WO2019179452A1 - 室外机、多联机系统及其控制方法 - Google Patents

室外机、多联机系统及其控制方法 Download PDF

Info

Publication number
WO2019179452A1
WO2019179452A1 PCT/CN2019/078807 CN2019078807W WO2019179452A1 WO 2019179452 A1 WO2019179452 A1 WO 2019179452A1 CN 2019078807 W CN2019078807 W CN 2019078807W WO 2019179452 A1 WO2019179452 A1 WO 2019179452A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor
mode
outdoor
heat exchanger
outdoor unit
Prior art date
Application number
PCT/CN2019/078807
Other languages
English (en)
French (fr)
Inventor
刘敏
李亚军
宋旭彤
孙龙
朱海滨
何明顺
Original Assignee
青岛海信日立空调系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信日立空调系统有限公司 filed Critical 青岛海信日立空调系统有限公司
Publication of WO2019179452A1 publication Critical patent/WO2019179452A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0292Control issues related to reversing valves

Definitions

  • the present disclosure relates to the field of air conditioning, and more particularly to an outdoor unit, a multi-line system, and a control method.
  • Multi-line system commonly known as "one-to-many” refers to an outdoor unit connecting two or more indoor units through piping.
  • the outdoor unit of the multi-connection system can effectively reduce the equipment cost, and can realize centralized management of each indoor unit. It can start one indoor unit separately or multiple indoor units can be started at the same time. It makes control more flexible and therefore an important direction for the development of air conditioners.
  • an outdoor unit configured to be connected to a plurality of indoor units through a liquid pipe, a first air pipe, and a second air pipe to form a multi-connection system; wherein
  • the outdoor unit includes: a compressor, an outdoor heat exchanger, an outdoor throttle device, a four-way valve, a first electromagnetic valve, and a second electromagnetic valve;
  • a first end of the four-way valve is connected to an exhaust end of the compressor; a second end of the four-way valve is connected to one end of the outdoor heat exchanger; and a third end of the four-way valve The end is connected to the suction end of the compressor; the fourth end of the four-way valve is configured to be connected to the first air pipe;
  • the other end of the outdoor heat exchanger is configured to be connected to the liquid pipe through the outdoor throttling device;
  • One end of the first electromagnetic valve is connected to the first end of the four-way valve, and the other end of the first electromagnetic valve is configured to be connected to the second air pipe;
  • One end of the second solenoid valve is coupled to the third end of the four-way valve, and the other end of the second solenoid valve is configured to be coupled to the second air tube.
  • a multi-line system comprising the outdoor unit according to the first aspect, wherein the outdoor unit can pass through a liquid pipe, a first air pipe, and a second air pipe and a plurality of The indoor unit is connected; wherein the outdoor unit comprises: a compressor, an outdoor heat exchanger, a four-way valve, a first electromagnetic valve and a second electromagnetic valve;
  • a first end of the four-way valve is connected to an exhaust end of the compressor; a second end of the four-way valve is connected to one end of the outdoor heat exchanger; and a third end of the four-way valve The end is connected to the suction end of the compressor; the fourth end of the four-way valve is connected to the first air pipe;
  • the other end of the outdoor heat exchanger is connected to the liquid pipe;
  • One end of the first electromagnetic valve is connected to the first end of the four-way valve, and the other end of the first electromagnetic valve is connected to the second air pipe;
  • One end of the second solenoid valve is connected to the third end of the four-way valve, and the other end of the second solenoid valve is connected to the second air pipe.
  • a third aspect of the embodiments of the present disclosure provides a method for controlling a multi-line system according to the second aspect, for the multi-line system, the method comprising: controlling the outdoor unit according to the first mode, the second mode, and the One of the three modes and the fourth mode, wherein
  • Controlling the operation of the outdoor unit according to the first mode includes: controlling a first end and a second end of the four-way valve to communicate, the third end and the fourth end are in communication; controlling the first electromagnetic valve to close and the second electromagnetic valve to open; Controlling the outdoor unit to operate in the second mode includes: controlling a first end and a second end of the four-way valve to communicate, the third end and the fourth end being in communication; controlling the first solenoid valve to open and the second solenoid valve Shutting down; controlling the outdoor unit to operate according to the third mode comprises: controlling a first end and a fourth end of the four-way valve to communicate, the second end and the third end are in communication; controlling the first solenoid valve to open and The second electromagnetic valve is closed; controlling the outdoor unit to operate according to the fourth mode comprises: controlling the first end and the fourth end of the four-way valve to communicate, the second end and the third end are in communication; controlling the first The solenoid valve is closed and the second solenoid valve is open.
  • FIG. 1 is a schematic structural diagram of a multi-line system in which an indoor unit is a single type in the related art
  • FIG. 2 is a schematic structural diagram of a multi-line system according to some embodiments of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a multi-line system including the outdoor unit shown in FIG. 2 according to some embodiments of the present disclosure
  • FIG. 4 is a schematic structural diagram of another multi-line system including the outdoor unit shown in FIG. 2 according to some embodiments of the present disclosure
  • FIG. 5 is a schematic diagram of the outdoor unit of the multi-connection system shown in FIG. 4 operating in a fourth mode
  • FIG. 6 is a flowchart of a control method of an outdoor unit of a multi-line system according to some embodiments of the present disclosure
  • FIG. 7 is a schematic diagram of an outdoor unit of the multi-connection system shown in FIG. 3 operating in a first mode
  • FIG. 8 is a schematic diagram of the outdoor unit of the multi-connection system shown in FIG. 3 operating in a second mode
  • FIG. 9 is a schematic diagram of the outdoor unit of the multi-connection system shown in FIG. 4 operating in a second mode
  • FIG. 10 is a schematic diagram of the outdoor unit of the multi-connection system shown in FIG. 3 operating in a third mode
  • FIG. 11 is a block diagram of a control device of the multiple-line system as shown in FIG. 3 or FIG. 4, in accordance with some embodiments of the present disclosure.
  • the indoor units of the multi-line system are usually of a single type, for example, indoor units that are all three-regulated.
  • the outdoor unit heat exchanger is used as a condenser.
  • the heat exchangers of the two controlled indoor units cannot be used as a condenser to operate the system. Hot mode.
  • the outdoor unit does not have the indoors supporting the two controls while the three-regulated indoor unit operates the dehumidification function and the heating function. The ability of the machine to run the heating mode.
  • the indoor unit of the multi-line system in the related art includes two three-regulated indoor units 02, 02' and an outdoor unit 01, wherein each indoor unit and the outdoor unit pass through a liquid pipe and a first air pipe. Connected to the second air tube.
  • the flow path of the refrigerant in the multi-line system is as shown in FIG. 1: in the outdoor unit 01, the A end and the B end of the four-way valve are connected. The C end is connected to the D end, the solenoid valve 40 is opened, the solenoid valve 30 is closed, and the outdoor throttle device 20 is fully opened.
  • the first indoor heat exchanger 50 of the outdoor heat exchanger 10 and the indoor unit 02 serves as a condenser
  • the second indoor heat exchanger 60' of the indoor unit 02' serves as an evaporator
  • the second indoor heat exchanger 60 of the indoor unit 02 does not have a heat exchange effect.
  • Some embodiments of the present disclosure provide an outdoor unit 01 as shown in FIG. 2, which can be connected to an indoor unit through a liquid pipe 201, a first air pipe 202, and a second air pipe 203 to form a multi-connection system.
  • the outdoor unit includes a compressor 1, an outdoor heat exchanger 2, an outdoor throttle device 3, a four-way valve (also referred to as a four-way switching valve) 4, a first electromagnetic valve 5, and a second electromagnetic valve 6.
  • first end A of the four-way valve 4 is connected to the exhaust end of the compressor 1; the second end B of the four-way valve 4 is connected to one end of the outdoor heat exchanger 2, and the other end of the outdoor heat exchanger 2
  • the third end C of the four-way valve 4 is connected to the suction end of the compressor 1 through the outdoor throttle device 3; the fourth end D of the four-way valve 4 is connected to the first air tube 202;
  • One end of the first solenoid valve 5 is connected to the first end A of the four-way valve 4, and the other end is connected to the second air tube 203;
  • one end of the second electromagnetic valve 6 is connected to the third end C of the four-way valve 4, The other end is connected to the second air tube 203.
  • the outdoor throttle device 3 is for adjusting the amount of refrigerant flowing through the outdoor heat exchanger.
  • the throttle device may be a thermal expansion valve, an electronic expansion valve, or the like. Since the electronic expansion valve has the advantages of low applicable temperature, adjustable superheat setting, and energy saving, in some embodiments, the throttling device is an electronic expansion valve.
  • the outdoor unit 01 may further include an oil separator 7, a third electromagnetic valve 8, a capillary 9, a check valve 10, a gas-liquid separator 11, and a liquid side shutoff valve 12.
  • connection relationship of the components in the outdoor unit 01 is such that the exhaust end of the compressor 1 is connected to the inlet end of the oil separator 7, and the outlet end of the oil separator 7 is connected to one end of the check valve 10.
  • the other end of the check valve 10 is connected to the first end A of the four-way valve 4; the second end B of the four-way valve 4 is connected to one end of the outdoor heat exchanger 2, and the other end of the outdoor heat exchanger 2 is One end of the outdoor throttle device 3 is connected, the other end of the outdoor throttle device 3 is connected to one end of the liquid side shutoff valve 12, and the third end C of the four-way valve 4 is connected to one end of the gas-liquid separator 11
  • the other end of the liquid separator 11 is connected to the suction end of the compressor 1, and the fourth end D of the four-way valve 4 is connected to one end of the first gas-side shutoff valve 13.
  • One end of the first solenoid valve 5 is connected to the first end A of the four-way valve 4, the other end of the first solenoid valve 5 is connected to one end of the second gas-side shut-off valve 14; one end of the second solenoid valve 6 and four The third end C of the valve 4 is connected, and the other end of the second solenoid valve 6 is connected to one end of the second gas-side shutoff valve 14.
  • One end of the third solenoid valve 8 is connected to the oil discharge end of the oil separator 7, the other end of the third solenoid valve 8 is connected to one end of the capillary 9, and the other end of the capillary 9 is connected to the suction end of the compressor 1. .
  • the liquid side shutoff valve 12 is disposed on the liquid pipe 201
  • the first gas side shutoff valve 13 is disposed on the first gas pipe 202
  • the second gas side shutoff valve 14 is disposed on the second gas pipe 203.
  • the above-mentioned shut-off valve may be disposed in the outdoor unit 01 as a part of the outdoor unit 01 or may be disposed outside the outdoor unit 01, which is not limited in the embodiment of the present disclosure.
  • some embodiments of the present disclosure provide an outdoor unit 01, which is formed by mixing the outdoor unit 01 with the three-regulated indoor units 02 and 02' and the two controlled indoor units 04 as shown in FIG.
  • the first end A and the fourth end D of the four-way valve 1 are controlled to communicate, and the second end B and the third end C of the four-way valve are controlled to communicate, and the first electromagnetic valve 5 is closed.
  • the second electromagnetic valve 6 is opened, and the outdoor throttle device 3 is throttled and depressurized.
  • the outdoor heat exchanger 2 is an evaporator.
  • the first indoor heat exchanger 16 of the three-regulated indoor unit 02 and the second indoor heat exchanger 18' of the three-regulated indoor unit 02' do not function; the second of the three-regulated indoor unit 02
  • the indoor heat exchanger 18 is a condenser, so that the three-regulated indoor unit 02 operates in a heating mode;
  • the first indoor heat exchanger 16' of the three-regulated indoor unit 02' is an evaporator, so that the three-regulated indoor unit 02' operates The dehumidification mode;
  • the indoor heat exchanger 20 of the two-regulated indoor unit 04 is a condenser, so that the two-regulated indoor unit 04 operates in a heating mode.
  • the outdoor unit provided by some embodiments of the present disclosure has a multi-line system formed by mixing with the three-regulated indoor unit and the two-regulated indoor unit, and a part of the indoor unit of the three-control indoor unit performs the heating function. And another part of the indoor unit running the dehumidification function, the ability of the two-regulated indoor unit to operate the heating mode.
  • Some embodiments of the present disclosure provide a multi-line system as shown in FIG. 3 or FIG. 4, which includes the aforementioned outdoor unit, having the same structure and advantageous effects as the aforementioned outdoor unit. Since the structure and beneficial effects of the outdoor unit have been described in detail, they will not be described again here.
  • the multi-line system also includes at least two three-regulated indoor units, and in some embodiments, the multi-line system includes three-regulated indoor units 02 and 02'.
  • the three-regulated indoor unit 02 includes: a first indoor throttle device 15, a first indoor heat exchanger 16, a second indoor throttle device 17, and a second indoor heat exchanger 18;
  • the machine 02' includes a first indoor throttle device 15', a first indoor heat exchanger 16', a second indoor throttle device 17', and a second indoor heat exchanger 18'.
  • connection relationship between the outdoor unit 01 and the above-mentioned three-regulated indoor unit 02 is that one end of the first indoor heat exchanger 16 is connected to the liquid pipe 201 through the first indoor throttle device 15, and the first indoor heat exchanger 16 The other end is connected to the second air pipe 203; one end of the second indoor heat exchanger 18 is connected to the liquid pipe 201 through the second indoor throttle device 17, and the other end of the second indoor heat exchanger 18 is connected to the first air pipe 202. connection.
  • connection relationship between the outdoor unit 01 and the above-mentioned three-regulated indoor unit 02' can be obtained by this connection relationship and referring to FIG. 3, and details are not described herein again.
  • the other end of the liquid-side shutoff valve 12 is connected to one end of the first indoor throttle device 15 and one end of the second indoor throttle device 17 through the first branch pipe 301 and the fourth branch pipe 03;
  • the other end of the indoor throttle device 15 is connected to one end of the first indoor heat exchanger 16, and the other end of the first indoor heat exchanger 16 passes through the third branch pipe 303 and the other end of the second gas side shutoff valve 14.
