WO2016155370A1 - 多联机系统 - Google Patents

多联机系统 Download PDF

Info

Publication number
WO2016155370A1
WO2016155370A1 PCT/CN2015/098290 CN2015098290W WO2016155370A1 WO 2016155370 A1 WO2016155370 A1 WO 2016155370A1 CN 2015098290 W CN2015098290 W CN 2015098290W WO 2016155370 A1 WO2016155370 A1 WO 2016155370A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor unit
mode
valve
operation mode
indoor
Prior art date
Application number
PCT/CN2015/098290
Other languages
English (en)
French (fr)
Inventor
陈俊伟
杨国忠
Original Assignee
广东美的暖通设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 美的集团股份有限公司 filed Critical 广东美的暖通设备有限公司
Priority to BR112016030917A priority Critical patent/BR112016030917A2/pt
Priority to US15/329,821 priority patent/US20180340700A1/en
Priority to EP15887320.8A priority patent/EP3279576A4/en
Publication of WO2016155370A1 publication Critical patent/WO2016155370A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0292Control issues related to reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0311Pressure sensors near the expansion valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves

Definitions

  • the invention relates to the technical field of air conditioners, and in particular to a multi-line system.
  • an object of the present invention is to provide a multi-line system capable of effectively reducing noise generated when an indoor unit device performs mode switching and improving user comfort.
  • embodiments of the present invention provide a multi-line system including an outdoor unit device, a flow dividing device, and a plurality of indoor unit devices, wherein each of the indoor unit devices includes an indoor heat exchanger and a throttling element
  • the flow dividing device includes a plurality of first control valves and a plurality of second control valves corresponding to each of the indoor unit devices, and any one of the plurality of indoor unit devices receives a mode switching command Sending, by the indoor unit device, the mode switching instruction to the flow dividing device; the flow dividing device determining, according to the mode switching instruction, opening or closing of the first on-off valve and the second on-off valve corresponding to the indoor unit device .
  • the indoor unit apparatus when any one of the plurality of indoor unit apparatuses receives the mode switching instruction, the indoor unit apparatus transmits a mode switching instruction to the flow dividing device, and the flow dividing device determines according to the mode switching instruction
  • the opening and closing of the first on-off valve and the second on-off valve corresponding to the indoor unit device ensure that the pressure difference between the on-off valve before and after the indoor unit device performs mode switching is relatively small, thereby effectively reducing the cause during the mode switching process.
  • the noise generated by the large differential pressure improves the user's comfort.
  • the flow dividing device controls a second on-off valve corresponding to the indoor unit to be turned on, and Controlling a first on-off valve corresponding to the indoor unit to be closed, and controlling an opening degree of the throttle element in the indoor unit by the indoor unit control unit in the indoor unit, wherein if the indoor unit receives Switch to cooling
  • the flow dividing device controls the second on-off valve corresponding to the indoor unit to be closed, and the indoor unit control unit in the indoor unit controls the throttle element in the indoor unit to enter standby mode.
  • the indoor unit control unit in the indoor unit controls the maximum opening of the throttle element in the indoor unit, so that the indoor unit is filled with medium-pressure liquid refrigerant.
  • the diverting device controls the first on-off valve corresponding to the indoor unit to be turned on, wherein the second preset time is greater than the first preset time.
  • the flow dividing device controls a first on-off valve corresponding to the indoor unit to be turned on, and Controlling a second on-off valve corresponding to the indoor unit to be closed, and controlling an opening degree of the throttle element in the indoor unit by the indoor unit control unit in the indoor unit, wherein if the indoor unit receives When switching to the command of the heating operation mode, the flow dividing device controls the first on-off valve corresponding to the indoor unit to be closed, and the throttle control in the indoor unit is controlled by the indoor unit control unit in the indoor unit The component enters a maximum opening degree; after the second predetermined time, the flow dividing device controls the second on-off valve corresponding to the indoor unit to be opened.
  • the multi-line system includes a two-tube heat recovery multi-line system and a three-tube heat recovery multi-line system.
  • the indoor unit device when any one of the plurality of indoor unit devices is in a cooling operation mode, the indoor unit device can be controlled to switch to a cooling standby mode, a cooling shutdown mode, or a heating operation mode; When any one of the plurality of indoor unit devices is in a cooling standby mode, the indoor unit device can be controlled to switch to a cooling shutdown mode or a heating operation mode; when any one of the plurality of indoor unit devices When the indoor unit device is in the cooling shutdown mode, the indoor unit device can be controlled to switch to the cooling operation mode or the heating operation mode; when any one of the plurality of indoor unit devices is in the heating operation mode, the control can be controlled The indoor unit device is switched to a heating standby mode, a heating shutdown mode, or a cooling operation mode; when any one of the plurality of indoor unit devices is in a heating standby mode, the indoor unit can be controlled to switch to a heating shutdown mode or a cooling operation mode; when any one of the plurality of indoor unit devices is in system When the shutdown mode, the control device
  • the first preset time may be 20-40 seconds
  • the second preset time may be 50-70 seconds.
  • the standby opening degree may be 72P, and the maximum opening degree may be 480P.
  • FIG. 1 is a schematic diagram of a system of a two-tube multi-connection system according to an embodiment of the present invention
  • FIG. 2 is a system diagram of a two-tube multi-line system operating in a pure heating mode according to an embodiment of the present invention. intention;
  • FIG. 3 is a schematic diagram of a system when a two-tube multi-line system operates in a main heating mode according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a system when a two-tube multi-line system operates in a pure cooling mode according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a two-tube multi-line system operating in a main cooling mode according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a system of a three-tube multi-connection system according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a system when a three-tube multi-line system operates in a pure heating mode according to another embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a system when a three-tube multi-line system operates in a main heating mode according to another embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a system when a three-tube multi-line system operates in a pure cooling mode according to another embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a three-tube multi-line system operating in a main cooling mode according to another embodiment of the present invention.
  • FIG. 11 is a communication network diagram of a multi-line system in accordance with one embodiment of the present invention.
  • the multi-line system includes an outdoor unit device 10, a flow dividing device 30, and a plurality of indoor unit devices such as four indoor unit devices 21, 22, 23, and 24.
  • each indoor unit device includes an indoor heat exchanger and a throttle element
  • the flow dividing device 30 includes a plurality of first control valves and a plurality of second control valves corresponding to each indoor unit, in the plurality of indoor units
  • the indoor unit device transmits a mode switching command to the flow dividing device 30, and the flow dividing device 30 determines the first on-off valve and the second on-off corresponding to the indoor unit device according to the mode switching command.
  • the valve is opened or closed.
  • the multi-line system may include a two-tube heat recovery multi-line system and a three-tube heat recovery multi-line system.
  • the outdoor unit device 10 includes a compressor 101, a four-way valve 102, an outdoor heat exchanger 103, and an external machine gas-liquid separation.
  • the compressor 101 has an exhaust port having first to fourth valve ports, and a first valve port communicating with one of the second valve port and the third valve port, the fourth valve port and the second valve port
  • the valve port is connected to the other of the third valve port
  • the first valve port is connected to the exhaust port of the compressor 101 through the oil separator 105
  • the fourth valve port is passed through the external gas-liquid separator 104 and the air return port of the compressor 101.
  • a check valve 108A is connected in series between the second valve port and the first port 109
  • the third valve port is connected to the first end of the outdoor heat exchanger 103.
  • the flow dividing device 30 includes a gas-liquid separator 301, a plurality of first control valves such as four first control valves 302A, 302B, 302C, 302D, and a plurality of second control valves such as four second control valves 303A, 303B, 303C, 303D, first electronic expansion valve 304A, second electronic expansion valve 304B, four first one-way valves 305A, 305B, 305C, 305D, four second one-way valves 306A, 306B, 306C, 306D, first heat exchange Component 307A and second heat exchange component 307B.
  • first control valves such as four first control valves 302A, 302B, 302C, 302D
  • second control valves such as four second control valves 303A, 303B, 303C, 303D
  • first electronic expansion valve 304A, second electronic expansion valve 304B four first one-way valves 305A, 305B, 305C,
  • the gas-liquid separator 301 has an inlet, a gas outlet and a liquid outlet, the inlet is connected to the second end of the outdoor heat exchanger 103 through the high pressure shut-off valve 40, the check valve 108B, and the gas outlet is respectively connected with the four second control valves 303A, 303B, 303C, and 303D are connected; the four first control valves 302A, 302B, 302C, and 302D are connected to the first interface 109 through the low pressure shutoff valve 50, respectively.
  • the first heat exchange component 307A and the second heat exchange component 307B may be a plate heat exchanger or a casing heat exchanger.
  • the first end of the one-way valve 108A is connected between the one-way valve 108B and the second port 110 via a one-way valve 108C, and the second end of the one-way valve 108A is connected through a one-way valve 108D. It is between the one-way valve 108B and the outdoor heat exchanger 103.
  • the first heat exchange component 307A and the second heat exchange component 307B respectively have a first heat exchange flow path and a second heat exchange flow path, and the liquid outlet of the gas-liquid splitter 301 and the first heat exchange flow of the first heat exchange component 307A
  • the first heat exchange flow path of the first heat exchange component 307A is connected to the first electronic expansion valve 304A, and the second heat exchange flow path of the first heat exchange component 307A and the second heat exchange component 307B are respectively exchanged.
  • the heat flow path is connected to the four first control valves 302A, 302B, 302C, 302D.
  • each indoor unit includes an indoor heat exchanger and a throttle element, wherein the indoor unit 21 includes an indoor heat exchanger 211 and a throttle element 212, and the indoor unit 22 includes a room change.
  • the first end of the indoor heat exchanger in each indoor unit is connected to a corresponding throttling element, and the second end of the indoor heat exchanger in each indoor unit is corresponding to the first control valve and the second control valve Connected, the throttling elements in each indoor unit are connected to the corresponding first check valve and second check valve, The flow direction of the first check valve and the second check valve are opposite.
  • the four first check valves 305A, 305B, 305C, and 305D are all connected to the first common flow path, and the four second check valves 306A, 306B, 306C, and 306D are both connected to the second common flow path, and the second The first heat exchange flow path of the heat exchange component 307B is respectively connected to the first common flow path and the second common flow path, the first electronic expansion valve 304A is connected to the first common flow path, and the second electronic expansion valve 304B is respectively connected to the second The second heat exchange flow path of the heat exchange component 307B is connected to the second common flow path, and the first electronic expansion valve 304A is further connected with the second electromagnetic valve 308.
