基材およびタッチパネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772745

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509980

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177024041

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772745

Country of ref document: EP

Kind code of ref document: A1