  • the other end of the second indoor throttle device 17 is connected to one end of the second indoor heat exchanger 18, and the other end of the second indoor heat exchanger 18 is passed through the second branch pipe 302 and the first gas side shutoff valve 13 The other end is connected.
  • FIG. 3 a detailed connection relationship between the outdoor unit 01 and the above-mentioned three-regulated indoor unit 02' can be obtained, and details are not described herein again.
  • the multi-line system may also include at least one two-regulated indoor unit.
  • each of the two-regulated indoor units 04 includes a third indoor throttle device 19 and a third indoor heat exchanger 20.
  • One end of the third indoor heat exchanger 20 is connected to the liquid pipe 201 through the third indoor expansion device 19, and the other end of the third indoor heat exchanger 20 is connected to the first gas pipe 202.
  • the third throttle device 19 may be an indoor electronic expansion valve.
  • one end of the third indoor heat exchanger 20 is connected to one end of the third indoor throttle device 19, and the other end of the third indoor throttle device 19 passes through the first branch pipe 301 and the liquid side shutoff valve 12
  • the other end of the third indoor heat exchanger 20 is connected to the other end of the first gas-side shutoff valve 13 via a second branch pipe 302.
  • the second indoor heat exchangers 18 and 18' of the three-regulated indoor unit and the two-regulated indoor unit has similar structural dimensions. Therefore, for the multi-line system shown in FIG. 4, when the three-regulated indoor unit 02 and the two-regulated indoor unit 04 both operate the heating function as shown in FIG. 5, The heating capacity of the three-regulated indoor unit 02 is similar to that of the two-regulated indoor unit 04, which meets the user's needs. Further, the ratio of the heat exchange areas of the first indoor heat exchanger 16 and the second indoor heat exchanger 18 in the three-controlled indoor unit 02 is 1/4 to 1/3.
  • the multi-line system shown in FIG. 4 operates the heating mode in the three-regulated indoor unit 02 and the two-regulated indoor unit 04, and the three-regulated indoor unit 02' operates the dehumidification mode to open and close the components. And the flow of the refrigerant is explained:
  • the first end A and the fourth end D of the four-way valve 4 are in communication, and the second end B and the third end C of the four-way valve 4 are in communication, the first electromagnetic valve 5 is closed, the second electromagnetic valve 6 is opened, and the outdoor throttle is
  • the device 3 is throttled and the outdoor heat exchanger 2 is an evaporator.
  • the first indoor throttle device 15 of the indoor unit 02 is fully closed, the second indoor throttle device 17 is fully open, the second indoor heat exchanger 18 is a condenser, and the first indoor throttle device 15' of the indoor unit 02' is throttled. Step down, the first indoor heat exchanger 16' is an evaporator, and the second indoor throttle device 17' is fully closed.
  • the high-pressure gas refrigerant discharged from the exhaust end of the compressor 1 passes through the oil separator 7, the check valve 10, the first end A and the fourth end D of the four-way valve 4, the first gas side shutoff valve 13, and the second divergence
  • the tube 302 is divided into two refrigerants
  • one refrigerant sequentially enters the first branch pipe 301 through the second indoor heat exchanger 18, the second indoor throttle device 17, and the fourth branch pipe 03 of the indoor unit 02;
  • the refrigerant sequentially flows through the third indoor heat exchanger 20 and the third indoor electronic expansion valve 19 of the indoor unit 04, a part of the refrigerator enters the first branch pipe 301, and another part of the refrigerant enters the fourth branch pipe of the indoor unit 02'. 03'.
  • the refrigerant entering the first branch pipe 301 sequentially flows through the liquid side shutoff valve 12, the outdoor throttle device 3, the outdoor heat exchanger 2, the second end B and the third end C of the four-way valve 4, and enters the gas-liquid separator. 11 after gas-liquid separation, enters the suction end of the compressor 1; the refrigerant entering the fourth branch pipe 03' of the indoor unit 02' sequentially flows through the first indoor throttle device 15' of the indoor unit 02', the first indoor The heat exchanger 16', the third branch pipe 303, the second gas side shutoff valve 14, and the second solenoid valve 6 enter the gas-liquid separator 11 to perform gas-liquid separation, and then enter the intake end of the compressor 1.
  • the first indoor heat exchanger 16 of the three-regulated indoor unit 02 and the second indoor heat exchanger 18' of the three-regulated indoor unit 02' do not function; the second of the three-regulated indoor unit 02
  • the indoor heat exchanger 18 is a condenser, so that the three-regulated indoor unit 02 operates in a heating mode;
  • the first indoor heat exchanger 16' of the three-regulated indoor unit 02' is an evaporator, so that the three-regulated indoor unit 02' operates The dehumidification mode;
  • the third indoor heat exchanger 20 of the two-regulated indoor unit 04 is a condenser, so that the two-regulated indoor unit 04 operates in a heating mode.
  • the outdoor unit in the multi-line system of the three-regulated indoor unit and the two-regulated indoor unit hybrid provided by some embodiments of the present disclosure has a part of the indoor unit running heating in the indoor unit supporting the three regulations.
  • the function and the operation of the dehumidification function of another part of the indoor unit enable the two-regulated indoor unit to operate in the heating mode.
  • the indoor unit of the multi-line system can implement a common dehumidification function, a cooling function, a reheat dehumidification function, and a heating function.
  • the ordinary dehumidification function refers to the case where the second indoor heat exchanger 18' does not operate as shown in FIG. 5, and the first indoor heat exchanger 16' functions as an evaporator;
  • the cooling function refers to As shown in FIG. 7, the second indoor heat exchanger 18 serves as an evaporator, and the first indoor heat exchanger 16 serves as an evaporator, or as shown in the indoor unit 02' of FIG.
  • the reheat dehumidification function refers to the indoor unit 02, 02' of Fig. 8 and the indoor unit 02 of Fig. 9, the second indoor heat exchanger 18 and 18' are used as evaporators, and the first indoor heat exchangers 16 and 16' are used as condensers;
  • the heating function means that the second indoor heat exchangers 18 and 18' serve as condensers as shown in FIG.
  • the first indoor heat exchangers 16 and 16' are used as a condenser, or as shown in the indoor unit 02 of FIG. 5, the second indoor heat exchanger 18 functions as a condenser, and the first indoor heat exchanger 16 does not operate.
  • the cooling function refers to the case where the third indoor heat exchanger 20 functions as an evaporator as shown in FIG. 9; the heating function is as shown in FIG. 5, and refers to the third indoor heat exchanger 20 as The case of the condenser.
  • the third indoor heat exchanger 20 when used as an evaporator, the two-regulated indoor unit 04 can also realize the ordinary dehumidification function, but the two-regulated indoor unit 04 cannot realize the reheat dehumidification function.
  • the indoor electronic expansion valve connected to the heat exchanger can be completely closed, so that the heat exchanger can be disabled; and the indoor electronic expansion valve connected to the heat exchanger can be throttled, which can make The heat exchanger acts as an evaporator; the indoor electronic expansion valve connected to the heat exchanger is controlled to be fully open, so that the heat exchanger can be used as a condenser.
  • Some embodiments of the present disclosure further provide a method for controlling a multi-line system, including: controlling an outdoor unit to operate according to one of a first mode, a second mode, a third mode, and a fourth mode;
  • Controlling the outdoor unit to operate in the first mode includes: controlling the first end A and the second end B of the four-way valve 4 to communicate, the third end C and the fourth end D are in communication; controlling the first solenoid valve 5 to close and the second solenoid valve 6 open.
  • Controlling the outdoor unit to operate in the second mode includes: controlling the first end A and the second end B of the four-way valve 4 to communicate, the third end C and the fourth end D are in communication; controlling the first solenoid valve 5 to open and the second solenoid valve 6 closed.
  • Controlling the outdoor unit to operate in the third mode includes: controlling the first end A and the fourth end D of the four-way valve 4 to communicate, the second end B and the third end C are in communication; controlling the first solenoid valve 5 to open and the second solenoid valve 6 closed.
  • Controlling the outdoor unit to operate in the fourth mode includes: controlling the first end A and the fourth end D of the four-way valve 4 to communicate, the second end B and the third end C are in communication; controlling the first solenoid valve 5 to close and the second solenoid valve 6 open.
  • the four-way valve 4 when the four-way valve 4 is powered off, the first end A and the second end B of the four-way valve 4 can be connected, and the third end C and the fourth end D are connected; the four-way valve 4 is energized, The first end A and the second end B of the four-way valve 4 are communicated, and the third end C and the fourth end D are in communication.
  • controlling the outdoor unit to operate according to the first mode may include: after the outdoor unit 01 is powered on, first determining, according to the actual required running state of the multi-line system, that the operating mode of the outdoor unit is the first mode, and the mode flag is recorded as 00.
  • the mode flag of the first mode is 00
  • the mode flag of the second mode is 01
  • the mode flag of the third mode is 10
  • the mode flag of the fourth mode is 11
  • the component control method corresponding to the flag bit 00 sets the state of each component, and the outdoor unit operates in the state of each component that is set.
  • the component control method in each operation mode may be pre-stored in a memory. After the operation mode of the outdoor unit is selected, the component control method corresponding to each mode flag bit may be acquired from the memory to control the state of each component in the outdoor unit. .
  • control method further includes 102: the outdoor unit is set to the first mode.
  • the four-way valve 4 since the first end A and the second end B of the four-way valve 4 are in communication in the first mode, the third end C and the fourth end D are in communication, and the four-way valve 4 is The power-off state can prevent the four-way valve 4 from being energized when the operation mode of the outdoor unit is not determined, thereby reducing the operating power consumption of the outdoor unit.
  • the first determining condition includes: the suction pressure Ps of the compressor is greater than or equal to the first threshold pressure P1, and continues for the first threshold duration S1; and, the outdoor ambient temperature Ta is greater than or equal to the first threshold temperature T1; The difference between the exhaust temperature Td of the machine and the saturation temperature Tc corresponding to the exhaust pressure of the multi-line system is less than or equal to the second threshold temperature T2 and continues for the second threshold duration S2.
  • the current system parameters include system parameters of the multi-line system and outdoor environment parameters.
  • the first threshold pressure P1, the first threshold duration S1, the first threshold temperature T1, the second threshold temperature T2, and the second threshold duration S2 may be threshold values set in advance according to actual needs. For example, 1.1 Mpa can be directly used as the first threshold pressure P1.
  • the description of the threshold pressure, the threshold duration, and the threshold temperature is applicable to the threshold pressure, the threshold duration, and the threshold temperature in each of the following determination conditions, and the embodiments of the present disclosure will not be described again.
  • the first determination condition comprises: Ps ⁇ 1.1 MPa for 10 minutes; and, Ta ⁇ 43 ° C; and, (Td - Tc) ⁇ 40 ° C for 1 minute.
  • the selected first mode of operation of the outdoor unit means that the operation mode of the outdoor unit is determined to be the first mode according to the current system parameters of the multi-line system and the operation mode of the indoor unit. Execute 117 after determining that the outdoor mode of operation of the outdoor unit is the first mode.
  • the outdoor unit is selected. Run in the first mode.
  • the selected outdoor unit operates in the second mode.
  • the selected outdoor unit operates in the second mode. Execute 117 after determining that the outdoor mode of operation of the outdoor unit is the second mode.
  • the outdoor unit is controlled to operate.
  • the second mode if there is no indoor unit that has a heating function in the multi-line system, and an indoor unit that does not have a reheat dehumidification function, and the current system parameter satisfies the first determination condition, then the outdoor unit is controlled to operate. The second mode.
  • the second judgment condition includes: the suction pressure Ps of the compressor is less than or equal to the second threshold pressure P2, and continues for the third threshold duration S3; or, the outdoor ambient temperature Ta is less than or equal to the third threshold temperature T3; or, the compressor
  • the difference between the exhaust gas temperature Td and the saturation temperature Tc corresponding to the multi-line system exhaust pressure is greater than or equal to the fourth threshold temperature T4 and continues for the fourth threshold duration S4.
  • the second determination condition comprises: Ps ⁇ 0.7 MPa for 10 minutes; or, Ta ⁇ 43 ° C; or, (Td - Tc) ⁇ 50 ° C for 1 minute.
  • the outdoor unit stops for the first time.
  • the down time of the outdoor unit can be set according to the actual pressure difference between the liquid pipe and the air pipe, and the pressure of the liquid pipe and the air pipe can be uniform after the outdoor machine stops the first time.
  • the outdoor unit is controlled to stop for 3 minutes after the second determination condition is satisfied. After the outdoor unit stops for the first time, 106 is performed.
  • the current system parameter satisfies the first judgment condition, that is, in a high temperature environment
  • the opening function of the indoor unit of the multi-line system is the cooling function
  • the exhaust pressure of the unit is easily too high, thereby restricting the compressor.
  • the operating frequency so that the refrigerant flow involved in the cycle is not enough, at this time the indoor unit's cooling capacity is poor.
  • it is generally required to increase the amount of refrigerant participating in the circulation in the multi-line system.
  • the control outdoor unit 01 when the current system parameter satisfies the first determination condition, the control outdoor unit 01 operates in the second mode to drive the refrigerant stored in the first indoor heat exchanger of the three-regulated indoor unit to remain, Reduce the exhaust pressure of the system, thereby increasing the operating frequency of the system, thereby increasing the amount of refrigerant circulation in the second heat exchanger of the three-control indoor unit. Since the overall cooling capacity of the system mainly depends on the second heat exchanger, the indoors are improved. The cooling capacity of the machine in high temperature environment.
