WO2022007739A1 - 热泵系统 - Google Patents

热泵系统 Download PDF

Info

Publication number
WO2022007739A1
WO2022007739A1 PCT/CN2021/104465 CN2021104465W WO2022007739A1 WO 2022007739 A1 WO2022007739 A1 WO 2022007739A1 CN 2021104465 W CN2021104465 W CN 2021104465W WO 2022007739 A1 WO2022007739 A1 WO 2022007739A1
Authority
WO
WIPO (PCT)
Prior art keywords
main
auxiliary
refrigerant
refrigerant circuit
heat exchanger
Prior art date
Application number
PCT/CN2021/104465
Other languages
English (en)
French (fr)
Inventor
李海龙
王侃
赵为峥
马丽君
Original Assignee
约克广州空调冷冻设备有限公司
江森自控泰科知识产权控股有限责任合伙公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 约克广州空调冷冻设备有限公司, 江森自控泰科知识产权控股有限责任合伙公司 filed Critical 约克广州空调冷冻设备有限公司
Priority to EP21838723.1A priority Critical patent/EP4177542A4/en
Priority to US18/014,710 priority patent/US20230400236A1/en
Publication of WO2022007739A1 publication Critical patent/WO2022007739A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities

Definitions

  • the present application relates to a heat pump system, and in particular, to a heat pump system that satisfies heating requirements at a low ambient temperature.
  • the heat pump system includes a refrigerant circulation system consisting of a compressor, a throttling device and at least two heat exchangers.
  • the heat exchange is carried out with the outside world through the heat exchanger, so that the heat pump system can work in a cooling working mode or a heating working mode.
  • the heating amount is affected by the ambient temperature.
  • the heating capacity of the heat pump system gradually attenuates as the ambient temperature decreases, and the attenuation trend increases, but the heat required by the client side increases as the ambient temperature decreases, so the existing heat pump system cannot meet the needs of customers. side needs.
  • the present application provides a heat pump system, which can operate in various working modes and can meet the matching between the heating capacity of the unit and the heat demand on the customer side under low ambient temperature
  • the heat pump system includes: a main circulating refrigerant circuit,
  • the main cycle refrigerant circuit has a main compressor, a first main heat exchanger, a main throttle device, and a second main heat exchanger, the main compressor being configured so that the refrigerant in the main cycle refrigerant circuit It can flow to the circulation along the refrigeration working condition of the main cycle or flow to the circulation along the heating working condition of the main cycle opposite to the flow direction of the refrigeration working condition of the main cycle;
  • the auxiliary circulation refrigerant circuit, the auxiliary circulation refrigerant circuit comprises an auxiliary compressor, a first an auxiliary heat exchanger, an auxiliary throttling device and a second auxiliary
  • the heat pump system has a cooling working mode, a heating working mode and an auxiliary heating working mode; in the cooling working mode, the refrigerant in the main circulation refrigerant circuit runs along the main circulation refrigeration working mode.
  • the refrigerant in the main circulation refrigerant circuit flows to the circulation in the heating mode of the main cycle, and the auxiliary compressor is turned off; in the auxiliary heating mode
  • the refrigerant in the main circulation refrigerant circuit flows and circulates along the heating mode of the main cycle, and the refrigerant in the auxiliary circulation refrigerant circuit flows and circulates along the heating mode of the auxiliary cycle.
  • the refrigerant management system is configured to be able to introduce part of the refrigerant used in the main circulation refrigerant circuit into the auxiliary circulation refrigerant after the auxiliary heating operation mode is turned on loop.
  • the refrigerant management system includes a refrigerant storage device configured to be able to collect the refrigerant drawn from the main circulation refrigerant circuit and to introduce the collected refrigerant into the Auxiliary circulating refrigerant circuit.
  • the refrigerant management system further comprises: a main liquid lead pipeline connected between the refrigerant storage device and the low-pressure side of the main circulation refrigerant circuit; The main liquid discharge pipeline between the high pressure side of the refrigerant circuit; the auxiliary liquid lead pipeline connected between the refrigerant storage device and the low pressure side of the auxiliary circulating refrigerant circuit; and the high pressure side connected between the refrigerant storage device and the auxiliary circulating refrigerant circuit Auxiliary drain line between.
  • the second auxiliary heat exchanger has a first fluid channel and a second fluid channel, wherein the first fluid channel is connected in the main circulation refrigerant circuit, and the second fluid channel is connected in the In the auxiliary circulation refrigerant circuit, the refrigerants in the first fluid passage and the second fluid passage are capable of heat exchange.
  • the first main heat exchanger and the first auxiliary heat exchanger are both water-side heat exchangers
  • the first main heat exchanger has a first water channel
  • the first auxiliary heat exchanger The heat exchanger has a second water channel that communicates with the second water channel so that water can flow from the first water channel to the second water channel.
  • the main liquid introduction pipeline, main liquid discharge pipeline, auxiliary liquid introduction pipeline and auxiliary liquid discharge pipeline are respectively provided with corresponding solenoid valves, which are used to control the connection and disconnection of the pipelines respectively.
  • the main liquid introduction pipeline and the auxiliary liquid introduction pipeline are respectively provided with liquid introduction one-way valves, and the liquid introduction one-way valve is configured so that the refrigerant can only flow in the direction of discharge from the refrigerant storage device, so
  • the main liquid discharge pipeline and the auxiliary liquid discharge pipeline are respectively provided with a liquid discharge one-way valve, and the liquid discharge one-way valve is configured so that the refrigerant can only flow in the direction of being discharged to the refrigerant storage device.
  • the heat pump system further comprises: a control device, the control device is respectively connected with the main liquid introduction pipeline, the main liquid discharge pipeline, the auxiliary liquid introduction pipeline and the auxiliary liquid discharge pipeline Corresponding solenoid valves on the road are connected and can control the connection and disconnection of each solenoid valve; and the control device is connected with the main compressor and the auxiliary compressor, and the control device can control the main compressor and the auxiliary compressor. Auxiliary compressor on and off.
  • the ratio of the discharge volume of the main compressor to the discharge volume of the auxiliary compressor ranges from (2 to 4):1.
  • the heat pump system has a cooling working mode, a heating working mode and an auxiliary heating working mode
  • the heat pump system has a main circulating refrigerant circuit, an auxiliary circulating refrigerant circuit and a refrigerant management system.
  • the main circulating refrigerant circuit and the auxiliary circulating refrigerant circuit work simultaneously.
  • the main circulation refrigerant circuit and the auxiliary circulation refrigerant circuit share a refrigerant management system.
  • the refrigerant management system can distribute the idle part of the refrigerant used in the main circulation refrigerant circuit to the auxiliary circulation refrigerant.
  • the two fluid channels in the second auxiliary heat exchanger can exchange heat, which can improve the efficiency of the heat pump system.
  • the first main heat exchanger and the second main heat exchanger share a water channel, which can rapidly increase the outlet temperature of the hot water.
  • FIG. 1A is a block diagram of a heat pump system according to an embodiment of the application.
  • FIG. 1B is a block diagram of the main cycle refrigerant circuit and the auxiliary cycle refrigerant circuit in FIG. 1A;
  • Fig. 1C is a schematic diagram of the one-way valve block in Fig. 1B;
  • Fig. 2 is the flow path diagram of the heat pump system in the cooling mode
  • FIG. 3 is a flow path diagram of the heat pump system in the heating working mode
  • Fig. 4 is the flow path diagram of the heat pump system in the auxiliary working mode
  • FIG. 5 is a block diagram of the heat pump system of FIG. 1A, illustrating a refrigerant management system
  • FIG. 6 is a schematic structural block diagram of the control device of the heat pump system.
  • FIG. 1A is a block diagram of a heat pump system 100 according to an embodiment of the present application.
  • the heat pump system 100 includes a main circulation refrigerant circuit 101 , an auxiliary circulation refrigerant circuit 102 and a refrigerant management system 103 .
  • the heat pump system 100 has a cooling working mode, a heating working mode, and an auxiliary heating working mode.
  • the heat pump system starts the cooling mode to reduce the temperature of the use environment.
  • the heat pump system enables the heating mode to increase the temperature of the operating environment.
  • the heating mode of the heat pump system cannot meet the heat demand of the use environment.
  • the main circulation refrigerant circuit 101 is opened, and the auxiliary circulation refrigerant circuit 102 is closed; in the auxiliary heating operation mode, the main circulation refrigerant circuit 101 and the auxiliary circulation refrigerant circuit 102 are both open .
  • FIG. 1B is a block diagram of the primary refrigerant circuit 101 and the secondary refrigerant circuit 102 in FIG. 1A , in which the refrigerant management system 103 is omitted so that the primary refrigerant circuit 101 and the secondary refrigerant circuit 102 can be more clearly shown.
  • FIG. 1C is a schematic diagram of the one-way valve block 140 in FIG. 1B for illustrating the structure of the one-way valve block 140.
  • the auxiliary circulation refrigerant circuit 102 includes an auxiliary compressor 121, a first auxiliary heat exchanger 122, an auxiliary throttling device 124 and a second auxiliary heat exchanger 126.
  • the refrigerant can flow to the circulation along the auxiliary circulation heating condition.
  • the main circulation refrigerant circuit 101 has: a main compressor 111 , a first main heat exchanger 112 , a second auxiliary heat exchanger 126 , a main throttle device 114 and a second main heat exchanger 116 .
  • the refrigerant can flow to the circulation in the cooling mode of the main cycle or flow to the cycle in the heating mode of the main cycle.
  • the second auxiliary heat exchanger 126 has two fluid passages, namely, a first fluid passage 137 and a second fluid passage 138.
  • the first fluid passage 137 is connected to the main circulating refrigerant circuit 101
  • the second fluid passage 138 is connected to the auxiliary fluid passage 138. in the circulating refrigerant circuit 102 .
  • the main compressor 111 has a suction end 106 and a discharge end 105
  • the first main heat exchanger 112 has a first flow port 133 and a second flow port 134
  • the main throttle device 114 has an inlet port 115
  • the outlet end 117 the second main heat exchanger 116 has a first flow port 143 and a second flow port 144 .
  • the first fluid passage 137 of the second auxiliary heat exchanger 126 connected in the main circulating refrigerant circuit 101 has an inlet 136 and an outlet 135 .
  • the valve device in the main circulation refrigerant circuit 101 includes a main control valve group, and the main control valve group is used to control the refrigerant in the main circulation refrigerant circuit 101 to circulate along the cooling mode or circulate along the heating mode.
  • the main control valve block includes a four-way reversing valve 118 .
  • the four-way reversing valve 118 has a first flow port 181 , a second flow port 182 , a third flow port 183 and a fourth flow port 184 , and the four flow ports of the four-way reversing valve 118 can form two pairs of flow channels, wherein
  • the first convection flow channel enables the first flow port 181 and the second flow port 182 to be in fluid communication, and the third flow port 183 and the fourth flow port 184 are in fluid communication;
  • the second convection flow channel enables the first flow port 181 and The fourth flow port 184 is in fluid communication and brings the second flow port 182 and the third flow port 183 in fluid communication.
  • the first flow port 181 of the four-way reversing valve 118 is connected to the first flow port 133 of the first main heat exchanger 112 , and the second flow port 182 of the four-way reversing valve 118 is connected to the suction of the main compressor 111 .
  • end 106, the third flow port 183 of the four-way reversing valve 118 is connected to the second flow port 144 of the second main heat exchanger 116, and the fourth flow port 184 of the four-way reversing valve 118 is connected to the main compressor 111.
  • the exhaust end 105 is connected.