  • a pressure sensor 309A and a pressure sensor 309B are respectively disposed at both ends of the first electronic expansion valve 304A and the second electromagnetic valve 308, and the first exchange of the second heat exchange unit 307B is performed. Temperature sensors 310A and temperature sensors 310B are also disposed at both ends of the heat flow path, respectively. Further, a pressure sensor 309C is also provided at one end of the second heat exchange passage of the first heat exchange unit 307A.
  • the outdoor unit device 10 includes a compressor 101, two four-way valves 102, 102A, and an outdoor heat exchanger 103.
  • the compressor 101 has an exhaust port and a return air port, and the two four-way valves 102, 102A each have first to fourth valve ports, and the first valve port is in communication with one of the second valve port and the third valve port, and the fourth The valve port is in communication with the other of the second valve port and the third valve port, wherein the first valve port of the four-way valve 102 is connected to the exhaust port of the compressor 101 through the oil separator 105, and the fourth valve port is passed through the external machine.
  • the gas-liquid separator 104 is connected to the gas return port of the compressor 101, and a capillary 107A is connected in parallel between the second valve port and the fourth valve port, and the third valve port is connected to the first end of the outdoor heat exchanger 103.
  • the first valve port of the four-way valve 102A is connected to the third port 111, the second port is directly connected to the first end of the outdoor heat exchanger 103, and the third port is passed through the oil separator 105 and the exhaust port of the compressor 101.
  • the fourth valve port is connected to the first end of the outdoor heat exchanger 103 through the capillary 107B.
  • the flow dividing device 30 includes a plurality of first control valves such as four first control valves 302A, 302B, 302C, 302D, and a plurality of second control valves such as four second control valves 303A, 303B, 303C, 303D.
  • the four first control valves 302A, 302B, 302C, and 302D are respectively connected to the first interface 109 through the low pressure shutoff valve 50, and the four second control valves 303A, 303B, 303C, and 303D respectively pass through the shutoff valve 60 and the third interface. 111 connected.
  • each indoor unit includes an indoor heat exchanger and a throttle element, wherein the indoor unit 21 includes an indoor heat exchanger 211 and a throttle element 212, and the indoor unit 22 includes a room change.
  • the first end of the indoor heat exchanger in each indoor unit is connected to a corresponding throttling element, and the second end of the indoor heat exchanger in each indoor unit is corresponding to the first control valve and the second control valve Connected, the throttling element in each indoor unit is connected to the second interface 110 via a high pressure shutoff valve 40.
  • the flow dividing device 30 controls the second on-off valve corresponding to the indoor unit to be turned on, and controls the a first on-off valve corresponding to the indoor unit device is closed, and an opening degree of the throttle element in the indoor unit is controlled by an indoor unit control unit in the indoor unit, wherein if the indoor unit receives switching to cooling
  • the flow dividing device 30 controls the second on-off valve corresponding to the indoor unit to be closed, and the indoor unit control unit in the indoor unit controls the throttle element in the indoor unit to enter the standby opening.
  • the indoor unit control unit in the indoor unit controls the maximum opening of the throttle element in the indoor unit, so that the indoor unit is filled with medium-pressure liquid refrigerant
  • the flow dividing device 30 controls the first on-off valve corresponding to the indoor unit to be turned on, and completes the heating operation mode to the cooling operation mode.
  • the differential pressure before and after the switching-off valve is a first pass between the intermediate pressure and the low pressure, so that the mode switching when the pressure is small, the noise reducing means when the indoor mode switching.
  • the second preset time is greater than the first preset time.
  • the first preset time may be 20-40 seconds
  • the second preset time may be 50-70 seconds.
  • the standby opening degree may be 72P, and the maximum opening degree may be 480P.
  • the flow dividing device 30 controls the opening and closing of the first on-off valve corresponding to the indoor unit, and controls the The second on-off valve corresponding to the indoor unit device is closed, and the opening degree of the throttle element in the indoor unit is controlled by the indoor unit control unit in the indoor unit, wherein if the indoor unit receives the switching to the system
  • the flow dividing device 30 controls the first on-off valve corresponding to the indoor unit to be closed, and the indoor unit control unit in the indoor unit controls the throttling element in the indoor unit to enter the maximum opening.
  • the flow dividing device 30 controls the second on-off valve corresponding to the indoor unit to be turned on, completes the switching from the cooling operation mode to the heating operation mode, and makes the pressure difference before and after the second on-off valve
  • the switching between the high pressure and the medium pressure is such that the pressure difference at the time of mode switching is small, and the noise when the indoor unit is switched in mode is reduced.
  • the operation mode of the multi-line system includes a pure cooling mode, a pure heating mode, and a simultaneous cooling and heating mode, wherein the simultaneous cooling and heating mode includes a main cooling mode and a main heating mode.
  • the outdoor unit device 10 determines that the multi-line system operates in the pure heating mode, and at this time, the four indoor unit devices perform the heating operation.
  • the flow direction of the refrigerant is: the high pressure gas passes from the exhaust port of the compressor 101 through the oil separator 105 to the four-way valve 102, and then passes through the check valve 108C, the second interface 110, and the high pressure shut-off valve 40 to the gas-liquid separator 301.
  • the high pressure gas passes through the four second control valves 303A from the gas outlets of the gas-liquid separator 301, 303B, 303C, 303D to the corresponding four indoor heat exchangers, into a high pressure liquid, and then four high pressure liquids through the corresponding throttling element and four first one-way valves 305A, 305B, 305C, 305D to the second exchange
  • the first heat exchange flow path of the heat assembly 307B becomes a low pressure gas-liquid two-phase through the second electronic expansion valve 304B, and the second heat exchange flow path and the first heat exchange of the low-pressure gas-liquid two-phase through the second heat exchange unit 307B
  • the second heat exchange flow path of the component 307A is returned to the outdoor unit device 10, that is, the low-pressure gas-liquid two-phase is returned to the outdoor heat exchanger 103 through the low-pressure shut-off valve 50, the first interface 109, and the check valve 108D to become a low-pressure gas.
  • the low pressure gas is
  • the outdoor unit device 10 determines that the multi-line system is operating in the main heating mode, three of the four indoor unit devices perform heating operation, and one indoor unit performs cooling operation.
  • the flow of the refrigerant for heating is: the high-pressure gas passes from the exhaust port of the compressor 101 through the oil separator 105 to the four-way valve 102, and then passes through the check valve 108C, the second port 110, and the high-pressure shut-off valve 40 to the gas.
  • the liquid separator 301, the high-pressure gas from the gas outlet of the gas-liquid separator 301 passes through three second control valves 303A, 303B, and 303C to the indoor heat exchangers in the corresponding three heating indoor units, and becomes a high-pressure liquid.
  • the three high-pressure liquid passes through the corresponding throttling element and the three first one-way valves 305A, 305B, 305C to the first heat exchange flow path of the second heat exchange component 307B, and becomes the second electronic expansion valve 304B.
  • the low-pressure gas-liquid two-phase, the low-pressure gas-liquid two-phase passes through the second heat exchange flow path of the second heat exchange unit 307B and the second heat exchange flow path of the first heat exchange unit 307A to return to the outdoor unit device 10, that is, the low-pressure gas-liquid After the two phases return to the outdoor heat exchanger 103 through the low pressure shutoff valve 50, the first interface 109, and the check valve 108D, they become low pressure gas, and the low pressure gas returns to the compressor 101 through the four-way valve 102 and the external gas-liquid separator 104.
  • the return air is
  • the flow of the refrigerant for cooling is such that a portion of the high pressure liquid passing through the first heat exchange passage of the second heat exchange unit 307B also flows through the second check valve 306D to the throttle element 242 in the indoor unit unit 24, becoming a low pressure.
  • the gas-liquid two phases pass through the indoor heat exchanger 241 in the indoor unit device 24 to become a low-pressure gas, and the low-pressure gas passes through the first control valve 302D and the second heat exchange flow path through the second heat exchange unit 307B.
  • the low-pressure gas-liquid two-phase of the second heat exchange passage of the first heat exchange unit 307A is mixed and returned to the outdoor unit device 10.
  • the four indoor unit devices perform the cooling operation.
  • the flow direction of the refrigerant is: the high pressure gas passes from the exhaust port of the compressor 101 through the oil separator 105 to the four-way valve 102, and then passes through the outdoor heat exchanger 103 to become a high-pressure liquid, and the high-pressure liquid passes through the check valve 108B, the second The interface 110, the high pressure shutoff valve 40 to the gas-liquid separator 301, the high pressure liquid passes from the liquid outlet of the gas-liquid separator 301 through the first heat exchange flow path of the first heat exchange component 307A to the first electronic expansion valve 304A and the second electromagnetic The valve 308 then passes through the first heat exchange flow path of the second heat exchange assembly 307B to the four second check valves 306A, 306B, 306C, 306D, respectively, through the four second check valves 306A, 306B, 306C, 306D
  • the outdoor unit device 10 determines that the multi-line system is operating in the main cooling mode, three of the four indoor unit devices perform cooling operation, and one indoor unit performs heating operation.
  • the flow direction of the refrigerant for cooling is: the high pressure gas passes from the exhaust port of the compressor 101 through the oil separator 105 to the four-way valve 102, and then passes through the outdoor heat exchanger 103 to become a high-pressure gas-liquid two-phase, high-pressure gas-liquid
  • the two phases pass through the check valve 108B, the second interface 110, and the high pressure shutoff valve 40 to the gas-liquid separator 301 for gas-liquid separation, wherein the high-pressure liquid passes through the first heat exchange component 307A from the liquid outlet of the gas-liquid separator 301.
  • the three high-pressure liquids of the three second check valves 306A, 306B, and 306C respectively become three-way low-pressure gas-liquid two-phase after passing through the throttling elements in the three indoor unit devices, and the three-way low-pressure gas-liquid two phases respectively pass through
  • the corresponding indoor heat exchanger becomes three low-pressure gas, and then returns to the outdoor unit device 10 through three first control valves 302A, 302B, and 302C, that is, the low-pressure gas passes through the low-pressure shut-off valve 50, the first interface 109, and the single Returning to valve 108A, external machine gas-liquid separator 104 Back to the air intake unit 101.
  • the flow of the refrigerant for heating is: the high-pressure gas that has been subjected to gas-liquid separation by the gas-liquid separator 301 passes from the gas outlet of the gas-liquid separator 301 through the second control valve 303D to the indoor heat exchanger 241 in the indoor unit device 24, The high pressure liquid is passed through the throttle element 242 in the indoor unit device 24 and then merges with the high pressure liquid passing through the first heat exchange passage of the second heat exchange unit 307B through the first check valve 305D.
  • the outdoor unit device 10 determines that the multi-line system operates in the pure heating mode, and at this time, the four indoor unit devices perform the heating operation.
  • the flow direction of the refrigerant is: the high pressure gas passes from the exhaust port of the compressor 101 through the oil separator 105 to the four-way valve 102A, and then passes through the third interface 111, the shutoff valve 60, the four second control valves 303A, 303B, 303C, 303D to the corresponding four indoor heat exchangers, into a high pressure liquid, and then four high pressure liquids pass through corresponding throttling elements, high pressure shutoff valve 40, second interface 110 to electronic expansion valve 112, and high pressure liquid passes through electronic expansion valve 112
  • the low-pressure gas passes through the four-way valve 102 and the external gas-liquid separator 104 to return to the gas return port of the compressor 101.
  • the outdoor unit device 10 determines that the multi-line system is operating in the main heating mode, three of the four indoor unit devices perform heating operation, and one indoor unit performs cooling operation.
  • the flow of the refrigerant for heating is: the high pressure gas passes from the exhaust port of the compressor 101 through the oil separator 105 to the four-way valve 102A, Then, through the third interface 111, the shutoff valve 60, the three second control valves 303A, 303B, and 303C to the indoor heat exchangers in the corresponding three heating indoor units, the high pressure liquid is turned into three high pressure liquids.
  • the flow direction of the refrigerant for cooling is: another portion of the high-pressure liquid outputted through the throttling elements in the three heating indoor units passes through the throttling element 242 in the indoor unit device 24, and becomes a low-pressure gas-liquid two-phase, and then passes through the indoor
  • the heat exchanger 241 is turned into a low pressure gas, and the low pressure gas passes through the low pressure shutoff valve 50 and the first port 109 and merges with the low pressure gas outputted through the four-way valve 102.
  • the four indoor unit devices perform the cooling operation.
  • the flow direction of the refrigerant is: the high pressure gas passes from the exhaust port of the compressor 101 through the oil separator 105 to the four-way valve 102, and then passes through the outdoor heat exchanger 103 to become a high-pressure liquid, and the high-pressure liquid passes through the electronic expansion valve 112, the second After the interface 110 and the high-pressure shut-off valve 40, the throttling elements in the four indoor unit devices respectively become four-way low-pressure gas-liquid two-phase, and the four-way low-pressure gas-liquid two-phases respectively become four-way after passing through the corresponding indoor heat exchangers.
  • the low pressure gas, the four low pressure gases are returned to the return port of the compressor 101 via the four first control valves 302A, 302B, 302C, 302D, the low pressure shutoff valve 50, the first port 109, and the outer machine gas-liquid separator 104.
  • the outdoor unit device 10 determines that the multi-line system is operating in the main cooling mode, three of the four indoor unit devices perform cooling operation, and one indoor unit performs heating operation.
  • the flow direction of the refrigerant for cooling is: after the high-pressure gas passes through the oil separator 105 from the exhaust port of the compressor 101, a part of the high-pressure gas passes to the four-way valve 102, and then passes through the outdoor heat exchanger 103 to become a high-pressure liquid, and the high-pressure liquid
  • the liquid passes through the electronic expansion valve 112, the second interface 110, the high pressure shutoff valve 40 to the throttling elements in the three indoor unit devices, and the high pressure liquid is changed into a low pressure gas-liquid two-phase through the throttling element, and then passes through three indoor unit devices.
  • the indoor heat exchanger becomes three low-pressure gas, and the three low-pressure gases are correspondingly returned to the compression through three first control valves 302A, 302B, 302C and the low-pressure shut-off valve 50, the first interface 109, and the external gas-liquid separator 104.
  • the flow of the refrigerant for heating is: indoor heat exchange of another portion of the high pressure gas after passing through the oil separator 105 to the four-way valve 102A, the third port 111, the shut-off valve 60, and the second control valve 303D to the indoor unit device 24.
  • the 241 becomes a high pressure liquid which passes through the throttle element 242 in the indoor unit device 24 and merges with the high pressure liquid passing through the high pressure shutoff valve 40.
  • each indoor unit device needs to transmit an operating parameter of the indoor unit device to the flow dividing device 30, wherein the operating parameters of each indoor unit device include: an operating mode of the indoor unit device (eg, a cooling mode, The heating mode, etc.), the degree of superheat when the indoor unit is used as a refrigerating machine, and the opening of the throttling element when the indoor unit is used as a refrigerating machine.
  • an operating mode of the indoor unit device eg, a cooling mode, The heating mode, etc.
  • the degree of superheat when the indoor unit is used as a refrigerating machine e.g., a cooling mode, The heating mode, etc.
  • the opening of the throttling element when the indoor unit is used as a refrigerating machine.
  • each indoor unit device communicates with the outdoor unit device through the flow dividing device.
  • Each of the indoor unit devices is assigned an address to facilitate communication between the indoor unit devices and communication between the indoor unit devices and the flow dividing device.
  • the first indoor unit is assigned a first address
  • the second indoor unit is The device is assigned a second address, ...
  • the seventh indoor unit is assigned a seventh address.
  • each indoor unit also includes a line controller, and each indoor unit also communicates with a respective line controller.
  • the outdoor unit control unit in the outdoor unit device communicates with the control module in the flow dividing device, and the control module in the branching device communicates with the indoor unit control unit in each indoor unit device.
  • the outdoor unit control unit in the outdoor unit device acquires temperature information of the outdoor unit (such as the ambient temperature, exhaust temperature, return air temperature, heat exchange temperature, etc.) of the outdoor unit, and pressure information (such as exhaust pressure) in real time. , the return air pressure, etc.) and the operating mode of each indoor unit sent by the plurality of indoor unit devices, etc.
  • the outdoor unit control unit in the outdoor unit device controls the operation of components such as the compressor and the outdoor fan according to the internal logic output command signal.
  • the outdoor unit control unit in the outdoor unit device acquires the ambient temperature information, the pressure information, and the operation mode of each indoor unit device to determine the operation mode of the multi-line system, for example, When each indoor unit is running in the cooling mode, the multi-line system operation mode is the pure cooling mode; when each indoor unit is running in the heating mode, the multi-line system operation mode is the pure heating mode; when multiple indoors In the machine device, when the operation mode is the cooling mode or the heating mode, the multi-line system operation mode is the simultaneous cooling and heating mode, and the outdoor unit device transmits the corresponding mode command to the flow dividing device according to the determined system operation mode.
  • the outdoor unit controls the operation of components such as the compressor and the outdoor fan based on the internal logic output command signal.
  • the flow dividing device controls the respective state parameters according to the mode command given by the outdoor unit device.
  • the indoor unit device that needs to perform mode switching transmits the switched operation mode to the shunt device 30, and the shunt device 30 operates according to the switched mode.
  • a plurality of first control valves for example, four first control valves 302A, 302B, 302C, 302D, and a plurality of second control valves, for example, four second control valves 303A, 303B, 303C, 303D, are opened and closed.
  • the indoor unit device 24 will be described in detail below as an example.
  • the flow dividing device 30 controls the first on-off valve 302D to be opened, the second on-off valve 303D is closed, and indoors.
  • the machine control unit automatically controls the opening of the throttle element 242.
  • the flow dividing device 30 first controls the first on-off valve 302D to be closed, the indoor unit control unit controls the opening degree of the throttling element 242 to open to 480P, and after 60 seconds, the diverting device 30 controls the second on-off valve 303D. Turning on, as shown in FIG. 2 (FIG. 7) and FIG. 5 (FIG. 10), the switching of the indoor unit device 24 from the cooling operation mode to the heating operation mode is completed.
  • the flow dividing device 30 controls the first on-off valve 302D to be closed, and the second on-off valve 303D is opened, and The indoor unit control unit automatically controls the opening of the throttle element 242.
  • the flow dividing device 30 controls the second on-off valve 303D to be closed, and the indoor unit control unit controls the opening degree of the throttle element 242 to be turned on to 72P until 30 After the second, the indoor unit control unit controls the opening degree of the throttle element 242 to be turned on to 480P, so that the indoor unit device 24 is filled with the medium-pressure liquid refrigerant, and after 60 seconds, the flow dividing device 30 controls the first on-off valve 302D to open. As shown in FIG. 3 (FIG. 8) and FIG. 4 (FIG. 9), switching of the indoor unit device 24 from the heating operation mode to the cooling operation mode is completed.
  • the indoor unit device when any one of the plurality of indoor unit devices is in the cooling operation mode, the indoor unit device can be controlled to switch to the cooling standby mode, the cooling shutdown mode, or the heating operation mode; When any one of the plurality of indoor unit devices is in the cooling standby mode, the indoor unit device can be controlled to switch to the cooling shutdown mode or the heating operation mode; when any one of the plurality of indoor unit devices is in In the cooling shutdown mode, the indoor unit device can be controlled to switch to the cooling operation mode or the heating operation mode; when any one of the plurality of indoor unit devices is in the heating operation mode, the indoor unit device can be controlled to switch to a heating standby mode, a heating shutdown mode or a cooling operation mode; when any one of the plurality of indoor unit devices is in the heating standby mode, the indoor unit can be controlled to switch to the heating shutdown mode or the cooling operation mode Controllable when any one of the plurality of indoor unit units is in the heating stop mode The indoor device is switched to the cooling operation mode or the heating operation mode.
  • the first control valve and the first in the flow dividing device 30 are received when receiving the cooling standby or cooling shutdown mode transmitted by the user through the remote controller
  • the two control valves do not operate, and the indoor unit control unit in the indoor unit controls the opening of the throttle element to be maintained for 30 seconds and then closes.
  • the shunt device 30 When any one of the plurality of indoor unit devices is operated in the cooling mode, when receiving the heating mode transmitted by the user through the wire controller, the shunt device 30 turns off the indoor unit after receiving the heating and starting signal
  • the first control valve corresponding to the device the indoor unit control unit in the indoor unit device controls the opening degree of the throttle element to be maintained for 30 seconds, then closes, and then controls the opening of the throttle element to be 480P for 60 seconds, 60 seconds later, After the opening of the throttle element is turned off to the initial opening degree, the PI is adjusted.
  • the shunting device 30 receives the heating and starting signal for 105 seconds, Open the second control valve.
  • the flow dividing device 30 determines, according to the mode switching instruction, the opening or closing of the first on-off valve and the second on-off valve corresponding to the indoor unit device, and at the same time, the indoor unit in the indoor unit
  • the control unit controls the throttle element opening according to the mode switching instruction to reduce noise during mode switching.
  • the indoor unit apparatus when any one of the plurality of indoor unit apparatuses receives the mode switching instruction, the indoor unit apparatus transmits a mode switching instruction to the flow dividing device, and the flow dividing device determines according to the mode switching instruction
  • the opening and closing of the first on-off valve and the second on-off valve corresponding to the indoor unit device ensure that the pressure difference between the on-off valve before and after the indoor unit device performs mode switching is relatively small, thereby effectively reducing the cause during the mode switching process.
  • the noise generated by the large differential pressure improves the user's comfort.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical connection, or can be electrical connection; can be directly connected, or can be indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements.
  • installation can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Abstract

一种多联机系统,包括室外机装置(10)、分流装置(30)、多个室内机装置(21,22,23,24),其中每个室内机装置(21,22,23,24)包括室内换热器(211,221,231,241)和节流元件(212,222,232,242),分流装置(30)包括与每个室内机装置(21,22,23,24)对应的多个第一控制阀(302A,302B,302C,302D)和多个第二控制阀(303A,303B,303C,303D),任意一个室内机装置(21,22,23,24)接收到模式切换指令时,将模式切换指令发送给分流装置(30);分流装置(30)根据模式切换指令判定该室内机装置(21,22,23,24)对应的第一控制阀(302A,302B,302C,302D)和第二控制阀(303A,303B,303C,303D)的开启或关闭。该多联机系统能够有效降低室内机装置进行模式切换时产生的噪音,提高用户的舒适度。

Description

多联机系统 技术领域
本发明涉及空调技术领域,特别涉及一种多联机系统。
背景技术
随着社会的发展,人们对空调技术的要求也相应提高,例如,要求多联机产品可实现同时制冷制热,因此,热回收多联机系统越来越受到市场的欢迎。
目前,多联机空调市场存在两管式和三管式热回收多联机系统。对于两管式和三管式热回收多联机系统分别对应不同的冷媒切换装置,通常都是在运行模式切换前打开卸载阀,并在模式切换完成后关闭卸载阀。但由于卸载阀两端的压差比较大,因此,旁通噪音较大,导致室内机的模式切换时的噪音过大,影响用户的舒适度。
发明内容
为此,本发明的目的在于提出一种多联机系统,能够有效降低室内机装置进行模式切换时产生的噪音,提高用户的舒适度。
为达到上述目的,本发明的实施例提出了一种多联机系统,包括室外机装置、分流装置、多个室内机装置,其中,每个所述室内机装置包括室内换热器和节流元件,所述分流装置包括与每个所述室内机装置对应的多个第一控制阀和多个第二控制阀,所述多个室内机装置中的任意一个室内机装置接收到模式切换指令时,该室内机装置将所述模式切换指令发送给所述分流装置;所述分流装置根据所述模式切换指令判定该室内机装置对应的第一通断阀和第二通断阀的开启或关闭。
根据本发明实施例的多联机系统,当多个室内机装置中的任意一个室内机装置接收到模式切换指令时,该室内机装置将模式切换指令发送给分流装置,分流装置根据模式切换指令判定该室内机装置对应的第一通断阀和第二通断阀的开启或关闭,以保证室内机装置进行模式切换时的通断阀前后的压差比较小,从而有效降低模式切换过程中因压差较大而产生的噪音,提高用户的舒适度。
根据本发明的一个实施例,当所述多个室内机装置中的任意一个室内机装置处于制热运行模式时,所述分流装置控制与该室内机装置对应的第二通断阀开启,并控制与该室内机装置对应的第一通断阀关闭,以及通过该室内机装置中的室内机控制单元控制该室内机装置中的节流元件的开度,其中,如果该室内机装置接收到切换至制冷 运行模式的指令时,所述分流装置控制与该室内机装置对应的第二通断阀关闭,并且通过该室内机装置中的室内机控制单元控制该室内机装置中的节流元件进入待机开度;直至第一预设时间后,通过该室内机装置中的室内机控制单元控制该室内机装置中的节流元件开启最大开度,以使该室内机装置中灌满中压液态冷媒,并在第二预设时间后,所述分流装置控制与该室内机装置对应的第一通断阀开启,其中,所述第二预设时间大于所述第一预设时间。
根据本发明的另一个实施例,当所述多个室内机装置中的任意一个室内机装置处于制冷运行模式时,所述分流装置控制与该室内机装置对应的第一通断阀开启,并控制与该室内机装置对应的第二通断阀关闭,以及通过该室内机装置中的室内机控制单元控制该室内机装置中的节流元件的开度,其中,如果该室内机装置接收到切换至制热运行模式的指令时,所述分流装置控制与该室内机装置对应的第一通断阀关闭,并且通过该室内机装置中的室内机控制单元控制该室内机装置中的节流元件进入最大开度;直至第二预设时间后,所述分流装置控制与该室内机装置对应的第二通断阀开启。
在本发明的实施例中,多联机系统包括两管式热回收多联机系统和三管式热回收多联机系统。
在本发明的实施例中,当所述多个室内机装置中的任意一个室内机装置处于制冷运行模式时,可控制该室内机装置切换至制冷待机模式、制冷停机模式或制热运行模式;当所述多个室内机装置中的任意一个室内机装置处于制冷待机模式时,可控制该室内机装置切换至制冷停机模式或制热运行模式;当所述多个室内机装置中的任意一个室内机装置处于制冷停机模式时,可控制该室内机装置切换至制冷运行模式或制热运行模式;当所述多个室内机装置中的任意一个室内机装置处于制热运行模式时,可控制该室内机装置切换至制热待机模式、制热停机模式或制冷运行模式;当所述多个室内机装置中的任意一个室内机装置处于制热待机模式时,可控制该室内机装置切换至制热停机模式或制冷运行模式;当所述多个室内机装置中的任意一个室内机装置处于制热停机模式时,可控制该室内机装置切换至制冷运行模式或制热运行模式。
优选地,所述第一预设时间可以为20-40秒,所述第二预设时间可以为50-70秒。
优选地,所述待机开度可以为72P,所述最大开度可以为480P。
附图说明
图1为根据本发明一个实施例的两管式多联机系统的系统示意图;
图2为根据本发明一个实施例的两管式多联机系统运行于纯制热模式时的系统示 意图;
图3为根据本发明一个实施例的两管式多联机系统运行于主制热模式时的系统示意图;
图4为根据本发明一个实施例的两管式多联机系统运行于纯制冷模式时的系统示意图;
图5为根据本发明一个实施例的两管式多联机系统运行于主制冷模式时的示意图;
图6为根据本发明另一个实施例的三管式多联机系统的系统示意图;
图7为根据本发明另一个实施例的三管式多联机系统运行于纯制热模式时的系统示意图;
图8为根据本发明另一个实施例的三管式多联机系统运行于主制热模式时的系统示意图;
图9为根据本发明另一个实施例的三管式多联机系统运行于纯制冷模式时的系统示意图;
图10为根据本发明另一个实施例的三管式多联机系统运行于主制冷模式时的示意图;以及
图11为根据本发明一个实施例的多联机系统的通讯网络图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
下面参照附图来描述根据本发明实施例提出的多联机系统。
在本发明的实施例中,如图1至图10所示,该多联机系统包括室外机装置10、分流装置30、多个室内机装置例如四个室内机装置21、22、23、24。
其中,每个室内机装置包括室内换热器和节流元件,分流装置30包括与每个室内机装置对应的多个第一控制阀和多个第二控制阀,多个室内机装置中的任意一个室内机装置接收到模式切换指令时,该室内机装置将模式切换指令发送给分流装置30,分流装置30根据模式切换指令判定该室内机装置对应的第一通断阀和第二通断阀的开启或关闭。
在本发明的实施例中,多联机系统可包括两管式热回收多联机系统和三管式热回收多联机系统。
在本发明实施例的两管式热回收多联机系统中,如图1至图5所示,室外机装置10包括压缩机101、四通阀102、室外换热器103、外机气液分离器104、油分离器105、第一电磁阀106、毛细管107、四个单向阀108A、108B、108C、108D,以及第一接口109和第二接口110。压缩机101具有排气口和回气口,四通阀102具有第一至第四阀口,第一阀口与第二阀口和第三阀口中的其中一个连通,第四阀口与第二阀口和第三阀口中的另一个连通,第一阀口通过油分离器105与压缩机101的排气口相连,第四阀口通过外机气液分离器104与压缩机101的回气口相连,第二阀口与第一接口109之间串联有单向阀108A,第三阀口与室外换热器103的第一端相连。
分流装置30包括气液分离器301,多个第一控制阀例如四个第一控制阀302A、302B、302C、302D,多个第二控制阀例如四个第二控制阀303A、303B、303C、303D,第一电子膨胀阀304A,第二电子膨胀阀304B,四个第一单向阀305A、305B、305C、305D,四个第二单向阀306A、306B、306C、306D,第一换热组件307A和第二换热组件307B。其中,气液分离器301具有入口、气体出口和液体出口,入口通过高压截止阀40、单向阀108B与室外换热器103的第二端相连接,气体出口分别与四个第二控制阀303A、303B、303C、303D相连;四个第一控制阀302A、302B、302C、302D分别通过低压截止阀50与第一接口109相连。第一换热组件307A和第二换热组件307B可以是板式换热器,也可以是套管换热器。
如图1至图5所示,单向阀108A的第一端通过单向阀108C连接至单向阀108B和第二接口110之间,单向阀108A的第二端通过单向阀108D连接至单向阀108B和室外换热器103之间。
第一换热组件307A和第二换热组件307B分别具有第一换热流路和第二换热流路,气液分流器301的液体出口与第一换热组件307A的第一换热流路相连,第一换热组件307A的第一换热流路与第一电子膨胀阀304A相连,第一换热组件307A的第二换热流路分别与第二换热组件307B的第二换热流路和四个第一控制阀302A、302B、302C、302D相连。
如图1至图5所示,每个室内机装置均包括室内换热器和节流元件,其中,室内机装置21包括室内换热器211和节流元件212,室内机装置22包括室内换热器221和节流元件222,室内机装置23包括室内换热器231和节流元件232,室内机装置24包括室内换热器241和节流元件242。每个室内机装置中的室内换热器的第一端与对应的节流元件相连,每个室内机装置中的室内换热器的第二端与对应的第一控制阀和第二控制阀相连,每个室内机装置中的节流元件与对应的第一单向阀和第二单向阀相连, 第一单向阀和第二单向阀的流向相反。并且,四个第一单向阀305A、305B、305C、305D均连接至第一公共流路,四个第二单向阀306A、306B、306C、306D均连接至第二公共流路,第二换热组件307B的第一换热流路分别与第一公共流路和第二公共流路连通,第一电子膨胀阀304A连接至第一公共流路,第二电子膨胀阀304B分别与第二换热组件307B的第二换热流路和第二公共流路相连,第一电子膨胀阀304A还并联有第二电磁阀308。
如图1至图5所示,还在并联的第一电子膨胀阀304A和第二电磁阀308的两端分别设置压力传感器309A和压力传感器309B,并且在第二换热组件307B的第一换热流路的两端还分别设置温度传感器310A和温度传感器310B。此外,还在第一换热组件307A的第二换热流路的一端设置压力传感器309C。
在本发明实施例的三管式热回收多联机系统中,如图6至图10所示,室外机装置10包括压缩机101,两个四通阀102、102A,室外换热器103,外机气液分离器104,油分离器105,第一电磁阀106,三个毛细管107、107A、107B,电子膨胀阀112,以及第一接口109、第二接口110和第三接口111。压缩机101具有排气口和回气口,两个四通阀102、102A均具有第一至第四阀口,第一阀口与第二阀口和第三阀口中的其中一个连通,第四阀口与第二阀口和第三阀口中的另一个连通,其中,四通阀102的第一阀口通过油分离器105与压缩机101的排气口相连,第四阀口通过外机气液分离器104与压缩机101的回气口相连,第二阀口与第四阀口之间并联有毛细管107A,第三阀口与室外换热器103的第一端相连。四通阀102A的第一阀口与第三接口111相连,第二阀口与室外换热器103的第一端直接相连,第三阀口通过油分离器105与压缩机101的排气口相连,第四阀口通过毛细管107B与室外换热器103的第一端相连。
分流装置30包括多个第一控制阀例如四个第一控制阀302A、302B、302C、302D,多个第二控制阀例如四个第二控制阀303A、303B、303C、303D。其中,四个第一控制阀302A、302B、302C、302D分别通过低压截止阀50与第一接口109相连,四个第二控制阀303A、303B、303C、303D分别通过截止阀60与第三接口111相连。
如图6至图10所示,每个室内机装置均包括室内换热器和节流元件,其中,室内机装置21包括室内换热器211和节流元件212,室内机装置22包括室内换热器221和节流元件222,室内机装置23包括室内换热器231和节流元件232,室内机装置24包括室内换热器241和节流元件242。每个室内机装置中的室内换热器的第一端与对应的节流元件相连,每个室内机装置中的室内换热器的第二端与对应的第一控制阀和第二控制阀相连,每个室内机装置中的节流元件通过高压截止阀40与第二接口110相连。
根据本发明的一个实施例,当多个室内机装置中的任意一个室内机装置处于制热运行模式时,分流装置30控制与该室内机装置对应的第二通断阀开启,并控制与该室内机装置对应的第一通断阀关闭,以及通过该室内机装置中的室内机控制单元控制该室内机装置中的节流元件的开度,其中,如果该室内机装置接收到切换至制冷运行模式的指令时,分流装置30控制与该室内机装置对应的第二通断阀关闭,并且通过该室内机装置中的室内机控制单元控制该室内机装置中的节流元件进入待机开度;直至第一预设时间后,通过该室内机装置中的室内机控制单元控制该室内机装置中的节流元件开启最大开度,以使该室内机装置中灌满中压液态冷媒,并在第二预设时间后,分流装置30控制与该室内机装置对应的第一通断阀开启,完成制热运行模式向制冷运行模式切换,并且使得第一通断阀前后的压差为中压与低压之间的切换,从而使得模式切换时的压差小,降低室内机装置进行模式切换时的噪音。其中,第二预设时间大于第一预设时间。
优选地,第一预设时间可以为20-40秒,第二预设时间可以为50-70秒。
优选地,待机开度可以为72P,最大开度可以为480P。
根据本发明的另一个实施例,当多个室内机装置中的任意一个室内机装置处于制冷运行模式时,分流装置30控制与该室内机装置对应的第一通断阀开启,并控制与该室内机装置对应的第二通断阀关闭,以及通过该室内机装置中的室内机控制单元控制该室内机装置中的节流元件的开度,其中,如果该室内机装置接收到切换至制热运行模式的指令时,分流装置30控制与该室内机装置对应的第一通断阀关闭,并且通过该室内机装置中的室内机控制单元控制该室内机装置中的节流元件进入最大开度;直至第二预设时间后,分流装置30控制与该室内机装置对应的第二通断阀开启,完成制冷运行模式向制热运行模式切换,并且使得第二通断阀前后的压差为高压与中压之间的切换,因此,使得模式切换时的压差小,降低室内机装置进行模式切换时的噪音。
在本发明的实施例中,多联机系统的运行模式包括纯制冷模式、纯制热模式和同时制冷制热模式,其中,同时制冷制热模式包括主制冷模式和主制热模式。
下面就参照图2至图5来分别描述两管式多联机系统工作在纯制热模式、主制热模式、纯制冷模式和主制冷模式时的冷媒流向。
如图2所示,室外机装置10判断多联机系统工作在纯制热模式时,此时四个室内机装置进行制热工作。其中,冷媒流向为:高压气体从压缩机101的排气口经油分离器105到四通阀102,然后经过单向阀108C、第二接口110、高压截止阀40到气液分离器301,高压气体从气液分离器301的气体出口分别经过四个第二控制阀303A、 303B、303C、303D到对应的四个室内换热器,变成高压液体,然后四路高压液体经过对应的节流元件和四个第一单向阀305A、305B、305C、305D到第二换热组件307B的第一换热流路,经过第二电子膨胀阀304B变成低压气液两相,低压气液两相经过第二换热组件307B的第二换热流路和第一换热组件307A的第二换热流路回到室外机装置10,即低压气液两相通过低压截止阀50、第一接口109、单向阀108D回到室外换热器103后变成低压气体,低压气体通过四通阀102、外机气液分离器104回到压缩机101的回气口。
如图3所示,室外机装置10判断多联机系统工作在主制热模式时,此时四个室内机装置中有三个室内机装置进行制热工作,一个室内机装置进行制冷工作。其中,用于制热的冷媒流向为:高压气体从压缩机101的排气口经油分离器105到四通阀102,然后经过单向阀108C、第二接口110、高压截止阀40到气液分离器301,高压气体从气液分离器301的气体出口分别经过三个第二控制阀303A、303B、303C到对应的三个制热室内机装置中的室内换热器,变成高压液体,然后三路高压液体经过对应的节流元件和三个第一单向阀305A、305B、305C到第二换热组件307B的第一换热流路,经过第第二电子膨胀阀304B变成低压气液两相,低压气液两相经过第二换热组件307B的第二换热流路和第一换热组件307A的第二换热流路回到室外机装置10,即低压气液两相通过低压截止阀50、第一接口109、单向阀108D回到室外换热器103后变成低压气体,低压气体通过四通阀102、外机气液分离器104回到压缩机101的回气口。用于制冷的冷媒流向为:经过第二换热组件307B的第一换热流路的高压液体的一部分还通过第二单向阀306D流向室内机装置24中的节流元件242,变成低压气液两相,再经过室内机装置24中的室内换热器241后变成低压气体,该低压气体经过第一控制阀302D后与经过第二换热组件307B的第二换热流路和第一换热组件307A的第二换热流路的低压气液两相混合后,回到室外机装置10。
如图4所示,室外机装置10判断多联机系统工作在纯制冷模式时,此时四个室内机装置进行制冷工作。其中,冷媒流向为:高压气体从压缩机101的排气口经油分离器105到四通阀102,然后经过室外换热器103后变成高压液体,高压液体经过单向阀108B、第二接口110、高压截止阀40到气液分离器301,高压液体从气液分离器301的液体出口经过第一换热组件307A的第一换热流路到第一电子膨胀阀304A和第二电磁阀308,然后经过第二换热组件307B的第一换热流路分别到四个第二单向阀306A、306B、306C、306D,经过四个第二单向阀306A、306B、306C、306D的四路高压液体分别对应经过四个室内机装置中的节流元件后变成四路低压气液两相,四路低压气液 两相分别经过对应的室内换热器后变成四路低压气体,然后对应经过四个第一控制阀302A、302B、302C、302D回到室外机装置10,即低压气体通过低压截止阀50、第一接口109、单向阀108A、外机气液分离器104回到压缩机101的回气口。
如图5所示,室外机装置10判断多联机系统工作在主制冷模式时,此时四个室内机装置中有三个室内机装置进行制冷工作,一个室内机装置进行制热工作。其中,用于制冷的冷媒流向为:高压气体从压缩机101的排气口经油分离器105到四通阀102,然后经过室外换热器103后变成高压气液两相,高压气液两相经过单向阀108B、第二接口110、高压截止阀40到气液分离器301进行气液分离,其中,高压液体从气液分离器301的液体出口经过第一换热组件307A的第一换热流路到第一电子膨胀阀304A和第二电磁阀308,然后经过第二换热组件307B的第一换热流路分别到三个第二单向阀306A、306B、306C,经过三个第二单向阀306A、306B、306C的三路高压液体分别对应经过三个室内机装置中的节流元件后变成三路低压气液两相,三路低压气液两相分别经过对应的室内换热器后变成三路低压气体,然后对应经过三个第一控制阀302A、302B、302C回到室外机装置10,即低压气体通过低压截止阀50、第一接口109、单向阀108A、外机气液分离器104回到压缩机101的回气口。用于制热的冷媒流向为:经过气液分离器301进行气液分离的高压气体从气液分离器301的气体出口经第二控制阀303D到室内机装置24中的室内换热器241,变成高压液体,高压液体经过室内机装置24中的节流元件242后通过第一单向阀305D与经过第二换热组件307B的第一换热流路的高压液体汇合。