  • the third determining condition includes: the outdoor ambient temperature Ta is greater than or equal to the fifth threshold temperature T5, and continues for the fifth threshold duration S5.
  • the third determination condition comprises: Ta ⁇ 15 ° C for 10 minutes.
  • the third mode of the outdoor unit is selected to operate.
  • the outdoor unit is selected to operate.
  • the third mode if there is an indoor unit with a heating function in the multi-line system, an indoor unit that does not have an ordinary dehumidification function, and the current system parameter satisfies the third determination condition, the outdoor unit is selected to operate. The third mode.
  • the fourth determining condition includes: the outdoor ambient temperature Ta is less than or equal to the sixth threshold temperature T6.
  • the fourth determination condition comprises: Ta ⁇ 9°C.
  • the outdoor unit stops for the second time.
  • the second time period in which the outdoor unit is stopped in the above 115 is the same as the beneficial effect of the above 109, and details are not described herein again.
  • 115 is performed. In some embodiments, the outdoor unit is stopped for 3 minutes.
  • 117 is executed after the selected outdoor unit runs the fourth mode.
  • the fourth determination condition that is, in a low temperature environment
  • the indoor unit of the multi-line system runs the heating function
  • the refrigerant stored in the heat exchanger of the three-regulated indoor unit There are many, and the heating capacity of the indoor unit is poor at this time.
  • the control outdoor unit 01 when the current system parameter satisfies the fourth determination condition, the control outdoor unit 01 operates in the fourth mode to discharge the refrigerant residing in the first indoor heat exchanger of the three-regulated indoor unit, so that These refrigerants participate in the cycle, thereby increasing the amount of refrigerant circulating in the second heat exchanger of the three-regulated indoor unit, which in turn improves the heating capacity of the indoor unit in a low temperature environment.
  • the fourth mode of the outdoor unit operation can be selected in the following cases:
  • the fourth mode is selected for the outdoor unit to operate.
  • the fourth mode is selected for the outdoor unit to operate.
  • the outdoor unit when the outdoor unit is operating in the third mode, if the current system parameter satisfies the fourth determination condition, and the outdoor unit is controlled to stop for the second time period, the fourth mode of the outdoor unit operation is selected.
  • the outdoor unit starts to run.
  • the state of each component of the outdoor unit is set according to each component control method corresponding to each operation mode, and then the outdoor unit is controlled under the component state. Start running.
  • the selected outdoor unit when the opening function of the indoor unit of the multi-line system is a cooling function, the selected outdoor unit operates the first mode, and controls the first end A and the fourth end of the four-way valve 4.
  • the two ends B are in communication, and the third end C and the fourth end D are in communication; the first electromagnetic valve 5 is closed and the second electromagnetic valve 6 is opened.
  • the first indoor heat exchangers 16, 16' and the second indoor heat exchangers 18, 18' of the three-regulated indoor unit 02, 02' are both evaporators, and the outdoor unit 01
  • the outdoor heat exchanger 2 is a condenser.
  • the selected outdoor unit when the indoor unit without the heating function and the indoor unit with the reheat dehumidification function are turned on in the multi-line system, the selected outdoor unit operates the second mode and controls The first end A and the second end B of the four-way valve 4 are in communication, and the third end C and the fourth end D are in communication; the first electromagnetic valve 5 is opened and the second electromagnetic valve 6 is closed.
  • the multi-line system is operated in this case, in FIG. 8, the first indoor heat exchangers 16, 16' of the three-regulated indoor unit 02, 02' are condensers, and the second indoor heat exchangers 18, 18' are evaporated.
  • FIG. 8 when the indoor unit without the heating function and the indoor unit with the reheat dehumidification function are turned on in the multi-line system, the selected outdoor unit operates the second mode and controls The first end A and the second end B of the four-way valve 4 are in communication, and the third end C and the fourth end D are in communication; the first electromagnetic valve 5 is opened and the second electromagnetic valve 6 is closed.
  • the first indoor heat exchanger 16 of the three-regulated indoor unit 02 is a condenser
  • the second indoor heat exchanger 18 is an evaporator
  • the first indoor heat exchanger 16 of the three-regulated indoor unit 02' Not working
  • the second indoor heat exchanger 18 is an evaporator
  • the third indoor heat exchanger 20 of the two regulated indoor units 04 is an evaporator.
  • the outdoor if there is an indoor unit with a heating function in the multi-connection system, an indoor unit that does not have an ordinary dehumidification function, and the current system parameter satisfies the third determination condition, the outdoor is selected.
  • the machine runs the third mode. And controlling the first end A and the fourth end D of the four-way valve 4 to communicate, the second end B and the third end C are in communication; controlling the first solenoid valve 5 to open and the second solenoid valve 6 to close.
  • the first indoor heat exchanger 16 of the three-regulated indoor unit 02, the second indoor heat exchanger 18, and the first indoor heat exchanger 16' of the three-regulated indoor unit 02' The second indoor heat exchanger 18' is a condenser.
  • the outdoor unit is selected to operate in the fourth mode, and the four-way valve is controlled.
  • the first end A and the fourth end D of 4 are in communication, and the second end B and the third end C are in communication; the first solenoid valve 5 is closed and the second solenoid valve 6 is opened.
  • the multi-line system is operated under this circumstance, the three-regulated indoor unit 02 runs the heating function, the three-regulated indoor unit 02' runs the ordinary dehumidification function, and the two-regulated indoor unit 04 runs the heating function.
  • the figure The specific functions of the indoor units of the multi-line system shown in FIG. 5 have been described in the foregoing embodiments, and are not described herein again.
  • control outdoor unit operates in the first mode
  • ⁇ EV1 (Tg - Tl) - Km ⁇ (Ti - Tl)
  • ⁇ EV2 (Trg - Trl) - Km ⁇ (Ti - Tl).
  • ⁇ EEV(n) is the total change value of the opening degree of the indoor throttle device of the indoor unit of the three regulations
  • ⁇ EVmax is a larger value among ⁇ EV1 and ⁇ EV2
  • ⁇ EVmin is a smaller value among ⁇ EV1 and ⁇ EV2
  • ⁇ EVmean is The average value in ⁇ EV1 and ⁇ EV2
  • Km is the control coefficient.
  • Km ranges from 0.5 to 0.8; Tg is the tracheal temperature of the second indoor heat exchanger 18, Tl is the liquid pipe temperature of the second indoor heat exchanger 18; and Trg is used to represent the first indoor
  • the gas pipe temperature of the heat exchanger 16 Tr1 is used to indicate the liquid pipe temperature of the first indoor heat exchanger 16 and Ti is used to indicate the return air temperature of the indoor unit.
  • the change value ⁇ EEV(n) of the opening degree of the indoor electronic expansion valve is calculated in each control period, and the indoor electronic expansion is performed during the control period.
  • the valve opening degree EEV(n) EEV(n-1)+ ⁇ EEV(n).
  • the algorithm of the total change value ⁇ EEV(n) of the opening degree of the indoor throttle device of the indoor unit of the above-described three controls is the same as the change value ⁇ EEV(n) of the opening degree of the indoor electronic expansion valve, and the embodiment of the present disclosure no longer Narration.
  • the total change value of the opening degree of the indoor throttle device of the three-regulated indoor unit may be allocated to the first indoor section.
  • the value of Kt ranges from 8 to 10
  • the range of Kp ranges from 1.5 to 2.
  • the first of the indoor units that operate the reheat dehumidification function is calculated based on the outlet air temperature, the set temperature, and the return air temperature of the indoor unit.
  • the opening degree of the indoor throttle device 15 and the second indoor throttle device 17 achieves dehumidification while increasing the outlet air temperature.
  • the opening degree EVR(0) and the second indoor throttle of the first indoor throttle device 15 are in the first control cycle of the multi-line system.
  • the opening EVI(0) of the device 17 is a fixed value.
  • control device for a multi-line system. As shown in FIG. 11, the control device includes:
  • the storage module 201 is configured to store program code.
  • the program code stored in the storage module 201 may be a component control method in each of the above operation modes.
  • the storage module can be a memory, a magnetic disk, or an optical disk or the like.
  • the control module 202 is configured to control the outdoor unit to operate according to one of the first mode, the second mode, the third mode, and the fourth mode.
  • the control module 202 can be a separately provided processor or a processor integrated in the control device of the multi-line system.
  • the processor here can be a central processing unit (English full name: Central Processing Unit, English abbreviation: CPU), a specific integrated circuit (English full name: Application Specific Integrated Circuit, English abbreviation: ASIC), or a field programmable gate array ( English full name: Field-Programmable Gate Array, English abbreviation: FPGA).
  • the control module 202 controlling the outdoor unit 01 to operate according to the first mode includes: controlling the first end A and the second end B of the four-way valve 4 to communicate, the third end C and the fourth end D are in communication; and controlling the first electromagnetic valve 5 is closed and the second solenoid valve 6 is opened.
  • the control module 202 controlling the outdoor unit to operate according to the second mode comprises: controlling the first end A and the second end B of the four-way valve 4 to communicate, the third end C and the fourth end D are in communication; controlling the first electromagnetic valve 5 to open and The second solenoid valve 6 is closed.
  • the control module 202 controlling the outdoor unit to operate according to the third mode comprises: controlling the first end A and the fourth end D of the four-way valve 4 to communicate, the second end B and the third end C are in communication; controlling the first electromagnetic valve 5 to open and The second solenoid valve 6 is closed.
  • the control module 202 controlling the outdoor unit to operate according to the fourth mode comprises: controlling the first end A and the fourth end D of the four-way valve 4 to communicate, the second end B and the third end C are in communication; controlling the first electromagnetic valve 5 to close and The second solenoid valve 6 is opened.
  • control device of the multi-line system may include a control board in the multi-line system, and the control board may include: an outdoor unit control board, an indoor unit control board, and communication with the indoor unit control board and the outdoor unit control board The total control panel connected.
  • the indoor unit control board may be disposed in each indoor unit, and the outdoor unit control board and the total control board may be disposed in the outdoor unit of the multi-line system.
  • the indoor unit control board can acquire the operation mode of each indoor unit and notify the general control board, and the outdoor unit control board can acquire the current system parameters of the outdoor unit, and the total control board can determine the operation mode of the outdoor unit by referring to the above control method, and The outdoor unit control panel is notified to control the outdoor unit to operate in accordance with the determined operation mode.
  • the indoor unit control panel can also determine and set the opening degree of each indoor electronic expansion valve of the indoor unit with reference to the above method.
  • some embodiments of the present disclosure provide a control device for a multi-line system, which can apply the control method of the multi-line system, where the control device of the multi-line system includes a memory and a processor, and the memory storage can be a computer program running on the processor, the processor configured to run the computer program to cause the outdoor unit of the multi-line system to follow one of a first mode, a second mode, a third mode, and a fourth mode Kind of operation.
  • the processor of the control device of the multi-line system can implement various logic functions, which can be divided into different functional modules according to the logic functions that the processor can implement.
  • the processor includes a determination module and a control module 202.
  • the control module 202 controls the outdoor unit according to the first mode. run.
  • the control module 202 controls the outdoor unit to operate according to the second mode.
  • the control module 202 controls the outdoor unit to operate according to the second mode.
  • the control module 202 controls the outdoor unit to stop operating for the first time period, and then controls the outdoor unit to operate according to the first mode.
  • control module 202 controls the outdoor unit to operate in the second mode.
  • the control module 202 controls the outdoor unit to operate according to the fourth mode. .
  • the control module 202 controls the outdoor unit to operate in the fourth mode.
  • the first determination condition, the second determination condition, the third determination condition, and the fourth determination condition may be stored in the storage module 201.
  • the processor of the control device of the online system further includes an opening degree setting module 203.
  • control module 202 controls the outdoor unit to operate in the first mode
  • ⁇ EV1 (Tg-Tl)-Km ⁇ (Ti-Tl)
  • ⁇ EV2 (Trg-Trl)-Km ⁇ (Ti-Tl)
  • control module 202 controls the outdoor unit to operate in the second mode
  • the processor of the control device of the multi-line system may further include an opening degree calculation module, and the opening degree calculation module is configured to calculate the first opening degree EVR(n) and the first in each control cycle. Two opening degrees EVI(n).
  • Some embodiments of the present disclosure provide a computer storage medium having stored therein computer instructions that, when run on a control device of a multi-line system, cause a control device of the multi-line system to perform any of the above A method of controlling multiple online systems.
  • the same advantages as the control method of the multi-line system provided by the foregoing embodiment are provided, and the embodiments of the present disclosure will not be described again.
  • the above computer storage medium may include a ROM (English full name: Read Only Memory image, Chinese name: read only memory image), RAM (English full name: Random Access Memory, Chinese name: random access memory), a disk Or a variety of media such as optical discs that can store program code.
  • ROM Read Only Memory image
  • RAM Random Access Memory
  • disk a variety of media such as optical discs that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种室外机(01)、多联机系统及控制方法。室外机(01)配置为通过液管(201)、第一气管(202)和第二气管(203)与多台室内机(02, 02', 04)相连接形成多联机系统;室外机(01)包括压缩机(1)、室外换热器(2)、四通阀(4)、第一电磁阀(5)和第二电磁阀(6);四通阀(4)的第一端(A)与压缩机(1)的排气端相连接,四通阀(4)的第二端(B)与室外换热器(2)的一端相连接,四通阀(4)的第三端(C)与压缩机(1)的吸气端相连接,四通阀(4)的第四端(D)与第一气管(202)相连接;室外换热器(2)的另一端配置为与液管(201)相连接;第一电磁阀(5)的一端与四通阀(4)的第一端(A)相连接,另一端与第二气管(203)相连接;第二电磁阀(6)的一端与四通阀(4)的第三端(C)相连接,另一端与第二气管(203)相连接。

Description

室外机、多联机系统及其控制方法
本申请要求于2018年3月21日提交中国专利局、申请号为201810237072.6、发明名称为“室外机、多联机系统及控制方法、装置、计算机存储介质”的中国专利申请的优先权和权益,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及空调领域,尤其涉及一种室外机、多联机系统及控制方法。
背景技术
多联机系统,俗称“一拖多”,指的是一台室外机通过配管连接两台或两台以上室内机。与多台家用空调相比,多联机系统的室外机共用,可有效降低设备成本,并可实现各室内机的集中管理,可单独启动一台室内机运行,也可多台室内机同时启动运行,使得控制更加灵活,因此成为空调发展的一个重要方向。
发明内容
本公开实施例的第一方面,提供一种室外机,所述室外机可配置为通过液管、第一气管和第二气管与多台室内机相连接形成多联机系统;其特征在于其中,所述室外机包括:压缩机、室外换热器、室外节流装置、四通阀、第一电磁阀和第二电磁阀;
所述四通阀的第一端与所述压缩机的排气端相连接;所述四通阀的第二端与所述室外换热器的一端相连接;所述四通阀的第三端与所述压缩机的吸气端相连接;所述四通阀的第四端配置为与所述第一气管相连接;
所述室外换热器的另一端配置为通过所述室外节流装置与所述液管相连接;
所述第一电磁阀的一端与所述四通阀的第一端相连接,所述第一电磁阀的另一端配置为与所述第二气管相连接;
所述第二电磁阀的一端与所述四通阀的第三端相连接,所述第二 电磁阀的另一端配置为与所述第二气管相连接。
本公开实施例的第二方面,提供一种多联机系统,该多联机系统包括如第一方面所述的室外机,所述室外机可通过液管、第一气管和第二气管与多台室内机相连;其中,所述室外机包括:压缩机、室外换热器、四通阀、第一电磁阀和第二电磁阀;
所述四通阀的第一端与所述压缩机的排气端相连接;所述四通阀的第二端与所述室外换热器的一端相连接;所述四通阀的第三端与所述压缩机的吸气端相连接;所述四通阀的第四端与所述第一气管相连接;
所述室外换热器的另一端与所述液管相连接;
所述第一电磁阀的一端与所述四通阀的第一端相连接,所述第一电磁阀的另一端与所述第二气管相连接;
所述第二电磁阀的一端与所述四通阀的第三端相连接,所述第二电磁阀的另一端与所述第二气管相连接。
本公开实施例的第三方面,提供一种如第二方面所述的多联机系统的控制方法,用于上述多联机系统,该方法包括:控制室外机按照第一模式、第二模式、第三模式和第四模式中一种运行,其中,
控制所述室外机按照所述第一模式运行包括:控制四通阀的第一端和第二端连通,第三端和第四端连通;控制第一电磁阀关闭和第二电磁阀打开;控制所述室外机按照所述第二模式运行包括:控制所述四通阀的第一端和第二端连通,第三端和第四端连通;控制第一电磁阀打开和第二电磁阀关闭;控制所述室外机按照所述第三模式运行包括:控制所述四通阀的第一端和第四端连通,第二端和第三端连通;控制所述第一电磁阀打开和第二电磁阀关闭;控制所述室外机按照所述第四模式运行包括:控制所述四通阀的第一端和第四端连通,第二端和第三端连通;控制所述第一电磁阀关闭和第二电磁阀打开。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而 易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术中室内机为单一类型的多联机系统的结构示意图;
图2为根据本公开一些实施例的一种多联机系统的结构示意图;
图3为根据本公开一些实施例的一种包括图2所示的室外机的多联机系统的结构示意图;
图4为根据本公开一些实施例的另一种包括图2所示的室外机的多联机系统的结构示意图;
图5为图4所示的多联机系统的室外机按照第四模式运行的示意图;
图6为根据本公开一些实施例的一种多联机系统的室外机的控制方法流程图;
图7为图3所示的多联机系统的室外机按照第一模式运行的示意图;
图8为图3所示的多联机系统的室外机按照第二模式运行的示意图;
图9为图4所示的多联机系统的室外机按照第二模式运行的示意图;
图10为图3所示的多联机系统的室外机按照第三模式运行的示意图;
图11为根据本公开一些实施例的一种如图3或图4所示的多联机系统的控制装置的模块示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本公开保护的范围。
相关技术中,多联机系统的室内机通常为单一类型,例如均为三管制的室内机。当该多联机系统的室内机同时存在运行制热功能和除湿功能的情况时,室外机的换热器作为冷凝器使用。当多联机系统中混连三管制的室内机和两管制的室内机时,由于室外机的换热器作为冷凝器使用,因此两管制的室内机的换热器无法作为冷凝器使用以运行制热模式。因此相关技术的多联机系统中,当三管制的室内机和两管制的室内机混连时,在三管制的室内机运行除湿功能和制热功能的同时,室外机不具有支持两管制的室内机运行制热模式的能力。
例如,如图1所示,相关技术中的多联机系统的室内机包括两个三管制的室内机02、02’和室外机01,其中,各室内机和室外机通过液管、第一气管和第二气管相连接。当上述室内机02运行制热模式、室内机02’运行除湿模式时,多联机系统中制冷剂的流路如图1所示:室外机01中,四通阀的A端与B端相连接,C端与D端相连接,电磁阀40打开,电磁阀30关闭,室外节流装置20全开。室外换热器10和室内机02的第一室内换热器50均作为冷凝器,室内机02’的第二室内换热器60’作为蒸发器,室内机02的第二室内换热器60和室内机02’的第一室内换热器50’不起换热作用。
当在上述多联机系统中混连三管制的室内机和两管制的室内机,且运行上述工况时,由于室外换热器10作为冷凝器,因此两管制的室内机无法运行制热模式,从而不符合用户的多种使用需求。
本公开一些实施例提供一种如图2所示的室外机01,该室外机01可以通过液管201、第一气管202和第二气管203与室内机相连接形成多联机系统。所述室外机包括:压缩机1、室外换热器2、室外节流装置3、四通阀(也可称四通换向阀)4、第一电磁阀5、第二电磁阀6。
其中,四通阀4的第一端A与压缩机1的排气端相连接;四通阀4的第二端B与室外换热器2的一端相连接,室外换热器2的另一端通过室外节流装置3与液管201相连接;四通阀4的第三端C与压缩 机1的吸气端相连接;四通阀4的第四端D与第一气管202相连接;第一电磁阀5的一端与四通阀4的第一端A相连接,另一端与第二气管203相连接;第二电磁阀6的一端与四通阀4的第三端C相连接,另一端与第二气管203相连接。
需要说明的是,室外节流装置3用于调节流经室外换热器的制冷剂的量。本公开的实施例不限定上述节流装置的结构。例如,该节流装置可以为热力膨胀阀、电子膨胀阀等。由于电子膨胀阀具有适用温度低、过热度设定值可调以及节能等优势,因此在一些实施例中,上述节流装置为电子膨胀阀。
在一些实施例中,如图2所示,所述室外机01还可以包括油分离器7、第三电磁阀8、毛细管9、单向阀10、气液分离器11、液侧截止阀12、第一气侧截止阀13和第二气侧截止阀14。
在此情况下,室外机01内各部件的连接关系为:压缩机1的排气端与油分离器7的入口端相连接,油分离器7的出气端与单向阀10的一端相连接,单向阀10的另一端与四通阀4的第一端A相连接;四通阀4的第二端B与室外换热器2的一端相连接,室外换热器2的另一端与室外节流装置3的一端相连接,室外节流装置3的另一端与液侧截止阀12的一端相连接;四通阀4的第三端C与气液分离器11的一端相连接,气液分离器11的另一端与压缩机1的吸气端相连接;四通阀4的第四端D与第一气侧截止阀13的一端相连接。第一电磁阀5的一端与四通阀4的第一端A相连接,第一电磁阀5的另一端与第二气侧截止阀14的一端相连接;第二电磁阀6的一端与四通阀4的第三端C相连接,第二电磁阀6的另一端与第二气侧截止阀14的一端相连接。第三电磁阀8的一端与油分离器7的出油端相连接,第三电磁阀8的另一端与毛细管9的一端相连接,毛细管9的另一端与压缩机1的吸气端相连接。
在本公开一些实施例中,液侧截止阀12设置在液管201上,第一气侧截止阀13设置在第一气管202上,第二气侧截止阀14设置在第二气管203上。上述截止阀可以设置在室外机01中以作为室外机 01的一部分,也可以设置在室外机01的外部,本公开实施例对此不作限定。
基于此,本公开一些实施例提供了一种室外机01,当如图4所示,将该室外机01与三管制的室内机02和02’、以及两管制的室内机04混连形成多联机系统时,如图5所示,控制四通阀1的第一端A和第四端D连通、并控制四通阀的第二端B和第三端C连通,第一电磁阀5关闭,第二电磁阀6打开,室外节流装置3节流降压,此时室外换热器2为蒸发器。在此情况下,三管制的室内机02的第一室内换热器16和三管制的室内机02’的第二室内换热器18’均不起作用;三管制的室内机02的第二室内换热器18为冷凝器,从而三管制的室内机02运行制热模式;三管制的室内机02’的第一室内换热器16’为蒸发器,从而三管制的室内机02’运行除湿模式;两管制的室内机04的室内换热器20为冷凝器,从而两管制的室内机04运行制热模式。这样一来,本公开一些实施例提供的室外机在具有在与三管制的室内机和两管制的室内机混连形成多联机系统,且三管制的室内机中的一部分室内机运行制热功能和另一部分室内机运行除湿功能的情况下,使得两管制的室内机运行制热模式的能力。
本公开一些实施例提供了一种如图3或图4所示的多联机系统,该多联机系统包括前述的室外机,具有与前述室外机相同的结构和有益效果。由于已经对该室外机的结构和有益效果进行了详细的描述,此处不再赘述。
在此基础上,多联机系统还包括至少两个三管制的室内机,在一些实施例中,所述多联机系统包括三管制的室内机02和02’。如图3所示,三管制的室内机02包括:第一室内节流装置15、第一室内换热器16、第二室内节流装置17和第二室内换热器18;三管制的室内机02’包括:第一室内节流装置15’、第一室内换热器16’、第二室内节流装置17’和第二室内换热器18’。室外机01与上述三管制的室内机02之间的连接关系是:第一室内换热器16的一端通过第一室内节流装置15与液管201相连接,第一室内换热器16的另一端 与第二气管203相连接;第二室内换热器18的一端通过第二室内节流装置17与液管201相连接,第二室内换热器18的另一端与第一气管202相连接。类似地,通过此连接关系以及参照图3,可以得到室外机01与上述三管制的室内机02’之间的连接关系,此处不再赘述。
在一些实施例中,液侧截止阀12的另一端通过第一分歧管301、第四分歧管03与第一室内节流装置15的一端、第二室内节流装置17的一端相连接;第一室内节流装置15的另一端与第一室内换热器16的一端相连接,第一室内换热器16的另一端通过第三分歧管303与第二气侧截止阀14的另一端相连接;第二室内节流装置17的另一端与第二室内换热器18的一端相连接,第二室内换热器18的另一端通过第二分歧管302与第一气侧截止阀13的另一端相连接。类似地,参照图3,可以得到室外机01与上述三管制的室内机02’之间详细的连接关系,此处不再赘述。
在一些实施例中,所述多联机系统还可以包括至少一个两管制的室内机。如图4所示,每个两管制的室内机04包括第三室内节流装置19和第三室内换热器20。其中,第三室内换热器20的一端通过第三室内节流装置19与液管201相连接,第三室内换热器20的另一端与第一气管202相连接。其中,所述第三节流装置19可以为室内电子膨胀阀。