  • the valve device in the main circulation refrigerant circuit 101 further includes a one-way valve group 140.
  • the one-way valve group 140 includes a first valve 151, a second valve 152, a third valve 153 and a fourth valve valve 154 .
  • the first valve 151 , the second valve 152 , the third valve 153 and the fourth valve 154 are connected in sequence through pipelines to form an annular shape.
  • the second flow port 134 of the first main heat exchanger 112 is connected to the pipeline between the first valve 151 and the second valve 152 , and the inlet 136 of the first fluid channel 137 of the second auxiliary heat exchanger 126 is connected to the second valve 151 .
  • the first flow port 143 of the second main heat exchanger 116 is connected to the pipeline between the third valve 153 and the fourth valve 154, and the outlet of the main throttle device 114
  • the end 117 is connected to the line between the first valve 151 and the fourth valve 154 .
  • the first valve 151 , the second valve 152 , the third valve 153 and the fourth valve 154 are one-way valves, so that the refrigerant fluid can only flow in one direction from the inlet end of each valve to the outlet end thereof.
  • other control valves or control valve groups may also be used to implement the function of the one-way valve.
  • the inlet end of the first valve 151 is in fluid communication with the outlet end 117 of the main throttle device 114, and the outlet end of the first valve 151 is in fluid communication with the second flow port 134 of the first main heat exchanger 112, so that The refrigerant in the first valve 151 can only flow in the direction of the main throttle device 114 to the first main heat exchanger 112 .
  • the inlet end of the second valve 152 is in fluid communication with the second flow port 134 of the first main heat exchanger 112 , and the outlet end of the second valve 152 is in fluid communication with the inlet 136 of the first fluid passage 137 of the second auxiliary heat exchanger 126 .
  • the inlet end of the third valve 153 is in fluid communication with the first flow port 143 of the second main heat exchanger 116 , and the outlet end of the third valve 153 is in fluid communication with the inlet 136 of the first fluid passage 137 , so that the The refrigerant can only flow in the direction from the second main heat exchanger 116 to the second auxiliary heat exchanger 126 .
  • the inlet end of the fourth valve 154 is in fluid communication with the outlet end 117 of the main throttle device 114 and the outlet end of the fourth valve 154 is in fluid communication with the first flow port 143 of the second main heat exchanger 116 such that the fourth valve 154
  • the refrigerant in can only flow in the direction of the main throttling device 114 to the second main heat exchanger 116 .
  • the structural design of the one-way valve group 140, the first fluid passage 137 of the second auxiliary heat exchanger 126 and the main throttle device 114 makes it possible for the main circulation refrigerant circuit 101 to work in the cooling working mode or the heating working mode.
  • the refrigerant flowing into the one-way valve group 140 from one heat exchanger (the first main heat exchanger 112 or the second main heat exchanger 116 ) must flow through the first fluid passage 137 of the second auxiliary heat exchanger 126 in sequence and the main throttling device 114, then flow back to the check valve block 140, and finally to another heat exchanger (either the second main heat exchanger 116 or the first main heat exchanger 112).
  • the auxiliary compressor 121 , the first auxiliary heat exchanger 122 , the auxiliary throttling device 124 and the second auxiliary heat exchanger 126 are connected in series through pipelines, so that the refrigerant can be refrigerated in the auxiliary cycle circulating in the agent circuit 102 .
  • the auxiliary compressor 121 has a suction end 166 and a discharge end 165
  • the second fluid passage 138 of the second auxiliary heat exchanger 126 has an inlet 145 and an outlet 146 .
  • the refrigerant can pass through the discharge end 165 of the auxiliary compressor 121 , the first auxiliary heat exchanger 122 , the auxiliary throttle device 124 , and the second fluid passage 138 of the second auxiliary heat exchanger 126 in sequence, and then return to the auxiliary compressor 121 .
  • Suction end 166 Suction end 166 .
  • the second auxiliary heat exchanger 126 is a liquid-liquid heat exchanger.
  • the liquid-liquid heat exchanger refers to a fluorine-fluorine heat exchanger in which a fluorine refrigerant flows.
  • other types of liquid refrigerants may also be circulated inside the second auxiliary heat exchanger 126 .
  • the main circulation refrigeration The refrigerant in the refrigerant circuit 101 and the refrigerant in the auxiliary circulating refrigerant circuit 102 can exchange heat through the second auxiliary heat exchanger 126 .
  • the inlet and outlet of the two fluid channels may be staggered, so that the refrigerant in the first fluid channel 137
  • the fluid and refrigerant fluid in the second fluid passage 138 flow in opposite directions.
  • the outlet 135 of the first fluid channel 137 and the inlet 145 of the second fluid channel 138 are disposed on the same side of the second auxiliary heat exchanger 126, and the inlet 136 of the first fluid channel 137 and the inlet 136 of the second fluid channel 138
  • the outlet 146 is provided on the same side of the second auxiliary heat exchanger 126 .
  • the first fluid channel 137 is configured to go up and down and the second fluid channel 138 is configured to go in and out.
  • the first fluid channel 137 may be set to enter left and right to exit, and the second fluid channel 138 may be set to enter right and exit left, as long as the flow directions of the two channels are opposite.
  • the first main heat exchanger 112 and the first auxiliary heat exchanger 122 are water-side heat exchangers.
  • the first main heat exchanger 112 and the first auxiliary heat exchanger 122 are used for heat exchange with water.
  • the first main heat exchanger 112 and the first auxiliary heat exchanger 122 have respective independent refrigerant fluid passages, and communicate with the main circulation refrigerant circuit 101 and the auxiliary circulation refrigerant circuit 102, respectively.
  • the first main heat exchanger 112 has a first water channel 141
  • the first auxiliary heat exchanger 122 has a second water channel 142
  • the first water channel 141 and the second water channel 142 communicate with each other, and the water first passes through the first water channel 141 and the second water channel 142.
  • the refrigerant in a main heat exchanger 112 exchanges heat, and then enters the second water channel 142 to exchange heat with the first auxiliary heat exchanger 122 . That is, the first main heat exchanger 112 and the first auxiliary heat exchanger 122 share one water channel. After the first water channel 141 and the second water channel 142 exchange heat with the refrigerant in sequence, they supply heat or cooling to the use environment.
  • first main heat exchanger 112 and the first auxiliary heat exchanger 122 may also have independent water channels. In other embodiments, the first main heat exchanger 112 and the first auxiliary heat exchanger 122 may also be other types of heat exchangers, such as air-side heat exchangers.
  • the second main heat exchanger 116 is an air-side heat exchanger capable of exchanging heat with air.
  • the heat pump system 100 in the present application has a cooling working mode, a heating working mode, and an auxiliary heating working mode. These operating modes are described in detail below with reference to FIGS. 2 , 3 and 4 .
  • FIG. 2 is a flow path diagram of the heat pump system 100 in the cooling working mode.
  • the main circulation refrigerant circuit 101 is in the working state
  • the main compressor 111 is turned on
  • the refrigerant is The main circulation refrigerant circuit 101 circulates.
  • the auxiliary circulating refrigerant circuit 102 is in an idle state, and the auxiliary compressor 121 is turned off.
  • the first convection flow passage of the four-way reversing valve 118 is connected, and the second convection flow passage is disconnected, that is, the first flow port 181 and the second flow port 182 are in fluid communication, and the third flow port is in fluid communication.
  • 183 and the fourth flow port 184 communicate with each other, at the same time, the first flow port 181 and the fourth flow port 184 are disconnected, and the second flow port 182 and the third flow port 183 are disconnected. Therefore, the high-pressure refrigerant gas discharged from the main compressor 111 first enters the second main heat exchanger 116 through the fourth flow port 184 and the third flow port 183 .
  • the first flow ports 143 of the second main heat exchanger 116 are respectively connected with the third valve 153 and the fourth valve 154 in the one-way valve group 140, wherein the flow direction of the third valve 153 is the same as the flow direction of the refrigerant, and The flow direction of the fourth valve 154 is opposite to the flow direction of the refrigerant. Therefore, the refrigerant condensed by the second main heat exchanger 116 enters the first fluid passage 137 of the second auxiliary heat exchanger 126 through the third valve 153 , and then passes through the main throttle device 114 to become low-pressure refrigerant.
  • the outlet end 117 of the main throttling device 114 is connected to the first valve 151 and the fourth valve 154 in the one-way valve group 140, wherein the flow direction of the first valve 151 and the fourth valve 154 is the same as the flow direction of the refrigerant, However, the refrigerant can only pass through the first valve 151 and cannot pass through the fourth valve 154 .
  • the outlet end of the fourth valve 154 is connected to the first flow port 143 of the second main heat exchanger 116, the inlet end of the fourth valve 154 is connected to the outlet end 117 of the main throttle device 114, and the second main heat exchanger
  • the heat exchanger 116 is located upstream of the main throttle device, and the pressure near the first flow port 143 of the second main heat exchanger 116 is higher than the pressure at the outlet end 117 of the main throttle device 114, that is, the pressure at the outlet end of the fourth valve 154 is higher pressure at the inlet end, so that the refrigerant cannot enter the fourth valve 154 .
  • the refrigerant enters the second flow port 134 of the first main heat exchanger 112 through the first valve 151 .
  • the refrigerant evaporates into a low-pressure refrigerant gas in the first main heat exchanger 112, and finally flows into the suction end 106 of the main compressor 111 from the first main heat exchanger 112 to complete the cycle of the refrigerant. That is, in the cooling operation mode, the refrigerant fluid flow path in the main circulation refrigerant circuit 101 is as follows: main compressor 111 ⁇ second main heat exchanger 116 ⁇ second auxiliary heat exchanger 126 ⁇ main throttle device 114 ⁇ first main heat exchanger 112 ⁇ main compressor 111. In the cooling working mode, the water in the first water channel 141 in the first main heat exchanger 112 exchanges heat with the refrigerant and then reduces the temperature so as to realize the external cooling function of the main circulation refrigerant circuit 101 .
  • the auxiliary circulation refrigerant circuit 102 is in an idle state, the auxiliary compressor 121 is turned off, and there is only a small amount of refrigerant in the auxiliary circulation refrigerant circuit 102, and these refrigerants do not circulate.
  • the second auxiliary heat exchanger 126 acts as a subcooler in the main circulation refrigerant circuit 101 and does not participate in the refrigerant circulation of the auxiliary circulation refrigerant circuit 102 . It is worth mentioning that, although in this cooling working mode, the second auxiliary heat exchanger 126 acts as a subcooler in the main circulating refrigerant circuit 101, but since there is no refrigerant circulating in the auxiliary circulating refrigerant circuit 102, The auxiliary circulation refrigerant circuit 102 cannot provide cooling capacity for the second auxiliary heat exchanger 126, and the second auxiliary heat exchanger 126 can only provide a small amount of subcooling capacity to the main circulation refrigerant circuit 101 by naturally dissipating heat to the outside air.
  • the second auxiliary heat exchanger 126 may also be bypassed.
  • a line with a valve is provided between the inlet 136 and the outlet 135 of the first fluid passage 137 of the second auxiliary heat exchanger 126, so that the second auxiliary refrigerant circuit 102 can be bypassed when the auxiliary circulation refrigerant circuit 102 is not operating.
  • the auxiliary heat exchanger 126 reduces the refrigerant circulation resistance of the main circulation refrigerant circuit 101 .
  • FIG. 3 is a flow path diagram of the heat pump system 100 in the heating working mode.
  • the main circulating refrigerant circuit 101 is in the working state, the main compressor 111 is turned on, and the cooling is performed.
  • the refrigerant circulates in the main circulation refrigerant circuit 101 .
  • the auxiliary circulating refrigerant circuit 102 is in an idle state, and the auxiliary compressor 121 is turned off.
