WO2016152022A1 - 太陽電池セルの製造方法 - Google Patents

太陽電池セルの製造方法 Download PDF

Info

Publication number
WO2016152022A1
WO2016152022A1 PCT/JP2016/000939 JP2016000939W WO2016152022A1 WO 2016152022 A1 WO2016152022 A1 WO 2016152022A1 JP 2016000939 W JP2016000939 W JP 2016000939W WO 2016152022 A1 WO2016152022 A1 WO 2016152022A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
opening
insulating layer
mask layer
exposed
Prior art date
Application number
PCT/JP2016/000939
Other languages
English (en)
French (fr)
Inventor
慶一郎 益子
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201680017598.2A priority Critical patent/CN107408599B/zh
Priority to JP2017507363A priority patent/JP6425218B2/ja
Publication of WO2016152022A1 publication Critical patent/WO2016152022A1/ja
Priority to US15/713,586 priority patent/US10483429B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a method for manufacturing a solar cell, and more particularly to a method for manufacturing a back junction type solar cell.
  • a back junction type solar cell in which both an n-type semiconductor layer and a p-type semiconductor layer are formed on the back surface facing the light receiving surface on which light is incident.
  • An insulating layer is provided between the n-type semiconductor layer and the p-type semiconductor layer to insulate them.
  • These semiconductor layers and insulating layers are patterned by etching using a mask such as a photoresist (see, for example, Patent Document 1).
  • the present invention has been made in view of such a situation, and an object thereof is to provide a method for manufacturing a solar battery cell at a lower cost.
  • a method for manufacturing a solar battery cell wherein an insulating layer is provided on a semiconductor layer provided on at least a part of a main surface of a semiconductor substrate, and a mask layer is provided on the insulating layer. Then, a part of the mask layer is removed by laser irradiation to form a first opening in which the insulating layer is exposed, and the insulating layer exposed in the first opening is removed with an etching agent to expose the semiconductor layer. Forming a second opening.
  • Embodiment of this invention is a manufacturing method of a photovoltaic cell.
  • an insulating layer is provided on a semiconductor layer provided on at least a part of a main surface of a semiconductor substrate, a mask layer is provided on the insulating layer, and a part of the mask layer is irradiated with laser.
  • the mask layer is patterned by a laser, the mask layer can be patterned without using a photolithography process, and the patterns of the insulating layer and the semiconductor layer can be formed. This can reduce costly photolithography processes and reduce the manufacturing cost of solar cells.
  • FIG. 1 is a plan view showing a solar battery cell 70 according to the embodiment, and shows a structure of a back surface 70b of the solar battery cell 70.
  • the solar battery cell 70 includes an n-side electrode 14 and a p-side electrode 15 provided on the back surface 70b.
  • the n-side electrode 14 is formed in a comb shape including a bus bar electrode 14a extending in the x direction and a plurality of finger electrodes 14b extending in the y direction.
  • the p-side electrode 15 is formed in a comb-teeth shape including a bus bar electrode 15a extending in the x direction and a plurality of finger electrodes 15b extending in the y direction.
  • the n-side electrode 14 and the p-side electrode 15 are formed so that the respective comb teeth are engaged with each other and are inserted into each other.
  • Each of the n-side electrode 14 and the p-side electrode 15 may be a bus bar-less electrode that includes only a plurality of fingers and does not have a bus bar.
  • FIG. 2 is a cross-sectional view showing the structure of the solar battery cell 70 according to the embodiment, and shows a cross section taken along line AA of FIG.
  • the solar battery cell 70 includes a semiconductor substrate 10, a first i-type layer 12 i, a first conductivity type layer 12 n, a second i-type layer 13 i, a second conductivity type layer 13 p, and a first insulating layer 16.
  • the electrode layer 19 constitutes the n-side electrode 14 or the p-side electrode 15.
  • the solar battery cell 70 is a back junction type photovoltaic device in which the first conductivity type layer 12n and the second conductivity type layer 13p are provided on the back surface 70b side.
  • the semiconductor substrate 10 has a first main surface 10a provided on the light receiving surface 70a side and a second main surface 10b provided on the back surface 70b side.
  • the semiconductor substrate 10 absorbs light incident on the first major surface 10a and generates electrons and holes as carriers.
  • the semiconductor substrate 10 is made of a crystalline semiconductor material having n-type or p-type conductivity.
  • the semiconductor substrate 10 in the present embodiment is an n-type single crystal silicon substrate.
  • the light receiving surface 70a means a main surface on which light (sunlight) is mainly incident in the solar battery cell 70. Specifically, most of the light incident on the solar battery cell 70 is incident. Means the surface to be done.
  • the back surface 70b means the other main surface facing the light receiving surface 70a.
  • the first stacked body 12 and the second stacked body 13 are formed on the second main surface 10 b of the semiconductor substrate 10.
  • the first stacked body 12 and the second stacked body 13 are each formed in a comb-like shape so as to correspond to the n-side electrode 14 and the p-side electrode 15, and are formed so as to be inserted into each other. Therefore, the first regions W1 where the first stacked bodies 12 are provided and the second regions W2 where the second stacked bodies 13 are provided are alternately arranged in the x direction on the second main surface 10b.
  • the 1st laminated body 12 and the 2nd laminated body 13 which adjoin the x direction are provided in contact. Therefore, in the present embodiment, substantially the entire second main surface 10b is covered with the first stacked body 12 and the second stacked body 13.
  • the first stacked body 12 includes a first i-type layer 12i formed on the second main surface 10b and a first conductivity type layer 12n formed on the first i-type layer 12i. .
  • the first i-type layer 12i is formed of a substantially intrinsic amorphous semiconductor (hereinafter, the intrinsic semiconductor is also referred to as “i-type layer”).
  • the intrinsic semiconductor is also referred to as “i-type layer”.
  • an “amorphous semiconductor” includes a microcrystalline semiconductor.
  • a microcrystalline semiconductor refers to a semiconductor in which a semiconductor crystal is precipitated in an amorphous semiconductor.
  • the first i-type layer 12i is made of i-type amorphous silicon containing hydrogen (H) and has a thickness of about several nm to 25 nm, for example.
  • the formation method of the 1st i-type layer 12i is not specifically limited, For example, it can form by chemical vapor deposition (CVD) methods, such as a plasma CVD method.
  • CVD chemical vapor deposition
  • the first conductivity type layer 12n is composed of an amorphous semiconductor to which an n-type dopant having the same conductivity type as that of the semiconductor substrate 10 is added.
  • the first conductivity type layer 12n in the present embodiment is made of n-type amorphous silicon containing hydrogen.
  • the first conductivity type layer 12n has a thickness of about 2 nm to 50 nm, for example.
  • the first insulating layer 16 is formed on the first stacked body 12.
  • the first insulating layer 16 is not provided in the third region W3 corresponding to the central portion in the x direction in the first region W1, but is provided in the fourth region W4 corresponding to both ends of the third region W3.
  • the width of the fourth region W4 where the first insulating layer 16 is formed is about 1/3 of the width of the first region W1, for example.
  • the third region W3 in which the first insulating layer 16 is not provided is, for example, about 1/3 of the width of the first region W1.
  • the first insulating layer 16 is made of, for example, silicon oxide (SiO 2 ), silicon nitride (SiN), silicon oxynitride (SiON), or the like.
  • the first insulating layer 16 is preferably formed of silicon nitride, and preferably contains hydrogen.
  • the second stacked body 13 is formed on the second main surface 10b on the end of the second region W2 where the first stacked body 12 is not provided and the fourth region W4 where the first insulating layer 16 is provided. . Therefore, both end portions of the second stacked body 13 are provided so as to overlap with the first stacked body 12 in the height direction (z direction).
  • the second stacked body 13 includes a second i-type layer 13i formed on the second main surface 10b and a second conductivity type layer 13p formed on the second i-type layer 13i.
  • the second i-type layer 13i is made of i-type amorphous silicon containing hydrogen, and has a thickness of, for example, about several nm to 25 nm.
  • the second conductivity type layer 13p is composed of an amorphous semiconductor to which a p-type dopant having a conductivity type different from that of the semiconductor substrate 10 is added.
  • the second conductivity type layer 13p in the present embodiment is made of p-type amorphous silicon containing hydrogen.
  • the second conductivity type layer 13p has a thickness of about 2 nm to 50 nm, for example.
  • n-side electrode 14 that collects electrons is formed on the first conductivity type layer 12n.
  • a p-side electrode 15 that collects holes is formed on the second conductivity type layer 13p.