在一些实施例中,第三室内换热器20的一端与第三室内节流装置19的一端相连接,第三室内节流装置19的另一端通过第一分歧管301与液侧截止阀12的另一端相连接,第三室内换热器20的另一端通过第二分歧管302与第一气侧截止阀13的另一端相连接。
在一些实施例中,当各个室内机的容量(即各个室内机中换热器的总容积)相同时,三管制的室内机的第二室内换热器18和18’与两管制的室内机的第三室内换热器20的结构尺寸相近,因此对于图4所示的多联机系统,在三管制的室内机02和两管制的室内机04如图5所示均运行制热功能时,三管制的室内机02的制热能力与两管制的室内机04的制热能力相近,符合用户需求。此外,三管制的室内机 02中的第一室内换热器16和第二室内换热器18的换热面积之比为1/4~1/3。
以下结合图5,对图4所示的多联机系统在三管制的室内机02和两管制的室内机04运行制热模式,三管制的室内机02’运行除湿模式时各部件的启闭规则及制冷剂的流动进行说明:
四通阀4的第一端A和第四端D连通、且四通阀4的第二端B和第三端C连通,第一电磁阀5关闭,第二电磁阀6打开,室外节流装置3节流降压,室外换热器2为蒸发器。室内机02的第一室内节流装置15全关、第二室内节流装置17全开,第二室内换热器18为冷凝器;室内机02’的第一室内节流装置15’节流降压,第一室内换热器16’为蒸发器,第二室内节流装置17’全关。
压缩机1的排气端排出的高压气态制冷剂通过油分离器7、单向阀10、四通阀4的第一端A和第四端D、第一气侧截止阀13、第二分歧管302后分成两股制冷剂,一股制冷剂依次经室内机02的第二室内换热器18、第二室内节流装置17、第四分歧管03进入第一分歧管301;另一股制冷剂依次流经室内机04的第三室内换热器20、第三室内电子膨胀阀19后,一部分制冷器进入第一分歧管301,另一部分制冷剂进入室内机02’的第四分歧管03’。进入第一分歧管301的制冷剂依次流经液侧截止阀12、室外节流装置3、室外换热器2、四通阀4的第二端B和第三端C,进入气液分离器11进行气液分离后进入压缩机1的吸气端;进入室内机02’的第四分歧管03’的制冷剂依次流经室内机02’的第一室内节流装置15’、第一室内换热器16’、第三分歧管303、第二气侧截止阀14、第二电磁阀6,进入气液分离器11进行气液分离后进入压缩机1的吸气端。
在此情况下,三管制的室内机02的第一室内换热器16和三管制的室内机02’的第二室内换热器18’均不起作用;三管制的室内机02的第二室内换热器18为冷凝器,从而三管制的室内机02运行制热模式;三管制的室内机02’的第一室内换热器16’为蒸发器,从而三管制的室内机02’运行除湿模式;两管制的室内机04的第三室内 换热器20为冷凝器,从而两管制的室内机04运行制热模式。
这样一来,本公开一些实施例提供的三管制的室内机和两管制的室内机混连的多联机系统中的室外机,具有在支持在三管制的室内机中的一部分室内机运行制热功能和另一部分室内机运行除湿功能的情况下,使得两管制的室内机运行制热模式的能力。
此外,本公开一些实施例提供的多联机系统的室内机可以实现普通除湿功能、制冷功能、再热除湿功能和制热功能。对于三管制的室内机02’,普通除湿功能是指如图5所示,第二室内换热器18’不工作,且第一室内换热器16’作为蒸发器的情况;制冷功能是指如图7所示,第二室内换热器18作为蒸发器、且第一室内换热器16作为蒸发器的情况,或者如图9的室内机02’所示,第二室内换热器18’作为蒸发器、第一室内换热器16’不工作的情况;再热除湿功能是指如图8的室内机02、02’和图9的室内机02所示,第二室内换热器18和18’作为蒸发器、且第一室内换热器16和16’作为冷凝器的情况;制热功能是指如图10所示,第二室内换热器18和18’作为冷凝器,且第一室内换热器16和16’作为冷凝器的情况,或者如图5的室内机02所示,第二室内换热器18作为冷凝器,且第一室内换热器16不工作的情况。对于两管制的室内机04,制冷功能是指如图9所示,第三室内换热器20作为蒸发器的情况;制热功能是如图5所示,指第三室内换热器20作为冷凝器的情况。此外,当第三室内换热器20作为蒸发器时,两管制的室内机04也可以实现普通除湿功能,但两管制的室内机04无法实现再热除湿功能。
本领域技术人员悉知,将与换热器相连接的室内电子膨胀阀全关,可以使得该换热器不工作;控制与换热器相连接的室内电子膨胀阀起节流作用,可以使得该换热器作为蒸发器;控制与换热器相连接的室内电子膨胀阀全开,可以使得该换热器作为冷凝器。
本公开一些实施例还提供了一种多联机系统的控制方法,包括:控制室外机按照第一模式、第二模式、第三模式和第四模式中一种运行;其中,
控制室外机按照第一模式运行包括:控制四通阀4的第一端A和第二端B连通,第三端C和第四端D连通;控制第一电磁阀5关闭和第二电磁阀6打开。控制室外机按照第二模式运行包括:控制四通阀4的第一端A和第二端B连通,第三端C和第四端D连通;控制第一电磁阀5打开和第二电磁阀6关闭。控制室外机按照第三模式运行包括:控制四通阀4的第一端A和第四端D连通,第二端B和第三端C连通;控制第一电磁阀5打开和第二电磁阀6关闭。控制室外机按照第四模式运行包括:控制四通阀4的第一端A和第四端D连通,第二端B和第三端C连通;控制第一电磁阀5关闭和第二电磁阀6打开。
需要说明的是,将四通阀4断电,可以使得四通阀4的第一端A和第二端B连通,第三端C和第四端D连通;将四通阀4通电,可以使得四通阀4的第一端A和第二端B连通,第三端C和第四端D连通。
本公开的实施例不限定室外机按照上述各模式运行的具体方式。例如,控制室外机按照第一模式运行可以包括:在室外机01上电后,首先根据多联机系统的实际所需运行状态确定室外机的运行模式为第一模式,其模式标志位记为00(例如第一模式的模式标志位为00,第二模式的模式标志位为01,第三模式的模式标志位为10,第四模式的模式标志位为11),然后根据存储器中存储的模式标志位00对应的部件控制方法设置各部件的状态,室外机在设置好的各部件的状态下运转。其中,各运行模式下的部件控制方法可以预先存储在一存储器,在选定室外机的运行模式后,可以从存储器中获取各模式标志位对应的部件控制方法以控制室外机中各部件的状态。或者也可以无需借助模式标志位,例如控制室外机按照第一模式运行时,直接根据上述方法控制室外机中各部件的状态,并控制室外机在该部件状态下开始运转。
以下结合图6对确定多联机系统中的室外机01的运行模式以及多联机系统的控制方法进行说明。如图6所示:
101、室外机上电。
在一些实施例中,所述控制方法还包括102:室外机设置为第一 模式。
需要说明的是,结合上面的描述,由于在第一模式下四通阀4的第一端A和第二端B连通,第三端C和第四端D连通,此时四通阀4为断电状态,因此可以避免在未确定室外机的运行模式时给四通阀4通电,从而可以降低室外机的运行功耗。
103、判断是否有室内机开启制热功能。
若有室内机开启制热功能,则执行111;若没有室内机开启制热功能,则执行104。
104、判断是否有室内机开启再热除湿功能。
若有室内机开启再热除湿功能,则执行107;若没有室内机开启再热除湿功能,则执行105。
105、判断当前系统参数是否满足第一判断条件。
所述第一判断条件包括:压缩机的吸气压力Ps大于或等于第一阈值压力P1,并持续第一阈值时长S1;和,室外环境温度Ta大于或等于第一阈值温度T1;和,压缩机的排气温度Td与多联机系统排气压力对应的饱和温度Tc的差值小于或等于第二阈值温度T2,并持续第二阈值时长S2。
若当前系统参数满足第一判断条件,则执行108;若当前系统参数不满足第一判断条件,则执行106。
需要说明的是,上述当前系统参数包括多联机系统的系统参数以及室外环境参数等。上述第一阈值压力P1、第一阈值时长S1、第一阈值温度T1、第二阈值温度T2、第二阈值时长S2可以是根据实际需求预先设置的临界值。例如,可以直接以1.1Mpa作为第一阈值压力P1。上述阈值压力、阈值时长、阈值温度的描述适用于以下各判断条件中的阈值压力、阈值时长、阈值温度,本公开的实施例对此不再赘述。
在一些实施例中,第一判断条件包括:Ps≥1.1Mpa且持续10分钟;和,Ta≥43℃;和,(Td-Tc)≤40℃且持续1分钟。
106、选定室外机运行第一模式。
需要说明的是,选定室外机运行第一模式是指:根据多联机系统的当前系统参数和室内机的运行模式,确定室外机的运行模式为第一模式。在确定室外机的运行模式为第一模式后执行117。
在一些实施例中,结合图6,若多联机系统中没有开启制热功能的室内机、没有开启再热除湿功能的室内机,且当前系统参数不满足第一判断条件,则选定室外机按照第一模式运行。
107、选定室外机按照第二模式运行。
在一些实施例中,结合图6,若多联机系统中没有开启制热功能的室内机、有开启再热除湿功能的室内机,则选定室外机按照第二模式运行。在确定室外机的运行模式为第二模式后执行117。
108、控制室外机运行第二模式。
在一些实施例中,结合图6,若多联机系统中没有开启制热功能的室内机、没有开启再热除湿功能的室内机,且当前系统参数满足第一判断条件时,则控制室外机运行第二模式。
需要说明的是,与执行107仅选定室外机的运行模式不同,执行108时,根据第二模式对应的部件控制方法设置室外机中各部件的状态,且室外机在该状态下运转。
此外,在执行108的同时,执行:
109、判断当前系统参数是否满足第二判断条件。
第二判断条件包括:压缩机的吸气压力Ps小于或等于第二阈值压力P2,并持续第三阈值时长S3;或者,室外环境温度Ta小于或等于第三阈值温度T3;或者,压缩机的排气温度Td与多联机系统排气压力对应的饱和温度Tc的差值大于或等于第四阈值温度T4,并持续第四阈值时长S4。在一些实施例中,第二判断条件包括:Ps≤0.7Mpa且持续10分钟;或,Ta≤43℃;或,(Td-Tc)≥50℃且持续1分钟。
若当前系统参数不满足第二判断条件,则仍执行108,即室外机仍在第二模式下运转;若当前系统参数满足第二判断条件,则执行110。
110、室外机停止第一时长。
当室外机停止运行后,多联机系统的液管和气管之间的压力差会减小,从而起到均压的作用。需要说明的是,室外机的停机时间可以根据液管和气管之间的实际压力差设定,只要在室外机停止该第一时长后,能够均匀液管和气管的压力即可。在一些实施例中,在满足第二判断条件后,控制室外机停止3分钟。在室外机停止第一时长后,执行106。
需要说明的是,在当前系统参数满足第一判断条件时,即在高温环境下,当多联机系统的室内机的开启功能均为制冷功能时,机组的排气压力容易过高导致限制压缩机运行频率,进而使得参与循环的制冷剂流量不够,此时室内机的制冷能力较差。为了提高室内机的制冷能力,通常需要提高多联机系统中参与循环的制冷剂的量。在一些实施例中,在当前系统参数满足第一判断条件时,控制室外机01按照第二模式运行,以驱动存储在三管制的室内机的第一室内换热器中的制冷剂存留下来,降低系统的排气压力,进而提升系统运行频率,从而提升三管制室内机的第二换热器中的制冷剂循环量,由于系统整体制冷量主要取决于第二换热器,从而提高了室内机在高温环境下的制冷能力。
111、判断是否有室内机开启普通除湿功能。
若有室内机开启普通除湿功能,则执行116;若没有室内机开启普通除湿功能,则执行112。
112、判断当前系统参数是否满足第三判断条件。
其中,第三判断条件包括:室外环境温度Ta大于或等于第五阈值温度T5,并持续第五阈值时长S5。在一些实施例中,第三判断条件包括:Ta≥15℃且持续10分钟。
