WO2016143627A1 - 封止シート、封止光半導体素子の製造方法および光半導体装置の製造方法 - Google Patents

封止シート、封止光半導体素子の製造方法および光半導体装置の製造方法 Download PDF

Info

Publication number
WO2016143627A1
WO2016143627A1 PCT/JP2016/056403 JP2016056403W WO2016143627A1 WO 2016143627 A1 WO2016143627 A1 WO 2016143627A1 JP 2016056403 W JP2016056403 W JP 2016056403W WO 2016143627 A1 WO2016143627 A1 WO 2016143627A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical semiconductor
sealing
semiconductor element
sheet
sealing layer
Prior art date
Application number
PCT/JP2016/056403
Other languages
English (en)
French (fr)
Inventor
広和 松田
亮太 三田
悠紀 江部
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016036320A external-priority patent/JP2016171314A/ja
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2016143627A1 publication Critical patent/WO2016143627A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention provides a sealing sheet, a manufacturing method of a sealing optical semiconductor element, and a manufacturing method of an optical semiconductor device, and more specifically, a sealing sheet, a manufacturing method of a sealing optical semiconductor element using the sealing sheet, and a manufacturing method thereof.
  • the present invention relates to a method for manufacturing an optical semiconductor device using a sealed optical semiconductor element.
  • Patent Document 1 a sealing resin sheet containing a thermoplastic resin that has thermoplasticity at a temperature lower than a predetermined crosslinking temperature and is irreversibly cured at a temperature equal to or higher than the crosslinking temperature has been proposed (for example, Patent Document 1). reference.).
  • the above-described sealing resin sheet is used by hot pressing the LED.
  • the sealing sheet is required to have a viscosity capable of staying in the vicinity of the LED by suppressing excessive flow in the hot press, but is required in the sealing resin sheet described in Patent Document 1. There is a problem that the viscosity cannot be satisfied sufficiently.
  • the sealing resin sheet is required to have a certain sealing property with respect to the LED.
  • sealing resin sheet is also required to quickly seal the LED.
  • An object of the present invention is to provide a sealing sheet that has a good viscosity in hot press and can reliably and quickly seal an optical semiconductor element, a method for producing a sealed optical semiconductor element using the same, and An object of the present invention is to provide a method of manufacturing an optical semiconductor device to be used.
  • This invention is a sealing sheet provided with the sealing layer used so that an optical semiconductor element may be sealed,
  • the said sealing layer is the conditions of frequency 1Hz and the temperature increase rate of 10 degree-C / min.
  • the curve indicating the relationship between the storage shear modulus G ′ obtained by measuring the dynamic viscoelasticity and the temperature T has a minimum value, and the temperature T at the minimum value is in the range of 60 ° C. or more and 200 ° C. or less.
  • the storage shear modulus G ′ at the minimum value includes a sealing sheet in the range of 5 Pa to 1,000 Pa.
  • the temperature T at the minimum value of the sealing layer is in the range of 60 ° C. or more and 200 ° C. or less, and the storage shear modulus G ′ at the minimum value is 5 Pa or more and 1,000 Pa or less. Since it exists in the range, it has the favorable viscosity in a hot press, and can seal an optical semiconductor element reliably and rapidly.
  • This invention (2) contains the sealing sheet as described in (1) whose said storage shear modulus G 'in 30 degreeC is 100 Pa or more.
  • the storage shear modulus G ′ at 30 ° C. is 100 Pa or more, so that the handleability at 30 ° C. is excellent.
  • This invention (3) contains the sealing sheet as described in (1) or (2) in which the said sealing layer contains a thermosetting resin.
  • the sealing layer contains a thermosetting resin
  • the sealing layer can be thermoset, thereby improving the reliability of the sealed optical semiconductor element, and hence the reliability of the optical semiconductor device. Can be improved.
  • the present invention (4) includes the sealing sheet according to (3), wherein the sealing layer is in a B-stage state.
  • the sealing layer since the sealing layer is in the B-stage state, the optical semiconductor element can be reliably embedded by the sealing layer, and the optical semiconductor element can be reliably sealed by the sealing layer. .
  • This invention (5) contains the sealing sheet as described in (3) or (4) whose tensile elasticity modulus in 25 degreeC when making it thermoset on 150 degreeC and the heating conditions for 2 hours is 10 Mpa or more. .
  • the present invention (6) includes the sealing sheet according to any one of (1) to (5), wherein the minimum value is in a range of 65 ° C. or higher and 90 ° C. or lower.
  • the optical semiconductor element can be reliably sealed by the excellent sealing property of the sealing layer.
  • the present invention (7) includes the sealing sheet according to any one of (1) to (6), wherein the storage shear modulus G ′ at the minimum value is in the range of 10 Pa to 300 Pa.
  • the storage shear modulus G ′ at the minimum value is in the range of 10 Pa or more and 300 Pa or less, it is possible to achieve quick sealing and reliable sealing with respect to the optical semiconductor element. .
  • the present invention (8) includes the sealing sheet according to any one of (1) to (7), further including a release sheet disposed on one surface in the thickness direction of the sealing layer.
  • This sealing sheet further includes the release sheet disposed on one surface in the thickness direction of the sealing layer, so that one surface in the thickness direction of the sealing layer can be protected.
  • the present invention (9) includes a sheet preparation step of preparing the sealing sheet according to any one of (1) to (8), an element preparation step of preparing an optical semiconductor element disposed on a base material, and The manufacturing method of the sealing optical semiconductor element provided with the hot press process of heat-pressing the said sealing sheet with respect to the said optical semiconductor element at the temperature of 60 degreeC or more and 200 degrees C or less is included.
  • the encapsulating sheet in the hot pressing step, is hot pressed on the optical semiconductor element at a temperature of 60 ° C. or higher and 200 ° C. or lower. Reliable and quick sealing with respect to the optical semiconductor element can be achieved.
  • the present invention (10) comprises a step of obtaining a sealed optical semiconductor element by the method for producing a sealed optical semiconductor element according to (9), wherein the base material is one in the thickness direction of the support plate and the support plate.
  • An adhesive sheet disposed in the direction of the optical semiconductor device, further comprising a peeling step of peeling the sealing optical semiconductor element from the adhesive sheet, and a mounting step of mounting the sealing optical semiconductor element on a substrate. Includes manufacturing methods.
  • a sealed optical semiconductor element is obtained by the above-described manufacturing method of a sealed optical semiconductor element, and this is mounted on a substrate, so that an optical semiconductor device having excellent reliability is manufactured. be able to.
  • the present invention (11) includes a step of obtaining a sealed optical semiconductor element by the method for manufacturing a sealed optical semiconductor element according to (9), wherein the base material is a substrate, and in the element preparation step, An optical semiconductor device manufacturing method is provided, in which an optical semiconductor element mounted on a substrate is prepared.
  • an optical semiconductor device with excellent reliability can be manufactured.
  • the optical semiconductor element can be reliably and rapidly sealed with good viscosity in hot press.
  • an optical semiconductor device having excellent reliability can be manufactured.
  • an optical semiconductor device having excellent reliability can be manufactured.
  • FIG. 1 shows sectional drawing of one Embodiment of the sealing sheet of this invention.
  • 2A to 2E show process diagrams of a first embodiment of a method for manufacturing a sealed optical semiconductor element and a method for manufacturing an optical semiconductor device according to the present invention.
  • FIG. 2A temporarily fixes the optical semiconductor element to a substrate.
  • FIG. 2B is a step of placing the sealing sheet on the opposite surface of the optical semiconductor element
  • FIG. 2C is a step of sealing the optical semiconductor element with the sealing sheet
  • FIG. FIG. 2E shows a step of mounting the sealed optical semiconductor element on the substrate.
  • FIGS. 3A to 3C show process diagrams of a second embodiment of the manufacturing method of the sealed optical semiconductor element and the manufacturing method of the optical semiconductor device of the present invention, and FIG.
  • FIG. 3A prepares the optical semiconductor element mounted on the substrate.
  • 3B shows a step of placing the sealing sheet on the opposite surface of the optical semiconductor element
  • FIG. 3C shows a step of sealing the optical semiconductor element with the sealing sheet.
  • FIG. 4 shows the relationship between the storage shear elastic modulus G ′ and the temperature T of the sealing layer in each example and each comparative example.
  • the vertical direction of the paper is the vertical direction (first direction, thickness direction)
  • the upper side of the paper is the upper side (one side in the first direction, the one side in the thickness direction)
  • the lower side of the paper is the lower side (the other side in the first direction).
  • the other side in the thickness direction
  • the left-right direction on the paper surface is the left-right direction (second direction orthogonal to the first direction)
  • the left side of the paper surface is the left side (second side in the second direction)
  • the right side of the paper surface is the right side (the other side in the second direction).
  • the paper thickness direction is the front-rear direction (a third direction orthogonal to the first direction and the second direction), the front side of the paper is the front side (one side in the third direction), and the back side of the paper is the rear side (third Direction other side). Specifically, it conforms to the direction arrow in each figure.
  • the sealing sheet 1 has a substantially flat plate shape, specifically, has a predetermined thickness, extends in the left-right direction and the front-rear direction, and has a flat upper surface (surface) and It has a flat lower surface (back surface).
  • the sealing sheet 1 is not the sealing optical semiconductor element 11 (refer FIG. 2D) mentioned later, nor is the optical semiconductor device 21 (refer FIG. 2E). That is, the sealing sheet 1 is a part of the sealed optical semiconductor element 11 and the optical semiconductor device 21, that is, a part for producing the sealed optical semiconductor element 11 and the optical semiconductor device 21. Therefore, the encapsulating sheet 1 does not include the optical semiconductor element 15 and the substrate 16 (see FIG. 2E) on which the optical semiconductor element 15 is mounted, and the encapsulating sheet 1 itself circulates as a single component and can be used industrially. It is.
  • the sealing sheet 1 includes a sealing layer 2 and a release sheet 3 disposed on the lower surface of the sealing layer 2.
  • the sealing sheet 1 includes only the sealing layer 2 and the release sheet 3.
  • the sealing layer 2 has a layer (sheet) shape formed from a sealing material.
  • the sealing layer 2 is used to seal the optical semiconductor element 15 as shown in FIG. 2C described later.
  • sealing material examples include a sealing composition.
  • the sealing composition contains, for example, an adhesive (that is, surface tack property at normal temperature (25 ° C.)) resin.
  • the resin examples include a thermosetting resin and a thermoplastic resin, and preferably a thermosetting resin.
  • thermosetting resin examples include a two-stage reaction curable resin and a one-stage reaction curable resin.
  • the two-stage reaction curable resin has two reaction mechanisms.
  • the A stage state is changed to the B stage (semi-cured), and then in the second stage reaction, the B stage state is obtained.
  • C-stage complete curing
  • the two-stage reaction curable resin is a thermosetting resin that can be in a B-stage state under appropriate heating conditions.
  • the B stage state is a state between the A stage state where the thermosetting resin is in a liquid state and the fully cured C stage state, and curing and gelation proceed slightly, and the compression elastic modulus is C stage.
  • the first-stage reaction curable resin has one reaction mechanism, and can be C-staged (completely cured) from the A-stage state by the first-stage reaction.
  • a one-stage reaction curable resin can stop the reaction in the middle of the first-stage reaction and change from the A-stage state to the B-stage state.
  • thermosetting resin is a thermosetting resin that can be in a B-stage state.
  • thermosetting resin examples include silicone resin, epoxy resin, urethane resin, polyimide resin, phenol resin, urea resin, melamine resin, and unsaturated polyester resin.
  • a thermosetting resin Preferably, a silicone resin and an epoxy resin are mentioned, More preferably, a silicone resin is mentioned.
  • thermosetting resin may be the same type or a plurality of types.
  • silicone resin examples include silicone resin compositions such as an addition reaction curable silicone resin composition and a condensation / addition reaction curable silicone resin composition from the viewpoint of transparency, durability, heat resistance, and light resistance.
  • silicone resin compositions such as an addition reaction curable silicone resin composition and a condensation / addition reaction curable silicone resin composition from the viewpoint of transparency, durability, heat resistance, and light resistance.
  • an addition reaction curable silicone resin composition is used.
  • Silicone resins may be used alone or in combination.
  • the addition reaction curable silicone resin composition is a one-stage reaction curable resin composition and contains, for example, an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst.
  • the alkenyl group-containing polysiloxane contains two or more alkenyl groups and / or cycloalkenyl groups in the molecule.
  • the alkenyl group-containing polysiloxane is specifically represented by the following average composition formula (1).
  • R 1 a R 2 b SiO (4-ab) / 2 (In the formula, R 1 represents an alkenyl group having 2 to 10 carbon atoms and / or a cycloalkenyl group having 3 to 10 carbon atoms. R 2 represents an unsubstituted or substituted monovalent carbon atom having 1 to 10 carbon atoms.
  • a hydrogen group (excluding an alkenyl group and a cycloalkenyl group); a is from 0.05 to 0.50, and b is from 0.80 to 1.80.
  • examples of the alkenyl group represented by R 1 include alkenyl having 2 to 10 carbon atoms such as vinyl, allyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl and the like. Groups.
  • examples of the cycloalkenyl group represented by R 1 include a cycloalkenyl group having 3 to 10 carbon atoms such as a cyclohexenyl group and a norbornenyl group.
  • R 1 is preferably an alkenyl group, more preferably an alkenyl group having 2 to 4 carbon atoms, and still more preferably a vinyl group.
  • the alkenyl groups represented by R 1 may be the same type or a plurality of types.
  • the monovalent hydrocarbon group represented by R 2 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms other than an alkenyl group and a cycloalkenyl group.
  • Examples of the unsubstituted monovalent hydrocarbon group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, and a pentyl group.
  • Alkyl groups having 1 to 10 carbon atoms such as heptyl group, octyl group, 2-ethylhexyl group, nonyl group and decyl group, for example, cyclohexane having 3 to 6 carbon atoms such as cyclopropyl, cyclobutyl group, cyclopentyl group and cyclohexyl group.
  • alkyl groups such as aryl groups having 6 to 10 carbon atoms such as phenyl, tolyl and naphthyl groups, and aralkyl groups having 7 to 8 carbon atoms such as benzyl and benzylethyl groups.
  • Preferred examples include an alkyl group having 1 to 3 carbon atoms and an aryl group having 6 to 10 carbon atoms, and more preferred examples include a methyl group and / or a phenyl group.
  • examples of the substituted monovalent hydrocarbon group include those obtained by substituting a hydrogen atom in the above-mentioned unsubstituted monovalent hydrocarbon group with a substituent.
  • substituents examples include a halogen atom such as a chlorine atom, such as a glycidyl ether group.
  • substituted monovalent hydrocarbon group examples include a 3-chloropropyl group and a glycidoxypropyl group.
  • the monovalent hydrocarbon group may be unsubstituted or substituted, and is preferably unsubstituted.
  • the monovalent hydrocarbon groups represented by R 2 may be of the same type or a plurality of types.
  • a methyl group and / or a phenyl group are mentioned, More preferably, combined use of a methyl group and a phenyl group is mentioned.
  • A is preferably 0.10 or more and 0.40 or less.
  • B is preferably 1.5 or more and 1.75 or less.
  • the weight average molecular weight of the alkenyl group-containing polysiloxane is, for example, 100 or more, preferably 500 or more, and for example, 10,000 or less, preferably 5,000 or less.
  • the weight average molecular weight of the alkenyl group-containing polysiloxane is a conversion value based on standard polystyrene measured by gel permeation chromatography.
  • the alkenyl group-containing polysiloxane is prepared by an appropriate method, and a commercially available product can also be used.
  • alkenyl group-containing polysiloxane may be of the same type or a plurality of types.
  • the hydrosilyl group-containing polysiloxane contains, for example, two or more hydrosilyl groups (SiH groups) in the molecule.
  • the hydrosilyl group-containing polysiloxane is represented by the following average composition formula (2).
  • composition formula (2) H c R 3 d SiO (4-cd) / 2 (Wherein R 3 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms (excluding an alkenyl group and / or a cycloalkenyl group), and c is 0.30 or more) 1.0, and d is 0.90 or more and 2.0 or less.)
  • R 3 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms (excluding an alkenyl group and / or a cycloalkenyl group), and c is 0.30 or more) 1.0, and d is 0.90 or more and 2.0 or less.
  • R 3 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms (excluding an alkenyl group and / or a cycloalkenyl group), and c is 0.30 or more) 1.0, and d is 0.90 or more and 2.0 or less.)
  • an unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms more preferably an alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms, more preferably a methyl group. And / or a phenyl group.
  • C is preferably 0.5 or less.
  • D is preferably 1.3 or more and 1.7 or less.
  • the weight average molecular weight of the hydrosilyl group-containing polysiloxane is, for example, 100 or more, preferably 500 or more, and for example, 10,000 or less, preferably 5,000 or less.
  • the weight average molecular weight of the hydrosilyl group-containing polysiloxane is a conversion value based on standard polystyrene measured by gel permeation chromatography.
  • the hydrosilyl group-containing polysiloxane is prepared by an appropriate method, and a commercially available product can also be used.
  • hydrosilyl group-containing polysiloxane may be of the same type or a plurality of types.
  • At least one of the hydrocarbon groups R 2 and R 3 preferably includes a phenyl group, more preferably, R 2 and R 3 Both hydrocarbons contain a phenyl group.
  • the addition reaction curable silicone resin composition is a phenyl silicone resin composition.
  • the refractive index of the phenyl silicone resin composition is, for example, 1.45 or more, and further 1.50 or more.
  • the blending ratio of the hydrosilyl group-containing polysiloxane is the ratio of the number of moles of alkenyl groups and cycloalkenyl groups of the alkenyl group-containing polysiloxane to the number of moles of hydrosilyl groups of the hydrosilyl group-containing polysiloxane (number of moles of alkenyl groups and cycloalkenyl groups). / Number of moles of hydrosilyl group) is adjusted to be, for example, 1/30 or more, preferably 1/3 or more, and for example, 30/1 or less, preferably 3/1 or less.
  • the hydrosilylation catalyst is a substance (addition catalyst) that improves the reaction rate of the hydrosilylation reaction (hydrosilyl addition) between the alkenyl group and / or cycloalkenyl group of the alkenyl group-containing polysiloxane and the hydrosilyl group of the hydrosilyl group-containing polysiloxane. If it exists, it will not specifically limit, For example, a metal catalyst is mentioned. Examples of the metal catalyst include platinum catalysts such as platinum black, platinum chloride, chloroplatinic acid, platinum-olefin complexes, platinum-carbonyl complexes, and platinum-acetyl acetate, such as palladium catalysts such as rhodium catalyst.
