WO2016154052A1 - Chamber components for epitaxial growth apparatus - Google Patents

Chamber components for epitaxial growth apparatus Download PDF

Info

Publication number
WO2016154052A1
WO2016154052A1 PCT/US2016/023263 US2016023263W WO2016154052A1 WO 2016154052 A1 WO2016154052 A1 WO 2016154052A1 US 2016023263 W US2016023263 W US 2016023263W WO 2016154052 A1 WO2016154052 A1 WO 2016154052A1
Authority
WO
WIPO (PCT)
Prior art keywords
side wall
susceptor
substrate
upper side
reactant gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2016/023263
Other languages
English (en)
French (fr)
Inventor
Shinichi Oki
Yoshinobu Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Priority to EP16769448.8A priority Critical patent/EP3275008B1/en
Publication of WO2016154052A1 publication Critical patent/WO2016154052A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/08Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4558Perforated rings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4585Devices at or outside the perimeter of the substrate support, e.g. clamping rings, shrouds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation by radiant heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/10Tops, e.g. hot plates; Rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • a rectification plate in another embodiment, includes an elongated body, a plurality of through holes, and fastener holes.
  • the elongated body includes a first surface and a second surface. The second surface is opposite the first surface.
  • the plurality of through holes extends from the first surface to the second surface.
  • the plurality of through holes is allocated into at least three groups.
  • the fastener holes are disposed between adjacent through holes of the at least three groups. The fastener holes extend from the first surface to the second surface.
  • Fig. 6 is a cross-sectional view illustrating a reactant gas supply path according to the embodiment of the present disclosure.
  • a precursor gas subsystem for an epitaxial growth apparatus includes a reactant gas introducing portion comprising an output surface, and a plurality of output channels configured to deliver at least one precursor gas to the output surface.
  • the precursor gas subsystem further includes a rectification plate.
  • the rectification plate including a first surface, a second surface opposite the first surface, fastener holes, and a plurality of through holes extending from the first surface to the second surface and allocated into a plurality of groups.
  • the plurality of groups are respectively associated with plurality of output channels, and the fastener holes are configured for fasteners to be inserted therethrough to attach the rectification plate to the reactant gas introduction portion. In this manner, a more uniform epitaxial layer may be formed on a substrate as cross flow leakage between the plurality of output channels is reduced.
  • the susceptor 3 is moved to the substrate-carrying position P2, a substrate W is put in from the substrate carrying port 30, and the susceptor 3 is moved to the film-forming position PI.
  • a silicon substrate with a diameter of 200 mm is used as the substrate W.
  • the substrate is heated from the standby temperature (for example, 800°C) to the growth temperature (for example, 1100°C) by the use of the heating means 23 and 62.
  • the purge gas for example, hydrogen
  • the support 22 is formed in such a shape on which a stress is less concentrated than that in the related art, the distance H between the substrate W and the ceiling plate 21 can be reduced, that is, less than 10 mm.
  • the depth of the grooves 75 is excessively large, the diffusion can be suppressed but the first source gas and the second source gas in the reactant gas is not likely to be mixed.
  • that the depth of the grooves 75 is preferably set to a range of 1 mm to 5 mm and more preferably 3 mm.
  • the rectification plate 56' of Fig. 24A includes fastener holes 232A, 232B configured for fasteners 234A, 234B to more securely attach the rectification plate 56' to the reactant gas introducing portion 54 at securing holes 235A, 235B disposed at output surface 228.
  • the susceptor 3B may be integrally formed and comprise a strong and temperature resistant material, for example, carbon graphite.
  • the susceptor 3B may also include a silicon carbide coating.
  • the silicon carbide coating may be deposited through a chemical vapor deposition (CVD) process or through other suitable processes.
  • the silicon carbide coats the inside diameter of the through-holes 11 IB.
  • the top surface 300 is configured to form an abutment with the substrate W and thereby support the substrate W.
  • the rectification plate according to the first embodiment wherein diameters of the circular cross-sections are less than 3.5 millimeters. [00127] The rectification plate according to the first embodiment, wherein the plurality of through holes are unequally spaced within the at least three groups.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
PCT/US2016/023263 2015-03-25 2016-03-18 Chamber components for epitaxial growth apparatus Ceased WO2016154052A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16769448.8A EP3275008B1 (en) 2015-03-25 2016-03-18 Chamber components for epitaxial growth apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562138365P 2015-03-25 2015-03-25
US62/138,365 2015-03-25

