WO2016143750A1 - 車両諸元計測装置、車種判別装置、車両諸元計測方法及びプログラム - Google Patents

車両諸元計測装置、車種判別装置、車両諸元計測方法及びプログラム Download PDF

Info

Publication number
WO2016143750A1
WO2016143750A1 PCT/JP2016/057026 JP2016057026W WO2016143750A1 WO 2016143750 A1 WO2016143750 A1 WO 2016143750A1 JP 2016057026 W JP2016057026 W JP 2016057026W WO 2016143750 A1 WO2016143750 A1 WO 2016143750A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
scanning
road surface
lane
information
Prior art date
Application number
PCT/JP2016/057026
Other languages
English (en)
French (fr)
Inventor
洋平 小島
健太 中尾
重隆 福▲崎▼
泰弘 山口
中山 博之
Original Assignee
三菱重工メカトロシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工メカトロシステムズ株式会社 filed Critical 三菱重工メカトロシステムズ株式会社
Priority to KR1020177024132A priority Critical patent/KR102105237B1/ko
Priority to MYPI2017703157A priority patent/MY185923A/en
Publication of WO2016143750A1 publication Critical patent/WO2016143750A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/015Detecting movement of traffic to be counted or controlled with provision for distinguishing between two or more types of vehicles, e.g. between motor-cars and cycles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B15/00Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/04Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors

Definitions

  • the present invention relates to a vehicle specification measurement device, a vehicle type identification device, a vehicle specification measurement method, and a program.
  • Toll booths such as toll roads are equipped with toll collection facilities for collecting tolls.
  • a fee collection facility includes an automatic fee collection device that performs fee collection processing with a user, and a vehicle type determination device that determines a vehicle type of a traveling vehicle.
  • the automatic toll collector collects a fee according to the vehicle type determined by the vehicle type determination device.
  • a vehicle detector that acquires characteristics such as the vehicle length, vehicle width, and vehicle height of a traveling vehicle, and the number of axles and tire width of the vehicle detected by detecting treading by a vehicle tire.
  • a tread board for acquiring features such as a tread width and the like.
  • the vehicle type discriminating apparatus discriminates the vehicle type of the vehicle based on the characteristics of the vehicle detected by the vehicle detector and the tread board.
  • Patent Document 1 as means for acquiring the characteristics of a vehicle, a laser sensor installed on one side in the width direction of the lane and a pulse laser beam emitted from the laser sensor are reflected at a predetermined reflection angle.
  • a method for measuring the vehicle length, vehicle width, and the like of a traveling vehicle using a plurality of reflecting mirrors installed on the other side in the width direction of the lane is disclosed.
  • Patent Document 2 discloses a method of measuring the vehicle height, vehicle length, and vehicle width of a traveling vehicle using a laser scan sensor provided above the lane.
  • the automatic toll collector needs to confirm the usage fee at the time of the toll collection process with the user, so before the driver's seat of the vehicle reaches the toll collector
  • the vehicle type discrimination result by the vehicle type discrimination device must be acquired.
  • the number of axles of the vehicle can be acquired by detecting the number of times the tire of the vehicle has stepped on the tread board.
  • the number of axles is used as one piece of information for identifying the vehicle type, all the tires of the target vehicle pass through the treadle before the driver's seat reaches the toll collector. Need to be.
  • the maximum vehicle length for example, 18 m
  • the vehicle type discriminating apparatus using the step board as described above, for a vehicle whose vehicle length is longer than the distance between the car type discriminating apparatus and the automatic toll collector, the driving of the vehicle is performed before all the tires pass the tread board. The seat reaches the automatic toll collection machine. Therefore, the vehicle type discriminating device must discriminate the vehicle type before the acquisition of the number of axles, the vehicle length, etc. is completed, and the vehicle length is longer than the distance between the vehicle type discriminating device and the automatic toll collector. There is a possibility that the vehicle type cannot be correctly determined due to lack of information for determining the vehicle type.
  • the present invention has been made in view of such problems, and can be installed even in a toll booth where sufficient space cannot be secured, and is based on information acquired before the vehicle enters the toll booth.
  • a vehicle specification measuring device a vehicle type discriminating device, a vehicle specification measuring method, and a program capable of acquiring information for discriminating the type of vehicle.
  • the vehicle specification measuring device (10E) detects a vehicle (A) traveling on the road surface at a predetermined vehicle detection position (d) defined in the lane direction. Irradiating the detector (10A) with a laser beam toward the road surface from a position higher than the vehicle height of the vehicle and scanning the laser beam along a scanning line (S) defined on the road surface; A laser scan sensor (20A) that acquires scanning information (D8) indicating a measurement position by the laser beam in the scanning plane (P), and the laser scan sensor includes at least the vehicle detection position.
  • the laser beam is irradiated along the scanning line extending in a direction inclined with respect to the lane direction within a predetermined range before the position in the lane direction.
  • the vehicle detector of the vehicle specification measuring device detects the passage of a vehicle traveling on the road surface, and the laser scan sensor emits laser light from a position higher than the vehicle height toward the road surface. And scanning with a laser beam along a scanning line defined on the road surface, scan information indicating a measurement position by the laser beam in the scanning surface is acquired. Further, the laser scan sensor irradiates laser light along a scanning line that includes at least a vehicle detection position and a predetermined position in front of the vehicle detection position and extends in a direction inclined with respect to the lane direction. To do.
  • the laser scan sensor can acquire scanning information capable of measuring the vehicle height of the vehicle by irradiating the road surface with laser light from a position higher than the vehicle height of the vehicle.
  • the laser scan sensor can acquire scan information capable of measuring the vehicle length, the vehicle width, and the vehicle height of the vehicle by a series of scans.
  • the laser scan sensor scans the laser beam along a scanning line including a predetermined position on the near side of the lane in relation to the vehicle detection position. Therefore, before the vehicle passes the vehicle detection position, the front side in the lane direction is detected. Scanning information including a traveling vehicle can be acquired. For this reason, even if the installation space of the toll gate is not sufficient and the vehicle type must be determined before the vehicle passes the vehicle detection position, the vehicle type is determined based on the scanning information including the vehicle. Information for performing can be acquired.
  • the laser scan sensor is configured such that the scanning line is at least within the predetermined range on the front side in the lane direction, at least longer than the maximum vehicle length of the vehicle traveling on the road surface from the vehicle detection position. Extend.
  • the laser scan sensor extends the scan line in a predetermined range on the near side in the lane direction at least the maximum vehicle length of the vehicle traveling on the road surface from the vehicle detection position.
  • any vehicle including a vehicle having the maximum vehicle length can scan the entire vehicle and obtain the scanning information of the vehicle A before the vehicle passes the vehicle detection position. .
  • the vehicle type is determined based on the scanning information of the vehicle. Information to do can be acquired.
  • a plurality of lane direction lengths that are lane direction components of the length of the laser beam scanned on the vehicle body surface of the vehicle based on the scanning information are acquired at different times.
  • a vehicle length measuring unit (110) that measures the vehicle length of the vehicle based on the maximum lane direction length among the plurality of lane direction lengths measured based on the scanning information.
  • the vehicle length measurement unit measures the lane direction length, which is the lane direction component of the length of the laser beam scanned on the vehicle body surface, based on the scanning information, and obtains it at different times.
  • the vehicle length of the vehicle is measured based on the maximum lane direction length among the plurality of lane direction lengths measured based on the plurality of scanned information.
  • the maximum lane length is obtained by measuring the lane length when scanning from the front end to the rear end of the vehicle in one scan. For this reason, it is not necessary to consider the moving distance of the vehicle as compared to measuring the vehicle length based on a plurality of lane direction lengths, and the vehicle length of the vehicle can be accurately measured with a simple process.
  • the lane width direction from the measurement position on the one side in the lane width direction to the measurement position on the other side in the lane width direction among the measurement positions on the vehicle body surface of the vehicle of the scanning information.
  • a vehicle width measuring unit (111) that measures the vehicle width of the vehicle based on the length is further provided.
  • the vehicle width measurement unit can measure from the measurement position on the one side in the lane width direction to the measurement position on the other side in the lane width direction among the measurement positions on the vehicle body surface of the scanning information.
  • the vehicle width of the vehicle is measured based on the length in the lane width direction.
  • a measurement unit (112) is further provided.
  • the vehicle height measurement unit measures the vehicle height of the vehicle based on the measurement position with the highest position in the height direction among the measurement positions on the vehicle body surface of the scanning information. To do. Thereby, even if the vehicle height is not constant, the maximum vehicle height can be acquired based on a plurality of pieces of scanning information.
  • the number of axles is measured by detecting a vehicle ground contact position where the vehicle and the road surface are in contact with each other in the scanning information, and measuring the number of axles of the vehicle based on the number of detected vehicle ground contact positions.
  • a part (113) is further provided.
  • the axle number measurement unit detects the vehicle ground contact position where the vehicle and the road surface are in contact with the scanning information, and measures the number of axles of the vehicle based on the detected number of the vehicle ground contact position. .
  • the vehicle type is determined based on the number of axles. Can do.
  • the vehicle specification measuring device irradiates the laser beam toward the road surface from a position higher than the vehicle height of the vehicle traveling on the road surface and is defined by the scanning line defined on the road surface.
  • a laser scan sensor that scans the laser beam along the line and obtains scanning information indicating a measurement position of the laser beam in the scanning plane, and the laser scan sensor has a predetermined range on the near side in the lane direction, and the lane The laser beam is irradiated along the scanning line extending in a direction inclined with respect to the direction.
  • the vehicle type identification device includes the vehicle specification measurement device according to any one of the above aspects, the plurality of pieces of scanning information acquired at different times by the laser scan sensor, and the vehicle detection. And a vehicle type discriminating unit (10D) for discriminating the vehicle type of the vehicle based on the detection time of the vehicle by the device.
  • the vehicle type determination unit determines the vehicle type based on a plurality of scan information acquired at different times by the laser scan sensor and the vehicle detection time by the vehicle detector. .
  • determination part can judge whether the scanning information acquired before approaching to a vehicle detection position contains the information of the vehicle which has passed the vehicle detection position.
  • the vehicle type discriminating unit can acquire information for discriminating the vehicle type based on the scanning information including the information of the vehicle passing the vehicle detection position, and can discriminate the vehicle type based on the information.
  • a vehicle specification measurement method includes a vehicle detection step of detecting passage of a vehicle traveling on a road surface at a predetermined vehicle detection position defined in a lane direction, and a vehicle height of the vehicle. Irradiate laser light from a higher position toward the road surface, scan the laser light along a scanning line defined on the road surface, and display scanning information indicating a measurement position of the laser light in the scanning surface.
  • a computer program for a vehicle specification measuring device for measuring specifications of a vehicle traveling on a road surface
  • the program is a predetermined program defined in a lane direction.
  • a vehicle detection unit that detects the passage of the vehicle traveling on the road surface at a vehicle detection position, a laser beam that is irradiated from the position higher than the vehicle height of the vehicle toward the road surface and that is defined on the road surface
  • the laser beam is scanned along the line and functions as a laser scanning unit that acquires scanning information indicating the measurement position of the laser beam in the scanning plane.
  • vehicle specification measuring device vehicle type discriminating device, vehicle specification measuring method and program
  • vehicle specification measuring method and program it can be installed even at a toll gate where sufficient space cannot be secured, and before the vehicle enters the toll gate.
  • Information for determining the vehicle type of the vehicle can be acquired based on the acquired information.
  • FIG. 1 is a block diagram of a vehicle type identification device according to a first embodiment of the present invention. It is an example of the scanning information which the laser scan sensor which concerns on the 1st Embodiment of this invention acquires. It is a flowchart which shows the procedure which measures the vehicle characteristic which concerns on the 1st Embodiment of this invention. It is the schematic of the fee collection equipment which concerns on the 2nd Embodiment of this invention.
  • FIG. 1 is a schematic diagram of a toll collection facility 1 according to the first embodiment.
  • the toll collection facility 1 is installed at a toll road exit toll gate as shown in FIG. 1, and collects a toll from the driver of the vehicle A who is a toll road user.
  • the toll collection facility 1 in the present embodiment includes a vehicle type discriminating device 10, an automatic toll collection device 11, a start controller 13, and a start detector 14.
  • the toll collection facility 1 is a facility that is provided on the islands I arranged on both sides of the lane L and performs toll collection processing with the vehicle A stopped on the lane L.
  • the direction along the lane L is referred to as the lane direction (X direction in FIG. 1).
  • the direction in which the vehicle A travels on the lane L (the + X side in FIG. 1) is referred to as the rear side in the lane direction
  • the side opposite to the direction in which the vehicle A travels (the ⁇ X side in FIG. 1) is the front side in the lane direction.
  • the width direction of the lane L is referred to as the width direction (Y direction in FIG. 1)
  • the vehicle height direction of the vehicle A is referred to as the height direction (Z direction in FIG. 1).
  • the vehicle type discriminating apparatus 10 is provided on the front side in the lane direction ( ⁇ X side in FIG. 1), detects the vehicle characteristics of the vehicle A entering the lane L of the toll gate, and detects the vehicle A
  • the vehicle type identification device 10 includes a tread plate 10B, a license plate recognition unit 10C, and a vehicle specification measurement device 10E.
  • the vehicle specification measuring device 10E includes a vehicle detector 10A and a laser distance measuring device 20.
  • the vehicle type classification D1 of the vehicle A indicates a vehicle type for determining the toll for the toll road
  • the vehicle type identification device 10 is, for example, “light vehicle etc.”, “ordinary vehicle” ”,“ Medium-sized vehicle ”,“ Large-sized vehicle ”, and“ Extra-large vehicle ”.
  • the vehicle feature of the vehicle A is information unique to the vehicle A entering the lane L.
  • the vehicle characteristics indicate information such as the license plate information of the vehicle A (vehicle registration information and the size of the license plate), the number of axles, the tire width and the tread width, the vehicle length, the vehicle width, and the vehicle height.
  • the vehicle type discrimination device 10 is a device that discriminates the vehicle type division D1 based on these vehicle characteristics.
  • the specific configurations of the tread plate 10B, the license plate recognition unit 10C, and the vehicle specification measuring device 10E included in the vehicle type identification device 10 will be described later with reference to FIGS.
  • the automatic toll collector 11 is provided on the far side in the lane direction (+ X side in FIG. 1) from the vehicle type discriminating device 10.
  • the automatic toll collector 11 is provided on one side in the width direction of the lane L ( ⁇ Y side in FIG. 1) in the present embodiment, but in the other embodiments, the other in the width direction of the lane L is provided. It may be provided on the side (+ Y side in FIG. 1).
  • the automatic toll collector 11 charges the driver of the vehicle A with a usage fee according to the vehicle type classification D1 of the vehicle A and the travel distance of the toll road.
  • the start controller 13 opens and closes the gate for the purpose of preventing the vehicle A from starting until the usage fee of the vehicle A entering the lane L is collected.
  • the start controller 13 is provided on the far side in the lane direction (+ X side in FIG. 1) with respect to the automatic toll collector 11 in the lane L.
  • the start controller 13 opens the gate when the opening operation instruction signal is input from the automatic toll collector 11 and permits the vehicle A to start.
  • the start controller 13 closes the gate when a closing operation instruction signal is input from the automatic toll collector 11.
  • the start detector 14 is provided on the rear side in the lane direction (+ X side in FIG. 1) with respect to the start controller 13 in the lane L, and detects whether the vehicle A has left the lane L.
  • the detection signal from the start detector 14 is output to the automatic toll collector 11.
  • the automatic toll collector 11 Upon receiving the detection signal from the start detector 14, the automatic toll collector 11 outputs a closing operation instruction signal to the start controller 13 to close the gate.
  • FIG. 2 is a schematic diagram of the vehicle type discriminating apparatus 10 according to the first embodiment of the present invention, and shows a top view, a side view, and a front view.
  • FIG. 3 is a block diagram of the vehicle type identification device 10 according to the first exemplary embodiment of the present invention.
  • the vehicle type discriminating apparatus 10 includes a tread board 10B, a license plate recognition unit 10C, and a vehicle specification measuring apparatus 10E.
  • the vehicle specification measuring device 10E includes a vehicle detector 10A and a laser distance measuring device 20.
  • the vehicle type determination device 10 includes a vehicle type determination unit 10D for determining the vehicle type division D1 of the vehicle A based on signals detected by these detection devices.
  • determination part 10D demonstrates in the aspect incorporated in the vehicle type discrimination
  • the vehicle type determination unit 10D may be incorporated in a device other than the vehicle type determination device 10 connected on the network.
  • the vehicle detector 10A is provided with a pair of light emitting and receiving light on both sides of the lane L on the lane direction front side ( ⁇ X side in FIG. 1) of the automatic toll collector 11.
  • 10 A of vehicle detectors output the detection signal according to the approach to the lane L of the vehicle A to the vehicle type discrimination
  • 10 A of vehicle detectors output the detection signal which can detect the approach and passage for every vehicle A to the vehicle type discrimination
  • 10 A of vehicle detectors output the detection signal which can detect the approach and passage for every vehicle A to the vehicle type discrimination
  • the vehicle detector 10A outputs a detection signal that can detect that the vehicle A has entered the lane L to the vehicle type determination unit 10D as vehicle entry information D2, and the vehicle A A detection signal that can detect that the vehicle has passed through the vehicle detector 10A is output as vehicle passage information D3 to the vehicle type determination unit 10D.
  • the tread board 10B is arranged in the lane L at the same position as the position where the vehicle detector 10A is installed in the lane direction (X direction in FIG. 1). It is provided on the road surface.
  • the tread board 10B has a tread pressure sensor (not shown) using an electrical contact inside, and a tread pressure position and a tread pressure width in the width direction (Y direction in FIG. 1) of the tread pressure by the vehicle A that has entered the lane L through the tread pressure sensor. Accordingly, a detection signal capable of specifying the axle number D4, the tire width D5, and the tread width D6 of the vehicle A is detected.
  • the tread board 10B outputs the detected detection signal to the vehicle type determination unit 10D as shown in FIG.
  • the number of axles D4 is a value obtained based on a detection signal output from the tread board 10B from when the vehicle detector 10A outputs the vehicle entry information D2 to when the vehicle passage information D3 is output.
  • the license plate recognition unit 10C is provided on the rear side in the lane direction (+ X direction in FIG. 1) from the vehicle detector 10A.
  • the license plate recognition unit 10C captures a front image of the vehicle A including the license plate of the vehicle A in response to the detection of the vehicle A by the vehicle detector 10A, and the license plate information of the vehicle A (vehicle registration information and license plate) The size).
  • the license plate recognition unit 10C outputs the acquired license plate information to the vehicle type determination unit 10D as license plate information D7.
  • the laser distance measuring device 20 includes a laser scan sensor 20A that irradiates and scans a laser beam toward the road surface (laser scan), and the laser scan sensor 20A is positioned higher than the vehicle height of the vehicle A. It has an attachment column 20B for installation at a substantially central attachment position in the width direction (Y direction in FIG. 1).
  • the mounting column 20B is a cantilever cantilever as shown in FIG. 1 will be described.
  • the lane L is in the width direction (Y direction in FIG. 1).
  • It may be an installed gantry or the like.
  • the laser scan sensor 20A may be installed in the gantry.
  • the laser scan sensor 20A has a plurality of different irradiation angles along the scanning line S defined on the road surface from the mounting position of the mounting column 20B. Scan.
  • the scanning line S is on the road surface and is closer to the front side in the lane direction ( ⁇ X side in FIG. 2A) than the vehicle detection position d including the vehicle detection position d where the vehicle detector 10A is installed. In a predetermined range, it extends in a direction inclined with respect to the lane direction. Further, the scanning line S extends at least in the predetermined range on the front side in the lane direction (the ⁇ X side in FIG. 2 (a)) over the maximum vehicle length of the vehicle A traveling on the road surface. Note that the predetermined range is specifically the maximum vehicle height portion of the vehicle having the assumed maximum vehicle length and maximum vehicle height. in the lane direction (the X direction in FIG.
  • the scanning line S includes a first end E1 disposed on the rear side in the lane direction of the predetermined range (+ X side in FIG. 2A), and a front side in the lane direction of the predetermined range (FIG. 2A). Is a straight line connecting the second end E2 disposed on the ⁇ X side).
  • the scanning line S passes through both the front end of the vehicle A traveling on the road surface and the rear end of the vehicle A at any position on the scanning line S ((a in FIG. 2). ) With a predetermined inclination angle ⁇ and extending from the first end E1 to the second end E2.
  • the laser scan sensor 20A scans the laser beam along the scanning line S from the first end E1 to the second end E2 in one scan.
  • the laser scan sensor 20A is set to perform one scan at a predetermined interval. That is, a plurality of scans are performed at different times.
  • the laser scan sensor 20A scans laser light from the first end E1 toward the second end E2
  • the laser scan sensor 20A starts from the second end E2. You may scan a laser beam toward the 1st end part E1.
  • the scanning line S defined on the road surface, the imaginary line connecting the laser scan sensor 20A and the first end E1, the laser scan sensor 20A and the second end A scanning plane P is formed on the road surface by an imaginary line connecting the portion E2.
  • the laser scan sensor 20A scans the road surface passing through the scanning plane P and the vehicle body surface of the vehicle A by irradiating laser light along the scanning line S at a plurality of irradiation angles.
  • the measurement position by laser light is acquired.
  • the irradiation angle in the scanning plane P is defined as an irradiation angle ⁇ .
  • the measurement position by the laser beam is a position in the height direction (Z direction in FIG.
  • the laser scan sensor 20A measures the distance Len to the measurement position corresponding to the irradiation angle ⁇ of the laser beam at each measurement position. Further, the laser scan sensor 20A has a position in the lane direction (X direction in FIG. 4) as a coordinate x, a position in the width direction of the lane L (Y direction in FIG. 4) as a coordinate y, and a height direction (Z direction in FIG. 4).
  • Is the coordinate z, and the coordinates on the road surface at the same position as the position where the laser scan sensor 20A is installed are set to the origin coordinates (x0, y0, z0). Then, the laser scan sensor 20A, for each measurement position, the inclination ⁇ of the laser scan sensor 20A with respect to the width direction of the lane L, the inclination angle ⁇ of the scanning line S, the irradiation angle ⁇ and the distance Len of the laser beam at each measurement position. Based on the above, the coordinates xp, the coordinates yp, and the coordinates zp at the measurement position are calculated.
  • the laser scan sensor 20A outputs a plurality of measurement positions acquired in one scan to the vehicle type determination unit 10D as scan information D8.
  • the vehicle type determination unit 10D determines the vehicle type classification D1 of the vehicle A based on the information received from the vehicle detector 10A, the tread plate 10B, the license plate recognition unit 10C, and the laser distance measurement device 20.
  • FIG. 4 is an example of scan information D8 acquired by the laser scan sensor 20A according to the first embodiment of the present invention.
  • the vehicle type identification device 10 includes a tread board 10B, a license plate recognition unit 10C, a vehicle type identification unit 10D, and a vehicle specification measurement device 10E.
  • the vehicle specification measuring device 10E includes a vehicle detector 10A and a laser distance measuring device 20.
  • the vehicle detector 10A outputs vehicle entry information D2 indicating that the vehicle A has entered the lane L and vehicle passage information D3 indicating that the vehicle A has passed the vehicle detector 10A to the vehicle type determination unit 10D.
  • the tread board 10B outputs various detection signals detected by the vehicle A by stepping on the tread board 10B to the vehicle type determination unit 10D as the number of axles D4, the tire width D5, and the tread width D6.
  • the license plate recognition unit 10C outputs the acquired license plate information D7 to the vehicle type determination unit 10D.
  • the laser distance measuring device 20 includes a laser scan sensor 20A and a mounting column 20B. As shown in FIG. 4, each time the laser scan sensor 20A scans the laser beam along the scanning line S, the laser scan sensor 20A acquires scan information D8 corresponding to the time when the scan was performed.
  • the horizontal axis of the scanning information D8 shown in FIG. 4 indicates the scanning line position (coordinate xp and coordinate yp) irradiated with the laser beam.
  • “e” is the farthest lane direction on the scanning line S (the + X side in FIG. 4) and the farthest lane direction (the ⁇ X side in FIG. 4).
  • the distance to the coordinate xp is shown.
  • “e” indicates the distance on the scanning line S from the one side in the width direction (the ⁇ Y side in FIG. 4) to the other side in the width direction (the + Y side in FIG. 4).
  • the left end of “e” is the scanning line position corresponding to the first end E1 in the scanning line S.
  • the right end of “e” is the scanning line position corresponding to the second end E2 of the scanning line S.
  • the vertical axis of the scanning information D8 shown in FIG. 4 indicates the irradiation height (coordinate zp).
  • FIG. 4 shows a plurality of pieces of scanning information D8 arranged at each time when the laser scan sensor 20A scans the laser beam, with the lower end indicating the oldest time and the upper end indicating the newest time.
  • the vehicle A has not entered the scanning plane P at time t1. For this reason, in the scanning information D8 acquired by the laser scan sensor 20A at time t1, a value indicating the measurement position on the vehicle body surface of the vehicle A is not measured.
  • a part of the vehicle A enters the scanning plane P, and the laser beam is irradiated on the vehicle body surface of the vehicle A at a position where the vehicle A and the scanning plane P are in contact with each other.
  • the value (“f” in FIG. 4) indicating the measurement position of the laser beam on the vehicle body surface of the vehicle A is measured in the scan information D8 acquired by the laser scan sensor 20A at time t2.
  • the front end to the rear end of the vehicle A enter the scanning plane P, and the laser beam is irradiated on the vehicle body surface of the vehicle A at a position where the vehicle A and the scanning plane P are in contact with each other.
  • the value (“a” in FIG. 4) indicating the measurement position of the laser beam on the vehicle body surface of the vehicle A is measured in the scanning information D8 acquired by the laser scan sensor 20A at time t3.
  • the vehicle A has left the range in the scanning plane P.
  • a value indicating the measurement position on the vehicle body surface of the vehicle A is not measured.
  • the laser scan sensor 20A outputs the scan information D8 measured for each time as described above to the vehicle type determination unit 10D as shown in FIG.
  • the vehicle type determination unit 10D includes a vehicle feature measurement unit 101 that measures a vehicle length D9, a vehicle width D10, and a vehicle height D11 of the vehicle A, and a vehicle type classification determination unit that determines the vehicle type division D1 of the vehicle A. 102.
  • the vehicle feature measuring unit 101 measures the vehicle length D9, the vehicle width D10, and the vehicle height D11 of the vehicle A among the vehicle features for determining the vehicle type division D1 of the vehicle A.
  • the vehicle feature measurement unit 101 includes a vehicle length measurement unit 110 that measures the vehicle length D9 of the vehicle A, a vehicle width measurement unit 111 that measures the vehicle width D10 of the vehicle A, and a vehicle height that measures the vehicle height D11 of the vehicle A. And a measuring unit 112.
  • the vehicle feature measurement unit 101 Based on the vehicle approach information D2 received from the vehicle detector 10A, the vehicle feature measurement unit 101 extracts scan information D8 related to one vehicle A from among the plurality of scan information D8 received from the laser scan sensor 20A. . In the present embodiment, the vehicle feature measurement unit 101 sets a value of the irradiation height (coordinate zp) greater than a predetermined height (hereinafter, “road surface height”) for each measurement position of the scanning information D8. If so, it is determined that the vehicle body surface of the vehicle A is irradiated. When vehicle A reaches vehicle detection position d at time t4 shown in the example of FIG. 4, vehicle detector 10A detects the entry of vehicle A and outputs vehicle entry information D2 to vehicle type determination unit 10D.
  • a predetermined height hereinafter, “road surface height”
  • the vehicle feature measurement unit 101 of the vehicle type determination unit 10D is output at the same time as the time t4 (hereinafter referred to as “vehicle entry time”) when the vehicle entry information D2 is output. It is determined that the scanning information D8 (scanning information D8 at time t4 in FIG. 4) is the scanning information D8 including the information of the vehicle A.
  • the vehicle feature measuring unit 101 refers to the scanning information D8 output at a time older than the vehicle entry time, and extracts the scanning information D8 including the information on the vehicle A.
  • the scanning information D8 acquired from time t2 to time t4 has position information in which the value of the irradiation height (coordinate zp) is larger than the value of the road surface height.
  • the scanning information D8 acquired at a time before the time t2 does not have position information in which the value of the irradiation height (coordinate zp) is larger than the value of the road surface height. For this reason, the vehicle feature measurement unit 101 determines that the information of the vehicle A is included in the scanning information D8 acquired from the time t2 to the time t4.
  • the vehicle feature measurement unit 101 determines whether or not the information on the vehicle A is included in the scan information D8. .
  • scanning information D8 output at time t5 out of scanning information D8 at a time newer than the vehicle entry time indicates position information in which the value of the irradiation height (coordinate zp) is larger than the value of the road surface height.
  • the scanning information output after time t6 does not have position information in which the value of the irradiation height (coordinate zp) is larger than the value of the road surface height.
  • the vehicle feature measurement unit 101 determines that the information on the vehicle A is included in the scanning information D8 until time t5.
  • the vehicle feature measurement unit 101 may record the number of vehicles detected by the vehicle detector 10A and the number of vehicles detected in the scanning information D8.
  • the vehicle feature measurement unit 101 associates the number of vehicles detected by the vehicle detector 10A with the number of vehicles detected in the scanning information D8. For example, when the vehicle detector 10A further detects the vehicle A2 after detecting the vehicle A1, the first detected vehicle among the plurality of scanning information D8 is determined as the vehicle A1, and the next detected vehicle is the vehicle A2. You may make it judge.
  • the vehicle feature measurement unit 101 distinguishes between the vehicle A detected by the vehicle detector 10A and vehicles other than the vehicle A. For example, when the scanning information D8 includes information on the first vehicle and information on the second vehicle, the measurement indicating the first vehicle at a position near the first end E1 in the scanning information D8. The position is detected, and the measurement position indicating the second vehicle is detected at a position close to the second end E2.
  • a length corresponding to the inter-vehicle distance between the first vehicle and the second vehicle is set between the measurement position indicating the first vehicle and the measurement position indicating the second vehicle (one A measurement position indicating a road surface (difference between the value of the coordinate xp closest to the lane in the second vehicle and the value of the coordinate xp in the rearmost lane of the second vehicle) is detected.
  • the vehicle characteristic measurement unit 101 receives the scanning information D8 including information on two or more vehicles
  • the vehicle feature measurement unit 101 uses the vehicle detector 10A to detect the vehicle information detected at a position close to the first end E1. It is judged that it is the information of the vehicle A detected by.
  • the vehicle feature measurement unit 101 extracts a plurality of pieces of scanning information D8 from time t2 to time t5 as scanning information D8 including information on the vehicle A.
  • the vehicle length measurement unit 110 is a lane direction component of the length of the laser beam scanned on the vehicle body surface of the vehicle A for each of the scanning information D8 from time t2 to time t5 extracted by the vehicle feature measurement unit 101. Measure the lane length. Specifically, among the scanning line positions corresponding to the measurement position on the vehicle body of the vehicle A, the coordinate xp maximum value (measurement position on the farthest lane direction (+ X side in FIG. 4)) and the coordinate xp minimum value (most) A difference ⁇ xp from the front side in the lane direction (measurement position on the ⁇ X side in FIG. 4) is calculated as the lane direction length.
  • the vehicle length measuring unit 110 detects the maximum lane direction length among the plurality of lane direction lengths measured based on the plurality of scanning information D8.
  • the vehicle scanning length (“a”) at time t3 is the maximum lane length of vehicle A.
  • the vehicle length measurement unit 110 measures the maximum lane length as the vehicle length D9 of the vehicle A.
  • the vehicle length measurement unit 110 outputs the vehicle length D9 thus obtained to the vehicle type classification determination unit 102.
  • the vehicle width measurement unit 111 determines, for each piece of scanning information D8 from time t2 to time t5 extracted by the vehicle feature measurement unit 101, the minimum coordinate yp of the scanning line position (one side in the width direction of the lane L (FIG. 4). (Measurement position on the ⁇ Y side) and the maximum coordinate yp of the scanning line position (measurement position on the other side in the width direction of the lane L (the + Y side in FIG. 4)). Then, the vehicle width measurement unit 111 calculates the difference ⁇ yp between the coordinate yp minimum value and the coordinate yp maximum value as the lane width direction length. In the example of FIG. 4, “b” corresponds to the length of the vehicle A in the lane width direction. The vehicle width measurement unit 111 measures the lane width direction length as the vehicle width D10 of the vehicle A. The vehicle width measuring unit 111 outputs the vehicle width D10 thus obtained to the vehicle type classification determining unit 102.
  • the vehicle height measuring unit 112 has the maximum irradiation height with the highest irradiation height (coordinate zp) among the measurement positions of the scanning information D8 from the time t2 to the time t5 extracted by the vehicle feature measuring unit 101.
  • a value (coordinate zp maximum value) is detected.
  • “c” corresponds to the maximum irradiation height (coordinate zp maximum value).
  • the vehicle height measuring unit 112 measures the vehicle height of the vehicle A based on the value of the maximum irradiation height (coordinate zp maximum value).
  • the vehicle height measurement unit 112 outputs the vehicle height D11 obtained in this way to the vehicle type classification determination unit 102.
  • the vehicle type classification determination unit 102 receives the number of axles D4, the tire width D5 and the tread width D6 based on the detection signal received from the tread board 10B, the license plate information D7 received from the license plate recognition unit 10C, and the vehicle length measurement unit 110.
  • the vehicle type division D1 of the vehicle A is determined based on the vehicle length D9, the vehicle width D10 received from the vehicle width measurement unit 111, and the vehicle height D11 received from the vehicle height measurement unit 112. Note that when the length of the vehicle A is longer than the distance between the automatic toll collector 11 and the tread board 10B, the timing at which the usage fee must be fixed (the driver of the vehicle A determines the position of the automatic toll collector 11).
  • the tread board 10B may output information detected by the timing (information not yet detected) to the vehicle type determination unit 10D.
  • the vehicle type discriminating unit 102 of the vehicle type discriminating unit 10D does not receive the vehicle passage information D3 from the vehicle detector 10A and receives information that the axle number D4 is “3”, for example, from the tread 10B, The number of axles of the vehicle A may be determined to be “3 or more”.
  • the vehicle type The classification D1 can be determined.
  • the vehicle type classification determination unit 102 outputs the determined vehicle type classification D ⁇ b> 1 to the automatic fee collector 11.
  • the automatic toll collector 11 calculates a usage fee to be charged to the driver of the vehicle A based on the vehicle type classification D1 received from the vehicle type classification determination unit 102 and the travel distance of the vehicle A.
  • FIG. 5 is a flowchart showing a procedure for measuring the vehicle feature according to the first embodiment of the present invention.
  • Step ST101 Vehicle approach detection
  • the laser scan sensor 20A of the laser distance measuring device 20 always performs laser light irradiation and scanning (laser scanning) along the scanning line S defined on the road surface at predetermined intervals.
  • the vehicle feature measurement unit 101 of the vehicle type identification device 10 determines whether or not the vehicle A has entered the toll gate (step ST101). If vehicle feature measurement unit 101 has not received vehicle entry information D2 from vehicle detector 10A, vehicle feature measurement unit 101 determines that vehicle A has not entered the toll gate (step ST101: No), and vehicle A has entered. Wait until you make a decision. Further, when the vehicle feature measurement unit 101 receives the vehicle entry information D2 from the vehicle detector 10A, it determines that the vehicle A has entered the toll gate (step ST101: Yes), and proceeds to the next step ST102.
  • Step ST102 Extraction of scanning information
  • the vehicle feature measurement unit 101 scans the laser scan sensor 20A acquired at the vehicle entry time, which is the time when the vehicle entry information D2 is output.
  • D8 is determined to be scanning information D8 including the vehicle A.
  • the vehicle feature measurement unit 101 is scanning information D8 acquired by the laser scan sensor 20A at a time older than the vehicle entry time, and a measurement position in which the value of the irradiation height (coordinate zp) is larger than the value of the road surface height. Is extracted as scanning information D8 including information on the vehicle A.
  • the vehicle feature measurement unit 101 is scanning information D8 acquired by the laser scan sensor 20A at a time newer than the vehicle entry time, and a measurement position where the value of the irradiation height (coordinate zp) is larger than the value of the road surface height. Is extracted as scanning information D8 including information on the vehicle A (step ST102). Specifically, assuming that time t4 in FIG. 4 is the vehicle entry time, the scanning information D8 acquired by the laser scan sensor 20A from time t2 to time t5 has an irradiation height (coordinate zp) value of road surface height. The measurement position is larger than the value of the height. For this reason, the vehicle feature measurement unit 101 extracts the scan information D8 from the time t2 to the time t5 as the scan information D8 including the information of the vehicle A.
  • Step ST103 Vehicle length measurement
  • the vehicle length measurement unit 110 measures the lane direction length for each of the scanning information D8 extracted by the vehicle feature measurement unit 101.
  • the vehicle length measuring unit 110 detects the maximum lane direction length among the plurality of lane direction lengths measured based on the plurality of scanning information D8. Specifically, among the scanning line positions corresponding to the measurement position on the vehicle body of the vehicle A, the coordinate xp maximum value (measurement position on the farthest lane direction (+ X side in FIG. 4)) and the coordinate xp minimum value (most) A difference ⁇ xp from the front side in the lane direction (measurement position on the ⁇ X side in FIG. 4) is calculated as the lane direction length.
  • the coordinate xp maximum value measured position on the farthest lane direction (+ X side in FIG. 4
  • the coordinate xp minimum value most
  • the lane length “a” at time t3 is the maximum lane length.
  • the vehicle length measurement unit 110 measures the vehicle length D9 of the vehicle A based on the maximum lane direction length (“a”) (step ST103).
  • the vehicle length measurement unit 110 outputs the measured vehicle length D9 to the vehicle type classification determination unit 102.
  • Step ST104 Measurement of vehicle width
  • the vehicle width measurement unit 111 determines the minimum coordinate yp of the scanning line position (one side in the width direction of the lane L (the ⁇ Y side in FIG. 4) for each of the scanning information D8 extracted by the vehicle feature measurement unit 101. ) And the maximum coordinate yp of the scanning line position (measurement position on the other side in the width direction of the lane L (the + Y side in FIG. 4)). Then, the vehicle width measurement unit 111 calculates the difference ⁇ yp between the coordinate yp minimum value and the coordinate yp maximum value as the lane width direction length. In the example of FIG. 4, “b” corresponds to the length in the lane width direction.
  • the vehicle width measurement unit 111 measures the vehicle width D10 of the vehicle A based on the lane width direction length (“b”) (step ST104).
  • the vehicle width measurement unit 111 outputs the measured vehicle width D10 to the vehicle type classification determination unit 102.
  • Step ST105 Vehicle height measurement
  • the vehicle height measuring unit 112 has a maximum irradiation height value (coordinate zp) having the largest irradiation height (coordinate zp) among the measurement positions of the scanning information D8 extracted by the vehicle feature measuring unit 101. Maximum value) is detected.
  • “c” corresponds to the maximum irradiation height value (coordinate zp maximum value).
  • the vehicle height measuring unit 112 measures a value obtained by subtracting the road surface height value from the maximum irradiation height value (coordinate zp maximum value) as the vehicle height D11 of the vehicle A (step ST105).
  • the vehicle height measurement unit 112 outputs the measured vehicle height D11 to the vehicle type classification determination unit 102.
  • the vehicle feature measurement unit 101 ends the measurement of the vehicle features (the vehicle length D9, the vehicle width D10, and the vehicle height D11).
  • the vehicle detector 10A is provided at a predetermined detection position defined in the lane direction (the X direction in FIG. 2A) and travels on the road surface. Detect the passage of. Further, the laser scan sensor 20A of the laser distance measuring device 20 irradiates laser light toward the road surface from a position higher than the vehicle height of the vehicle A, and laser light along the scanning line S defined on the road surface. Scan.
  • the position of the coordinate in the lane direction of the front end and the rear end of the vehicle and the width direction extends within a predetermined range set so as to be measurable by the laser scan sensor 20A.
  • the laser scan sensor 20A scans the laser beam measurement position in the scan plane P formed by the scan line S defined in this way and a line connecting the both ends of the scan line S and the laser scan sensor 20A. Information D8 is acquired.
  • the laser scan sensor 20 ⁇ / b> A can acquire the scan information D ⁇ b> 8 that can measure the vehicle height of the vehicle A by irradiating laser light toward the road surface from a position higher than the vehicle height of the vehicle A. Further, since the scanning line S is inclined at a predetermined inclination angle ⁇ , the scanning information D8 that can measure the vehicle length and the vehicle width of the vehicle A can be acquired. Therefore, the laser scan sensor 20A can acquire the scan information D8 that can measure the vehicle length, the vehicle width, and the vehicle height of the vehicle A through a series of scans.
  • the laser scan sensor 20A is a vehicle that travels on the near side in the lane direction before the vehicle A passes the vehicle detection position d.
  • Scan information D8 including A can be acquired. For this reason, even if the installation space of the toll gate is not enough and the driver's seat of the vehicle A reaches the automatic toll collector before the vehicle A passes the vehicle detection position d, the vehicle A Can be acquired based on the scanning information D8 including the information for determining the vehicle type division D1 before the vehicle A passes the vehicle detection position d.
  • the laser scan sensor 20A includes the first end E1 disposed on the far side in the lane direction of the predetermined range (the + X side in FIG. 2A), The laser beam is scanned along a scanning line S connecting the second end portion E2 disposed on the front side in the lane direction of the predetermined range (the ⁇ X side in FIG. 2A). Further, the scanning line S extends at least in the predetermined range on the front side in the lane direction (the ⁇ X side in FIG. 2 (a)) over the maximum vehicle length of the vehicle A traveling on the road surface.
  • any vehicle including the vehicle having the maximum vehicle length is scanned before the vehicle passes the vehicle detection position, and the entire vehicle A is scanned to obtain the scanning information D8 of the vehicle A. can do.
  • the vehicle A Can be acquired based on the scanning information D8 including the information for determining the vehicle type division D1 before the vehicle A passes the vehicle detection position d.
  • the vehicle feature measurement unit 101 of the vehicle type determination unit 10D uses the vehicle detector 10A to generate a plurality of pieces of scanning information D8 acquired at different times by the laser scan sensor 20A. Based on the time when the vehicle approach information D2 of A is output, the scan information D8 acquired at the same time as the time when the vehicle approach information D2 is output, and the scan information D8 acquired at the time before and after that Scan information D8 including information on the vehicle A is extracted. As a result, the vehicle length measuring unit 110, the vehicle width measuring unit 111, and the vehicle height measuring unit 112 of the vehicle feature measuring unit 101 are based on the extracted scanning information D8 before the vehicle A passes the vehicle detection position d.
  • the vehicle length D9, the vehicle width D10, and the vehicle height D11 can be measured, respectively. For this reason, even if the driver's seat of the vehicle A arrives at the automatic toll collector before the vehicle A passes the vehicle detection position d, the toll gate is not sufficiently installed. Based on the scanning information D8, the vehicle length D9, the vehicle width D10, and the vehicle height D11, which are information for determining the vehicle type division D1 before the vehicle A passes the vehicle detection position d, can be acquired.
  • the vehicle length measuring unit 110 determines that the laser light emitted by the laser scan sensor 20A is based on the scanning information D8 acquired by the laser scan sensor 20A.
  • Lane length component (coordinate xp maximum value (measurement position on the farthest lane direction side (+ X side in FIG. 4)) and coordinate xp minimum value (the lane direction front side (the front side in the figure)) The difference ⁇ xp) from the measurement position on the ⁇ X side in FIG.
  • the vehicle length measurement unit 110 measures the vehicle length of the vehicle A based on the maximum lane direction length among the plurality of lane direction lengths measured based on the plurality of scanning information D8 acquired at different times. .
  • the scanning line S is at any position on the scanning line S and the front end of the vehicle A traveling on the road surface (the end on the farthest lane direction side (the + X side in FIG. 2A)) and , In the lane direction (X direction in FIG. 2A) so as to pass through both the rear end of vehicle A (the end portion closest to the lane direction (the ⁇ X side in FIG. 2A)). In contrast, it extends at a predetermined inclination angle ⁇ . For this reason, the laser scan sensor 20A scans the laser beam along the scanning line S, so that at any position on the scanning line S, the front end and the rear end of the vehicle A are scanned once. Scan information D8 that passes through both of them can be acquired.
  • the scanning information D8 that passes through both the front end and the rear end of the vehicle A in one scan has the maximum lane length.
  • the vehicle length measurement unit 110 measures the maximum lane length based on one piece of scanning information D8 acquired in one scan.
  • a laser scan sensor that cannot acquire scan information that passes through both the front end and the rear end of the vehicle A in a single scan is used, it is based on the respective lane lengths of the plurality of scan information acquired by the plurality of scans. Therefore, the length of the vehicle must be measured.
  • the vehicle length measuring unit 110 in the present embodiment measures the maximum lane direction length based on one piece of scanning information D8 acquired in one scan. For this reason, the vehicle length of the vehicle can be accurately measured by simple processing.
  • the vehicle width measuring unit 111 determines the scanning line position among the measurement positions on the vehicle body surface of the vehicle A based on the scanning information D8 acquired by the laser scan sensor 20A. Coordinate yp minimum value (measurement position on the one side in the width direction of the lane L (-Y side in FIG. 4)) and the coordinate yp maximum value on the scan line position (the other side in the width direction of the lane L (+ Y in FIG. 4)) The measurement position) on the side). Then, the vehicle width measurement unit 111 calculates the difference ⁇ yp between the coordinate yp minimum value and the coordinate yp maximum value as the lane width direction length. The vehicle width measurement unit 111 measures the vehicle width of the vehicle A based on the lane width direction length. Thereby, even if it is vehicle A whose vehicle width is not constant, the maximum vehicle width can be acquired based on a plurality of scanning information D8.
  • the vehicle height measuring unit 112 is based on the scanning information D8 acquired by the laser scan sensor 20A, and the height direction among the measurement positions on the vehicle body surface of the vehicle A.
  • the vehicle height of the vehicle A is measured based on the highest measurement position (coordinate zp maximum value).
  • the vehicle length D9, the vehicle width D10, and the vehicle height D11 are obtained with a simple configuration that only scans along the scanning line S with the laser scan sensor 20A. Can do. For this reason, it is not necessary to install a plurality of devices for measuring the vehicle length D9, the vehicle width D10, and the vehicle height D11, and the installation is easy even in a toll booth where a sufficient installation space cannot be secured. Cost can be reduced.
  • FIG. 6 is a schematic view of the toll collection facility 1 according to the second embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a vehicle type discriminating apparatus 10 according to the second embodiment of the present invention, and shows a top view, a side view, and a front view.
  • the position where the laser distance measuring device 20 is provided is different from the first embodiment.
  • the mounting column 20B of the laser distance measuring device 20 in the present embodiment is provided on the other side in the width direction of the lane L (+ Y side in FIG. 6).
  • the laser scan sensor 20A is installed at an attachment position provided on the attachment column 20B at a position higher than the vehicle height of the vehicle A. That is, the laser scan sensor 20A irradiates laser light toward the road surface from a position higher than the vehicle height of the vehicle A on the island I on the other side in the width direction of the lane L (+ Y side in FIG. 6).
  • the laser scan sensor 20A has lasers with different irradiation angles ⁇ from the mounting position of the mounting column 20B along the scanning line S defined on the road surface. Scan the light.
  • the scanning line S is on the road surface, and even if it is the maximum vehicle height portion of the vehicle having the assumed maximum vehicle length and maximum vehicle height, the front end and the rear end of the vehicle
  • the coordinate position in the lane direction and the coordinate position in the width direction extend in a predetermined range set so as to be measurable by the laser scan sensor 20A.
  • the scanning line S includes a first end E1 disposed on the rear side in the lane direction of the predetermined range (on the + X side in FIG. 7A) and a front side in the lane direction of the predetermined range ((( This is a straight line connecting the second end E2 arranged on the ⁇ X side) in a).
  • the scanning line S defined on the road surface, the imaginary line connecting the laser scan sensor 20A and the first end E1, the laser scan sensor 20A and the second end A scanning plane P is formed on the road surface by an imaginary line connecting the portion E2.
  • the laser beam is scanned from the other side in the width direction of the lane L (the + Y side in FIGS. 7A and 7C).
  • the scanning plane P of this embodiment is formed so as to be inclined to the other side in the width direction of the lane L (the + Y side in FIGS. 7A and 7C) than the first embodiment.
  • the scanning plane P in the present embodiment is formed so as to pass through the side surface on the other side in the width direction of the lane L of the vehicle A (the + Y side in FIG. 7A).
  • the laser scan sensor 20A irradiates a laser beam along the scanning line S to scan the road surface passing through the scanning plane P and the vehicle body surface of the vehicle A, and the laser beam measurement position in the scanning plane P is scanned. get.
  • FIG. 8 is a block diagram of a vehicle type discriminating apparatus according to the second embodiment of the present invention.
  • FIG. 9 is a diagram showing, in time series, examples of scanning information acquired by the laser scan sensor 20A according to the second embodiment of the present invention.
  • the vehicle type discriminating apparatus 10 in the present embodiment includes a tread board 10B, a license plate recognizing unit 10C, a vehicle type discriminating unit 10D, and a vehicle specification measuring device 10E.
  • the vehicle specification measuring device 10E includes a vehicle detector 10A and a laser distance measuring device 20.
  • the laser distance measuring device 20 includes a laser scan sensor 20A and a mounting column 20B.
  • the laser scan sensor 20A acquires scan information D8 corresponding to the time when the laser beam is scanned along the scan line S each time the laser beam is scanned. To do.
  • FIG. 9 is an example of the scanning information D8 at time t7, and shows the scanning information D8 when a part of the vehicle body of the vehicle A is at a position passing through the scanning plane P.
  • the laser light emitted from the laser scan sensor 20A is first irradiated on the road surface along the scanning line S, and then the front surface of the vehicle body of the vehicle A ((a ) To the upper surface of the vehicle body of the vehicle A (the end surface on the + Z side in FIG. 9A).
  • the laser light emitted from the laser scan sensor 20A is first irradiated to the measurement position s1 on the road surface, and then the vehicle A front surface of the vehicle A.
  • the measurement position s2 is irradiated.
  • the position along the scanning line S of the measurement position s1 on the road surface is farther in the lane direction in which the first end E1 is disposed than the position along the scanning line S of the measurement position s2 on the front surface of the vehicle A (see FIG. 9 is close to the + X side in (a).
  • the laser beam is irradiated to a position where the measurement position of the laser beam is switched from the road surface to the front surface of the vehicle body of the vehicle A and the vehicle A and the road surface are not in contact (separated), the laser beam In the scanning information D8 acquired by the scan sensor 20A, the measurement position is discontinuous between the measurement position on the road surface and the measurement position on the vehicle body surface of the vehicle A.
  • FIG. 9B is an example of the scanning information D8 at time t8, when the vehicle moves from the travel position in FIG. 9A to the far side in the lane (+ X side in FIG. 9B). Scan information D8 is shown.
  • the laser light emitted from the laser scan sensor 20A is first irradiated on the road surface along the scanning line S, and then the vehicle body side surface including the tire of the vehicle A (FIG. 7).
  • the laser scan sensor 20A acquires the laser light when the measurement position of the laser light is switched from the road surface to the front surface of the vehicle body of the vehicle A and the vehicle A and the road surface are in contact with each other.
  • the measurement position is continuous between the measurement position on the road surface and the measurement position on the vehicle body surface of the vehicle A.
  • (c) of FIG. 9 is an example of the scanning information D8 at time t9, and when moving from the traveling position of (b) of FIG. 9 to the rear side in the lane direction (+ X side in (c) of FIG. 9). Scan information D8 is shown.
  • FIG. 9C the laser light emitted from the laser scan sensor 20A is first irradiated on the road surface along the scanning line S, and then the vehicle body side surface of the vehicle A (FIG. ) To the upper surface of the vehicle body of the vehicle A (the end surface on the + Z side in FIG. 9C).
  • the laser light emitted from the laser scan sensor 20A is first irradiated to the measurement position s4 on the road surface, and then to the vehicle body side surface of the vehicle A.
  • the measurement position s5 is irradiated.
  • the position along the scanning line S of the measurement position s4 on the road surface is farther in the lane direction in which the first end E1 is disposed than the position along the scanning line S of the measurement position s5 on the vehicle body side surface of the vehicle A (see FIG. 9 is close to the + X side in (a).
  • the scan information D8 acquired by the laser scan sensor 20A is discontinuous between the measurement position on the road surface and the measurement position on the vehicle body surface of the vehicle A.
  • the laser scan sensor 20A outputs the scan information D8 acquired for each time as described above to the vehicle type determination unit 10D as shown in FIG.
  • the vehicle type determination unit 10D includes a vehicle feature measurement unit 101 and a vehicle type classification determination unit 102.
  • the vehicle feature measuring unit 101 measures the number of axles in addition to the vehicle length, the vehicle width, and the vehicle height of the vehicle A among the vehicle features for determining the vehicle type division D1 of the vehicle A. This is different from the first embodiment. For this reason, the vehicle feature measurement unit 101 includes an axle number measurement unit 113 in addition to a vehicle length measurement unit 110, a vehicle width measurement unit 111, and a vehicle height measurement unit 112. Similarly to the first embodiment, the vehicle feature measuring unit 101 determines the road surface based on the vehicle approach information D2 and the vehicle passage information D3 received from the vehicle detector 10A and the scan information D8 received from the laser scan sensor 20A. A plurality of scanning information D8 including information on the vehicle A traveling on the top is extracted.
  • the vehicle length measuring unit 110, the vehicle width measuring unit 111, and the vehicle height measuring unit 112 respectively calculate the vehicle length D9, the vehicle width D10, and the vehicle height D11 of the vehicle A. Measure and output to the vehicle type classification determination unit 102.
  • the axle number measuring unit 113 measures the number of axles of the vehicle A based on a plurality of scanning information D8 including the information of the vehicle A extracted by the vehicle feature measuring unit 101.
  • the laser light emitted from the laser scan sensor 20A is a position where the measurement position of the laser light is switched from the road surface to the front surface of the vehicle body of the vehicle A, and the vehicle A and the road surface are not in contact (separated).
  • the scanning information D8 acquired by the laser scan sensor 20A is obtained from the measurement position on the road surface and the vehicle surface of the vehicle A, as shown in FIGS.
  • the measurement position has a feature that the measurement position is discontinuous.
  • the scanning information D8 acquired by the laser scan sensor 20A has a feature that the measurement positions are continuous between the measurement position on the road surface and the measurement position on the vehicle body surface of the vehicle A.
  • the number-of-axes measuring unit 113 detects a vehicle ground contact position, which is a measurement position where the vehicle A and the road surface are in contact, among the measurement positions in the respective scan information D8, based on the above characteristics of the scan information D8. Specifically, for each measurement position of the scanning information D8, a position (first measurement position) where the measurement position of the vehicle A is detected at a position closest to the first end E1 is detected. The position where the measurement position of the vehicle A is detected is the position where the measurement position where the value of the irradiation height (coordinate zp) is larger than the value of the road surface height is detected in the scanning information D8.
  • the axle number measurement unit 113 determines whether the vehicle A and the road surface are in contact with each other at the first measurement position based on whether the scanning line position at the first measurement position is continuous or discontinuous. Determine whether. In the scanning information D8 at time t7 and time t9 shown in FIGS. 9A and 9C, the scanning line position at the first measurement position (s1 and s2 in FIG. 9A, and in the scanning information D of FIG. 9). s4 and s5) are discontinuous. For this reason, the axle number measuring unit 113 determines that there is no vehicle ground contact position at time t7 and time t9. In the scanning information D8 at time t8 shown in FIG. 9B, the scanning line position at the first measurement position (s3 in FIG. 9B) is continuous.
  • the axle number measuring unit 113 determines that the vehicle has a ground contact position at time t8. As described above, the axle number measuring unit 113 determines the presence / absence of a vehicle ground contact position for all the scanning information D8 received from the vehicle feature measuring unit 101. The vehicle ground contact position where the vehicle A and the road surface are in contact with each other indicates that the tire (axle) of the vehicle A exists as shown in FIG. For this reason, the axle number measuring unit 113 measures the number of axles of the vehicle A that has passed through the scanning plane P by measuring the number of detected vehicle ground contact positions. The axle number measuring unit 113 outputs the measured axle number to the vehicle type classification determining unit 102 as axle number information D12 as shown in FIG.
  • the vehicle type discriminating unit 102 includes the number of axles D4, the tire width D5 and the tread width D6 received from the tread board 10B, the license plate information D7 received from the license plate recognition unit 10C, and the vehicle length D9 received from the vehicle length measuring unit 110.
  • Vehicle type of vehicle A based on vehicle width D10 received from vehicle width measurement unit 111, vehicle height D11 received from vehicle height measurement unit 112, and axle number information D12 received from axle number measurement unit 113.
  • the section D1 is determined.
  • FIG. 10 is a flowchart showing a procedure for measuring vehicle characteristics according to the second embodiment of the present invention.
  • Step ST201 vehicle approach detection
  • the laser scan sensor 20A of the laser distance measuring device 20 always performs laser light irradiation and scanning (laser scanning) along the scanning line S defined on the road surface at predetermined intervals.
  • the vehicle feature measurement unit 101 of the vehicle type identification device 10 determines whether or not the vehicle A has entered the toll gate (step ST201). If vehicle feature measurement unit 101 has not received vehicle entry information D2 from vehicle detector 10A, vehicle feature measurement unit 101 determines that vehicle A has not entered the toll gate (step ST201: No), and vehicle A has entered. Wait until you make a decision. Further, when the vehicle feature measurement unit 101 receives the vehicle entry information D2 from the vehicle detector 10A, the vehicle feature measurement unit 101 determines that the vehicle A has entered the toll gate (step ST201: Yes), and proceeds to the next step ST202.
  • Step ST202 Extraction of scanning information
  • the vehicle feature measurement unit 101 scans the laser scan sensor 20A acquired at the vehicle entry time, which is the time when the vehicle entry information D2 is output.
  • D8 is determined to be scanning information D8 including the vehicle A.
  • the vehicle feature measurement unit 101 is scanning information D8 acquired by the laser scan sensor 20A at a time older than the vehicle entry time, and a measurement position in which the value of the irradiation height (coordinate zp) is larger than the value of the road surface height. Is extracted as scanning information D8 including information on the vehicle A.
  • the vehicle feature measurement unit 101 is scanning information D8 acquired by the laser scan sensor 20A at a time newer than the vehicle entry time, and a measurement position where the value of the irradiation height (coordinate zp) is larger than the value of the road surface height. Is extracted as scanning information D8 including information on the vehicle A (step ST202).
  • Step ST203 Vehicle length measurement
  • the vehicle length measurement unit 110 measures the lane direction length for each of the scanning information D8 extracted by the vehicle feature measurement unit 101.
  • the vehicle length measuring unit 110 detects the maximum lane direction length among the plurality of lane direction lengths measured based on the plurality of scanning information D8.
  • the vehicle length measurement unit 110 measures the vehicle length D9 of the vehicle A based on the maximum lane length (step ST203).
  • the vehicle length measurement unit 110 outputs the measured vehicle length D9 to the vehicle type classification determination unit 102.
  • Step ST204 Vehicle width measurement
  • the vehicle width measurement unit 111 determines the minimum coordinate yp of the scanning line position (one side in the width direction of the lane L (the ⁇ Y side in FIG. 4) for each of the scanning information D8 extracted by the vehicle feature measurement unit 101. ) And the maximum coordinate yp of the scanning line position (measurement position on the other side in the width direction of the lane L (the + Y side in FIG. 4)).
  • the vehicle width measurement unit 111 calculates the difference ⁇ yp between the coordinate yp minimum value and the coordinate yp maximum value as the lane width direction length.
  • the vehicle width measurement unit 111 measures the vehicle width D10 of the vehicle A based on the lane width direction length (step ST204).
  • the vehicle width measurement unit 111 outputs the measured vehicle width D10 to the vehicle type classification determination unit 102.
  • Step ST205 Vehicle height measurement
  • the vehicle height measuring unit 112 has a maximum irradiation height value (coordinate zp) having the largest irradiation height (coordinate zp) among the measurement positions of the scanning information D8 extracted by the vehicle feature measuring unit 101. Maximum value) is detected.
  • the vehicle height measurement unit 112 measures a value obtained by subtracting the road surface height value from the maximum irradiation height value (coordinate zp maximum value) as the vehicle height D11 of the vehicle A (step ST205).
  • the vehicle height measurement unit 112 outputs the measured vehicle height D11 to the vehicle type classification determination unit 102.
  • Step ST206 Measurement of the number of axles
  • the number-of-axes measurement unit 113 detects the measurement position of the vehicle A at the position closest to the first end E1 (first position) for each measurement position of the scanning information D8 extracted by the vehicle feature measurement unit 101. 1 measurement position) is detected.
  • the axle number measurement unit 113 determines whether the vehicle A and the road surface are in contact with each other at the first measurement position based on whether the scanning line position at the first measurement position is continuous or discontinuous. Determine whether.
  • the axle number measuring unit 113 determines the presence or absence of the vehicle ground contact position for all the scanning information D8 extracted by the vehicle feature measuring unit 101.
  • the vehicle ground contact position where the vehicle A and the road surface are in contact with each other indicates that the tire (axle) of the vehicle A exists as shown in FIG.
  • the axle number measuring unit 113 measures the number of axles of the vehicle A that has passed through the scanning plane P by measuring the number of detected vehicle ground contact positions.
  • the axle number measuring unit 113 outputs the measured value of the number of axles to the vehicle type classification determining unit 102 as axle number information D12.
  • the vehicle feature measurement unit 101 ends the measurement of the vehicle features (vehicle length D9, vehicle width D10, vehicle height D11, and axle number information D12).
  • the laser scan sensor 20A is provided at a position higher than the vehicle height of the vehicle A on the other side in the width direction of the lane L (on the + Y side in FIG. 7A). Yes.
  • the laser scan sensor 20A scans the laser beam along the scanning line S defined on the road surface from the position. With this configuration, the laser scan sensor 20A scans the vehicle body surface of the vehicle A including the side surface on the other side in the width direction of the vehicle A (the + Y side in FIG. 7A).
  • the laser scan sensor 20A can acquire the scan information D8 of the position where the tire of the vehicle A and the road surface are in contact with each other and the position where the vehicle A and the road surface are not in contact.
  • the axle number measuring unit 113 detects a vehicle ground contact position, which is a position where the road surface is in contact with the vehicle A, based on the scanning information D8 acquired by the laser scan sensor 20A. Since the vehicle ground contact position is a position where the tire (axle) of the vehicle A is present, the axle number measurement unit 113 measures the number of detected vehicle ground contact positions from among the plurality of scanning information D8.
  • the axle number information D12 can be acquired.
  • the laser scan sensor 20A can acquire the axle number information D12 of the vehicle A before the vehicle A passes the vehicle detection position d. For this reason, even if the installation space of the toll booth is not enough and the driver's seat of the vehicle A reaches the toll collector 11 before the vehicle A passes the vehicle detection position d, the axle Based on the number information D12 and the vehicle length D9, the vehicle width D10, and the vehicle height D11 acquired in the same manner as in the first embodiment, the vehicle type division D1 is determined before the vehicle A passes the vehicle detection position d. Information for performing can be acquired.
  • FIG. 11 is a diagram illustrating an example of a hardware configuration of the vehicle type identification device 10 according to each embodiment of the present invention.
  • the vehicle type identification device 10 includes a memory 810, a storage / reproducing device 820, an IO I / F (Input Output Interface) 830, an external device I / F (Interface) 840, and a communication I / F.
  • An F (Interface) 850, a CPU (Central Processing Unit) 860, and an auxiliary storage device 870 are provided.
  • the memory 810 is a medium such as a RAM (Random Access Memory) that temporarily stores data used in the program of the vehicle type identification device 10.
  • the storage / reproduction device 820 is a device for storing data in an external medium such as a CD-ROM, a DVD, a flash memory, etc., and reproducing data in the external medium.
  • the IO I / F 830 is an interface for inputting and outputting information and the like with each device of the fee collection facility 1.
  • the external device I / F 840 is an interface for performing control of devices included in the vehicle type identification device 10 and transmission / reception of information and the like.
  • the external device I / F 840 performs control of the vehicle detector 10A, the tread board 10B, the license plate recognition unit 10C, and the laser scan sensor 20A, and transmission / reception of information and signals.
  • the communication I / F 850 is an interface for the vehicle type identification device 10 to communicate with an external server via a communication line such as the Internet.
  • the CPU 860 executes a program and controls to execute each function of the vehicle type identification device 10.
  • the vehicle type determination device 10 performs control so as to determine the vehicle type division D1 of the vehicle A.
  • the auxiliary storage device 870 is for recording a program executed by the CPU 860, data used when the program is executed, and generated data.
  • the auxiliary storage device 870 is an HDD (Hard Disk Drive), a flash memory, or the like.
  • the program of the vehicle type discriminating apparatus 10 may be recorded on an external medium such as a CD-ROM, DVD, flash memory, etc. In this case, writing (storing) and reading (reproducing) from the storage / reproducing apparatus 820 to the external medium )I do. You may read the program memorize
  • the CPU 860 executes the program described above, whereby the vehicle feature measurement unit 101, the vehicle type classification determination unit 102, the vehicle length measurement unit 110, the vehicle width measurement unit 111, the vehicle height measurement unit 112, and the axle number measurement unit of the vehicle type determination device 10 are executed. 113 functions.
  • the CPU 860 performs various processes, the data generated by each process is stored in the auxiliary storage device 870.
  • the laser scan sensor 20A has been described with respect to the example in which the laser beam is constantly scanned along the scanning line S.
  • the laser light passes through both the front end and the rear end of the vehicle A at any position on the scanning line S after the vehicle A exceeds the vehicle detection position d and reaches the first end E1.
  • the laser scan sensor 20A may scan the laser light after the vehicle detector 10A detects the entry of the vehicle A. Also by this, it is possible to obtain the same effect as described above.
  • the laser scan sensor 20A may be arranged at a position different from the position where the vehicle detector 10A is installed in the lane direction.
  • the laser scan sensor 20A may be disposed on the front side in the lane direction ( ⁇ X side in FIG. 1) of the vehicle detector 10A, or on the rear side in the lane direction (+ X side in FIG. 1) of the vehicle detector 10A. ).
  • the vehicle feature measurement unit 101 applies one vehicle A out of the plurality of scanning information D8 received from the laser scan sensor 20A based on the vehicle approach information D2 received from the vehicle detector 10A.
  • the vehicle feature measurement unit 101 includes information on the vehicle A by determining whether or not the value of the irradiation height (coordinate zp) in each scanning information D8 has position information larger than the value of the road surface height. Therefore, the vehicle detector 10A may be omitted.
  • the vehicle length measurement unit 110 determines that the laser light emitted by the laser scan sensor 20A is on the vehicle body surface of the vehicle A based on the scanning information D8 that the vehicle feature measurement unit 101 determines to include the vehicle A.
  • the lane direction length which is the lane direction component of the length scanned is measured.
  • the vehicle length measuring unit 110 measures the vehicle length D9 of the vehicle A based on the maximum lane direction length among the plurality of lane direction lengths measured based on the plurality of scanning information D8 acquired at different times.
  • the vehicle width measuring unit 111 is based on the scanning information D8 determined by the vehicle feature measuring unit 101 to include the vehicle A, and is the most lane among the measurement positions of the scanning information D8 on the vehicle body surface of the vehicle A.
  • the vehicle A Based on the length in the lane width direction from the measurement position on the one side in the width direction (coordinate yp of the scanning line position) to the measurement position on the other side in the lane width direction (maximum coordinate yp of the scanning line position), the vehicle A The vehicle width D10 is measured. Based on the scanning information D8 that the vehicle feature measuring unit 101 determines that the vehicle A is included, the vehicle height measuring unit 112 determines the height among the measurement positions on the vehicle body surface of the vehicle A in the scanning information D8. The vehicle height D11 of the vehicle A is measured based on the measurement position (coordinate zp maximum value) having the highest position in the direction.
  • the axle number measuring unit 113 detects a vehicle ground contact position where the vehicle A and the road surface are in contact with each other in the scanning information D8 based on the scanning information D8 determined by the vehicle feature measuring unit 101 to include the vehicle A. Based on the detected number of the vehicle ground contact position, the axle number information D12 of the vehicle A is measured. As a result, the vehicle type identification device 10 can have a simpler configuration.
  • vehicle specification measuring device vehicle type discriminating device, vehicle specification measuring method and program
  • vehicle specification measuring method and program it can be installed even at a toll gate where sufficient space cannot be secured, and before the vehicle enters the toll gate.
  • Information for determining the vehicle type of the vehicle can be acquired based on the acquired information.

Abstract

 車両諸元計測装置は、車線方向に規定された所定の車両検知位置において、路面上を走行する車両の通過を検知する車両検知器と、前記車両の車高よりも高い位置から前記路面に向けてレーザ光を照射するとともに当該路面上に規定される走査線に沿って当該レーザ光を走査し、走査面内における当該レーザ光の計測位置を示す走査情報を取得するレーザスキャンセンサと、を備える。

Description

車両諸元計測装置、車種判別装置、車両諸元計測方法及びプログラム
 本発明は、車両諸元計測装置、車種判別装置、車両諸元計測方法及びプログラムに関する。
 本願は、2015年3月11日に、日本に出願された特願2015-048111号に基づき優先権を主張し、その内容をここに援用する。
 有料道路等の料金所には、料金を収受するための料金収受設備が設けられている。このような料金収受設備は、利用者との間で料金の収受処理を行う料金自動収受機と、走行する車両の車種を判別する車種判別装置とを備えている。料金自動収受機は、車種判別装置によって判別された車種に応じた料金の収受を行う。
 このような料金収受設備において、例えば、走行する車両の車長、車幅及び車高等の特徴を取得する車両検知器と、車両のタイヤによる踏付けを検出して当該車両の車軸数、タイヤ幅及びトレッド幅等の特徴を取得する踏板と、を備える車種判別装置が設けられている。車種判別装置は、上記車両検知器及び踏板により検出された車両の特徴に基づいて、当該車両の車種の判別を行っている。
 また、例えば特許文献1では、車両の特徴を取得する手段として、車線の幅方向一方側の路側に設置されたレーザセンサと、レーザセンサから照射されたパルスレーザビームを所定の反射角度で反射するように車線の幅方向他方側の路側に設置された複数の反射ミラーとにより、走行する車両の車長や車幅等を計測する方法が開示されている。更に、特許文献2では、車線の上方に設けられたレーザスキャンセンサにより、走行する車両の車高、車長及び車幅を計測する方法が開示されている。
 通常の料金所において、料金自動収受機は、利用者との料金収受処理を行う時点で、利用料金を確定しておく必要があるため、車両の運転席が料金自動収受機に到達する前の段階で、車種判別装置による車種の判別結果を取得していなければならない。
 ここで、車両が料金所に進入する際に、当該車両のタイヤが踏板を踏み付けた回数を検出することにより、当該車両の車軸数を取得することができる。しかしながら、車種判別のための情報の一つとして車軸数を用いる場合には、車両の運転席が料金自動収受機に到達する前の段階で、対象となる車両の全てのタイヤが踏板を通過している必要がある。そのため、通常の料金所においては、通行する車両の最大車長(例えば18m)を考慮して、車種判別装置と料金自動収受機との間が少なくとも最大車長以上となるように配置されている。
特開2001-143188号公報 国際公開第03/052457号
 しかしながら、例えば、料金所に十分なスペースが無く、車種判別装置と料金自動収受機との距離を車両の最大車長以上確保することが困難な場合がある。この場合、上述のような踏板を利用した車種判別装置では、車種判別装置と料金自動収受機との距離よりも車長が長い車両については、全てのタイヤが踏板を通過する前に車両の運転席が料金自動収受機に到達してしまう。そのため、車種判別装置は、車軸数や車長等の取得が完了する前に車種の判別を行わなければならず、車種判別装置と料金自動収受機との距離よりも車長が長い車両については、車種の判別を行うための情報が不足して、車種の判別が正しく行えない可能性がある。
 本発明は、このような課題に鑑みてなされたものであって、十分なスペースが確保できない料金所であっても設置が可能であり、車両が料金所に進入する以前に取得した情報に基づいて車両の車種の判別を行うための情報を取得することができる車両諸元計測装置、車種判別装置、車両諸元計測方法及びプログラムを提供する。
 本発明の一態様によれば、車両諸元計測装置(10E)は、車線方向に規定された所定の車両検知位置(d)において、路面上を走行する車両(A)の通過を検知する車両検知器(10A)と、前記車両の車高よりも高い位置から前記路面に向けてレーザ光を照射するとともに当該路面上に規定される走査線(S)に沿って当該レーザ光を走査し、走査面(P)内における当該レーザ光による計測位置を示す走査情報(D8)を取得するレーザスキャンセンサ(20A)と、を備え、前記レーザスキャンセンサは、少なくとも前記車両検知位置を含む当該車両検知位置よりも前記車線方向手前側の所定範囲において、前記車線方向に対し傾斜する方向に延在する前記走査線に沿って前記レーザ光を照射する。
 このような構成とすることで、車両諸元計測装置の車両検知器は路面上を走行する車両の通過を検知し、レーザスキャンセンサは車両の車高よりも高い位置から路面に向けてレーザ光を照射するとともに路面上に規定される走査線に沿ってレーザ光を走査し、走査面内における当該レーザ光による計測位置を示す走査情報を取得する。また、レーザスキャンセンサは、少なくとも車両検知位置と当該車両検知位置よりも車線方向手前側の所定位置とを含み、前記車線方向に対し傾斜する方向に延在する走査線に沿ってレーザ光を照射する。
 レーザスキャンセンサは、車両の車高よりも高い位置から路面に向けてレーザ光を照射することにより、車両の車高を計測可能な走査情報を取得することができる。また、走査線が車線方向に対して傾斜していることにより、車両の車長及び車幅を計測可能な走査情報を取得することができる。このため、レーザスキャンセンサは、一連の走査で、車両の車長、車幅及び車高を計測可能な走査情報を取得することができる。また、レーザスキャンセンサは、車両検知位置よりも車線方向手前側の所定位置を含む走査線に沿ってレーザ光の走査を行うため、車両が車両検知位置を通過する前に、車線方向手前側を走行する車両を含む走査情報を取得することができる。このため、料金所の設置スペースが十分ではなく、車両が車両検知位置を通過する前に車種の判別を行わなければならない場合であっても、当該車両を含む走査情報に基づいて、車種の判別を行うための情報を取得することができる。
 本発明の一態様によれば、前記レーザスキャンセンサは、少なくとも前記車両検知位置よりも前記路面上を走行する前記車両の最大車長以上、前記車線方向手前側の前記所定範囲において前記走査線が延在する。
 このような構成とすることで、レーザスキャンセンサは、少なくとも車両検知位置よりも路面上を走行する車両の最大車長以上、車線方向手前側の所定範囲において走査線が延在する。これにより、最大車長を有する車両を含むいかなる車両であっても、当該車両が車両検知位置を通過する前に、当該車両全体を走査して、当該車両Aの走査情報を取得することができる。このため、料金所の設置スペースが十分ではなく、車両が車両検知位置を通過する前に車種の判別を行わなければならない場合であっても、当該車両の走査情報に基づいて、車種の判別を行うための情報を取得することができる。
 本発明の一態様によれば、前記走査情報に基づいて前記レーザ光が前記車両の車体面上を走査した長さの車線方向成分である車線方向長を計測し、異なる時刻に取得された複数の前記走査情報に基づいて計測された複数の前記車線方向長のうち最大の車線方向長に基づいて、当該車両の車長を計測する車長計測部(110)を更に備える。
 このような構成とすることで、車長計測部は、走査情報に基づいてレーザ光が車両の車体面上を走査した長さの車線方向成分である車線方向長を計測し、異なる時刻に取得された複数の走査情報に基づいて計測された複数の車線方向長のうち最大の車線方向長に基づいて、車両の車長を計測する。最大の車線方向長は、一回の走査で車両の前端から後端までを走査したときの車線方向長を計測したものである。このため、複数の車線方向長に基づいて車両の車長を計測するよりも、車両の移動距離を考慮する必要がなく、簡易な処理で正確に車両の車長を計測することができる。
 本発明の一態様によれば、前記走査情報の前記車両の車体面上における前記計測位置のうち、最も車線幅方向一方側における計測位置から最も車線幅方向他方側における計測位置までの車線幅方向長に基づいて、当該車両の車幅を計測する車幅計測部(111)を更に備える。
 このような構成とすることで、車幅計測部は、走査情報の車両の車体面上における計測位置のうち、最も車線幅方向一方側における計測位置から最も車線幅方向他方側における計測位置までの車線幅方向長に基づいて車両の車幅を計測する。これにより、車幅が一定ではない車両であっても、複数の走査情報に基づいて、最大の車幅を取得することができる。
 本発明の一態様によれば、前記走査情報の前記車両の車体面上における前記計測位置のうち、高さ方向における位置が最も高い計測位置に基づいて、当該車両の車高を計測する車高計測部(112)を更に備える。
 このような構成とすることで、車高計測部は、走査情報の車両の車体面上における計測位置のうち、高さ方向における位置が最も高い計測位置に基づいて、当該車両の車高を計測する。これにより、車高が一定ではない車両であっても、複数の走査情報に基づいて、最大の車高を取得することができる。
 本発明の一態様によれば、前記走査情報における前記車両と前記路面とが接する車両接地位置を検出し、当該車両接地位置の検出数に基づいて、当該車両の車軸数を計測する車軸数計測部(113)を更に備える。
 このような構成とすることで、車軸数計測部は、走査情報における車両と路面とが接する車両接地位置を検出し、当該車両接地位置の検出数に基づいて、当該車両の車軸数を計測する。これにより、料金所の設置スペースが十分ではなく、車両が車両検知位置を通過する前に車種の判別を行わなければならない場合であっても、当該車軸数に基づいて、車種の判別を行うことができる。
 本発明の一態様によれば、車両諸元計測装置は、路面上を走行する車両の車高よりも高い位置から前記路面に向けてレーザ光を照射するとともに当該路面上に規定される走査線に沿って当該レーザ光を走査し、走査面内における当該レーザ光による計測位置を示す走査情報を取得するレーザスキャンセンサを備え、前記レーザスキャンセンサは、車線方向手前側の所定範囲において、前記車線方向に対し傾斜する方向に延在する前記走査線に沿って前記レーザ光を照射する。
 本発明の一態様によれば、車種判別装置は、上述の何れか一の態様における車両諸元計測装置と、前記レーザスキャンセンサにより異なる時刻に取得された複数の前記走査情報と、前記車両検知器による前記車両の検知時刻と、に基づいて、前記車両の車種を判別する車種判別部(10D)と、を備える。
 このような構成とすることで、車種判別部は、レーザスキャンセンサにより異なる時刻に取得された複数の走査情報と、車両検知器による車両の検知時刻とに基づいて、車両の車種の判別を行う。これにより、車種判別部は、車両検知位置に進入する前に取得された走査情報が、車両検知位置を通過中の車両の情報を含むか否かを判断することができる。車種判別部は、車両検知位置を通過中の車両の情報を含む走査情報に基づいて、車種の判別を行うための情報を取得し、当該情報に基づいて車種の判別を行うことができる。
 本発明の一態様によれば、車両諸元計測方法は、車線方向に規定された所定の車両検知位置において、路面上を走行する車両の通過を検知する車両検知ステップと、前記車両の車高よりも高い位置から前記路面に向けてレーザ光を照射するとともに当該路面上に規定される走査線に沿って当該レーザ光を走査し、走査面内における当該レーザ光の計測位置を示す走査情報を取得するレーザスキャンステップと、を有し、前記レーザスキャンステップは、少なくとも前記車両検知位置と当該車両検知位置よりも前記車線方向手前側の所定位置とを含み、前記車線方向に対し傾斜する方向に延在する前記走査線に沿って前記レーザ光を照射する。
 本発明の一態様によれば、路面上を走行する車両の諸元を計測する車両諸元計測装置のコンピュータのプログラムであって、前記プログラムは、前記コンピュータを、車線方向に規定された所定の車両検知位置において、路面上を走行する前記車両の通過を検知する車両検知部、前記車両の車高よりも高い位置から前記路面に向けてレーザ光を照射するとともに当該路面上に規定される走査線に沿って当該レーザ光を走査し、走査面内における当該レーザ光の計測位置を示す走査情報を取得するレーザスキャン部、として機能させる。
 上述の車両諸元計測装置、車種判別装置、車両諸元計測方法及びプログラムによれば、十分なスペースが確保できない料金所であっても設置が可能であり、車両が料金所に進入する以前に取得した情報に基づいて車両の車種の判別を行うための情報を取得することができる。
本発明の第1の実施形態に係る料金収受設備の概略図である。 本発明の第1の実施形態に係る車種判別装置の概略図であって、上面図と、側面図と、正面図とを示す図である。 本発明の第1の実施形態に係る車種判別装置のブロック図である。 本発明の第1の実施形態に係るレーザスキャンセンサが取得する走査情報の例である。 本発明の第1の実施形態に係る車両特徴を計測する手順を示すフローチャートである。 本発明の第2の実施形態に係る料金収受設備の概略図である。 本発明の第2の実施形態に係る車種判別装置の概略図であって、上面図と、側面図と、正面図とを示す図である。 本発明の第2の実施形態に係る車種判別装置のブロック図である。 本発明の第2の実施形態に係るレーザスキャンセンサが取得する走査情報の例を時系列に示す図である。 本発明の第2の実施形態に係る車両特徴を計測する手順を示すフローチャートである。 本発明の車種判別装置のハードウェア構成の例を示す図である。
<第1の実施形態>
(全体構成)
 以下、本発明の第1の実施形態に係る料金収受設備1について図面を参照して説明する。
 図1は第1の実施形態に係る料金収受設備1の概略図である。
 本実施形態において、料金収受設備1は、図1に示すように有料道路の出口料金所に設置され、有料道路の利用者である車両Aの運転者から利用料金を収受する。
 本実施形態における料金収受設備1は、図1に示すように、車種判別装置10と、料金自動収受機11と、発進制御機13と、発進検知器14とを備えている。
 料金収受設備1は、車線Lの両側部に配置されたアイランドI上に設けられ、車線L上に停止した車両Aとの間で料金収受処理を行うための設備である。
 以降の説明において、車線Lに沿う方向を車線方向(図1におけるX方向)と称する。また、車線L上で車両Aが進む方向側(図1における+X側)を車線方向奥側と称し、車両Aが進む方向側とは反対側(図1における-X側)を車線方向手前側と称する。更に、車線Lの幅方向を幅方向(図1におけるY方向)と称し、車両Aの車高方向を高さ方向(図1におけるZ方向)と称する。
 車種判別装置10は、図1に示すように、車線方向手前側(図1における-X側)に設けられ、料金所の車線Lに進入する車両Aの車両特徴を検出して、当該車両Aの車種区分D1(図3)を判別するための装置群である。本実施形態において、車種判別装置10は、踏板10Bと、ナンバープレート認識部10Cと、車両諸元計測装置10Eとを備えている。また、車両諸元計測装置10Eは、車両検知器10Aと、レーザ距離計測装置20とを備えている。
 ここで、車両Aの車種区分D1とは、有料道路の料金を決定するための車種を示すものであり、本実施形態に係る車種判別装置10は、例えば、「軽自動車等」、「普通車」、「中型車」、「大型車」、「特大車」の五つの区分を判別する。また、車両Aの車両特徴とは、車線Lに進入する車両A固有の情報である。本実施形態において、車両特徴は、車両Aのナンバープレート情報(車両登録情報及びナンバープレートの大きさ)や、車軸数、タイヤ幅及びトレッド幅や、車長、車幅及び車高等の情報を示す。車種判別装置10は、これら車両特徴に基づいて、車種区分D1の判別を行う装置である。なお、車種判別装置10の備える踏板10B、ナンバープレート認識部10C及び車両諸元計測装置10Eの具体的な構成については、図2及び図3を参照して後述する。
 料金自動収受機11は、図1に示すように、車種判別装置10よりも車線方向奥側(図1における+X側)に設けられている。また、料金自動収受機11は、本実施形態においては、車線Lの幅方向一方側(図1における-Y側)に設けられているが、他の実施形態においては、車線Lの幅方向他方側(図1における+Y側)に設けられていてもよい。
 料金自動収受機11は、車両Aの車種区分D1と、有料道路の走行距離とに応じた利用料金を、車両Aの運転者に課金する。
 発進制御機13は、車線Lに進入した車両Aの利用料金の収受が完了するまで、車両Aを発進させないようにする等の目的で、ゲートの開放及び閉塞を行う。図1に示すように、発進制御機13は、車線Lにおける料金自動収受機11よりも車線方向奥側(図1における+X側)に設けられている。発進制御機13は、料金自動収受機11から開動作指示信号が入力された際にゲートを開き、車両Aに対して発進を許可する。同様に、発進制御機13は、料金自動収受機11から閉動作指示信号が入力された際にゲートを閉じる。
 発進検知器14は、車線Lにおける発進制御機13よりも車線方向奥側(図1における+X側)に設けられ、車両Aが車線Lから退出したかどうかを検出する。発進検知器14の検出信号は、料金自動収受機11へ出力される。料金自動収受機11は、発進検知器14からの検出信号の入力を受け付けると、ゲートを閉じるために発進制御機13に閉動作指示信号を出力する。
(車種判別装置の構成)
 次に、車種判別装置の構成について、図1から図3を参照して説明する。
 図2は本発明の第1の実施形態に係る車種判別装置10の概略図であって、上面図と、側面図と、正面図とを示す図である。
 図3は本発明の第1の実施形態に係る車種判別装置10のブロック図である。
 図1及び図2の(a)~(c)に示すように、車種判別装置10は、踏板10Bと、ナンバープレート認識部10Cと、車両諸元計測装置10Eと、を備えている。また、車両諸元計測装置10Eは、車両検知器10Aと、レーザ距離計測装置20とを備えている。更に、車種判別装置10は、これら検出用装置が検出する信号に基づいて、車両Aの車種区分D1を判別するための車種判別部10Dを備えている。
 なお、本実施形態において、車種判別部10Dが車種判別装置10(例えば図1に示すように車両検知器10A)に内蔵されている態様で説明するが、この態様に限定されない。例えば、他の実施形態においては、車種判別部10Dがネットワーク上に接続された車種判別装置10以外の装置に内蔵されていてもよい。
 車両検知器10Aは、料金自動収受機11よりも車線方向手前側(図1における-X側)において、車線Lの両側側に投受光一対設けられている。車両検知器10Aは、高さ方向(図1におけるZ方向)に配列された不図示の受光センサにより、車両Aの車線Lへの進入に応じた検出信号を車種判別部10Dへ出力する。車両検知器10Aは、車線Lに進入した車両Aが受光センサに投光される光を遮ることで、車両A一台ごとの進入及び通過を検出可能な検出信号を車種判別部10Dへ出力する。具体的には、車両検知器10Aは、図3に示すように、車両Aが車線Lに進入したことを検出可能な検出信号を車両進入情報D2として車種判別部10Dへ出力し、車両Aが車両検知器10Aを通過したことを検出可能な検出信号を車両通過情報D3として車種判別部10Dへ出力する。
 踏板10Bは、図1及び図2の(a)~(c)に示すように、車線方向(図1におけるX方向)において、車両検知器10Aが設置されている位置と同じ位置の車線Lの路面上に設けられている。踏板10Bは、内部に電気接点を利用した不図示の踏圧センサを有し、当該踏圧センサを通じて車線Lに進入した車両Aによる踏圧の、幅方向(図1におけるY方向)における踏圧位置及び踏圧幅に応じて、当該車両Aの車軸数D4と、タイヤ幅D5と、トレッド幅D6とを特定可能な検出信号を検出する。踏板10Bは、検出した検出信号を、図3に示すように、車種判別部10Dへ出力する。なお、車軸数D4は、車両検知器10Aが車両進入情報D2を出力してから車両通過情報D3を出力するまでの間に、踏板10Bより出力された検出信号に基づいて求められる値である。
 ナンバープレート認識部10Cは、図1及び図2の(a)~(c)に示すように、車両検知器10Aよりも車線方向奥側(図1における+X方向)に設けられている。ナンバープレート認識部10Cは、車両検知器10Aによる車両Aの進入検知に応じて、車両Aのナンバープレートを含む車両Aの前面画像を撮影し、車両Aのナンバープレート情報(車両登録情報及びナンバープレートの大きさ)を取得する。ナンバープレート認識部10Cは、図3に示すように、取得したナンバープレート情報を、ナンバープレート情報D7として車種判別部10Dへ出力する。
 レーザ距離計測装置20は、路面に向けてレーザ光の照射及び走査(レーザスキャン)を行うレーザスキャンセンサ20Aと、レーザスキャンセンサ20Aを車両Aの車高よりも高い位置であって、車線Lの幅方向(図1におけるY方向)の略中央の取付位置に設置するための取付支柱20Bとを有している。
 なお、本実施形態において、取付支柱20Bは、図1に示すように片持ちのカンチレバーである例について説明するが、他の実施形態においては、車線Lを幅方向(図1におけるY方向)に設置されるガントリー等であってもよい。また、ETC(登録商標、Electronic Toll Collection)システムで使用するガントリーが設置されている料金所においては、当該ガントリーにレーザスキャンセンサ20Aを設置してもよい。
 図2の(a)~(c)に示すように、レーザスキャンセンサ20Aは、取付支柱20Bの取付位置より、路面上に規定される走査線Sに沿って、異なる複数の照射角度でレーザ光を走査する。
 走査線Sは、路面上であって、車両検知器10Aが設置されている車両検知位置dを含む当該車両検知位置dよりも車線方向手前側(図2の(a)における-X側)の所定範囲において、車線方向に対し傾斜する方向に延在する。また、走査線Sは、少なくとも路面上を走行する車両Aの最大車長以上、車線方向手前側(図2の(a)における-X側)側の所定範囲において延在する。
 なお、所定範囲とは、具体的には、想定される最大車長及び最大車高を有する車両の最大車高部分であっても、当該車両の前端(最も車線方向奥側(図2の(a)における+X側)の端部)及び後端(最も車線方向手前側(図2の(a)における-X側)の端部)の車線方向(図2の(a)におけるX方向)における座標の位置と、幅方向(図2の(a)におけるY方向)における座標の位置とを、レーザスキャンセンサ20Aにより計測可能となるように設定された範囲である。
 走査線Sは、当該所定範囲の車線方向奥側(図2の(a)における+X側)に配置された第一端部E1と、当該所定範囲の車線方向手前側(図2の(a)における-X側)に配置された第二端部E2とを結ぶ直線である。
 また、走査線Sは、走査線S上の何れかの位置で、路面上を走行する車両Aの前端と、車両Aの後端との両方を通るように、車線方向(図2の(a)におけるX方向)に対して所定の傾斜角度φで傾斜して、第一端部E1から第二端部E2まで延在している。
 レーザスキャンセンサ20Aは、一回の走査で、走査線Sに沿って第一端部E1から第二端部E2までレーザ光の走査を行う。本実施形態において、レーザスキャンセンサ20Aは、所定の間隔毎に一回の走査を行うように設定されている。つまり、異なる時刻に複数の走査を行う。
 なお、本実施形態において、レーザスキャンセンサ20Aは第一端部E1から第二端部E2に向かってレーザ光を走査する例について説明するが、他の実施形態においては、第二端部E2から第一端部E1に向かってレーザ光を走査してもよい。
 図2の(a)~(c)に示すように、路面上に規定される走査線Sと、レーザスキャンセンサ20A及び第一端部E1を結ぶ仮想線と、レーザスキャンセンサ20A及び第二端部E2を結ぶ仮想線とにより、路面上に走査面Pが形成される。
 レーザスキャンセンサ20Aは、走査線Sに沿って、複数の照射角度でレーザ光を照射することにより、走査面P内を通る路面及び車両Aの車体面上を走査し、当該走査面P内におけるレーザ光による計測位置を取得する。なお、走査面P内における照射角度を照射角度θとする。
 ここで、レーザ光による計測位置とは、走査面P内における路面上及び車両Aの車体面上において、レーザ光が照射されている高さ方向(図2の(b)におけるZ方向)における位置(以下、「照射高さ」)と、当該レーザ光が照射されている走査線Sに沿う位置(以下、「走査線位置」)と、を表す情報である。
 レーザスキャンセンサ20Aは、各計測位置におけるレーザ光の照射角度θに対応する、当該計測位置までの距離Lenを計測する。また、レーザスキャンセンサ20Aは、車線方向(図4におけるX方向)の位置を座標x、車線Lの幅方向(図4におけるY方向)の位置を座標y、高さ方向(図4におけるZ方向)の位置を座標zとし、レーザスキャンセンサ20Aが設置されている位置と同じ位置の路面上の座標を原点座標(x0、y0、z0)に設定する。そして、レーザスキャンセンサ20Aは、各計測位置について、レーザスキャンセンサ20Aの車線Lの幅方向に対する傾きωと、走査線Sの傾斜角度φと、各計測位置におけるレーザ光の照射角度θ及び距離Lenと、に基づき、当該計測位置における座標xp、座標yp及び座標zpを算出する。