  • the blending ratio of the hydrosilylation catalyst is, for example, 1.0 ppm or more on a mass basis with respect to the alkenyl group-containing polysiloxane and the hydrosilyl group-containing polysiloxane as the metal amount of the metal catalyst (specifically, metal atom). In addition, for example, it is 10,000 ppm or less, preferably 1,000 ppm or less, and more preferably 500 ppm or less.
  • the addition reaction curable silicone resin composition is prepared by blending an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst in the above-described proportions.
  • the above-mentioned addition reaction curable silicone resin composition is prepared and used as an A stage (liquid) state by first blending an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst.
  • the phenyl silicone resin composition undergoes a hydrosilylation addition reaction between the alkenyl group and / or cycloalkenyl group of the alkenyl group-containing polysiloxane and the hydrosilyl group of the hydrosilyl group-containing polysiloxane by heating under desired conditions. After that, the hydrosilylation addition reaction is once stopped. As a result, the A stage state can be changed to the B stage (semi-cured) state.
  • the phenyl-based silicone resin composition is completed by resuming the above-described hydrosilylation addition reaction by heating under further desired conditions.
  • the B stage state can be changed to the C stage (fully cured) state.
  • the condensation / addition reaction curable silicone resin composition is a two-stage reaction curable resin, and specifically, for example, those described in JP 2010-265436 A, JP 2013-187227 A, and the like. 1 to 8 condensation / addition reaction curable silicone resin compositions, for example, JP 2013-091705 A, JP 2013-001815 A, JP 2013-001814 A, JP 2013-001813 A, Examples thereof include a cage-type octasilsesquioxane-containing silicone resin composition described in JP2012-102167A.
  • the condensation / addition reaction curable silicone resin composition is solid or semi-solid and has both thermoplasticity and thermosetting properties.
  • a commercial item can be used for a silicone resin, for example, OE series (addition reaction hardening type silicone resin composition, the Toray Dow Corning company make) etc. are used.
  • the above-described resin is at least in the B-stage (semi-cured) state, that is, the resin when the sealing layer 2 is formed is solid or semi-solid. And such resin has both thermoplasticity and thermosetting property. That is, the resin is once cured by heating and then completely cured. More specifically, the viscosity of the resin gradually decreases with an increase in temperature, and then the viscosity gradually increases when the temperature increase is continued.
  • Sealing composition can also contain a filler, for example.
  • Examples of the filler include inorganic particles and organic particles.
  • inorganic particles examples include silica (SiO 2 ), titanium oxide (TiO 2 ), talc (Mg 3 (Si 4 O 10 ) (HO) 2 ), alumina (Al 2 O 3 ), and boron oxide (B 2 O). 3 ), calcium oxide (CaO), zinc oxide (ZnO), strontium oxide (SrO), magnesium oxide (MgO), zirconium oxide (ZrO 2 ), barium oxide (BaO), antimony oxide (Sb 2 O 3 ), etc.
  • Oxides such as inorganic particles (inorganic materials) such as nitrides such as aluminum nitride (AlN) and silicon nitride (Si 3 N 4 ) can be used.
  • the inorganic particles include composite inorganic particles prepared from the inorganic materials exemplified above, and specifically, composite inorganic oxide particles (specifically, glass particles) prepared from an oxide. Can be mentioned.
  • the inorganic particles are preferably silica particles and glass particles.
  • the inorganic particles are usually insoluble in a solvent such as toluene described later.
  • organic materials for organic particles include acrylic resins, styrene resins, acrylic-styrene resins, silicone resins, polycarbonate resins, benzoguanamine resins, polyolefin resins, polyester resins, polyamide resins, and polyimide resins. Resin etc. are mentioned.
  • silicone resin particles are preferably used.
  • Organic particles are insoluble in, for example, a solvent such as toluene described later.
  • the organic particles can include, for example, those that dissolve in a solvent.
  • the filler can also have a light diffusion function.
  • the refractive index of the filler is, for example, 1.40 or more and 2.50 or less.
  • ⁇ Fillers can be used alone or in combination.
  • the content ratio of the filler is, for example, 1% by mass or more, preferably 3% by mass or more, and, for example, 80% by mass or less, preferably 75% by mass or less with respect to the sealing composition.
  • the compounding ratio with respect to 100 weight part of resin of a filler is 10 mass parts or more, for example, Preferably, it is 30 mass parts or more, for example, is 1,000 mass parts or less, Preferably, it is 200 mass parts or less. .
  • the sealing composition can further contain, for example, a phosphor.
  • Examples of the phosphor include a yellow phosphor capable of converting blue light into yellow light, and a red phosphor capable of converting blue light into red light.
  • yellow phosphor examples include silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)), for example, Y 3 Al Garnet-type phosphors having a garnet-type crystal structure such as 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce), Tb 3 Al 3 O 12 : Ce (TAG (terbium, aluminum, garnet): Ce) Examples thereof include oxynitride phosphors such as Ca- ⁇ -SiAlON.
  • silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)
  • Y 3 Al Garnet-type phosphors having a garnet-type crystal structure such as 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce
  • red phosphor examples include nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
  • the phosphor is preferably a yellow phosphor, more preferably a garnet phosphor.
  • Examples of the shape of the phosphor include a spherical shape, a plate shape, and a needle shape.
  • the average value of the maximum length of the phosphor (in the case of a sphere, the average particle diameter) is, for example, 0.1 ⁇ m or more, preferably 1 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 100 ⁇ m or less. But there is.
  • Fluorescent substances can be used alone or in combination.
  • the blending ratio of the phosphor is, for example, 0.1% by mass or more, preferably 0.5% by mass or more, for example, 90% by mass or less, preferably 80% by mass or less, with respect to the sealing composition. It is.
  • the sealing layer 2 for example, the above-described resin, a filler and a phosphor that are blended as necessary are blended to prepare a varnish of the sealing composition, and subsequently, the release sheet is used as the release sheet. 3 is applied on the upper surface.
  • the sealing composition contains a thermosetting resin
  • the sealing composition is B-staged. Specifically, the sealing composition is heated.
  • the heating conditions are appropriately set so that the storage shear modulus G ′ in the dynamic viscoelasticity measurement in the sealing layer 2 is in a desired range.
  • the heating temperature is appropriately set depending on the composition of the thermosetting resin in the sealing composition, and specifically, for example, 50 ° C. or higher, preferably 70 ° C. or higher, for example, 120 ° C. or lower, Preferably, it is 100 degrees C or less.
  • the heating temperature is not less than the above lower limit and / or the heating temperature is not more than the above upper limit, the minimum value of the above-described storage shear modulus G ′ can be set in a desired range.
  • the heating time is, for example, 5 minutes or more, preferably 10 minutes or more, and for example, 20 minutes or less, preferably 15 minutes or less. If the heating time is not less than the above lower limit and / or not more than the above upper limit, the minimum value of the above-described storage shear modulus G ′ can be set in a desired range.
  • the thickness of the sealing layer 2 is, for example, 50 ⁇ m or more, preferably 100 ⁇ m or more, and for example, 1500 ⁇ m or less, preferably 1000 ⁇ m or less.
  • the temperature T at such a minimum value is in the range of 60 ° C. or more and 200 ° C. or less, and the storage shear modulus G ′ at the above-described minimum value is in the range of 5 Pa or more and 1,000 Pa or less.
  • the temperature T at the minimum value is less than 60 ° C.
  • the viscosity excessively increases in the heat press at 60 ° C. or higher in the hot press step (see FIG. 2C) described below. Therefore, there is a problem that the sealing performance of the sealing layer 2 with respect to the optical semiconductor element 15 (see FIG. 2B) is lowered.
  • the temperature T at the minimum value exceeds 200 ° C.
  • the viscosity of the sealing layer 2 does not drop sufficiently in the hot pressing at 200 ° C. or lower in the hot pressing step (see FIG. 2C) described below. Therefore, it is necessary to heat the sealing layer 2 at a high temperature exceeding 200 ° C. in a hot press, and there is a problem that the manufacturing cost of the sealed optical semiconductor element 11 and the optical semiconductor device 21 increases.
  • the sealing material forming the sealing layer 2 becomes excessively soft in the hot press process (see FIG. 2C) described next. Then, there is a problem that the sealing material flows away from the optical semiconductor element 1 and the optical semiconductor element 15 cannot be sealed. Specifically, there is a problem that the sealing material cannot be prevented from flowing excessively and cannot have a viscosity that can stay in the vicinity of the optical semiconductor element 15.
  • the storage shear modulus G ′ at the minimum value exceeds 1,000 Pa, the viscosity of the sealing layer 2 does not drop sufficiently in the hot press step (see FIG. 2C) described below. For this reason, the sealing layer 2 cannot embed the optical semiconductor element 15 (see FIG. 2B), and there is a problem that the sealing performance of the sealing layer 2 with respect to the semiconductor element 15 is lowered.
  • the temperature T at the minimum value is preferably in the range of 65 ° C. or higher and 90 ° C. or lower. If the temperature T is within the above range, the sealing optical semiconductor element 11 can be reliably sealed by the excellent sealing property of the sealing layer 2.
  • the storage shear modulus G ′ at the minimum value is preferably 10 Pa or more, more preferably 15 Pa or more, still more preferably 20 Pa or more, and preferably 750 Pa or less, more preferably 250 Pa or less, More preferably, it is in the range of 100 Pa or less, particularly preferably less than 50 Pa.
  • the optical semiconductor element 15 can be quickly sealed in the heat press step (see FIG. 2C) described below.
  • the storage shear modulus G ′ at 30 ° C. is, for example, 100 Pa or more, preferably 150 Pa or more, more preferably 200 Pa or more, and, for example, 1,000,000 Pa or less, preferably 100,000 Pa. Hereinafter, it is more preferably 1,000 Pa or less, and still more preferably 500 Pa or less. If the above-described storage shear modulus G ′ at 30 ° C. close to normal temperature (25 ° C.) is equal to or higher than the lower limit, the encapsulating sheet 1 is excellent in handleability at normal temperature (25 ° C.).
  • the tensile elastic modulus at 25 ° C when thermally cured at 150 ° C for 2 hours is, for example, 5 MPa or more.
  • the pressure is preferably 10 MPa or more, more preferably 20 MPa or more, still more preferably 20 MPa or more, and for example, 100 MPa or less. If the tensile elastic modulus is equal to or higher than the lower limit, the sealing layer 2 can be quickly thermoset. Therefore, an increase in the manufacturing cost of the optical semiconductor element 15 can be suppressed, and consequently an increase in the manufacturing cost of the optical semiconductor device 21 can be suppressed. If the tensile modulus is equal to or lower than the above upper limit, the sealing layer 2 has appropriate flexibility, so that the reliability of the optical semiconductor device 21 can be ensured.
  • the ratio (V1 / V0) of the melt viscosity V1 at 60 ° C. of the sealing layer 2 after storage at ⁇ 15 ° C. for one week to the melt viscosity V0 at 60 ° C. of the initial sealing layer 2 is For example, it is less than 2 times, preferably less than 1.5 times, and for example, 1.0 times or more. Further, the ratio (V4 / V0) of the melt viscosity V4 at 60 ° C. of the sealing layer 2 after storage at ⁇ 15 ° C.
  • melt viscosity V0 at 60 ° C. of the initial sealing layer 2 is, for example, It is less than 1.5 times, preferably less than 1.3 times, and is, for example, 1.0 times or more. If the above-described melt viscosity ratio (V1 / V0 and / or V4 / V0) is less than the above upper limit, good storage stability of the sealing layer 2 can be ensured.
  • release sheet 3 As shown in FIG. 2B, the release sheet 3 is provided on the back surface of the sealing layer 2 in order to protect the sealing layer 2 until it is sealed with respect to the optical semiconductor element 15 by the sealing layer 2.
  • the lower surface in FIG. 1 is detachably disposed.
  • the release sheet 3 is made of a flexible film. Further, the surface of the release sheet 3, that is, the contact surface with the sealing layer 2 is subjected to release treatment such as fluorine treatment as necessary.
  • the release sheet 3 examples include polymer films such as polyethylene film and polyester film (PET), for example, ceramic sheets, for example, metal foil.
  • PET polyethylene film and polyester film
  • the release sheet 3 has a substantially rectangular shape in plan view (including a strip shape and a long shape).
  • the thickness of the release sheet 3 is, for example, 1 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 2,000 ⁇ m or less, preferably 1,000 ⁇ m or less.
  • the sealing sheet 1 In order to obtain the sealing sheet 1, first, the release sheet 3 and the varnish of the sealing composition described above are prepared. Subsequently, the varnish of the sealing composition is applied to the upper surface of the release sheet 3. Thereafter, when the sealing composition contains a thermosetting resin, the sealing composition is B-staged by heating.
  • sealing sheet 1 including the sealing layer 2 and the release sheet 3 disposed on the entire lower surface of the sealing layer 2 is obtained.
  • the thickness of the sealing sheet 1 is, for example, 50 ⁇ m or more, preferably 100 ⁇ m or more, and for example, 1500 ⁇ m or less, preferably 1000 ⁇ m or less.
  • the manufacturing method of the encapsulating optical semiconductor element 11 includes a sheet preparing step for preparing the encapsulating sheet 1 (see FIG. 1), and an optical semiconductor.
  • An element preparation step (see FIG. 2A) for preparing the element 15 and a hot pressing step (see FIG. 2C) for hot-pressing the sealing sheet 1 against the optical semiconductor element 15 are provided.
  • the manufacturing method of the encapsulating optical semiconductor element 11 includes an individualizing step (see a one-dot broken line in FIG. 2D) for separating the optical semiconductor element 15 into pieces, and peeling the encapsulating optical semiconductor element 11 from the substrate 12.
  • the peeling process (refer the arrow of FIG. 2D and an imaginary line) is provided.
  • each process will be described sequentially.
  • the substrate 12 includes a support plate 13 and an adhesive sheet 14 disposed on the upper surface of the support plate 13.
  • the support plate 13 is made of the same material as the release sheet 3 described above.
  • the support plate 13 may be formed from an inorganic material such as glass.
  • the thickness of the support plate 13 is, for example, 10 ⁇ m or more, preferably 50 ⁇ m or more, and for example, 1,000 ⁇ m or less, preferably 100 ⁇ m or less.
  • the pressure-sensitive adhesive sheet 14 is formed of, for example, a sheet that can easily peel the optical semiconductor element 15 by heating and / or ultraviolet irradiation (that is, a temporary fixing sheet that can temporarily fix the optical semiconductor element 15).
  • the thickness of the pressure-sensitive adhesive sheet 14 is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 100 ⁇ m or less.
  • the base material 12 is obtained by disposing the adhesive sheet 14 on the surface of the support plate 13.
  • the thickness of the base material 12 is, for example, 20 ⁇ m or more, preferably 50 ⁇ m or more, and, for example, 500 ⁇ m or less, preferably 200 ⁇ m or less.
  • the optical semiconductor element 15 is, for example, an LED or LD that converts electrical energy into light energy.
  • the optical semiconductor element 15 is a blue LED (light emitting diode element) that emits blue light.
  • the optical semiconductor element 15 does not include a rectifier such as a transistor having a technical field different from that of the optical semiconductor element.
  • the optical semiconductor element 15 has a substantially flat plate shape along the front-rear direction and the left-right direction.
  • the optical semiconductor element 15 has an electrode side surface 17, a facing surface 18, and a peripheral side surface 19.
  • the electrode side surface 17 is the lower surface of the optical semiconductor element 15 shown in FIG. 2A.
  • An electrode (not shown) is provided on the electrode side surface 17.
  • the electrode side surface 17 is temporarily fixed to the upper surface of the adhesive sheet 14.
  • the facing surface 18 is an upper surface of the optical semiconductor element 15 shown in FIG. 2A, and is opposed to the electrode side surface 17 with a space therebetween.
  • the peripheral side surface 19 connects the peripheral end edge of the electrode side surface 17 and the peripheral end edge of the facing surface 18.
  • a plurality of optical semiconductor elements 15 are arranged in a line in the front-rear direction and in the left-right direction with a space therebetween.
  • the dimensions of the optical semiconductor element 15 are appropriately set.
  • the thickness (height) is, for example, 0.1 ⁇ m or more, preferably 0.2 ⁇ m or more, and, for example, 500 ⁇ m or less, Preferably, it is 200 micrometers or less.
  • the length L1 of the optical semiconductor element 15 in the front-rear direction and / or the left-right direction is, for example, 0.1 mm or more, preferably 0.2 mm or more, and, for example, 3 mm or less, preferably 2 mm or less. is there.
  • the interval (interval in the front-rear direction and / or the left-right direction) L0 between the adjacent optical semiconductor elements 15 is, for example, 0.1 mm or more, preferably 0.2 mm or more, and, for example, 5 mm or less, Preferably, it is 3 mm or less.
  • the pitch L2 of the adjacent optical semiconductor elements 15, specifically, the sum (L1 + L0) of the length L1 and the interval L0 described above is, for example, 0.2 mm or more, preferably 0.4 mm or more. For example, it is 8 mm or less, preferably 5 mm or less.
  • Hot pressing process The hot pressing process is performed after "(1) sheet preparation process” and "(2) element preparation process".
  • the encapsulating sheet 1 shown in FIG. 1 is turned upside down, and then the encapsulating sheet 1 is temporarily fixed to the substrate 12 as shown in FIG. 2B. Place on the top surface. Specifically, the sealing layer 2 is placed on the facing surface 18 of the optical semiconductor element 15.
  • the press machine is a vacuum heat press machine including a vacuum device and a heat source, and includes a lower plate and an upper plate that is disposed on the upper side of the lower plate and configured to be hot pressable on the lower side of the lower plate. .
  • the hot pressing conditions are appropriately set to conditions in which the sealing composition in the sealing layer 2 is plasticized to cover the peripheral side surface 19 of each optical semiconductor element 15 and then the curing of the sealing composition proceeds slightly. Is done.
  • the temperature of the hot press is 60 ° C. or higher, preferably 70 ° C. or higher, and 200 ° C. or lower, preferably 180 ° C. or lower, more preferably 150 ° C. or lower.
  • the pressure of the hot press is, for example, 0.01 MPa or more, preferably 0.10 MPa or more, and for example, 10.00 MPa or less, preferably 5.00 MPa or less, more preferably 1.00 MPa or less. .
  • the time for hot pressing is, for example, 1 minute or more, preferably 3 minutes or more, and for example, 60 minutes or less, preferably 30 minutes or less.
  • the heat press can be performed multiple times.
  • the sealing layer 2 first covers the peripheral side surface 19 of each optical semiconductor element 15 based on the plasticization of the resin. Thereby, the sealing layer 2 embeds the optical semiconductor element 15. The lower end portion of the sealing layer 2 reaches the upper surface of the adhesive sheet 14, thereby forming a lower end surface 28 that is flush with the electrode side surface 17 of the optical semiconductor element 15.
  • the release sheet 3 is peeled from the sealing layer 2.