Publications (1)

Publication Number Publication Date
WO2016154052A1 true WO2016154052A1 (en) 2016-09-29

Family

ID=56089855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/023263 Ceased WO2016154052A1 (en) 2015-03-25 2016-03-18 Chamber components for epitaxial growth apparatus

Country Status (8)

Country Link
US (3) US10544518B2 (enExample)
EP (1) EP3275008B1 (enExample)
JP (5) JP3204580U (enExample)
KR (5) KR20160003445U (enExample)
CN (5) CN106011795B (enExample)
SG (4) SG10201602299UA (enExample)
TW (5) TWI685586B (enExample)
WO (1) WO2016154052A1 (enExample)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112053991B (zh) * 2014-05-21 2022-04-15 应用材料公司 热处理基座
EP3275008B1 (en) * 2015-03-25 2022-02-23 Applied Materials, Inc. Chamber components for epitaxial growth apparatus
CN107641796B (zh) * 2016-07-21 2020-10-02 台湾积体电路制造股份有限公司 制程设备及化学气相沉积制程
JP6631498B2 (ja) 2016-12-26 2020-01-15 株式会社Sumco シリコン材料製造工程の評価方法およびシリコン材料の製造方法
TWI754765B (zh) * 2017-08-25 2022-02-11 美商應用材料股份有限公司 用於磊晶沉積製程之注入組件
US10395969B2 (en) * 2017-11-03 2019-08-27 Varian Semiconductor Equipment Associates, Inc. Transparent halo for reduced particle generation
US11424112B2 (en) 2017-11-03 2022-08-23 Varian Semiconductor Equipment Associates, Inc. Transparent halo assembly for reduced particle generation
KR102014928B1 (ko) * 2018-01-18 2019-08-27 에스케이실트론 주식회사 서셉터 및 이를 포함하는 기상 증착 장치
CN110071064A (zh) * 2018-01-22 2019-07-30 上海新昇半导体科技有限公司 一种改善外延片污染印记的方法
KR102640172B1 (ko) * 2019-07-03 2024-02-23 삼성전자주식회사 기판 처리 장치 및 이의 구동 방법
US11032945B2 (en) * 2019-07-12 2021-06-08 Applied Materials, Inc. Heat shield assembly for an epitaxy chamber
CN110345524B (zh) * 2019-08-22 2024-06-11 杭州老板电器股份有限公司 锅架及燃气灶
JP7342719B2 (ja) * 2020-01-28 2023-09-12 住友金属鉱山株式会社 成膜装置
KR102817778B1 (ko) 2020-04-29 2025-06-05 어플라이드 머티어리얼스, 인코포레이티드 균일성 개선을 위한 히터 커버 플레이트
CN111599716B (zh) * 2020-05-06 2024-06-21 北京北方华创微电子装备有限公司 用于外延生长设备的预热环以及外延生长设备
DE102021115349A1 (de) * 2020-07-14 2022-01-20 Infineon Technologies Ag Substrat-prozesskammer und prozessgasströmungsablenker zur verwendung in der prozesskammer
US12324061B2 (en) 2021-04-06 2025-06-03 Applied Materials, Inc. Epitaxial deposition chamber
CN113279055B (zh) * 2021-04-16 2022-07-22 上海新昇半导体科技有限公司 一种外延基座
JP7734211B2 (ja) * 2021-05-12 2025-09-04 アプライド マテリアルズ インコーポレイテッド 低質量基板支持体
JP2025523807A (ja) 2022-11-25 2025-07-25 エルジー エナジー ソリューション リミテッド リチウム-硫黄電池用正極及び高エネルギー密度特性を有するリチウム-硫黄電池
CN115928202A (zh) * 2022-12-12 2023-04-07 西安奕斯伟材料科技有限公司 外延生长装置及设备
US20240254655A1 (en) * 2023-01-26 2024-08-01 Applied Materials, Inc. Epi isolation plate and parallel block purge flow tuning for growth rate and uniformity
TWI897069B (zh) * 2023-10-20 2025-09-11 台亞半導體股份有限公司 頂板及含有頂板之磊晶成長裝置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256163A (ja) * 1997-03-11 1998-09-25 Toshiba Corp 高速回転型枚葉式気相成長装置
JP2000124135A (ja) * 1998-10-19 2000-04-28 Super Silicon Kenkyusho:Kk エピタキシャル成長炉
US20140116340A1 (en) 2012-10-26 2014-05-01 Epicrew Corporation Epitaxial growth device
JP2014179581A (ja) 2013-11-21 2014-09-25 Applied Materials Inc エピタキシャル成長による成膜方法、および、エピタキシャル成長装置
US20140290573A1 (en) * 2013-03-27 2014-10-02 Epicrew Corporation Susceptor Support Portion and Epitaxial Growth Apparatus Including Susceptor Support Portion
KR101487411B1 (ko) * 2013-09-02 2015-01-29 주식회사 엘지실트론 라이너 및 이를 포함하는 에피텍셜 반응기
JP2015043387A (ja) * 2013-08-26 2015-03-05 信越半導体株式会社 気相エピタキシャル成長装置及びそれを用いたエピタキシャルウェーハの製造方法