  • the first convection flow passage of the four-way reversing valve 118 is disconnected, and the second convection flow passage is connected, that is, the first flow port 181 and the second flow port 182 are disconnected, and the third flow port 183 and the fourth flow port 184 are disconnected, while the first flow port 181 and the fourth flow port 184 are in fluid communication, and the second flow port 182 and the third flow port 183 are in fluid communication.
  • the high-pressure refrigerant gas discharged from the discharge end 105 of the main compressor 111 enters the first main heat exchanger 112 for condensation, the second flow port 134 of the first main heat exchanger 112 and the first valve 151 of the check valve group 140
  • the outlet end of the valve 152 communicates with the inlet end of the second valve 152, that is, the flow direction of the first valve 151 is opposite to the flow direction of the refrigerant, the flow direction of the second valve 152 is the same as the flow direction of the refrigerant, and the refrigerant can only flow through The second valve 152 cannot pass through the first valve 151 .
  • the refrigerant enters the first fluid passage 137 of the second auxiliary heat exchanger 126 through the second valve 152 , and then passes through the main throttle device 114 to become a low-pressure refrigerant.
  • the outlet end 117 of the main throttling device 114 is connected to the inlet end of the first valve 151 and the inlet end of the fourth valve 154 in the one-way valve group 140 , that is, the flow directions of the first valve 151 and the fourth valve 154 are both connected to the cooling direction.
  • the flow direction of the refrigerant is the same, but the refrigerant can only pass through the fourth valve 154 and cannot pass through the first valve 151 .
  • the outlet end of the first valve 151 is connected to the second flow port 134 of the first main heat exchanger 112, the inlet end of the first valve 151 is connected to the outlet end 117 of the main throttle device 114, and the first main heat exchange
  • the heat exchanger 112 is located upstream of the main throttle device 114, and the pressure near the second flow port 134 of the first main heat exchanger 112 is higher than the pressure near the outlet end 117 of the main throttle device 114, that is, the pressure at the outlet end of the first valve 151
  • the pressure is higher than the inlet port, so that the refrigerant cannot enter the first valve 151 .
  • the refrigerant enters the first flow port 143 of the second main heat exchanger 116 through the fourth valve 154 .
  • the refrigerant evaporates into a low-pressure refrigerant gas in the second main heat exchanger 116, and finally flows into the main compressor 111 from the second main heat exchanger 116 to complete the cycle of the refrigerant. That is, in the heating operation mode, the refrigerant fluid flow path in the main circulation refrigerant circuit 101 is as follows: main compressor 111 ⁇ first main heat exchanger 112 ⁇ second auxiliary heat exchanger 126 ⁇ main throttle Device 114 ⁇ second main heat exchanger 116 ⁇ main compressor 111. In the heating operation mode, the water in the first water channel 141 in the first main heat exchanger 112 exchanges heat with the refrigerant and then increases the temperature, thereby realizing the external heating function of the main circulation refrigerant circuit 101 .
  • the auxiliary circulation refrigerant circuit 102 is in an idle state, the auxiliary compressor 121 is turned off, there is no or only a small amount of refrigerant in the auxiliary circulation refrigerant circuit 102, and the small amount of refrigerant is not circulated.
  • the second auxiliary heat exchanger 126 acts as a subcooler in the main circulation refrigerant circuit 101 and does not participate in the refrigerant circulation of the auxiliary circulation refrigerant circuit 102 . It is worth mentioning that although in this heating working mode, the second auxiliary heat exchanger 126 acts as a subcooler in the main circulating refrigerant circuit 101 , since there is no refrigerant circulating in the auxiliary circulating refrigerant circuit 102 , the auxiliary circulation refrigerant circuit 102 cannot provide cooling capacity for the second auxiliary heat exchanger 126, and the second auxiliary heat exchanger 126 can only provide a small amount of subcooling capacity to the main circulation refrigerant circuit 101 by natural heat dissipation to the outside air.
  • the second auxiliary heat exchanger 126 may also be bypassed.
  • a valved line is provided between the inlet 136 and the outlet 135 of the first fluid passage 137 of the second auxiliary heat exchanger 126 so that the second auxiliary refrigerant circuit 102 can be bypassed when the auxiliary circulating refrigerant circuit 102 is not in operation.
  • the auxiliary heat exchanger 126 reduces the refrigerant circulation resistance of the main circulation refrigerant circuit 101 .
  • FIG. 4 is a flow path diagram of the heat pump system 100 in the auxiliary heating operation mode.
  • the main circulating refrigerant circuit 101 is in a working state, and the main compressor 111 is turned on.
  • the refrigerant circulates in the main circulation refrigerant circuit 101 .
  • the auxiliary circulation refrigerant circuit 102 is also in the working state, the auxiliary compressor 121 is turned on, and the refrigerant circulates in the auxiliary circulation refrigerant circuit 102 .
  • the main circulation refrigerant circuit 101 has the same heating operation mode as the main circulation refrigerant circuit 101 shown in FIG. 3 , and the refrigerant fluid in the main circulation refrigerant circuit 101 flows
  • the path is as follows: main compressor 111 ⁇ first main heat exchanger 112 ⁇ second auxiliary heat exchanger 126 ⁇ main throttle device 114 ⁇ second main heat exchanger 116 ⁇ main compressor 111 .
  • the water in the first water channel 141 in the first main heat exchanger 112 exchanges heat with the refrigerant and then increases the temperature, thereby realizing the external heating function of the main circulation refrigerant circuit 101 .
  • the auxiliary circulation refrigerant circuit 102 is in the working state, the refrigerant enters the first auxiliary heat exchanger 122 from the discharge end 165 of the auxiliary compressor 121 for condensation, and the condensed refrigerant enters the auxiliary throttling device 124 to become a low-pressure refrigerant , the low-pressure refrigerant enters the second fluid passage 138 of the second auxiliary heat exchanger 126 , so as to exchange heat with the fluid in the first fluid passage 137 of the second auxiliary heat exchanger 126 and evaporate, then enter the suction of the auxiliary compressor 121 End 166, completes the circulation of the refrigerant.
  • the refrigerant fluid flow path in the auxiliary circulation refrigerant circuit 102 is as follows: auxiliary compressor 121 ⁇ first auxiliary heat exchanger 122 ⁇ auxiliary throttling device 124 ⁇ second auxiliary heat exchanger 126 ⁇ Auxiliary compressor 121.
  • the water in the second water channel 142 in the first auxiliary heat exchanger 122 exchanges heat with the refrigerant and then increases the temperature so as to realize the external heating function of the auxiliary circulating refrigerant circuit 102.
  • the external heat supply is jointly completed by the first main heat exchanger 112 and the first auxiliary heat exchanger 122 .
  • the second auxiliary heat exchanger 126 acts as a subcooler in the main circulating refrigerant circuit 101 and acts as an evaporator in the auxiliary circulating refrigerant circuit 102 .
  • the refrigerant in the first fluid passage 137 of the second auxiliary heat exchanger 126 is the high temperature and high pressure refrigerant in the main circulation refrigerant circuit 101 ;
  • the refrigerant in the second fluid passage 138 of the second auxiliary heat exchanger 126 is The low-temperature and low-pressure refrigerant in the auxiliary circulation refrigerant circuit 102 can exchange heat between the two, so that the heat in the main circulation refrigerant circuit 101 can transfer heat to the auxiliary circulation refrigerant circuit 102, so that the auxiliary circulation refrigerant In the circuit 102, the evaporation temperature of the second auxiliary heat exchanger 126 is less affected by the environment or not affected by the environment temperature, and the heat exchange efficiency is high.
  • the displacement of the main compressor 111 is configured to be larger than the displacement of the auxiliary compressor 121 .
  • the ratio of the discharge volume of the main compressor 111 to the discharge volume of the auxiliary compressor 121 ranges from (2 to 4):1. In an embodiment of the present application, the ratio of the displacement of the main compressor 111 to the displacement of the auxiliary compressor 121 is 3:1.
  • the first water channel 141 of the first main heat exchanger 112 is communicated with the second water channel 142 of the first auxiliary heat exchanger 122, and the water exchanges heat with the first main heat exchanger 112 and continues to heat up. Enter the first auxiliary heat exchanger 122 for heat exchange.
  • the ambient temperature is low, the temperature of the water after heat exchange by the first main heat exchanger 112 is still low, which cannot meet the heating demand. It can realize auxiliary heating function and save water consumption at the same time.
  • FIG. 5 is a block diagram of the heat pump system 100 in FIG. 1A , showing the refrigerant management system 103 and the control device 550 .
  • the heat pump system 100 operates in the cooling mode, the ambient temperature is higher, the amount of refrigerant that can be evaporated by the evaporator is larger, and the amount of refrigerant circulating in the cooling mode is larger; while when the heat pump system is in the heating mode, the ambient temperature is lower. , the amount of refrigerant that can be evaporated by the evaporator is small, and the amount of refrigerant in the heating cycle is small.
  • the amount of refrigerant required in the cooling mode is greater than the amount of refrigerant required in the heating mode.
  • the amount of refrigerant is usually designed according to the parameters of the cooling condition.
  • the heating condition is running, a part of the refrigerant will not participate in the circulation.
  • the refrigerant management system 103 is used to manage the amount of refrigerant in the main circulation refrigerant circuit 101 under different working conditions.
  • the heat pump system 100 is communicably connected to the control device 550 , and the refrigerant management system 103 , the main compressor 111 , the auxiliary compressor 121 and the four-way reversing valve 118 in the heat pump system 100 are controlled by the control device 550 .
  • the refrigerant management system 103 includes a refrigerant storage device 531, and a main liquid lead pipe 511 connected between the refrigerant storage device 531 and the low pressure side of the main circulating refrigerant circuit 101;
  • the main liquid discharge pipeline 512 between the high pressure side of the main circulation refrigerant circuit 101;
  • the auxiliary liquid introduction pipeline 513 connected between the refrigerant storage device 531 and the low pressure side of the auxiliary circulation refrigerant circuit 102;
  • the refrigerant storage device Auxiliary drain line 514 between the device 531 and the high pressure side of the auxiliary circulating refrigerant circuit 102 .
  • the main liquid drainage pipeline 511 is connected to the outlet end of the main throttling device 114
  • the main liquid discharge pipeline 512 is connected to the inlet end of the first fluid channel 137 of the second auxiliary heat exchanger 126
  • the auxiliary liquid introduction pipeline 513 is connected to the outlet end of the auxiliary throttling device 124
  • the auxiliary liquid discharge pipeline 514 is connected to the inlet end of the auxiliary throttling device 124 .
  • the main liquid introduction pipeline 511 is provided with a main liquid introduction solenoid valve 521; the main liquid discharge pipeline 512 is provided with a main liquid discharge solenoid valve 522, and the auxiliary liquid introduction pipeline 513 is provided with an auxiliary liquid introduction solenoid valve 523.
  • the liquid pipeline 514 is provided with an auxiliary liquid discharge solenoid valve 524, the main liquid suction solenoid valve 521, the main liquid discharge solenoid valve 522, the auxiliary liquid suction solenoid valve 523, and the auxiliary liquid discharge solenoid valve 524 are respectively connected with the control device 550, so as to receive from the control device 550.
  • the control signal of the control device 550 is used to control the connection and disconnection of each pipeline respectively.
  • the control device 550 sends a signal to turn on the main compressor 111 , the main liquid inlet solenoid valve 521 is turned on, the main liquid drain solenoid valve 522 is turned off, and the refrigerant storage device 531 is communicated with the main circulating refrigerant circuit 101 .
  • the pressure in the refrigerant storage device 531 is greater than the pressure at the outlet end 117 of the main throttle device 114, so that the refrigerant in the refrigerant storage device 531 enters the main circulation refrigerant circuit 101.