 なお、各計測位置における座標xp及び座標ypは走査線位置を表し、座標ypは照射高さを表す。
 レーザスキャンセンサ20Aは、図3に示すように、一回の走査で取得した複数の計測位置を、走査情報D8として車種判別部10Dへ出力する。
 車種判別部10Dは、車両検知器10Aと、踏板10Bと、ナンバープレート認識部10Cと、レーザ距離計測装置20と、から受信した各情報に基づいて、車両Aの車種区分D1を判別する。
(車種判別装置の機能)
 次に、車種判別装置10の機能について、図3及び図4を参照して説明する。
 図4は本発明の第1の実施形態に係るレーザスキャンセンサ20Aが取得する走査情報D8の例である。
 車種判別装置10は、図3に示すように、踏板10Bと、ナンバープレート認識部10Cと、車種判別部10Dと、車両諸元計測装置10Eとを備えている。また、車両諸元計測装置10Eは、車両検知器10Aと、レーザ距離計測装置20とを備えている。
 車両検知器10Aは、車両Aが車線Lに進入したことを示す車両進入情報D2と、車両Aが車両検知器10Aを通過したことを示す車両通過情報D3とを、車種判別部10Dへ出力する。
 踏板10Bは、車両Aが踏板10Bを踏み付けにより検出した各種検出信号を、車軸数D4、タイヤ幅D5及びトレッド幅D6として車種判別部10Dへ出力する。
 ナンバープレート認識部10Cは、取得したナンバープレート情報D7を車種判別部10Dへ出力する。
 レーザ距離計測装置20は、図3に示すように、レーザスキャンセンサ20Aと取付支柱20Bとを備えている。
 レーザスキャンセンサ20Aは、図4に示すように、走査線Sに沿ってレーザ光の走査を行う毎に、当該走査を行った時刻に対応する走査情報D8を取得する。
 図4に示す走査情報D8の横軸はレーザ光が照射されている走査線位置(座標xp及び座標yp)を示す。図4の例では、座標xpの値において、「e」は走査線S上における最も車線方向奥側(図4における+X側)の座標xpから最も車線方向手前側(図4における-X側)の座標xpまでの距離を示す。また、座標ypの値において、「e」は走査線S上における最も幅方向一方側(図4における-Y側)から最も幅方向他方側(図4における+Y側)までの距離を示す。「e」の左端は走査線Sにおける第一端部E1に対応する走査線位置である。また、「e」の右端は走査線Sにおける第二端部E2に対応する走査線位置である。また、図4に示す走査情報D8の縦軸は、照射高さ(座標zp)を示している。
 さらに、図4はレーザスキャンセンサ20Aがレーザ光の走査を行った時刻毎に、複数の走査情報D8を並べたものであり、下端が最も古い時刻を、上端が最も新しい時刻を示している。
 図4の例では、時刻t1では、車両Aは走査面P内に進入していない。このため、レーザスキャンセンサ20Aが時刻t1で取得する走査情報D8には、車両Aの車体面上における計測位置を示す値は計測されていない。
 時刻t2では、車両Aの一部が走査面P内に進入し、車両Aと走査面Pとが接する位置においてレーザ光が車両Aの車体面上に照射されている。このため、レーザスキャンセンサ20Aが時刻t2で取得する走査情報D8には、当該レーザ光の車両Aの車体面上における計測位置を示す値(図4の「f」)が計測される。
 時刻t3では、車両Aの前端から後端までが走査面P内に進入し、車両Aと走査面Pとが接する位置においてレーザ光が車両Aの車体面上に照射されている。このため、レーザスキャンセンサ20Aが時刻t3で取得する走査情報D8には、当該レーザ光の車両Aの車体面上における計測位置を示す値(図4の「a」)が計測される。
 時刻t6では、車両Aは走査面P内の範囲から退出している。このため、レーザスキャンセンサ20Aが時刻t6で取得する走査情報D8には、車両Aの車体面上における計測位置を示す値は計測されていない。
 レーザスキャンセンサ20Aは、このように時刻毎に計測した走査情報D8を、図3に示すように、車種判別部10Dへ出力する。
 図3に示すように、車種判別部10Dは、車両Aの車長D9、車幅D10及び車高D11を計測する車両特徴計測部101と、車両Aの車種区分D1を判定する車種区分判別部102とを有している。
 車両特徴計測部101は、車両Aの車種区分D1を判別するための車両特徴のうち、車両Aの車長D9と、車幅D10と、車高D11とを計測する。車両特徴計測部101は、車両Aの車長D9を計測する車長計測部110と、車両Aの車幅D10を計測する車幅計測部111と、車両Aの車高D11を計測する車高計測部112とを有している。
 車両特徴計測部101は、車両検知器10Aから受信した車両進入情報D2に基づいて、レーザスキャンセンサ20Aから受信した複数の走査情報D8のうち一台の車両Aに関連する走査情報D8を抽出する。本実施形態において、車両特徴計測部101は、走査情報D8の各計測位置について、照射高さ(座標zp)の値が所定の高さ(以下、「路面高さ」)の値より大きい値を有する場合、車両Aの車体面上を照射しているものと判断する。
 車両Aが、図4の例に示す時刻t4の時点で車両検知位置dに到達すると、車両検知器10Aは車両Aの進入を検知して、車両進入情報D2を車種判別部10Dへ出力する。車種判別部10Dの車両特徴計測部101は、当該車両進入情報D2を受信することにより、当該車両進入情報D2が出力された時刻t4(以下、「車両進入時刻」)と同時刻に出力された走査情報D8(図4における時刻t4の走査情報D8)が当該車両Aの情報が含まれる走査情報D8であると判断する。
 次に、車両特徴計測部101は、車両進入時刻よりも古い時刻に出力された走査情報D8を参照し、当該車両Aの情報を含む走査情報D8を抽出する。例えば、図4では、時刻t2から時刻t4までに取得された走査情報D8は、照射高さ(座標zp)の値が路面高さの値よりも大きい位置情報を有している。しかしながら、時刻t2よりも過去の時刻に取得された走査情報D8は、照射高さ(座標zp)の値が路面高さの値よりも大きい位置情報を有していない。このため、車両特徴計測部101は、時刻t2から時刻t4までに取得された走査情報D8に車両Aの情報が含まれていると判断する。
 また、車両特徴計測部101は、車両進入時刻よりも新しい時刻に出力された走査情報D8をレーザスキャンセンサ20Aから受信すると、当該走査情報D8に車両Aの情報が含まれるか否かを判断する。図4の例では、車両進入時刻より新しい時刻の走査情報D8のうち、時刻t5に出力された走査情報D8は照射高さ(座標zp)の値が路面高さの値よりも大きい位置情報を有し、時刻t6以降に出力された走査情報は照射高さ(座標zp)の値が路面高さの値よりも大きい位置情報を有していない。このため、車両特徴計測部101は、時刻t5までの走査情報D8に車両Aの情報が含まれていると判断する。
 なお、車両特徴計測部101は、車両検知器10Aにより検出された車両の台数と、走査情報D8において検出された車両の台数とを記録するようにしてもよい。この場合、車両特徴計測部101は、車両検知器10Aにより検出された車両の台数と、走査情報D8において検出された車両の台数とを関連づける。例えば、車両検知器10Aが車両A1を検出した後に更に車両A2を検出した場合、複数の走査情報D8のうち最初に検出された車両を車両A1と判断し、次に検出された車両を車両A2と判断するようにしてもよい。
 なお、二台以上の車両が走査面Pに進入することが考えられるため、車両特徴計測部101は、車両検知器10Aにより検知された車両Aと、当該車両A以外の車両とを区別する。
 例えば、走査情報D8に一台目の車両の情報と、二台目の車両の情報とが含まれる場合、走査情報D8のうち第一端部E1に近い位置において一台目の車両を示す計測位置が検出され、第二端部E2に近い位置において二台目の車両を示す計測位置が検出される。また、一台目の車両を示す計測位置と、二台目の車両を示す計測位置との間には、一台目の車両と二台目の車両との車間距離に相当する長さ(一台目の車両の最も車線方向手前側の座標xpの値から二台目の車両の最も車線方向奥側の座標xpの値との差分)の路面を示す計測位置が検出される。
 車両特徴計測部101は、このように、二台以上の車両の情報が含まれた走査情報D8を受信した場合、第一端部E1に近い位置において検出された車両情報を、車両検知器10Aにより検知された車両Aの情報であると判断する。走査情報D8に複数の車両の情報が含まれている場合は、以降の処理においても、同様の判断を行うものとする。
 車両特徴計測部101は、このように、時刻t2から時刻t5までの複数の走査情報D8を車両Aの情報を含む走査情報D8であるとして抽出する。
 車長計測部110は、車両特徴計測部101により抽出された時刻t2から時刻t5までの走査情報D8のそれぞれについて、レーザ光が車両Aの車体面上を走査した長さの車線方向成分である車線方向長を計測する。具体的には、車両Aの車体上における計測位置に相当する走査線位置のうち、座標xp最大値(最も車線方向奥側(図4における+X側)の計測位置)と座標xp最小値(最も車線方向手前側(図4における-X側)の計測位置)との差Δxpを車線方向長として算出する。
 車長計測部110は、複数の走査情報D8に基づいて計測された複数の車線方向長のうち、最大の車線方向長を検出する。図4の例では、時刻t3における車両走査長(「a」)が車両Aの最大の車線方向長である。車長計測部110は、最大の車線方向長を車両Aの車長D9として計測する。
 車長計測部110は、このようにして求めた車長D9を車種区分判別部102に出力する。
 車幅計測部111は、車両特徴計測部101により抽出された時刻t2から時刻t5までの走査情報D8のそれぞれについて、走査線位置の座標yp最小値(最も車線Lの幅方向一方側(図4の-Y側)における計測位置)と、走査線位置の座標yp最大値(最も車線Lの幅方向他方側(図4の+Y側)における計測位置)とを検出する。そして、車幅計測部111は、座標yp最小値と座標yp最大値との差Δypを車線幅方向長として算出する。図4の例では、「b」が車両Aの車線幅方向長に相当する。車幅計測部111は、車線幅方向長を車両Aの車幅D10として計測する。
 車幅計測部111は、このようにして求めた車幅D10を車種区分判別部102に出力する。
 車高計測部112は、車両特徴計測部101により抽出された時刻t2から時刻t5までの走査情報D8の各計測位置のうち、照射高さ(座標zp)の値が最も大きい最大照射高さの値(座標zp最大値)を検出する。図4の例では、「c」が最大照射高さ(座標zp最大値)に相当する。車高計測部112は、当該最大照射高さの値(座標zp最大値)に基づいて、車両Aの車高を計測する。本実施形態においては、照射高さ(座標zp)の値が路面高さの値よりも大きい計測位置は、車両Aの車体面上を照射しているものと判断している。このため、最大照射高さの値(座標zp最大値)より路面高さの値を減じたものを、車両Aの車高D11として計測する。車高計測部112は、このようにして求めた車高D11を車種区分判別部102に出力する。
 車種区分判別部102は、踏板10Bから受信した検出信号に基づく車軸数D4、タイヤ幅D5及びトレッド幅D6と、ナンバープレート認識部10Cから受信したナンバープレート情報D7と、車長計測部110から受信した車長D9と、車幅計測部111から受信した車幅D10と、車高計測部112から受信した車高D11と、に基づいて、車両Aの車種区分D1を判別する。
 なお、車両Aの車長が、料金自動収受機11と踏板10Bとの距離よりも長い場合は、利用料金が確定していなければならないタイミング(車両Aの運転者が料金自動収受機11の位置に到達したタイミング)において、踏板10Bによる車軸数D4、タイヤ幅D5及びトレッド幅D6の検出が完了していない可能性がある。この場合、踏板10Bは、当該タイミングまでに検出した情報(検出未完了の情報)を車種判別部10Dへ出力してもよい。車種判別部10Dの車種区分判別部102は、車両検知器10Aから車両通過情報D3を受信していない状態で、踏板10Bから例えば車軸数D4が「3」であるとの情報を受信した場合、当該車両Aの車軸数は「3以上」であると判断するようにしてもよい。このような場合であっても、踏板10Bと、ナンバープレート認識部10Cと、車長計測部110と、車幅計測部111と、車高計測部112とから受信した車両特徴に基づいて、車種区分D1の判別を行うことができる。
 車種区分判別部102は、判別した車種区分D1を、料金自動収受機11に出力する。
 料金自動収受機11は、車種区分判別部102から受信した車種区分D1と、車両Aの走行距離とに基づいて、車両Aの運転者に課金する利用料金を算出する。
 次に、レーザ距離計測装置20による車長、車幅及び車高を計測する手順を、図5を参照して説明する。
 図5は本発明の第1の実施形態に係る車両特徴を計測する手順を示すフローチャートである。
(ステップST101:車両進入検知)
 本実施形態において、レーザ距離計測装置20のレーザスキャンセンサ20Aは、所定の間隔毎に、路面上に規定された走査線Sに沿って、レーザ光の照射及び走査(レーザスキャン)を常時行っている。
 まず、車種判別装置10の車両特徴計測部101は、料金所に車両Aが進入したかどうかを判断する(ステップST101)。車両特徴計測部101は、車両検知器10Aから車両進入情報D2を受信していない場合は、料金所に車両Aが進入していないと判断し(ステップST101:No)、車両Aが進入したと判断するまで待機する。また、車両特徴計測部101は、車両検知器10Aから車両進入情報D2を受信した場合は、料金所に車両Aが進入したと判断し(ステップST101:Yes)、次のステップST102に進む。
(ステップST102:走査情報の抽出)
 料金所に車両Aが進入したと判断すると(ステップST101:Yes)、車両特徴計測部101は、車両進入情報D2が出力された時刻である、車両進入時刻にレーザスキャンセンサ20Aが取得した走査情報D8を、当該車両Aが含まれる走査情報D8であると判断する。
 次に、車両特徴計測部101はレーザスキャンセンサ20Aが車両進入時刻より古い時刻に取得した走査情報D8であって、照射高さ(座標zp)の値が路面高さの値よりも大きい計測位置を有する走査情報D8を、車両Aの情報が含まれている走査情報D8として抽出する。また、車両特徴計測部101は、レーザスキャンセンサ20Aが車両進入時刻より新しい時刻に取得した走査情報D8であって、照射高さ(座標zp)の値が路面高さの値よりも大きい計測位置を有する走査情報D8を、車両Aの情報が含まれている走査情報D8として抽出する(ステップST102)。具体的には、図4の時刻t4が車両進入時刻であるとすると、レーザスキャンセンサ20Aが時刻t2から時刻t5までに取得した走査情報D8は、照射高さ(座標zp)の値が路面高さの値よりも大きい計測位置を有している。このため、車両特徴計測部101はこれら時刻t2から時刻t5までの走査情報D8を、車両Aの情報が含まれている走査情報D8として抽出する。
(ステップST103:車長の計測)
 次に、車長計測部110は、車両特徴計測部101により抽出された走査情報D8のそれぞれについて、車線方向長を計測する。車長計測部110は、複数の走査情報D8に基づいて計測された複数の車線方向長のうち、最大の車線方向長を検出する。具体的には、車両Aの車体上における計測位置に相当する走査線位置のうち、座標xp最大値(最も車線方向奥側(図4における+X側)の計測位置)と座標xp最小値(最も車線方向手前側(図4における-X側)の計測位置)との差Δxpを車線方向長として算出する。図4の例では、時刻t3における車線方向長「a」が最大の車線方向長である。車長計測部110は、当該最大の車線方向長(「a」)に基づいて、車両Aの車長D9を計測する(ステップST103)。車長計測部110は、計測した車長D9を車種区分判別部102に出力する。
(ステップST104:車幅の計測)
 次に、車幅計測部111は、車両特徴計測部101により抽出された走査情報D8のそれぞれについて、走査線位置の座標yp最小値(最も車線Lの幅方向一方側(図4の-Y側)における計測位置)と、走査線位置の座標yp最大値(最も車線Lの幅方向他方側(図4の+Y側)における計測位置)とを検出する。そして、車幅計測部111は、座標yp最小値と座標yp最大値との差Δypを車線幅方向長として算出する。図4の例では、「b」が車線幅方向長に相当する。
 車幅計測部111は、車線幅方向長(「b」)に基づいて、車両Aの車幅D10を計測する(ステップST104)。車幅計測部111は、計測した車幅D10を車種区分判別部102に出力する。
(ステップST105:車高の計測)
 次に、車高計測部112は、車両特徴計測部101により抽出された走査情報D8の各計測位置のうち、照射高さ(座標zp)の値が最も大きい最大照射高さの値(座標zp最大値)を検出する。図4の例では、「c」が最大照射高さの値(座標zp最大値)に相応する。車高計測部112は、当該最大照射高さの値(座標zp最大値)より、路面高さの値を減じたものを、車両Aの車高D11として計測する(ステップST105)。車高計測部112は、計測した車高D11を車種区分判別部102に出力する。
 以上で、車両特徴計測部101は、車両特徴(車長D9、車幅D10及び車高D11)の計測を終了する。
(作用効果)
 上述した車両諸元計測装置10Eによれば、車両検知器10Aは、車線方向(図2の(a)におけるX方向)に規定された所定の検知位置に設けられ、路面上を走行する車両Aの通過を検知する。また、レーザ距離計測装置20のレーザスキャンセンサ20Aは、車両Aの車高よりも高い位置から路面に向けてレーザ光を照射すると共に、当該路面上に規定される走査線Sに沿ってレーザ光を走査する。ここで、走査線Sは、想定される最大車長及び最大車高を有する車両の最大車高部分であっても、当該車両の前端及び後端の車線方向における座標の位置と、幅方向における座標の位置とを、レーザスキャンセンサ20Aにより計測可能となるように設定された所定範囲において延在する。レーザスキャンセンサ20Aは、このように規定された走査線Sと、走査線Sの両端部とレーザスキャンセンサ20Aとを結ぶ線とで形成される走査面P内におけるレーザ光の計測位置を示す走査情報D8を取得する。
 レーザスキャンセンサ20Aは、車両Aの車高よりも高い位置から路面に向けてレーザ光を照射することにより、車両Aの車高を計測可能な走査情報D8を取得することができる。また、走査線Sが所定の傾斜角度φで傾斜していることにより、車両Aの車長及び車幅を計測可能な走査情報D8を取得することができる。このため、レーザスキャンセンサ20Aは、一連の走査で、車両Aの車長、車幅及び車高を計測可能な走査情報D8を取得することができる。
 また、走査線Sが車両検知位置よりも車線方向手前側の所定位置を含むことにより、レーザスキャンセンサ20Aは、車両Aが車両検知位置dを通過する前に、車線方向手前側を走行する車両Aを含む走査情報D8を取得することができる。このため、料金所の設置スペースが十分ではなく、車両Aが車両検知位置dを通過する前に、車両Aの運転席が料金自動収受機に到達してしまう場合であっても、当該車両Aを含む走査情報D8に基づいて、車両Aが車両検知位置dを通過する前に車種区分D1の判別を行うための情報を取得することができる。
 また、上述の車両諸元計測装置10Eによれば、レーザスキャンセンサ20Aは、上記所定範囲の車線方向奥側(図2の(a)における+X側)に配置された第一端部E1と、当該所定範囲の車線方向手前側(図2の(a)における-X側)に配置された第二端部E2とを結ぶ走査線Sに沿ってレーザ光を走査する。また、走査線Sは、少なくとも路面上を走行する車両Aの最大車長以上、車線方向手前側(図2の(a)における-X側)側の所定範囲において延在する。
 これにより、最大車長を有する車両を含めていかなる車両であっても、当該車両が車両検知位置を通過する前に、当該車両Aの全体を走査して、当該車両Aの走査情報D8を取得することができる。このため、料金所の設置スペースが十分ではなく、車両Aが車両検知位置dを通過する前に、車両Aの運転席が料金自動収受機に到達してしまう場合であっても、当該車両Aを含む走査情報D8に基づいて、車両Aが車両検知位置dを通過する前に車種区分D1の判別を行うための情報を取得することができる。
 また、上述の車両諸元計測装置10Eによれば、車種判別部10Dの車両特徴計測部101は、レーザスキャンセンサ20Aにより異なる時刻に取得された複数の走査情報D8を、車両検知器10Aにより車両Aの車両進入情報D2が出力された時刻に基づいて、当該車両進入情報D2が出力された時刻と同時刻に取得された走査情報D8と、その前後の時刻に取得された走査情報D8のうち車両Aの情報を含む走査情報D8と、を抽出する。
 これにより、車両特徴計測部101の車長計測部110、車幅計測部111及び車高計測部112は、抽出された走査情報D8に基づいて、車両Aが車両検知位置dを通過する前に、それぞれ車長D9、車幅D10及び車高D11を計測することができる。このため、料金所の設置スペースが十分ではなく、車両Aが車両検知位置dを通過する前に、車両Aの運転席が料金自動収受機に到達してしまう場合であっても、抽出された走査情報D8に基づいて、車両Aが車両検知位置dを通過する前に車種区分D1の判別を行うための情報である車長D9、車幅D10及び車高D11を取得することができる。
 また、上述の車両諸元計測装置10Eによれば、車長計測部110は、レーザスキャンセンサ20Aが取得した走査情報D8に基づいて、レーザスキャンセンサ20Aが照射したレーザ光が車両Aの車体面上を走査した長さの車線方向成分である車線方向長(座標xp最大値(最も車線方向奥側(図4における+X側)の計測位置)と座標xp最小値(最も車線方向手前側(図4における-X側)の計測位置)との差Δxp)を計測する。車長計測部110は、異なる時刻に取得された複数の走査情報D8に基づいて計測された複数の車線方向長のうち、最大の車線方向長に基づいて、当該車両Aの車長を計測する。
 ここで、走査線Sは、走査線S上の何れかの位置で、路面上を走行する車両Aの前端(最も車線方向奥側(図2の(a)における+X側)の端部)と、車両Aの後端(最も車線方向手前側(図2の(a)における-X側)の端部)との両方を通るように、車線方向(図2の(a)におけるX方向)に対して所定の傾斜角度φで傾斜して延在している。このため、レーザスキャンセンサ20Aは、当該走査線Sに沿うようにレーザ光を走査することにより、走査線S上の何れかの位置において、一回の走査で車両Aの前端と後端との両方を通過する走査情報D8を取得することができる。このように、一回の走査で車両Aの前端と後端との両方を通過する走査情報D8は、最大の車線方向長を有している。
 このように、車長計測部110は、一回の走査で取得されたひとつの走査情報D8に基づいて、最大の車線方向長を計測している。一回の走査で車両Aの前端と後端の両方を通過する走査情報が取得できないレーザスキャンセンサを使用した場合は、複数の走査で取得された複数の走査情報のそれぞれの車線方向長に基づいて、車両の車長を計測しなければならない。このような構成では、路面上を走行する車両の複数の走査情報を取得する間に、車両の位置が変化してしまうため、車両の移動距離も考慮しなければならず、最大の車線方向長を計測するために複雑な処理が要求される。また、車両の移動速度が変化した場合、復数の走査情報から得られる車両走査長が車両の移動速度に応じて変化し、正確な最大の車線方向長が計測できない可能性がある。しかしながら上述のように、本実施形態における車長計測部110は、一回の走査で取得されたひとつの走査情報D8に基づいて、最大の車線方向長を計測している。このため、簡易な処理で正確に車両の車長を計測することができる。
 また、上述の車両諸元計測装置10Eによれば、車幅計測部111は、レーザスキャンセンサ20Aが取得した走査情報D8に基づいて、車両Aの車体面上における計測位置のうち、走査線位置の座標yp最小値(最も車線Lの幅方向一方側(図4の-Y側)における計測位置)と、走査線位置の座標yp最大値(最も車線Lの幅方向他方側(図4の+Y側)における計測位置)とを検出する。そして、車幅計測部111は、座標yp最小値と座標yp最大値との差Δypを車線幅方向長として算出する。車幅計測部111は、当該車線幅方向長に基づいて、車両Aの車幅を計測する。
 これにより、車幅が一定ではない車両Aであっても、複数の走査情報D8に基づいて、最大の車幅を取得することができる。
 また、上述の車両諸元計測装置10Eによれば、車高計測部112は、レーザスキャンセンサ20Aが取得した走査情報D8に基づいて、車両Aの車体面上における計測位置のうち、高さ方向における位置が最も高い計測位置(座標zp最大値)に基づいて、当該車両Aの車高を計測する。
 これにより、車高が一定ではない車両Aであっても、複数の走査情報D8に基づいて、最大の車高を取得することができる。
 また、上述の車両諸元計測装置10Eによれば、レーザスキャンセンサ20Aで走査線Sを沿うように走査するのみの簡易な構成で、車長D9、車幅D10及び車高D11を取得することができる。このため、車長D9、車幅D10及び車高D11を計測するために複数の装置を設置する必要がなく、設置スペースが十分確保できない料金所であっても設置が容易であり、且つ、設置コストを削減することができる。