  • the optical semiconductor element 15, the sealing layer 2, and the base material 12 are heated by, for example, an oven.
  • the sealing composition contains a thermosetting resin
  • the thermosetting resin is completely cured (C stage).
  • the heating temperature is, for example, 100 ° C. or more, preferably 120 ° C. or more, and for example, 200 ° C. or less, preferably 150 ° C. or less.
  • the heating time is, for example, 10 minutes or more, preferably 30 minutes or more, and for example, 180 minutes or less, preferably 120 minutes or less.
  • thermosetting resin when the resin is a thermosetting resin, the thermosetting resin is cured (C stage). Thereby, the thermosetting resin is completely reacted to produce a product.
  • R 5 e SiO (4-e) / 2 (Wherein R 5 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, including a phenyl group (excluding alkenyl groups and cycloalkenyl groups); 0.0 or more and 3.0 or less.)
  • the unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 5 includes an unsubstituted or substituted monovalent carbon group having 1 to 10 carbon atoms represented by R 2 in the formula (1). Examples thereof are the same as the hydrogen group and the unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 3 in the formula (2).
  • an unsubstituted monovalent hydrocarbon group more preferably an alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms, and more preferably a combined use of a phenyl group and a methyl group is used.
  • an unsubstituted monovalent hydrocarbon group more preferably an alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms, and more preferably a combined use of a phenyl group and a methyl group.
  • the proportion of the phenyl groups in R 5 in the average composition formula of the product (3) is, for example, 30 mol% or more, preferably is 35 mol% or more, and is, for example, 55 mol% or less, preferably 50 mol% or less.
  • the content ratio of the phenyl group in R 5 of the average composition formula (3) of the product is a monovalent hydrocarbon group directly bonded to the silicon atom of the product (indicated by R 5 in the average composition formula (3)). This is the phenyl group concentration.
  • the content ratio of the phenyl group in R 5 of the average composition formula (3) of the product is calculated by 1 H-NMR and 29 Si-NMR.
  • the details of the method for calculating the content ratio of the phenyl group in R 5 are calculated by 1 H-NMR and 29 Si-NMR based on, for example, the description of WO2011 / 125463.
  • the sealing layer 2 adheres to the facing surface 18 and the peripheral side surface 19 of the optical semiconductor element 15. That is, the sealing layer 2 seals the facing surface 18 and the peripheral side surface 19 of the optical semiconductor element 15.
  • the sealed optical semiconductor element 11 can be distributed in a state where the base material 12 is provided (a state supported by the base material 12).
  • the sealed optical semiconductor element 11 including one optical semiconductor element 15 and the sealing layer 2 is obtained in a state where it is supported by the base material 12.
  • peeling process is implemented after "(4) individualization process.”
  • the sealed optical semiconductor element 11 is peeled off from the base material 12 as indicated by arrows and phantom lines in FIG. 2D.
  • the electrode side surface 17 and the lower end surface 28 of the sealing layer 2 are peeled off from the upper surface of the adhesive sheet 14.
  • the sealed optical semiconductor element 11 including the optical semiconductor element 15 and the sealing layer 2 is obtained.
  • the sealed optical semiconductor element 11 is not the optical semiconductor device 21 (see FIG. 2E), that is, does not include the substrate 16 provided in the optical semiconductor device 21. That is, the sealed optical semiconductor element 11 is configured such that the electrode side surface 17 is not yet electrically connected to a terminal (not shown) provided on the substrate 16 of the optical semiconductor device 21. Furthermore, in the sealed optical semiconductor element 11, the lower end surface 28 of the sealing layer 2 is not yet in contact with the upper surface of the substrate 16.
  • the sealed optical semiconductor element 11 is a component for manufacturing the optical semiconductor device 21, that is, a component for manufacturing the optical semiconductor device 21.
  • the sealed optical semiconductor element 11 is preferably composed only of the optical semiconductor element 15 and the sealing layer 2.
  • a sealed optical semiconductor element 11 obtained by a “method for manufacturing a sealed optical semiconductor element” is mounted on a substrate 16.
  • the substrate 16 has a substantially flat plate shape, for example, an insulating substrate. Moreover, the board
  • an electrode (not shown) on the electrode side surface 17 of the sealed optical semiconductor element 11 is brought into contact with a terminal (not shown) of the substrate 16. Connect to. That is, the optical semiconductor element 15 of the sealed optical semiconductor element 11 is flip-chip mounted on the substrate 16.
  • the electrode side surface 1 is brought into contact with the upper surface of the substrate 16.
  • the optical semiconductor device 21 including the substrate 16 and the sealed optical semiconductor element 11 mounted on the substrate 16 is obtained.
  • the optical semiconductor device 21 includes only the substrate 16 and the sealed optical semiconductor element 11. That is, the optical semiconductor device 21 does not include the release sheet 3 and / or the base material 12, and preferably includes only the substrate 16, the optical semiconductor element 15, and the sealing layer 2.
  • the temperature T at the minimum value of the sealing layer 2 is in the range of 60 ° C. or more and 200 ° C. or less, and the storage shear modulus G ′ at the minimum value is 5 Pa or more. , 1,000 Pa or less, it has a good viscosity in hot pressing, has excellent sealing properties with respect to the optical semiconductor element 15, and can further quickly seal the optical semiconductor element 15.
  • this sealing sheet 1 if the storage shear modulus G ′ at 30 ° C. is 100 Pa or more, the handleability at 30 ° C. is excellent.
  • the sealing layer 2 when the sealing layer 2 contains a thermosetting resin, the sealing layer 2 can be thermoset, and by this, the reliability of the sealing optical semiconductor element 11 is obtained. As a result, the reliability of the optical semiconductor device 21 can be improved.
  • this sealing sheet 1 if the sealing layer 2 is in the B stage state, the optical semiconductor element 15 is reliably embedded by the sealing layer 2, and the optical semiconductor element 15 is reliably secured by the sealing layer 2. Sealing can be achieved.
  • sealing optical semiconductor element 11 and optical semiconductor device 21 of It is excellent in manufacturing efficiency, and accordingly, an increase in manufacturing cost of the sealed optical semiconductor element 11 and the optical semiconductor device 21 can be suppressed.
  • the minimum value is in the range of 65 ° C. or higher and 90 ° C. or lower, the storage stability can be improved.
  • the optical semiconductor element 15 can be quickly sealed and reliably sealed. Can be planned.
  • positioned at the lower surface of the sealing layer 2 is further provided, the lower surface of the sealing layer 2 can be protected.
  • the encapsulating sheet 1 is hot pressed on the optical semiconductor element 15 at a temperature of 60 ° C. or higher and 200 ° C. or lower.
  • the sealing sheet 1 reliable and quick sealing with respect to the optical semiconductor element 15 can be achieved.
  • the sealing optical semiconductor element 11 is obtained by the above-described manufacturing method of the sealing optical semiconductor element sealing sheet 1 and mounted on the substrate 16, the reliability is excellent.
  • the optical semiconductor device 21 can be manufactured.
  • FIG. 2D after manufacturing the sealing optical semiconductor element 11 once on the base material 12, as shown to FIG.
  • the sealing optical semiconductor element 11 is mounted on the substrate 16 by peeling off.
  • a plurality of optical semiconductor elements 15 are mounted on the substrate 16 in advance, and then, as shown in FIG. 3B, the plurality of optical semiconductor elements 15 are sealed with the sealing sheet 1, Thereafter, the release sheet 3 can be peeled off from the sealing layer 2 to obtain the optical semiconductor device 21 including the substrate 16, the optical semiconductor element 15, and the sealing layer 2.
  • the base material 12 shown in FIG. 2A can be replaced with the substrate 16, and further, the singulation process and the mounting process can be omitted. That is, as shown in FIG. 3C, the sealed optical semiconductor element 11 can be manufactured on the substrate 16.
  • a plurality of optical semiconductor elements 15 are flip-chip mounted in advance on the substrate 16 so that the electrode side surface 17 of the optical semiconductor element 15 faces the upper surface of the substrate 16. .
  • the plurality of optical semiconductor elements 15 are sealed with the sealing sheet 1. Specifically, first, the sealing layer 2 of the sealing sheet 1 is placed on the facing surfaces 18 of the plurality of optical semiconductor elements 15.
  • the optical semiconductor element 15, the substrate 16 and the sealing sheet 1 are set in a press machine, and then hot pressing is performed.
  • the sealing layer 2 seals the facing surface 18 and the peripheral side surface 19 of the optical semiconductor element 15.
  • the sealing layer 2 embeds the optical semiconductor element 15.
  • the lower end portion of the sealing layer 2 reaches the upper surface of the substrate 16, thereby forming a lower end surface 28 that is flush with the electrode side surface 17 of the optical semiconductor element 15.
  • the release sheet 3 is peeled from the sealing layer 2.
  • the sealing composition contains a thermosetting resin
  • the thermosetting resin is completely cured (C stage).
  • the sealing layer 2 adheres to the facing surface 18 and the peripheral side surface 19 of the optical semiconductor element 15.
  • the optical semiconductor device 21 including the substrate 16, the optical semiconductor element 15 mounted on the substrate 16, and the sealing layer 2 that seals the optical semiconductor element 15 is obtained.
  • the optical semiconductor element 15 and the sealing layer 2 constitute the sealed optical semiconductor element 11. Therefore, the optical semiconductor device 21 includes the substrate 16 and the sealed optical semiconductor element 11.
  • blending ratio content ratio
  • physical property values and parameters used in the following description are described in the above-mentioned “Mode for Carrying Out the Invention”, and the corresponding blending ratio (content ratio) ), Physical property values, parameters, etc. may be replaced with the upper limit values (numerical values defined as “less than” or “less than”) or lower limit values (numbers defined as “greater than” or “exceeded”). it can.
  • the weight average molecular weight in terms of polystyrene of the alkenyl group-containing polysiloxane A was measured by gel permeation chromatography and found to be 2,300.
  • Synthesis example 2 In a four-necked flask equipped with a stirrer, reflux condenser, charging port and thermometer, 93.2 g of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 140 g of water, trifluoromethanesulfone 0.38 g of acid and 500 g of toluene were added and mixed. While stirring, a mixture of 173.4 g of diphenyldimethoxysilane and 300.6 g of phenyltrimethoxysilane was added dropwise over 1 hour. After completion of the addition, the mixture was heated to reflux for 1 hour.
  • the weight average molecular weight in terms of polystyrene of the alkenyl group-containing polysiloxane B was measured by gel permeation chromatography and found to be 1,000.
  • the average unit formula and average composition formula of the hydrosilyl group-containing polysiloxane C are as follows.
  • polystyrene-reduced weight average molecular weight of the hydrosilyl group-containing polysiloxane C was measured by gel permeation chromatography and found to be 1,000.
  • OE-6630 addition reaction curable silicone resin composition, refractive index 1.53, manufactured by Toray Dow Corning OE-6635: addition reaction curable silicone resin composition, refractive index 1.54, manufactured by Toray Dow Corning OE-6636: addition reaction curable silicone resin composition, refractive index 1.54, manufactured by Toray Dow Corning, Ltd.
  • Silicone resin composition B was prepared by mixing 20 g of alkenyl group-containing polysiloxane A, 25 g of alkenyl group-containing polysiloxane B, 25 g of hydrosilyl group-containing polysiloxane C, and 1 mg of platinum carbonyl complex.
  • Example 1 Glass composition was mixed with the silicone resin composition A so as to be 50% by mass with respect to the total amount thereof to prepare a sealing composition (refractive index 1.56).
  • the sealing composition was applied to the surface of a release sheet (PET sheet, trade name “SS4C”, manufactured by Nipper Co., Ltd.) having a thickness of 50 ⁇ m with an applicator so that the thickness after heating was 400 ⁇ m.
  • a B-stage sealing layer was produced on the surface of the release sheet by heating at 80 ° C. for 11.5 minutes. That is, the sealing sheet provided with a sealing layer and a peeling sheet was produced (refer FIG. 1).
  • Example 2 Glass composition was mixed with the silicone resin composition A so as to be 50% by mass with respect to the total amount thereof to prepare a sealing composition (refractive index 1.56).
  • the sealing composition was applied to the surface of a release sheet (PET sheet, trade name “SS4C”, manufactured by Nipper Co., Ltd.) having a thickness of 50 ⁇ m with an applicator so that the thickness after heating was 400 ⁇ m.
  • a B-stage sealing layer was produced on the surface of the release sheet. That is, the sealing sheet provided with a sealing layer and a peeling sheet was produced (refer FIG. 1).
  • the sealing composition (refractive index 1.56) was prepared by mixing glass particles with OE-6636 so as to be 50% by mass with respect to their total amount.
  • the sealing composition was applied to the surface of a release sheet (PET sheet, trade name “SS4C”, manufactured by Nipper Co., Ltd.) having a thickness of 50 ⁇ m with an applicator so that the thickness after heating was 400 ⁇ m.
  • a B-stage sealing layer was produced on the surface of the release sheet by heating at 80 ° C. for 11.5 minutes. That is, the sealing sheet provided with a sealing layer and a peeling sheet was produced (refer FIG. 1).
  • Example 4 Glass composition was mixed with the silicone resin composition B so as to be 50% by mass with respect to the total amount thereof to prepare a sealing composition (refractive index 1.56).
  • the sealing composition was applied to the surface of a release sheet (PET sheet, trade name “SS4C”, manufactured by Nipper Co., Ltd.) having a thickness of 50 ⁇ m with an applicator so that the thickness after heating was 400 ⁇ m.
  • a B-stage sealing layer was formed on the surface of the release sheet by heating at 80 ° C. for 30 minutes. That is, the sealing sheet provided with a sealing layer and a peeling sheet was produced (refer FIG. 1).
  • Example 5 Glass composition was mixed with the silicone resin composition A so as to be 50% by mass with respect to the total amount thereof to prepare a sealing composition (refractive index 1.56).
  • the sealing composition was applied to the surface of a release sheet (PET sheet, trade name “SS4C”, manufactured by Nipper Co., Ltd.) having a thickness of 50 ⁇ m with an applicator so that the thickness after heating was 400 ⁇ m.
  • a B-stage sealing layer was produced on the surface of the release sheet by heating at 80 ° C. for 10 minutes. That is, the sealing sheet provided with a sealing layer and a peeling sheet was produced (refer FIG. 1).
  • the sealing composition (refractive index 1.56) was prepared by mixing glass particles with OE-6630 so as to be 50% by mass with respect to their total amount.
  • the sealing composition was applied to the surface of a release sheet (PET sheet, trade name “SS4C”, manufactured by Nipper Co., Ltd.) having a thickness of 50 ⁇ m with an applicator so that the thickness after heating was 400 ⁇ m.
  • a B-stage sealing layer was produced on the surface of the release sheet by heating at 80 ° C. for 10 minutes. That is, the sealing sheet provided with a sealing layer and a peeling sheet was produced (refer FIG. 1).
  • Example 7 Glass composition was mixed with the silicone resin composition A so as to be 50% by mass with respect to the total amount thereof to prepare a sealing composition (refractive index 1.56).
  • the sealing composition was applied to the surface of a release sheet (PET sheet, trade name “SS4C”, manufactured by Nipper Co., Ltd.) having a thickness of 50 ⁇ m with an applicator so that the thickness after heating was 400 ⁇ m.
  • a B-stage sealing layer was produced on the surface of the release sheet by heating at 80 ° C. for 16 minutes. That is, the sealing sheet provided with a sealing layer and a peeling sheet was produced (refer FIG. 1).
  • Example 8 Glass composition was mixed with the silicone resin composition A so as to be 50% by mass with respect to the total amount thereof to prepare a sealing composition (refractive index 1.56).
  • the sealing composition was applied to the surface of a release sheet (PET sheet, trade name “SS4C”, manufactured by Nipper Co., Ltd.) having a thickness of 50 ⁇ m with an applicator so that the thickness after heating was 400 ⁇ m.
  • a B-stage sealing layer was produced on the surface of the release sheet. That is, the sealing sheet provided with a sealing layer and a peeling sheet was produced (refer FIG. 1).
  • Example 9 Glass composition was mixed with the silicone resin composition A so as to be 50% by mass with respect to the total amount thereof to prepare a sealing composition (refractive index 1.56).
  • the sealing composition was applied to the surface of a release sheet (PET sheet, trade name “SS4C”, manufactured by Nipper Co., Ltd.) having a thickness of 50 ⁇ m with an applicator so that the thickness after heating was 400 ⁇ m.
  • a B-stage sealing layer was formed on the surface of the release sheet by heating at 80 ° C. for 16.5 minutes. That is, a sealing sheet including a sealing layer and a release sheet was produced (see FIG. 1).
  • Glass composition was mixed with the silicone resin composition A so as to be 50% by mass with respect to the total amount thereof to prepare a sealing composition (refractive index 1.56).
  • the sealing composition was applied to the surface of a release sheet (PET sheet, trade name “SS4C”, manufactured by Nipper Co., Ltd.) having a thickness of 50 ⁇ m with an applicator so that the thickness after heating was 400 ⁇ m.
  • a B-stage sealing layer was prepared on the surface of the release sheet by heating at 80 ° C. for 17 minutes. That is, the sealing sheet provided with a sealing layer and a peeling sheet was produced (refer FIG. 1).
  • the sealing composition (refractive index 1.56) was prepared by mixing glass particles with OE-6635 so as to be 50% by mass with respect to their total amount.
  • the sealing composition was applied with an applicator to the surface of a release sheet (PET sheet, trade name “SS4C”, manufactured by Nipper Co., Ltd.) having a thickness of 50 ⁇ m so that the thickness after heating becomes 400 ⁇ m, and then 70 A B-stage sealing layer was formed on the surface of the release sheet by heating at ° C for 8.5 minutes. That is, the sealing sheet provided with a sealing layer and a peeling sheet was produced (refer FIG. 1).
  • a release sheet PET sheet, trade name “SS4C”, manufactured by Nipper Co., Ltd.
  • DMA device Rotary rheometer (C-VOR device, manufactured by Malvern) Sample amount: 0.1g Distortion amount: 10% Frequency: 1Hz Plate diameter: 8mm Gap between plates: 200 ⁇ m Temperature increase rate: 10 ° C / min Temperature range: 20-200 ° C A curve showing the relationship between the storage shear modulus G ′ and the temperature T is shown in FIG.
  • melt viscosity V1 after storage for 1 week at ⁇ 15 ° C. increases 2.0 times or more from the initial melt viscosity V0, that is, when V1 / V0 is 2.0 or more.
  • the storage stability was evaluated as x.
  • the handling property was evaluated as ⁇ when the sealing sheet was deformed by 2 mm or more, and evaluated as ⁇ when the deformation was less than 2 mm or not deformed.
  • the optical semiconductor element and the sealing sheet were set in a press machine, and even when molding started within 1 minute, when a sealing (filling) defect was observed, the evaluation was evaluated as x.
  • the evaluation was evaluated as ⁇ .
  • the evaluation was evaluated as “good”.
  • A-stage silicone resin compositions A and B were reacted (completely cured and C-staged) at 100 ° C. for 1 hour without adding phosphor and filler to obtain a product. .
  • the phenyl group content in the hydrocarbon group (R 5 ) of the product obtained by the reaction of the silicone resin compositions A and B was 48%.
  • the sealing sheet is used in a method for manufacturing an optical semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Led Device Packages (AREA)

Abstract

【解決手段】封止シート1は、光半導体素子15を封止するように使用される封止層2を備える。封止層2を、周波数1Hzおよび昇温速度10℃/分の条件で動的粘弾性測定することにより得られる貯蔵剪断弾性率G'と温度Tとの関係を示す曲線が、極小値を有する。極小値における温度Tが、60℃以上、200℃以下の範囲にある。極小値における貯蔵剪断弾性率G'が、5Pa以上、1,000Pa以下の範囲にある。

Description

封止シート、封止光半導体素子の製造方法および光半導体装置の製造方法
 本発明は、封止シート、封止光半導体素子の製造方法および光半導体装置の製造方法、詳しくは、封止シート、それを用いる封止光半導体素子の製造方法、および、その製造方法により得られる封止光半導体素子を用いる光半導体装置の製造方法に関する。
 従来より、封止シートによりLEDを封止し、それによって、発光装置を得ることが知られている。
 例えば、所定の架橋温度未満の温度において熱可塑性を有し、前記架橋温度以上の温度で不可逆的に硬化する熱可塑性樹脂を含有する封止用樹脂シートが提案されている(例えば、特許文献1参照。)。
 上記した封止用樹脂シートは、LEDに対して、熱プレスして、使用される。
特開2013-179300号公報
 しかるに、封止シートには、熱プレスにおいて、過度に流動することを抑制して、LEDの近傍に滞留できる粘性が求められるところ、特許文献1に記載される封止用樹脂シートでは、求められる粘性を十分に満足することができないという不具合がある。
 一方、封止用樹脂シートには、LEDに対する確実な封止性が求められる。
 さらに、封止用樹脂シートには、LEDに対して迅速に封止することも求められている。
 本発明の目的は、熱プレスにおける良好な粘性を有し、光半導体素子を確実かつ迅速に封止することのできる封止シート、それを用いる封止光半導体素子の製造方法、および、それを用いる光半導体装置の製造方法を提供することにある。
 本発明(1)は、光半導体素子を封止するように使用される封止層を備える封止シートであって、前記封止層を、周波数1Hzおよび昇温速度10℃/分の条件で動的粘弾性測定することにより得られる貯蔵剪断弾性率G’と温度Tとの関係を示す曲線が、極小値を有し、前記極小値における温度Tが、60℃以上、200℃以下の範囲にあり、前記極小値における貯蔵剪断弾性率G’が、5Pa以上、1,000Pa以下の範囲にある、封止シートを含む。
 この封止シートによれば、封止層の極小値における温度Tが、60℃以上、200℃以下の範囲にあり、極小値における貯蔵剪断弾性率G’が、5Pa以上、1,000Pa以下の範囲にあるので、熱プレスにおける良好な粘性を有し、光半導体素子を確実かつ迅速に封止することができる。
 本発明(2)は、30℃における前記貯蔵剪断弾性率G’が、100Pa以上である、(1)に記載の封止シートを含む。
 この封止シートでは、30℃における貯蔵剪断弾性率G’が、100Pa以上であるので、30℃における取扱性に優れている。
 本発明(3)は、前記封止層が、熱硬化性樹脂を含有する、(1)または(2)に記載の封止シートを含む。
 この封止シートでは、封止層が、熱硬化性樹脂を含有するので、封止層を熱硬化させることができ、これによって、封止光半導体素子の信頼性、ひいては、光半導体装置の信頼性を向上させることができる。
 本発明(4)は、前記封止層が、Bステージ状態である、(3)に記載の封止シートを含む。
 この封止シートでは、封止層が、Bステージ状態であるので、封止層によって、光半導体素子を確実に埋設して、封止層による光半導体素子に対する確実な封止を図ることができる。
 本発明(5)は、150℃、2時間の加熱条件で熱硬化させたときの25℃における引張弾性率が、10MPa以上である、(3)または(4)に記載の封止シートを含む。
 この封止シートでは、150℃、2時間の加熱条件で熱硬化させたときの25℃における引張弾性率が、10MPa以上であるので、封止層の迅速な硬化を達成でき、そのため、封止光半導体素子および光半導体装置の製造効率に優れ、従って、封止光半導体素子および光半導体装置の製造コストの上昇を抑制することができる。
 本発明(6)は、前記極小値が、65℃以上、90℃以下の範囲にある、(1)~(5)のいずれか一項に記載の封止シートを含む。
 この封止シートによれば、極小値が、65℃以上、90℃以下の範囲にあるので、封止層の優れた封止性によって、光半導体素子を確実に封止することができる。
 本発明(7)は、前記極小値における貯蔵剪断弾性率G’が、10Pa以上、300Pa以下の範囲にある、(1)~(6)のいずれか一項に記載の封止シートを含む。
 この封止シートによれば、極小値における貯蔵剪断弾性率G’が、10Pa以上、300Pa以下の範囲にあるので、光半導体素子に対する迅速な封止、および、確実な封止を図ることができる。
 本発明(8)は、前記封止層の厚み方向一方面に配置される剥離シートをさらに備える、(1)~(7)のいずれか一項に記載の封止シートを含む。
 この封止シートによれば、封止層の厚み方向一方面に配置される剥離シートをさらに備えるので、封止層の厚み方向一方面を保護することができる。
 本発明(9)は、(1)~(8)のいずれか一項に記載の封止シートを用意するシート用意工程、基材に配置される光半導体素子を用意する素子用意工程、および、前記封止シートを、60℃以上、200℃以下の温度で、前記光半導体素子に対して熱プレスする熱プレス工程を備える、封止光半導体素子の製造方法を含む。
 この封止光半導体素子の製造方法によれば、熱プレス工程では、封止シートを、60℃以上、200℃以下の温度で、光半導体素子に対して熱プレスするので、封止シートによって、光半導体素子に対する確実かつ迅速な封止を達成することができる。
 本発明(10)は、(9)に記載の封止光半導体素子の製造方法により、封止光半導体素子を得る工程を備え、前記基材が、支持板と、前記支持板の厚み方向一方面に配置される粘着シートとを備え、前記封止光半導体素子を前記粘着シートから剥離する剥離工程、および、前記封止光半導体素子を基板に実装する実装工程をさらに備える、光半導体装置の製造方法を含む。
 この光半導体装置の製造方法によれば、上記した封止光半導体素子の製造方法により、封止光半導体素子を得、これを基板に実装するので、信頼性に優れた光半導体装置を製造することができる。
 本発明(11)は、(9)に記載の封止光半導体素子の製造方法により、封止光半導体素子を得る工程を備え、前記基材が、基板であり、前記素子用意工程では、前記基板に実装された光半導体素子を用意する、光半導体装置の製造方法を含む。
 この光半導体装置の製造方法によれば、信頼性に優れた光半導体装置を製造することができる。
 本発明の封止シートによれば、熱プレスにおける良好な粘性を有し、光半導体素子を確実かつ迅速に封止することができる。
 本発明の封止光半導体素子の製造方法によれば、信頼性に優れた光半導体装置を製造することができる。
 本発明の光半導体装置の製造方法の製造方法によれば、信頼性に優れた光半導体装置を製造することができる。
図1は、本発明の封止シートの一実施形態の断面図を示す。 図2A~図2Eは、本発明の封止光半導体素子の製造方法および光半導体装置の製造方法の第1実施形態の工程図を示し、図2Aは、光半導体素子を基材に仮固定する工程、図2Bは、封止シートを光半導体素子の対向面に載置する工程、図2Cは、封止シートにより光半導体素子を封止する工程、図2Dは、封止光半導体素子を個片化し、続いて、基材から引き剥がす工程、図2Eは、封止光半導体素子を基板に実装する工程を示す。 図3A~図3Cは、本発明の封止光半導体素子の製造方法および光半導体装置の製造方法の第2実施形態の工程図を示し、図3Aは、基板に実装された光半導体素子を用意する工程、図3Bは、封止シートを光半導体素子の対向面に載置する工程、図3Cは、封止シートによって光半導体素子を封止する工程を示す。 図4は、各実施例および各比較例における封止層の貯蔵剪断弾性率G’と温度Tとの関係を示す。
  <本発明の封止シートの一実施形態>
 本発明の一実施形態を以下で説明する。
 図1において、紙面上下方向は、上下方向(第1方向、厚み方向)であり、紙面上側が上側(第1方向一方側、厚み方向一方側)、紙面下側が下側(第1方向他方側、厚み方向他方側)である。図1において、紙面左右方向は、左右方向(第1方向に直交する第2方向)であり、紙面左側が左側(第2方向一方側)、紙面右側が右側(第2方向他方側)である。図1において、紙面紙厚方向は、前後方向(第1方向および第2方向に直交する第3方向)であり、紙面手前側が前側(第3方向一方側)、紙面奥側が後側(第3方向他方側)である。具体的には、各図の方向矢印に準拠する。
 1.封止シート
 封止シート1は、図1に示すように、略平板形状を有し、具体的には、所定の厚みを有し、左右方向および前後方向に延び、平坦な上面(表面)および平坦な下面(裏面)を有している。また、封止シート1は、後述する封止光半導体素子11(図2D参照)ではなく、また、光半導体装置21(図2E参照)でもない。すなわち、封止シート1は、封止光半導体素子11および光半導体装置21の一部品であり、すなわち、封止光半導体素子11および光半導体装置21を作製するための部品である。そのため、封止シート1は、光半導体素子15および光半導体素子15を実装する基板16(図2E参照)を含まず、封止シート1そのものが、部品単独で流通し、産業上利用可能なデバイスである。
 図1に示すように、封止シート1は、封止層2と、封止層2の下面に配置される剥離シート3とを備える。好ましくは、封止シート1は、封止層2と、剥離シート3とのみからなる。
 1-1.封止層
 封止層2は、封止材料から形成される層(シート)状を有している。また、封止層2は、後述する図2Cに示すように、光半導体素子15を封止するように使用される。
 封止材料としては、例えば、封止組成物が挙げられる。封止組成物は、例えば、粘着性(すなわち、常温(25℃)での表面タック性)の樹脂を含有している。
 樹脂としては、例えば、熱硬化性樹脂、熱可塑性樹脂が挙げられ、好ましくは、熱硬化性樹脂が挙げられる。
 熱硬化性樹脂としては、例えば、2段反応硬化性樹脂、1段反応硬化性樹脂が挙げられる。
 2段反応硬化性樹脂は、2つの反応機構を有しており、第1段の反応で、Aステージ状態からBステージ化(半硬化)し、次いで、第2段の反応で、Bステージ状態からCステージ化(完全硬化)することができる。つまり、2段反応硬化性樹脂は、適度の加熱条件によりBステージ状態となることができる熱硬化性樹脂である。Bステージ状態は、熱硬化性樹脂が、液状であるAステージ状態と、完全硬化したCステージ状態との間の状態であって、硬化およびゲル化がわずかに進行し、圧縮弾性率がCステージ状態の弾性率よりも小さい半固体状態または固体状態である。
 1段反応硬化性樹脂は、1つの反応機構を有しており、第1段の反応で、Aステージ状態からCステージ化(完全硬化)することができる。このような1段反応硬化性樹脂は、第1段の反応の途中で、その反応が停止して、Aステージ状態からBステージ状態となることができ、その後のさらなる加熱によって、第1段の反応が再開されて、Bステージ状態からCステージ化(完全硬化)することができる熱硬化性樹脂である。つまり、かかる熱硬化性樹脂は、Bステージ状態となることができる熱硬化性樹脂である。そのため、1段反応硬化性樹脂は、1段の反応の途中で停止するように制御できず、つまり、Bステージ状態となることができず、一度に、Aステージ状態からCステージ化(完全硬化)する熱硬化性樹脂を含まない。
 要するに、熱硬化性樹脂は、Bステージ状態となることができる熱硬化性樹脂である。
 熱硬化性樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂などが挙げられる。熱硬化性樹脂としては、好ましくは、シリコーン樹脂、エポキシ樹脂が挙げられ、より好ましくは、シリコーン樹脂が挙げられる。
 上記した熱硬化性樹脂は、同一種類または複数種類のいずれでもよい。
 シリコーン樹脂としては、透明性、耐久性、耐熱性、耐光性の観点から、例えば、付加反応硬化型シリコーン樹脂組成物、縮合・付加反応硬化型シリコーン樹脂組成物などのシリコーン樹脂組成物が挙げられ、好ましくは、付加反応硬化型シリコーン樹脂組成物が挙げられる。シリコーン樹脂は、単独で使用してもよく、あるいは、併用することもできる。
 付加反応硬化型シリコーン樹脂組成物は、1段反応硬化性樹脂組成物であって、例えば、アルケニル基含有ポリシロキサンと、ヒドロシリル基含有ポリシロキサンと、ヒドロシリル化触媒とを含有する。
 アルケニル基含有ポリシロキサンは、分子内に2個以上のアルケニル基および/またはシクロアルケニル基を含有する。アルケニル基含有ポリシロキサンは、具体的には、下記平均組成式(1)で示される。
 平均組成式(1):
 R SiO(4-a-b)/2
(式中、Rは、炭素数2~10のアルケニル基および/または炭素数3~10のシクロアルケニル基を示す。Rは、非置換または置換の炭素数1~10の1価の炭化水素基(ただし、アルケニル基およびシクロアルケニル基を除く。)を示す。aは、0.05以上、0.50以下であり、bは、0.80以上、1.80以下である。)
 式(1)中、Rで示されるアルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基などの炭素数2~10のアルケニル基が挙げられる。Rで示されるシクロアルケニル基としては、例えば、シクロヘキセニル基、ノルボルネニル基などの炭素数3~10のシクロアルケニル基が挙げられる。
 Rとして、好ましくは、アルケニル基、より好ましくは、炭素数2~4のアルケニル基、さらに好ましくは、ビニル基が挙げられる。
 Rで示されるアルケニル基は、同一種類または複数種類のいずれでもよい。
 Rで示される1価の炭化水素基は、アルケニル基およびシクロアルケニル基以外の非置換または置換の炭素原子数1~10の1価の炭化水素基である。
 非置換の1価の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ペンチル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基などの炭素数1~10のアルキル基、例えば、シクロプロピル、シクロブチル基、シクロペンチル基、シクロヘキシル基などの炭素数3~6のシクロアルキル基、例えば、フェニル基、トリル基、ナフチル基などの炭素数6~10のアリール基、例えば、ベンジル基、ベンジルエチル基などの炭素数7~8のアラルキル基が挙げられる。好ましくは、炭素数1~3のアルキル基、炭素数6~10のアリール基が挙げられ、より好ましくは、メチル基および/またはフェニル基が挙げられる。
 一方、置換の1価の炭化水素基は、上記した非置換の1価の炭化水素基における水素原子を置換基で置換したものが挙げられる。
 置換基としては、例えば、塩素原子などのハロゲン原子、例えば、グリシジルエーテル基などが挙げられる。
 置換の1価の炭化水素基としては、具体的には、3-クロロプロピル基、グリシドキシプロピル基などが挙げられる。
 1価の炭化水素基は、非置換および置換のいずれであってもよく、好ましくは、非置換である。
 Rで示される1価の炭化水素基は、同一種類または複数種類であってもよい。好ましくは、メチル基および/またはフェニル基が挙げられ、より好ましくは、メチル基およびフェニル基の併用が挙げられる。
 aは、好ましくは、0.10以上、0.40以下である。
 bは、好ましくは、1.5以上、1.75以下である。
 アルケニル基含有ポリシロキサンの重量平均分子量は、例えば、100以上、好ましくは、500以上であり、また、例えば、10,000以下、好ましくは、5,000以下である。アルケニル基含有ポリシロキサンの重量平均分子量は、ゲル透過クロマトグラフィーによって測定される標準ポリスチレンによる換算値である。
 アルケニル基含有ポリシロキサンは、適宜の方法によって調製され、また、市販品を用いることもできる。
 また、アルケニル基含有ポリシロキサンは、同一種類または複数種類であってもよい。
 ヒドロシリル基含有ポリシロキサンは、例えば、分子内に2個以上のヒドロシリル基(SiH基)を含有する。ヒドロシリル基含有ポリシロキサンは、具体的には、下記平均組成式(2)で示される。
 平均組成式(2):
 H SiO(4-c-d)/2
(式中、Rは、非置換または置換の炭素数1~10の1価の炭化水素基(ただし、アルケニル基および/またはシクロアルケニル基を除く。)を示す。cは、0.30以上、1.0以下であり、dは、0.90以上、2.0以下である。)
 式(2)中、Rで示される非置換または置換の炭素数1~10の1価の炭化水素基は、式(1)のRで示される非置換または置換の炭素数1~10の1価の炭化水素基と同一のものが例示される。好ましくは、非置換の炭素数1~10の1価の炭化水素基、より好ましくは、炭素数1~10のアルキル基、炭素数6~10のアリール基が挙げられ、さらに好ましくは、メチル基および/またはフェニル基が挙げられる。
 cは、好ましくは、0.5以下である。
 dは、好ましくは、1.3以上、1.7以下である。
 ヒドロシリル基含有ポリシロキサンの重量平均分子量は、例えば、100以上、好ましくは、500以上であり、また、例えば、10,000以下、好ましくは、5,000以下である。ヒドロシリル基含有ポリシロキサンの重量平均分子量は、ゲル透過クロマトグラフィーによって測定される標準ポリスチレンによる換算値である。
 ヒドロシリル基含有ポリシロキサンは、適宜の方法によって調製され、また、市販品を用いることもできる。
 また、ヒドロシリル基含有ポリシロキサンは、同一種類または複数種類であってもよい。
 上記した平均組成式(1)および平均組成式(2)中、RおよびRの少なくともいずれか一方の炭化水素基は、好ましくは、フェニル基を含み、より好ましくは、RおよびRの両方の炭化水素が、フェニル基を含む。なお、RおよびRの少なくともいずれか一方の炭化水素基がフェニル基を含む場合には、付加反応硬化型シリコーン樹脂組成物は、フェニル系シリコーン樹脂組成物とされる。フェニル系シリコーン樹脂組成物の屈折率は、例えば、1.45以上、さらには、1.50以上である。
 ヒドロシリル基含有ポリシロキサンの配合割合は、アルケニル基含有ポリシロキサンのアルケニル基およびシクロアルケニル基のモル数の、ヒドロシリル基含有ポリシロキサンのヒドロシリル基のモル数に対する割合(アルケニル基およびシクロアルケニル基のモル数/ヒドロシリル基のモル数)が、例えば、1/30以上、好ましくは、1/3以上、また、例えば、30/1以下、好ましくは、3/1以下となるように、調整される。
 ヒドロシリル化触媒は、アルケニル基含有ポリシロキサンのアルケニル基および/またはシクロアルケニル基と、ヒドロシリル基含有ポリシロキサンのヒドロシリル基とのヒドロシリル化反応(ヒドロシリル付加)の反応速度を向上させる物質(付加触媒)であれば、特に限定されず、例えば、金属触媒が挙げられる。金属触媒としては、例えば、白金黒、塩化白金、塩化白金酸、白金-オレフィン錯体、白金-カルボニル錯体、白金-アセチルアセテートなどの白金触媒、例えば、パラジウム触媒、例えば、ロジウム触媒などが挙げられる。
 ヒドロシリル化触媒の配合割合は、金属触媒の金属量(具体的には、金属原子)として、アルケニル基含有ポリシロキサンおよびヒドロシリル基含有ポリシロキサンに対して、質量基準で、例えば、1.0ppm以上であり、また、例えば、10,000ppm以下、好ましくは、1,000ppm以下、より好ましくは、500ppm以下である。
 付加反応硬化型シリコーン樹脂組成物は、アルケニル基含有ポリシロキサン、ヒドロシリル基含有ポリシロキサンおよびヒドロシリル化触媒を、上記した割合で配合することにより、調製される。
 上記した付加反応硬化型シリコーン樹脂組成物は、まず、アルケニル基含有ポリシロキサン、ヒドロシリル基含有ポリシロキサンおよびヒドロシリル化触媒を配合することによって、Aステージ(液体)状態として調製されて使用される。
 上記したように、フェニル系シリコーン樹脂組成物は、所望条件の加熱により、アルケニル基含有ポリシロキサンのアルケニル基および/またはシクロアルケニル基と、ヒドロシリル基含有ポリシロキサンのヒドロシリル基とのヒドロシリル化付加反応を生じ、その後、ヒドロシリル化付加反応が、一旦、停止する。これによって、Aステージ状態からBステージ(半硬化)状態となることができる。
 その後、フェニル系シリコーン樹脂組成物は、さらなる所望条件の加熱により、上記したヒドロシリル化付加反応が再開されて、完結する。これによって、Bステージ状態からCステージ(完全硬化)状態となることができる。
 縮合・付加反応硬化型シリコーン樹脂組成物は、2段反応硬化性樹脂であって、具体的には、例えば、特開2010-265436号公報、特開2013-187227号公報などに記載される第1~第8の縮合・付加反応硬化型シリコーン樹脂組成物、例えば、特開2013-091705号公報、特開2013-001815号公報、特開2013-001814号公報、特開2013-001813号公報、特開2012-102167号公報などに記載されるかご型オクタシルセスキオキサン含有シリコーン樹脂組成物などが挙げられる。なお、縮合・付加反応硬化型シリコーン樹脂組成物は、固体状または半固体状であって、熱可塑性および熱硬化性を併有する。
 なお、シリコーン樹脂は、市販品を用いることができ、例えば、OEシリーズ(付加反応硬化型シリコーン樹脂組成物、東レ・ダウコーニング社製)などが用いられる。
 そして、上記した樹脂は、少なくともBステージ(半硬化)状態にあるとき、すなわち、封止層2を形成しているときの樹脂は、固体状または半固体状である。そして、このような樹脂は、熱可塑性および熱硬化性を併有する。つまり、樹脂は、加熱により、一旦、可塑化した後、完全硬化する。より具体的には、樹脂は、昇温とともに、粘度が次第に降下し、その後、昇温を継続すると、粘度が次第に上昇する。
 封止組成物は、例えば、フィラーを含有することもできる。
 フィラーとしては、例えば、無機粒子、有機粒子などが挙げられる。
 無機粒子としては、例えば、シリカ(SiO)、酸化チタン(TiO)、タルク(Mg(Si10)(HO))、アルミナ(Al)、酸化ホウ素(B)、酸化カルシウム(CaO)、酸化亜鉛(ZnO)、酸化ストロンチウム(SrO)、酸化マグネシウム(MgO)、酸化ジルコニウム(ZrO)、酸化バリウム(BaO)、酸化アンチモン(Sb)などの酸化物、例えば、窒化アルミニウム(AlN)、窒化ケイ素(Si)などの窒化物などの無機物粒子(無機物)が挙げられる。また、無機粒子として、例えば、上記例示の無機物から調製される複合無機物粒子が挙げられ、具体的には、酸化物から調製される複合無機酸化物粒子(具体的には、ガラス粒子など)が挙げられる。
 無機粒子として、好ましくは、シリカ粒子、ガラス粒子が挙げられる。
 無機粒子は、通常、後述するトルエンなどの溶剤に不溶である。
 有機粒子の有機材料としては、例えば、アクリル系樹脂、スチレン系樹脂、アクリル-スチレン系樹脂、シリコーン系樹脂、ポリカーボネート系樹脂、ベンゾグアナミン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂などが挙げられる。
 有機粒子として、好ましくは、シリコーン系樹脂粒子が挙げられる。
 有機粒子は、例えば、後述するトルエンなどの溶剤に不溶である。なお、有機粒子は、例えば、溶剤に溶解するものを含むこともできる。
 なお、フィラーは、光拡散機能を有することもできる。
 フィラーの屈折率は、例えば、1.40以上、2.50以下である。
 フィラーは、単独使用または併用することができる。
 フィラーの含有割合は、封止組成物に対して、例えば、1質量%以上、好ましくは、3質量%以上であり、また、例えば、80質量%以下、好ましくは、75質量%以下である。
 また、フィラーの樹脂100重量部に対する配合割合は、例えば、10質量部以上、好ましくは、30質量部以上であり、また、例えば、1,000質量部以下、好ましくは、200質量部以下である。
 さらに、封止組成物は、例えば、蛍光体をさらに含有することもできる。
 蛍光体としては、例えば、青色光を黄色光に変換することのできる黄色蛍光体、青色光を赤色光に変換することのできる赤色蛍光体などが挙げられる。
 黄色蛍光体としては、例えば、(Ba,Sr,Ca)SiO;Eu、(Sr,Ba)SiO:Eu(バリウムオルソシリケート(BOS))などのシリケート蛍光体、例えば、YAl12:Ce(YAG(イットリウム・アルミニウム・ガーネット):Ce)、TbAl12:Ce(TAG(テルビウム・アルミニウム・ガーネット):Ce)などのガーネット型結晶構造を有するガーネット型蛍光体、例えば、Ca-α-SiAlONなどの酸窒化物蛍光体などが挙げられる。
 赤色蛍光体としては、例えば、CaAlSiN:Eu、CaSiN:Euなどの窒化物蛍光体などが挙げられる。
 蛍光体として、好ましくは、黄色蛍光体、より好ましくは、ガーネット型蛍光体が挙げられる。
 蛍光体の形状としては、例えば、球状、板状、針状などが挙げられる。
 蛍光体の最大長さの平均値(球状である場合には、平均粒子径)は、例えば、0.1μm以上、好ましくは、1μm以上であり、また、例えば、200μm以下、好ましくは、100μm以下でもある。
 蛍光体は、単独使用または併用することができる。
 蛍光体の配合割合は、封止組成物に対して、例えば、0.1質量%以上、好ましくは、0.5質量%以上であり、例えば、90質量%以下、好ましくは、80質量%以下である。
 封止層2を調製するには、例えば、上記した樹脂と、必要により配合されるフィラーおよび蛍光体とを配合して、封止組成物のワニスを調製し、続いて、それを、剥離シート3の上面に塗布する。次いで、封止組成物が熱硬化性樹脂を含有する場合には、封止組成物を、Bステージ化する。具体的には、封止組成物を、加熱する。
 加熱条件は、封止層2において動的粘弾性測定における貯蔵剪断弾性率G’が所望の範囲となるように、適宜設定される。
 つまり、加熱温度は、封止組成物における熱硬化性樹脂の組成によって適宜設定され、具体的には、例えば、50℃以上、好ましくは、70℃以上であり、また、例えば、120℃以下、好ましくは、100℃以下である。加熱温度が上記下限以上、および/または、加熱温度が上記上限以下であれば、上記した貯蔵剪断弾性率G’の極小値を所望の範囲に設定することができる。
 加熱時間は、例えば、5分以上、好ましくは、10分以上であり、また、例えば、20分以下、好ましくは、15分以下である。加熱時間が上記下限以上、および/または、上記上限以下であれば、上記した貯蔵剪断弾性率G’の極小値を所望の範囲に設定することができる。
 これにより、封止層2が調製される。
 封止層2の厚みは、例えば、50μm以上、好ましくは、100μm以上であり、また、例えば、1500μm以下、好ましくは、1000μm以下である。
 1-2.封止層の物性
 (1) 動的粘弾性
 (1-1)極小値
 このような封止層2を、周波数1Hzおよび昇温速度10℃/分の条件で動的粘弾性測定することにより得られる貯蔵剪断弾性率G’と温度Tとの関係を示す曲線は、図4が参照されるように、極小値を有する。
 そして、そのような極小値における温度Tは、60℃以上、200℃以下の範囲にあり、上記した極小値における貯蔵剪断弾性率G’は、5Pa以上、1,000Pa以下の範囲にある。
 極小値における温度Tが60℃未満であれば、次に説明する熱プレス工程(図2C参照)における60℃以上の熱プレスにおいて、粘度が過度に上昇する。そのため、封止層2の光半導体素子15(図2B参照)に対する封止性が低下する不具合がある。
 極小値における温度Tが200℃超過であれば、次に説明する熱プレス工程(図2C参照)における200℃以下の熱プレスにおいて、封止層2の粘度が十分に降下しない。そのため、熱プレスにおいて200℃を超える高温で封止層2を加熱する必要があり、そのため、封止光半導体素子11および光半導体装置21の製造コストが上昇する不具合がある。
 極小値における貯蔵剪断弾性率G’が、5Pa未満であれば、次に説明する熱プレス工程(図2C参照)において、封止層2を形成する封止材料が過度に柔らかくなる。そして、封止材料が、光半導体素子1から離れるように流動して、光半導体素子15を封止できないという不具合がある。具体的には、封止材料が過度に流動することを抑制して、光半導体素子15の近傍に滞留できる粘性を有することができないという不具合がある。
 極小値における貯蔵剪断弾性率G’が、1,000Pa超過であれば、次に説明する熱プレス工程(図2C参照)において、封止層2の粘度が十分に降下しない。そのため、封止層2が光半導体素子15(図2B参照)を埋設できず、そのため、封止層2の半導体素子15に対する封止性が低下するという不具合がある。
 また、極小値における温度Tが、好ましくは、65℃以上、90℃以下の範囲にある。温度Tが上記範囲内にあれば、封止層2の優れた封止性によって、封止光半導体素子11を確実に封止することができる。
 また、極小値における貯蔵剪断弾性率G’は、好ましくは、10Pa以上、より好ましくは、15Pa以上、さらに好ましくは、20Pa以上であり、また、好ましくは、750Pa以下、より好ましくは、250Pa以下、さらに好ましくは、100Pa以下、とりわけ好ましくは、50Pa未満の範囲にある。
 極小値における貯蔵剪断弾性率G’が上記した下限以上であれば、次に説明する熱プレス工程(図2C参照)において、過度に流動するのを抑制して、封止光半導体素子11に対する封止性に優れる。
 極小値における貯蔵剪断弾性率G’が上記した上限以下であれば、次に説明する熱プレス工程(図2C参照)において、光半導体素子15を迅速に封止することができる。
 (1-2)30℃における貯蔵剪断弾性率G’
 また、30℃における貯蔵剪断弾性率G’は、例えば、100Pa以上、好ましくは、150Pa以上、より好ましくは、200Pa以上であり、また、例えば、1,000,000Pa以下、好ましくは、100,000Pa以下、より好ましくは、1,000Pa以下、さらに好ましくは、500Pa以下である。常温(25℃)に近い30℃における上記した貯蔵剪断弾性率G’が上記下限以上であれば、封止シート1の常温(25℃)における取扱性に優れる。
 (2) 引張弾性率
 封止層2は、熱硬化性樹脂を含有する場合には、150℃、2時間の加熱条件で熱硬化させたときの25℃における引張弾性率が、例えば、5MPa以上、好ましくは、10MPa以上、より好ましくは、20MPa以上、さらに好ましくは、20MPa以上であり、また、例えば、100MPa以下である。引張弾性率が上記下限以上であれば、封止層2を迅速に熱硬化させることができる。そのため、光半導体素子15の製造コストの上昇を抑制し、ひいては、光半導体装置21の製造コストの上昇を抑制することができる。引張弾性率が上記上限以下であれば、封止層2が適度な柔軟性を有するために、光半導体装置21の信頼性を担保することができる。
 なお、25℃における引張弾性率の測定方法は、後述する実施例欄において詳述される。
 (3)長期保存後の溶融粘度
 封止層2は、低温において長期保存したときに、溶融粘度の上昇が抑制されている。具体的には、初期の封止層2の60℃における溶融粘度V0に対する、-15℃で、1週間保存した後の封止層2の60℃における溶融粘度V1の比(V1/V0)が、例えば、2倍未満、好ましくは、1.5倍未満であり、また、例えば、1.0倍以上である。さらに、初期の封止層2の60℃における溶融粘度V0に対する、-15℃で、4週間保存した後の封止層2の60℃における溶融粘度V4の比(V4/V0)が、例えば、1.5倍未満、好ましくは、1.3倍未満であり、また、例えば、1.0倍以上である。上記した溶融粘度の比(V1/V0、および/または、V4/V0)が、上記上限未満であれば、封止層2の良好な保存安定性を確保することができる。
 なお、溶融粘度の測定方法は、後述する実施例欄において、詳述される。
 1-3.剥離シート
 剥離シート3は、図2Bに示すように、封止層2によって光半導体素子15に対して封止するまでの間、封止層2を保護するために、封止層2の裏面(図1における下面)に剥離可能に配置されている。剥離シート3は、可撓性フィルムからなる。また、剥離シート3の表面、つまり、封止層2に対する接触面は、必要によりフッ素処理などの剥離処理されている。
 剥離シート3としては、例えば、ポリエチレンフィルム、ポリエステルフィルム(PETなど)などのポリマーフィルム、例えば、セラミクスシート、例えば、金属箔などが挙げられる。剥離シート3は、平面視略矩形状(短冊状、長尺状を含む)などを有している。剥離シート3の厚みは、例えば、1μm以上、好ましくは、10μm以上であり、また、例えば、2,000μm以下、好ましくは、1,000μm以下である。
 1-4.封止シートの製造
 封止シート1を得るには、まず、剥離シート3および上記した封止組成物のワニスをそれぞれ用意する。続いて、剥離シート3の上面に、封止組成物のワニスを塗布する。その後、封止組成物が、熱硬化性樹脂を含有する場合には、封止組成物を加熱によりBステージ化する。
 これによって、封止層2と、封止層2の下面全面に配置される剥離シート3とを備える封止シート1を得る。
 封止シート1の厚みは、例えば、50μm以上、好ましくは、100μm以上であり、また、例えば、1500μm以下、好ましくは、1000μm以下である。
 2.封止光半導体素子の製造方法および光半導体装置の製造方法
  <本発明の封止光半導体素子の製造方法および光半導体装置の製造方法の第1実施形態>
 本発明の封止光半導体素子の製造方法および光半導体装置の製造方法の第1実施形態を順次説明する。
 すなわち、第1実施形態として、上記した封止シート1を用いる、封止光半導体素子11を製造する方法、および、光半導体装置21を製造する方法を説明する。
 2-1.封止光半導体素子の製造方法
 図1および図2A~図2Dに示すように、封止光半導体素子11の製造方法は、封止シート1を用意するシート用意工程(図1参照)、光半導体素子15を用意する素子用意工程(図2A参照)、および、封止シート1を光半導体素子15に対して熱プレスする熱プレス工程(図2C参照)を備える。さらに、封止光半導体素子11の製造方法は、光半導体素子15を個片化する個片化工程(図2Dの1点破線参照)、および、封止光半導体素子11を基材12から剥離する剥離工程(図2Dの矢印および仮想線参照)を備える。以下、各工程について順次説明する。
 (1)シート用意工程
 シート用意工程では、図1に示すように、上記の「1.封止シート」欄で記載したように、封止シート1を用意する。
 (2)素子用意工程
 素子用意工程では、図2Aに示すように、基材12に配置される光半導体素子15を用意する。
 基材12は、支持板13と、支持板13の上面に配置される粘着シート14とを備えている。
 支持板13は、上記した剥離シート3と同様の材料から形成されている。また、支持板13は、ガラスなどの無機材料から形成されていてもよい。支持板13の厚みは、例えば、10μm以上、好ましくは、50μm以上であり、また、例えば、1,000μm以下、好ましくは、100μm以下である。
 粘着シート14は、例えば、加熱および/または紫外線照射により、光半導体素子15を容易に剥離できるシート(すなわち、光半導体素子15を仮固定できる仮固定シート)から形成されている。粘着シート14の厚みは、例えば、5μm以上、好ましくは、10μm以上であり、また、例えば、200μm以下、好ましくは、100μm以下である。
 基材12は、支持板13の表面に、粘着シート14を配置することにより得られる。基材12の厚みは、例えば、20μm以上、好ましくは、50μm以上であり、また、例えば、500μm以下、好ましくは、200μm以下である。
 光半導体素子15は、例えば、電気エネルギーを光エネルギーに変換するLEDやLDである。好ましくは、光半導体素子15は、青色光を発光する青色LED(発光ダイオード素子)である。一方、光半導体素子15は、光半導体素子とは技術分野が異なるトランジスタなどの整流器を含まない。
 光半導体素子15は、前後方向および左右方向に沿う略平板形状を有している。光半導体素子15は、電極側面17と、対向面18と、周側面19とを有している。
 電極側面17は、図2Aに示す光半導体素子15における下面である。電極側面17には、電極(図示せず)が設けられている。電極側面17は、粘着シート14の上面に仮固定されている。
 対向面18は、図2Aに示す光半導体素子15における上面であって、電極側面17に対して下側に間隔を隔てて対向配置されている。
 周側面19は、電極側面17の周端縁と、対向面18の周端縁とを連結している。
 光半導体素子15は、前後方向および左右方向に互いに間隔を隔てて間隔を隔てて複数整列配置されている。
 光半導体素子15の寸法は、適宜設定されており、具体的には、厚み(高さ)が、例えば、0.1μm以上、好ましくは、0.2μm以上であり、また、例えば、500μm以下、好ましくは、200μm以下である。また、光半導体素子15の前後方向および/または左右方向における長さL1は、例えば、0.1mm以上、好ましくは、0.2mm以上であり、また、例えば、3mm以下、好ましくは、2mm以下である。また、隣接する光半導体素子15の間の間隔(前後方向および/または左右方向における間隔)L0は、例えば、0.1mm以上、好ましくは、0.2mm以上であり、また、例えば、5mm以下、好ましくは、3mm以下である。また、隣接する光半導体素子15のピッチL2、具体的には、上記した長さL1および間隔L0の和(L1+L0)は、例えば、0.2mm以上、好ましくは、0.4mm以上であり、また、例えば、8mm以下、好ましくは、5mm以下である。
 (3)熱プレス工程
 熱プレス工程は、「(1)シート用意工程」および「(2)素子用意工程」の後に、実施される。
 熱プレス工程では、まず、図1に示す封止シート1を上下反転させて、続いて、図2Bに示すように、その封止シート1を、基材12に仮固定された光半導体素子15の上面に配置する。具体的には、封止層2を、光半導体素子15の対向面18に載置する。
 続いて、基材12、光半導体素子15および封止シート1を、例えば、プレス機(図示せず)を用いて、熱プレスする。プレス機は、真空装置および熱源を備える真空熱プレス機であって、下板と、下板の上側に配置され、下板に対して下側に熱プレス可能に構成される上板とを備える。
 熱プレス条件は、封止層2における封止組成物が可塑化して、各光半導体素子15の周側面19を被覆し、続いて、封止組成物の硬化がわずかに進行する条件に適宜設定される。
 具体的には、熱プレスの温度は、60℃以上、好ましくは、70℃以上であり、また、200℃以下、好ましくは、180℃以下、より好ましくは、150℃以下である。
 熱プレスの圧力は、例えば、0.01MPa以上、好ましくは、0.10MPa以上であり、また、例えば、10.00MPa以下、好ましくは、5.00MPa以下、より好ましくは、1.00MPa以下である。
 熱プレスの時間は、例えば、1分以上、好ましくは、3分以上であり、また、例えば、60分以下、好ましくは、30分以下である。
 また、熱プレスは、複数回実施することができる。
 上記した熱プレスによって、封止層2は、まず、樹脂が可塑化することに基づいて、各光半導体素子15の周側面19を被覆する。これによって、封止層2は、光半導体素子15を埋設する。また、封止層2の下端部は、粘着シート14の上面に至り、これによって、光半導体素子15の電極側面17に対して面一な下端面28を形成する。
 続いて、剥離シート3を封止層2から剥離する。
 その後、光半導体素子15、封止層2および基材12を、例えば、オーブンなどによって、加熱する。封止組成物が熱硬化性樹脂を含有する場合には、熱硬化性樹脂が完全硬化(Cステージ化)する。
 加熱温度は、例えば、100℃以上、好ましくは、120℃以上であり、また、例えば、200℃以下、好ましくは、150℃以下である。また、加熱時間が、例えば、10分以上、好ましくは、30分以上であり、また、例えば、180分以下、好ましくは、120分以下である。
 これによって、樹脂が熱硬化性樹脂である場合には、熱硬化性樹脂を硬化(Cステージ化)させる。これによって、熱硬化性樹脂を完全に反応させて生成物を生成する。
 (生成物)
 シリコーン樹脂組成物の反応(Cステージ化反応)では、アルケニル基含有ポリシロキサンのアルケニル基および/またはシクロアルケニル基と、ヒドロシリル基含有ポリシロキサンのヒドロシリル基とのヒドロシリル付加反応がさらに促進される。その後、アルケニル基および/またはシクロアルケニル基、あるいは、ヒドロシリル基含有ポリシロキサンのヒドロシリル基が消失して、ヒドロシリル付加反応が完結することによって、Cステージのシリコーン樹脂組成物、つまり、生成物(あるいは硬化物)が得られる。つまり、ヒドロシリル付加反応の完結により、シリコーン樹脂組成物において、硬化性(具体的には、熱硬化性)が発現する。
 上記した生成物は、下記平均組成式(3)で示される。
 平均組成式(3):
 R SiO(4-e)/2
(式中、Rは、フェニル基を含む、非置換または置換の炭素数1~10の1価の炭化水素基(ただし、アルケニル基およびシクロアルケニル基を除く。)を示す。eは、1.0以上、3.0以下である。)
 Rで示される非置換または置換の炭素数1~10の1価の炭化水素基としては、式(1)のRで示される非置換または置換の炭素数1~10の1価の炭化水素基、および、式(2)のRで示される非置換または置換の炭素数1~10の1価の炭化水素基と同一のものが例示される。好ましくは、非置換の1価の炭化水素基、より好ましくは、炭素数1~10のアルキル基、炭素数6~10のアリール基が挙げられ、さらに好ましくは、フェニル基およびメチル基の併用が挙げられる。
 そして、生成物の平均組成式(3)のRにおけるフェニル基の含有割合は、例えば、30モル%以上、好ましくは、35モル%以上であり、また、例えば、55モル%以下、好ましくは、50モル%以下である。
 生成物の平均組成式(3)のRにおけるフェニル基の含有割合は、生成物のケイ素原子に直接結合する1価の炭化水素基(平均組成式(3)においてRで示される)におけるフェニル基濃度である。
 生成物の平均組成式(3)のRにおけるフェニル基の含有割合は、H-NMRおよび29Si-NMRにより算出される。Rにおけるフェニル基の含有割合の算出方法の詳細は、例えば、WO2011/125463などの記載に基づいて、H-NMRおよび29Si-NMRにより算出される。
 これによって、封止層2が、光半導体素子15の対向面18および周側面19に対して接着する。つまり、封止層2が、光半導体素子15の対向面18および周側面19を封止する。
 そして、複数の光半導体素子15と、光半導体素子15を封止する封止層2とを備える封止光半導体素子11が、光半導体素子15の電極側面17および封止層2の下端面28が基材12によって支持された状態で、得られる。
 この封止光半導体素子11は、基材12が設けられた状態(基材12に支持された状態)で、流通することができる。
 (4)個片化工程
 個片化工程は、「(3)熱プレス工程」の後に、実施される。個片化工程では、図2Dの1点破線で示すように、隣接する光半導体素子15間における封止層2を、ダイシングなどによって切断する。これによって、光半導体素子15を個片化する。
 これによって、1つの光半導体素子15と、封止層2とを備える封止光半導体素子11が、基材12に支持された状態で、得られる。
 (5)剥離工程
 剥離工程は、「(4)個片化工程」の後に、実施される。剥離工程では、図2Dの矢印および仮想線で示すように、封止光半導体素子11を基材12から引き剥がす。具体的には、電極側面17および封止層2の下端面28を、粘着シート14の上面から引き剥がす。
 これによって、光半導体素子15と、封止層2とを備える封止光半導体素子11が得られる。
 封止光半導体素子11は、光半導体装置21(図2E参照)ではなく、つまり、光半導体装置21に備えられる基板16を含まない。つまり、封止光半導体素子11は、電極側面17が、光半導体装置21の基板16に設けられる端子(図示せず)とまだ電気的に接続されないように、構成されている。さらに、封止光半導体素子11では、封止層2の下端面28が基板16の上面にまだ接触してしない。また、封止光半導体素子11は、光半導体装置21の一部品、すなわち、光半導体装置21を作製するための部品であり、部品単独で流通し、産業上利用可能なデバイスである。
 封止光半導体素子11は、好ましくは、光半導体素子15と、封止層2とのみからなる。
 3.光半導体装置の製造方法
 図2Eに示すように、光半導体装置の製造方法では、「封止光半導体素子の製造方法」により得られる封止光半導体素子11を、基板16に実装する。
 基板16は、略平板形状を有し、例えば、絶縁基板である。また、基板16は、上面に配置される端子(図示せず)を備えている。
 封止光半導体素子11を基板16に実装するには、封止光半導体素子11における電極側面17における電極(図示せず)を、基板16の端子(図示せず)と接触させて、電気的に接続させる。つまり、封止光半導体素子11の光半導体素子15を基板16に対してフリップチップ実装する。
 これとともに、電極側面1を、基板16の上面に接触させる。
 これにより、基板16と、基板16に実装される封止光半導体素子11とを備える光半導体装置21を得る。好ましくは、光半導体装置21は、基板16と、封止光半導体素子11とのみからなる。つまり、光半導体装置21は、剥離シート3および/または基材12を含まず、好ましくは、基板16と、光半導体素子15と、封止層2とのみからなる。
 4.作用効果
 そして、この封止シート1によれば、封止層2の極小値における温度Tが、60℃以上、200℃以下の範囲にあり、極小値における貯蔵剪断弾性率G’が、5Pa以上、1,000Pa以下の範囲にあるので、熱プレスにおける良好な粘性を有し、光半導体素子15に対する封止性に優れ、さらに、光半導体素子15を迅速に封止することができる。
 また、この封止シート1では、30℃における貯蔵剪断弾性率G’が、100Pa以上であれば、30℃における取扱性に優れている。
 また、この封止シート1では、封止層2が、熱硬化性樹脂を含有する場合には、封止層2を熱硬化させることができ、これによって、封止光半導体素子11の信頼性、ひいては、光半導体装置21の信頼性を向上させることができる。
 また、この封止シート1では、封止層2が、Bステージ状態であれば、封止層2によって、光半導体素子15を確実に埋設して、封止層2による光半導体素子15に対する確実な封止を図ることができる。
 また、この封止シート1では、150℃、2時間の加熱条件で熱硬化させたときの25℃における引張弾性率が、10MPa以上であれば、封止光半導体素子11および光半導体装置21の製造効率に優れ、従って、封止光半導体素子11および光半導体装置21の製造コストの上昇を抑制することができる。
 また、この封止シート1によれば、極小値が、65℃以上、90℃以下の範囲にあれば、保存安定性を向上させることができる。
 また、この封止シート1によれば、極小値における貯蔵剪断弾性率G’が、10Pa以上、300Pa以下の範囲にあれば、光半導体素子15に対する迅速な封止、および、確実な封止を図ることができる。
 また、この封止シート1によれば、封止層2の下面に配置される剥離シート3をさらに備えるので、封止層2の下面を保護することができる。
 また、この封止光半導体素子15の製造方法によれば、熱プレス工程では、封止シート1を、60℃以上、200℃以下の温度で、光半導体素子15に対して熱プレスするので、封止シート1によって、光半導体素子15に対する確実かつ迅速な封止を達成することができる。
 この光半導体装置21の製造方法によれば、上記した封止光半導体素子封止シート1の製造方法により、封止光半導体素子11を得、これを基板16に実装するので、信頼性に優れた光半導体装置21を製造することができる。
 5.変形例
 第1実施形態では、図2Dの1点破線で示すように、個片化工程を実施しているが、図示しないが、例えば、個片化工程を実施することなく、つまり、封止層2を切断せずに、複数の光半導体素子15を備える封止光半導体素子11を得ることもできる。
  <本発明の封止光半導体素子および光半導体装置の製造方法の第2実施形態>
 第2実施形態において、上記した第1実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。
 第1実施形態では、図2Dに示すように、基材12の上で、封止光半導体素子11を一旦製造した後、図2Eに示すように、封止光半導体素子11を基材12から引き剥がして、封止光半導体素子11を基板16に実装している。しかし、図3Aに示すように、予め、複数の光半導体素子15を基板16に実装し、その後、図3Bに示すように、封止シート1によって複数の光半導体素子15を封止して、その後、剥離シート3を封止層2から引き剥がして、基板16と、光半導体素子15と、封止層2とを備える光半導体装置21を得ることもできる。
 すなわち、図2Aに示す基材12を、基板16に置き換え、さらに個片化工程および実装工程を省略することができる。つまり、図3Cに示すように、基板16の上において、封止光半導体素子11を製造することができる。
 具体的には、まず、図3Aに示すように、光半導体素子15の電極側面17が基板16の上面と対向するように、複数の光半導体素子15を基板16に対して予めフリップチップ実装する。
 次いで、図3Bに示すように、封止シート1によって複数の光半導体素子15を封止する。具体的には、まず、封止シート1の封止層2を、複数の光半導体素子15の対向面18に載置する。
 続いて、光半導体素子15、基板16および封止シート1をプレス機にセットし、続いて、熱プレスを実施する。これによって、図3Cに示すように、封止層2が光半導体素子15の対向面18および周側面19を封止する。具体的には、封止層2は、光半導体素子15を埋設する。一方、封止層2の下端部は、基板16の上面に至り、これによって、光半導体素子15の電極側面17に対して面一な下端面28を形成する。
 続いて、剥離シート3を封止層2から剥離する。
 その後、光半導体素子15、基板16および封止層2を、加熱する。封止組成物が熱硬化性樹脂を含有する場合には、熱硬化性樹脂が完全硬化(Cステージ化)する。これによって、封止層2が光半導体素子15の対向面18および周側面19に対して接着する。
 これによって、基板16と、基板16に実装される光半導体素子15と、光半導体素子15を封止する封止層2とを備える光半導体装置21が得られる。なお、光半導体素子15および封止層2は、封止光半導体素子11を構成する。そのため、光半導体装置21は、基板16と、封止光半導体素子11とを備えている。
 第2実施形態によっても、第1実施形態と同様の作用効果を奏することができる。
 以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。
  <アルケニル基含有ポリシロキサンおよびヒドロシリル基含有ポリシロキサンの合成>
  合成例1