  • a groove is formed between the n-side electrode 14 and the p-side electrode 15, and both electrodes are electrically insulated.
  • the n-side electrode 14 and the p-side electrode 15 are constituted by a stacked body of four conductive layers from the first conductive layer 19a to the fourth conductive layer 19d.
  • the first conductive layer 19a is made of, for example, a transparent conductive oxide (TCO) such as tin oxide (SnO 2 ), zinc oxide (ZnO), or indium tin oxide (ITO).
  • TCO transparent conductive oxide
  • SnO 2 tin oxide
  • ZnO zinc oxide
  • ITO indium tin oxide
  • the first conductive layer 19a in the present embodiment is formed of indium tin oxide, and has a thickness of about 50 nm to 100 nm, for example.
  • the second conductive layer 19b to the fourth conductive layer 19d are conductive materials including metals such as copper (Cu), tin (Sn), gold (Au), and silver (Ag).
  • the second conductive layer 19b and the third conductive layer 19c are formed of copper
  • the fourth conductive layer 19d is formed of tin.
  • the second conductive layer 19b, the third conductive layer 19c, and the fourth conductive layer 19d have thicknesses of about 50 nm to 1000 nm, about 10 ⁇ m to 20 ⁇ m, and about 1 ⁇ m to 5 ⁇ m, respectively.
  • the formation method of the first conductive layer 19a to the fourth conductive layer 19d is not particularly limited, and can be formed by, for example, a thin film forming method such as a sputtering method or a chemical vapor deposition method (CVD), a plating method, or the like.
  • a thin film forming method such as a sputtering method or a chemical vapor deposition method (CVD), a plating method, or the like.
  • the first conductive layer 19a and the second conductive layer 19b are formed by a thin film forming method
  • the third conductive layer 19c and the fourth conductive layer 19d are formed by a plating method.
  • a third i-type layer 17 i is provided on the first main surface 10 a of the semiconductor substrate 10.
  • the third i-type layer 17i is formed of i-type amorphous silicon containing hydrogen, and has a thickness of, for example, about several nm to 25 nm.
  • the third conductivity type layer 17n is provided on the third i type layer 17i.
  • the third conductivity type layer 17n is composed of an amorphous semiconductor to which an n-type dopant having the same conductivity type as that of the semiconductor substrate 10 is added.
  • the third conductivity type layer 17n in the present embodiment is made of n-type amorphous silicon containing hydrogen and has a thickness of about 2 nm to 50 nm, for example.
  • a second insulating layer 18 having a function as an antireflection film and a protective film is provided on the third conductivity type layer 17n.
  • the second insulating layer 18 is made of, for example, silicon oxide, silicon nitride, silicon oxynitride, or the like.
  • the thickness of the second insulating layer 18 is appropriately set according to the antireflection characteristic as an antireflection film, and is, for example, about 80 nm to 1000 nm.
  • the stacked structure of the third i-type layer 17 i, the third conductivity type layer 17 n, and the second insulating layer 18 may have a function as a passivation layer of the semiconductor substrate 10.
  • an i-type amorphous semiconductor layer 21, an n-type amorphous semiconductor layer 22, and an insulating layer 23 are formed on the second main surface 10b of the semiconductor substrate 10.
  • a third i-type layer 17 i, a third conductivity type layer 17 n, and a second insulating layer 18 are formed on the first major surface 10 a of the semiconductor substrate 10.
  • the respective formation methods of the i-type amorphous semiconductor layer 21, the n-type amorphous semiconductor layer 22, the insulating layer 23, the third i-type layer 17i, the third conductivity-type layer 17n, and the second insulating layer 18 are, in particular, although not limited, for example, it can be formed by a chemical vapor deposition (CVD) method such as a plasma CVD method or a sputtering method.
  • CVD chemical vapor deposition
  • the order in which the layers are formed on the first main surface 10a and the second main surface 10b of the semiconductor substrate 10 can be appropriately set.
  • An i-type amorphous semiconductor layer to be the third i-type layer 17i, an n-type amorphous semiconductor layer to be the third conductivity type layer 17n, and an insulating layer to be the second insulating layer 18 are formed.
  • the first mask layer 31 is a layer that serves as a mask for patterning the i-type amorphous semiconductor layer 21, the n-type amorphous semiconductor layer 22, and the insulating layer 23.
  • the first mask layer 31 is made of a material used for a semiconductor layer or an insulating layer of the solar battery cell 70, and is made of a material having a lower alkali resistance than the insulating layer 23.
  • the insulating layer 23 is made of a material containing silicon such as amorphous silicon, silicon nitride having a high silicon content, silicon containing oxygen, silicon containing carbon (C), or the like.
  • the first mask layer 31 is preferably made of amorphous silicon, and the first mask layer 31 in this embodiment is formed of an i-type amorphous silicon layer.
  • the first mask layer 31 is formed thin so as to be easily removed in the laser irradiation step shown in FIG. 5, and has a thickness of about 2 nm to 50 nm, for example.
  • the first mask layer 31 is irradiated with a laser 50 to remove a part of the first mask layer 31.
  • the laser 50 is applied to the second region W2 where the second stacked body 13 is to be provided, and a first opening 41 through which the insulating layer 23 is exposed is formed in the second region W2.
  • the laser 50 is irradiated with an intensity that mainly removes only the first mask layer 31 and with an intensity that does not expose a layer below the insulating layer 23 in the laser irradiation portion.
  • a liquid having a lower refractive index than the first mask layer 31 such as water or silicon oxide or low refraction is provided on the first mask layer 31.
  • a rate film may be provided and the laser 50 may be irradiated.
  • FIG. 6 and 7 are diagrams showing a process of forming the first opening 41 by the laser 50.
  • FIG. 6 shows a cross-sectional view orthogonal to the cross-section shown in FIG. 5, and
  • FIG. 7 shows a plan view of the first mask layer 31 as viewed from above. 5 corresponds to a cross section taken along line BB in FIG. 7, and
  • FIG. 6 corresponds to a cross section taken along line CC in FIG.
  • the laser 50 is irradiated while shifting the irradiation position in the Y direction as shown in FIG. 6, and a partial region of the first mask layer 31 so as to form a first opening 41 extending in a strip shape as shown in FIG. Etch.
  • the laser 50 is irradiated so that the irradiation ranges 54 of the lasers 50 at the adjacent irradiation positions hardly overlap each other, and are shifted so that the center 52 of the laser 50 is not located in the range where the insulating layer 23 is exposed by the laser irradiation.
  • the laser 50 is preferably a short pulse laser having a pulse width of about nanoseconds (ns) or picoseconds (ps) in order to reduce the thermal influence on the laser irradiation part.
  • a laser 50 a YAG laser, an excimer laser, or the like may be used.
  • a third harmonic (wavelength 355 nm) of an Nd: YAG laser (wavelength 1064 nm) is used as a laser light source, and the laser 50 is emitted at an intensity of about 0.1 to 0.5 J / cm 2 per pulse. Irradiate. Note that it is desirable to use a laser light source having a high repetition frequency so that the first opening 41 can be formed in a short time by the laser 50.
  • the insulating layer 23 exposed to the first opening 41 is etched using the first mask layer 31 patterned by laser irradiation.
  • the insulating layer 23 is made of silicon oxide, silicon nitride, or silicon oxynitride
  • the insulating layer 23 can be etched using an acidic etchant such as a hydrofluoric acid aqueous solution, for example.
  • the etchant used for chemical etching may be a liquid or a gas.
  • the i-type amorphous semiconductor layer 21 and the n-type amorphous semiconductor layer 22 are etched using the patterned insulating layer 23 as a mask.
  • the i-type amorphous semiconductor layer 21 and the n-type amorphous semiconductor layer 22 can be etched using an alkaline etchant.
  • a third opening 43 that exposes the second main surface 10b of the semiconductor substrate 10 is formed.
  • the first stacked body 12 is formed by the i-type amorphous semiconductor layer 21 and the n-type amorphous semiconductor layer 22 remaining in the first region W1.
  • the first mask layer 31 on the insulating layer 23 is removed together in the etching process of the i-type amorphous semiconductor layer 21 and the n-type amorphous semiconductor layer 22.
  • the second opening 42 and the third opening 43 formed after the etching step constitute an integral groove having the second main surface 10b of the semiconductor substrate 10 as a bottom surface.
  • the first mask layer 31 may be removed by a process different from the etching of the i-type amorphous semiconductor layer 21 and the n-type amorphous semiconductor layer 22.
  • i-type amorphous semiconductor layer 24 is formed to cover second main surface 10 b and insulating layer 23, and p-type is formed on i-type amorphous semiconductor layer 24.
  • An amorphous semiconductor layer 25 is formed.
  • the formation method of the i-type amorphous semiconductor layer 24 and the p-type amorphous semiconductor layer 25 is not particularly limited, but can be formed by a thin film formation method such as a CVD method, for example. Note that the i-type amorphous semiconductor layer 24 and the p-type amorphous semiconductor layer 25 function as a second mask layer 32 for further patterning of the insulating layer 23.