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2644419C3 (de) * 1976-09-30 1979-05-17 Borsig Gmbh, 1000 Berlin Antriebszapfenabdichtung eines Kugelhahns
ZA777063B (en) * 1976-12-27 1979-07-25 Colgate Palmolive Co Antibacterial oral composition
US5820686A (en) * 1993-01-21 1998-10-13 Moore Epitaxial, Inc. Multi-layer susceptor for rapid thermal process reactors
US6086680A (en) * 1995-08-22 2000-07-11 Asm America, Inc. Low-mass susceptor
US5914050A (en) * 1997-09-22 1999-06-22 Applied Materials, Inc. Purged lower liner
DE69813014T2 (de) 1997-11-03 2004-02-12 Asm America Inc., Phoenix Verbesserte kleinmassige waferhaleeinrichtung
US20010001384A1 (en) * 1998-07-29 2001-05-24 Takeshi Arai Silicon epitaxial wafer and production method therefor
JP2001313329A (ja) * 2000-04-28 2001-11-09 Applied Materials Inc 半導体製造装置におけるウェハ支持装置
DE60127252T2 (de) 2000-05-08 2007-12-20 Memc Electronic Materials, Inc. Epitaktischer siliziumwafer frei von selbstdotierung und rückseitenhalo
US6444027B1 (en) 2000-05-08 2002-09-03 Memc Electronic Materials, Inc. Modified susceptor for use in chemical vapor deposition process
JP4588894B2 (ja) * 2001-01-31 2010-12-01 信越半導体株式会社 気相成長装置及びエピタキシャルウェーハの製造方法
JP3801957B2 (ja) * 2001-06-29 2006-07-26 信越半導体株式会社 気相成長装置及びエピタキシャルウェーハの製造方法
JP4936621B2 (ja) * 2001-09-28 2012-05-23 アプライド マテリアルズ インコーポレイテッド 成膜装置のプロセスチャンバー、成膜装置および成膜方法
JP2003133238A (ja) * 2001-10-26 2003-05-09 Applied Materials Inc 成膜装置のプロセスチャンバー、成膜装置および成膜方法
WO2003046966A1 (en) * 2001-11-30 2003-06-05 Shin-Etsu Handotai Co., Ltd. Susceptor, gaseous phase growing device, device and method for manufacturing epitaxial wafer, and epitaxial wafer
JP2003197532A (ja) 2001-12-21 2003-07-11 Sumitomo Mitsubishi Silicon Corp エピタキシャル成長方法及びエピタキシャル成長用サセプター
US20050000449A1 (en) 2001-12-21 2005-01-06 Masayuki Ishibashi Susceptor for epitaxial growth and epitaxial growth method
JP4288036B2 (ja) * 2002-02-20 2009-07-01 東京エレクトロン株式会社 ガスシャワーヘッド、成膜装置及び成膜方法
US7270713B2 (en) * 2003-01-07 2007-09-18 Applied Materials, Inc. Tunable gas distribution plate assembly
WO2004111297A1 (ja) * 2003-06-10 2004-12-23 Tokyo Electron Limited 処理ガス供給機構、成膜装置および成膜方法
JP4379585B2 (ja) * 2003-12-17 2009-12-09 信越半導体株式会社 気相成長装置およびエピタキシャルウェーハの製造方法
WO2005111266A1 (ja) * 2004-05-18 2005-11-24 Sumco Corporation 気相成長装置用サセプタ
JP2006128485A (ja) * 2004-10-29 2006-05-18 Asm Japan Kk 半導体処理装置
KR100629358B1 (ko) 2005-05-24 2006-10-02 삼성전자주식회사 샤워 헤드
KR101208891B1 (ko) 2005-08-17 2012-12-06 주성엔지니어링(주) 대면적 기판 처리장치용 가스분배판
JP2007073892A (ja) 2005-09-09 2007-03-22 Ulvac Japan Ltd 吸着装置、貼り合わせ装置、封着方法
GB2435719A (en) 2006-03-03 2007-09-05 Darrell Lee Mann Gripping device with a multitude of small fibres using van der Waals forces
JP5069424B2 (ja) * 2006-05-31 2012-11-07 Sumco Techxiv株式会社 成膜反応装置及び同方法