 撹拌機、還流冷却管、投入口および温度計が装備された四ツ口フラスコに、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン93.2g、水140g、トリフルオロメタンスルホン酸0.38gおよびトルエン500gを投入して混合し、撹拌しつつメチルフェニルジメトキシシラン729.2gとフェニルトリメトキシシラン330.5gの混合物1時間かけて滴下し、その後、1時間加熱還流した。その後、冷却し、下層(水層)を分離して除去し、上層(トルエン溶液)を3回水洗した。水洗したトルエン溶液に水酸化カリウム0.40gを加え、水分離管から水を除去しながら還流した。水の除去完了後、さらに5時間還流し、冷却した。その後、酢酸0.6gを投入して中和した後、ろ過して得られたトルエン溶液を3回水洗した。その後、減圧濃縮することにより、液体状のアルケニル基含有ポリシロキサンAを得た。アルケニル基含有ポリシロキサンAの平均単位式および平均組成式は、以下の通りである。
 平均単位式:
((CH=CH)(CHSiO1/20.15(CHSiO2/20.60(CSiO3/20.25
 平均組成式:
(CH=CH)0.15(CH0.90(C0.85SiO1.05
 つまり、アルケニル基含有ポリシロキサンAは、Rがビニル基、Rがメチル基およびフェニル基であり、a=0.15、b=1.75である上記平均組成式(1)で示される。
 また、ゲル透過クロマトグラフィーによって、アルケニル基含有ポリシロキサンAのポリスチレン換算の重量平均分子量を測定したところ、2,300であった。
  合成例2
 撹拌機、還流冷却管、投入口および温度計が装備された四ツ口フラスコに、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン93.2g、水140g、トリフルオロメタンスルホン酸0.38gおよびトルエン500gを投入して混合し、撹拌しつつジフェニルジメトキシシラン173.4gとフェニルトリメトキシシラン300.6gの混合物1時間かけて滴下し、滴下終了後、1時間加熱還流した。その後、冷却し、下層(水層)を分離して除去し、上層(トルエン溶液)を3回水洗した。水洗したトルエン溶液に水酸化カリウム0.40gを加え、水分離管から水を除去しながら還流した。水の除去完了後、さらに5時間還流し、冷却した。酢酸0.6gを投入して中和した後、ろ過して得られたトルエン溶液を3回水洗した。その後、減圧濃縮することにより、液体状のアルケニル基含有ポリシロキサンBを得た。アルケニル基含有ポリシロキサンBの平均単位式および平均組成式は、以下の通りである。
 平均単位式:
(CH=CH(CHSiO1/20.31((CSiO2/20.22(CSiO3/20.47
 平均組成式:
(CH=CH)0.31(CH0.62(C0.91SiO1.08
 つまり、アルケニル基含有ポリシロキサンBは、Rがビニル基、Rがメチル基およびフェニル基であり、a=0.31、b=1.53である上記平均組成式(1)で示される。
 また、ゲル透過クロマトグラフィーによって、アルケニル基含有ポリシロキサンBのポリスチレン換算の重量平均分子量を測定したところ、1,000であった。
  合成例3
 撹拌機、還流冷却管、投入口および温度計が装備された四ツ口フラスコに、ジフェニルジメトキシシラン325.9g、フェニルトリメトキシシラン564.9g、およびトリフルオロメタンスルホン酸2.36gを投入して混合し、1,1,3,3-テトラメチルジシロキサン134.3gを加え、撹拌しつつ酢酸432gを30分かけて滴下した。滴下終了後、混合物を撹拌しつつ50℃に昇温して3時間反応させた。室温まで冷却した後、トルエンと水を加え、良く混合して静置し、下層(水層)を分離して除去した。その後、上層(トルエン溶液)を3回水洗した後、減圧濃縮することにより、ヒドロシリル基含有ポリシロキサンC(架橋剤C)を得た。
 ヒドロシリル基含有ポリシロキサンCの平均単位式および平均組成式は、以下の通りである。
 平均単位式:
(H(CHSiO1/20.33((CSiO2/20.22(CPhSiO3/20.45
 平均組成式:
 H0.33(CH0.66(C0.89SiO1.06
 つまり、ヒドロシリル基含有ポリシロキサンCは、Rがメチル基およびフェニル基であり、c=0.33、d=1.55である上記平均組成式(2)で示される。
 また、ゲル透過クロマトグラフィーによって、ヒドロシリル基含有ポリシロキサンCのポリスチレン換算の重量平均分子量を測定したところ、1,000であった。
  <その他の原料>
 アルケニル基含有ポリシロキサンおよびヒドロシリル基含有ポリシロキサン以外の原料について、以下に詳述する。
[その他、使用した材料]
 OE-6630:付加反応硬化型シリコーン樹脂組成物、屈折率1.53、東レ・ダウコーニング社製
 OE-6635:付加反応硬化型シリコーン樹脂組成物、屈折率1.54、東レ・ダウコーニング社製
 OE-6636:付加反応硬化型シリコーン樹脂組成物、屈折率1.54、東レ・ダウコーニング社製
 白金カルボニル錯体:
  商品名「SIP6829.2」、Gelest社製、白金濃度2.0質量%
 ガラス粒子:
  屈折率1.55、組成および組成比率(重量%):SiO/Al/CaO/MgO=60/20/15/5の無機粒子、平均粒子径:3μm
  <シリコーン樹脂組成物の調製>
  調製例1
 アルケニル基含有ポリシロキサンA 20g、アルケニル基含有ポリシロキサンB 25g、ヒドロシリル基含有ポリシロキサンC 25g、白金カルボニル錯体5mgを混合させて、シリコーン樹脂組成物Aを調製した。
  調製例2
 アルケニル基含有ポリシロキサンA 20g、アルケニル基含有ポリシロキサンB 25g、ヒドロシリル基含有ポリシロキサンC 25g、白金カルボニル錯体1mgを混合させて、シリコーン樹脂組成物Bを調製した。
 <封止シートの作製(シート用意工程)>
  (実施例1)
 シリコーン樹脂組成物Aに対して、ガラス粒子を、それらの総量に対して、50質量%となるように、混合して、封止組成物(屈折率1.56)を調製した。
 次いで、封止組成物を、アプリケータで、厚み50μmの剥離シート(PETシート、商品名「SS4C」、ニッパ社製)の表面に、加熱後の厚みが400μmとなるように塗布し、その後、80℃で11.5分、加熱することにより、Bステージの封止層を剥離シートの表面に作製した。つまり、封止層と、剥離シートとを備える封止シートを作製した(図1参照)。
  (実施例2)
 シリコーン樹脂組成物Aに対して、ガラス粒子を、それらの総量に対して、50質量%となるように、混合して、封止組成物(屈折率1.56)を調製した。
 次いで、封止組成物を、アプリケータで、厚み50μmの剥離シート(PETシート、商品名「SS4C」、ニッパ社製)の表面に、加熱後の厚みが400μmとなるように塗布し、その後、80℃で13分、加熱することにより、Bステージの封止層を剥離シートの表面に作製した。つまり、封止層と、剥離シートとを備える封止シートを作製した(図1参照)。
  (実施例3)
 OE-6636に対して、ガラス粒子を、それらの総量に対して、50質量%となるように、混合して、封止組成物(屈折率1.56)を調製した。
 次いで、封止組成物を、アプリケータで、厚み50μmの剥離シート(PETシート、商品名「SS4C」、ニッパ社製)の表面に、加熱後の厚みが400μmとなるように塗布し、その後、80℃で11.5分、加熱することにより、Bステージの封止層を剥離シートの表面に作製した。つまり、封止層と、剥離シートとを備える封止シートを作製した(図1参照)。
  (実施例4)
 シリコーン樹脂組成物Bに対して、ガラス粒子を、それらの総量に対して、50質量%となるように、混合して、封止組成物(屈折率1.56)を調製した。
 次いで、封止組成物を、アプリケータで、厚み50μmの剥離シート(PETシート、商品名「SS4C」、ニッパ社製)の表面に、加熱後の厚みが400μmとなるように塗布し、その後、80℃で30分、加熱することにより、Bステージの封止層を剥離シートの表面に作製した。つまり、封止層と、剥離シートとを備える封止シートを作製した(図1参照)。
  (実施例5)
 シリコーン樹脂組成物Aに対して、ガラス粒子を、それらの総量に対して、50質量%となるように、混合して、封止組成物(屈折率1.56)を調製した。
 次いで、封止組成物を、アプリケータで、厚み50μmの剥離シート(PETシート、商品名「SS4C」、ニッパ社製)の表面に、加熱後の厚みが400μmとなるように塗布し、その後、80℃で10分、加熱することにより、Bステージの封止層を剥離シートの表面に作製した。つまり、封止層と、剥離シートとを備える封止シートを作製した(図1参照)。
  (実施例6)
 OE-6630に対して、ガラス粒子を、それらの総量に対して、50質量%となるように、混合して、封止組成物(屈折率1.56)を調製した。
 次いで、封止組成物を、アプリケータで、厚み50μmの剥離シート(PETシート、商品名「SS4C」、ニッパ社製)の表面に、加熱後の厚みが400μmとなるように塗布し、その後、80℃で10分、加熱することにより、Bステージの封止層を剥離シートの表面に作製した。つまり、封止層と、剥離シートとを備える封止シートを作製した(図1参照)。
  (実施例7)
 シリコーン樹脂組成物Aに対して、ガラス粒子を、それらの総量に対して、50質量%となるように、混合して、封止組成物(屈折率1.56)を調製した。
 次いで、封止組成物を、アプリケータで、厚み50μmの剥離シート(PETシート、商品名「SS4C」、ニッパ社製)の表面に、加熱後の厚みが400μmとなるように塗布し、その後、80℃で16分、加熱することにより、Bステージの封止層を剥離シートの表面に作製した。つまり、封止層と、剥離シートとを備える封止シートを作製した(図1参照)。
  (実施例8)
 シリコーン樹脂組成物Aに対して、ガラス粒子を、それらの総量に対して、50質量%となるように、混合して、封止組成物(屈折率1.56)を調製した。
 次いで、封止組成物を、アプリケータで、厚み50μmの剥離シート(PETシート、商品名「SS4C」、ニッパ社製)の表面に、加熱後の厚みが400μmとなるように塗布し、その後、80℃で14.5分、加熱することにより、Bステージの封止層を剥離シートの表面に作製した。つまり、封止層と、剥離シートとを備える封止シートを作製した(図1参照)。
  (実施例9)
 シリコーン樹脂組成物Aに対して、ガラス粒子を、それらの総量に対して、50質量%となるように、混合して、封止組成物(屈折率1.56)を調製した。
 次いで、封止組成物を、アプリケータで、厚み50μmの剥離シート(PETシート、商品名「SS4C」、ニッパ社製)の表面に、加熱後の厚みが400μmとなるように塗布し、その後、80℃で16.5分、加熱することにより、Bステージの封止層を剥離シートの表面に作製した。つまり、封止層と、剥離シートとを備える封止シートを作製した(図1参照)
  (比較例1)
 シリコーン樹脂組成物Aに対して、ガラス粒子を、それらの総量に対して、50質量%となるように、混合して、封止組成物(屈折率1.56)を調製した。
 次いで、封止組成物を、アプリケータで、厚み50μmの剥離シート(PETシート、商品名「SS4C」、ニッパ社製)の表面に、加熱後の厚みが400μmとなるように塗布し、その後、80℃で17分、加熱することにより、Bステージの封止層を剥離シートの表面に作製した。つまり、封止層と、剥離シートとを備える封止シートを作製した(図1参照)。
  (比較例2)
 OE-6635に対して、ガラス粒子を、それらの総量に対して、50質量%となるように、混合して、封止組成物(屈折率1.56)を調製した。
 次いで、封止組成物を、アプリケータで、厚み50μmの剥離シート(PETシート、商品名「SS4C」、ニッパ社製)の表面に、加熱後の厚みが400μmとなるように塗布し、その後70℃で8.5分、加熱することにより、Bステージの封止層を剥離シートの表面に作製した。つまり、封止層と、剥離シートとを備える封止シートを作製した(図1参照)。
  <評価>
 以下の各項目の結果を表1に示す。
  (貯蔵剪断弾性率G’)
 各実施例および各比較例で得られた封止シートにおける封止層を、下記の条件で、動的粘弾性測定した。
  [条件]
  DMA装置:回転式レオメータ(C-VOR装置、マルバーン社製)
  サンプル量:0.1g
  歪量:10%
  周波数:1Hz
  プレート径:8mm
  プレート間ギャップ:200μm
  昇温速度:10℃/分
  温度範囲:20~200℃
 貯蔵剪断弾性率G’と温度Tとの関係を示す曲線を図4に示す。
  (30℃における貯蔵剪断弾性率G’)
 各実施例および各比較例で得られた封止シートにおいて、上記貯蔵剪断弾性率G’の測定を行った結果から、30℃における貯蔵剪断弾性率G’を抽出した。
  (封止層の保存安定性)
 各実施例および各比較例で得られた封止層の保存安定性を、封止層の60℃における溶融粘度を参照して評価した。
 すなわち、E型粘度計(コーンプレート型、東機産業社製)を用いて測定した際の粘度と評価した。
 具体的には、初期の溶融粘度V0から、-15℃で、1週間保存後の溶融粘度V1が2.0倍以上に上昇した場合、つまり、V1/V0が2.0以上であった場合、保存安定性を×と評価した。
 また、初期の溶融粘度V0から、-15℃で、4週間保存後の溶融粘度V4が1.5倍以上に上昇した場合、つまり、V4/V0が1.5以上であった場合、保存安定性を△と評価した。
 一方、初期の溶融粘度V0から、-15℃で、4週間保存後の溶融粘度V4が1.5倍以上に上昇しなかった場合、つまり、V4/V0が1.5未満であった場合、保存安定性を○と評価した。
  (封止シートの取扱性)
 各実施例および各比較例で得られた封止シートを垂直に立てかけ、25℃、24時間放置した。
 ハンドリング性は、封止シートが2mm以上変形した場合を△と評価し、変形が2mm未満、あるいは、変形しなかった場合を○と評価した。
  (引張弾性率)
 各実施例および各比較例で得られた封止シートにおける封止層を150℃で、2時間加熱して、封止層をCステージ化(完全硬化)させた。その後、封止層を剥離シートから剥離し、その封止層について、万能試験機(テンシロン)で、下記の条件で、引張試験を実施し、封止層(サンプル)の弾性率を算出した。
  [条件]
 サンプル幅:10mm
 チャック間距離:10mm
 引張速度:300mm/min
 温度:25℃
  (封止性および硬化性)
 ステンレス板の上に両面テープを貼り着け、その上に、光半導体素子(LEDチップ、EDI-FA4545A、エピスター社製)を、1.64mmピッチで配列させた(素子用意工程、図2A参照)。
 その後、各実施例および各比較例で得られた封止シートを光半導体素子に載置し、続いて、90℃に加熱したプレス機を用い、10分間、熱プレスした。(熱プレス工程、図2C参照)。
 その後、剥離シートを封止層から剥離し、次いで、150℃、2時間加熱し、続いて、ダイシングにより、隣接する光半導体素子間における封止層を切断して、光半導体素子を個片化した。これにより、1つの光半導体素子と、封止層とを備える封止光半導体素子(チップサイズパッケージ)を作製した(図2D参照)。
   [硬化性]
 熱プレス工程後に、封止層の厚みのバラツキが50μm以上ある場合、硬化性を×と評価した。つまり、硬化性が十分でないと評価した。一方、熱プレス工程後に、封止層の厚みのバラツキが50μm未満である場合、硬化性を○と評価した。つまり、硬化性が十分であると評価した。
   [封止性(充填性)]
 ダイシング後に、封止光半導体素子を電極側面側から観察し、周側面の下端縁が封止層により被覆されているか否かで、封止性(充填性)を評価した。
 具体的には、光半導体素子および封止シートをプレス機にセットして、1分以内に成型が始まった場合でも、封止(充填)不良が見られた場合、評価を×と評価した。シートをプレス機にセットして、3分以内に成型が始まった場合に、封止(充填)不良が見られた場合、評価を△と評価した。シートをプレス機にセットして、3分以内に成型が始まった場合に、充填不良が見られなかった場合、評価を○と評価した。
 (シリコーン樹脂組成物の反応により得られる生成物の炭化水素基(R)におけるフェニル基の含有割合の測定)
 シリコーン樹脂組成物AおよびB(つまり、フィラーが含まれていないシリコーン樹脂組成物)の反応により得られる生成物中、ケイ素原子に直接結合する炭化水素基(平均組成式(3)のR)におけるフェニル基の含有割合(モル%)を、H-NMRおよび29Si-NMRにより算出した。
 具体的には、Aステージのシリコーン樹脂組成物AおよびBを、蛍光体およびフィラーを添加せずに、100℃1時間で、反応(完全硬化、Cステージ化)させて、生成物を得た。
 次いで、得られた生成物のH-NMRおよび29Si-NMRを測定することで、ケイ素原子に直接結合している炭化水素基(R)におけるフェニル基が占める割合(モル%)を算出した。
 その結果、シリコーン樹脂組成物AおよびBの反応により得られる生成物の炭化水素基(R)におけるフェニル基の含有割合は、ともに、48%であった。
Figure JPOXMLDOC01-appb-T000001
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
 封止シートは、光半導体装置の製造方法に用いられる。
1     封止シート
2     封止層
3     剥離シート
11   封止光半導体素子
13   支持板
14   粘着シート
15   光半導体素子
16   基板
21   光半導体装置