  • a laser 50 is irradiated to a part of the second mask layer 32 located on the insulating layer 23 in the first region W1.
  • a fourth opening 44 through which the insulating layer 23 is exposed is formed in the third region W3 irradiated with the laser 50.
  • the portions other than the third region W3 of the second mask layer 32 remain by laser irradiation, the i-type amorphous semiconductor layer 24 becomes the second i-type layer 13i, and the p-type amorphous semiconductor layer 25 becomes the second one.
  • the conductive layer 13p is formed. That is, the second stacked body 13 is formed by the second mask layer 32.
  • the insulating layer 23 exposed to the fourth opening 44 is etched using the patterned second mask layer 32.
  • the insulating layer 23 can be formed using an acidic etching agent such as a hydrofluoric acid aqueous solution, as in the above-described step shown in FIG.
  • the fifth opening 45 is formed in the insulating layer 23 to expose the first conductivity type layer 12n, and the second insulating layer 18 is formed from the insulating layer 23.
  • the portion where the insulating layer 23 is removed becomes the third region W3, and the portion where the second insulating layer 18 remains becomes the fourth region W4.
  • the fourth opening 44 and the fifth opening 45 formed after the etching step constitute an integral groove whose bottom surface is the surface of the first conductivity type layer 12n.
  • conductive layers 26 and 27 are formed on the first conductive type layer 12n and the second conductive type layer 13p.
  • the conductive layer 26 is a transparent electrode layer such as indium tin oxide (ITO), and the conductive layer 27 is a metal electrode layer formed of a metal or alloy such as copper (Cu).
  • the conductive layers 26 and 27 are formed by a CVD method such as a plasma CVD method or a thin film formation method such as a sputtering method.
  • portions of the conductive layers 26 and 27 located on the second insulating layer 18 are divided to form grooves.
  • the first conductive layer 19a and the second conductive layer 19b are formed from the conductive layers 26 and 27, and the n-type electrode and the p-side electrode are separated.
  • the conductive layers 26 and 27 can be divided by, for example, wet etching or laser irradiation.
  • a third conductive layer 19c containing copper (Cu) and a fourth conductive layer 19d containing tin (Sn) are formed on the first conductive layer 19a and the second conductive layer 19b by a plating method.
  • the solar cell 70 shown in FIG. 2 is completed by the above manufacturing process.
  • the photolithography process for patterning can be reduced.
  • a photolithography process using a resist requires a process of forming a resist film, a process of curing the resist film by light irradiation, a process of removing the uncured resist film, a process of removing the resist film after patterning, and the like.
  • the running cost is high.
  • the mask layer can be formed without using an expensive photoresist, and the mask layer can be formed by a process similar to that for forming other semiconductor layers or insulating layers. it can. Thereby, the cost concerning manufacture of the photovoltaic cell 70 can be reduced.
  • the environmental load in the manufacturing process of the photovoltaic cell 70 can be reduced by reducing use of a photoresist.
  • etching by laser irradiation and etching by an etching agent are combined, a steep end face can be formed in the opening.
  • an opening having a depth is formed by laser irradiation, it is difficult to form an end face that is nearly perpendicular to the main surface of the semiconductor substrate 10.
  • the i-type amorphous semiconductor layer 21 and the n-type amorphous semiconductor layer 22 that are thinly formed on the semiconductor substrate 10 are to be removed by laser, these layers may be peeled off in the vicinity of the opening, or laser There is a risk of damage due to the thermal effects of irradiation.
  • the i-type amorphous semiconductor layer 21, the n-type amorphous semiconductor layer 22, and the insulating layer 23 are etched with the etchant, so that the end face is sharper than when only the laser is used. And the peeling of the semiconductor layer at the interface can be suppressed. Moreover, it can prevent that the interface of the 2nd main surface 10b receives the damage by laser irradiation, and leads to the fall of power generation efficiency.
  • the i-type amorphous semiconductor layer 24 and the p-type amorphous semiconductor layer 25 are used as the second mask layer 32, a mask layer unnecessary for the configuration of the solar battery cell 70 is provided. Patterning is possible without providing it separately. Further, since the p-type amorphous semiconductor layer 25 is difficult to remove with an etching agent as compared with other layers, the patterning of the p-type amorphous semiconductor layer 25 can be simplified by using laser irradiation. Thereby, the cost concerning manufacture of the photovoltaic cell 70 can be reduced.
  • the thickness of the insulating layer 23 provided between the first stacked body 12 and the second stacked body 13 can be reduced. Further, by reducing the thickness of the insulating layer 23 under the mask layer irradiated with the laser 50, it is possible to prevent the laser 50 from being reflected at the interface of the insulating layer 23 and partially increasing the light intensity. . Thereby, it is possible to prevent the semiconductor layer and the insulating layer other than the mask layer from being damaged by the laser irradiation, and to suppress the deterioration of the output characteristics of the solar battery cell 70.
  • One aspect of the present embodiment is a method for manufacturing solar battery cell 70.
  • This method Providing an insulating layer 23 on a semiconductor layer (n-type amorphous semiconductor layer 22) provided on at least a part of the main surface (second main surface 10b) of the semiconductor substrate 10; Providing a mask layer (first mask layer 31 or second mask layer 32) on the insulating layer 23; A first opening (first opening 41 or fourth opening 44) from which part of the mask layer (first mask layer 31 or second mask layer 32) is removed by laser irradiation to expose the insulating layer 23 Forming The insulating layer 23 exposed in the first opening (the first opening 41 or the fourth opening 44) is removed by an etching agent, and the second opening (the n-type amorphous semiconductor layer 22) is exposed. Forming the second opening 42 or the fifth opening 45).
  • the mask layer (the first mask layer 31 or the second mask layer 32) may be formed of a material containing silicon.
  • Laser irradiation may be performed from above the liquid or the low refractive index film.
  • the semiconductor layer (n-type amorphous semiconductor layer 22) may be formed of an n-type semiconductor material containing silicon, and the mask layer (second mask layer 32) may be formed of a p-type semiconductor material containing silicon. .
  • n-side electrode 14 electrically connected to the semiconductor layer (n-type amorphous semiconductor layer 22) exposed in the second opening (fifth opening 45), a mask layer (second mask layer 32), and You may further provide forming the p side electrode 15 electrically connected.
  • the semiconductor layer (n-type amorphous semiconductor layer 22) exposed to the second opening 42 may be removed with an etching agent to form the third opening 43 where the semiconductor substrate 10 is exposed.
  • the mask layer is the first mask layer 31; Removing the first mask layer 31 with an etchant to expose the insulating layer 23; Providing a second mask layer 32 on the semiconductor substrate 10 exposed in the third opening 43 and on the insulating layer 23; Removing a part of the second mask layer 32 located on the insulating layer 23 by laser irradiation to form a fourth opening 44 through which the insulating layer 23 is exposed; The insulating layer 23 exposed to the fourth opening 44 may be removed with an etchant to form a fifth opening 45 exposing the semiconductor layer (n-type amorphous semiconductor layer 22). .
  • the semiconductor layer (n-type amorphous semiconductor layer 22) is formed of an n-type semiconductor material containing silicon, and the second mask layer 32 is formed of a p-type semiconductor material containing silicon, An n-side electrode 14 electrically connected to the semiconductor layer (n-type amorphous semiconductor layer 22) exposed in the fifth opening 45, and a p-side electrode 15 electrically connected to the second mask layer; It may further comprise forming.
  • the present invention has been described with reference to the above-described embodiments.
  • the present invention is not limited to the above-described embodiments, and the configurations of the embodiments are appropriately combined or replaced. Those are also included in the present invention.
  • a mask layer patterned by laser irradiation may be used in any one of the steps, and a resist patterned by photolithography or the like may be used in the other step.
  • SYMBOLS 10 Semiconductor substrate, 10a ... 1st main surface, 10b ... 2nd main surface, 14 ... n side electrode, 15 ... p side electrode, 21 ... i-type amorphous semiconductor layer, 22 ... n-type amorphous semiconductor layer , 23 ... insulating layer, 24 ... i-type amorphous semiconductor layer, 25 ... p-type amorphous semiconductor layer, 31 ... first mask layer, 32 ... second mask layer, 41 ... first opening, 42 ... 2nd opening part, 43 ... 3rd opening part, 44 ... 4th opening part, 45 ... 5th opening part, 50 ... Laser, 70 ... Solar cell.