  • the main liquid induction solenoid valve 521 is closed, and the refrigerant storage device 531 is disconnected from the main circulating refrigerant circuit 101 .
  • the refrigerant in the main circulation refrigerant circuit 101 circulates in the direction of the cooling mode. At this time, there is no or only a small amount of refrigerant in the refrigerant storage device 531, and the pressure in the refrigerant storage device 531 decreases.
  • the main drain solenoid valve 522 When the heat pump system is shut down from the cooling mode, the main drain solenoid valve 522 is opened, the main drain solenoid valve 521 is closed, and the second auxiliary heat exchanger in the main circulating refrigerant circuit 101 connected to the main drain line 512 is turned on.
  • the pressure of the inlet 136 of the first fluid passage 137 of 126 is higher than the pressure in the refrigerant storage device 531 , so that the refrigerant enters into the refrigerant storage device 531 from the main drain line.
  • the main compressor 111 and the main drain solenoid valve 522 are closed, and most of the refrigerant in the heat pump system 100 is stored in the refrigerant storage device 531 .
  • the control device 550 can control the main liquid introduction solenoid valve 521 and The main drain solenoid valve 522 adjusts the amount of refrigerant that participates in the circulation of the main circulation refrigerant circuit 101 .
  • the control device sends a signal to turn on the main compressor 111, the main liquid inlet solenoid valve 521 is turned on, the main liquid drain solenoid valve 522 is turned off, the refrigerant storage device 531 and the main circulating refrigerant circuit 101 Connected.
  • the pressure in the refrigerant storage device 531 is greater than the pressure at the outlet end 117 of the main throttling device 114, so that the refrigerant in the refrigerant storage device 531 enters into the main circulation refrigerant circuit 101 through the main suction line 511.
  • the main circulation refrigerant circuit 101 When the main circulation refrigerant circuit 101 When the refrigerant in the refrigerant can meet the requirements of the set working conditions, the main liquid lead solenoid valve 521 is closed, and the refrigerant storage device 531 is disconnected from the main circulating refrigerant circuit 101 .
  • the refrigerant in the main circulation refrigerant circuit 101 circulates in the direction of the heating mode. Since the refrigerant required in the heating mode is less than the refrigerant required in the cooling mode, after the refrigerant storage device 531 provides enough refrigerant to the main circulation refrigerant circuit 101, a certain amount of refrigerant is stored in the refrigerant storage device 531 .
  • the main drain solenoid valve 522 When the heat pump system is turned off from the heating mode, the main drain solenoid valve 522 is turned on, the main drain solenoid valve 521 is closed, and the second auxiliary heat exchanger 126 in the main circulating refrigerant circuit 101 connected to the main drain line 512 is turned on.
  • the pressure of the inlet 136 of the first fluid passage 137 is higher than the pressure in the refrigerant storage device 531 , so that the refrigerant enters the refrigerant storage device 531 from the main drain line 512 .
  • the main compressor 111 and the main liquid discharge solenoid valve 522 are closed, and most of the refrigerant in the main circulation refrigerant circuit 101 is stored in the refrigerant storage device 531 .
  • the control device 550 can control the main liquid lead
  • the solenoid valve 521 and the main drain solenoid valve 522 adjust the amount of refrigerant that participates in the circulation in the main circulation refrigerant circuit 101 circuit.
  • the auxiliary heating operation mode When the ambient temperature is too low, the heating capacity of the main circulation refrigerant circuit 101 cannot meet the demand, and the auxiliary heating operation mode needs to be turned on.
  • the main circulation refrigerant circuit 101 is first turned on, and then the auxiliary circulation refrigerant is turned on. loop 102.
  • the control device sends a signal to turn on the main compressor 111 , the main liquid inlet solenoid valve 521 is turned on, the main liquid discharge solenoid valve 522 is turned off, and the refrigerant storage device 531 is communicated with the main circulating refrigerant circuit 101 .
  • the pressure in the refrigerant storage device 531 is greater than the pressure at the outlet end 117 of the main throttling device 114, so that the refrigerant in the refrigerant storage device 531 enters into the main circulation refrigerant circuit 101 through the main suction line 511.
  • the main circulation refrigerant circuit 101 When the main circulation refrigerant circuit 101 When the refrigerant in the refrigerant can meet the requirements of the set working conditions, the main liquid lead solenoid valve 521 is closed, and the refrigerant storage device 531 is disconnected from the main circulating refrigerant circuit 101 .
  • the control device When the main compressor 111 is turned on, the control device sends a signal to turn on the auxiliary compressor 121, the auxiliary liquid inlet solenoid valve 523 is turned on, the auxiliary liquid discharge solenoid valve 524 is closed, and the refrigerant storage device 531 is communicated with the auxiliary circulating refrigerant circuit 102.
  • the pressure in the refrigerant storage device 531 is greater than the pressure at the outlet end of the auxiliary throttle device 124, so that the refrigerant in the refrigerant storage device 531 enters the auxiliary circulation refrigerant circuit 102 from the auxiliary liquid introduction pipeline 513.
  • the auxiliary induction liquid solenoid valve 523 is closed, and the refrigerant storage device 531 is disconnected from the auxiliary circulating refrigerant circuit 102 .
  • the refrigerant in the refrigerant storage device 531 can be used by the main circulation refrigerant circuit 101 and the auxiliary circulation refrigerant circuit 102 .
  • the auxiliary circulation refrigerant circuit 102 When the heat pump system is turned off from the auxiliary heating working mode, the auxiliary circulation refrigerant circuit 102 is first closed, and then the main circulation refrigerant circuit 101 is closed.
  • the auxiliary circulation refrigerant circuit 102 When the auxiliary circulation refrigerant circuit 102 is closed, the auxiliary liquid discharge solenoid valve 524 is opened, the auxiliary liquid induction solenoid valve 523 is closed, and the pressure at the inlet end of the auxiliary throttle device 124 in the auxiliary circulation refrigerant circuit 102 is higher than that in the refrigerant storage device 531. pressure, so that the refrigerant enters the refrigerant storage device 531 from the auxiliary drainage pipeline.
  • the auxiliary compressor 121 and the auxiliary liquid discharge solenoid valve 524 are closed, and most of the refrigerant in the auxiliary circulating refrigerant circuit 102 is also stored in the refrigerant storage device 531 .
  • the main circulation refrigerant circuit 101 is closed, the main liquid discharge solenoid valve 522 is opened, the main liquid induction solenoid valve 521 is closed, and the second auxiliary heat exchanger in the main circulation refrigerant circuit 101 connected to the main liquid discharge pipeline 512 is turned on.
  • the pressure at the inlet end of the first fluid passage 137 of 126 is higher than the pressure in the refrigerant storage device 531 , so that the refrigerant enters into the refrigerant storage device 531 from the main drain line.
  • the main compressor 111 and the main drain solenoid valve 522 are closed, and most of the refrigerant in the main circulation refrigerant circuit 101 is stored in the refrigerant storage device 531, so that most of the refrigerant in the heat pump system 100 is stored in the refrigerant storage device. 531.
  • the refrigerant in the main circulation refrigerant circuit 101 and the auxiliary circulation refrigerant circuit 102 may be too little or too much.
  • the device 550 can adjust the amount of refrigerant circulating in the main circulation refrigerant circuit 101 by controlling the main liquid induction solenoid valve 521 , the main liquid discharge solenoid valve 522 , the auxiliary liquid induction solenoid valve 523 and the auxiliary liquid discharge solenoid valve 524 .
  • the main liquid introduction pipeline 511 is provided with a liquid introduction one-way valve 551, and the auxiliary liquid introduction pipeline 513 is respectively provided with a liquid introduction one-way valve 553.
  • the liquid introduction one-way valve 551 and the liquid introduction one-way valve 553 are configured such that The refrigerant can only flow in the direction of being discharged from the refrigerant storage device 531 to prevent the refrigerant from flowing backwards during liquid introduction.
  • the main drain line 512 is provided with a drain check valve 552, and the auxiliary drain line 514 is provided with a drain check valve 554.
  • the drain check valve 552 and the drain check valve 554 are configured to allow refrigeration
  • the refrigerant can only flow in the direction of being discharged to the refrigerant storage device 531, so that the backflow of the refrigerant is prevented when the liquid is discharged.
  • the heat pump system When the heat pump system is turned off, most of the refrigerant is stored in the refrigerant storage device 531, and there is a small amount of refrigerant in the main circulation refrigerant circuit 101 and the auxiliary circulation refrigerant circuit 102 to prevent the water side heat exchanger from being caused by changes in ambient temperature.
  • the heat exchange between the refrigerant and the water pipeline causes the water to freeze and freeze. And it can reduce the trace loss of refrigerant caused by complicated pipeline.
  • FIG. 6 is a schematic structural block diagram of the control device 550 of the heat pump system 100 .
  • the heat pump system further includes a control device 550 .
  • the control device 550 includes a bus 686 , a processor 684 , an input interface 688 , an output interface 692 , and a memory 698 with a control program 687 .
  • Various components in the control device 550 including the processor 684 , the input interface 688 , the output interface 692 and the memory 698 are communicatively connected to the bus 686 , so that the processor 684 can control the operation of the input interface 688 , the output interface 692 and the memory 698 .
  • memory 698 is used to store programs, instructions, and data
  • processor 684 reads programs, instructions, and data from memory 698 and can write data to memory 698 .
  • the processor 684 controls the operation of the input interface 688 and the output interface 692 by executing programs and instructions read from the memory 698 .
  • the output interface 692 is respectively connected to the main compressor 111 , the auxiliary compressor 121 , the four-way reversing valve 118 , the main throttle device 114 , the main liquid introduction solenoid valve 521 , and the main liquid discharge solenoid valve through their respective connections. 522.
  • the auxiliary liquid introduction solenoid valve 523 is connected to the auxiliary liquid discharge solenoid valve 524 in communication.
  • Processor 684 controls the operation of heat pump system 100 by executing programs and instructions in memory 698.
  • control device 550 can receive the signal 689 through the input interface 688 to perform corresponding control, such as receiving an operation request signal for controlling the heat pump system 100 (such as sending a request through a control panel) or a system status signal (such as a refrigerant Whether the actual amount of refrigerant in the circuit matches the refrigerant demand), and sends control signals to each controlled component through the output interface 692, so that the heat pump system 100 can operate in various working modes.
  • control such as receiving an operation request signal for controlling the heat pump system 100 (such as sending a request through a control panel) or a system status signal (such as a refrigerant Whether the actual amount of refrigerant in the circuit matches the refrigerant demand), and sends control signals to each controlled component through the output interface 692, so that the heat pump system 100 can operate in various working modes.
  • the main circulation refrigerant circuit 101 and the auxiliary circulation refrigerant circuit 102 share a refrigerant management system, so that in the auxiliary heating operation mode, the refrigerant management system can dispose of the idle refrigerant in the main circulation refrigerant circuit 101 Distributed to the auxiliary circulation refrigerant circuit 102 to save the amount of refrigerant in the heat pump system.
  • the two fluid channels in the second auxiliary heat exchanger can exchange heat, which can improve the heat exchange efficiency of the heat pump system.
  • the first main heat exchanger and the second main heat exchanger share a water channel, which can rapidly increase the water temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