Claims (11)

  1.  光半導体素子を封止するように使用される封止層を備える封止シートであって、
     前記封止層を、周波数1Hzおよび昇温速度10℃/分の条件で動的粘弾性測定することにより得られる貯蔵剪断弾性率G’と温度Tとの関係を示す曲線が、極小値を有し、
     前記極小値における温度Tが、60℃以上、200℃以下の範囲にあり、
     前記極小値における貯蔵剪断弾性率G’が、5Pa以上、1,000Pa以下の範囲にあることを特徴とする、封止シート。
  2.  30℃における前記貯蔵剪断弾性率G’が、100Pa以上であることを特徴とする、請求項1に記載の封止シート。
  3.  前記封止層が、熱硬化性樹脂を含有することを特徴とする、請求項1に記載の封止シート。
  4.  前記封止層が、Bステージ状態であることを特徴とする、請求項3に記載の封止シート。
  5.  150℃、2時間の加熱条件で熱硬化させたときの25℃における引張弾性率が、10MPa以上であることを特徴とする、請求項3に記載の封止シート。
  6.  前記極小値が、65℃以上、90℃以下の範囲にあることを特徴とする、請求項1に記載の封止シート。
  7.  前記極小値における貯蔵剪断弾性率G’が、10Pa以上、300Pa以下の範囲にあることを特徴とする、請求項1に記載の封止シート。
  8.  前記封止層の厚み方向一方面に配置される剥離シートをさらに備えることを特徴とする、請求項1に記載の封止シート。
  9.  請求項1に記載の封止シートを用意するシート用意工程、
     基材に配置される光半導体素子を用意する素子用意工程、および、
     前記封止シートを、60℃以上、200℃以下の温度で、前記光半導体素子に対して熱プレスする熱プレス工程
    を備えることを特徴とする、封止光半導体素子の製造方法。
  10.  請求項9に記載の封止光半導体素子の製造方法により、封止光半導体素子を得る工程を備え、
     前記基材が、支持板と、前記支持板の厚み方向一方面に配置される粘着シートとを備え、
     前記封止光半導体素子を前記粘着シートから剥離する剥離工程、および、
     前記封止光半導体素子を基板に実装する実装工程
    をさらに備えることを特徴とする、光半導体装置の製造方法。
  11.  請求項9に記載の封止光半導体素子の製造方法により、封止光半導体素子を得る工程を備え、
     前記基材が、基板であり、
     前記素子用意工程では、前記基板に実装された光半導体素子を用意することを特徴とする、光半導体装置の製造方法。
PCT/JP2016/056403 2015-03-09 2016-03-02 封止シート、封止光半導体素子の製造方法および光半導体装置の製造方法 WO2016143627A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-046262 2015-03-09
JP2015046262 2015-03-09
JP2016036320A JP2016171314A (ja) 2015-03-09 2016-02-26 封止シート、封止光半導体素子の製造方法および光半導体装置の製造方法
JP2016-036320 2016-02-26

Publications (1)

Publication Number Publication Date
WO2016143627A1 true WO2016143627A1 (ja) 2016-09-15

Family

ID=56880564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056403 WO2016143627A1 (ja) 2015-03-09 2016-03-02 封止シート、封止光半導体素子の製造方法および光半導体装置の製造方法

Country Status (1)

Country Link
WO (1) WO2016143627A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020009804A (ja) * 2018-07-03 2020-01-16 日東電工株式会社 封止用シートおよび電子素子装置の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327623A (ja) * 2003-04-23 2004-11-18 Three M Innovative Properties Co 封止用フィルム接着剤、封止用フィルム積層体及び封止方法
JP2010265436A (ja) * 2009-04-14 2010-11-25 Nitto Denko Corp 熱硬化性シリコーン樹脂用組成物
JP2013067054A (ja) * 2011-09-21 2013-04-18 Nitto Denko Corp シリコーン樹脂シート、その製造方法、封止シートおよび発光ダイオード装置
JP2013187227A (ja) * 2012-03-06 2013-09-19 Nitto Denko Corp 封止シート、発光ダイオード装置およびその製造方法
JP2014124781A (ja) * 2012-12-25 2014-07-07 Shin Etsu Chem Co Ltd 光半導体封止用複合樹脂フィルム、その製造方法、それを用いた光半導体デバイス及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327623A (ja) * 2003-04-23 2004-11-18 Three M Innovative Properties Co 封止用フィルム接着剤、封止用フィルム積層体及び封止方法
JP2010265436A (ja) * 2009-04-14 2010-11-25 Nitto Denko Corp 熱硬化性シリコーン樹脂用組成物
JP2013067054A (ja) * 2011-09-21 2013-04-18 Nitto Denko Corp シリコーン樹脂シート、その製造方法、封止シートおよび発光ダイオード装置
JP2013187227A (ja) * 2012-03-06 2013-09-19 Nitto Denko Corp 封止シート、発光ダイオード装置およびその製造方法
JP2014124781A (ja) * 2012-12-25 2014-07-07 Shin Etsu Chem Co Ltd 光半導体封止用複合樹脂フィルム、その製造方法、それを用いた光半導体デバイス及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020009804A (ja) * 2018-07-03 2020-01-16 日東電工株式会社 封止用シートおよび電子素子装置の製造方法
JP7110011B2 (ja) 2018-07-03 2022-08-01 日東電工株式会社 封止用シートおよび電子素子装置の製造方法

Similar Documents

Publication Publication Date Title
US8946983B2 (en) Phosphor-containing sheet, LED light emitting device using the same, and method for manufacturing LED
WO2015033824A1 (ja) 波長変換シート、封止光半導体素子および光半導体素子装置
JP2013021314A (ja) 蛍光接着シート、蛍光体層付発光ダイオード素子、発光ダイオード装置およびそれらの製造方法
KR20070114303A (ko) 핫 멜트형 실리콘 접착제
JP2014116587A (ja) 蛍光体含有樹脂シート、これを用いたled素子およびその製造方法
JP2017163105A (ja) 光半導体素子被覆シート、密着層−被覆層付光半導体素子およびその製造方法、密着層付光半導体素子の製造方法
TWI692126B (zh) 被覆有螢光體層之光半導體元件及其製造方法
WO2015033890A1 (ja) 光半導体素子封止組成物、光半導体素子封止成形体、光半導体素子封止シート、光半導体装置および封止光半導体素子
JP2016171315A (ja) 貼着シート、貼着光半導体素子の製造方法および光半導体装置の製造方法
JP2016171314A (ja) 封止シート、封止光半導体素子の製造方法および光半導体装置の製造方法
KR20130042450A (ko) 실리콘 수지 시트, 경화 시트, 발광 다이오드 장치 및 그의 제조 방법
JP7032052B2 (ja) シリコーン樹脂フィルムおよびその製造方法、並びに半導体デバイスの製造方法
JP6018608B2 (ja) 封止シート、その製造方法、光半導体装置および封止光半導体素子
WO2016143627A1 (ja) 封止シート、封止光半導体素子の製造方法および光半導体装置の製造方法
JP5882729B2 (ja) シリコーン樹脂シート、硬化シート、発光ダイオード装置およびその製造方法
WO2016194947A1 (ja) 蛍光体樹脂シート、貼着光半導体素子およびその製造方法
JP2017163104A (ja) 被覆層付光半導体素子およびその製造方法
WO2016194948A1 (ja) 蛍光体樹脂シートの製造方法
WO2016143623A1 (ja) 貼着シート、貼着光半導体素子の製造方法および光半導体装置の製造方法
JP2017215459A (ja) 蛍光体樹脂シート、貼着光半導体素子およびその製造方法
JP2017213641A (ja) 蛍光体樹脂シートの製造方法
WO2016039443A1 (ja) 封止層被覆光半導体素子の製造方法および光半導体装置の製造方法
WO2016039442A1 (ja) 封止層被覆光半導体素子の製造方法および光半導体装置の製造方法
JP2016506998A (ja) 蛍光体含有硬化型シリコーン組成物及びそれから作製される硬化型ホットメルトフィルム
TW201723147A (zh) 螢光體樹脂片、貼附半導體元件及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761597

Country of ref document: EP

Kind code of ref document: A1