Abstract

 太陽電池セルの製造方法は、半導体基板10の主面上の少なくとも一部に設けられた半導体層の上に絶縁層23を設けることと、絶縁層23の上にマスク層31を設けることと、マスク層31の一部をレーザ照射により除去して絶縁層23が露出する第1開口部41を形成することと、第1開口部41に露出する絶縁層23をエッチング剤により除去して半導体層が露出する第2開口部を形成することと、を備える。

Description

太陽電池セルの製造方法
 本発明は、太陽電池セルの製造方法に関し、特に裏面接合型の太陽電池セルの製造方法に関する。
 発電効率の高い太陽電池として、光が入射する受光面に対向する裏面にn型半導体層およびp型半導体層の双方が形成された裏面接合型の太陽電池がある。n型半導体層とp型半導体層の間には両者を絶縁する絶縁層が設けられる。これらの半導体層や絶縁層は、フォトレジストなどのマスクを用いたエッチングによりパターニングされる(例えば、特許文献1参照)。
国際公開第2012/090643号
 ランニングコストのより低い方法で太陽電池セルを製造できることが望ましい。
 本発明はこうした状況に鑑みてなされたものであり、その目的は、太陽電池セルをより低コストで製造する方法を提供することにある。
 本発明のある態様の太陽電池セルの製造方法は、半導体基板の主面上の少なくとも一部に設けられた半導体層の上に絶縁層を設けることと、絶縁層の上にマスク層を設けることと、マスク層の一部をレーザ照射により除去して絶縁層が露出する第1開口部を形成することと、第1開口部に露出する絶縁層をエッチング剤により除去して半導体層が露出する第2開口部を形成することと、を備える。
 本発明によれば、より低コストで製造可能な太陽電池セルの製造方法を提供できる。
実施の形態に係る太陽電池セルを示す平面図である。 実施の形態に係る太陽電池セルの構造を示す断面図である。 太陽電池セルの製造工程を概略的に示す断面図である。 太陽電池セルの製造工程を概略的に示す断面図である。 太陽電池セルの製造工程を概略的に示す断面図である。 太陽電池セルの製造工程を概略的に示す断面図である。 太陽電池セルの製造工程を概略的に示す断面図である。 太陽電池セルの製造工程を概略的に示す断面図である。 太陽電池セルの製造工程を概略的に示す断面図である。 太陽電池セルの製造工程を概略的に示す断面図である。 太陽電池セルの製造工程を概略的に示す断面図である。 太陽電池セルの製造工程を概略的に示す断面図である。 太陽電池セルの製造工程を概略的に示す断面図である。 太陽電池セルの製造工程を概略的に示す断面図である。
 本発明を具体的に説明する前に、概要を述べる。本発明の実施の形態は、太陽電池セルの製造方法である。この方法は、半導体基板の主面上の少なくとも一部に設けられた半導体層の上に絶縁層を設けることと、絶縁層の上にマスク層を設けることと、マスク層の一部をレーザ照射により除去して絶縁層が露出する第1開口部を形成することと、第1開口部に露出する絶縁層をエッチング剤により除去して半導体層が露出する第2開口部を形成することと、を備える。本実施の形態によれば、マスク層をレーザによりパターニングするため、フォトリソグラフィ工程を用いることなくマスク層をパターニングし、絶縁層および半導体層のパターンを形成できる。これにより、コストの高いフォトリソグラフィ工程を減らして,太陽電池セルの製造コストを下げることができる。
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。
 図1は、実施の形態に係る太陽電池セル70を示す平面図であり、太陽電池セル70の裏面70bの構造を示す。太陽電池セル70は、裏面70bに設けられるn側電極14と、p側電極15を備える。n側電極14は、x方向に延びるバスバー電極14aと、y方向に延びる複数のフィンガー電極14bを含む櫛歯状に形成される。同様に、p側電極15は、x方向に延びるバスバー電極15aと、y方向に延びる複数のフィンガー電極15bを含む櫛歯状に形成される。n側電極14およびp側電極15は、それぞれの櫛歯が噛み合って互いに間挿し合うように形成される。なお、n側電極14およびp側電極15のそれぞれは、複数のフィンガーのみにより構成され、バスバーを有さないバスバーレス型の電極であってもよい。
 図2は、実施の形態に係る太陽電池セル70の構造を示す断面図であり、図1のA-A線断面を示す。太陽電池セル70は、半導体基板10と、第1のi型層12iと、第1導電型層12nと、第2のi型層13iと、第2導電型層13pと、第1絶縁層16と、第3のi型層17iと、第3導電型層17nと、第2絶縁層18と、電極層19とを備える。電極層19は、n側電極14またはp側電極15を構成する。太陽電池セル70は、裏面70b側に第1導電型層12nおよび第2導電型層13pが設けられる裏面接合型の光起電力素子である。
 半導体基板10は、受光面70a側に設けられる第1主面10aと、裏面70b側に設けられる第2主面10bを有する。半導体基板10は、第1主面10aに入射する光を吸収し、キャリアとして電子および正孔を生成する。半導体基板10は、n型またはp型の導電型を有する結晶性の半導体材料により構成される。本実施の形態における半導体基板10は、n型の単結晶シリコン基板である。
 ここで、受光面70aとは、太陽電池セル70において主に光(太陽光)が入射される主面を意味し、具体的には、太陽電池セル70に入射される光の大部分が入射される面を意味する。一方、裏面70bは、受光面70aに対向する他方の主面を意味する。
 半導体基板10の第2主面10bの上には、第1積層体12と第2積層体13とが形成される。第1積層体12および第2積層体13はそれぞれ、n側電極14およびp側電極15に対応するように櫛歯状に形成され、互いに間挿し合うように形成される。このため、第1積層体12が設けられる第1領域W1と、第2積層体13が設けられる第2領域W2は、第2主面10b上において、x方向に交互に配列される。また、x方向に隣接する第1積層体12と第2積層体13は接触して設けられる。したがって、本実施の形態では、第1積層体12および第2積層体13によって、第2主面10bの実質的に全体が被覆される。
 第1積層体12は、第2主面10bの上に形成される第1のi型層12iと、第1のi型層12iの上に形成される第1導電型層12nにより構成される。第1のi型層12iは、実質的に真性な非晶質半導体(以下、真性な半導体を「i型層」ともいう)で構成される。なお、本実施の形態において、「非晶質半導体」には、微結晶半導体を含むものとする。微結晶半導体とは、非晶質半導体中に半導体結晶が析出している半導体をいう。
 第1のi型層12iは、水素(H)を含むi型の非晶質シリコンで構成され、例えば、数nm~25nm程度の厚さを有する。第1のi型層12iの形成方法は、特に限定されないが、例えば、プラズマCVD法等の化学気相成長(CVD)法により形成することができる。
 第1導電型層12nは、半導体基板10と同じ導電型であるn型のドーパントが添加された非晶質半導体で構成される。本実施の形態における第1導電型層12nは、水素を含むn型非晶質シリコンで構成される。第1導電型層12nは、例えば、2nm~50nm程度の厚さを有する。
 第1積層体12の上には、第1絶縁層16が形成される。第1絶縁層16は、第1領域W1のうちx方向の中央部に相当する第3領域W3には設けられず、第3領域W3を残した両端に相当する第4領域W4に設けられる。第1絶縁層16が形成される第4領域W4の幅は、例えば、第1領域W1の幅の約1/3程度である。また、第1絶縁層16が設けられない第3領域W3は、例えば、第1領域W1の幅の約1/3程度である。
 第1絶縁層16は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)、酸窒化シリコン(SiON)などにより形成される。第1絶縁層16は、窒化シリコンにより形成されることが望ましく、水素を含んでいることが好ましい。
 第2積層体13は、第2主面10bのうち第1積層体12が設けられない第2領域W2と、第1絶縁層16が設けられる第4領域W4の端部の上に形成される。このため、第2積層体13の両端部は、第1積層体12と高さ方向(z方向)に重なって設けられる。
 第2積層体13は、第2主面10bの上に形成される第2のi型層13iと、第2のi型層13iの上に形成される第2導電型層13pにより構成される。第2のi型層13iは、水素を含むi型の非晶質シリコンで構成され、例えば、数nm~25nm程度の厚さを有する。
 第2導電型層13pは、半導体基板10とは異なる導電型であるp型のドーパントが添加された非晶質半導体で構成される。本実施の形態における第2導電型層13pは、水素を含むp型の非晶質シリコンで構成される。第2導電型層13pは、例えば、2nm~50nm程度の厚さを有する。
 第1導電型層12nの上には、電子を収集するn側電極14が形成される。第2導電型層13pの上には、正孔を収集するp側電極15が形成される。n側電極14とp側電極15の間には溝が形成され、両電極は電気的に絶縁される。本実施の形態において、n側電極14およびp側電極15は、第1導電層19aから第4導電層19dの4層の導電層の積層体により構成される。
 第1導電層19aは、例えば、酸化錫(SnO)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等の透明導電性酸化物(TCO)により形成される。本実施の形態における第1導電層19aは、インジウム錫酸化物により形成され、例えば、50nm~100nm程度の厚さを有する。
 第2導電層19bから第4導電層19dは、銅(Cu)、錫(Sn)、金(Au)、銀(Ag)などの金属を含む導電性の材料である。本実施の形態では、第2導電層19bおよび第3導電層19cは、銅により形成され、第4導電層19dは、錫により形成される。第2導電層19b、第3導電層19c、第4導電層19dはそれぞれ、50nm~1000nm程度、10μm~20μm程度、1μm~5μm程度の厚さを有する。
 第1導電層19aから第4導電層19dの形成方法は特に限定されず、例えば、スパッタリング法や化学気相成長法(CVD)などの薄膜形成方法や、めっき法などにより形成することができる。本実施の形態において、第1導電層19aおよび第2導電層19bは、薄膜形成法により形成され、第3導電層19cおよび第4導電層19dは、めっき法により形成される。
 半導体基板10の第1主面10aの上には、第3のi型層17iが設けられる。第3のi型層17iは、水素を含むi型の非晶質シリコンにより形成され、例えば、数nm~25nm程度の厚さを有する。
 第3のi型層17iの上には、第3導電型層17nが設けられる。第3導電型層17nは、半導体基板10と同じ導電型であるn型のドーパントが添加された非晶質半導体で構成される。本実施の形態における第3導電型層17nは、水素を含むn型非晶質シリコンで構成され、例えば、2nm~50nm程度の厚さを有する。
 第3導電型層17nの上には、反射防止膜および保護膜としての機能を有する第2絶縁層18が設けられる。第2絶縁層18は、例えば、酸化シリコン、窒化シリコン、酸窒化シリコンなどにより形成される。第2絶縁層18の厚さは、反射防止膜としての反射防止特性などに応じて適宜設定され、例えば、80nm~1000nm程度とされる。
 なお、第3のi型層17i、第3導電型層17n、第2絶縁層18の積層構造は、半導体基板10のパッシベーション層としての機能を有してもよい。
 つづいて、図3~図14を参照しながら、本実施の形態の太陽電池セル70の製造方法について説明する。
 図3に示すように、半導体基板10の第2主面10bの上に、i型非晶質半導体層21、n型非晶質半導体層22、絶縁層23を形成する。また、半導体基板10の第1主面10aの上に、第3のi型層17i、第3導電型層17n、第2絶縁層18を形成する。i型非晶質半導体層21、n型非晶質半導体層22、絶縁層23、第3のi型層17i、第3導電型層17n、第2絶縁層18のそれぞれの形成方法は、特に限定されないが、例えば、プラズマCVD法等の化学気相成長(CVD)法や、スパッタリング法により形成することができる。
 半導体基板10の第1主面10aおよび第2主面10bの上に各層を形成する順序は適宜設定することができる。本実施の形態では、第2主面10bの上にi型非晶質半導体層21、n型非晶質半導体層22、絶縁層23を形成する各工程において、第1主面10aの上に第3のi型層17iとなるi型非晶質半導体層、第3導電型層17nとなるn型非晶質半導体層、第2絶縁層18となる絶縁層を形成する。
 次に、図4に示すように、絶縁層23の上に第1のマスク層31を形成する。第1のマスク層31は、i型非晶質半導体層21、n型非晶質半導体層22および絶縁層23をパターニングするためのマスクとなる層である。第1のマスク層31は、太陽電池セル70の半導体層や絶縁層に用いられる材料で構成され、絶縁層23よりも耐アルカリ性の低い材料で構成される。絶縁層23は、例えば、非晶質シリコン、シリコン含有率の高い窒化シリコン、酸素を含むシリコン、炭素(C)を含むシリコン等のシリコンを含む材料で構成される。第1のマスク層31は、非晶質シリコンを用いることが望ましく、本実施の形態における第1のマスク層31は、i型の非晶質シリコン層で構成される。また、第1のマスク層31は、次の図5に示すレーザ照射の工程で除去しやすいように薄く形成され、例えば、2nm~50nm程度の厚さを有する。
 次に、図5に示すように、第1のマスク層31にレーザ50を照射して、第1のマスク層31の一部を除去する。レーザ50は、第2積層体13が設けられることとなる第2領域W2に照射され、第2領域W2には絶縁層23が露出する第1開口部41が形成される。レーザ50は、主に第1のマスク層31のみを除去するような強度で照射され、レーザ照射部において絶縁層23より下の層が露出しないような強度で照射される。なお、第1のマスク層31の表面の凹凸による多重反射を抑えるため、第1のマスク層31の上に水や酸化シリコンなどの第1のマスク層31よりも屈折率の低い液体または低屈折率膜を設けてレーザ50を照射してもよい。
 図6および図7は、レーザ50により第1開口部41を形成する工程を示す図である。図6は、図5に示す断面と直交する断面図を示し、図7は、第1のマスク層31を上から見た平面図を示す。図5は、図7のB-B線断面に相当し、図6は、図7のC-C線断面に相当する。レーザ50は、図6に示すようにY方向に照射位置をずらしながら照射され、図7に示すように帯状に延びる第1開口部41を形成するように第1のマスク層31の一部領域をエッチングする。
 レーザ50は、隣接する照射位置におけるレーザ50の照射範囲54がほとんど重ならないようにして照射され、レーザ照射により絶縁層23が露出した範囲にレーザ50の中心52が位置しないようにずらして照射される。つまり、レーザ50の照射により第1のマスク層31が除去される照射範囲54の半径D1よりも、隣接するレーザ照射の間隔D2が大きくなるようにレーザ50を照射することが望ましい。レーザ50の照射範囲54が重ならないようにすることで、絶縁層23の下の半導体層にまでレーザ照射によるダメージが及ばないようにする。
 レーザ50は、レーザ照射部への熱影響を少なくするため、パルス幅がナノ秒(ns)またはピコ秒(ps)程度の短パルスレーザであること望ましい。このようなレーザ50として、YAGレーザや、エキシマレーザなどを用いればよい。本実施の形態では、レーザ光源としてNd:YAGレーザ(波長1064nm)の第3高調波(波長355nm)を使用し、1パルスあたり約0.1~0.5J/cmの強度でレーザ50を照射する。なお、レーザ50により第1開口部41を短時間で形成できるよう、繰り返し周波数の高いレーザ光源を用いることが望ましい。
 次に、図8に示すように、レーザ照射によりパターニングした第1のマスク層31を用いて、第1開口部41に露出する絶縁層23をエッチングする。絶縁層23のエッチングは、絶縁層23が酸化シリコン、窒化シリコンまたは酸窒化シリコンからなる場合は、例えば、フッ酸水溶液等の酸性のエッチング剤を用いて行うことができる。化学エッチングに用いるエッチング剤は、液体であってもよいし気体であってもよい。第2領域W2に位置する絶縁層23のエッチングにより、n型非晶質半導体層22が露出する第2開口部42が形成される。
 次に、図9に示すように、パターニングした絶縁層23をマスクとして用いて、i型非晶質半導体層21とn型非晶質半導体層22をエッチングする。i型非晶質半導体層21およびn型非晶質半導体層22は、アルカリ性のエッチング剤を用いてエッチングできる。第2領域W2に位置するi型非晶質半導体層21およびn型非晶質半導体層22を除去することにより、半導体基板10の第2主面10bが露出する第3開口部43が形成される。また、第1領域W1に残るi型非晶質半導体層21およびn型非晶質半導体層22により、第1積層体12が形成される。絶縁層23の上の第1のマスク層31は、i型非晶質半導体層21およびn型非晶質半導体層22のエッチング工程において一緒に除去される。エッチング工程後に形成される第2開口部42および第3開口部43は、半導体基板10の第2主面10bを底面とする一体的な溝を構成する。なお、第1のマスク層31は、i型非晶質半導体層21およびn型非晶質半導体層22のエッチングとは別の工程により除去されてもよい。
 次に、図10に示すように、第2主面10bおよび絶縁層23の上を覆うようにi型非晶質半導体層24が形成され、i型非晶質半導体層24の上にp型非晶質半導体層25が形成される。i型非晶質半導体層24、p型非晶質半導体層25の形成方法は特に限定されないが、例えば、CVD法などの薄膜形成法により形成することができる。なお、i型非晶質半導体層24およびp型非晶質半導体層25は、絶縁層23のさらなるパターニングのための第2のマスク層32として機能する。
 次に、図11に示すように、第1領域W1の絶縁層23の上に位置する第2のマスク層32の一部にレーザ50を照射する。レーザ50が照射される第3領域W3には、絶縁層23が露出する第4開口部44が形成される。レーザ照射によって第2のマスク層32の第3領域W3以外の部分が残って、i型非晶質半導体層24が第2のi型層13iとなり、p型非晶質半導体層25が第2導電型層13pとなる。つまり、第2のマスク層32により、第2積層体13が形成される。
 次に、図12に示すように、パターニングした第2のマスク層32を用いて、第4開口部44に露出する絶縁層23のエッチングを行う。絶縁層23は、上述の図8に示す工程と同様に、フッ酸水溶液等の酸性のエッチング剤を用いて行うことができる。これにより、絶縁層23に第5開口部45を形成して第1導電型層12nを露出させ、絶縁層23から第2絶縁層18を形成する。絶縁層23が除去された部分は第3領域W3となり、第2絶縁層18が残る部分は第4領域W4となる。エッチング工程後に形成される第4開口部44及び第5開口部45は、第1導電型層12nの表面を底面とする一体的な溝を構成する。
 次に、図13に示すように、第1導電型層12nおよび第2導電型層13pの上に、導電層26、27を形成する。導電層26は、インジウム錫酸化物(ITO)などの透明電極層であり、導電層27は、銅(Cu)などの金属や合金により構成される金属電極層である。導電層26、27は、プラズマCVD法等のCVD法や、スパッタリング法等の薄膜形成法により形成される。
 次に、図14に示すように、導電層26、27のうち、第2絶縁層18の上に位置している部分を分断して溝を形成する。これにより、導電層26、27から第1導電層19aおよび第2導電層19bが形成され、n型電極とp側電極とが分離される。導電層26、27の分断は、例えば、ウェットエッチングやレーザ照射により行うことができる。
 最後に、第1導電層19aおよび第2導電層19bの上に、銅(Cu)を含む第3導電層19cと、錫(Sn)を含む第4導電層19dをめっき法により形成する。
 以上の製造工程により、図2に示す太陽電池セル70ができあがる。