<第2の実施形態>
(車種判別装置の構成)
 次に、本発明の第2の実施形態に係る料金収受設備1について図面を参照して説明する。なお、第1の実施形態と共通の構成には同一の符号を付して詳細説明を省略する。
 図6は本発明の第2の実施形態に係る料金収受設備1の概略図である。
 図7は本発明の第2の実施形態に係る車種判別装置10の概略図であって、上面図と、側面図と、正面図とを示す図である。
 第2の実施形態では、図6及び図7の(a)~(c)に示すように、レーザ距離計測装置20の設けられる位置が第1の実施形態と異なっている。
 本実施形態におけるレーザ距離計測装置20の取付支柱20Bは、車線Lの幅方向他方側(図6における+Y側)に設けられている。レーザスキャンセンサ20Aは、取付支柱20Bの、車両Aの車高よりも高い位置に設けられた取付位置に設置されている。つまり、レーザスキャンセンサ20Aは、車線Lの幅方向他方側(図6における+Y側)のアイランドIの、車両Aの車高よりも高い位置から、路面に向かってレーザ光を照射する。
 図7の(a)~(c)に示すように、レーザスキャンセンサ20Aは、取付支柱20Bの取付位置より、路面上に規定される走査線Sに沿って、異なる複数の照射角度θでレーザ光を走査する。
 走査線Sは、第1の実施形態と同様に、路面上であって、想定される最大車長及び最大車高を有する車両の最大車高部分であっても、当該車両の前端及び後端の車線方向における座標の位置と、幅方向における座標の位置とを、レーザスキャンセンサ20Aにより計測可能となるように設定された所定範囲において延在する。また、走査線Sは、当該所定範囲の車線方向奥側(図7の(a)における+X側)に配置された第一端部E1と、当該所定範囲の車線方向手前側(図7の(a)における-X側)に配置された第二端部E2とを結ぶ直線である。
 図7の(a)~(c)に示すように、路面上に規定される走査線Sと、レーザスキャンセンサ20A及び第一端部E1を結ぶ仮想線と、レーザスキャンセンサ20A及び第二端部E2を結ぶ仮想線とにより、路面上に走査面Pが形成される。
 なお、本実施形態においては、車線Lの幅方向他方側(図7の(a)及び(c)における+Y側)からレーザ光を走査する構成となっている。このため、本実施形態の走査面Pは、第1の実施形態よりも車線Lの幅方向他方側(図7の(a)及び(c)における+Y側)に傾くように形成される。これにより、本実施形態における走査面Pは、車両Aの車線Lの幅方向他方側(図7の(a)における+Y側)の側面を通るように形成される。
 レーザスキャンセンサ20Aは、走査線Sに沿ってレーザ光を照射することにより、走査面P内を通る路面及び車両Aの車体面上を走査し、当該走査面P内におけるレーザ光の計測位置を取得する。
(車種判別装置の機能)
 次に、車種判別装置10の機能について、図7から図9を参照して説明する。
 図8は本発明の第2の実施形態に係る車種判別装置のブロック図である。
 図9は本発明の第2の実施形態に係るレーザスキャンセンサ20Aが取得する走査情報の例を時系列に示す図である。
 本実施形態における車種判別装置10は、図8に示すように、踏板10Bと、ナンバープレート認識部10Cと、車種判別部10Dと、車両諸元計測装置10Eとを備えている。また、車両諸元計測装置10Eは、車両検知器10Aと、レーザ距離計測装置20とを備えている。
 レーザ距離計測装置20は、第1の実施形態と同様に、レーザスキャンセンサ20Aと取付支柱20Bとを有している。レーザスキャンセンサ20Aは、図7の(a)~(c)に示すように、走査線Sに沿ってレーザ光の走査を行う毎に、当該走査を行った時刻に対応する走査情報D8を取得する。
 図9の(a)は時刻t7における走査情報D8の例であり、車両Aの車体の一部が走査面Pを通る位置となっているときの走査情報D8を示す。レーザスキャンセンサ20Aから照射されたレーザ光は、図9の(a)に示すように、走査線Sに沿って、まず路面上に照射され、次いで、車両Aの車体前面(図9の(a)における+X側の端面)から車両Aの車体上面(図9の(a)における+Z側の端面)の順に照射される。ここで、計測位置が路面上から車両Aの車体前面に切り替わる際、レーザスキャンセンサ20Aから照射されたレーザ光は、まず路面上における計測位置s1に照射され、次に、車両Aの車体前面における計測位置s2に照射される。路面上における計測位置s1の走査線Sに沿う位置は、車両Aの車体前面における計測位置s2の走査線Sに沿う位置よりも、第一端部E1が配置されている車線方向奥側(図9の(a)における+X側)に近い。このため、レーザ光の計測位置が路面上から車両Aの車体前面に切り替わる位置であって、車両Aと路面とが接していない(離れている)位置にレーザ光が照射された場合は、レーザスキャンセンサ20Aが取得する走査情報D8は、路面上の計測位置と車両Aの車体面上の計測位置とで、計測位置が不連続となっている。
 また、図9の(b)は時刻t8における走査情報D8の例であり、図9の(a)の走行位置から、車線方向奥側(図9の(b)における+X側)に移動したときの走査情報D8を示す。レーザスキャンセンサ20Aから照射されたレーザ光は、図9の(b)に示すように、走査線Sに沿って、まず路面上に照射され、次いで、車両Aのタイヤを含む車体側面(図7の(a)における+Y側の端面)から車両Aの車体上面(図9の(b)における+Z側の端面)の順に照射される。
 ここで、計測位置が路面上から車両Aの車体前面に切り替わる際、レーザスキャンセンサ20Aから照射されたレーザ光は、路面と車両Aの車体側面(タイヤ)とが接する点である計測位置s3に照射される。このため、レーザ光の計測位置が路面上から車両Aの車体前面に切り替わる位置であって、車両Aと路面とが接している位置にレーザ光が照射された場合は、レーザスキャンセンサ20Aが取得する走査情報D8は、路面上の計測位置と車両Aの車体面上の計測位置とで、計測位置が連続している。
 更に、図9の(c)は時刻t9における走査情報D8の例であり、図9の(b)の走行位置から、車線方向奥側(図9の(c)における+X側)に移動したときの走査情報D8を示す。レーザスキャンセンサ20Aから照射されたレーザ光は、図9の(c)に示すように、走査線Sに沿って、まず路面上に照射され、次いで、車両Aの車体側面(図7の(a)における+Y側の端面)から車両Aの車体上面(図9の(c)における+Z側の端面)の順に照射される。ここで、計測位置が路面上から車両Aの車体側面に切り替わる際、レーザスキャンセンサ20Aから照射されたレーザ光は、まず路面上における計測位置s4に照射され、次に、車両Aの車体側面における計測位置s5に照射される。路面上における計測位置s4の走査線Sに沿う位置は、車両Aの車体側面における計測位置s5の走査線Sに沿う位置よりも、第一端部E1が配置されている車線方向奥側(図9の(a)における+X側)に近い。このため、レーザ光の計測位置が路面上から車両Aの車体前面に切り替わる位置であって、車両Aと路面とが接していない(離れている)位置にレーザ光が照射された場合は、図9の(a)の例と同様に、レーザスキャンセンサ20Aが取得する走査情報D8は、路面上の計測位置と車両Aの車体面上の計測位置とで、計測位置が不連続となっている。
 レーザスキャンセンサ20Aは、このように時刻毎に取得した走査情報D8を、図8に示すように車種判別部10Dへ出力する。
 図8に示すように、車種判別部10Dは、車両特徴計測部101と、車種区分判別部102を有している。
 本実施形態における車両特徴計測部101は、車両Aの車種区分D1を判別するための車両特徴のうち、車両Aの車長と、車幅と、車高とに加え、車軸数を計測する点で第1の実施形態と異なっている。このため、車両特徴計測部101は、車長計測部110と、車幅計測部111と、車高計測部112とに加え、車軸数計測部113を有している。
 車両特徴計測部101は、第1の実施形態と同様に、車両検知器10Aから受信した車両進入情報D2及び車両通過情報D3と、レーザスキャンセンサ20Aから受信した走査情報D8とに基づいて、路面上を走行する車両Aの情報が含まれる複数の走査情報D8を抽出する。
 車長計測部110と、車幅計測部111と、車高計測部112とは、第1の実施形態と同様に、それぞれ車両Aの車長D9と、車幅D10と、車高D11とを計測し、車種区分判別部102に出力する。
 車軸数計測部113は、車両特徴計測部101により抽出された車両Aの情報を含む複数の走査情報D8に基づいて、当該車両Aの車軸数を計測する。
 上述のように、レーザスキャンセンサ20Aから照射されたレーザ光が、レーザ光の計測位置が路面上から車両Aの車体前面に切り替わる位置であって、車両Aと路面とが接していない(離れている)位置に照射された場合は、図9の(a)及び(c)に示すように、レーザスキャンセンサ20Aが取得する走査情報D8は、路面上の計測位置と車両Aの車体面上の計測位置とで、計測位置が不連続となっている特徴を有する。一方、レーザ光の計測位置が路面上から車両Aの車体前面に切り替わる位置であって、車両Aと路面とが接している位置に照射された場合は、図9の(b)に示すように、レーザスキャンセンサ20Aが取得する走査情報D8は、路面上の計測位置と車両Aの車体面上の計測位置とで、計測位置が連続している特徴を有する。
 車軸数計測部113は、走査情報D8の上記特徴に基づいて、各走査情報D8における計測位置のうち、車両Aと路面とが接している計測位置である、車両接地位置を検出する。
 具体的には、走査情報D8の各計測位置について、第一端部E1に最も近い位置で車両Aの計測位置が検出された位置(第一計測位置)を検出する。車両Aの計測位置が検出された位置とは、走査情報D8において、照射高さ(座標zp)の値が路面高さの値よりも大きい計測位置が検出された位置である。車軸数計測部113は、第一計測位置における走査線位置が、連続しているか、非連続であるかに基づいて、当該第一計測位置において車両Aと路面とが接しているか、接していないかを判断する。
 図9の(a)及び(c)に示す時刻t7及び時刻t9の走査情報D8では、第一計測位置における走査線位置(図9の(a)におけるs1及びs2、図9の(c)におけるs4及びs5)が非連続である。このため、車軸数計測部113は、時刻t7及び時刻t9では車両接地位置を有していないと判断する。
 図9の(b)に示す時刻t8の走査情報D8は、第一計測位置における走査線位置(図9の(b)におけるs3)が連続している。このため、車軸数計測部113は、時刻t8では車両接地位置を有していると判断する。
 車軸数計測部113は、このように、車両特徴計測部101から受信した全ての走査情報D8について、車両接地位置の有無を判断する。車両Aと路面とが接している車両接地位置は、図9の(b)に示すように、車両Aのタイヤ(車軸)が存在する位置であることを示している。このため、車軸数計測部113は、車両接地位置の検出数を計測することにより、走査面Pを通過した車両Aの車軸数を計測する。
 車軸数計測部113は、計測した車軸数を、図8に示すように、車軸数情報D12として車種区分判別部102に出力する。
 車種区分判別部102は、踏板10Bから受信した車軸数D4、タイヤ幅D5及びトレッド幅D6と、ナンバープレート認識部10Cから受信したナンバープレート情報D7と、車長計測部110から受信した車長D9と、車幅計測部111から受信した車幅D10と、車高計測部112から受信した車高D11と、車軸数計測部113から受信した車軸数情報D12と、に基づいて、車両Aの車種区分D1を判別する。
 次に、レーザ距離計測装置20による車長、車幅、車高及び車軸数を計測する手順を、図10を参照して説明する。
 図10は本発明の第2の実施形態に係る車両特徴を計測する手順を示すフローチャートである。
(ステップST201:車両進入検知)
 本実施形態において、レーザ距離計測装置20のレーザスキャンセンサ20Aは、所定の間隔毎に、路面上に規定された走査線Sに沿って、レーザ光の照射及び走査(レーザスキャン)を常時行っている。
 まず、車種判別装置10の車両特徴計測部101は、料金所に車両Aが進入したかどうかを判断する(ステップST201)。車両特徴計測部101は、車両検知器10Aから車両進入情報D2を受信していない場合は、料金所に車両Aが進入していないと判断し(ステップST201:No)、車両Aが進入したと判断するまで待機する。また、車両特徴計測部101は、車両検知器10Aから車両進入情報D2を受信した場合は、料金所に車両Aが進入したと判断し(ステップST201:Yes)、次のステップST202に進む。
(ステップST202:走査情報の抽出)
 料金所に車両Aが進入したと判断すると(ステップST201:Yes)、車両特徴計測部101は、車両進入情報D2が出力された時刻である、車両進入時刻にレーザスキャンセンサ20Aが取得した走査情報D8を、当該車両Aが含まれる走査情報D8であると判断する。
 次に、車両特徴計測部101はレーザスキャンセンサ20Aが車両進入時刻より古い時刻に取得した走査情報D8であって、照射高さ(座標zp)の値が路面高さの値よりも大きい計測位置を有する走査情報D8を、車両Aの情報が含まれている走査情報D8として抽出する。また、車両特徴計測部101は、レーザスキャンセンサ20Aが車両進入時刻より新しい時刻に取得した走査情報D8であって、照射高さ(座標zp)の値が路面高さの値よりも大きい計測位置を有する走査情報D8を、車両Aの情報が含まれている走査情報D8として抽出する(ステップST202)。
(ステップST203:車長の計測)
 次に、車長計測部110は、車両特徴計測部101により抽出された走査情報D8のそれぞれについて、車線方向長を計測する。車長計測部110は、複数の走査情報D8に基づいて計測された複数の車線方向長のうち、最大の車線方向長を検出する。車長計測部110は、当該最大の車線方向長に基づいて、車両Aの車長D9を計測する(ステップST203)。車長計測部110は、計測した車長D9を車種区分判別部102に出力する。
(ステップST204:車幅の計測)
 次に、車幅計測部111は、車両特徴計測部101により抽出された走査情報D8のそれぞれについて、走査線位置の座標yp最小値(最も車線Lの幅方向一方側(図4の-Y側)における計測位置)と、走査線位置の座標yp最大値(最も車線Lの幅方向他方側(図4の+Y側)における計測位置)とを検出する。そして、車幅計測部111は、座標yp最小値と座標yp最大値との差Δypを車線幅方向長として算出する。車幅計測部111は、車線幅方向長に基づいて、車両Aの車幅D10を計測する(ステップST204)。車幅計測部111は、計測した車幅D10を車種区分判別部102に出力する。
(ステップST205:車高の計測)
 次に、車高計測部112は、車両特徴計測部101により抽出された走査情報D8の各計測位置のうち、照射高さ(座標zp)の値が最も大きい最大照射高さの値(座標zp最大値)を検出する。車高計測部112は、当該最大照射高さの値(座標zp最大値)より、路面高さの値を減じたものを、車両Aの車高D11として計測する(ステップST205)。車高計測部112は、計測した車高D11を車種区分判別部102に出力する。
(ステップST206:車軸数の計測)
 次に、車軸数計測部113は、車両特徴計測部101により抽出された走査情報D8の各計測位置について、第一端部E1に最も近い位置で車両Aの計測位置が検出された位置(第一計測位置)を検出する。車軸数計測部113は、第一計測位置における走査線位置が、連続しているか、非連続であるかに基づいて、当該第一計測位置において車両Aと路面とが接しているか、接していないかを判断する。車軸数計測部113は、車両特徴計測部101により抽出された全ての走査情報D8について、車両接地位置の有無を判断する。車両Aと路面とが接している車両接地位置は、図9の(b)に示すように、車両Aのタイヤ(車軸)が存在する位置であることを示している。このため、車軸数計測部113は、車両接地位置の検出数を計測することにより、走査面Pを通過した車両Aの車軸数を計測する。車軸数計測部113は、計測した車軸数の値を車軸数情報D12として、車種区分判別部102に出力する。
 以上で、車両特徴計測部101は、車両特徴(車長D9、車幅D10、車高D11及び車軸数情報D12)の計測を終了する。
(作用効果)
 上述の車両諸元計測装置10Eによれば、レーザスキャンセンサ20Aは、車線Lの幅方向他方側(図7の(a)における+Y側)において、車両Aの車高より高い位置に設けられている。レーザスキャンセンサ20Aは、当該位置より、路面上に規定された走査線Sに沿ってレーザ光を走査する。このように構成することにより、レーザスキャンセンサ20Aは、車両Aの幅方向他方側(図7の(a)における+Y側)の側面を含む、車両Aの車体面上を走査する。このため、レーザスキャンセンサ20Aは、車両Aのタイヤと路面とが接する位置と、車両Aと路面とが接しない位置と、の走査情報D8を取得することができる。
 車軸数計測部113は、レーザスキャンセンサ20Aが取得した走査情報D8に基づいて、車両Aと路面が接している位置である、車両接地位置を検出する。当該車両接地位置は、車両Aのタイヤ(車軸)が存在する位置であるため、車軸数計測部113は、複数の走査情報D8のうち、車両接地位置の検出数を計測することにより、車両Aの車軸数情報D12を取得することができる。
 これにより、レーザスキャンセンサ20Aは、車両Aが車両検知位置dを通過する前に、車両Aの車軸数情報D12を取得することができる。このため、料金所の設置スペースが十分ではなく、車両Aが車両検知位置dを通過する前に、車両Aの運転席が料金自動収受機11に到達してしまう場合であっても、当該車軸数情報D12と、第1の実施形態と同様に取得される車長D9、車幅D10及び車高D11と、に基づいて、車両Aが車両検知位置dを通過する前に車種区分D1の判別を行うための情報を取得することができる。
(ハードウェア構成)
 また、上述の各実施形態における車種判別装置10のハードウェア構成の例について説明する。
 図11は本発明の各実施形態に係る車種判別装置10のハードウェア構成の一例を示す図である。
 図11に示すように、車種判別装置10は、メモリ810と、記憶/再生装置820と、IO I/F(Input Output Interface)830と、外部機器I/F(Interface)840と、通信I/F(Interface)850と、CPU(Central Processing Unit)860と、補助記憶装置870とを備えている。
 メモリ810は、車種判別装置10のプログラムで使用されるデータ等を一時的に記憶するRAM(Random Access Memory)等の媒体である。
 記憶/再生装置820は、CD-ROM、DVD、フラッシュメモリ等の外部メディアへデータ等を記憶したり、外部メディアのデータ等を再生するための装置である。
 IO I/F830は、料金収受設備1の各装置との間で情報等の入出力を行うためのインターフェースである。
 外部機器I/F840は、車種判別装置10が備える機器の制御と、情報等の送受信とを行うためのインターフェースである。上述の実施形態の車種判別装置10では、外部機器I/F840は、車両検知器10A、踏板10B、ナンバープレート認識部10C及びレーザスキャンセンサ20Aの制御と、情報及び信号の送受信とを行う。
 通信I/F850は、車種判別装置10がインターネット等の通信回線を介して外部サーバと通信を行うためのインターフェースである。
 CPU860は、プログラムを実行し、車種判別装置10のそれぞれの機能を実行するように制御する。上述の実施形態においては、車種判別装置10が車両Aの車種区分D1を判別するように制御する。
 補助記憶装置870は、CPU860で実行するプログラムや、プログラムを実行する際に使用するデータや、生成されたデータを記録するためのものである。補助記憶装置870は、HDD(Hard Disk Drive)やフラッシュメモリ等である。
 車種判別装置10のプログラムは、CD-ROM、DVD、フラッシュメモリ等の外部メディアに記録されていてもよく、この場合は、記憶/再生装置820から外部メディアへの書き込み(記憶)及び読み出し(再生)を行う。通信I/F850から外部サーバに記憶されているプログラムを読み出してもよい。
 外部メディアや外部サーバに記憶されているプログラムを、補助記憶装置870に記憶してもよい。
 CPU860は、上記プログラムを実行することにより、車種判別装置10の車両特徴計測部101、車種区分判別部102、車長計測部110、車幅計測部111、車高計測部112及び車軸数計測部113として機能する。CPU860が各種処理を行うと、それぞれの処理で生成されたデータは補助記憶装置870に記憶される。
 以上、本発明の実施形態について詳細に説明したが、本発明の技術的思想を逸脱しない限り、これらに限定されることはなく、多少の設計変更等も可能である。
 例えば、上述の実施形態において、レーザスキャンセンサ20Aは常時走査線Sに沿ってレーザ光を走査する例について説明したが、これに限られることはない。車両Aが車両検知位置dを超えてから第一端部E1に到達するまでの間において、走査線S上の何れかの位置においてレーザ光が車両Aの前端と後端との両方を通るように、走査線Sが規定されていれば、車両検知器10Aが車両Aの進入を検知してから、レーザスキャンセンサ20Aがレーザ光を走査するようにしてもよい。これによっても、上述と同様の効果を得ることが可能である。
 また、上述の実施形態において、レーザスキャンセンサ20Aが、車線方向において車両検知器10Aが設置されている位置と同じ位置に配置される例について説明したが、これに限られることはない。走査線Sに沿ってレーザ光を走査可能であれば、レーザスキャンセンサ20Aが車線方向において、車両検知器10Aが設置されている位置と異なる位置に配置されていてもよい。例えば、レーザスキャンセンサ20Aは、車両検知器10Aよりも車線方向手前側(図1の-X側)に配置されてもよいし、車両検知器10Aよりも車線方向奥側(図1の+X側)に配置されていてもよい。
 また、上述の実施形態において、車両特徴計測部101は、車両検知器10Aから受信した車両進入情報D2に基づいて、レーザスキャンセンサ20Aから受信した複数の走査情報D8のうち一台の車両Aに関連する走査情報D8を抽出する例について説明したが、これに限られることはない。車両特徴計測部101は、各走査情報D8における照射高さ(座標zp)の値が路面高さの値よりも大きい位置情報を有しているか否かを判断することにより車両Aの情報が含まれていることを検出可能なため、車両検知器10Aを省略してもよい。
 この場合、車長計測部110は、車両特徴計測部101が車両Aが含まれていると判断した走査情報D8に基づいて、レーザスキャンセンサ20Aが照射したレーザ光が当該車両Aの車体面上を走査した長さの車線方向成分である車線方向長を計測する。車長計測部110は、異なる時刻に取得された複数の走査情報D8に基づいて計測された複数の車線方向長のうち最大の車線方向長に基づいて、当該車両Aの車長D9を計測する。
 車幅計測部111は、車両特徴計測部101が車両Aが含まれていると判断した走査情報D8に基づいて、当該走査情報D8の当該車両Aの車体面上における計測位置のうち、最も車線幅方向一方側における計測位置(走査線位置の座標yp最小値)から最も車線幅方向他方側における計測位置(走査線位置の座標yp最大値)までの車線幅方向長に基づいて、当該車両Aの車幅D10を計測する。
 車高計測部112は、車両特徴計測部101が車両Aが含まれていると判断した走査情報D8に基づいて、当該走査情報D8における当該車両Aの車体面上における計測位置のうち、高さ方向における位置が最も高い計測位置(座標zp最大値)に基づいて、当該車両Aの車高D11を計測する。
 車軸数計測部113は、車両特徴計測部101が車両Aが含まれていると判断した走査情報D8に基づいて、当該走査情報D8における当該車両Aと路面とが接する車両接地位置を検出し、当該車両接地位置の検出数に基づいて、当該車両Aの車軸数情報D12を計測する。
 これにより、車種判別装置10をより簡易な構成とすることができる。
 上述の車両諸元計測装置、車種判別装置、車両諸元計測方法及びプログラムによれば、十分なスペースが確保できない料金所であっても設置が可能であり、車両が料金所に進入する以前に取得した情報に基づいて車両の車種の判別を行うための情報を取得することができる。
 1  料金収受設備
 10  車種判別装置
 10A  車両検知器
 10B  踏板
 10C  ナンバープレート認識部
 10D  車種判別部
 10E  車両諸元計測装置
 11  料金自動収受機
 13  発進制御機
 14  発進検知器
 20  レーザ距離計測装置
 20A  レーザスキャンセンサ
 20B  取付支柱
 101  車両特徴計測部
 102  車種区分判別部
 110  車長計測部
 111  車幅計測部
 112  車高計測部
 113  車軸数計測部
 A  車両
 E1  第一端部
 E2  第二端部
 I  アイランド
 L  車線
 P  走査面
 S  走査線
 

Claims (10)

  1.  車線方向に規定された所定の車両検知位置において、路面上を走行する車両の通過を検知する車両検知器と、
     前記車両の車高よりも高い位置から前記路面に向けてレーザ光を照射するとともに当該路面上に規定される走査線に沿って当該レーザ光を走査し、走査面内における当該レーザ光による計測位置を示す走査情報を取得するレーザスキャンセンサと、
     を備え、
     前記レーザスキャンセンサは、少なくとも前記車両検知位置を含む当該車両検知位置よりも前記車線方向手前側の所定範囲において、前記車線方向に対し傾斜する方向に延在する前記走査線に沿って前記レーザ光を照射する、
     車両諸元計測装置。
  2.  前記レーザスキャンセンサは、少なくとも前記車両検知位置よりも前記路面上を走行する前記車両の最大車長以上、前記車線方向手前側の前記所定範囲において、前記走査線が延在する、
     請求項1に記載の車両諸元計測装置。
  3.  前記走査情報に基づいて前記レーザ光が前記車両の車体面上を走査した長さの車線方向成分である車線方向長を計測し、異なる時刻に取得された複数の前記走査情報に基づいて計測された複数の前記車線方向長のうち最大の車線方向長に基づいて、当該車両の車長を計測する車長計測部を更に備える、
     請求項1又は2に記載の車両諸元計測装置。
  4.  前記走査情報の前記車両の車体面上における前記計測位置のうち、最も車線幅方向一方側における計測位置から最も車線幅方向他方側における計測位置までの車線幅方向長に基づいて、当該車両の車幅を計測する車幅計測部を更に備える、
     請求項1から3の何れか1項に記載の車両諸元計測装置。
  5.  前記走査情報の前記車両の車体面上における前記計測位置のうち、高さ方向における位置が最も高い計測位置に基づいて、当該車両の車高を計測する車高計測部を更に備える、
     請求項1から4の何れか1項に記載の車両諸元計測装置。
  6.  前記走査情報における前記車両と前記路面とが接する車両接地位置を検出し、当該車両接地位置の検出数に基づいて、当該車両の車軸数を計測する車軸数計測部を更に備える、
     請求項1から5の何れか1項に記載の車両諸元計測装置。
  7.  路面上を走行する車両の車高よりも高い位置から前記路面に向けてレーザ光を照射するとともに当該路面上に規定される走査線に沿って当該レーザ光を走査し、走査面内における当該レーザ光による計測位置を示す走査情報を取得するレーザスキャンセンサを備え、
     前記レーザスキャンセンサは、車線方向手前側の所定範囲において、前記車線方向に対し傾斜する方向に延在する前記走査線に沿って前記レーザ光を照射する、
     車両諸元計測装置。
  8.  請求項1から6の何れか1項に記載の車両諸元計測装置と、
     前記レーザスキャンセンサにより異なる時刻に取得された複数の前記走査情報と、前記車両検知器による前記車両の検知時刻と、に基づいて、前記車両の車種を判別する車種判別部と、
     を備える車種判別装置。
  9.  車線方向に規定された所定の車両検知位置において、路面上を走行する車両の通過を検知する車両検知ステップと、
     前記車両の車高よりも高い位置から前記路面に向けてレーザ光を照射するとともに当該路面上に規定される走査線に沿って当該レーザ光を走査し、走査面内における当該レーザ光の計測位置を示す走査情報を取得するレーザスキャンステップと、
     を有し、
     前記レーザスキャンステップは、少なくとも前記車両検知位置と当該車両検知位置よりも前記車線方向手前側の所定位置とを含み、前記車線方向に対し傾斜する方向に延在する前記走査線に沿って前記レーザ光を照射する、
     車両諸元計測方法。
  10.  路面上を走行する車両の諸元を計測する車両諸元計測装置のコンピュータのプログラムであって、
     前記コンピュータを、
     車線方向に規定された所定の車両検知位置において、路面上を走行する前記車両の通過を検知する車両検知部、
     前記車両の車高よりも高い位置から前記路面に向けてレーザ光を照射するとともに当該路面上に規定される走査線に沿って当該レーザ光を走査し、走査面内における当該レーザ光の計測位置を示す走査情報を取得するレーザスキャン部、
     として機能させるプログラム。
PCT/JP2016/057026 2015-03-11 2016-03-07 車両諸元計測装置、車種判別装置、車両諸元計測方法及びプログラム WO2016143750A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177024132A KR102105237B1 (ko) 2015-03-11 2016-03-07 차량 제원 계측 장치, 차종 판별 장치, 차량 제원 계측 방법 및 프로그램
MYPI2017703157A MY185923A (en) 2015-03-11 2016-03-07 Vehicle parameter measurement device, vehicle type determination device, vehicle parameter measurement method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015048111A JP6443754B2 (ja) 2015-03-11 2015-03-11 車両諸元計測装置、車種判別装置、車両諸元計測方法及びプログラム
JP2015-048111 2015-03-11

Publications (1)

Publication Number Publication Date
WO2016143750A1 true WO2016143750A1 (ja) 2016-09-15

Family

ID=56880544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057026 WO2016143750A1 (ja) 2015-03-11 2016-03-07 車両諸元計測装置、車種判別装置、車両諸元計測方法及びプログラム

Country Status (4)

Country Link
JP (1) JP6443754B2 (ja)
KR (1) KR102105237B1 (ja)
MY (1) MY185923A (ja)
WO (1) WO2016143750A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107228628A (zh) * 2017-07-10 2017-10-03 山西省自动化研究所 一种车辆行驶动态测量系统及其测量方法
CN107978151A (zh) * 2017-11-22 2018-05-01 武汉万集信息技术有限公司 一种车辆检测方法和系统
CN113031594A (zh) * 2021-02-26 2021-06-25 山东交通学院 基于养护作业的伴随式主动安全警示机器人、系统及方法
CN114003849A (zh) * 2021-10-29 2022-02-01 中远海运科技股份有限公司 一种多车道非接触式车轴数自动计算方法及系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6446742B2 (ja) * 2015-03-11 2019-01-09 三菱重工機械システム株式会社 タイヤパターン判定装置、車種判別装置、タイヤパターン判定方法及びプログラム
JP6777515B2 (ja) * 2016-11-24 2020-10-28 三菱重工機械システム株式会社 車種判別装置、車種判別方法及びプログラム
KR101894710B1 (ko) * 2016-12-07 2018-09-05 대보정보통신(주) 차종분류장치 및 그 제어방법
JP6887797B2 (ja) * 2016-12-20 2021-06-16 三菱重工機械システム株式会社 車幅計測装置、車幅計測方法、及びプログラム
CN109829991B (zh) * 2018-12-27 2021-12-03 北京万集科技股份有限公司 信息的获取方法、装置及系统
JP7267062B2 (ja) * 2019-03-27 2023-05-01 三菱重工機械システム株式会社 車両検知器及び車両検知方法
JP7140229B1 (ja) 2021-04-28 2022-09-21 沖電気工業株式会社 推定装置、推定方法およびプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10105869A (ja) * 1996-09-30 1998-04-24 Omron Corp 車種判別装置
JPH10269489A (ja) * 1997-03-26 1998-10-09 Omron Corp 車種判別装置
JPH11191196A (ja) * 1997-10-20 1999-07-13 Omron Corp 車両計測装置および車種判別装置
JPH11203588A (ja) * 1998-01-20 1999-07-30 Denso Corp 車種判別装置
JPH11339175A (ja) * 1998-05-28 1999-12-10 Omron Corp 移動体管理装置
JP2011096022A (ja) * 2009-10-30 2011-05-12 Mitsubishi Electric Corp 車両検出装置及び通行料課金システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143188A (ja) 1999-11-10 2001-05-25 Nec Corp パルスレーザ式走行車両検出装置
AT500122B1 (de) 2001-12-14 2007-01-15 Kapsch Trafficcom Ag Verfahren und vorrichtung zur geometrischen vermessung von kraftfahrzeugen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10105869A (ja) * 1996-09-30 1998-04-24 Omron Corp 車種判別装置
JPH10269489A (ja) * 1997-03-26 1998-10-09 Omron Corp 車種判別装置
JPH11191196A (ja) * 1997-10-20 1999-07-13 Omron Corp 車両計測装置および車種判別装置
JPH11203588A (ja) * 1998-01-20 1999-07-30 Denso Corp 車種判別装置
JPH11339175A (ja) * 1998-05-28 1999-12-10 Omron Corp 移動体管理装置
JP2011096022A (ja) * 2009-10-30 2011-05-12 Mitsubishi Electric Corp 車両検出装置及び通行料課金システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107228628A (zh) * 2017-07-10 2017-10-03 山西省自动化研究所 一种车辆行驶动态测量系统及其测量方法
CN107978151A (zh) * 2017-11-22 2018-05-01 武汉万集信息技术有限公司 一种车辆检测方法和系统
CN107978151B (zh) * 2017-11-22 2019-12-10 武汉万集信息技术有限公司 一种车辆检测方法和系统
CN113031594A (zh) * 2021-02-26 2021-06-25 山东交通学院 基于养护作业的伴随式主动安全警示机器人、系统及方法
CN114003849A (zh) * 2021-10-29 2022-02-01 中远海运科技股份有限公司 一种多车道非接触式车轴数自动计算方法及系统
CN114003849B (zh) * 2021-10-29 2024-03-15 中远海运科技股份有限公司 一种多车道非接触式车轴数自动计算方法及系统

Also Published As

Publication number Publication date
KR20170109016A (ko) 2017-09-27
KR102105237B1 (ko) 2020-05-29
JP6443754B2 (ja) 2018-12-26
MY185923A (en) 2021-06-14
JP2016170475A (ja) 2016-09-23

Similar Documents

Publication Publication Date Title
WO2016143750A1 (ja) 車両諸元計測装置、車種判別装置、車両諸元計測方法及びプログラム
KR100459475B1 (ko) 차종 판단 시스템 및 그 방법
KR102049159B1 (ko) 차종 판별 장치, 차종 판별 방법 및 프로그램이 기억된 기억매체
JPH05225490A (ja) 車種判別装置
KR101937604B1 (ko) 타이어 패턴 판정 장치, 차종 판별 장치, 타이어 패턴 판정 방법 및 프로그램
JP6440193B2 (ja) 車種判別装置、料金収受設備、車種判別方法及びプログラム
WO2015025673A1 (ja) 車軸検知装置
JP6979350B2 (ja) 車両検知装置、車両検知システム、車両検知方法及び車両検知プログラム
JP6431271B2 (ja) 車両検知及び車両番号認識装置
KR20200111008A (ko) 거리 센서를 이용한 차량 검지 시스템 및 방법
CN109427212A (zh) 车辆行驶检测方法及车辆行驶检测系统
JP6831223B2 (ja) 料金収受システム、料金収受方法及びプログラム
JP3412457B2 (ja) 車長計測装置および車両監視装置
JP2018169924A (ja) 学習データ収集装置、学習データ収集システムおよび学習データ収集方法
JP2851355B2 (ja) 車種判別装置
JP5025274B2 (ja) 車長判別装置
JP6845684B2 (ja) 車長計測装置および車長計測方法
JP7365254B2 (ja) 車軸数検出装置、料金収受システム、車軸数検出方法、及びプログラム
JP7362499B2 (ja) 車軸数検出装置、料金収受システム、車軸数検出方法、及びプログラム
JP7038475B2 (ja) 車両検出装置および車両検出方法
KR102309204B1 (ko) 인공지능 방식의 영상 획득에 의한 차량 식별 시스템
JP7213017B2 (ja) 車両前後進判定装置、車両前後進判定システム、車両前後進判定方法及び車両前後進判定プログラム
US20230213352A1 (en) Method and apparatus for recognizing parking space
JPH08202983A (ja) 車両検知装置
JP6777515B2 (ja) 車種判別装置、車種判別方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177024132

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761718

Country of ref document: EP

Kind code of ref document: A1