下面参照图7至图10来分别描述三管式多联机系统工作在纯制热模式、主制热模式、纯制冷模式和主制冷模式时的冷媒流向。
如图7所示,室外机装置10判断多联机系统工作在纯制热模式时,此时四个室内机装置进行制热工作。其中,冷媒流向为:高压气体从压缩机101的排气口经油分离器105到四通阀102A,然后经过第三接口111、截止阀60、四个第二控制阀303A、303B、303C、303D到对应的四个室内换热器,变成高压液体,然后四路高压液体经过对应的节流元件、高压截止阀40、第二接口110到电子膨胀阀112,高压液体经过电子膨胀阀112变为低压气液两相后经室外换热器103后变成低压气体,低压气体通过四通阀102、外机气液分离器104回到压缩机101的回气口。
如图8所示,室外机装置10判断多联机系统工作在主制热模式时,此时四个室内机装置中有三个室内机装置进行制热工作,一个室内机装置进行制冷工作。其中,用于制热的冷媒流向为:高压气体从压缩机101的排气口经油分离器105到四通阀102A, 然后经过第三接口111、截止阀60、三个第二控制阀303A、303B、303C到对应的三个制热室内机装置中的室内换热器,变成高压液体,然后三路高压液体经过对应的节流元件后,一部分高压液体经过高压截止阀40、第二接口110到电子膨胀阀112,高压液体经过电子膨胀阀112变为低压气液两相后经室外换热器103后变成低压气体,低压气体通过四通阀102、外机气液分离器104回到压缩机101的回气口。用于制冷的冷媒流向为:经过三个制热室内机装置中的节流元件输出的另一部分高压液体经过室内机装置24中的节流元件242后变为低压气液两相,再经过室内换热器241后变成低压气体,低压气体经过低压截止阀50、第一接口109后与经过四通阀102输出的低压气体汇合。
如图9所示,室外机装置10判断多联机系统工作在纯制冷模式时,此时四个室内机装置进行制冷工作。其中,冷媒流向为:高压气体从压缩机101的排气口经油分离器105到四通阀102,然后经过室外换热器103后变成高压液体,高压液体经过电子膨胀阀112、第二接口110、高压截止阀40后分别四个室内机装置中的节流元件后变为四路低压气液两相,四路低压气液两相分别经过对应的室内换热器后变为四路低压气体,四路低压气体经过四个第一控制阀302A、302B、302C、302D、低压截止阀50、第一接口109、外机气液分离器104回到压缩机101的回气口。
如图10所示,室外机装置10判断多联机系统工作在主制冷模式时,此时四个室内机装置中有三个室内机装置进行制冷工作,一个室内机装置进行制热工作。其中,用于制冷的冷媒流向为:高压气体从压缩机101的排气口经油分离器105后,一部分高压气体到四通阀102,然后经过室外换热器103后变成高压液体,高压液体经过电子膨胀阀112、第二接口110、高压截止阀40到三个室内机装置中的节流元件,高压液体经节流元件变为低压气液两相,再经过三个室内机装置中的室内换热器变为三路低压气体,三路低压气体对应经过三个第一控制阀302A、302B、302C以及低压截止阀50、第一接口109、外机气液分离器104回到压缩机101的回气口。用于制热的冷媒流向为:经油分离器105后的另一部分高压气体到四通阀102A、第三接口111、截止阀60、第二控制阀303D到室内机装置24中的室内换热器241,变成高压液体,高压液体经过室内机装置24中的节流元件242后与经过高压截止阀40的高压液体汇合。
在本发明的实施例中,每个室内机装置均需要向分流装置30发送室内机装置的运行参数,其中,每个室内机装置的运行参数包括:室内机装置的运行模式(如制冷模式、制热模式等)、室内机装置作为制冷内机时的过热度、室内机装置作为制冷内机时的节流元件开度等。
根据本发明的一个实施例,如图11所示,室外机装置与分流装置之间可直接进行通讯,每个室内机装置通过分流装置与室外机装置进行通讯。其中,每个室内机装置分配有一个地址,便于各个室内机装置之间的通讯以及各个室内机装置与分流装置之间的通讯,例如第一室内机装置分配有第一地址,第二室内机装置分配有第二地址,…,第七室内机装置分配有第七地址。另外,每个室内机装置还包括线控器,每个室内机装置还与各自的线控器进行通讯。
进一步地,根据本发明的一个具体示例,室外机装置中的室外机控制单元与分流装置中的控制模块进行通讯,同时分流装置中的控制模块与各个室内机装置中的室内机控制单元进行通讯。其中,室外机装置中的室外机控制单元实时获取室外机装置的温度信息(如室外机装置所处环境温度、排气温度、回气温度、热交换温度等)、压力信息(如排气压力、回气压力等)以及多个室内机装置发送的每个室内机装置的运行模式等来判定多联机系统的运行模式(例如纯制热模式、主制热模式、纯制冷模式和主制冷模式),并将多联机系统的运行模式的指令发送给分流装置。同时,室外机装置中的室外机控制单元还根据内部逻辑输出指令信号控制压缩机和室外风机等部件运行。
具体地,当多联机系统启动后,室外机装置中的室外机控制单元获取室外机装置的环境温度信息、压力信息以及各个室内机装置的运行模式,来判断多联机系统的运行模式,例如,当各个室内机装置均运行于制冷模式时,多联机系统运行模式为纯制冷模式;当各个室内机装置均运行于制热模式时,多联机系统运行模式为纯制热模式;当多个室内机装置中,既有运行于制冷模式也有运行于制热模式时,多联机系统运行模式为同时制冷制热模式,室外机装置根据判断的系统运行模式发送相应模式指令给分流装置。同时,室外机装置根据内部逻辑输出指令信号控制压缩机和室外风机等部件运行。分流装置根据室外机装置给定的模式指令进行各个状态参数的控制。
并且,在多联机系统启动运行后,当用户对室内机装置进行模式切换时,需要进行模式切换的室内机装置将切换后的运行模式发送给分流装置30,分流装置30根据切换后的运行模式判断多个第一控制阀例如四个第一控制阀302A、302B、302C、302D,多个第二控制阀例如四个第二控制阀303A、303B、303C、303D的开启和关闭。
下面以室内机装置24为例进行详细说明。
当室内机装置24处于制冷运行模式时,如图3(图8)、图4(图9)所示,分流装置30控制第一通断阀302D开启,第二通断阀303D关闭,并且室内机控制单元自动控制节流元件242的开度。当室内机装置24接收到用户发送的切换至制热运行模式 的指令时,分流装置30首先控制第一通断阀302D关闭,室内机控制单元控制该节流元件242的开度开启至480P,并在60秒后,分流装置30控制第二通断阀303D开启,如图2(图7)、图5(图10)所示,从而完成室内机装置24从制冷运行模式到制热运行模式的切换。
当室内机装置24处于制热运行模式时,如图2(图7)、图5(图10)所示,分流装置30控制第一通断阀302D关闭,第二通断阀303D开启,并且室内机控制单元自动控制节流元件242的开度。当室内机装置24接收到用户发送的切换至制冷运行模式的指令时,分流装置30控制第二通断阀303D关闭,并且室内机控制单元控制节流元件242的开度开启至72P,直至30秒后,室内机控制单元控制节流元件242的开度开启至480P,以使室内机装置24中灌满中压液态冷媒,60秒后,分流装置30再控制第一通断阀302D开启,如图3(图8)、图4(图9)所示,从而完成室内机装置24从制热运行模式到制冷运行模式的切换。
此外,在本发明的实施例中,当多个室内机装置中的任意一个室内机装置处于制冷运行模式时,可控制该室内机装置切换至制冷待机模式、制冷停机模式或制热运行模式;当多个室内机装置中的任意一个室内机装置处于制冷待机模式时,可控制该室内机装置切换至制冷停机模式或制热运行模式;当多个室内机装置中的任意一个室内机装置处于制冷停机模式时,可控制该室内机装置切换至制冷运行模式或制热运行模式;当多个室内机装置中的任意一个室内机装置处于制热运行模式时,可控制该室内机装置切换至制热待机模式、制热停机模式或制冷运行模式;当多个室内机装置中的任意一个室内机装置处于制热待机模式时,可控制该室内机装置切换至制热停机模式或制冷运行模式;当多个室内机装置中的任意一个室内机装置处于制热停机模式时,可控制该室内机装置切换至制冷运行模式或制热运行模式。
具体地,当多个室内机装置中的任意一个室内机装置运行于制冷模式时,在接收到用户通过线控器发送的制冷待机或制冷停机模式时,分流装置30中第一控制阀和第二控制阀均不动作,该室内机装置中的室内机控制单元控制节流元件的开度维持30秒后关闭。
当多个室内机装置中的任意一个室内机装置运行于制冷模式时,在接收到用户通过线控器发送的制热模式时,分流装置30在接收到制热开机信号后,关闭该室内机装置对应的第一控制阀,该室内机装置中的室内机控制单元控制节流元件的开度维持30秒后关闭,再控制该节流元件开度为480P并维持60秒,60秒后,关闭节流元件开度到初始开度后按照PI进行调节,另外,分流装置30在接收到制热开机信号105秒后, 开启第二控制阀。
其它室内机装置的运行模式之间的切换这里不再阐述。综上,在本发明的实施例中,分流装置30根据模式切换指令判定该室内机装置对应的第一通断阀和第二通断阀的开启或关闭,同时,室内机装置中的室内机控制单元根据模式切换指令对节流元件开度进行控制,以降低模式切换过程中的噪音。
根据本发明实施例的多联机系统,当多个室内机装置中的任意一个室内机装置接收到模式切换指令时,该室内机装置将模式切换指令发送给分流装置,分流装置根据模式切换指令判定该室内机装置对应的第一通断阀和第二通断阀的开启或关闭,以保证室内机装置进行模式切换时的通断阀前后的压差比较小,从而有效降低模式切换过程中因压差较大而产生的噪音,提高用户的舒适度。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示 例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (7)