 本実施の形態によれば、マスク層をレーザ照射によりパターニングするため、パターニングのためのフォトリソグラフィ工程を減らすことができる。一般に、レジストを用いるフォトリソグラフィ工程では、レジスト膜を形成する工程、光照射によりレジスト膜を硬化する工程、硬化していないレジスト膜を除去する工程、パターニング後にレジスト膜を除去する工程などを必要とし、ランニングコストが高い。本実施の形態では、シリコンを含む材料をマスク層に用いるため、高価なフォトレジストを用いることなくマスク層を形成でき、また、他の半導体層や絶縁層を形成する場合と同様の工程により形成できる。これにより、太陽電池セル70の製造にかかるコストを低減することができる。また、フォトレジストの使用を減らすことで、太陽電池セル70の製造工程における環境負荷を減らすことができる。
 また本実施の形態によれば、レーザ照射によるエッチングとエッチング剤によるエッチングを組み合わせるため、開口部において急峻な端面を形成することができる。レーザ照射によって深さのある開口部を形成しようとすると、半導体基板10の主面に対して垂直に近い端面を形成することが難しい。また、半導体基板10の上に薄く形成されるi型非晶質半導体層21やn型非晶質半導体層22をレーザによって除去しようとすると、これらの層が開口部の近傍で剥がれたり、レーザ照射による熱影響によってダメージを受けたりするおそれがある。一方、本実施の形態によれば、i型非晶質半導体層21、n型非晶質半導体層22および絶縁層23をエッチング剤によりエッチングするため、レーザのみを用いる場合と比べて急峻な端面を形成し、界面における半導体層の剥がれを抑制することができる。また、第2主面10bの界面がレーザ照射によるダメージを受け、発電効率の低下につながることを防ぐことができる。
 また本実施の形態によれば、i型非晶質半導体層24およびp型非晶質半導体層25を第2のマスク層32として利用するため、太陽電池セル70の構成に不要なマスク層を別途設けることなくパターニングができる。また、p型非晶質半導体層25は他の層と比べてエッチング剤による除去が難しいことから、レーザ照射を用いることでp型非晶質半導体層25のパターニングを簡単にすることができる。これにより、太陽電池セル70の製造にかかるコストを低減することができる。
 また、レーザ照射時にマスク層の上に低屈折率の液体または低屈折率膜を設けることで、マスク層の凹凸によって多重反射が生じてレーザ照射によるエッチング量が不均一となるのを抑えることができる。また、マスク層の上に液体または低屈折率膜を設けることで、レーザ照射によりマスク層から生じるデブリ等が他の半導体層に付着するのを防ぐことができる。
 また、レーザ照射によるエッチングとエッチング剤によるエッチングを組み合わせることで、第1積層体12と第2積層体13の間に設けられる絶縁層23の厚さを薄くすることができる。また、レーザ50が照射されるマスク層の下の絶縁層23の厚さを薄くすることで、絶縁層23の界面でレーザ50が反射して部分的に光強度が高まることを防ぐことができる。これにより、レーザ照射によってマスク層以外の半導体層や絶縁層にダメージが生じることを防ぎ、太陽電池セル70の出力特性の低下を抑えることができる。
 本実施の形態の一態様は、太陽電池セル70の製造方法である。この方法は、
 半導体基板10の主面(第2主面10b)上の少なくとも一部に設けられた半導体層(n型非晶質半導体層22)の上に絶縁層23を設けることと、
 絶縁層23の上にマスク層(第1のマスク層31または第2のマスク層32)を設けることと、
 マスク層(第1のマスク層31または第2のマスク層32)の一部をレーザ照射により除去して絶縁層23が露出する第1開口部(第1開口部41または第4開口部44)を形成することと、
 第1開口部(第1開口部41または第4開口部44)に露出する絶縁層23をエッチング剤により除去して半導体層(n型非晶質半導体層22)が露出する第2開口部(第2開口部42または第5開口部45)を形成することと、を備える。
 マスク層(第1のマスク層31または第2のマスク層32)は、シリコンを含む材料で形成されてもよい。
 マスク層(第1のマスク層31または第2のマスク層32)の上にマスク層よりも屈折率の低い液体または低屈折率膜を設けることをさらに備え、
 レーザ照射は、液体または低屈折率膜の上から行われてもよい。
 半導体層(n型非晶質半導体層22)は、シリコンを含むn型半導体材料で形成され、マスク層(第2のマスク層32)は、シリコンを含むp型半導体材料で形成されてもよい。
 第2開口部(第5開口部45)に露出する半導体層(n型非晶質半導体層22)と電気的に接続されるn側電極14と、マスク層(第2のマスク層32)と電気的に接続されるp側電極15とを形成することをさらに備えてもよい。
 第2開口部42に露出する半導体層(n型非晶質半導体層22)をエッチング剤により除去して半導体基板10が露出する第3開口部43を形成することをさらに備えてもよい。
 マスク層は第1のマスク層31であり、
 第1のマスク層31をエッチング剤により除去して絶縁層23の上を露出させることと、
 第3開口部43に露出する半導体基板10の上と、絶縁層23の上とに第2のマスク層32を設けることと、
 絶縁層23の上に位置する第2のマスク層32の一部をレーザ照射により除去して絶縁層23が露出する第4開口部44を形成することと、
 第4開口部44に露出する絶縁層23をエッチング剤により除去して半導体層(n型非晶質半導体層22)が露出する第5開口部45を形成することと、をさらに備えてもよい。
 半導体層(n型非晶質半導体層22)は、シリコンを含むn型半導体材料で形成され、第2のマスク層32は、シリコンを含むp型半導体材料で形成され、
 第5開口部45に露出する半導体層(n型非晶質半導体層22)と電気的に接続されるn側電極14と、第2のマスク層と電気的に接続されるp側電極15とを形成することをさらに備えてもよい。
 以上、本発明を上述の各実施の形態を参照して説明したが、本発明は上述の各実施の形態に限定されるものではなく、各実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。
 上述の実施の形態では、第2領域W2に位置する絶縁層23を除去する工程と、第3領域W3に位置する絶縁層23を除去する工程の双方において、レーザ50の照射によりパターニングされたマスク層を用いることとした。変形例においては、いずれか一方の工程にレーザ照射によりパターニングされたマスク層を使用し、他方の工程においてはフォトリソグラフィなどによりパターニングされたレジストを用いてもよい。
 10…半導体基板、10a…第1主面、10b…第2主面、14…n側電極、15…p側電極、21…i型非晶質半導体層、22…n型非晶質半導体層、23…絶縁層、24…i型非晶質半導体層、25…p型非晶質半導体層、31…第1のマスク層、32…第2のマスク層、41…第1開口部、42…第2開口部、43…第3開口部、44…第4開口部、45…第5開口部、50…レーザ、70…太陽電池セル。
 本発明によれば、より低コストで製造可能な太陽電池セルの製造方法を提供できる。