JP2007324285A (ja) * 2006-05-31 2007-12-13 Sumco Techxiv株式会社 成膜反応装置
TW200809926A (en) * 2006-05-31 2008-02-16 Sumco Techxiv Corp Apparatus and method for depositing layer on substrate
TWM305960U (en) 2006-06-21 2007-02-01 Calitech Co Ltd Gas distribution plate for wafer process chamber
US8951351B2 (en) * 2006-09-15 2015-02-10 Applied Materials, Inc. Wafer processing hardware for epitaxial deposition with reduced backside deposition and defects
US8852349B2 (en) * 2006-09-15 2014-10-07 Applied Materials, Inc. Wafer processing hardware for epitaxial deposition with reduced auto-doping and backside defects
JP2008235830A (ja) * 2007-03-23 2008-10-02 Sumco Techxiv株式会社 気相成長装置
JP4661982B2 (ja) * 2007-12-28 2011-03-30 信越半導体株式会社 エピタキシャル成長用サセプタ
JP5268766B2 (ja) * 2009-04-23 2013-08-21 Sumco Techxiv株式会社 成膜反応装置及び成膜基板製造方法
WO2011017501A2 (en) * 2009-08-05 2011-02-10 Applied Materials, Inc. Cvd apparatus
JP5604907B2 (ja) * 2010-02-25 2014-10-15 信越半導体株式会社 気相成長用半導体基板支持サセプタおよびエピタキシャルウェーハ製造装置およびエピタキシャルウェーハの製造方法
KR101884003B1 (ko) 2011-03-22 2018-07-31 어플라이드 머티어리얼스, 인코포레이티드 화학 기상 증착 챔버를 위한 라이너 조립체
JP5445508B2 (ja) * 2011-04-22 2014-03-19 信越半導体株式会社 偏心量の評価方法及びエピタキシャルウェーハの製造方法
US11085112B2 (en) * 2011-10-28 2021-08-10 Asm Ip Holding B.V. Susceptor with ring to limit backside deposition
KR101339591B1 (ko) * 2012-01-13 2013-12-10 주식회사 엘지실트론 서셉터
TW201347035A (zh) * 2012-02-02 2013-11-16 Greene Tweed Of Delaware 用於具有延長生命週期的電漿反應器的氣體分散板
USD693782S1 (en) * 2012-11-19 2013-11-19 Epicrew Corporation Lid for epitaxial growing device
US10344380B2 (en) * 2013-02-11 2019-07-09 Globalwafers Co., Ltd. Liner assemblies for substrate processing systems
US20140273503A1 (en) * 2013-03-14 2014-09-18 Memc Electronic Materials, Inc. Methods of gas distribution in a chemical vapor deposition system
JP5602903B2 (ja) * 2013-03-14 2014-10-08 アプライド マテリアルズ インコーポレイテッド エピタキシャル成長による成膜方法、および、エピタキシャル成長装置
US11060203B2 (en) * 2014-09-05 2021-07-13 Applied Materials, Inc. Liner for epi chamber
EP3275008B1 (en) 2015-03-25 2022-02-23 Applied Materials, Inc. Chamber components for epitaxial growth apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256163A (ja) * 1997-03-11 1998-09-25 Toshiba Corp 高速回転型枚葉式気相成長装置
JP2000124135A (ja) * 1998-10-19 2000-04-28 Super Silicon Kenkyusho:Kk エピタキシャル成長炉
US20140116340A1 (en) 2012-10-26 2014-05-01 Epicrew Corporation Epitaxial growth device
US20140290573A1 (en) * 2013-03-27 2014-10-02 Epicrew Corporation Susceptor Support Portion and Epitaxial Growth Apparatus Including Susceptor Support Portion
JP2015043387A (ja) * 2013-08-26 2015-03-05 信越半導体株式会社 気相エピタキシャル成長装置及びそれを用いたエピタキシャルウェーハの製造方法
KR101487411B1 (ko) * 2013-09-02 2015-01-29 주식회사 엘지실트론 라이너 및 이를 포함하는 에피텍셜 반응기
JP2014179581A (ja) 2013-11-21 2014-09-25 Applied Materials Inc エピタキシャル成長による成膜方法、および、エピタキシャル成長装置