  1. 一种多联机系统,其特征在于,包括室外机装置、分流装置、多个室内机装置,其中,每个所述室内机装置包括室内换热器和节流元件,所述分流装置包括与每个所述室内机装置对应的多个第一控制阀和多个第二控制阀,
    所述多个室内机装置中的任意一个室内机装置接收到模式切换指令时,该室内机装置将所述模式切换指令发送给所述分流装置;
    所述分流装置根据所述模式切换指令判定该室内机装置对应的第一通断阀和第二通断阀的开启或关闭。
  2. 如权利要求1所述的多联机系统,其特征在于,当所述多个室内机装置中的任意一个室内机装置处于制热运行模式时,所述分流装置控制与该室内机装置对应的第二通断阀开启,并控制与该室内机装置对应的第一通断阀关闭,以及通过该室内机装置中的室内机控制单元控制该室内机装置中的节流元件的开度,其中,
    如果该室内机装置接收到切换至制冷运行模式的指令时,所述分流装置控制与该室内机装置对应的第二通断阀关闭,并且通过该室内机装置中的室内机控制单元控制该室内机装置中的节流元件进入待机开度;
    直至第一预设时间后,通过该室内机装置中的室内机控制单元控制该室内机装置中的节流元件开启最大开度,以使该室内机装置中灌满中压液态冷媒,并在第二预设时间后,所述分流装置控制与该室内机装置对应的第一通断阀开启,其中,所述第二预设时间大于所述第一预设时间。
  3. 如权利要求1所述的多联机系统,其特征在于,当所述多个室内机装置中的任意一个室内机装置处于制冷运行模式时,所述分流装置控制与该室内机装置对应的第一通断阀开启,并控制与该室内机装置对应的第二通断阀关闭,以及通过该室内机装置中的室内机控制单元控制该室内机装置中的节流元件的开度,其中,
    如果该室内机装置接收到切换至制热运行模式的指令时,所述分流装置控制与该室内机装置对应的第一通断阀关闭,并且通过该室内机装置中的室内机控制单元控制该室内机装置中的节流元件进入最大开度;
    直至第二预设时间后,所述分流装置控制与该室内机装置对应的第二通断阀开启。
  4. 如权利要求1-3中任一项所述的多联机系统,其特征在于,所述多联机系统包括两管式热回收多联机系统和三管式热回收多联机系统。
  5. 如权利要求1所述的多联机系统,其特征在于,
    当所述多个室内机装置中的任意一个室内机装置处于制冷运行模式时,可控制该室内机装置切换至制冷待机模式、制冷停机模式或制热运行模式;
    当所述多个室内机装置中的任意一个室内机装置处于制冷待机模式时,可控制该室内机装置切换至制冷停机模式或制热运行模式;
    当所述多个室内机装置中的任意一个室内机装置处于制冷停机模式时,可控制该室内机装置切换至制冷运行模式或制热运行模式;
    当所述多个室内机装置中的任意一个室内机装置处于制热运行模式时,可控制该室内机装置切换至制热待机模式、制热停机模式或制冷运行模式;
    当所述多个室内机装置中的任意一个室内机装置处于制热待机模式时,可控制该室内机装置切换至制热停机模式或制冷运行模式;
    当所述多个室内机装置中的任意一个室内机装置处于制热停机模式时,可控制该室内机装置切换至制冷运行模式或制热运行模式。
  6. 如权利要求2或3所述的多联机系统,其特征在于,所述第一预设时间为20-40秒,所述第二预设时间为50-70秒。
  7. 如权利要求2所述的多联机系统,其特征在于,所述待机开度为72P,所述最大开度为480P。
PCT/CN2015/098290 2015-03-31 2015-12-22 多联机系统 WO2016155370A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112016030917A BR112016030917A2 (pt) 2015-03-31 2015-12-22 Sistema multirrepartido
US15/329,821 US20180340700A1 (en) 2015-03-31 2015-12-22 Variable refrigerant flow system
EP15887320.8A EP3279576A4 (en) 2015-03-31 2015-12-22 Variable refrigerant flow system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510151648.3A CN104748239B (zh) 2015-03-31 2015-03-31 多联机系统
CN201510151648.3 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016155370A1 true WO2016155370A1 (zh) 2016-10-06