Claims (8)

  1.  半導体基板の主面上の少なくとも一部に設けられた半導体層の上に絶縁層を設けることと、
     前記絶縁層の上にマスク層を設けることと、
     前記マスク層の一部をレーザ照射により除去して前記絶縁層が露出する第1開口部を形成することと、
     前記第1開口部に露出する前記絶縁層をエッチング剤により除去して前記半導体層が露出する第2開口部を形成することと、を備える太陽電池セルの製造方法。
  2.  前記マスク層は、シリコンを含む材料で形成される請求項1に記載の太陽電池セルの製造方法。
  3.  前記マスク層の上に前記マスク層よりも屈折率の低い液体または低屈折率膜を設けることをさらに備え、
     前記レーザ照射は、前記液体または前記低屈折率膜の上から行われる請求項1または2に記載の太陽電池セルの製造方法。
  4.  前記半導体層は、シリコンを含むn型半導体材料で形成され、前記マスク層は、シリコンを含むp型半導体材料で形成される請求項1から3のいずれか一項に記載の太陽電池セルの製造方法。
  5.  前記第2開口部に露出する前記半導体層と電気的に接続されるn側電極と、前記マスク層と電気的に接続されるp側電極とを形成することをさらに備える請求項4に記載の太陽電池セルの製造方法。
  6.  前記第2開口部に露出する前記半導体層をエッチング剤により除去して前記半導体基板が露出する第3開口部を形成することをさらに備える請求項1から3のいずれか一項に記載の太陽電池セルの製造方法。
  7.  前記マスク層は第1のマスク層であり、
     前記第1のマスク層をエッチング剤により除去して前記絶縁層の上を露出させることと、
     前記第3開口部に露出する前記半導体基板の上と、前記絶縁層の上とに第2のマスク層を設けることと、
     前記絶縁層の上に位置する前記第2のマスク層の一部をレーザ照射により除去して前記絶縁層が露出する第4開口部を形成することと、
     前記第4開口部に露出する前記絶縁層をエッチング剤により除去して前記半導体層が露出する第5開口部を形成することと、をさらに備える請求項6に記載の太陽電池セルの製造方法。
  8.  前記半導体層は、シリコンを含むn型半導体材料で形成され、前記第2のマスク層は、シリコンを含むp型半導体材料で形成され、
     前記第5開口部に露出する前記半導体層と電気的に接続されるn側電極と、前記第2のマスク層と電気的に接続されるp側電極とを形成することをさらに備える請求項7に記載の太陽電池セルの製造方法。
PCT/JP2016/000939 2015-03-24 2016-02-23 太陽電池セルの製造方法 WO2016152022A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680017598.2A CN107408599B (zh) 2015-03-24 2016-02-23 太阳能电池单元的制造方法
JP2017507363A JP6425218B2 (ja) 2015-03-24 2016-02-23 太陽電池セルの製造方法
US15/713,586 US10483429B2 (en) 2015-03-24 2017-09-22 Method of manufacturing solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-061278 2015-03-24
JP2015061278 2015-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/713,586 Continuation US10483429B2 (en) 2015-03-24 2017-09-22 Method of manufacturing solar cell

Publications (1)

Publication Number Publication Date
WO2016152022A1 true WO2016152022A1 (ja) 2016-09-29

Family

ID=56977166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000939 WO2016152022A1 (ja) 2015-03-24 2016-02-23 太陽電池セルの製造方法

Country Status (4)

Country Link
US (1) US10483429B2 (ja)
JP (2) JP6425218B2 (ja)
CN (1) CN107408599B (ja)
WO (1) WO2016152022A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113632245B (zh) * 2019-03-29 2023-10-13 株式会社钟化 太阳能电池的制造方法
CN113809186A (zh) * 2021-09-13 2021-12-17 福建金石能源有限公司 一种采用形成电极、开槽绝缘二步法的背接触异质结太阳能电池制造方法
CN114203833A (zh) * 2021-11-30 2022-03-18 福建金石能源有限公司 一种低激光损伤的背接触异质结太阳能电池制造方法
CN114497290A (zh) * 2022-02-10 2022-05-13 福建金石能源有限公司 一种背接触异质结太阳能电池制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219527A (ja) * 2009-03-17 2010-09-30 Sharp Corp バックコンタクト単一ヘテロ接合型太陽電池の製造方法及びバックコンタクト単一ヘテロ接合型太陽電池
JP2013026269A (ja) * 2011-07-15 2013-02-04 Sanyo Electric Co Ltd 太陽電池及び太陽電池の製造方法
JP2013187388A (ja) * 2012-03-08 2013-09-19 Sanyo Electric Co Ltd 半導体装置の製造方法
JP2014110256A (ja) * 2012-11-30 2014-06-12 Sharp Corp 太陽電池セルの製造方法および太陽電池セル

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100071765A1 (en) 2008-09-19 2010-03-25 Peter Cousins Method for fabricating a solar cell using a direct-pattern pin-hole-free masking layer
JP4964222B2 (ja) * 2008-12-26 2012-06-27 三菱電機株式会社 光起電力装置の製造方法
US9537043B2 (en) 2010-04-23 2017-01-03 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof
EP2395554A3 (en) * 2010-06-14 2015-03-11 Imec Fabrication method for interdigitated back contact photovoltaic cells
KR101665722B1 (ko) * 2010-09-27 2016-10-24 엘지전자 주식회사 태양 전지 및 이의 제조 방법
CN103283033B (zh) 2010-12-29 2015-09-30 三洋电机株式会社 太阳能电池的制造方法和太阳能电池
JP5842173B2 (ja) * 2011-03-28 2016-01-13 パナソニックIpマネジメント株式会社 光電変換装置及び光電変換装置の製造方法
CN103858239A (zh) * 2011-11-16 2014-06-11 天合光能发展有限公司 全背接触太阳能电池和制造方法
FR2985608B1 (fr) 2012-01-05 2016-11-18 Commissariat Energie Atomique Cellule photovoltaique et procede de realisation
US8959022B2 (en) * 2012-07-03 2015-02-17 Motorola Solutions, Inc. System for media correlation based on latent evidences of audio
CN102856328B (zh) * 2012-10-10 2015-06-10 友达光电股份有限公司 太阳能电池及其制作方法
KR101622089B1 (ko) 2013-07-05 2016-05-18 엘지전자 주식회사 태양 전지 및 이의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219527A (ja) * 2009-03-17 2010-09-30 Sharp Corp バックコンタクト単一ヘテロ接合型太陽電池の製造方法及びバックコンタクト単一ヘテロ接合型太陽電池
JP2013026269A (ja) * 2011-07-15 2013-02-04 Sanyo Electric Co Ltd 太陽電池及び太陽電池の製造方法
JP2013187388A (ja) * 2012-03-08 2013-09-19 Sanyo Electric Co Ltd 半導体装置の製造方法
JP2014110256A (ja) * 2012-11-30 2014-06-12 Sharp Corp 太陽電池セルの製造方法および太陽電池セル

Also Published As

Publication number Publication date
JPWO2016152022A1 (ja) 2017-12-07
CN107408599B (zh) 2020-11-27
US20180019368A1 (en) 2018-01-18
JP2019009473A (ja) 2019-01-17
JP6425218B2 (ja) 2018-11-21
CN107408599A (zh) 2017-11-28
JP6614559B2 (ja) 2019-12-04
US10483429B2 (en) 2019-11-19

Similar Documents

Publication Publication Date Title
JP6614559B2 (ja) 太陽電池セルの製造方法
JP5629013B2 (ja) 半導体素子及びその製造方法
WO2011115206A1 (ja) 太陽電池、その太陽電池を用いた太陽電池モジュール及び太陽電池の製造方法
JP6771166B2 (ja) 太陽電池セルの製造方法
WO2012018119A1 (ja) 太陽電池及び太陽電池の製造方法
WO2015045242A1 (ja) 太陽電池、太陽電池モジュールおよび太陽電池の製造方法
WO2012132835A1 (ja) 太陽電池
JP6425195B2 (ja) 太陽電池
JP6788874B2 (ja) 太陽電池セル及びその製造方法
JP2013168605A (ja) 太陽電池の製造方法
JPWO2012132834A1 (ja) 太陽電池及び太陽電池の製造方法
JP6311911B2 (ja) 太陽電池、太陽電池モジュールおよび太陽電池の製造方法
WO2017168977A1 (ja) 太陽電池
WO2020217999A1 (ja) 太陽電池の製造方法および太陽電池
WO2015118740A1 (ja) 太陽電池
WO2012132932A1 (ja) 太陽電池及び太陽電池の製造方法
JP5957102B2 (ja) 太陽電池の製造方法
JPS60262471A (ja) 光起電力装置の製造方法
KR101112081B1 (ko) 태양전지 및 그 제조방법
JP2016171095A (ja) 太陽電池および太陽電池の製造方法
JP2015065338A (ja) 太陽電池および太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16767934

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507363

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16767934

Country of ref document: EP

Kind code of ref document: A1