若当前系统参数不满足第三判断条件,则执行116;若当前系统参数满足第三判断条件,则执行113。
113、选定室外机运行第三模式。
在一些实施例中,结合图6,若多联机系统中有开启制热功能的室内机、没有开启普通除湿功能的室内机,且当前系统参数满足第三 判断条件时,则选定室外机运行第三模式。
在此基础上,在选定室外机运行第三模式后,执行114:
114、判断当前系统参数是否满足第四判断条件。
其中第四判断条件包括:室外环境温度Ta小于或等于第六阈值温度T6。在一些实施例中,第四判断条件包括:Ta≤9℃。
若当前系统参数不满足第四判断条件,则执行117;若当前系统参数满足第四判断条件,则执行115。
115、室外机停止第二时长。
需要说明的是,上述115中室外机停止运行第二时长与上述109的有益效果相同,此处不再赘述。室外机停止第二时长后,执行115。在一些实施例中,室外机停止3分钟。
116、选定室外机运行第四模式。
需要说明的是,在选定室外机运行第四模式后执行117。
需要说明的是,在当前系统参数满足第四判断条件时,即在低温环境下,当多联机系统的室内机运行制热功能时,存储在三管制的室内机的换热器中的制冷剂较多,此时室内机的制热能力较差。为了提高多室内机的制热能力,通常需要提高多联机系统中参与循环的制冷剂的量。在一些实施例中,在当前系统参数满足第四判断条件时,控制室外机01按照第四模式运行,以排出驻留在三管制室内机的第一室内换热器中的制冷剂,以使这些制冷剂参与循环,从而提高了三管制室内机的第二换热器中循环的制冷剂的量,继而提高了室内机在低温环境下的制热能力。结合上面的描述,在以下情况下,可以选定室外机运行第四模式:
一种情况下,若多联机系统中有开启制热功能的室内机、没有开启普通除湿功能的室内机、且当前系统参数不满足第三判断条件,则选定室外机运行第四模式。
另一种情况下,若多联机系统中有开启制热功能的室内机、有开启普通除湿功能的室内机,则选定室外机运行第四模式。
又一种情况下,在室外机按照第三模式运行时,若当前系统参数 满足第四判断条件,控制室外机停止第二时长后,则选定室外机运行第四模式。
117、室外机开始运转。
需要说明的是,通过上述106、107、113或者116选定室外机的运行模式后,根据各运行模式对应的各部件控制方法设置室外机各部件的状态,然后控制室外机在该部件状态下开始运转。
以下结合实施例分别对室外机运行第一模式、第二模式、第三模式和第四模式的情况进行举例说明。
在一些实施例中,如图7所示,当多联机系统的室内机的开启功能均为制冷功能时,选定室外机运行第一模式,并控制四通阀4的第一端A和第二端B连通,第三端C和第四端D连通;控制第一电磁阀5关闭和第二电磁阀6打开。多联机系统在此情况下运转时,三管制的室内机02、02’的第一室内换热器16、16’和第二室内换热器18、18’均为蒸发器,室外机01的室外换热器2为冷凝器。
在一些实施例中,如图8或图9所示,多联机系统中没有开启制热功能的室内机、有开启再热除湿功能的室内机时,选定室外机运行第二模式,并控制四通阀4的第一端A和第二端B连通,第三端C和第四端D连通;控制第一电磁阀5打开和第二电磁阀6关闭。多联机系统在此情况下运转时,图8中,三管制的室内机02、02’的第一室内换热器16、16’为冷凝器、第二室内换热器18、18’为蒸发器;图9中,三管制的室内机02的第一室内换热器16为冷凝器、第二室内换热器18为蒸发器;三管制的室内机02’的第一室内换热器16不工作,第二室内换热器18为蒸发器;两管制的室内机04的第三室内换热器20为蒸发器。
在一些实施例中,如图10所示,若多联机系统中有开启制热功能的室内机、没有开启普通除湿功能的室内机,且当前系统参数满足第三判断条件时,则选定室外机运行第三模式。并控制四通阀4的第一端A和第四端D连通,第二端B和第三端C连通;控制第一电磁阀5打开和第二电磁阀6关闭。多联机系统在此情况下运转时,三管制 的室内机02的第一室内换热器16、第二室内换热器18,以及三管制的室内机02’的第一室内换热器16’、第二室内换热器18’均为冷凝器。
在一些实施例中,如图5所示,若多联机系统中有开启制热功能的室内机、有开始普通除湿功能的室内机,则选定室外机运行第四模式,并控制四通阀4的第一端A和第四端D连通,第二端B和第三端C连通;控制第一电磁阀5关闭和第二电磁阀6打开。多联机系统在此情况下运转时,三管制的室内机02运行制热功能,三管制的室内机02’运行普通除湿功能,两管制的室内机04运行制热功能,在此情况下,图5所示的多联机系统的各室内机的具体作用已在前述实施例中进行了描述,此处不再赘述。
118、结束。
在此基础上,当多联机系统包括至少两个三管制的室内机,三管制的室内机的室内节流装置为室内电子膨胀阀时,上述控制方法还可以包括:在多联机系统的第n个控制周期,将三管制的室内机的第一室内节流装置15的开度设置为第一开度EVR(n),第二室内节流装置17的开度设置为第二开度EVI(n),其中,EVI(n)=EVI(n-1)+ΔEVda,EVR(n)=EVR(n-1)+ΔEVdb。
在控制室外机按照第一模式运行的情况下,
Figure PCTCN2019078807-appb-000001
其中,ΔEV1=(Tg-Tl)-Km×(Ti-Tl),ΔEV2=(Trg-Trl)-Km×(Ti-Tl)。
其中,ΔEEV(n)为该三管制的室内机的室内节流装置的开度的总变化值,ΔEVmax为ΔEV1和ΔEV2中的较大值;ΔEVmin为ΔEV1和ΔEV2中的较小值;ΔEVmean为ΔEV1和ΔEV2中的平均值;Km为控制系数。在一些实施例中,Km的取值范围是0.5~0.8;Tg为第二室内换热器18的气管温度,Tl为第二室内换热器18的液管温度;Trg用于表示第一室内换热器16的气管温度,Trl用于表示第一室内换热器16的液管温度;Ti用于表示室内机的回风温度。
需要说明的是,对于仅包括两管制的室内机的多联机系统,每个控制周期内会计算一次室内电子膨胀阀的开度的变化值ΔEEV(n),在该控制周期内,室内电子膨胀阀的阀开度EEV(n)=EEV(n-1)+ΔEEV(n)。上述三管制的室内机的室内节流装置的开度的总变化值ΔEEV(n)的算法与上述室内电子膨胀阀的开度的变化值ΔEEV(n)相同,本公开实施例对此不再赘述。
在此情况下,根据本公开实施例提供的上述算法,在室外机按照第一模式运行时,可以将三管制的室内机的室内节流装置的开度的总变化值分配给第一室内节流装置15和第二室内节流装置17。
在控制室外机01按照上述第二模式运行的情况下,ΔEVda=ΔEEV(n);ΔEVdb=Kt×[Kp×(Ts-Ti)-(To-Ti)];其中,Ts用于表示室内机的设定温度;To用于表示室内机的出风温度,Kt、Kp为控制系数,在一些实施例中,Kt的取值范围是8~10,Kp的取值范围是1.5~2。
在此情况下,在控制室外机01按照上述第二模式运行的情况下,根据室内机的出风温度、设定温度以及回风温度,计算出运行再热除湿功能的室内机中的第一室内节流装置15和第二室内节流装置17的开度,实现除湿的同时提升出风温度。
需要说明的是,室外机按照上述第一模式或者第二模式运行时,在多联机系统的第一个控制周期,第一室内节流装置15的开度EVR(0)和第二室内节流装置17的开度EVI(0)为一固定值,示例的,EVR(0)=EVI(0)=40pls。
本公开实施例提供一种多联机系统的控制装置,如图11所示,该控制装置包括:
存储模块201,用于存储程序代码。其中,存储模块201存储的程序代码可以为上述各运行模式下的部件控制方法。在一些实施例中,该存储模块可以为存储器、磁碟或者光盘等。
控制模块202,该控制模块用于控制室外机按照第一模式、第二模式、第三模式和第四模式中一种运行。在一些实施例中,该控制模块202可以为单独设置的处理器,也可以为集成在该多联机系统的控 制装置的某一个处理器中。这里的处理器可以是一个中央处理器(英文全称:Central Processing Unit,英文简称:CPU),特定集成电路(英文全称:Application Specific Integrated Circuit,英文简称:ASIC),或者是现场可编程门阵列(英文全称:Field-Programmable Gate Array,英文简称:FPGA)。
其中,上述控制模块202控制室外机01按照第一模式运行包括:控制四通阀4的第一端A和第二端B连通,第三端C和第四端D连通;控制第一电磁阀5关闭和第二电磁阀6打开。上述控制模块202控制室外机按照第二模式运行包括:控制四通阀4的第一端A和第二端B连通,第三端C和第四端D连通;控制第一电磁阀5打开和第二电磁阀6关闭。上述控制模块202控制室外机按照第三模式运行包括:控制四通阀4的第一端A和第四端D连通,第二端B和第三端C连通;控制第一电磁阀5打开和第二电磁阀6关闭。上述控制模块202控制室外机按照第四模式运行包括:控制四通阀4的第一端A和第四端D连通,第二端B和第三端C连通;控制第一电磁阀5关闭和第二电磁阀6打开。
在一些实施例中,多联机系统的控制装置可以包含多联机系统中的控制板,该控制板可以包含:室外机控制板、室内机控制板和与该室内机控制板和室外机控制板通信连接的总控制板。其中,室内机控制板可以设置于各个室内机内,该室外机控制板和总控制板可以均设置于多联机系统的室外机内。例如,室内机控制板可以获取各室内机的运行模式并通知给总控制板,室外机控制板可以获取室外机的当前系统参数,总控制板可以参考上述控制方法确定室外机的运行模式,并通知室外机控制板控制室外机按照确定的运行模式运行。在此基础上,室内机控制板还可以参考上述方法确定并设置室内机的各室内电子膨胀阀的开度。
基于此,本公开一些实施例提供一种多联机系统的控制装置,能应用所述的多联机系统的控制方法,所述多联机系统的控制装置包括存储器和处理器,所述存储器存储能够在所述处理器上运行的计算机 程序,所述处理器配置为运行所述计算机程序以使所述多联机系统的室外机按照第一模式、第二模式、第三模式和第四模式中的一种运行。
在此基础上,在一些实施例中,所述多联机系统的的控制装置的处理器可以实现多种逻辑功能,依据处理器所能实现的逻辑功能可以将其划分为不同的功能模块。在划分不同的功能模块后,所述处理器包括判断模块和控制模块202。当判断模块判断出多联机系统中没有运行制热功能的室内机、没有运行再热除湿功能的室内机,且当前系统参数不满足第一判断条件时,控制模块202控制室外机按照第一模式运行。
当判断模块判断出多联机系统中没有运行制热功能的室内机、没有运行再热除湿功能的室内机,且当前系统参数满足第一判断条件时,控制模块202控制室外机按照第二模式运行;当判断模块判断出当前系统参数不满足第二判断条件,则控制模块202控制室外机按照第二模式运行。当判断模块判断出当前系统参数满足第二判断条件,则控制模块202控制室外机停止运行第一时长后,控制室外机按照第一模式运行。
当判断模块判断出多联机系统中没有运行制热功能的室内机、有运行再热除湿功能的室内机时,则控制模块202控制室外机按照第二模式运行。
当判断模块判断出多联机系统中有运行制热功能的室内机、没有运行普通除湿功能的室内机、且当前系统参数不满足第三判断条件,则控制模块202控制室外机按照第四模式运行。
当判断模块判断出多联机系统中有运行制热功能的室内机、有运行普通除湿功能的室内机时,则控制模块202控制室外机按照第四模式运行。
需要说明的是,上述第一判断条件、第二判断条件、第三判断条件、第四判断条件可以存储在上述存储模块201中。
