WO2016147672A1 - 薄膜トランジスタアレイ、画像表示装置および薄膜トランジスタアレイの製造方法 - Google Patents

薄膜トランジスタアレイ、画像表示装置および薄膜トランジスタアレイの製造方法 Download PDF

Info

Publication number
WO2016147672A1
WO2016147672A1 PCT/JP2016/001570 JP2016001570W WO2016147672A1 WO 2016147672 A1 WO2016147672 A1 WO 2016147672A1 JP 2016001570 W JP2016001570 W JP 2016001570W WO 2016147672 A1 WO2016147672 A1 WO 2016147672A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
gate
wiring
capacitor
transistor array
Prior art date
Application number
PCT/JP2016/001570
Other languages
English (en)
French (fr)
Inventor
守 石▲崎▼
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to EP16764503.5A priority Critical patent/EP3260911B1/en
Priority to JP2017506102A priority patent/JP6720963B2/ja
Priority to CN201680015974.4A priority patent/CN107407845B/zh
Publication of WO2016147672A1 publication Critical patent/WO2016147672A1/ja
Priority to US15/706,831 priority patent/US11264406B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136204Arrangements to prevent high voltage or static electricity failures
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1292Multistep manufacturing methods using liquid deposition, e.g. printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/35Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being liquid crystals

Definitions

  • the present invention relates to a thin film transistor array, an image display device, and a manufacturing method thereof.
  • Thin film transistor arrays have been developed, and liquid crystal display devices and electrophoretic display devices using the same have been developed. Conventionally, photolithography has been used for patterning of electrodes of a thin film transistor array.
  • Patent Document 1 a thin film transistor array by printing has attracted attention as a cheaper thin film transistor array or a thin film transistor array that can be processed at a low temperature and is suitable for a plastic substrate.
  • An object of the present invention is to provide a thin film transistor array and a manufacturing method thereof that do not damage a gate driver or a power supply even if a short circuit occurs between a gate wiring and a capacitor wiring.
  • One aspect of the present invention for solving the above problems includes an insulating substrate, a gate insulating film, a gate electrode, a gate wiring connected to the gate electrode, a capacitor electrode, and a capacitor wiring connected to the capacitor electrode; A source electrode, a source wiring connected to the source electrode, a drain electrode, and a pixel electrode connected to the drain electrode, the pixel electrode being a capacitor electrode through the gate insulating film.
  • the source electrode and the drain electrode overlap the gate electrode through the gate insulating film, and there is a semiconductor layer between the source electrode and the drain electrode, and there is a resistance in the middle of the capacitor wiring.
  • a thin film transistor array is
  • the gate electrode, the gate wiring connected to the gate electrode, the capacitor electrode, and the capacitor wiring connected to the capacitor electrode may be formed below (the insulating substrate side) than the source electrode and the drain electrode (bottom side). (Gate type) or may be formed on the top (top gate type).
  • At least the gate electrode, the gate wiring, the capacitor electrode, and the capacitor wiring may be formed of the same material.
  • the electrical resistance value of the resistor may be smaller than the value obtained by dividing the frame time by the total storage capacity connected to the capacitor wiring.
  • the electric resistance value of the resistor may be larger than a value obtained by dividing the absolute value of the voltage between the gate wiring and the capacitor wiring by the maximum allowable output current of the gate driver.
  • the resistor may be a long wiring portion formed in the middle of the capacitor wiring.
  • the resistor may be a separate part inserted in the middle of the capacitor wiring.
  • Another aspect of the present invention is a method of manufacturing the above-described thin film transistor array, which includes a gate electrode, a gate wiring connected to the gate electrode, a capacitor electrode, and a capacitor wiring connected to the capacitor electrode on the insulating substrate.
  • the gate electrode, the gate wiring connected to the gate electrode, the capacitor electrode, and the capacitor wiring connected to the capacitor electrode may be formed below (the insulating substrate side) than the source electrode and the drain electrode (bottom side). (Gate type) or may be formed on the top (top gate type).
  • the formation of the long wiring portion serving as the resistor may be performed simultaneously with the step of forming the capacitor wiring.
  • the step of forming the resistor may be performed by inserting another component that becomes a resistor after the step of forming the capacitor wiring.
  • the present invention it is possible to prevent destruction of the gate driver and the power source due to a short circuit between the gate wiring and the capacitor wiring while realizing an inexpensive and low-temperature process by using the printing method.
  • a thin film transistor array capable of diverting a gate driver or a power source can be provided.
  • FIG. 1 is a wiring diagram showing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 2A is a wiring diagram illustrating a thin film transistor array according to an embodiment of the present invention.
  • FIG. 2B is a wiring diagram illustrating a thin film transistor array according to an embodiment of the present invention.
  • FIG. 3A is a schematic view showing a method for manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 3B is a schematic view illustrating a method of manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 3C is a schematic view showing a method for manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 3A is a schematic view showing a method for manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 3B is a schematic view illustrating a method of manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 3C is a schematic view showing
  • FIG. 3D is a schematic view illustrating a method of manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 3E is a schematic view showing a method for manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 3F is a schematic view illustrating a method of manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 3G is a schematic view showing a method for manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 4 is a wiring diagram showing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 5A is a schematic view showing a method for manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 5A is a schematic view showing a method for manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 5B is a schematic diagram showing a method for manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 5C is a schematic view showing a method for manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 5D is a schematic view illustrating a method of manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 5E is a schematic view illustrating a method of manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 5F is a schematic view illustrating a method of manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 5G is a schematic view showing a method for manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 5H is a schematic view showing a method for manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 6A is a schematic view showing a method for manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 6B is a schematic view showing a method for manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 6C is a schematic view showing a method for manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 6D is a schematic view illustrating a method of manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 6E is a schematic view showing a method for manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 6A is a schematic view showing a method for manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 6B is a schematic view showing a method for manufacturing a thin film transistor array according to an embodiment of the present invention
  • FIG. 6F is a schematic view illustrating a method of manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 6G is a schematic view showing a method for manufacturing a thin film transistor array according to an embodiment of the present invention.
  • FIG. 7 is a wiring diagram showing a thin film transistor array according to the prior art.
  • FIG. 1 shows a thin film transistor array 100 according to the first embodiment.
  • the thin film transistor array 100 includes an insulating substrate 1, a plurality of gate electrodes 2 formed on the insulating substrate 1, a plurality of gate wirings 2 ′ connected to the gate electrode 2, a plurality of capacitor electrodes 10, and a capacitor electrode 10.
  • a plurality of connected capacitor wirings 10 ′, insulating substrate 1, gate electrode 2, gate wiring 2 ′, capacitor electrode 10, gate insulating film 3 formed on capacitor electrode 10, and gate insulating film 3 are formed.
  • the capacitor electrode 10 overlaps with the gate insulating film 3 to have a storage capacity, and the source electrode 4 and the drain electrode 5 overlap with the gate electrode 2 through the gate insulating film 3.
  • the semiconductor layer 6 is provided between the source electrode 4 and the drain electrode 5, and a resistor 12 is provided in the middle of the capacitor wiring 10 ′.
  • FIG. 1 it is shown in the form of a wiring diagram for easy understanding.
  • the gate wiring 2 ′ is connected to each output of the gate driver, and a gate power source is connected to the gate driver.
  • the source wiring 4 ' is connected to individual outputs of the source driver, and a source power source is connected to the source driver.
  • the counter electrode 31 is connected to the common power supply 11a.
  • the capacitor wiring 10 ′ is connected to the capacitor power supply 11 with one wiring connected to all the storage capacitors.
  • the common power supply 11a also serves as the capacitor power supply 11 or a direct connection to the ground potential (GND) without the capacitor power supply 11.
  • GND ground potential
  • FIG. 7 is a wiring diagram showing the gate wiring 2 ′ and capacitor wiring 10 ′ in the conventional thin film transistor array 500.
  • the gate power source ⁇ the gate driver ⁇ the gate wiring 2 ′ ⁇ the capacitor wiring.
  • a large current flows from 10 ′ to the capacitor power supply 11, and the gate power supply, the gate driver, or the capacitor power supply 11 is broken.
  • the capacitor power supply 11 also serves as the common power supply 11a, the gate power supply, the gate driver, or the common power supply 11a is broken.
  • the capacitor power supply 11 is grounded (GND), the gate power supply or the gate driver is broken.
  • the resistor 12 in the middle of the capacitor wiring 10 ′ is preferably provided in a portion where the plurality of capacitor wirings 10 ′ are gathered into one. Then, all the gate drivers can be protected by one resistor 12.
  • the short circuit 20 between the gate wiring 2 ′ and the capacitor wiring 10 ′ may occur when the gate electrode 2, the gate wiring 2 ′, the capacitor electrode 10, and the capacitor wiring 10 ′ are printed together. This is because the yield of the printing method is worse than that of photolithography, which cannot normally occur in photolithography.
  • photolithography requires many steps of film formation ⁇ resist application ⁇ pre-baking ⁇ exposure ⁇ development ⁇ post-baking ⁇ etching ⁇ resist stripping, whereas the printing method requires a simple process of printing ⁇ baking, so it is inexpensive. Therefore, a low temperature process can be realized, and a flexible thin film transistor array using a plastic substrate is possible.
  • the thin film transistor array manufactured using the printing method has an advantage different from that of the thin film transistor array manufactured using photolithography.
  • the present invention is a unique and effective technique in the case of a thin film transistor array using such printing.
  • the present invention may be applied to a thin film transistor array by photolithography.
  • the electrical resistance value R of the resistor 12 is required to be smaller than a value obtained by dividing the frame time by the sum of all the storage capacitors Cs connected to the capacitor wiring 10 ′.
  • the electric resistance value R of the resistor 12 is required to be larger than the value obtained by dividing the absolute value of the voltage between the gate wiring and the capacitor wiring by the maximum allowable output current of the gate driver. Assuming that the gate-capacitor voltage Vgc and the maximum allowable output current Ig (max) of the gate driver, R>
  • a resistor 12 is inserted in the middle of the capacitor wiring 10 '.
  • a mounting portion is provided in the middle of the capacitor wiring 10 ′ on the substrate 1, and a chip resistor 12, which is a separate component, is connected using Ag paste.
  • a chip resistor 12, which is a separate component is solder-mounted in the middle of the capacitor wiring of the flexible printed circuit board 13 connected to the capacitor wiring 10 ′ on the substrate 1.
  • FIGS. 3A to 3G An example of a method for manufacturing the thin film transistor array 100 is shown in FIGS. 3A to 3G.
  • the left is a wiring diagram of the entire thin film transistor array 100
  • the center is a plan view of one pixel corresponding to a single thin film transistor constituting the thin film transistor array 100
  • the right is a cross-sectional view of one pixel cut along line AB.
  • the entire wiring diagram shows the gate wiring 2 ′, the capacitor wiring 10 ′, and the resistor 12, the gate electrode 2, the capacitor electrode 10, the gate insulating film 3, the source electrode 4, the source wiring 4 ′, and the drain electrode. 5
  • the description of the pixel electrode 7, the semiconductor layer 6, and the protective layer 6 ′ is omitted.
  • a gate electrode 2, a gate wiring 2 ′ connected to the gate electrode 2, a capacitor electrode 10, a capacitor wiring 10 ′ connected to the capacitor electrode 10 and having a mounting portion of the resistor 12 are formed on the insulating substrate 1 by a printing method.
  • a printing method As the material of the insulating substrate 1, an inorganic substance such as glass or an organic substance such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyimide (PI), or polyetherimide (PEI) is used. be able to.
  • the gate electrode 2 ', the capacitor electrode 10, and the capacitor wiring 10' metals such as Ag, Cu, Au, and Pt are suitable, but carbon, ITO, and the like can also be used.
  • metals such as Ag, Cu, Au, and Pt are suitable, but carbon, ITO, and the like can also be used.
  • the printing method offset printing, letterpress printing, intaglio printing, screen printing, ink jet printing and the like can be used, but offset printing is preferable, and reverse offset printing and gravure offset printing are particularly preferable.
  • the gate insulating film 3 is formed on the insulating substrate 1, the gate electrode 2, the gate wiring 2 ′, the capacitor electrode 10, and the capacitor wiring 10 ′ (FIG. 3B).
  • the gate insulating film 3 is formed on almost the entire surface, but is not formed on the gate connection portion or the capacitor connection portion.
  • an inorganic insulating film such as SiO 2 or SiN, or an organic insulating film such as polyvinylphenol or epoxy can be used.
  • the formation can be performed by sputtering, application of a liquid agent, and baking.
  • the source electrode 4, the source wiring 4 'connected to the source electrode 4, the drain electrode 5, and the pixel electrode 7 connected to the drain electrode 5 are formed on the gate insulating film 3 by a printing method (FIG. 3C).
  • the source electrode 4 and the drain electrode 5 overlap the gate electrode 2 with the gate insulating film 3 interposed therebetween.
  • the pixel electrode 7 overlaps the capacitor electrode 10 with the gate insulating film 3 interposed therebetween.
  • metals such as Ag, Cu, Au, and Pt are suitable, but carbon, ITO, and the like can also be used.
  • offset printing, letterpress printing, intaglio printing, screen printing, ink jet printing and the like can be used, but offset printing is preferable, and reverse offset printing and gravure offset printing are particularly preferable.
  • a semiconductor layer 6 is formed on the gate insulating film 3, the source electrode 4, and the drain electrode 5 in a region including between the source electrode 4 and the drain electrode 5 (FIG. 3D), and further covers the semiconductor layer 6.
  • the protective layer 6 ′ is formed (FIG. 3E).
  • a silicon semiconductor, an oxide semiconductor, an organic semiconductor, or the like can be used.
  • the formation can be performed by CVD, sputtering, or printing.
  • As a material for the protective layer 6 ′ SiO 2 , SiN, or fluorine-based resin can be used.
  • the formation can be performed by CVD, sputtering, or printing.
  • the interlayer insulating film 8 and the upper pixel electrode 9 may be omitted.
  • the pixel electrode 7 becomes an effective area for display.
  • the resistor 12 is mounted in the middle of the capacitor wiring 10 '(FIG. 3F).
  • the resistor 12 can be easily mounted by using Ag paste or the like.
  • the display medium 32 is sandwiched between the thin film transistor array 100 thus manufactured and the counter electrode 31 on the counter substrate 30 which is separately manufactured to obtain an image display device (panel) (FIG. 3G).
  • a material of the display medium 32 a liquid crystal, an electrophoretic material, an electrochromic material, or the like can be used.
  • liquid crystal light is usually controlled in combination with a polarizing plate.
  • a polarizing plate is not necessary.
  • FIG. 4 shows a thin film transistor array 200 according to the second embodiment.
  • the thin film transistor array 200 includes an insulating substrate 1, a plurality of gate electrodes 2 formed on the insulating substrate 1, a plurality of gate wirings 2 ′ connected to the gate electrode 2, a plurality of capacitor electrodes 10, and a capacitor electrode 10.
  • a plurality of connected capacitor wirings 10 ′, insulating substrate 1, gate electrode 2, gate wiring 2 ′, capacitor electrode 10, gate insulating film 3 formed on capacitor electrode 10, and gate insulating film 3 are formed.
  • the capacitor electrode 10 overlaps with the gate insulating film 3 to have a storage capacity, and the source electrode 4 and the drain electrode 5 overlap with the gate electrode 2 through the gate insulating film 3.
  • the semiconductor layer 6 is provided between the source electrode 4 and the drain electrode 5, and a resistor 12 is provided in the middle of the capacitor wiring 10 ′.
  • the resistor 12 includes the gate electrode 2, the gate wiring 2 ′, and the capacitor electrode 10.
  • the capacitor wiring 10 ′ is formed at the same time as printing.
  • the thin film transistor array 200 and the thin film transistor array 100 are different in the formation method and structure of the resistor 12, and the other structures are the same. In FIG. 4, only the gate wiring 2 ′, the capacitor wiring 10 ′, and the resistance 12 are provided. The description of other components is omitted.
  • the resistor 12 can be formed by the same material and the same process as the gate electrode 2, the gate wiring 2 ′, the capacitor electrode 10, and the capacitor wiring 10 ′.
  • the power supply 11 can be protected.
  • the electric resistance value R of the resistor 12 is smaller than the value obtained by dividing the frame time by the sum of all the storage capacitors Cs connected to the capacitor wiring 10 ', and the absolute value of the gate-capacitor voltage is determined by the gate driver. It is the same as in the first embodiment that it is larger than the value divided by the maximum allowable output current.
  • FIGS. 5A to 5H A method of manufacturing the thin film transistor array 200 is shown in FIGS. 5A to 5H.
  • the left is a wiring diagram of the entire thin film transistor array 200
  • the center is a plan view of one pixel corresponding to a single thin film transistor constituting the thin film transistor array 200
  • the right is a cross-sectional view of one pixel cut along the line AB.
  • the entire wiring diagram shows the gate wiring 2 ′, the capacitor wiring 10 ′, and the resistor 12, the gate electrode 2, the capacitor electrode 10, the gate insulating film 3, the source electrode 4, the source wiring 4 ′, and the drain electrode. 5
  • the description of the pixel electrode 7, the semiconductor layer 6, and the protective layer 6 ′ is omitted.
  • a gate electrode 2, a gate wiring 2 ′ connected to the gate electrode 2, a capacitor electrode 10, a capacitor wiring 10 ′ connected to the capacitor electrode 10, and a resistor 12 were formed on the insulating substrate 1 by a printing method ( FIG. 5A).
  • the resistor 12 satisfies the electrical resistance value R by forming a long wiring portion in which the length of the capacitor wiring 10 ′ after the plurality of capacitor wirings 10 ′ are gathered and meandered to adjust the length. It is what I did.
  • the present invention is not limited to meandering wiring, and may not meander if the resistance value is a predetermined value. It is possible to make the width of the resistor 12 narrower than the width of the capacitor wiring 10 '. However, if it is made too thin, there is a possibility that it will burn out due to current, so care must be taken.
  • an inorganic substance such as glass or an organic substance such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyimide (PI), or polyetherimide (PEI) is used. be able to.
  • materials for the gate electrode 2 ′, the capacitor electrode 10, the capacitor wiring 10 ′, and the resistor 12 metals such as Ag, Cu, Au, and Pt are suitable, but carbon, ITO, and the like may be used. it can.
  • As the printing method offset printing, letterpress printing, intaglio printing, screen printing, ink jet printing and the like can be used, but offset printing is preferable, and reverse offset printing and gravure offset printing are particularly preferable.
  • the gate insulating film 3 is formed on the insulating substrate 1, the gate electrode 2, the gate wiring 2 ′, the capacitor electrode 10, and the capacitor wiring 10 ′ (FIG. 5B).
  • the gate insulating film 3 is formed on almost the entire surface, but is not formed on the gate connection portion or the capacitor connection portion.
  • an inorganic insulating film such as SiO 2 or SiN, or an organic insulating film such as polyvinylphenol or epoxy can be used.
  • the formation can be performed by sputtering, application of a liquid agent, and baking.
  • a source electrode 4, a source wiring 4 'connected to the source electrode 4, a drain electrode 5, and a pixel electrode 7 connected to the drain electrode 5 are formed on the gate insulating film 3 by a printing method (FIG. 5C).
  • the source electrode 4 and the drain electrode 5 overlap the gate electrode 2 with the gate insulating film 3 interposed therebetween.
  • the pixel electrode 7 overlaps the capacitor electrode 10 with the gate insulating film 3 interposed therebetween.
  • the source wiring 4 ′, the drain electrode 5, and the pixel electrode 7, metals such as Ag, Cu, Au, and Pt are suitable, but carbon, ITO, and the like can also be used.
  • the printing method offset printing, letterpress printing, intaglio printing, screen printing, ink jet printing and the like can be used, but offset printing is preferable, and reverse offset printing and gravure offset printing are particularly preferable.
  • a semiconductor layer 6 is formed in a region on the gate insulating film 3, the source electrode 4, and the drain electrode 5 and between the source electrode 4 and the drain electrode 5 (FIG. 5D), and further covers the semiconductor layer 6.
  • the protective layer 6 ′ is formed (FIG. 5E).
  • a silicon semiconductor, an oxide semiconductor, an organic semiconductor, or the like can be used.
  • the formation can be performed by CVD, sputtering, or printing.
  • As a material for the protective layer 6 ′ SiO 2 , SiN, or fluorine-based resin can be used.
  • the formation can be performed by CVD, sputtering, or printing.
  • an interlayer insulating film 8 having an opening is formed on the pixel electrode 7 (FIG. 5F).
  • the interlayer insulating film 8 preferably covers that portion.
  • an organic insulating film such as epoxy is suitable.
  • the interlayer insulating film 8 can be formed by a printing method such as screen printing.
  • the upper pixel electrode 9 is formed on the interlayer insulating film 8 (FIG. 5G).
  • the upper pixel electrode 9 is connected to the pixel electrode 7 through the opening of the interlayer insulating film 8.
  • the upper pixel electrode 9 can be formed by a printing method such as screen printing.
  • the upper pixel electrode 9 becomes an effective display area.
  • the opening of the interlayer insulating film 8 becomes an effective display area.
  • the display medium 32 is sandwiched between the thin film transistor array 200 thus manufactured and the counter electrode 31 on the counter substrate 30 which is separately manufactured to obtain an image display device (panel) (FIG. 5H).
  • a material of the display medium 32 a liquid crystal, an electrophoretic material, an electrochromic material, or the like can be used.
  • liquid crystal light is usually controlled in combination with a polarizing plate.
  • a polarizing plate is not necessary.
  • the thin film transistor arrays 100 and 200 and the manufacturing method thereof are not limited to the bottom gate structure in which the gate electrode 2 is closer to the substrate 1 than the source electrode 4 and drain electrode 5.
  • the present invention can also be applied to a top gate structure on the substrate 1 side with respect to the gate electrode 2. Further, the present invention is not limited to the bottom contact structure in which the semiconductor layer 6 is formed on the source electrode 4 and the drain electrode 5, and the top contact structure in which the source electrode 4 and the drain electrode 5 are formed on the semiconductor layer 6 is also possible. Applicable.
  • FIGS. 6A to 6G An example of a manufacturing method when the thin film transistor array 200 is a top gate is shown in FIGS. 6A to 6G.
  • the left is a wiring diagram of the entire thin film transistor array 200
  • the center is a plan view of one pixel corresponding to a single thin film transistor constituting the thin film transistor array 200
  • the right is a cross-sectional view of one pixel cut along the line AB.
  • the entire wiring diagram shows the gate wiring 2 ′, the capacitor wiring 10 ′, and the resistor 12, the gate electrode 2, the capacitor electrode 10, the gate insulating film 3, the source electrode 4, the source wiring 4 ′, and the drain electrode. 5
  • the description of the pixel electrode 7, the semiconductor layer 6, and the protective layer 6 ′ is omitted.
  • the source electrode 4, the source wiring 4 ′ connected to the source electrode 4, the drain electrode 5, and the pixel wiring 7 connected to the drain electrode 5 were formed on the insulating substrate 1 by a printing method (FIG. 6A).
  • an inorganic substance such as glass or an organic substance such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyimide (PI), or polyetherimide (PEI) is used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PI polyimide
  • PEI polyetherimide
  • materials for the source electrode 4 the source wiring 4 ′, the drain electrode 5, and the pixel electrode 7, metals such as Ag, Cu, Au, and Pt are suitable, but carbon, ITO, and the like can also be used.
  • the printing method offset printing, letterpress printing, intaglio printing, screen printing, ink jet printing and the like can be used, but offset printing is preferable, and reverse offset printing and gravure offset printing are particularly preferable.
  • a semiconductor layer 6 is formed in a region including between the source electrode 4 and the drain electrode 5 (FIG. 6B).
  • a silicon semiconductor, an oxide semiconductor, an organic semiconductor, or the like can be used as a material of the semiconductor layer 6, a silicon semiconductor, an oxide semiconductor, an organic semiconductor, or the like. The formation can be performed by CVD, sputtering, or printing.
  • the gate insulating film 3 is formed on the insulating substrate 1, the source electrode 4, the source wiring 4 ′, the drain electrode 5, the pixel electrode 7, and the semiconductor 6 (FIG. 6C).
  • the gate insulating film 3 has an opening on the pixel electrode 7. Further, it is not formed on the gate connection part or the capacitor connection part.
  • an inorganic insulating film such as SiO 2 or SiN, or an organic insulating film such as polyvinylphenol or epoxy can be used.
  • the formation can be performed by sputtering, application of a liquid agent, and baking.
  • the gate insulating film 3 is formed by providing an opening in this film using photolithography. Alternatively, the gate insulating film 3 may be used by applying, exposing, and developing a photosensitive resin.
  • a gate electrode 2, a gate wiring 2 ′ connected to the gate electrode 2, a capacitor electrode 10, a capacitor wiring 10 ′ connected to the capacitor electrode 10, and a resistor 12 are formed on the gate insulating film 3 by a printing method ( FIG. 6D).
  • the gate electrode 2 overlaps the source electrode 4 and the drain electrode 5 with the gate insulating film 3 interposed therebetween.
  • the capacitor electrode 10 overlaps the pixel electrode 7 with the gate insulating film 3 interposed therebetween.
  • the resistor 12 satisfies the electrical resistance value R by forming a long wiring portion in which the length of the capacitor wiring 10 ′ after the plurality of capacitor wirings 10 ′ are gathered and meandered to adjust the length. It is what I did.
  • the present invention is not limited to meandering wiring, and may not meander if the resistance value is a predetermined value. It is possible to make the width of the resistor 12 narrower than the width of the capacitor wiring 10 '. However, if it is made too thin, there is a possibility that it will burn out due to current, so care must be taken.
  • the gate electrode 2 ′ As materials for the gate electrode 2, the gate wiring 2 ′, the capacitor electrode 10, the capacitor wiring 10 ′, and the resistor 12, metals such as Ag, Cu, Au, and Pt are suitable, but carbon, ITO, and the like may be used. it can.
  • the printing method offset printing, letterpress printing, intaglio printing, screen printing, ink jet printing and the like can be used, but offset printing is preferable, and reverse offset printing and gravure offset printing are particularly preferable.
  • an interlayer insulating film 8 having an opening is formed on the pixel electrode 7 (FIG. 6E).
  • the opening of the interlayer insulating film 8 is provided so as to overlap with the opening of the gate insulating film 3.
  • an organic insulating film such as epoxy is suitable.
  • the interlayer insulating film 8 can be formed by a printing method such as screen printing.
  • the upper pixel electrode 9 is formed on the interlayer insulating film 8 (FIG. 6F).
  • the upper pixel electrode 9 is connected to the pixel electrode 7 through the opening of the interlayer insulating film 8 and the opening of the gate insulating film 3.
  • the upper pixel electrode 9 can be formed by a printing method such as screen printing.
  • the upper pixel electrode 9 becomes an effective display area.
  • the display medium 32 is sandwiched between the thin film transistor array 200 thus manufactured and the counter electrode 31 on the counter substrate 30 which is separately manufactured to obtain an image display device (panel) (FIG. 6G).
  • a material of the display medium 32 a liquid crystal, an electrophoretic material, an electrochromic material, or the like can be used.
  • liquid crystal light is usually controlled in combination with a polarizing plate.
  • a polarizing plate is not necessary.
  • Example 1 A specific embodiment will be described.
  • the thin film transistor array 100 shown in FIG. 2A was manufactured by the steps shown in FIGS. 3A to 3G. First, a glass substrate was prepared as the insulating substrate 1, and Ag ink was offset printed and baked to form the gate electrode 2, the gate wiring 2 ′, the capacitor electrode 10, and the capacitor wiring 10 ′ (FIG. 3A).
  • a PEN substrate was prepared as the counter substrate 30, and the counter electrode 31 was formed by sputtering ITO.
  • a polymer-dispersed liquid crystal material was sandwiched as a display medium 32 between the counter electrode 31 side of the counter substrate 30 and the thin film transistor array portion, and UV curing was performed (FIG. 3G).
  • a plurality of panels were produced and driven with a frame time of 16.7 ms.
  • the number of pixels was 640 ⁇ 480, the storage capacity was 1 pF per pixel, the gate voltage was +10 V (when not selected) or ⁇ 10 V (when selected), and the capacitor voltage was +3 V, the same as the counter voltage.
  • the maximum allowable current of the gate driver was about 5 mA.
  • a normal display was obtained on a panel without a short circuit between the gate wiring 2 'and the capacitor wiring 10'. In some panels, the display quality was poor because there was a short circuit 20 between the gate line 2 'and the capacitor line 10'. However, the gate power source, the gate driver, and the capacitor power source 11 were not broken and could be used for another normal panel.
  • Example 2 As Example 2, the thin film transistor array 200 shown in FIG. 4 was produced by the steps shown in FIGS. 5A to 5H.
  • a PEN substrate was prepared as the insulating substrate 1, and Ag ink was offset printed and baked to form the gate electrode 2, the gate wiring 2 ′, the capacitor electrode 10, the capacitor wiring 10 ′, and the resistor 12 (FIG. 5A).
  • the value of the resistor 12 was 10 k ⁇ .
  • a PEN substrate was prepared as the counter substrate 30, and the counter electrode 31 was formed by sputtering ITO.
  • a polymer-dispersed liquid crystal material was sandwiched as a display medium 32 between the counter electrode 31 side of the counter substrate 30 and the thin film transistor array portion, and UV curing was performed (FIG. 5H).
  • a plurality of panels were produced and driven with a frame time of 16.7 ms.
  • the number of pixels was 640 ⁇ 480, the storage capacity was 1 pF per pixel, the gate voltage was +10 V (when not selected) or ⁇ 10 V (when selected), and the capacitor voltage was +3 V, the same as the counter voltage.
  • the maximum allowable current of the gate driver was about 5 mA.
  • a normal display was obtained on a panel without a short circuit between the gate wiring 2 'and the capacitor wiring 10'. In some panels, the display quality was poor because there was a short circuit 20 between the gate line 2 'and the capacitor line 10'. However, the gate power source, the gate driver, and the capacitor power source 11 were not broken and could be used for another normal panel.
  • Example 3 As Example 3, the thin film transistor array 200 shown in FIG. 4 was produced by the steps shown in FIGS. 6A to 6G. First, a PEN substrate was prepared as the insulating substrate 1, and Ag ink was offset printed and baked to form the source electrode 4, the source wiring 4 ′, the drain electrode 5, and the pixel electrode 7 (FIG. 6A).
  • the semiconductor layer 6 was formed by flexographic printing and baking of a polythiophene-based organic semiconductor solution (FIG. 6B).
  • the photoresist was spin coated, exposed, developed, and baked to form the gate insulating film 3 (FIG. 6C).
  • a PEN substrate was prepared as the counter substrate 30, and the counter electrode 31 was formed by sputtering ITO.
  • a polymer-dispersed liquid crystal material was sandwiched between the counter substrate 31 side of the counter substrate 30 and the thin film transistor array portion as a display medium 32, and UV curing was performed (FIG. 6G).
  • a plurality of panels were produced and driven with a frame time of 16.7 ms.
  • the number of pixels was 640 ⁇ 480, the storage capacity was 1 pF per pixel, the gate voltage was +10 V (when not selected) or ⁇ 10 V (when selected), and the capacitor voltage was +3 V, the same as the counter voltage.
  • the maximum allowable current of the gate driver was about 5 mA.
  • a normal display was obtained on a panel without a short circuit between the gate wiring 2 'and the capacitor wiring 10'. In some panels, the display quality was poor because there was a short circuit 20 between the gate line 2 'and the capacitor line 10'. However, the gate power source, the gate driver, and the capacitor power source 11 were not broken and could be used for another normal panel.
  • Example 1 A thin film transistor array was fabricated in the same process as in Example 1 except that the resistor 12 was not inserted.
  • the resistance value of the capacitor wiring 10 ′ from the portion where the capacitor wiring 10 ′ was integrated to the capacitor power supply unit 10s was measured by a tester, it was 50 ⁇ .
  • a plurality of panels were manufactured in the same process, and the same driving was performed.
  • a normal display was obtained on a panel without a short circuit between the gate wiring 2 'and the capacitor wiring 10'.
  • the gate power source, the gate driver, or the capacitor power source 11 is broken because of the short circuit 20 between the gate wiring 2 'and the capacitor wiring 10'.
  • Comparative Example 2 A thin film transistor array was fabricated in the same process as in Example 1 except that the value of the resistor 12 was 100 k ⁇ .
  • a plurality of panels were manufactured in the same process, and the same driving was performed. Even in the panel having the short circuit 20 between the gate wiring 2 ′ and the capacitor wiring 10 ′, the gate power supply, the gate driver, and the capacitor power supply 11 were not broken. However, a normal display could not be obtained even with a panel without a short circuit between the gate wiring 2 'and the capacitor wiring 10'.
  • a gate driver can be realized by preventing a failure of a gate driver or a power source due to a short circuit between a gate wiring and a capacitor wiring while realizing an inexpensive and low-temperature process by using a printing method. It is possible to provide a thin film transistor array capable of diverting power and a power source and a method for manufacturing the same.
  • the present invention is useful for thin film transistor arrays and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

ゲート配線・キャパシタ配線間に短絡があっても、ゲートドライバや電源の故障を防ぐことができる、薄膜トランジスタアレイおよびその製造方法を提供する。薄膜トランジスタアレイは、絶縁基板と、ゲート絶縁膜と、ゲート電極、ゲート電極に接続されたゲート配線、キャパシタ電極、及びキャパシタ電極に接続されたキャパシタ配線と、これらとの間にゲート絶縁膜を挟む、ソース電極、ソース電極に接続されたソース配線、ドレイン電極、及びドレイン電極に接続された画素電極とを備え、画素電極がゲート絶縁膜を介してキャパシタ電極と重なって蓄積容量を有し、ソース電極とドレイン電極とがゲート絶縁膜を介してゲート電極と重なっており、ソース電極とドレイン電極との間に半導体層を有し、キャパシタ配線の途中に抵抗を有する。

Description

薄膜トランジスタアレイ、画像表示装置および薄膜トランジスタアレイの製造方法
 本発明は、薄膜トランジスタアレイ、画像表示装置およびその製造方法に関する。
 薄膜トランジスタアレイが開発され、これを用いた液晶表示装置や電気泳動表示装置が開発されている。従来、薄膜トランジスタアレイの電極のパターニングには、フォトリソグラフィが用いられてきた。
 近年、より安価な薄膜トランジスタアレイとして、あるいは低温プロセスが可能でプラスチック基板に適した薄膜トランジスタアレイとして、印刷による薄膜トランジスタアレイが注目されている(特許文献1)。
 しかし、印刷ではフォトリソグラフィよりもパターニングの歩留まりが小さいので、ゲート配線とキャパシタ配線との間で短絡が起きることがある。
特開2008-235861号公報
 ゲート配線・キャパシタ配線間に短絡があると、ゲートドライバに大電流が流れて、ゲートドライバや電源が壊れてしまうという問題があった。この問題は、フォトリソグラフィで電極を形成していた時には起こらなかった、印刷による薄膜トランジスタアレイ製造特有の課題である。
 本発明の目的は、ゲート配線・キャパシタ配線間に短絡があっても、ゲートドライバや電源を壊すことのない、薄膜トランジスタアレイおよびその製造方法を提供することにある。
 上述の課題を解決するための本発明の一局面は、絶縁基板と、ゲート絶縁膜と、ゲート電極、ゲート電極に接続されたゲート配線、キャパシタ電極、及びキャパシタ電極に接続されたキャパシタ配線と、これらとの間にゲート絶縁膜を挟む、ソース電極、ソース電極に接続されたソース配線、ドレイン電極、及びドレイン電極に接続された画素電極とを備え、画素電極がゲート絶縁膜を介してキャパシタ電極と重なって蓄積容量を有し、ソース電極とドレイン電極とがゲート絶縁膜を介してゲート電極と重なっており、ソース電極とドレイン電極との間に半導体層を有し、キャパシタ配線の途中に抵抗を有する、薄膜トランジスタアレイである。
 なお、ゲート電極、ゲート電極に接続されたゲート配線、キャパシタ電極、及びキャパシタ電極に接続されたキャパシタ配線は、ソース電極とドレイン電極よりも下部(絶縁基板側)に形成しても良いし(ボトムゲート型)、上部に形成しても良い(トップゲート型)。
 また、少なくともゲート電極と、ゲート配線と、キャパシタ電極と、キャパシタ配線とが、同一材料で形成されていてもよい。
 また、抵抗の電気抵抗値が、フレーム時間を、キャパシタ配線に接続された全蓄積容量で割った値より小さくてもよい。
 また、抵抗の電気抵抗値が、ゲート配線とキャパシタ配線との間の電圧の絶対値を、ゲートドライバの最大許容出力電流で割った値より大きくてもよい。
 また、抵抗が、キャパシタ配線の途中に形成された長配線部であってもよい。
 また、抵抗が、キャパシタ配線の途中に挿入された別部品であってもよい。
 また、本発明の他の局面は、上述の薄膜トランジスタアレイの製造方法であって、絶縁基板上に、ゲート電極、ゲート電極に接続されたゲート配線、キャパシタ電極、及びキャパシタ電極に接続されたキャパシタ配線とを印刷法により形成する工程と、ゲート絶縁膜を形成する工程と、ゲート絶縁膜を挟んでソース電極、ソース電極に接続されたソース配線、ドレイン電極、及びドレイン電極に接続された画素電極とを形成する工程と、ソース電極、及びドレイン電極の間に半導体層を形成する工程とを含む薄膜トランジスタアレイの製造方法である。
 なお、ゲート電極、ゲート電極に接続されたゲート配線、キャパシタ電極、及びキャパシタ電極に接続されたキャパシタ配線は、ソース電極とドレイン電極よりも下部(絶縁基板側)に形成しても良いし(ボトムゲート型)、上部に形成しても良い(トップゲート型)。
 また、抵抗を形成する工程は、抵抗となる長配線部の形成を、キャパシタ配線を形成する工程と同時に行ってもよい。
 また、抵抗を形成する工程は、キャパシタ配線を形成する工程の後に抵抗となる別部品を挿入することにより行ってもよい。
 本発明によれば、印刷法を用いることで安価で低温なプロセスを実現しながら、ゲート配線とキャパシタ配線との短絡によるゲートドライバや電源の破壊を防止することができる。これにより、ゲートドライバや電源の流用が可能となる薄膜トランジスタアレイを提供することができる。
図1は、本発明の一実施形態に係る薄膜トランジスタアレイを示す配線図である。 図2Aは、本発明の一実施形態に係る薄膜トランジスタアレイを示す配線図である。 図2Bは、本発明の一実施形態に係る薄膜トランジスタアレイを示す配線図である。 図3Aは、本発明の一実施形態に係る薄膜トランジスタアレイの製造方法を示す模式図である。 図3Bは、本発明の一実施形態に係る薄膜トランジスタアレイの製造方法を示す模式図である。 図3Cは、本発明の一実施形態に係る薄膜トランジスタアレイの製造方法を示す模式図である。 図3Dは、本発明の一実施形態に係る薄膜トランジスタアレイの製造方法を示す模式図である。 図3Eは、本発明の一実施形態に係る薄膜トランジスタアレイの製造方法を示す模式図である。 図3Fは、本発明の一実施形態に係る薄膜トランジスタアレイの製造方法を示す模式図である。 図3Gは、本発明の一実施形態に係る薄膜トランジスタアレイの製造方法を示す模式図である。 図4は、本発明の一実施形態に係る薄膜トランジスタアレイを示す配線図である。 図5Aは、本発明の一実施形態に係る薄膜トランジスタアレイの製造方法を示す模式図である。 図5Bは、本発明の一実施形態に係る薄膜トランジスタアレイの製造方法を示す模式図である。 図5Cは、本発明の一実施形態に係る薄膜トランジスタアレイの製造方法を示す模式図である。 図5Dは、本発明の一実施形態に係る薄膜トランジスタアレイの製造方法を示す模式図である。 図5Eは、本発明の一実施形態に係る薄膜トランジスタアレイの製造方法を示す模式図である。 図5Fは、本発明の一実施形態に係る薄膜トランジスタアレイの製造方法を示す模式図である。 図5Gは、本発明の一実施形態に係る薄膜トランジスタアレイの製造方法を示す模式図である。 図5Hは、本発明の一実施形態に係る薄膜トランジスタアレイの製造方法を示す模式図である。 図6Aは、本発明の一実施形態に係る薄膜トランジスタアレイの製造方法を示す模式図である。 図6Bは、本発明の一実施形態に係る薄膜トランジスタアレイの製造方法を示す模式図である。 図6Cは、本発明の一実施形態に係る薄膜トランジスタアレイの製造方法を示す模式図である。 図6Dは、本発明の一実施形態に係る薄膜トランジスタアレイの製造方法を示す模式図である。 図6Eは、本発明の一実施形態に係る薄膜トランジスタアレイの製造方法を示す模式図である。 図6Fは、本発明の一実施形態に係る薄膜トランジスタアレイの製造方法を示す模式図である。 図6Gは、本発明の一実施形態に係る薄膜トランジスタアレイの製造方法を示す模式図である。 図7は、従来技術に係る薄膜トランジスタアレイを示す配線図である。
 本発明の一実施形態について、以下に図面を参照して詳細に説明する。なお、以下に使用する図面では、説明を判り易くするために縮尺は正確には描かれていない。
 (第1の実施形態)
 図1に、第1の実施形態に係る薄膜トランジスタアレイ100を示す。薄膜トランジスタアレイ100は、絶縁基板1と、絶縁基板1上に形成された、複数のゲート電極2、ゲート電極2に接続された複数のゲート配線2’、複数のキャパシタ電極10、及びキャパシタ電極10に接続された複数のキャパシタ配線10’と、絶縁基板1、ゲート電極2、ゲート配線2’、キャパシタ電極10、及びキャパシタ電極10上に形成されたゲート絶縁膜3と、ゲート絶縁膜3上に形成された複数のソース電極4、ソース電極4に接続された複数のソース配線4’、複数のドレイン電極5、及びドレイン電極5に接続された複数の画素電極7とを有し、画素電極7はゲート絶縁膜3を介してキャパシタ電極10と重なっていて蓄積容量を有し、ソース電極4とドレイン電極5とがゲート絶縁膜3を介してゲート電極2と重なっており、ソース電極4とドレイン電極5との間に半導体層6を有し、キャパシタ配線10’の途中には抵抗12を備える。ただし図1では、わかりやすいように配線図の形で記載している。
 通常、ゲート配線2’はゲートドライバの個々の出力に接続され、ゲートドライバにはゲート電源が接続されている。ソース配線4’はソースドライバの個々の出力に接続され、ソースドライバにはソース電源が接続されている。対向電極31はコモン電源11aに接続されている。キャパシタ配線10’は全ての蓄積容量に接続された配線が1つになってキャパシタ電源11に接続されている。ただし、キャパシタ電源11をコモン電源11aが兼ねる場合や、キャパシタ電源11なしで直接接地電位(GND)に接続される場合もある。また一般に、所望の電圧が正確に印加されるよう、配線抵抗は小さい方が望ましいと考えられている。
 図7は従来の薄膜トランジスタアレイ500におけるゲート配線2’及びキャパシタ配線10’を示す配線図である。従来の薄膜トランジスタアレイ500では、ゲート配線2’とキャパシタ配線10’との間に短絡20がある場合、あるいは後天的に短絡20が発生した場合、ゲート電源→ゲートドライバ→ゲート配線2’→キャパシタ配線10’→キャパシタ電源11に大電流が流れて、ゲート電源、ゲートドライバ、またはキャパシタ電源11が壊れる。キャパシタ電源11をコモン電源11aが兼ねている場合、ゲート電源、ゲートドライバ、またはコモン電源11aが壊れる。キャパシタ電源11が接地(GND)の場合、ゲート電源またはゲートドライバが壊れる。
 しかし、薄膜トランジスタアレイ100では、キャパシタ配線10’の途中に抵抗12を有することにより、ゲート配線2’とキャパシタ配線10’との間に短絡20があっても、ゲートドライバに流れる電流を制限することができ、ゲート電源、ゲートドライバ、キャパシタ電源11の破壊を防止できる。キャパシタ配線10’の途中の抵抗12は、複数のキャパシタ配線10’が集まって1本になっている部分に設けるのが望ましい。そうすれば、1個の抵抗12で全てのゲートドライバを保護できる。
 ゲート配線2’とキャパシタ配線10’との間の短絡20は、ゲート電極2、ゲート配線2’、キャパシタ電極10、及びキャパシタ配線10’を、一括で印刷した場合に、生じることがある。これは、フォトリソグラフィに比べて印刷法の歩留まりが悪いためであり、フォトリソグラフィでは通常起こりえないことである。しかし、フォトリソグラフィが、成膜→レジスト塗布→プリベーク→露光→現像→ポストベーク→エッチング→レジスト剥離という多くの工程が必要なのに対し、印刷法では、印刷→ベークという単純な工程で済むため、安価であり、低温プロセスを実現でき、プラスチック基板を用いたフレキシブル薄膜トランジスタアレイが可能である。即ち印刷法を用いて製造された薄膜トランジスタアレイは、フォトリソグラフィを用いて製造された薄膜トランジスタアレイとは異なる利点を有している。そして本発明は、このような印刷を用いた薄膜トランジスタアレイの場合に特有かつ有効な技術である。しかしながら、本発明をフォトリソグラフィによる薄膜トランジスタアレイに適用してもよい。
 抵抗12の電気抵抗値Rは、フレーム時間を、キャパシタ配線10’に接続された全ての蓄積容量Csの和で割った値より小さいことが求められる。フレーム時間Tf、1画素の蓄積容量Cs、1行の画素数M、走査線数Nとすると、R<Tf/(MNCs)となる。これは、ゲート配線2’やキャパシタ配線10’の抵抗を無視した場合に、1行の蓄積容量を充電する時定数RMCsが、選択時間Tf/Nより小さいことによる。
 また、抵抗12の電気抵抗値Rとしては、ゲート配線とキャパシタ配線との間の電圧の絶対値を、ゲートドライバの最大許容出力電流で割った値より大きいことが求められる。ゲート・キャパシタ間電圧Vgc、ゲートドライバの最大許容出力電流Ig(max)とすると、R>|Vgc|/Ig(max)となる。
 薄膜トランジスタアレイ100の具体的な形態の例は、図2A、図2Bに模式的に示すように、キャパシタ配線10’の途中に抵抗12を挿入したものである。図2Aでは、基板1上のキャパシタ配線10’の途中に実装部を設け、別部品であるチップ抵抗12をAgペーストを用いて接続している。図2Bでは、基板1上のキャパシタ配線10’に接続されたフレキシブルプリント基板13のキャパシタ配線の途中に、別部品であるチップ抵抗12を半田実装している。
 薄膜トランジスタアレイ100の製造方法一例を、図3A~図3Gに示す。左が薄膜トランジスタアレイ100全体の配線図、中央が薄膜トランジスタアレイ100を構成する薄膜トランジスタ単体に対応する1画素の平面図、右が1画素をA-B線で切断した断面図である。ただし全体の配線図では、ゲート配線2’、キャパシタ配線10’、抵抗12を記載しているが、ゲート電極2、キャパシタ電極10、ゲート絶縁膜3、ソース電極4、ソース配線4’、ドレイン電極5、画素電極7、半導体層6、保護層6’の記載を省略している。
 はじめに、絶縁基板1上に、ゲート電極2、ゲート電極2に接続されたゲート配線2’、キャパシタ電極10、キャパシタ電極10に接続され、抵抗12の実装部を有するキャパシタ配線10’を、印刷法によって形成した(図3A)。絶縁基板1の材料としては、ガラス等の無機物や、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリイミド(PI)、ポリエーテルイミド(PEI)等の有機物を用いることができる。ゲート電極2、ゲート配線2’、キャパシタ電極10、キャパシタ配線10’の材料としては、Ag、Cu、Au、Pt等の金属が好適であるが、カーボンやITO等を使用することもできる。印刷法としては、オフセット印刷、凸版印刷、凹版印刷、スクリーン印刷、インクジェット印刷等が使用可能であるが、オフセット印刷が好適であり、特に反転オフセット印刷やグラビアオフセット印刷が好適である。
 次に、絶縁基板1、ゲート電極2、ゲート配線2’、キャパシタ電極10、及びキャパシタ配線10’上にゲート絶縁膜3を形成する(図3B)。ゲート絶縁膜3は、ほぼ全面に形成するが、ゲート接続部やキャパシタ接続部上には形成しない。ゲート絶縁膜3の材料としては、SiO、SiN等の無機絶縁膜や、ポリビニルフェノール、エポキシ等の有機絶縁膜を用いることができる。その形成は、スパッタや、液剤の塗布および焼成で行うことができる。
 次に、ゲート絶縁膜3上にソース電極4、ソース電極4に接続されたソース配線4’、ドレイン電極5、ドレイン電極5に接続された画素電極7を印刷法により形成する(図3C)。ソース電極4およびドレイン電極5は、ゲート絶縁膜3を介して、ゲート電極2と重なっている。また、画素電極7は、ゲート絶縁膜3を介して、キャパシタ電極10と重なっている。ソース電極4、ソース配線4’、ドレイン電極5、画素電極7の材料としては、Ag、Cu、Au、Pt等の金属が好適であるが、カーボンやITO等を使用することもできる。印刷法としては、オフセット印刷、凸版印刷、凹版印刷、スクリーン印刷、インクジェット印刷等が使用可能であるが、オフセット印刷が好適であり、特に反転オフセット印刷やグラビアオフセット印刷が好適である。
 次に、ゲート絶縁膜3、ソース電極4及びドレイン電極5上であってソース電極4及びドレイン電極5間を含む領域に、半導体層6を形成し(図3D)、さらに、半導体層6を覆うように保護層6’を形成する(図3E)。半導体層6の材料としては、シリコン半導体、酸化物半導体、有機半導体等を用いることができる。その形成は、CVDやスパッタ、または印刷法で行うことができる。保護層6’の材料としては、SiOやSiN、またはフッ素系樹脂を用いることができる。その形成は、CVDやスパッタ、または印刷法を用いることができる。図3Eに示すように保護層6’がソース電極4およびソース配線4’を完全に覆う場合、層間絶縁膜8および上部画素電極9は、なくてもよい。この場合、画素電極7が、表示を行う有効領域となる。
 次に、キャパシタ配線10’の途中に、抵抗12を実装する(図3F)。抵抗12の実装は、Agペースト等を用いることで容易に行うことができる。
 次に、こうして作製した薄膜トランジスタアレイ100と、別途作製した対向基板30上の対向電極31との間に表示媒体32を挟み込み、画像表示装置(パネル)とする(図3G)。表示媒体32の材料としては、液晶、電気泳動体、エレクトロクロミック材料等を用いることができる。液晶の場合は、通常、偏光板と組合わせて光の制御を行う。ポリマー分散液晶、電気泳動体、エレクトロクロミック材料の場合、偏光板は不要である。
 (第2の実施形態)
 図4に、第2の実施形態に係る薄膜トランジスタアレイ200を示す。薄膜トランジスタアレイ200は、絶縁基板1と、絶縁基板1上に形成された、複数のゲート電極2、ゲート電極2に接続された複数のゲート配線2’、複数のキャパシタ電極10、及びキャパシタ電極10に接続された複数のキャパシタ配線10’と、絶縁基板1、ゲート電極2、ゲート配線2’、キャパシタ電極10、及びキャパシタ電極10上に形成されたゲート絶縁膜3と、ゲート絶縁膜3上に形成された複数のソース電極4、ソース電極4に接続された複数のソース配線4’、複数のドレイン電極5、及びドレイン電極5に接続された複数の画素電極7とを有し、画素電極7はゲート絶縁膜3を介してキャパシタ電極10と重なっていて蓄積容量を有し、ソース電極4とドレイン電極5とがゲート絶縁膜3を介してゲート電極2と重なっており、ソース電極4とドレイン電極5との間に半導体層6を有し、キャパシタ配線10’の途中には抵抗12を備え、抵抗12は、ゲート電極2、ゲート配線2’、キャパシタ電極10、キャパシタ配線10’と同時に印刷で形成される。なお、薄膜トランジスタアレイ200と薄膜トランジスタアレイ100とは、抵抗12の形成方法及び構造が異なり、その他の構造については同様であるため、図4では、ゲート配線2’、キャパシタ配線10’、抵抗12のみを示して、それ以外の構成の記載を省略する。
 薄膜トランジスタアレイ200は、抵抗12が、ゲート電極2、ゲート配線2’、キャパシタ電極10、キャパシタ配線10’と同一材料・同一プロセスで形成できるため、工程を増やすことなく、ゲート電源、ゲートドライバ、キャパシタ電源11を保護することができる。
 抵抗12の電気抵抗値Rが、フレーム時間を、キャパシタ配線10’に接続された全ての蓄積容量Csの和で割った値より小さいことや、ゲート・キャパシタ間電圧の絶対値を、ゲートドライバの最大許容出力電流で割った値より大きいことは、第1の実施形態と同様である。
 薄膜トランジスタアレイ200の製造方法を、図5A~図5Hに示す。左が薄膜トランジスタアレイ200全体の配線図、中央が薄膜トランジスタアレイ200を構成する薄膜トランジスタ単体に対応する1画素の平面図、右が1画素をA-B線で切断した断面図である。ただし全体の配線図では、ゲート配線2’、キャパシタ配線10’、抵抗12を記載しているが、ゲート電極2、キャパシタ電極10、ゲート絶縁膜3、ソース電極4、ソース配線4’、ドレイン電極5、画素電極7、半導体層6、保護層6’の記載を省略している。
 はじめに、絶縁基板1上に、ゲート電極2、ゲート電極2に接続されたゲート配線2’、キャパシタ電極10、キャパシタ電極10に接続されたキャパシタ配線10’、抵抗12を、印刷法によって形成した(図5A)。抵抗12は、複数のキャパシタ配線10’が集まって1本になってからのキャパシタ配線10’を蛇行配線させてその長さを調整した長配線部を形成することで、電気抵抗値Rを満たすようにしたものである。ただし、蛇行配線に限定するものではなく、抵抗値が所定の値であれば蛇行していなくてもよい。なお、抵抗12部分の幅をキャパシタ配線10’の幅よりも細くすることも可能であるが、細くしすぎると、電流によって焼き切れてしまう恐れがあるので注意が必要である。
 絶縁基板1の材料としては、ガラス等の無機物や、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリイミド(PI)、ポリエーテルイミド(PEI)等の有機物を用いることができる。ゲート電極2、ゲート配線2’、キャパシタ電極10、キャパシタ配線10’、抵抗12の材料としては、Ag、Cu、Au、Pt等の金属が好適であるが、カーボンやITO等を使用することもできる。印刷法としては、オフセット印刷、凸版印刷、凹版印刷、スクリーン印刷、インクジェット印刷等が使用可能であるが、オフセット印刷が好適であり、特に反転オフセット印刷やグラビアオフセット印刷が好適である。
 次に、絶縁基板1、ゲート電極2、ゲート配線2’、キャパシタ電極10、及びキャパシタ配線10’上にゲート絶縁膜3を形成する(図5B)。ゲート絶縁膜3は、ほぼ全面に形成するが、ゲート接続部やキャパシタ接続部上には形成しない。ゲート絶縁膜3の材料としては、SiO、SiN等の無機絶縁膜や、ポリビニルフェノール、エポキシ等の有機絶縁膜を用いることができる。その形成は、スパッタや、液剤の塗布および焼成で行うことができる。
 次に、ゲート絶縁膜3上にソース電極4、ソース電極4に接続されたソース配線4’、ドレイン電極5、ドレイン電極5に接続された画素電極7を印刷法により形成する(図5C)。ソース電極4およびドレイン電極5は、ゲート絶縁膜3を介して、ゲート電極2と重なっている。また、画素電極7は、ゲート絶縁膜3を介して、キャパシタ電極10と重なっている。ソース電極4、ソース配線4’、ドレイン電極5、画素電極7の材料としては、Ag、Cu、Au、Pt等の金属が好適であるが、カーボンやITO等を使用することもできる。印刷法としては、オフセット印刷、凸版印刷、凹版印刷、スクリーン印刷、インクジェット印刷等が使用可能であるが、オフセット印刷が好適であり、特に反転オフセット印刷やグラビアオフセット印刷が好適である。
 次に、ゲート絶縁膜3、ソース電極4及びドレイン電極5上であってソース電極4及びドレイン電極5間を含む領域に、半導体層6を形成し(図5D)、さらに、半導体層6を覆うように保護層6’を形成する(図5E)。半導体層6の材料としては、シリコン半導体、酸化物半導体、有機半導体等を用いることができる。その形成は、CVDやスパッタ、または印刷法で行うことができる。保護層6’の材料としては、SiOやSiN、またはフッ素系樹脂を用いることができる。その形成は、CVDやスパッタ、または印刷法を用いることができる。
 次に、画素電極7上に開口を有する層間絶縁膜8を形成する(図5F)。保護層6’がソース電極4およびソース配線4’を完全には覆っていない場合、その部分を層間絶縁膜8が覆うことが好ましい。層間絶縁膜8の材料としては、エポキシ等の有機絶縁膜が好適である。層間絶縁膜8は、スクリーン印刷等の印刷法で形成できる。
 次に、層間絶縁膜8上に上部画素電極9を形成する(図5G)。上部画素電極9は、層間絶縁膜8の開口を介して画素電極7に接続されている。上部画素電極9の材料としては、Agペーストやカーボンペースト等が好適である。上部画素電極9は、スクリーン印刷等の印刷法で形成できる。
 薄膜トランジスタアレイ200が上部画素電極9を有する場合、上部画素電極9が、有効な表示領域となる。なお、層間絶縁膜8まで形成し、上部画素電極9を形成しない場合、層間絶縁膜8の開口が、有効な表示領域となる。
 次に、こうして作製した薄膜トランジスタアレイ200と、別途作製した対向基板30上の対向電極31との間に表示媒体32を挟み込み、画像表示装置(パネル)とする(図5H)。表示媒体32の材料としては、液晶、電気泳動体、エレクトロクロミック材料等を用いることができる。液晶の場合は、通常、偏光板と組合わせて光の制御を行う。ポリマー分散液晶、電気泳動体、エレクトロクロミック材料の場合、偏光板は不要である。
 なお、薄膜トランジスタアレイ100、200およびその製造方法は、ゲート電極2がソース電極4・ドレイン電極5よりも基板1側にあるボトムゲート構造に限定されるものではなく、ソース電極4・ドレイン電極5がゲート電極2よりも基板1側にあるトップゲート構造にも適用できる。また、ソース電極4・ドレイン電極5の上に半導体層6を形成するボトムコンタクト構造に限定されるものではなく、半導体層6の上にソース電極4・ドレイン電極5を形成するトップコンタクト構造にも適用できる。
 薄膜トランジスタアレイ200がトップゲートの場合の製造方法の一例を、図6A~図6Gに示す。左が薄膜トランジスタアレイ200全体の配線図、中央が薄膜トランジスタアレイ200を構成する薄膜トランジスタ単体に対応する1画素の平面図、右が1画素をA-B線で切断した断面図である。ただし全体の配線図では、ゲート配線2’、キャパシタ配線10’、抵抗12を記載しているが、ゲート電極2、キャパシタ電極10、ゲート絶縁膜3、ソース電極4、ソース配線4’、ドレイン電極5、画素電極7、半導体層6、保護層6’の記載を省略している。
 はじめに、絶縁基板1上に、ソース電極4、ソース電極4に接続されたソース配線4’、ドレイン電極5、ドレイン電極5に接続された画素配線7を、印刷法によって形成した(図6A)。
 絶縁基板1の材料としては、ガラス等の無機物や、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリイミド(PI)、ポリエーテルイミド(PEI)等の有機物を用いることができる。ソース電極4、ソース配線4’、ドレイン電極5、画素電極7の材料としては、Ag、Cu、Au、Pt等の金属が好適であるが、カーボンやITO等を使用することもできる。印刷法としては、オフセット印刷、凸版印刷、凹版印刷、スクリーン印刷、インクジェット印刷等が使用可能であるが、オフセット印刷が好適であり、特に反転オフセット印刷やグラビアオフセット印刷が好適である。
 次に、ソース電極4及びドレイン電極5間を含む領域に、半導体層6を形成する(図6B)。半導体層6の材料としては、シリコン半導体、酸化物半導体、有機半導体等を用いることができる。その形成は、CVDやスパッタ、または印刷法で行うことができる。
 次に、絶縁基板1、ソース電極4、ソース配線4’、ドレイン電極5、画素電極7、及び半導体6上にゲート絶縁膜3を形成する(図6C)。ただし、ゲート絶縁膜3は、画素電極7上に開口を有する。また、ゲート接続部やキャパシタ接続部上には形成しない。ゲート絶縁膜3の材料としては、SiO、SiN等の無機絶縁膜や、ポリビニルフェノール、エポキシ等の有機絶縁膜を用いることができる。その形成は、スパッタや、液剤の塗布および焼成で行うことができる。この膜に、フォトリソグラフィを用いて開口を設けることで、ゲート絶縁膜3を形成する。あるいは、感光性樹脂を塗布・露光・現像して、ゲート絶縁膜3として用いてもよい。
 次に、ゲート絶縁膜3上にゲート電極2、ゲート電極2に接続されたゲート配線2’、キャパシタ電極10、キャパシタ電極10に接続されたキャパシタ配線10’、抵抗12を印刷法により形成する(図6D)。ゲート電極2は、ゲート絶縁膜3を介して、ソース電極4、ドレイン電極5と重なっている。また、キャパシタ電極10は、ゲート絶縁膜3を介して、画素電極7と重なっている。抵抗12は、複数のキャパシタ配線10’が集まって1本になってからのキャパシタ配線10’を蛇行配線させてその長さを調整した長配線部を形成することで、電気抵抗値Rを満たすようにしたものである。ただし、蛇行配線に限定するものではなく、抵抗値が所定の値であれば蛇行していなくてもよい。なお、抵抗12部分の幅をキャパシタ配線10’の幅よりも細くすることも可能であるが、細くしすぎると、電流によって焼き切れてしまう恐れがあるので注意が必要である。
 ゲート電極2、ゲート配線2’、キャパシタ電極10、キャパシタ配線10’、抵抗12の材料としては、Ag、Cu、Au、Pt等の金属が好適であるが、カーボンやITO等を使用することもできる。印刷法としては、オフセット印刷、凸版印刷、凹版印刷、スクリーン印刷、インクジェット印刷等が使用可能であるが、オフセット印刷が好適であり、特に反転オフセット印刷やグラビアオフセット印刷が好適である。
 次に、画素電極7上に開口を有する層間絶縁膜8を形成する(図6E)。層間絶縁膜8の開口は、ゲート絶縁膜3の開口と重なるように設ける。層間絶縁膜8の材料としては、エポキシ等の有機絶縁膜が好適である。層間絶縁膜8は、スクリーン印刷等の印刷法で形成できる。
 次に、層間絶縁膜8上に上部画素電極9を形成する(図6F)。上部画素電極9は、層間絶縁膜8の開口およびゲート絶縁膜3の開口を介して画素電極7に接続されている。上部画素電極9の材料としては、Agペーストやカーボンペースト等が好適である。上部画素電極9は、スクリーン印刷等の印刷法で形成できる。
 薄膜トランジスタアレイ200が上部画素電極9を有する場合、上部画素電極9が、有効な表示領域となる。
 次に、こうして作製した薄膜トランジスタアレイ200と、別途作製した対向基板30上の対向電極31との間に表示媒体32を挟み込み、画像表示装置(パネル)とする(図6G)。表示媒体32の材料としては、液晶、電気泳動体、エレクトロクロミック材料等を用いることができる。液晶の場合は、通常、偏光板と組合わせて光の制御を行う。ポリマー分散液晶、電気泳動体、エレクトロクロミック材料の場合、偏光板は不要である。
(実施例1)
 具体的な実施例について説明する。実施例1として、図2Aに示す薄膜トランジスタアレイ100を、図3A~図3Gに示す工程で作製した。まず、絶縁基板1としてガラス基板を用意し、Agインキをオフセット印刷・焼成して、ゲート電極2、ゲート配線2’、キャパシタ電極10、キャパシタ配線10’を形成した(図3A)。
 次に、ポリビニルフェノール溶液をダイコート・焼成して、ゲート絶縁膜3を形成した(図3B)。
 次に、Agインキをオフセット印刷・焼成して、ソース電極4、ソース配線4’、ドレイン電極5、画素電極7を形成した(図3C)。次に、ポリチオフェン系の有機半導体溶液をフレキソ印刷・焼成して、半導体層6を形成した(図3D)。次に、フッ素系樹脂溶液をスクリーン印刷・焼成して、保護層6’を形成した(図3E)。
 次に、キャパシタ配線10’の実装部に、10kΩのチップ抵抗12を、Agペーストを用いて実装した(図3F)。
 別途、対向基板30としてPEN基板を用意し、ITOをスパッタして対向電極31を形成した。次に、対向基板30の対向電極31側と、薄膜トランジスタアレイ部との間に、表示媒体32としてポリマー分散液晶材料を挟み込み、紫外線硬化させた(図3G)。
 同様の工程にて複数のパネルを作製し、フレーム時間16.7msで駆動を行った。なお、画素数は640×480、蓄積容量は1画素当り1pF、ゲート電圧は+10V(非選択時)または-10V(選択時)、キャパシタ電圧は対向電圧と同じく+3Vとした。ゲートドライバの最大許容電流は5mA程度であった。ゲート配線2’・キャパシタ配線10’間に短絡がないパネルでは、正常な表示が得られた。一部のパネルにおいては、ゲート配線2’・キャパシタ配線10’間の短絡20があったため、表示品質は悪かった。しかし、ゲート電源、ゲートドライバ、キャパシタ電源11が壊れることはなく、別の正常なパネルへの流用が可能であった。
(実施例2)
 実施例2として、図4に示す薄膜トランジスタアレイ200を、図5A~図5Hに示す工程で作製した。まず、絶縁基板1としてPEN基板を用意し、Agインキをオフセット印刷・焼成して、ゲート電極2、ゲート配線2’、キャパシタ電極10、キャパシタ配線10’、抵抗12を形成した(図5A)。抵抗12の値は10kΩであった。
 次に、ポリビニルフェノール溶液をダイコート・焼成して、ゲート絶縁膜3を形成した(図5B)。
 次に、Agインキをオフセット印刷・焼成して、ソース電極4、ソース配線4’、ドレイン電極5、画素電極7を形成した(図5C)。次に、ポリチオフェン系の有機半導体溶液をフレキソ印刷・焼成して、半導体層6を形成した(図5D)。さらに、フッ素系樹脂溶液をスクリーン印刷・焼成して、保護層6’を形成した(図5E)。
 次に、エポキシ溶液をスクリーン印刷・焼成して、層間絶縁膜8を形成した(図5F))。次に、Agペーストをスクリーン印刷・焼成して、上部画素電極9を形成し(図5G)、薄膜トランジスタアレイ200とした。
 別途、対向基板30としてPEN基板を用意し、ITOをスパッタして対向電極31を形成した。次に、対向基板30の対向電極31側と、薄膜トランジスタアレイ部との間に、表示媒体32としてポリマー分散液晶材料を挟み込み、紫外線硬化させた(図5H)。
 同様の工程にて複数のパネルを作製し、フレーム時間16.7msで駆動を行った。なお、画素数は640×480、蓄積容量は1画素当り1pF、ゲート電圧は+10V(非選択時)または-10V(選択時)、キャパシタ電圧は対向電圧と同じく+3Vとした。ゲートドライバの最大許容電流は5mA程度であった。ゲート配線2’・キャパシタ配線10’間に短絡がないパネルでは、正常な表示が得られた。一部のパネルにおいては、ゲート配線2’・キャパシタ配線10’間の短絡20があったため、表示品質は悪かった。しかし、ゲート電源、ゲートドライバ、キャパシタ電源11が壊れることはなく、別の正常なパネルへの流用が可能であった。
(実施例3)
 実施例3として、図4に示す薄膜トランジスタアレイ200を、図6A~図6Gに示す工程で作製した。まず、絶縁基板1としてPEN基板を用意し、Agインキをオフセット印刷・焼成して、ソース電極4、ソース配線4’、ドレイン電極5、画素電極7を形成した(図6A)。
 次に、ポリチオフェン系の有機半導体溶液をフレキソ印刷・焼成して、半導体層6を形成した(図6B)。
 次に、フォトレジストをスピンコート・露光・現像・焼成して、ゲート絶縁膜3を形成した(図6C)。
 次に、Agインキをオフセット印刷・焼成して、ゲート電極2、ゲート配線2’、キャパシタ電極10、キャパシタ配線10’、抵抗12を形成した(図6D)。抵抗12の値は10kΩであった。
 次に、エポキシ溶液をスクリーン印刷・焼成して、層間絶縁膜8を形成した(図6E)。次に、Agペーストをスクリーン印刷・焼成して、上部画素電極9を形成し(図6F)、薄膜トランジスタアレイ200とした。
 別途、対向基板30としてPEN基板を用意し、ITOをスパッタして対向電極31を形成した。次に、対向基板30の対向電極31側と、薄膜トランジスタアレイ部との間に、表示媒体32としてポリマー分散液晶材料を挟み込み、紫外線硬化させた(図6G)。
 同様の工程にて複数のパネルを作製し、フレーム時間16.7msで駆動を行った。なお、画素数は640×480、蓄積容量は1画素当り1pF、ゲート電圧は+10V(非選択時)または-10V(選択時)、キャパシタ電圧は対向電圧と同じく+3Vとした。ゲートドライバの最大許容電流は5mA程度であった。ゲート配線2’・キャパシタ配線10’間に短絡がないパネルでは、正常な表示が得られた。一部のパネルにおいては、ゲート配線2’・キャパシタ配線10’間の短絡20があったため、表示品質は悪かった。しかし、ゲート電源、ゲートドライバ、キャパシタ電源11が壊れることはなく、別の正常なパネルへの流用が可能であった。
(比較例1)
 抵抗12を挿入しなかったこと以外は、実施例1と同様の工程にて、薄膜トランジスタアレイを作製した。キャパシタ配線10’を1本にまとめた部分からキャパシタ給電部10sまでのキャパシタ配線10’の抵抗値をテスターで測ると、50Ωであった。
 同様の工程にて複数のパネルを作製し、同様の駆動を行った。ゲート配線2’・キャパシタ配線10’間に短絡がないパネルでは、正常な表示が得られた。しかし、一部のパネルにおいては、ゲート配線2’・キャパシタ配線10’間の短絡20があったため、ゲート電源、ゲートドライバ、またはキャパシタ電源11が壊れてしまった。
(比較例2)
 抵抗12の値が100kΩであったこと以外は、実施例1と同様の工程にて、薄膜トランジスタアレイを作製した。
 同様の工程にて複数のパネルを作製し、同様の駆動を行った。ゲート配線2’・キャパシタ配線10’間の短絡20があったパネルでも、ゲート電源、ゲートドライバ、キャパシタ電源11が壊れることはなかった。しかし、ゲート配線2’・キャパシタ配線10’間に短絡がないパネルでも、正常な表示が得られなかった。
 以上説明したように、本発明によれば、印刷法を用いることで安価で低温なプロセスを実現しながら、ゲート配線とキャパシタ配線との短絡によるゲートドライバや電源の故障を防止することでゲートドライバや電源の流用が可能な薄膜トランジスタアレイおよびその製造方法を提供することができる。
 本発明は、薄膜トランジスタアレイ等に有用である。
 1    絶縁基板
 2  ゲート電極
 2’  ゲート配線
 3  ゲート絶縁膜
 4  ソース電極
 4’  ソース配線
 5  ドレイン電極
 6  半導体層
 6’  保護層
 7  画素電極
 8  層間絶縁膜
 9  上部画素電極
 10  キャパシタ電極
 10’  キャパシタ配線
 10s  キャパシタ給電部
 11  キャパシタ電源
 11a  コモン電源
 12  抵抗
 13  フレキシブルプリント基板
 14  ゲートドライバ
 20  短絡部
 30  対向基板
 31  対向電極
 32  表示媒体
 100、200、500  薄膜トランジスタアレイ