Family

ID=53588316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098290 WO2016155370A1 (zh) 2015-03-31 2015-12-22 多联机系统

Country Status (5)

Country Link
US (1) US20180340700A1 (zh)
EP (1) EP3279576A4 (zh)
CN (1) CN104748239B (zh)
BR (1) BR112016030917A2 (zh)
WO (1) WO2016155370A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107975959A (zh) * 2017-11-08 2018-05-01 宁波奥克斯电气股份有限公司 一种多联机空调系统及控制方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104748239B (zh) * 2015-03-31 2017-10-31 广东美的暖通设备有限公司 多联机系统
CN105066349B (zh) * 2015-08-03 2017-10-27 珠海格力电器股份有限公司 热回收多联机的内机模式转换控制方法和热回收多联机
CN105115198B (zh) * 2015-09-09 2017-10-31 广东美的暖通设备有限公司 多联机系统及其控制方法
KR101726073B1 (ko) * 2015-10-01 2017-04-11 엘지전자 주식회사 공기조화 시스템
CN105737335B (zh) * 2016-02-22 2018-09-07 广东美的暖通设备有限公司 多联机系统及其模式切换控制方法
CN105571082B (zh) * 2016-02-22 2018-06-29 广东美的暖通设备有限公司 多联机系统及其模式切换控制方法
CN105737333B (zh) * 2016-02-22 2018-09-07 广东美的暖通设备有限公司 多联机系统及其模式切换控制方法
CN105737334B (zh) * 2016-02-22 2018-11-20 广东美的暖通设备有限公司 多联机系统及其模式切换控制方法
CN105757891B (zh) * 2016-03-15 2018-07-10 广东美的暖通设备有限公司 多联机系统及其制热室内机的控制方法
CN105674402B (zh) * 2016-03-23 2018-10-16 广东美的暖通设备有限公司 多联机系统及其模式切换控制方法
CN105864982B (zh) * 2016-04-25 2019-01-22 广东美的暖通设备有限公司 多联机空调系统及其控制方法
US11789415B2 (en) 2016-06-30 2023-10-17 Johnson Controls Tyco IP Holdings LLP Building HVAC system with multi-level model predictive control
US20180004171A1 (en) 2016-06-30 2018-01-04 Johnson Controls Technology Company Hvac system using model predictive control with distributed low-level airside optimization and airside power consumption model
WO2018005760A1 (en) 2016-06-30 2018-01-04 Johnson Controls Technology Company Variable refrigerant flow system with predictive control
JP6976976B2 (ja) * 2016-06-30 2021-12-08 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company マルチレベルモデル予測制御のシステムと方法
CN206001759U (zh) * 2016-08-23 2017-03-08 广东美的暖通设备有限公司 用于多联机空调的切换装置及具有其的多联机空调
CN106440455B (zh) * 2016-09-19 2019-04-30 广东美的暖通设备有限公司 多联机系统及其室内机运行模式的切换控制方法
CN106766326B (zh) * 2016-11-24 2019-04-30 广东美的暖通设备有限公司 多联机系统及其的制冷中压节流元件的控制方法
CN106765892B (zh) * 2016-11-29 2019-07-26 广东美的暖通设备有限公司 多联机系统及其的室外换热器的感温包检测方法和装置
CN106969524B (zh) * 2016-12-29 2020-06-26 广东美的暖通设备有限公司 空调压差平衡系统和空调压差的平衡方法
US10816235B2 (en) 2017-04-27 2020-10-27 Johnson Controls Technology Company Building energy system with predictive control of battery and green energy resources
CN107238161B (zh) * 2017-07-25 2020-05-08 广东美的暖通设备有限公司 多联机系统及其模式切换控制方法
FR3085468B1 (fr) 2018-09-03 2020-12-18 Arkema France Procede de conditionnement d'air
CN109386984B (zh) * 2018-10-22 2020-11-06 广东美的暖通设备有限公司 两管制热回收多联机系统及其空调室外机
CN109386987B (zh) * 2018-10-22 2020-12-29 广东美的暖通设备有限公司 两管制热回收多联机系统及其空调室外机
CN109386909B (zh) * 2018-10-22 2020-10-16 广东美的暖通设备有限公司 室外机、回油控制方法及空调器
CN109798628B (zh) * 2019-01-25 2021-01-05 广东美的暖通设备有限公司 冷媒分流装置压力差的控制方法和装置
CN110296554B (zh) * 2019-07-02 2020-08-25 珠海格力电器股份有限公司 分流组件及其分流控制方法和多联式空调器
CN110631285B (zh) * 2019-09-30 2021-02-23 广东美的暖通设备有限公司 多联机系统及其控制方法
CN111473468B (zh) * 2020-04-24 2021-07-16 宁波奥克斯电气股份有限公司 通过外机阀调节减少噪音的控制方法、装置及空调器
CN111473467B (zh) * 2020-04-24 2021-09-21 宁波奥克斯电气股份有限公司 通过控制压差减小噪音的控制方法、装置及空调器
CN112032827A (zh) * 2020-08-28 2020-12-04 青岛海尔空调电子有限公司 多联机空调系统的回油控制方法
CN114216230B (zh) * 2021-11-30 2023-05-16 青岛海尔空调器有限总公司 用于控制空调器的方法及装置、空调器、存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180751A (ja) * 2003-12-18 2005-07-07 Mitsubishi Heavy Ind Ltd 冷凍装置及びその運転制御方法
CN203249455U (zh) * 2012-03-27 2013-10-23 三菱电机株式会社 空调装置
CN103917834A (zh) * 2011-11-07 2014-07-09 三菱电机株式会社 空气调节装置
CN104364591A (zh) * 2012-05-30 2015-02-18 三菱电机株式会社 空气调节装置
CN104748239A (zh) * 2015-03-31 2015-07-01 广东美的暖通设备有限公司 多联机系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4643002A (en) * 1985-09-26 1987-02-17 Carrier Corporation Continuous metered flow multizone air conditioning system
JPH0754217B2 (ja) * 1989-10-06 1995-06-07 三菱電機株式会社 空気調和装置
US5237833A (en) * 1991-01-10 1993-08-24 Mitsubishi Denki Kabushiki Kaisha Air-conditioning system
JP3233447B2 (ja) * 1992-06-02 2001-11-26 東芝キヤリア株式会社 空気調和機
JP3603848B2 (ja) * 2001-10-23 2004-12-22 ダイキン工業株式会社 冷凍装置
EP1455142A4 (en) * 2001-12-14 2006-01-04 Mitsubishi Electric Corp AIR CONDITIONER
US8141623B2 (en) * 2007-05-01 2012-03-27 Blecker Joseph G Automatic switching two pipe hydronic system
KR101346448B1 (ko) * 2007-09-03 2014-01-10 엘지전자 주식회사 절환형 멀티 공기조화기 및 냉난방 절환 방법
US20110203299A1 (en) * 2008-11-11 2011-08-25 Carrier Corporation Heat pump system and method of operating
EP2299207B1 (en) * 2009-08-28 2017-11-15 Sanyo Electric Co., Ltd. Air conditioner
KR101146460B1 (ko) * 2010-02-08 2012-05-21 엘지전자 주식회사 냉매시스템
JP2013181695A (ja) * 2012-03-01 2013-09-12 Fujitsu General Ltd 空気調和装置
JP6031931B2 (ja) * 2012-10-03 2016-11-24 株式会社デンソー 冷凍サイクル装置
CN103471294B (zh) * 2013-09-06 2015-12-02 青岛海信日立空调系统有限公司 基于多联式空调系统降噪的分流装置
CN104515335B (zh) * 2013-10-08 2017-09-26 翰昂汽车零部件有限公司 车辆用热泵系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180751A (ja) * 2003-12-18 2005-07-07 Mitsubishi Heavy Ind Ltd 冷凍装置及びその運転制御方法
CN103917834A (zh) * 2011-11-07 2014-07-09 三菱电机株式会社 空气调节装置
CN203249455U (zh) * 2012-03-27 2013-10-23 三菱电机株式会社 空调装置
CN104364591A (zh) * 2012-05-30 2015-02-18 三菱电机株式会社 空气调节装置
CN104748239A (zh) * 2015-03-31 2015-07-01 广东美的暖通设备有限公司 多联机系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3279576A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107975959A (zh) * 2017-11-08 2018-05-01 宁波奥克斯电气股份有限公司 一种多联机空调系统及控制方法
CN107975959B (zh) * 2017-11-08 2023-09-22 宁波奥克斯电气股份有限公司 一种多联机空调系统及控制方法

Also Published As

Publication number Publication date
EP3279576A4 (en) 2018-12-05
CN104748239A (zh) 2015-07-01
CN104748239B (zh) 2017-10-31
US20180340700A1 (en) 2018-11-29
EP3279576A1 (en) 2018-02-07
BR112016030917A2 (pt) 2017-08-22

Similar Documents

Publication Publication Date Title
WO2016155370A1 (zh) 多联机系统
WO2016155369A1 (zh) 多联机系统
WO2016173497A1 (zh) 多联机系统及其中压控制方法
CN104101127B (zh) 多联机空调系统及其化霜控制方法
WO2019134509A1 (zh) 室外机、空调系统及控制方法
WO2019179452A1 (zh) 室外机、多联机系统及其控制方法
WO2018049722A1 (zh) 多联机系统及其室内机运行模式的切换控制方法
WO2020088425A1 (zh) 空调机及其控制方法
WO2018076934A1 (zh) 空调及其制冷系统
WO2022017297A1 (zh) 热泵系统
JPWO2019053876A1 (ja) 空気調和装置
CN104764115B (zh) 多联机系统
CN105157284A (zh) 空调系统
JP2015004482A (ja) 給湯及び空調システム
TWI588424B (zh) 熱泵空調系統及其控制方法
CN108007016A (zh) 热泵系统以及热泵系统的控制方法
CN214536576U (zh) 一种多联机空调系统
CN204902340U (zh) 空调系统
WO2017012382A1 (zh) 多联机室外机和具有其的多联机
JP2004324947A (ja) 空気調和装置
CN210154145U (zh) 空调系统
CN111237880A (zh) 一种热回收多联机
JPH0424364Y2 (zh)
CN220287825U (zh) 冷媒系统及空调器
CN218672358U (zh) 多联机空调及其空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887320

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015887320

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015887320

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016030917

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 15329821

Country of ref document: US

ENP Entry into the national phase

Ref document number: 112016030917

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161229

NENP Non-entry into the national phase

Ref country code: DE