本申请提供一种热泵系统,热泵系统包括主循环制冷剂回路、辅循环制冷剂回路和冷媒管理系统,主循环制冷剂回路具有主压缩机、第一主换热器、主节流装置和第二主换热器,主压缩机被配置为使得主循环制冷剂回路中的制冷剂能够沿主循环制冷工况流向循环或沿主循环制热工况流向循环。辅循环制冷剂回路包括辅压缩机、第一辅换热器、辅节流装置和第二辅换热器,辅压缩机被配置为使得辅循环制冷剂回路中的制冷剂能够沿辅循环制热工况流向循环。冷媒管理系统分别与主循环制冷剂回路和辅循环制冷剂回路可控地连通或断开,冷媒管理系统被配置为能够将用于主循环制冷剂回路的制冷剂分配至辅循环制冷剂回路。本申请提供的热泵系统中制冷剂用量较少。

Description

热泵系统 技术领域
本申请涉及一种热泵系统,特别涉及一种低环境温度下满足制热需求的热泵系统。
背景技术
热泵系统包括由压缩机、节流装置和至少两个换热器组成的制冷剂的循环系统。通过换热器与外界进行热交换,使热泵系统能够在制冷工作模式或制热工作模式下工作。热泵系统在制热工作模式下工作时,制热量受到环境温度的影响。尤其在低环境温度下,热泵系统的制热量随着环境温度的降低逐步衰减,并且衰减趋势增大,但客户侧所需热量随着环境温度降低不断增加,因此现有的热泵系统不能满足客户侧的需求。
发明内容
满足低环境温度下机组制热量与客户侧需热量的匹配以及能效的要求是当下机组的发展的新趋势。本申请提供一种热泵系统,能够在多种工作模式下运行,能够满足低环境温度下机组制热量与客户侧需热量的匹配,其中,所述热泵系统包括:包括:主循环制冷剂回路,所述主循环制冷剂回路具有:主压缩机、第一主换热器、主节流装置和第二主换热器,所述主压缩机被配置为使得主循环制冷剂回路中的制冷剂能够沿主循环制冷工况流向循环或沿与所述主循环制冷工况流向相反的主循环制热工况流向循环;辅循环制冷剂回路,所述辅循环制冷剂回路包括辅压缩机、第一辅换热器、辅节流装置和第二辅换热器,所述辅压缩机被配置为使得辅循环制冷剂回路中的制冷剂能够沿辅循环制热工况流向循环;冷媒管理系统,所述冷媒管理系统分别与所述主循环制冷剂回路和所述辅循环制冷剂回路可控地连通或断开,所述冷媒管理系统被配置为能够将用于所述主循环制冷剂回路的制冷剂分配至所述辅循环制冷剂回路。
根据以上所述的热泵系统,所述热泵系统具有制冷工作模式、制热工作模式以及辅助制热工作模式;在制冷工作模式时,所述主循环制冷剂回路中的制冷剂沿主循环制冷工况流向循环,所述辅压缩机关闭;在制热工作模式下,所述主循环制冷剂回路中的制冷剂沿主循环制热工况流向循环,所述辅压缩机关闭;在辅助制热工作模式下,所述主循环制冷剂回路中的制冷剂沿主循环制热工况流向循环,所述辅循环制冷剂回路中的制冷剂沿辅循环制热工况流向循环。
根据以上所述的热泵系统,所述冷媒管理系统被配置为在所述辅助制热工作模式开启后,能够将部分用于所述主循环制冷剂回路中的制冷剂引入所述辅循环制冷剂回路。
根据以上所述的热泵系统,所述冷媒管理系统包括冷媒储存装置,所述冷媒储存装置被配置为能够收集从所述主循环制冷剂回路引出的制冷剂并能够将收集的制冷剂引入所述辅循环制冷剂回路。
根据以上所述的热泵系统,所述冷媒管理系统还包括:连接在冷媒储存装置与主循环制冷剂回路的低压侧之间的主引液管路;连接在冷媒储存装置与主循环制冷剂回路的高压侧之间的主排液管路;连接在冷媒储存装置与辅循环制冷剂回路的低压侧之间的辅引液管路;以及连接在冷媒储存装置与辅循环制冷剂回路的高压侧之间的辅排液管路。
根据以上所述的热泵系统,所述第二辅换热器具有第一流体通道和第二流体通道,其中第一流体通道连接在所述主循环制冷剂回路中,第二流体通道连接在所述辅循环制冷剂回路中,其中第一流体通道和第二流体通道中的制冷剂能够进行热交换。
根据以上所述的热泵系统,所述第一主换热器和第一辅换热器均为水侧换热器,所述第一主换热器具有第一水通道,所述第一辅换热器具有第二水通道,所述第一水通道和第二水通道连通,以使得水能够第一水通道流向第二水通道。
根据以上所述的热泵系统,所述主引液管路、主排液管路、辅引液管路和辅排液管路上分别设有相应的电磁阀,用于分别控制管路的连通断开;所述主引液 管路和辅引液管路上分别设有引液单向阀,所述引液单向阀被配置为使得制冷剂仅能沿从冷媒储存装置排出的方向流动,所述主排液管路和辅排液管路上分别设有排液单向阀,所述排液单向阀被配置为使得制冷剂仅能沿排向所述冷媒储存装置的方向流动。
根据以上所述的热泵系统,所述热泵系统还包括:控制装置,所述控制装置分别与所述主引液管路、所述主排液管路、辅引液管路和辅排液管路上各自相应的电磁阀连接,能够控制各个电磁阀的连接和断开;并且所述控制装置与所述主压缩机和辅压缩机连接,所述控制装置能够控制所述主压缩机和所述辅压缩机的开启和关闭。
根据以上所述的热泵系统,所述主压缩机的排气量与所述辅压缩机的排气量的比值范围为(2~4):1。
在本申请中,热泵系统具有制冷工作模式,制热工作模式以及辅助制热工作模式,热泵系统具有主循环制冷剂回路、辅循环制冷剂回路以及冷媒管理系统。在辅助制热工作模式下,主循环制冷剂回路和辅循环制冷剂回路同时工作。主循环制冷剂回路和辅循环制冷剂回路共用一套冷媒管理系统,在辅助制热工作模式下,冷媒管理系统能够将用于主循环制冷剂回路中制冷剂的闲置部分分配到辅循环制冷剂回路中,从而不必为辅循环制冷剂回路单独配置制冷剂,节约整个热泵系统制冷剂的用量。在辅助制热工作模式下,第二辅助换热器中的两个流体通道能够换热,能够提高热泵系统的效率。第一主换热器和第二主换热器共用一个水通道,能够快速提高热水的出水温度。
附图说明
图1A为本申请的一个实施例的热泵系统的框图;
图1B是图1A中主循环制冷剂回路和辅循环制冷剂回路的框图;
图1C是图1B中单向阀组的示意图;
图2为热泵系统在制冷工作模式下的流动路径图;
图3为热泵系统在制热工作模式下的流动路径图;
图4为热泵系统在辅助工作模式下的流动路径图;
图5是图1A中的热泵系统的框图,示出了冷媒管理系统;
图6是热泵系统的控制装置示意性的结构框图。
具体实施方式
下面将参考构成本说明书一部分的附图对本申请的各种具体实施方式进行描述。应该理解的是,虽然在本申请中使用表示方向的术语,诸如“前”、“后”等描述本申请的各种示例结构部分和元件,但是在此使用这些术语只是为了方便说明的目的,基于附图中显示的示例方位而确定的。由于本申请所公开的实施例可以按照不同的方向设置,所以这些表示方向的术语只是作为说明而不应视作为限制。在可能的情况下,本申请中使用的相同或者相类似的附图标记指的是相同的部件。
图1A为本申请的一个实施例的热泵系统100的框图。如图1A所示,热泵系统100包括主循环制冷剂回路101、辅循环制冷剂回路102和冷媒管理系统103。热泵系统100具有制冷工作模式、制热工作模式以及辅助制热工作模式。在夏季环境温度过高时,热泵系统启动制冷工作模式,降低使用环境的温度。在冬季温度较低时,例如0℃时,热泵系统启用制热工作模式,提高使用环境的温度。在冬季温度过低时,例如-15℃以下,热泵系统的制热工作模式不能满足使用环境对热量的需求,热泵系统启动辅助制热工作模式,以增大制热量,提高使用环境的温度。在制冷工作模式和制热工作模式时,主循环制冷剂回路101开启,辅循环制冷剂回路102关闭;在辅助制热工作模式时,主循环制冷剂回路101和辅循环制冷剂回路102均开启。
图1B是图1A中主循环制冷剂回路101和辅循环制冷剂回路102的框图,其中省略了冷媒管理系统103,从而能够更清楚地展示主循环制冷剂回路101和辅循环制冷剂回路102。图1C是图1B中单向阀组140的示意图,用于示出单向 阀组140的结构。结合图1A和图1B所示,辅循环制冷剂回路102包括辅压缩机121、第一辅换热器122、辅节流装置124和第二辅换热器126,辅循环制冷剂回路102中的制冷剂能够沿辅循环制热工况流向循环。主循环制冷剂回路101具有:主压缩机111、第一主换热器112、第二辅换热器126、主节流装置114和第二主换热器116,主循环制冷剂回路101中的制冷剂能够沿主循环制冷工况流向循环或主循环制热工况流向循环。其中第二辅换热器126具有两个流体通道,即第一流体通道137和第二流体通道138,第一流体通道137连接在主循环制冷剂回路101中,第二流体通道138连接在辅循环制冷剂回路102中。
如图1B所示,主压缩机111具有吸气端106和排气端105,第一主换热器112具有第一流通口133和第二流通口134,主节流装置114具有入口端115和出口端117,第二主换热器116具有第一流通口143和第二流通口144。连接在主循环制冷剂回路101中的第二辅换热器126的第一流体通道137具有入口136和出口135。
主循环制冷剂回路101中的阀装置包括主控制阀组,主控制阀组用于控制主循环制冷剂回路101中的制冷剂沿制冷工况流向循环或者沿制热工况循环。作为一个示例,主控制阀组包括四通换向阀118。四通换向阀118具有第一流通口181、第二流通口182、第三流通口183和第四流通口184,四通换向阀118的四个流通口能够形成两对流通通道,其中第一对流通通道能够使第一流通口181和第二流通口182流体连通、并且使第三流通口183和第四流通口184流体连通;第二对流通通道能够使第一流通口181和第四流通口184流体连通、并且使第二流通口182和第三流通口183流体连通。其中,四通换向阀118的第一流通口181与第一主换热器112的第一流通口133连接,四通换向阀118的第二流通口182与主压缩机111的吸气端106连接,四通换向阀118的第三流通口183与第二主换热器116的第二流通口144连接,四通换向阀118的第四流通口184与主压缩机111的排气端105连接。
主循环制冷剂回路101中的阀装置还包括单向阀组140,结合图1B和图1C所示,单向阀组140包括第一阀151、第二阀152、第三阀153和第四阀154。 第一阀151、第二阀152、第三阀153和第四阀154通过管路依次连接,从而形成环形。第一主换热器112的第二流通口134连接在第一阀151和第二阀152之间的管路上,第二辅换热器126的第一流体通道137的入口136连接在第二阀152和第三阀153之间的管路上,第二主换热器116的第一流通口143连接在第三阀153和第四阀154之间的管路上,主节流装置114的出口端117连接在第一阀151和第四阀154之间的管路上。
作为一个示例,第一阀151、第二阀152、第三阀153和第四阀154为单向阀,以使得制冷剂流体只能单向地从各个阀的入口端流向其出口端。本领域技术人员可以知晓的是,在其他实施例中,也可以用其他的控制阀或控制阀组实现单向阀的功能。
具体地说,第一阀151的入口端与主节流装置114的出口端117流体连通,第一阀151的出口端与第一主换热器112的第二流通口134流体连通,以使得第一阀151中的制冷剂仅能沿着自主节流装置114向第一主换热器112的方向流动。第二阀152的入口端与第一主换热器112的第二流通口134流体连通,第二阀152的出口端与第二辅换热器126的第一流体通道137的入口136流体连通,以使得第二阀152中的制冷剂仅能沿着自第一主换热器112向第二辅换热器126的方向流动。第三阀153的入口端与第二主换热器116的第一流通口143流体连通,第三阀153的出口端与第一流体通道137的入口136流体连通,以使得第三阀153中的制冷剂仅能沿着自第二主换热器116向第二辅换热器126的方向流动。第四阀154的入口端与主节流装置114的出口端117流体连通,第四阀154的出口端与第二主换热器116的第一流通口143流体连通,以使得第四阀154中的制冷剂仅能沿着自主节流装置114向第二主换热器116的方向流动。单向阀组140、第二辅换热器126的第一流体通道137以及主节流装置114的这种结构设计,使得无论主循环制冷剂回路101工作在制冷工作模式或者制热工作模式下,从一个换热器(第一主换热器112或第二主换热器116)流入单向阀组140的制冷剂都必须依次流经第二辅换热器126的第一流体通道137以及主节流装置114,然后再流回单向阀组140,最后再流向另一个换热器(第二主换热器116或第一主换热器112)。