Claims (13)

  1.  絶縁基板と、
     ゲート絶縁膜と、
     ゲート電極、前記ゲート電極に接続されたゲート配線、キャパシタ電極、前記キャパシタ電極に接続されたキャパシタ配線と、これらとの間に前記ゲート絶縁膜を挟む、ソース電極、前記ソース電極に接続されたソース配線、ドレイン電極、前記ドレイン電極に接続された画素電極とを備え、
     前記画素電極は前記ゲート絶縁膜を介して前記キャパシタ電極と重なっていて蓄積容量を有し、
     前記ソース電極と前記ドレイン電極とが前記ゲート絶縁膜を介して前記ゲート電極と重なっており、
     前記ソース電極と前記ドレイン電極との間に半導体層を有し、
     前記キャパシタ配線の途中に抵抗を有する、薄膜トランジスタアレイ。
  2.  前記ゲート電極、前記ゲート配線、キャパシタ電極、及び前記キャパシタ配線は、前記絶縁基板上に形成され、
     前記ゲート絶縁膜は、前記絶縁基板、前記ゲート電極、前記ゲート配線、前記キャパシタ電極、及び前記キャパシタ配線上に形成され、
     前記ソース電極、前記ソース配線、ドレイン電極、及び前記画素電極は、前記ゲート絶縁層膜上に形成される、請求項1に記載の薄膜トランジスタアレイ。
  3.  前記ソース電極、前記ソース配線、ドレイン電極、及び前記画素電極は、前記絶縁基板上に形成され、
     前記ゲート絶縁膜は、前記絶縁基板、前記ソース電極、前記ソース配線、前記ドレイン電極、及び前記画素電極上に形成され、
     前記ゲート電極、前記ゲート配線、キャパシタ電極、及び前記キャパシタ配線は、前記ゲート絶縁膜上に形成される、請求項1に記載の薄膜トランジスタアレイ。
  4.  少なくとも前記ゲート電極と、前記ゲート配線と、前記キャパシタ電極と、前記キャパシタ配線とが、同一材料からなる、請求項1~3のいずれかに記載の薄膜トランジスタアレイ。
  5.  前記抵抗の電気抵抗値が、フレーム時間を、前記キャパシタ配線に接続された全蓄積容量で割った値より小さい、請求項1~4のいずれかに記載の薄膜トランジスタアレイ。
  6.  前記抵抗の電気抵抗値が、前記ゲート配線と前記キャパシタ配線との間の電圧の絶対値を、ゲートドライバの最大許容出力電流で割った値より大きい、請求項1~5のいずれかに記載の薄膜トランジスタアレイ。
  7.  前記抵抗が、前記キャパシタ配線の途中に形成された長配線部である、請求項1~6のいずれかに記載の薄膜トランジスタアレイ。
  8.  前記抵抗が、キャパシタ配線の途中に挿入された別部品である、請求項1~6のいずれかに記載の薄膜トランジスタアレイ。
  9.  請求項1~8のいずれかに記載の薄膜トランジスタアレイを組み込んだことを特徴とする画像表示装置。
  10.  絶縁基板上に、ゲート電極、前記ゲート電極に接続されたゲート配線、キャパシタ電極、前記キャパシタ電極に接続されたキャパシタ配線を印刷法により形成する工程と、
     前記キャパシタ配線の途中に抵抗を形成する工程と、
     前記ゲート電極、前記ゲート配線、前記キャパシタ電極、及び前記キャパシタ配線上にゲート絶縁膜を形成する工程と、
     前記ゲート絶縁膜の上にソース電極、前記ソース電極に接続されたソース配線、ドレイン電極、及び前記ドレイン電極に接続された画素電極とを形成する工程と、
     前記ソース電極、及びドレイン電極の間に半導体層を形成する工程とを含む、薄膜トランジスタアレイの製造方法。
  11.  絶縁基板上に、ソース電極、前記ソース電極に接続されたソース配線、ドレイン電極、及び前記ドレイン電極に接続された画素電極とを形成する工程と、
     前記ソース電極、及びドレイン電極の間に半導体層を形成する工程と、
     前記ソース電極、前記ソース配線、前記ドレイン電極、及び前記画素電極の上に、前記画素電極上に開口を有するゲート絶縁膜を形成する工程と、
     前記ゲート絶縁膜の上にゲート電極、前記ゲート電極に接続されたゲート配線、キャパシタ電極、前記キャパシタ電極に接続されたキャパシタ配線を印刷法により形成する工程と、
     前記キャパシタ配線の途中に抵抗を形成する工程と、
     前記ゲート絶縁膜、前記ゲート電極、前記ゲート配線、前記キャパシタ電極、及び前記キャパシタ配線の上に、前記ゲート絶縁膜開口上に開口を有する層間絶縁膜を形成する工程と、
     前記層間絶縁膜の上に上部画素電極を形成する工程とを含む、薄膜トランジスタアレイの製造方法。
  12.  前記抵抗を形成する工程は、前記抵抗となる長配線部の形成を、前記キャパシタ配線を形成する工程と同時に行う、請求項10または11記載の薄膜トランジスタアレイの製造方法。
  13.  前記抵抗を形成する工程は、前記キャパシタ配線を形成する工程の後に前記抵抗となる別部品を挿入することにより行う、請求項10または11記載の薄膜トランジスタアレイの製造方法。
PCT/JP2016/001570 2015-03-18 2016-03-17 薄膜トランジスタアレイ、画像表示装置および薄膜トランジスタアレイの製造方法 WO2016147672A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16764503.5A EP3260911B1 (en) 2015-03-18 2016-03-17 Thin-film transistor array, image display device, and method for manufacturing thin-film transistor array
JP2017506102A JP6720963B2 (ja) 2015-03-18 2016-03-17 薄膜トランジスタアレイ、画像表示装置および薄膜トランジスタアレイの製造方法
CN201680015974.4A CN107407845B (zh) 2015-03-18 2016-03-17 薄膜晶体管阵列、图像显示装置以及薄膜晶体管阵列的制造方法
US15/706,831 US11264406B2 (en) 2015-03-18 2017-09-18 Thin-film transistor array, image display device, and method for manufacturing thin-film transistor array

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-054712 2015-03-18
JP2015054712 2015-03-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/706,831 Continuation US11264406B2 (en) 2015-03-18 2017-09-18 Thin-film transistor array, image display device, and method for manufacturing thin-film transistor array

Publications (1)

Publication Number Publication Date
WO2016147672A1 true WO2016147672A1 (ja) 2016-09-22

Family

ID=56918734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001570 WO2016147672A1 (ja) 2015-03-18 2016-03-17 薄膜トランジスタアレイ、画像表示装置および薄膜トランジスタアレイの製造方法

Country Status (6)

Country Link
US (1) US11264406B2 (ja)
EP (1) EP3260911B1 (ja)
JP (1) JP6720963B2 (ja)
CN (1) CN107407845B (ja)
TW (1) TWI686652B (ja)
WO (1) WO2016147672A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2604728B (en) * 2018-09-10 2023-07-19 Pragmatic Printing Ltd Electronic circuit and method of manufacture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101397A (ja) * 1994-09-30 1996-04-16 Nec Corp 薄膜トランジスタ型液晶表示装置とその製造方法
JP2003005219A (ja) * 2001-06-27 2003-01-08 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2008235861A (ja) * 2007-02-21 2008-10-02 Toppan Printing Co Ltd 薄膜トランジスタアレイ、薄膜トランジスタアレイの製造方法、および薄膜トランジスタアレイを用いたアクティブマトリクス型ディスプレイ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822024A (ja) * 1994-07-05 1996-01-23 Mitsubishi Electric Corp アクティブマトリクス基板およびその製法
JP3729952B2 (ja) * 1996-11-06 2005-12-21 株式会社半導体エネルギー研究所 反射型表示装置の作製方法
JPH10288950A (ja) * 1997-04-14 1998-10-27 Casio Comput Co Ltd 液晶表示装置
JP4632383B2 (ja) 1998-08-31 2011-02-16 キヤノン株式会社 光電変換装置に用いられる半導体装置
GB9928353D0 (en) * 1999-12-01 2000-01-26 Koninkl Philips Electronics Nv Liquid crystal display and method of manufacture
JP2001175198A (ja) * 1999-12-14 2001-06-29 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
AU2002321847A1 (en) * 2002-01-15 2003-07-30 Samsung Electronics Co., Ltd A wire for a display device, a method for manufacturing the same, a thin film transistor array panel including the wire, and a method for manufacturing the same
TWI263961B (en) * 2005-02-17 2006-10-11 Au Optronics Corp Display units
US8450738B2 (en) * 2007-12-19 2013-05-28 Sharp Kabushiki Kaisha Active matrix substrate, production method of the same, liquid crystal panel, liquid crystal display device, liquid crystal display unit, and television receiver
KR102111468B1 (ko) * 2009-09-24 2020-05-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
KR101678670B1 (ko) * 2010-01-22 2016-12-07 삼성전자주식회사 박막트랜지스터 및 어레이 박막트랜지스터의 제조방법
CN101839888A (zh) * 2010-05-19 2010-09-22 石楠 检测金属材料损伤的无损检测方法
WO2013018137A1 (ja) * 2011-08-03 2013-02-07 パナソニック株式会社 表示パネル装置及びその製造方法
CN202978237U (zh) * 2012-12-13 2013-06-05 温州诺华新能源有限公司 带负载保护的逆变器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101397A (ja) * 1994-09-30 1996-04-16 Nec Corp 薄膜トランジスタ型液晶表示装置とその製造方法
JP2003005219A (ja) * 2001-06-27 2003-01-08 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2008235861A (ja) * 2007-02-21 2008-10-02 Toppan Printing Co Ltd 薄膜トランジスタアレイ、薄膜トランジスタアレイの製造方法、および薄膜トランジスタアレイを用いたアクティブマトリクス型ディスプレイ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3260911A4 *

Also Published As

Publication number Publication date
CN107407845B (zh) 2021-03-09
CN107407845A (zh) 2017-11-28
EP3260911A1 (en) 2017-12-27
US20180024391A1 (en) 2018-01-25
JPWO2016147672A1 (ja) 2017-12-28
EP3260911A4 (en) 2018-02-21
JP6720963B2 (ja) 2020-07-08
TW201704830A (zh) 2017-02-01
TWI686652B (zh) 2020-03-01
US11264406B2 (en) 2022-03-01
EP3260911B1 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
US6909532B2 (en) Matrix driven electrophoretic display with multilayer back plane
JP5834133B2 (ja) アクティブマトリクス基板及びそれを備えた表示パネル
EP1715374B1 (en) Active matrix circuit, active matrix display and method for manufacturing the same
JP2009099887A (ja) 表示装置
JP6324098B2 (ja) 表示装置及びその製造方法
JP2006338008A (ja) 開口率が向上したアレイ基板、その製造方法及びそれを含む表示装置。
EP2312562A1 (en) Display device and display device manufacturing method
JP2011100831A (ja) 半導体装置及び半導体装置を用いた表示装置
JP2009015098A (ja) 表示装置および表示装置の製造方法
JP5685923B2 (ja) トランジスタアレイの連結方法
JP4737009B2 (ja) ディスプレイ基板およびディスプレイ基板の製造方法
US10593660B2 (en) Array substrate and display device
KR101296664B1 (ko) 액정 표시 장치 및 그 제조 방법
WO2016147672A1 (ja) 薄膜トランジスタアレイ、画像表示装置および薄膜トランジスタアレイの製造方法
CN110571241B (zh) 阵列基板及其制作方法
JP5706838B2 (ja) アクティブマトリクス基板及びそれを備えた表示パネル
JP2007012669A (ja) 薄膜トランジスタアレイとディスプレイ及び薄膜トランジスタアレイの製造方法
US20160148952A1 (en) Array substrate, its manufacturing method and display device
WO2016208414A1 (ja) 素子基板および素子基板の製造方法ならびに表示装置
JP2004333673A (ja) 表示装置
US10634963B2 (en) Thin-film transistor array and method for manufacturing the same
JP2010078632A (ja) 表示装置およびその製造方法
KR20040074462A (ko) 박막 트랜지스터 표시판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506102

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016764503

Country of ref document: EP