在此基础上,当多联机系统包括至少两个三管制的室内机,三管制的室内机的室内节流装置为室内电子膨胀阀时,在一些实施例中, 如图11所示,该多联机系统的控制装置的处理器还包括:开度设置模块203。开度设置模块203用于在多联机系统的第n个控制周期,将三管制的室内机的第一室内节流装置的开度设置为第一开度EVR(n),第二室内节流装置(17)的开度设置为第二开度EVI(n),其中,EVI(n)=EVI(n-1)+ΔEVda,EVR(n)=EVR(n-1)+ΔEVdb。
在控制模块202控制室外机按照第一模式运行的情况下,
Figure PCTCN2019078807-appb-000002
其中,ΔEV1=(Tg-Tl)-Km×(Ti-Tl),ΔEV2=(Trg-Trl)-Km×(Ti-Tl);
或者,在控制模块202控制室外机按照第二模式运行的情况下,
ΔEVda=ΔEEV(n);ΔEVdb=Kt×[Kp×(Ts-Ti)-(To-Ti)]。
需要说明的是,上述有关参数的具体含义已在前述实施例进行了详细的说明,此处不再赘述。
此外,在一些实施例中,上述多联机系统的控制装置的处理器还可以包括开度计算模块,开度计算模块用于在每个控制周期中计算上述第一开度EVR(n)和第二开度EVI(n)。
具有前述提供的多联机系统的控制方法相同的有益效果。由于前述实施例已经对该多联机系统的控制方法的有益效果进行了详细的描述,此处不再赘述。
本公开一些实施例提供一种计算机存储介质,计算机存储介质中存储有计算机指令,所述计算机指令在多联机系统的控制装置上运行时,使得多联机系统的控制装置执行如上所述的任一种多联机系统的控制方法。具有与前述实施例提供的多联机系统的控制方法相同的有益效果,本公开实施例对此不再赘述。
需要说明的是,上述计算机存储介质可以包括ROM(英文全称:Read Only Memory image,中文名称:只读存储器镜像)、RAM(英文全称:Random Access Memory,中文名称:随机存取存储器)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并 不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种室外机,所述室外机配置为通过液管、第一气管和第二气管与多台室内机相连接形成多联机系统;其中,所述室外机包括:压缩机、室外换热器、四通阀、第一电磁阀和第二电磁阀;
    所述四通阀的第一端与所述压缩机的排气端相连接;所述四通阀的第二端与所述室外换热器的一端相连接;所述四通阀的第三端与所述压缩机的吸气端相连接;所述四通阀的第四端配置为与所述第一气管相连接;
    所述室外换热器的另一端配置为与所述液管相连接;
    所述第一电磁阀的一端与所述四通阀的第一端相连接,所述第一电磁阀的另一端配置为与所述第二气管相连接;
    所述第二电磁阀的一端与所述四通阀的第三端相连接,所述第二电磁阀的另一端配置为与所述第二气管相连接。
  2. 根据权利要求1所述的室外机,还包括室外节流装置,所述室外换热器的另一端配置为与所述液管相连接具体为所述液管通过所述室外节流装置与所述室外换热器的另一端连通;其中,所述室外节流装置一端与所述室外换热器的另一端连通,所述室外节流装置的另一端配置为与所述液管相连接。
  3. 根据权利要求1所述的室外机,还包括油分离器、第三电磁阀、毛细管、单向阀、气液分离器,其中,
    所述油分离器的入口端与所述压缩机的排气端相连接,所述油分离器的出气端与所述单向阀的一端相连接;
    所述第三电磁阀的一端与油分离器的出油端相连接,所述第三电磁阀的另一端与毛细管的一端相连接;
    所述毛细管的另一端与压缩机的吸气端相连接;
    所述单向阀的另一端与四通阀的第一端相连接;
    所述气液分离器的一端与四通阀的第三端相连接,所述气液分离器的另一端与压缩机的吸气端相连接。
  4. 根据权利要求3所述的室外机,还包括液侧截止阀、第一气侧截止阀和第二气侧截止阀,其中,
    所述液侧截止阀的一端与室外节流装置的另一端相连接;
    第一气侧截止阀的一端与四通阀的第四端相连接;
    第二气侧截止阀的一端分别与第一电磁阀的另一端和第二电磁阀的另一端相连接;
    所述液侧截止阀、第一气侧截止阀和第二气侧截止阀的另一端分别配置为与所述室内机相连接。
  5. 一种多联机系统,包括:
    室外机,所述室外机通过液管、第一气管和第二气管与多台室内机相连;其中,所述室外机包括:压缩机、室外换热器、四通阀、第一电磁阀和第二电磁阀;
    所述四通阀的第一端与所述压缩机的排气端相连接;所述四通阀的第二端与所述室外换热器的一端相连接;所述四通阀的第三端与所述压缩机的吸气端相连接;所述四通阀的第四端与所述第一气管相连接;
    所述室外换热器的另一端与所述液管相连接;
    所述第一电磁阀的一端与所述四通阀的第一端相连接,所述第一电磁阀的另一端与所述第二气管相连接;
    所述第二电磁阀的一端与所述四通阀的第三端相连接,所述第二电磁阀的另一端与所述第二气管相连接。
  6. 根据权利要求5所述的多联机系统,还包括:至少两个三管制的室内机,每个所述三管制的室内机包括:第一室内节流装置、第一室内换热器、第二室内节流装置和第二室内换热器;
    所述第一室内换热器的一端通过所述第一室内节流装置与液管相连接,所述第一室内换热器的另一端与所述第二气管相连接;所述第二室内换热器的一端通过第二室内节流装置与所述液管相连接,所述第二室内换热器的另一端与所述第一气管相连接。
  7. 根据权利要求6所述的多联机系统,所述多联机系统还包括:至少一个两管制的室内机,所述两管制的室内机包括第三室内节流装置和第三室内换热器;
    所述第三室内换热器的一端通过所述第三室内节流装置与所述液管相连接,所述第三室内换热器的另一端与所述第一气管相连接。
  8. 一种用于如权要求5-7任意一项所述的多联机系统的控制方法,包括:
    控制室外机按照第一模式、第二模式、第三模式和第四模式中一种运行;其中,
    控制所述室外机按照所述第一模式运行包括:控制四通阀的第一端和第二端连通,第三端和第四端连通;控制第一电磁阀关闭和第二电磁阀打开;
    控制所述室外机按照所述第二模式运行包括:控制所述四通阀的第一端和第二端连通,第三端和第四端连通;控制第一电磁阀打开和第二电磁阀关闭;
    控制所述室外机按照所述第三模式运行包括:控制所述四通阀的第一端和第四端连通,第二端和第三端连通;控制所述第一电磁阀打开和第二电磁阀关闭;
    控制所述室外机按照所述第四模式运行包括:控制所述四通阀的第一端和第四端连通,第二端和第三端连通;控制所述第一电磁阀关闭和第二电磁阀打开。
  9. 根据权利要求8所述的控制方法,其中,所述控制所述室外机按照第一模式、第二模式、第三模式和第四模式中一种运行包括:
    若所述多联机系统中没有开启制热功能的室内机、没有开启再热除湿功能的室内机,且当前系统参数不满足第一判断条件,控制所述室外机按照第一模式运行;
    和/或,
    若所述多联机系统中没有开启制热功能的室内机、没有开启再热除湿功能的室内机,且所述当前系统参数满足所述第一判断条件,控制所述室外机按照第二模式运行的同时判断当前系统参数是否满足第二判断条件;若所述当前系统参数不满足第二判断条件,控制所述室外机按照所述第二模式运行;若所述当前系统参数满足所述第二判断条件,控制所述室外机停止运行第一时长后,控制所述室外机按照第一模式运行;
    和/或,
    若所述多联机系统中没有开启制热功能的室内机、有开启再热除湿功能的室内机,控制所述室外机按照第二模式运行;
    和/或,
    若所述多联机系统中有开启制热功能的室内机、没有开启普通除湿功能的室内机、且所述当前系统参数不满足第三判断条件,控制所述室外机按照第四模式运行;
    和/或,
    若所述多联机系统中有开启制热功能的室内机、没有开启普通除湿功能的室内机、且所述当前系统参数满足第三判断条件,控制所述室外机按照第三模式运行的同时判断当前系统参数是否满足第四判断条件;若所述当前系统参数不满足第四判断条件,所述室外机按照第三模式运行;若所述多联机系统的当前系统参数满足第四判断条件,控制所述室外机停止第二时长后,控制所述室外机按照所述第四模式运行;
    和/或,
    若所述多联机系统中有开启制热功能的室内机、有开启普通除湿功能的室内机,控制所述室外机按照所述第四模式运行。
  10. 根据权利要求9所述的控制方法,其中,
    所述第一判断条件包括:压缩机的吸气压力Ps大于或等于第一阈值压力P 1,并持续第一阈值时长S 1;和,室外环境温度Ta大于或等于第一阈值温度T 1;和,所述压缩机的排气温度Td与所述多联机系统排气压力对应的饱和温度Tc的差值小于或等于第二阈值温度T 2,并持续第二阈值时长S 2
    所述第二判断条件包括:压缩机的吸气压力Ps小于或等于第二阈值压力P 2,并持续第三阈值时长S 3;或者,室外环境温度Ta小于或等于第三阈值温度T 3;或者,所述压缩机的排气温度Td与所述多联机系统排气压力对应的饱和温度Tc的差值大于或等于第四阈值温度T 4,并持续第四阈值时长S 4
    所述第三判断条件包括:室外环境温度Ta大于或等于第五阈值温度T 5,并持续第五阈值时长S 5
    所述第四判断条件包括:室外环境温度Ta小于或等于第六阈值温度T 6
  11. 根据权利要求9所述的控制方法,其中,所述多联机系统包括至少两个三管制的室内机,所述三管制的室内机的室内节流装置为室内电子膨胀阀,所述控制方法还包括:
    在所述多联机系统的第n个控制周期,将所述三管制的室内机的第一室内节流装置的开度设置为第一开度EVR(n),第二室内节流装置的开度设置为第二开度EVI(n),其中,EVR(n)=EVR(n-1)+ΔEVdb,EVI(n)=EVI(n-1)+ΔEVda;
    在控制所述室外机按照第一模式运行的情况下,
    Figure PCTCN2019078807-appb-100001
    ΔEV1=(Tg-Tl)-Km×(Ti-Tl),ΔEV2=(Trg-Trl)-Km×(Ti-Tl);
    或者,在控制所述室外机按照第二模式运行的情况下,
    ΔEVda=ΔEEV(n);ΔEVdb=Kt×[Kp×(Ts-Ti)-(To-Ti)];
    其中,ΔEEV(n)为所述三管制的室内机的室内节流装置的开度的总变化值,ΔEVmax为ΔEV1和ΔEV2中的较大值;ΔEVmin为ΔEV1和ΔEV2中的较小值;ΔEVmean为ΔEV1和ΔEV2中的平均值;Km、Kt、Kp为控制系数;Trg用于表示第一室内换热器的气管温度;Trl用于表示第一室内换热器的液管温度;Tg用于表示第二室内换热器的气管温度;Tl用于表示第二室内换热器的液管温度;Ti用于表示所述室内机的回风温度;Ts用于表示所述室内机的设定温度;To用于表示所述室内机的出风温度。
PCT/CN2019/078807 2018-03-21 2019-03-20 室外机、多联机系统及其控制方法 WO2019179452A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810237072.6A CN108895567B (zh) 2018-03-21 2018-03-21 室外机、多联机系统及控制方法、装置、计算机存储介质
CN201810237072.6 2018-03-21

Publications (1)

Publication Number Publication Date
WO2019179452A1 true WO2019179452A1 (zh) 2019-09-26

Family

ID=64342190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078807 WO2019179452A1 (zh) 2018-03-21 2019-03-20 室外机、多联机系统及其控制方法

Country Status (2)

Country Link
CN (1) CN108895567B (zh)
WO (1) WO2019179452A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112197455A (zh) * 2020-10-16 2021-01-08 珠海格力电器股份有限公司 可回收冷媒的空调机组及其控制方法
CN113551398A (zh) * 2021-03-23 2021-10-26 珠海格力电器股份有限公司 一种多联机系统的控制方法、多联机系统和存储介质
CN115235139A (zh) * 2022-06-23 2022-10-25 宁波奥克斯电气股份有限公司 一种三管制多联机空调系统及控制方法、存储介质
WO2024078619A1 (zh) * 2022-10-13 2024-04-18 青岛海信日立空调系统有限公司 室外机及多功能水源多联机系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108895567B (zh) * 2018-03-21 2020-05-08 青岛海信日立空调系统有限公司 室外机、多联机系统及控制方法、装置、计算机存储介质
CN109899938A (zh) * 2019-03-13 2019-06-18 珠海格力电器股份有限公司 多联机、多联机室内机出风温度的控制方法
CN110500668A (zh) * 2019-08-14 2019-11-26 珠海格力电器股份有限公司 三管制多联机的模式切换装置、空调系统及其控制方法
CN110657489B (zh) * 2019-10-25 2021-04-13 南京天加环境科技有限公司 一种改进的除湿再热系统及其控制方法
CN110822671B (zh) * 2019-10-31 2021-02-26 广东志高暖通设备股份有限公司 一种多联机室外机电子膨胀阀控制方法
CN113739378B (zh) * 2020-05-29 2022-09-27 广东美的制冷设备有限公司 空调系统的控制方法及空调系统、存储介质
CN113587408B (zh) * 2021-07-30 2022-11-29 美的集团武汉暖通设备有限公司 多联机空调器及其控制方法以及可读存储介质
CN114738931B (zh) * 2022-04-12 2024-02-27 南京天加环境科技有限公司 多模块空调系统全工况能需分配控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11148681A (ja) * 1997-11-19 1999-06-02 Sanyo Electric Co Ltd 空調装置
JP3943104B2 (ja) * 2004-10-12 2007-07-11 三菱電機株式会社 多室形空気調和機
CN200979258Y (zh) * 2006-04-12 2007-11-21 广东美的电器股份有限公司 三管制热回收空调系统
CN102878613A (zh) * 2012-09-20 2013-01-16 青岛海信日立空调系统有限公司 控制多联机空调系统中温湿度的方法及多联机空调系统
CN203413735U (zh) * 2013-06-28 2014-01-29 青岛海信日立空调系统有限公司 三管制全热处理多联机空调系统
CN104296238A (zh) * 2013-07-18 2015-01-21 广东美的暖通设备有限公司 三管制热回收空调系统及其除湿方法
CN108895567A (zh) * 2018-03-21 2018-11-27 青岛海信日立空调系统有限公司 室外机、多联机系统及控制方法、装置、计算机存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3458293B2 (ja) * 1995-02-20 2003-10-20 松下電器産業株式会社 多室用空気調和機の運転制御装置
KR100447203B1 (ko) * 2002-08-22 2004-09-04 엘지전자 주식회사 냉난방 동시형 멀티공기조화기 및 그 제어방법
KR100459184B1 (ko) * 2002-08-24 2004-12-03 엘지전자 주식회사 냉난방 동시형 멀티공기조화기
KR101243223B1 (ko) * 2006-01-06 2013-03-13 삼성전자주식회사 멀티공기조화시스템
CN203687235U (zh) * 2013-09-10 2014-07-02 广东美的暖通设备有限公司 空调室外机、两管制冷暖系统和三管制热回收系统
CN106765946B (zh) * 2016-12-22 2019-11-15 青岛海尔空调电子有限公司 一种空调系统控制方法及空调系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11148681A (ja) * 1997-11-19 1999-06-02 Sanyo Electric Co Ltd 空調装置
JP3943104B2 (ja) * 2004-10-12 2007-07-11 三菱電機株式会社 多室形空気調和機
CN200979258Y (zh) * 2006-04-12 2007-11-21 广东美的电器股份有限公司 三管制热回收空调系统
CN102878613A (zh) * 2012-09-20 2013-01-16 青岛海信日立空调系统有限公司 控制多联机空调系统中温湿度的方法及多联机空调系统
CN203413735U (zh) * 2013-06-28 2014-01-29 青岛海信日立空调系统有限公司 三管制全热处理多联机空调系统
CN104296238A (zh) * 2013-07-18 2015-01-21 广东美的暖通设备有限公司 三管制热回收空调系统及其除湿方法
CN108895567A (zh) * 2018-03-21 2018-11-27 青岛海信日立空调系统有限公司 室外机、多联机系统及控制方法、装置、计算机存储介质

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112197455A (zh) * 2020-10-16 2021-01-08 珠海格力电器股份有限公司 可回收冷媒的空调机组及其控制方法
CN112197455B (zh) * 2020-10-16 2024-04-09 珠海格力电器股份有限公司 可回收冷媒的空调机组及其控制方法
CN113551398A (zh) * 2021-03-23 2021-10-26 珠海格力电器股份有限公司 一种多联机系统的控制方法、多联机系统和存储介质
CN113551398B (zh) * 2021-03-23 2022-07-15 珠海格力电器股份有限公司 一种多联机系统的控制方法、多联机系统和存储介质
CN115235139A (zh) * 2022-06-23 2022-10-25 宁波奥克斯电气股份有限公司 一种三管制多联机空调系统及控制方法、存储介质
CN115235139B (zh) * 2022-06-23 2023-07-28 宁波奥克斯电气股份有限公司 一种三管制多联机空调系统及控制方法、存储介质
WO2024078619A1 (zh) * 2022-10-13 2024-04-18 青岛海信日立空调系统有限公司 室外机及多功能水源多联机系统

Also Published As

Publication number Publication date
CN108895567A (zh) 2018-11-27
CN108895567B (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2019179452A1 (zh) 室外机、多联机系统及其控制方法
Li et al. Model-based optimization of free cooling switchover temperature and cooling tower approach temperature for data center cooling system with water-side economizer
US20180340700A1 (en) Variable refrigerant flow system
EP1521046A2 (en) Refrigerant circuit and heat pump type hot water supply apparatus
KR102004939B1 (ko) 수냉식냉동기 냉수와 쿨링타워 냉각수를 조합한 공조냉각열원 에너지절약형 항온항습시스템과 그의 제어방법
US20100206000A1 (en) Air conditioner and method of controlling the same
CN102734885B (zh) 串联式空调和调温箱一体机及其运行控制方法
CN114353277B (zh) 防结霜控制方法以及防结霜空调
EP1498668B1 (en) Heat source unit of air conditioner and air conditioner
CN111795481B (zh) 空气调节系统及用于其的控制方法
CN113137658B (zh) 多联式空调机组的控制方法
CN110701691A (zh) 新风机组及控制方法
EP1925893A2 (en) Air conditioner
JP2009264718A (ja) ヒートポンプ温水システム
WO2021042437A1 (zh) 空调系统及其控制方法
CN112393348A (zh) 热泵空调系统及其控制方法和设计方法
CN109373529B (zh) 空调器及其控制方法
JPH09178284A (ja) 空気調和装置
JP2009264682A (ja) 水熱源空気調和機
CN113757828B (zh) 一种四管制空调系统及其控制方法
CN206609115U (zh) 空调器控制系统及空调器
WO2022007739A1 (zh) 热泵系统
JP4074422B2 (ja) 空調機とその制御方法
CN211952986U (zh) 三管式多联机
KR100608684B1 (ko) 공기조화기의 솔레노이드 밸브 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19770525

Country of ref document: EP

Kind code of ref document: A1