如图1B所示,辅压缩机121、第一辅换热器122、辅节流装置124和第二辅换热器126之间通过管路串连连接,以使得制冷剂能够在辅循环制冷剂回路102中循环。
辅压缩机121具有吸气端166和排气端165,第二辅换热器126第二流体通道138具有入口145和出口146。制冷剂能够依次经过辅压缩机121的排气端165、第一辅换热器122、辅节流装置124、第二辅换热器126的第二流体通道138再回到辅压缩机121的吸气端166。
在如图1A-1B所示的实施例中,第二辅换热器126为液-液换热器。在本实施例中,液-液换热器是指其内部流通氟制冷剂的氟-氟换热器。在其他实施例中,第二辅换热器126内部也可以流通其他种类的液态制冷剂。由于第二辅换热器126的第一流体通道137连接在主循环制冷剂回路101中,第二辅换热器126的第二流体通道138连接在辅循环制冷剂回路102中,主循环制冷剂回路101中的制冷剂和辅循环制冷剂回路102中的制冷剂能够通过第二辅换热器126进行热交换。作为一个示例,为了增强第一流体通道137和第二流体通道138中制冷剂流体的热交换效果,可以将两个流体通道的入口和出口错开布置,以使得第一流体通道137中的制冷剂流体和第二流体通道138中的制冷剂流体沿相反的方向流动。如图所示,第一流体通道137的出口135和第二流体通道138的入口145设置在第二辅换热器126的同一侧,第一流体通道137的入口136和第二流体通道138的出口146设置在第二辅换热器126的同一侧。由此,如图所示,第一流体通道137被设置为上进下出,而第二流体通道138被设置为下进上出。在其他的实施例中,也可以将第一流体通道137设置为左进右出,第二流体通道138设置为右进左出,只需两个通道的流动方向相反即可。
第一主换热器112和第一辅换热器122为水侧换热器。第一主换热器112和第一辅换热器122用于与水进行热交换。第一主换热器112和第一辅换热器122具有各自独立的制冷剂流体通道,分别与主循环制冷剂回路101和辅循环制冷剂回路102连通。第一主换热器112具有第一水通道141,第一辅换热器122具有第二水通道142,第一水通道141和第二水通道142连通,水先经第一水通道141 与第一主换热器112中的制冷剂换热,随后进入第二水通道142与第一辅换热器122换热。也就是说,第一主换热器112和第一辅换热器122共用一个水通道。第一水通道141和第二水通道142依次与制冷剂热量交换后,向使用环境供热或供冷。
在一些实施例中,第一主换热器112和第一辅换热器122也可以也可以各自有独立的水通道。在另一些实施例中,第一主换热器112和第一辅换热器122也可以为其它类型换热器,例如空气侧换热器。
第二主换热器116为空气侧换热器,能够与空气进行热量交换。
本申请中的热泵系统100具有制冷工作模式、制热工作模式以及辅助制热工作模式。以下通过图2、图3以及图4来详细说明这些工作模式。
图2为热泵系统100在制冷工作模式下的流动路径图,如图2所示,热泵系统100处于制冷工作模式时,主循环制冷剂回路101处于工作状态,主压缩机111开启,制冷剂在主循环制冷剂回路101中循环。辅循环制冷剂回路102处于闲置状态,辅压缩机121关闭。
在主循环制冷剂回路101中,四通换向阀118的第一对流通通道连通,第二对流通通道断开,即第一流通口181和第二流通口182流体连通、第三流通口183和第四流通口184连通,同时,第一流通口181和第四流通口184断开,第二流通口182和第三流通口183断开。从而,主压缩机111排出的高压制冷剂气体先通过第四流通口184和第三流通口183进入第二主换热器116。第二主换热器116的第一流通口143分别与单向阀组140中的第三阀153和第四阀154连接,其中第三阀153的流通方向与制冷剂的流动方向相同,而第四阀154的流通方向与制冷剂的流动方向相反。因此,经第二主换热器116冷凝后的制冷剂的第三阀153进入第二辅换热器126的第一流体通道137,然后经过主节流装置114变为低压制冷剂。主节流装置114的出口端117与单向阀组140中的第一阀151和第四阀154连接,其中第一阀151和第四阀154的流通方向均与制冷剂的流动方向相同,但制冷剂仅能通过第一阀151,而不能通过第四阀154。这是由于第四阀154的出口端与第二主换热器116的第一流通口143连接,第四阀154的入口端 与主节流装置114的出口端117连接,第二主换热器116位于主节流装置的上游,第二主换热器116的第一流通口143附近的压力高于主节流装置114的出口端117的压力,即第四阀154的出口端的压力高于入口端的压力,从而制冷剂不能进入第四阀154。则制冷剂经第一阀151进入第一主换热器112的第二流通口134。制冷剂在第一主换热器112中蒸发为低压制冷剂气体,最后从第一主换热器112流入主压缩机111的吸气端106,完成制冷剂的循环。也就是说,在制冷工作模式中,主循环制冷剂回路101中的制冷剂流体流动路径如下:主压缩机111→第二主换热器116→第二辅换热器126→主节流装置114→第一主换热器112→主压缩机111。在制冷工作模式中,第一主换热器112中的第一水通道141中的水与制冷剂换热后降低温度从而实现主循环制冷剂回路101的对外供冷功能。
辅循环制冷剂回路102处于闲置状态,辅压缩机121关闭,辅循环制冷剂回路102中仅有少量制冷剂,这些制冷剂不循环。
在制冷工作模式中,第二辅换热器126在主循环制冷剂回路101中充当过冷器,未参与辅循环制冷剂回路102的制冷剂循环。值得一提的是,虽然在此制冷工作模式下,第二辅换热器126在主循环制冷剂回路101中充当过冷器,但是由于辅循环制冷剂回路102中并没有循环的制冷剂,辅循环制冷剂回路102不能为第二辅换热器126提供冷量,第二辅换热器126只能依靠向外部空气自然散热为主循环制冷剂回路101提供少量的过冷能力。为了降低主循环制冷剂回路101中的制冷剂的流通阻力,也可以将该第二辅换热器126旁通掉。例如,在该第二辅换热器126的第一流体通道137的入口136和出口135之间设置一个具有阀的管路,从而可以在辅循环制冷剂回路102未运行时旁通该第二辅换热器126,从而降低主循环制冷剂回路101的制冷剂循环阻力。
图3为热泵系统100在制热工作模式下的流动路径图,如图3所示,热泵系统100处于制热工作模式时,主循环制冷剂回路101处于工作状态,主压缩机111开启,制冷剂在主循环制冷剂回路101循环。辅循环制冷剂回路102处于闲置状态,辅压缩机121关闭。
在主循环制冷剂回路101中,四通换向阀118的第一对流通通道断开,第二对流通通道连通,即第一流通口181和第二流通口182断开、第三流通口183和第四流通口184断开,同时,第一流通口181和第四流通口184流体连通,第二流通口182和第三流通口183流体连通。从主压缩机111的排气端105排出的高压制冷剂气体进入第一主换热器112冷凝,第一主换热器112的第二流通口134与单向阀组140的第一阀151的出口端和第二阀152的入口端连通,即第一阀151的流通方向与制冷剂的流动方向相反,第二阀152的流通方向与制冷剂的流动方向相同,制冷剂仅能流动通过第二阀152,而不能通过第一阀151。制冷剂经第二阀152进入第二辅换热器126的第一流体通道137,然后经过主节流装置114变为低压制冷剂。主节流装置114的出口端117与单向阀组140中的第一阀151入口端和第四阀154的入口端连接,也就是第一阀151和第四阀154的流通方向均与制冷剂的流动方向相同,但制冷剂仅能通过第四阀154,而不能通过第一阀151。这是由于第一阀151的出口端与第一主换热器112的第二流通口134连接,第一阀151的入口端与主节流装置114的出口端117连接,第一主换热器112位于主节流装置114的上游,第一主换热器112的第二流通口134附近压力高于主节流装置114的出口端117附近的压力,即第一阀151的出口端的压力高于入口端的压力,使得制冷剂不能进入第一阀151。制冷剂经第四阀154进入第二主换热器116的第一流通口143。制冷剂在第二主换热器116中蒸发为低压制冷剂气体,最后从第二主换热器116流入主压缩机111,完成制冷剂的循环。也就是说,在制热工作模式中,主循环制冷剂回路101中的制冷剂流体流动路径如下:主压缩机111→第一主换热器112→第二辅换热器126→主节流装置114→第二主换热器116→主压缩机111。在制热工作模式中,第一主换热器112中的第一水通道141中的水与制冷剂换热后升高温度从而实现主循环制冷剂回路101的对外供热功能。
辅循环制冷剂回路102处于闲置状态,辅压缩机121关闭,辅循环制冷剂回路102中没有或仅有少量制冷剂,这些少量制冷剂不进行循环。
在制热工作模式中,第二辅换热器126在主循环制冷剂回路101中充当过冷器,未参与辅循环制冷剂回路102的制冷剂循环。值得一提的是,虽然在此制热 工作模式下,第二辅换热器126在主循环制冷剂回路101中充当过冷器,但是由于辅循环制冷剂回路102中并没有循环的制冷剂,辅循环制冷剂回路102不能为第二辅换热器126提供冷量,第二辅换热器126只能依靠向外部空气自然散热为主循环制冷剂回路101提供少量的过冷能力。为了降低主循环制冷剂回路101中的制冷剂的流通阻力,也可以将该第二辅换热器126旁通掉。例如,在该第二辅换热器126的第一流体通道137的入口136和出口135之间设置一个带阀的管路,从而可以在辅循环制冷剂回路102未运行时旁通该第二辅换热器126,从而降低主循环制冷剂回路101的制冷剂循环阻力。
图4为热泵系统100在辅助制热工作模式下的流动路径图,如图4所示,热泵系统100在制热工作模式时,主循环制冷剂回路101处于工作状态,主压缩机111开启,制冷剂在主循环制冷剂回路101循环。辅循环制冷剂回路102也处于工作状态,辅压缩机121开启,制冷剂在辅循环制冷剂回路102循环。
图4所示的在辅助制热工作模式中,主循环制冷剂回路101与图3所示的主循环制冷剂回路101的制热工作模式相同,主循环制冷剂回路101中的制冷剂流体流动路径如下:主压缩机111→第一主换热器112→第二辅换热器126→主节流装置114→第二主换热器116→主压缩机111。在辅助制热工作模式中,第一主换热器112中的第一水通道141中的水与制冷剂换热后升高温度从而实现主循环制冷剂回路101的对外供热功能。
辅循环制冷剂回路102处于工作状态,制冷剂从辅压缩机121的排气端165进入第一辅换热器122进行冷凝,冷凝后的制冷剂通过进入辅节流装置124变为低压制冷剂,低压制冷剂进入第二辅换热器126的第二流体通道138,从而与第二辅换热器126的第一流体通道137中的流体换热蒸发后,进入辅压缩机121的吸气端166,完成制冷剂的循环。即在辅助制热工作模式下,辅循环制冷剂回路102中的制冷剂流体流动路径如下:辅压缩机121→第一辅换热器122→辅节流装置124→第二辅换热器126→辅压缩机121。在辅助制热工作模式中,第一辅换热器122中的第二水通道142中的水与制冷剂换热后升高温度从而实现辅循 环制冷剂回路102的对外供热功能。对于热泵系统100来说,对外供热由第一主换热器112和第一辅换热器122共同完成。
在辅助制热工作模式下,第二辅换热器126在主循环制冷剂回路101中充当过冷器,在辅循环制冷剂回路102中充当蒸发器。第二辅换热器126的第一流体通道137中的制冷剂为主循环制冷剂回路101中的高温高压的制冷剂;第二辅换热器126的第二流体通道138中的制冷剂为辅循环制冷剂回路102中的低温低压的制冷剂,两者之间能够进行热量交换,使主循环制冷剂回路101中的热量能够向辅循环制冷剂回路102传递热量,从而在辅循环制冷剂回路102中,第二辅换热器126的蒸发温度受环境影响较小或不受环境温度影响,换热效率较高。
在辅助制热工作模式下,主压缩机111的排气量被配置为大于辅压缩机121的排气量。在本申请的一些实施例中,辅助制热工作模式下,主压缩机111的排气量与辅压缩机121的排气量的比值范围为(2~4):1。在本申请的一个实施例中,主压缩机111的排气量与辅压缩机121的排气量的比值3:1。
在辅助制热工作模式下,第一主换热器112第一水通道141和第一辅换热器122的第二水通道142连通,水与第一主换热器112热量交换升温后继续进入第一辅换热器122进行热量交换。在环境温度较低的情况下,水经第一主换热器112换热后温度仍然较低,不能满足制热需求,再次经过第一辅换热器122换热能够进一步提高温度,能够满足制热量需求,实现辅助制热功能,同时能节约水用量。
图5是图1A中的热泵系统100的框图,示出了冷媒管理系统103以及控制装置550。在热泵系统100运行制冷工作模式时,环境温度较高,蒸发器能够蒸发的制冷剂量较大,制冷工况循环的制冷剂量较大;而在热泵系统运行制热工作模式时,环境温度较低,蒸发器能够蒸发的制冷剂量较小,制热工况循环的制冷剂量较小。也就是说,在同一个制冷剂循环回路中,制冷工况所需的制冷剂用量大于制热工况所需的制冷剂的用量。在对能够制冷和制热的热泵系统进行设计时,通常按照制冷工况的参数设计制冷剂的用量,在运行制热工况时,一部分制冷剂将不参与循环。本申请中采用冷媒管理系统103管理不同工况下主循环制冷剂回 路101中的制冷剂的量。热泵系统100与控制装置550可通信地连接,热泵系统100中的冷媒管理系统103、主压缩机111、辅压缩机121和四通换向阀118由控制装置550控制。
如图5所示,冷媒管理系统103包括冷媒储存装置531,以及连接在冷媒储存装置531与主循环制冷剂回路101的低压侧之间的主引液管路511;连接在冷媒储存装置531与主循环制冷剂回路101的高压侧之间的主排液管路512;连接在冷媒储存装置531与辅循环制冷剂回路102的低压侧之间的辅引液管路513;以及连接在冷媒储存装置531与辅循环制冷剂回路102的高压侧之间的辅排液管路514。在本申请的一个实施例中,主引液管路511与主节流装置114的出口端连接,主排液管路512与第二辅换热器126的第一流体通道137的入口端连接,辅引液管路513与辅节流装置124的出口端连接,辅排液管路514与辅节流装置124的入口端连接。
主引液管路511上设有主引液电磁阀521;主排液管路512上设有主排液电磁阀522、辅引液管路513上设有辅引液电磁阀523,辅排液管路514上设有辅排液电磁阀524,主引液电磁阀521、主排液电磁阀522、辅引液电磁阀523辅排液电磁阀524分别与控制装置550连接,从而接收来自控制装置550的控制信号,用于分别控制各管路的连通与断开。
热泵系统启动制冷工作模式时,控制装置550发出信号使得主压缩机111开启,主引液电磁阀521开启,主排液电磁阀522关闭,冷媒储存装置531与主循环制冷剂回路101连通。冷媒储存装置531中的压力大于主节流装置114的出口端117的压力,从而冷媒储存装置531中的制冷剂进入主循环制冷剂回路101中,当主循环制冷剂回路101中的制冷剂能够满足设定工况需求时,主引液电磁阀521关闭,冷媒储存装置531与主循环制冷剂回路101断开。主循环制冷剂回路101中的制冷剂沿制冷工况方向循环。此时,冷媒储存装置531中没有或仅存有少量制冷剂,冷媒储存装置531中的压力降低。
当热泵系统从制冷工作模式关闭从而停机时,主排液电磁阀522开启,主引液电磁阀521关闭,主循环制冷剂回路101中与主排液管路512连接的第二辅换 热器126的第一流体通道137的入口136的压力高于冷媒储存装置531中的压力,从而制冷剂自主排液管路进入冷媒储存装置531中。接着关闭主压缩机111以及主排液电磁阀522,则热泵系统100中的大部分的制冷剂中保存在冷媒储存装置531中。
在制冷工作模式运行过程中,随着实际工况的变化,主循环制冷剂回路101中的制冷剂也可能存在过少或过多的情况,控制装置550能够通过控制主引液电磁阀521和主排液电磁阀522调整在主循环制冷剂回路101回路中参与循环的制冷剂的量。
类似的,热泵系统启动制热工作模式时,控制装置发出信号使得主压缩机111开启,主引液电磁阀521开启,主排液电磁阀522关闭,冷媒储存装置531与主循环制冷剂回路101连通。冷媒储存装置531中的压力大于主节流装置114的出口端117的压力,从而冷媒储存装置531中的制冷剂自主引液管路511进入主循环制冷剂回路101中,当主循环制冷剂回路101中的制冷剂能够满足设定工况需求时,主引液电磁阀521关闭,冷媒储存装置531与主循环制冷剂回路101断开。主循环制冷剂回路101中的制冷剂沿制热工况方向循环。由于制热工况所需的制冷剂少于制冷工况所需的制冷剂,在冷媒储存装置531向主循环制冷剂回路101提供足够的制冷剂之后,冷媒储存装置531中存有一定量制冷剂。
当热泵系统从制热工作模式关闭时,主排液电磁阀522开启,主引液电磁阀521关闭,主循环制冷剂回路101中与主排液管路512连接的第二辅换热器126的第一流体通道137的入口136的压力高于冷媒储存装置531中的压力,从而制冷剂自主排液管路512进入冷媒储存装置531中。接着关闭主压缩机111以及主排液电磁阀522,则主循环制冷剂回路101中的制冷剂中的大部分保存在冷媒储存装置531中。
类似的,在制热工作模式运行过程中,随着实际工况的变化,主循环制冷剂回路101中的制冷剂也可能存在过少或过多的情况,控制装置550能够通过控制主引液电磁阀521和主排液电磁阀522调整在主循环制冷剂回路101回路中参与循环的制冷剂的量。
当环境温度过低,主循环制冷剂回路101的制热量不能满足需求,需要开启辅助制热工作模式,在辅助制热工作模式下,首先开启主循环制冷剂回路101,再开启辅循环制冷剂回路102。控制装置发出信号使得主压缩机111开启,主引液电磁阀521开启,主排液电磁阀522关闭,冷媒储存装置531与主循环制冷剂回路101连通。冷媒储存装置531中的压力大于主节流装置114的出口端117的压力,从而冷媒储存装置531中的制冷剂自主引液管路511进入主循环制冷剂回路101中,当主循环制冷剂回路101中的制冷剂能够满足设定工况需求时,主引液电磁阀521关闭,冷媒储存装置531与主循环制冷剂回路101断开。在主压缩机111开启的同时,控制装置发出信号使得辅压缩机121开启,辅引液电磁阀523开启,辅排液电磁阀524关闭,冷媒储存装置531与辅循环制冷剂回路102连通。冷媒储存装置531中的压力大于辅节流装置124的出口端的压力,从而冷媒储存装置531中的制冷剂自辅引液管路513进入辅循环制冷剂回路102中,当辅循环制冷剂回路102中的制冷剂能够满足设定工况需求时,辅引液电磁阀523关闭,冷媒储存装置531与辅循环制冷剂回路102断开。在辅助制热工作模式下,冷媒储存装置531中的制冷剂可供主循环制冷剂回路101以及辅循环制冷剂回路102使用。
当热泵系统从辅助制热工作模式关闭时,首先关闭辅循环制冷剂回路102,再关闭主循环制冷剂回路101。当关闭辅循环制冷剂回路102时,辅排液电磁阀524开启,辅引液电磁阀523关闭,辅循环制冷剂回路102中辅节流装置124的入口端的压力高于冷媒储存装置531中的压力,从而制冷剂自辅排液管路进入冷媒储存装置531中。接着关闭辅压缩机121以及辅排液电磁阀524,则辅循环制冷剂回路102中的制冷剂中的大部分也保存在冷媒储存装置531中。随后,当关闭主循环制冷剂回路101时,主排液电磁阀522开启,主引液电磁阀521关闭,主循环制冷剂回路101中与主排液管路512连接的第二辅换热器126的第一流体通道137的入口端的压力高于冷媒储存装置531中的压力,从而制冷剂自主排液管路进入冷媒储存装置531中。接着关闭主压缩机111以及主排液电磁阀522,主循环制冷剂回路101制冷剂中的大部分保存在冷媒储存装置531中,从而热泵系统100中的大部分制冷剂均保存在冷媒储存装置531中。
类似的,在辅助制热工作模式运行过程中,随着实际工况的变化,主循环制冷剂回路101和辅循环制冷剂回路102中的制冷剂也可能存在过少或过多的情况,控制装置550能够通过控制主引液电磁阀521、主排液电磁阀522、辅引液电磁阀523和辅排液电磁阀524调整在主循环制冷剂回路101回路中参与循环的制冷剂的量。
主引液管路511上设有引液单向阀551,辅引液管路513上分别设有引液单向阀553,引液单向阀551和引液单向阀553被配置为使得制冷剂仅能沿排出所述冷媒储存装置531的方向流动,在引液时防止制冷剂倒流。主排液管路512上设有排液单向阀552,辅排液管路514上设有排液单向阀554,排液单向阀552和排液单向阀554被配置为使得制冷剂仅能沿排向所述冷媒储存装置531的方向流动,在排液时防止制冷剂倒流。
在热泵系统关闭时,大部分制冷剂储存在冷媒储存装置531中,主循环制冷剂回路101和辅循环制冷剂回路102中的存在少量的制冷剂,防止因环境温度变化引起水侧换热器中制冷剂与水管路换热而引起水冷冻结冰。并且能够减少因管路复杂而引起的制冷剂的微量损失。
图6是热泵系统100的控制装置550示意性的结构框图。如图6所示,热泵系统还包括控制装置550。控制装置550包括总线686、处理器684、输入接口688、输出接口692以及具有控制程序687的存储器698。控制装置550中各个部件,包括处理器684、输入接口688、输出接口692以及存储器698与总线686通信相连,使得处理器684能够控制输入接口688、输出接口692以及存储器698的运行。具体地说,存储器698用于存储程序、指令和数据,而处理器684从存储器698读取程序、指令和数据,并且能向存储器698写入数据。通过执行从存储器698读取的程序和指令,处理器684控制输入接口688、输出接口692的运行。
如图6所示,输出接口692通过各自的连接分别与主压缩机111、辅压缩机121、四通换向阀118、主节流装置114、主引液电磁阀521、主排液电磁阀522、辅引液电磁阀523辅排液电磁阀524通信连接。通过执行存储器698中的程序和 指令,处理器684控制热泵系统100的运行。更具体地说,控制装置550可以通过输入接口688接收信号689,从而进行相应的控制,例如接收控制热泵系统100的运行请求信号(如通过控制面板发送请求)或系统装态信号(例如制冷剂回路中实际制冷剂量与制冷剂需求是否匹配),并通过输出接口692向各被控制部件发出控制信号,从而使得热泵系统100能够以多种工作模式运行。
在本申请中,主循环制冷剂回路101和辅循环制冷剂回路102共用一套冷媒管理系统,从而在辅助制热工作模式下,冷媒管理系统能够将主循环制冷剂回路101中闲置的制冷剂分配到辅循环制冷剂回路102中,节约热泵系统中制冷剂的用量。在辅助制热工作模式下,第二辅助换热器中的两个流体通道能够换热,能够提高热泵系统的换热效率。第一主换热器和第二主换热器共用一个水通道,能够快速提高水温度。
尽管本文中仅对本申请的一些特征进行了图示和描述,但是对本领域技术人员来说可以进行多种改进和变化。因此应该理解,所附的权利要求旨在覆盖所有落入本申请实质精神范围内的上述改进和变化。

Claims (10)

  1. 一种热泵系统,其特征在于包括:
    主循环制冷剂回路(101),所述主循环制冷剂回路(101)具有:主压缩机(111)、第一主换热器(112)、主节流装置(114)和第二主换热器(116),所述主压缩机(111)被配置为使得主循环制冷剂回路(101)中的制冷剂能够沿主循环制冷工况流向循环或沿与所述主循环制冷工况流向相反的主循环制热工况流向循环;
    辅循环制冷剂回路(102),所述辅循环制冷剂回路(102)包括辅压缩机(121)、第一辅换热器(122)、辅节流装置(124)和第二辅换热器(126),所述辅压缩机(121)被配置为使得辅循环制冷剂回路(102)中的制冷剂能够沿辅循环制热工况流向循环;以及
    冷媒管理系统(103),所述冷媒管理系统(103)分别与所述主循环制冷剂回路(101)和所述辅循环制冷剂回路(102)可控地连通或断开,所述冷媒管理系统(103)被配置为能够将用于所述主循环制冷剂回路(101)的制冷剂分配至所述辅循环制冷剂回路(102)。
  2. 如权利要求1所述的热泵系统,其特征在于:
    所述热泵系统具有制冷工作模式、制热工作模式以及辅助制热工作模式;
    在制冷工作模式时,所述主循环制冷剂回路(101)中的制冷剂沿主循环制冷工况流向循环,所述辅压缩机(121)关闭;
    在制热工作模式下,所述主循环制冷剂回路(101)中的制冷剂沿主循环制热工况流向循环,所述辅压缩机(121)关闭;
    在辅助制热工作模式下,所述主循环制冷剂回路(101)中的制冷剂沿主循环制热工况流向循环,所述辅循环制冷剂回路(102)中的制冷剂沿辅循环制热工况流向循环。
  3. 如权利要求2所述的热泵系统,其特征在于:
    所述冷媒管理系统(103)被配置为在所述辅助制热工作模式开启后,能够将部分用于所述主循环制冷剂回路(101)中的制冷剂引入所述辅循环制冷剂回路(102)。
  4. 如权利要求3所述的热泵系统,其特征在于:
    所述冷媒管理系统(103)包括冷媒储存装置(531),所述冷媒储存装置(531)被配置为能够收集从所述主循环制冷剂回路(101)引出的制冷剂并能够将收集的制冷剂引入所述辅循环制冷剂回路(102)。
  5. 如权利要求4所述的热泵系统,其特征在于:
    所述冷媒管理系统(103)还包括:
    连接在冷媒储存装置(531)与主循环制冷剂回路(101)的低压侧之间的主引液管路(511);
    连接在冷媒储存装置(531)与主循环制冷剂回路(101)的高压侧之间的主排液管路(512);
    连接在冷媒储存装置(531)与辅循环制冷剂回路(102)的低压侧之间的辅引液管路(513);以及
    连接在冷媒储存装置(531)与辅循环制冷剂回路(102)的高压侧之间的辅排液管路(514)。
  6. 如权利要求1所述的热泵系统,其特征在于:
    所述第二辅换热器(126)具有第一流体通道(137)和第二流体通道(138),其中第一流体通道(137)连接在所述主循环制冷剂回路(101)中,第二流体通道(138)连接在所述辅循环制冷剂回路(102)中,其中第一流体通道(137)和第二流体通道(138)中的制冷剂能够进行热交换。
  7. 如权利要求1所述的热泵系统,其特征在于:
    所述第一主换热器(112)和第一辅换热器(122)均为水侧换热器,所述第一主换热器(112)具有第一水通道(141),所述第一辅换热器(122)具有第二水通道(142),所述第一水通道(141)和第二水通道(142)连通,以使得水能够第一水通道(141)流向第二水通道(142)。
  8. 如权利要求5所述的热泵系统,其特征在于:
    所述主引液管路(511)、主排液管路(512)、辅引液管路(513)和辅排液管路(514)上分别设有相应的电磁阀,用于分别控制管路的连通断开;
    所述主引液管路(511)和辅引液管路(513)上分别设有引液单向阀,所述引液单向阀被配置为使得制冷剂仅能沿从冷媒储存装置(531)排出的方向流动,所述主排液管路(512)和辅排液管路(514)上分别设有排液单向阀,所述排液单向阀被配置为使得制冷剂仅能沿排向所述冷媒储存装置(531)的方向流动。
  9. 如权利要求8所述的热泵系统,其特征在于还包括:
    控制装置(550),所述控制装置(550)分别与所述主引液管路(511)、所述主排液管路(512)、辅引液管路(513)和辅排液管路(514)上各自相应的电磁阀连接,能够控制各个电磁阀的连接和断开;并且所述控制装置(550)与所述主压缩机(111)和辅压缩机(121)连接,所述控制装置(550)能够控制所述主压缩机(111)和所述辅压缩机(121)的开启和关闭。
  10. 如权利要求1所述的热泵系统,其特征在于:
    所述主压缩机(111)的排气量与所述辅压缩机(121)的排气量的比值范围为(2~4):1。
PCT/CN2021/104465 2020-07-06 2021-07-05 热泵系统 WO2022007739A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21838723.1A EP4177542A4 (en) 2020-07-06 2021-07-05 HEAT PUMP SYSTEM
US18/014,710 US20230400236A1 (en) 2020-07-06 2021-07-05 Heat pump system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021305892.3U CN213747374U (zh) 2020-07-06 2020-07-06 热泵系统
CN202021305892.3 2020-07-06

Publications (1)

Publication Number Publication Date
WO2022007739A1 true WO2022007739A1 (zh) 2022-01-13

Family

ID=76814808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104465 WO2022007739A1 (zh) 2020-07-06 2021-07-05 热泵系统

Country Status (4)

Country Link
US (1) US20230400236A1 (zh)
EP (1) EP4177542A4 (zh)
CN (1) CN213747374U (zh)
WO (1) WO2022007739A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11719471B2 (en) 2021-09-29 2023-08-08 Johnson Controls Tyco IP Holdings LLP Energy efficient heat pump with heat exchanger counterflow arrangement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2890744Y (zh) * 2006-03-31 2007-04-18 孙应真 双联双温平衡式冷热水装置
CN205119545U (zh) * 2015-10-20 2016-03-30 西安交通大学 一种跨临界co2复合热泵系统
CN106871479A (zh) * 2017-04-14 2017-06-20 江苏天舒电器股份有限公司 一种冷量回收式变容量空气源热泵系统
CN206618147U (zh) * 2017-04-14 2017-11-07 江苏天舒电器股份有限公司 一种冷量回收式变容量空气源热泵系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3112003B2 (ja) * 1998-12-25 2000-11-27 ダイキン工業株式会社 冷凍装置
US11137178B2 (en) * 2017-04-14 2021-10-05 Jiangsu Tenesun Electrical Appliance Co., Ltd. Cold energy recovery-type variable-capacity air-source heat pump system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2890744Y (zh) * 2006-03-31 2007-04-18 孙应真 双联双温平衡式冷热水装置
CN205119545U (zh) * 2015-10-20 2016-03-30 西安交通大学 一种跨临界co2复合热泵系统
CN106871479A (zh) * 2017-04-14 2017-06-20 江苏天舒电器股份有限公司 一种冷量回收式变容量空气源热泵系统
CN206618147U (zh) * 2017-04-14 2017-11-07 江苏天舒电器股份有限公司 一种冷量回收式变容量空气源热泵系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4177542A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11719471B2 (en) 2021-09-29 2023-08-08 Johnson Controls Tyco IP Holdings LLP Energy efficient heat pump with heat exchanger counterflow arrangement

Also Published As

Publication number Publication date
US20230400236A1 (en) 2023-12-14
CN213747374U (zh) 2021-07-20
EP4177542A1 (en) 2023-05-10
EP4177542A4 (en) 2024-04-03

Similar Documents

Publication Publication Date Title
CN211739588U (zh) 一种可提高换热性能的空调
US11739991B2 (en) Air conditioning system and control method for air conditioning system
CN101140122B (zh) 使用组合节流装置的热泵机组
WO2020073481A1 (zh) 空调系统
CN112050292B (zh) 一种空调系统、空调系统控制方法及装置
WO2022017297A1 (zh) 热泵系统
WO2021228018A1 (zh) 空调机组及其控制方法
CN100451493C (zh) 热泵热水器联合系统
WO2022007739A1 (zh) 热泵系统
CN112066583B (zh) 双热源的空调机组及其控制方法
CN210374156U (zh) 一种双蒸发温度热泵系统和空调器
CN209744618U (zh) 一种机房空调的节能改造系统
CN219037133U (zh) 一种多蒸发器并行化霜空气源热泵单热机组
CN114056035A (zh) 热管理装置及热管理系统
CN108759157B (zh) 一次节流双级压缩热泵系统
CN212457490U (zh) 一种二次节流双冷凝制冷系统、空调器
CN208846601U (zh) 一种冷水热泵机组及空调设备
CN208887145U (zh) 复叠式热泵系统
CN108954886A (zh) 复叠式热泵系统及其控制方法
CN219243985U (zh) 蒸发器和空调器
CN220524225U (zh) 两管制热回收型空调系统
CN216924596U (zh) 一种三联供空调热水系统
CN113566451B (zh) 一种热泵系统
CN219415044U (zh) 喷气增焓热泵系统及其空调器
CN218565807U (zh) 一种四管制热泵制冷系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021838723

Country of ref document: EP

Effective date: 20230206