Also Published As

Publication number Publication date
US20160281263A1 (en) 2016-09-29
TW201635340A (zh) 2016-10-01
KR20160115808A (ko) 2016-10-06
JP2016184734A (ja) 2016-10-20
JP6862095B2 (ja) 2021-04-21
TW201700774A (zh) 2017-01-01
US20160281262A1 (en) 2016-09-29
CN112063997A (zh) 2020-12-11
KR102571041B1 (ko) 2023-08-24
KR102534192B1 (ko) 2023-05-17
TWI686502B (zh) 2020-03-01
TW201700775A (zh) 2017-01-01
JP2016184733A (ja) 2016-10-20
EP3275008A1 (en) 2018-01-31
TWI733663B (zh) 2021-07-21
US20160281261A1 (en) 2016-09-29
TWM531050U (zh) 2016-10-21
JP3204580U (ja) 2016-06-02
TWM535866U (zh) 2017-01-21
CN205741209U (zh) 2016-11-30
EP3275008B1 (en) 2022-02-23
KR20160003445U (ko) 2016-10-06
JP3204579U (ja) 2016-06-02
TWI685586B (zh) 2020-02-21
KR102715683B1 (ko) 2024-10-11
KR20230073163A (ko) 2023-05-25
US11441236B2 (en) 2022-09-13
EP3275008A4 (en) 2018-11-21
SG10201602295QA (en) 2016-10-28
JP2021082831A (ja) 2021-05-27
SG10201908874UA (en) 2019-11-28
CN106011795B (zh) 2020-09-04
CN205856605U (zh) 2017-01-04
CN106011796A (zh) 2016-10-12
SG10201908873WA (en) 2019-11-28
JP6836328B2 (ja) 2021-02-24
SG10201602299UA (en) 2016-10-28
CN106011796B (zh) 2019-12-10
KR20160115806A (ko) 2016-10-06
KR20160003444U (ko) 2016-10-06
US10544518B2 (en) 2020-01-28
JP7136945B2 (ja) 2022-09-13
CN106011795A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
KR102715683B1 (ko) 에피택셜 성장 장치를 위한 챔버 컴포넌트들
US11427928B2 (en) Lower side wall for epitaxtail growth apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16769448

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016769448

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE