WO2016143623A1 - 貼着シート、貼着光半導体素子の製造方法および光半導体装置の製造方法 - Google Patents

貼着シート、貼着光半導体素子の製造方法および光半導体装置の製造方法 Download PDF

Info

Publication number
WO2016143623A1
WO2016143623A1 PCT/JP2016/056397 JP2016056397W WO2016143623A1 WO 2016143623 A1 WO2016143623 A1 WO 2016143623A1 JP 2016056397 W JP2016056397 W JP 2016056397W WO 2016143623 A1 WO2016143623 A1 WO 2016143623A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical semiconductor
semiconductor element
sticking
adhesive
sheet
Prior art date
Application number
PCT/JP2016/056397
Other languages
English (en)
French (fr)
Inventor
近藤 隆
悠紀 江部
康弘 天野
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016036321A external-priority patent/JP2016171315A/ja
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2016143623A1 publication Critical patent/WO2016143623A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention provides an adhesive sheet, a method for manufacturing an adhesive optical semiconductor element and a method for manufacturing an optical semiconductor device, and more specifically, an adhesive sheet, an optical semiconductor element manufacturing method using the adhesive sheet, and a manufacturing method thereof.
  • the present invention relates to a method for manufacturing an optical semiconductor device using the attached optical semiconductor element.
  • Patent Document 1 a sealing resin sheet containing a thermoplastic resin that has thermoplasticity at a temperature lower than a predetermined crosslinking temperature and is irreversibly cured at a temperature equal to or higher than the crosslinking temperature has been proposed (for example, Patent Document 1). reference.).
  • the above-described sealing resin sheet is hot pressed against the LED.
  • the encapsulating resin sheet described in Patent Document 1 tends to be non-uniform in thickness after hot pressing, and thus has a problem that the color uniformity of the light emitting device is lowered.
  • the sealing resin sheet is required to have excellent adhesion to the LED.
  • An object of the present invention is to provide a method for producing an adhesive optical semiconductor element and an optical semiconductor device having excellent color uniformity, and an adhesive sheet that is used in them and has excellent adhesion to the optical semiconductor element. .
  • This invention is an adhesive sheet provided with the adhesive layer used so that it may adhere directly or indirectly to an optical semiconductor element, Comprising:
  • the said adhesive layer is a frequency of 1 Hz and the temperature increase rate of 20
  • the curve showing the relationship between the storage shear modulus G ′ obtained by dynamic viscoelasticity measurement under the condition of ° C./min and the temperature T has a minimum value, and the temperature T at the minimum value is 40 ° C. or more.
  • the adhesive sheet is in the range of 200 ° C. or lower, and the storage shear modulus G ′ at the minimum value is in the range of 1,000 Pa or more and 90,000 Pa or less.
  • the temperature T at the minimum value is 40 ° C. or more and 200 ° C. Since the storage shear modulus G ′ at the minimum value is in the range of 1,000 Pa or more and 90,000 Pa or less in the following range, it can be directly or indirectly attached to the optical semiconductor element with excellent adhesion. However, the thickness of the sticking layer stuck directly or indirectly to the optical semiconductor element can be made uniform. Therefore, it is possible to obtain a bonded optical semiconductor element and an optical semiconductor device that are excellent in reliability and color uniformity.
  • the present invention (2) includes the adhesive sheet according to (1), wherein the adhesive layer contains a phosphor.
  • the sticking layer contains a phosphor, the sticking optical semiconductor element and the light capable of emitting a desired color by converting the wavelength of light emitted from the optical semiconductor element by the sticking layer.
  • a semiconductor device can be obtained.
  • the present invention (3) includes the adhesive sheet according to (1) or (2), wherein the adhesive layer contains a thermosetting resin.
  • the adhesive layer contains a thermosetting resin, the adhesive layer can be bonded to the optical semiconductor element by thermosetting the adhesive layer.
  • the adhesive layer further contains a filler having a refractive index R2 in which the absolute value of the difference from the refractive index R1 of the thermosetting resin is 0.20 or less.
  • the sticking sheet of description is included.
  • the light emitted from the optical semiconductor element can be uniformly scattered in the sticking layer.
  • the present invention (5) includes the adhesive sheet according to any one of (1) to (4), further including a release sheet disposed on one surface in the thickness direction of the adhesive layer.
  • This adhesive sheet further includes a release sheet disposed on one surface in the thickness direction of the adhesive layer, so that one surface in the thickness direction of the adhesive layer can be protected.
  • the present invention (6) includes a sheet preparation step for preparing the adhesive sheet according to any one of (1) to (5), an element preparation step for preparing an optical semiconductor element disposed on a substrate, and The manufacturing method of the adhesion
  • the sticking sheet in the hot pressing step, is hot-pressed directly or indirectly to the optical semiconductor element at a temperature of 40 ° C. or more and 200 ° C. or less. While the adhesive force can be directly or indirectly attached to the optical semiconductor element, the thickness of the adhesive layer directly or indirectly attached to the optical semiconductor element can be made uniform. Therefore, it is possible to manufacture a bonded optical semiconductor element that is excellent in reliability and color uniformity.
  • This invention (7) contains the manufacturing method of the sticking optical semiconductor element of Claim (6) whose pressure in the said hot press process is 3.00 Mpa or less.
  • the present invention (8) includes, in the hot pressing step, a first plate and a second plate that is disposed opposite to one side in the pressing direction of the first plate and is configured to be hot pressable with respect to the first plate.
  • the second plate is hot-pressed with respect to the first plate without using a spacer for adjusting the distance between the second plate and the first plate by a press machine comprising: (6) Or the manufacturing method of the sticking optical semiconductor element as described in (7) is included.
  • a hot pressing process can be easily performed without using a spacer.
  • the optical semiconductor element has an electrode side surface on which an electrode is disposed, an opposing surface facing the electrode side surface, and a peripheral side surface connecting the electrode side surface and the opposing surface.
  • the element preparation step at least the peripheral side surface is covered with a sealing layer, and the optical semiconductor element in which the facing surface is exposed from the sealing layer is prepared.
  • the adhesive sheet is The method for producing a bonded optical semiconductor element according to any one of (6) to (8), wherein the opposing surface and the sealing layer are hot-pressed.
  • an optical semiconductor element is prepared in which at least the peripheral side surface is covered with the sealing layer and the opposing surface is exposed from the sealing layer.
  • the semiconductor element can be prepared as a wafer level package.
  • the adhesive sheet is hot-pressed against the opposing surface of the optical semiconductor element and the sealing layer in the wafer level package, so that the adhesive sheet is applied to the optical semiconductor element and the sealing layer in the wafer level package. It can be easily attached.
  • the optical semiconductor element has an electrode side surface on which an electrode is disposed, an opposing surface facing the electrode side surface, and a peripheral side surface connecting the electrode side surface and the opposing surface.
  • the element preparation step the optical semiconductor element in which at least the facing surface and the peripheral side surface are covered with a sealing layer is prepared, and in the hot pressing step, the adhesive sheet is attached to the sealing layer.
  • an optical semiconductor element having at least a facing surface and a peripheral side surface covered with a sealing layer is prepared. It can be prepared as a semiconductor element. And in a hot press process, since an adhesive sheet is hot-pressed with respect to the sealing layer in a sealing optical semiconductor element, it can stick an adhesive layer to the optical semiconductor element in a sealing optical semiconductor element simply. it can.
  • the present invention (11) includes a step of obtaining an adhesive optical semiconductor element by the method for producing an adhesive optical semiconductor element according to any one of (6) to (8), wherein the base material is a support plate. And a pressure-sensitive adhesive sheet disposed on one surface in the thickness direction of the support plate, a peeling step of peeling the sticking optical semiconductor element from the pressure-sensitive adhesive sheet, and mounting for mounting the sticking optical semiconductor element on a substrate.
  • the manufacturing method of the optical semiconductor device further provided with a process is included.
  • an optical semiconductor device having excellent reliability and color uniformity is obtained by obtaining an optical semiconductor device by the method for manufacturing an optical semiconductor device and mounting it on a substrate.
  • the device can be manufactured.
  • the present invention (12) includes a step of obtaining an adhered optical semiconductor element by the method for producing an adhered optical semiconductor element according to any one of (6) to (8), wherein the base material is a substrate.
  • the element preparing step includes a method of manufacturing an optical semiconductor device, in which an optical semiconductor element mounted on the substrate is prepared.
  • an optical semiconductor device excellent in reliability and color uniformity can be manufactured.
  • the sticking sheet, the sticking optical semiconductor element manufacturing method, and the optical semiconductor device manufacturing method of the present invention According to the sticking sheet, the sticking optical semiconductor element manufacturing method, and the optical semiconductor device manufacturing method of the present invention, a sticking optical semiconductor element and an optical semiconductor device excellent in reliability and color uniformity can be obtained.
  • FIG. 1 shows sectional drawing of one Embodiment of the sticking sheet of this invention.
  • 2A to 2E are process diagrams of the first embodiment of the method of manufacturing the bonded optical semiconductor element and the optical semiconductor device of the present invention.
  • FIG. 2A is a process of temporarily fixing the sealed optical semiconductor element to the base material.
  • 2B is a step of sticking the sticking sheet to the sealed optical semiconductor element
  • FIG. 2C is a step of peeling the release sheet from the sticking layer to completely cure the sticking layer
  • FIG. 2D is sticking.
  • FIG. 2E shows the process of mounting an adhered optical semiconductor element on a substrate.
  • 3A to 3E are process diagrams for preparing the sealed optical semiconductor element shown in FIG. 2A, FIG.
  • FIG. 3A is a process for preparing a plurality of optical semiconductor elements
  • FIG. 3B is a process for preparing a plurality of optical semiconductor elements on a base material
  • 3C is a step of forming a sealing layer
  • FIG. 3D is a step of removing the upper portion of the sealing layer
  • FIG. 3E is a step of peeling the sealing optical semiconductor element from the substrate.
  • Indicates. 4A to 4E show process diagrams of a second embodiment of the method of manufacturing the bonded optical semiconductor element and the optical semiconductor device of the present invention
  • FIG. 4A shows a process of temporarily fixing the optical semiconductor element to the base material
  • 4B is a process of adhering the adhesive sheet to the optical semiconductor element
  • FIG. 4C is a process of peeling the release sheet from the adhesive layer to completely cure the adhesive layer
  • FIG. 4D is an adhesive optical semiconductor element.
  • FIG. 4E shows the process of mounting a sticking optical semiconductor element on a board
  • FIGS. 5A to 5C show process diagrams of a third embodiment of the method for manufacturing a bonded optical semiconductor element and an optical semiconductor device of the present invention, and FIG. 5A shows a process of preparing an optical semiconductor element mounted on a substrate.
  • FIG. 5B shows a step of sticking the sticking sheet to the optical semiconductor element, and
  • FIG. 5C shows a step of peeling the release sheet from the sticking layer to completely cure the sticking layer.
  • FIG. 6 shows the relationship between the storage shear modulus G ′ and the temperature T of the adhesive layers in Example A to Comparative Example I.
  • the vertical direction of the paper is the vertical direction (an example of the first direction, the thickness direction, and the pressing direction)
  • the upper side of the paper is the upper side (one side in the first direction, the one side in the thickness direction)
  • the lower side of the paper is the lower side ( The other side in the first direction and the other side in the thickness direction.
  • the left-right direction on the paper surface is the left-right direction (second direction orthogonal to the first direction)
  • the left side of the paper surface is the left side (second side in the second direction)
  • the right side of the paper surface is the right side (the other side in the second direction).
  • the paper thickness direction is the front-rear direction (a third direction orthogonal to the first direction and the second direction), the front side of the paper is the front side (one side in the third direction), and the back side of the paper is the rear side (third Direction other side). Specifically, it conforms to the direction arrow in each figure.
  • the adhesive sheet 1 has a substantially flat plate shape, specifically, has a predetermined thickness, extends in the left-right direction and the front-rear direction, and has a flat upper surface (front surface) and It has a flat lower surface (back surface).
  • the sticking sheet 1 is not the sticking optical semiconductor element 11 (refer FIG. 2D) mentioned later, and is not the optical semiconductor device 21 (refer FIG. 2E). That is, the sticking sheet 1 is a part of the sticking optical semiconductor element 11 and the optical semiconductor device 21, that is, a part for producing the sticking optical semiconductor element 11 and the optical semiconductor device 21. Therefore, the adhesive sheet 1 does not include the optical semiconductor element 15 and the substrate 16 on which the optical semiconductor element 15 is mounted (see FIG. 2E), and the adhesive sheet 1 itself circulates as a single component and can be used industrially. It is.
  • the sticking sheet 1 is provided with the sticking layer 2 and the peeling sheet 3 arrange
  • the sticking sheet 1 includes only the sticking layer 2 and the release sheet 3.
  • Adhesive layer 2 has a layer (sheet) shape formed from an adhesive material. Moreover, the sticking layer 2 is used so that it may stick directly to the optical-semiconductor element 15, as shown to FIG. 2C mentioned later.
  • the sticking material examples include a sticking composition.
  • the sticking composition contains, for example, an adhesive (that is, surface tack property at normal temperature (25 ° C.)) resin.
  • the resin examples include a thermosetting resin and a thermoplastic resin, and preferably a thermosetting resin.
  • thermosetting resin examples include a two-stage reaction curable resin and a one-stage reaction curable resin.
  • the two-stage reaction curable resin has two reaction mechanisms.
  • the A stage state is changed to the B stage (semi-cured), and then in the second stage reaction, the B stage state is obtained.
  • C-stage complete curing
  • the two-stage reaction curable resin is a thermosetting resin that can be in a B-stage state under appropriate heating conditions.
  • the B stage state is a state between the A stage state where the thermosetting resin is in a liquid state and the fully cured C stage state, and curing and gelation proceed slightly, and the compression elastic modulus is C stage.
  • a semi-solid or solid state that is smaller than the elastic modulus of the state.
  • the first-stage reaction curable resin has one reaction mechanism, and can be C-staged (completely cured) from the A-stage state by the first-stage reaction.
  • a one-stage reaction curable resin can stop the reaction in the middle of the first-stage reaction and change from the A-stage state to the B-stage state.
  • thermosetting resin is a thermosetting resin that can be in a B-stage state.
  • thermosetting resin examples include silicone resin, epoxy resin, urethane resin, polyimide resin, phenol resin, urea resin, melamine resin, and unsaturated polyester resin.
  • a thermosetting resin Preferably, a silicone resin and an epoxy resin are mentioned, More preferably, a silicone resin is mentioned.
  • thermosetting resin may be the same type or a plurality of types.
  • silicone resin examples include silicone resin compositions such as an addition reaction curable silicone resin composition and a condensation / addition reaction curable silicone resin composition from the viewpoint of transparency, durability, heat resistance, and light resistance.
  • silicone resin compositions such as an addition reaction curable silicone resin composition and a condensation / addition reaction curable silicone resin composition from the viewpoint of transparency, durability, heat resistance, and light resistance.
  • an addition reaction curable silicone resin composition is used.
  • Silicone resins may be used alone or in combination.
  • the addition reaction curable silicone resin composition is a one-stage reaction curable resin composition and contains, for example, an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst.
  • the alkenyl group-containing polysiloxane contains two or more alkenyl groups and / or cycloalkenyl groups in the molecule.
  • the alkenyl group-containing polysiloxane is specifically represented by the following average composition formula (1).
  • R 1 a R 2 b SiO (4-ab) / 2 (In the formula, R 1 represents an alkenyl group having 2 to 10 carbon atoms and / or a cycloalkenyl group having 3 to 10 carbon atoms. R 2 represents an unsubstituted or substituted monovalent carbon atom having 1 to 10 carbon atoms.
  • a hydrogen group (excluding an alkenyl group and a cycloalkenyl group); a is from 0.05 to 0.50, and b is from 0.80 to 1.80.
  • examples of the alkenyl group represented by R 1 include alkenyl having 2 to 10 carbon atoms such as vinyl, allyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl and the like. Groups.
  • examples of the cycloalkenyl group represented by R 1 include a cycloalkenyl group having 3 to 10 carbon atoms such as a cyclohexenyl group and a norbornenyl group.
  • R 1 is preferably an alkenyl group, more preferably an alkenyl group having 2 to 4 carbon atoms, and still more preferably a vinyl group.
  • the alkenyl groups represented by R 1 may be the same type or a plurality of types.
  • the monovalent hydrocarbon group represented by R 2 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms other than an alkenyl group and a cycloalkenyl group.
  • Examples of the unsubstituted monovalent hydrocarbon group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, and a pentyl group.
  • Alkyl groups having 1 to 10 carbon atoms such as heptyl group, octyl group, 2-ethylhexyl group, nonyl group and decyl group, for example, cyclohexane having 3 to 6 carbon atoms such as cyclopropyl, cyclobutyl group, cyclopentyl group and cyclohexyl group.
  • alkyl groups such as aryl groups having 6 to 10 carbon atoms such as phenyl, tolyl and naphthyl groups, and aralkyl groups having 7 to 8 carbon atoms such as benzyl and benzylethyl groups.
  • Preferred examples include an alkyl group having 1 to 3 carbon atoms and an aryl group having 6 to 10 carbon atoms, and more preferred examples include a methyl group and / or a phenyl group.
  • examples of the substituted monovalent hydrocarbon group include those obtained by substituting a hydrogen atom in the above-mentioned unsubstituted monovalent hydrocarbon group with a substituent.
  • substituents examples include a halogen atom such as a chlorine atom, such as a glycidyl ether group.
  • substituted monovalent hydrocarbon group examples include a 3-chloropropyl group and a glycidoxypropyl group.
  • the monovalent hydrocarbon group may be unsubstituted or substituted, and is preferably unsubstituted.
  • the monovalent hydrocarbon groups represented by R 2 may be of the same type or a plurality of types.
  • a methyl group and / or a phenyl group are mentioned, More preferably, combined use of a methyl group and a phenyl group is mentioned.
  • A is preferably 0.10 or more and 0.40 or less.
  • B is preferably 1.5 or more and 1.75 or less.
  • the weight average molecular weight of the alkenyl group-containing polysiloxane is, for example, 100 or more, preferably 500 or more, and for example, 10,000 or less, preferably 5,000 or less.
  • the weight average molecular weight of the alkenyl group-containing polysiloxane is a conversion value based on standard polystyrene measured by gel permeation chromatography.
  • the alkenyl group-containing polysiloxane is prepared by an appropriate method, and a commercially available product can also be used.
  • alkenyl group-containing polysiloxane may be of the same type or a plurality of types.
  • the hydrosilyl group-containing polysiloxane contains, for example, two or more hydrosilyl groups (SiH groups) in the molecule.
  • the hydrosilyl group-containing polysiloxane is represented by the following average composition formula (2).
  • composition formula (2) H c R 3 d SiO (4-cd) / 2 (Wherein R 3 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms (excluding an alkenyl group and / or a cycloalkenyl group), and c is 0.30 or more) 1.0, and d is 0.90 or more and 2.0 or less.)
  • R 3 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms (excluding an alkenyl group and / or a cycloalkenyl group), and c is 0.30 or more) 1.0, and d is 0.90 or more and 2.0 or less.
  • R 3 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms (excluding an alkenyl group and / or a cycloalkenyl group), and c is 0.30 or more) 1.0, and d is 0.90 or more and 2.0 or less.)
  • an unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms more preferably an alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms, more preferably a methyl group. And / or a phenyl group.
  • C is preferably 0.5 or less.
  • D is preferably 1.3 or more and 1.7 or less.
  • the weight average molecular weight of the hydrosilyl group-containing polysiloxane is, for example, 100 or more, preferably 500 or more, and for example, 10,000 or less, preferably 5,000 or less.
  • the weight average molecular weight of the hydrosilyl group-containing polysiloxane is a conversion value based on standard polystyrene measured by gel permeation chromatography.
  • the hydrosilyl group-containing polysiloxane is prepared by an appropriate method, and a commercially available product can also be used.
  • hydrosilyl group-containing polysiloxane may be of the same type or a plurality of types.
  • At least one of the hydrocarbon groups R 2 and R 3 preferably includes a phenyl group, more preferably, R 2 and R 3 Both hydrocarbons contain a phenyl group.
  • the addition reaction curable silicone resin composition is a phenyl silicone resin composition.
  • the refractive index of the phenyl silicone resin composition is, for example, 1.45 or more, and further 1.50 or more.
  • the blending ratio of the hydrosilyl group-containing polysiloxane is the ratio of the number of moles of alkenyl groups and cycloalkenyl groups of the alkenyl group-containing polysiloxane to the number of moles of hydrosilyl groups of the hydrosilyl group-containing polysiloxane (number of moles of alkenyl groups and cycloalkenyl groups). / Number of moles of hydrosilyl group) is adjusted to be, for example, 1/30 or more, preferably 1/3 or more, and for example, 30/1 or less, preferably 3/1 or less.
  • the hydrosilylation catalyst is a substance (addition catalyst) that improves the reaction rate of the hydrosilylation reaction (hydrosilyl addition) between the alkenyl group and / or cycloalkenyl group of the alkenyl group-containing polysiloxane and the hydrosilyl group of the hydrosilyl group-containing polysiloxane. If it exists, it will not specifically limit, For example, a metal catalyst is mentioned. Examples of the metal catalyst include platinum catalysts such as platinum black, platinum chloride, chloroplatinic acid, platinum-olefin complexes, platinum-carbonyl complexes, and platinum-acetyl acetate, such as palladium catalysts such as rhodium catalyst.
  • the blending ratio of the hydrosilylation catalyst is, for example, 1.0 ppm or more on a mass basis with respect to the alkenyl group-containing polysiloxane and the hydrosilyl group-containing polysiloxane as the metal amount of the metal catalyst (specifically, metal atom). In addition, for example, it is 10,000 ppm or less, preferably 1,000 ppm or less, and more preferably 500 ppm or less.
  • the addition reaction curable silicone resin composition is prepared by blending an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst in the above-described proportions.
  • the above-mentioned addition reaction curable silicone resin composition is prepared and used as an A stage (liquid) state by first blending an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst.
  • the phenyl silicone resin composition undergoes a hydrosilylation addition reaction between the alkenyl group and / or cycloalkenyl group of the alkenyl group-containing polysiloxane and the hydrosilyl group of the hydrosilyl group-containing polysiloxane by heating under desired conditions. After that, the hydrosilylation addition reaction is once stopped. As a result, the A stage state can be changed to the B stage (semi-cured) state.
  • the phenyl-based silicone resin composition is completed by resuming the above-described hydrosilylation addition reaction by heating under further desired conditions.
  • the B stage state can be changed to the C stage (fully cured) state.
  • the condensation / addition reaction curable silicone resin composition is a two-stage reaction curable resin, and specifically, for example, those described in JP 2010-265436 A, JP 2013-187227 A, and the like. 1 to 8 condensation / addition reaction curable silicone resin compositions, for example, JP 2013-091705 A, JP 2013-001815 A, JP 2013-001814 A, JP 2013-001813 A, Examples thereof include a cage-type octasilsesquioxane-containing silicone resin composition described in JP2012-102167A.
  • the condensation / addition reaction curable silicone resin composition is solid and has both thermoplasticity and thermosetting properties.
  • the above-described resin is at least in the B-stage (semi-cured) state, that is, the resin when the adhesive layer 2 is formed is solid. And such resin has both thermoplasticity and thermosetting property. That is, the resin is once cured by heating and then completely cured. More specifically, the viscosity of the resin gradually decreases as the temperature rises, and then the viscosity gradually increases as the temperature rise continues.
  • the refractive index R1 of the resin (preferably a thermosetting resin) is appropriately set so that the absolute value of the difference from the refractive index R2 of the filler described later falls within a desired range.
  • the sticking composition preferably further contains a phosphor.
  • Examples of the phosphor include a yellow phosphor capable of converting blue light into yellow light, and a red phosphor capable of converting blue light into red light.
  • yellow phosphor examples include silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)), for example, Y 3 Al Garnet-type phosphors having a garnet-type crystal structure such as 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce), Tb 3 Al 3 O 12 : Ce (TAG (terbium, aluminum, garnet): Ce) Examples thereof include oxynitride phosphors such as Ca- ⁇ -SiAlON.
  • silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)
  • Y 3 Al Garnet-type phosphors having a garnet-type crystal structure such as 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce
  • red phosphor examples include nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
  • the phosphor is preferably a yellow phosphor, more preferably a garnet phosphor.
  • Examples of the shape of the phosphor include a spherical shape, a plate shape, and a needle shape.
  • the average value of the maximum length of the phosphor (in the case of a sphere, the average particle diameter) is, for example, 0.1 ⁇ m or more, preferably 1 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 100 ⁇ m or less. But there is.
  • Fluorescent substances can be used alone or in combination.
  • the blending ratio of the phosphor is, for example, 0.1% by mass or more, preferably 0.5% by mass or more, for example, 90% by mass or less, preferably 80% by mass or less, with respect to the adhesive composition. It is.
  • the sticking composition can also contain a filler.
  • Examples of the filler include light diffusing particles.
  • Examples of the light diffusing particles include inorganic particles and organic particles.
  • the inorganic particles include silica (SiO 2 ), talc (Mg 3 (Si 4 O 10 ) (HO) 2 ), alumina (Al 2 O 3 ), boron oxide (B 2 O 3 ), calcium oxide (CaO). ), Zinc oxide (ZnO), strontium oxide (SrO), magnesium oxide (MgO), zirconium oxide (ZrO 2 ), barium oxide (BaO), antimony oxide (Sb 2 O 3 ), and other oxides such as aluminum nitride Examples thereof include inorganic particles (inorganic materials) such as nitrides such as (AlN) and silicon nitride (Si 3 N 4 ). Examples of the inorganic particles include composite inorganic particles prepared from the inorganic materials exemplified above, and specifically, composite inorganic oxide particles (specifically, glass particles) prepared from an oxide. Can be mentioned.
  • the inorganic particles are preferably silica particles and glass particles.
  • the inorganic particles are usually insoluble in a solvent such as toluene described later.
  • organic materials for organic particles include acrylic resins, styrene resins, acrylic-styrene resins, silicone resins, polycarbonate resins, benzoguanamine resins, polyolefin resins, polyester resins, polyamide resins, and polyimide resins. Resin etc. are mentioned.
  • the organic particles are preferably acrylic resin and silicone resin particles.
  • Organic particles are insoluble in, for example, a solvent such as toluene described later.
  • the organic particles can include, for example, those that dissolve in a solvent.
  • ⁇ Fillers can be used alone or in combination.
  • the refractive index R2 of the filler is set so that the absolute value (
  • the refractive index R2 of the filler is, for example, 0.07 or more, preferably 0.11 or more, more preferably 0.15 or more, for example, 0.25 or less, preferably 0. 20 or less. If the absolute value (
  • the average particle diameter of the filler is, for example, 1.0 ⁇ m or more, preferably 2.0 ⁇ m or more, more preferably 4.0 ⁇ m or more, and for example, 30 ⁇ m or less, preferably 25 ⁇ m or less, more preferably, 10 ⁇ m or less.
  • the average particle size is measured by a particle size distribution measuring device.
  • the filler is used for the purpose of reducing the cost by reducing the amount of resin used and for increasing the hardness after complete curing (curing).
  • the filler does not have a scattering property and retains transparency.
  • the refractive index R2 of the filler is different from the refractive index R1 of the resin.
  • ) is set to be 0.05 or less, preferably less than 0.03, for example.
  • the particle size of the filler in this case is, for example, 1 nm or more, preferably 5 nm or more, and for example, 30 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and further preferably 0.1 ⁇ m or less. It is.
  • the content of the filler is, for example, 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, and, for example, 80% by mass or less, preferably with respect to the adhesive composition. Is 50 mass% or less, More preferably, it is 30 mass% or less.
  • the content ratio of the inorganic particles is, for example, 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more with respect to the adhesive composition. 80% by mass or less, preferably 50% by mass or less, and more preferably 30% by mass or less.
  • the content ratio of the organic particles is, for example, 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, for example, 80% by mass or less, with respect to the adhesive composition. Preferably, it is 50 mass% or less, More preferably, it is 30 mass% or less.
  • the blending ratio of the filler to 100 parts by weight of the resin is, for example, 2 parts by mass or more, preferably 5 parts by mass or more, and for example, 200 parts by mass or less, preferably 100 parts by mass or less.
  • the adhesive layer 2 for example, the above-mentioned resin, a filler and a phosphor that are blended as necessary are blended to prepare a varnish of the adhesive composition, and then the release sheet is prepared. 3 is applied on the upper surface.
  • the adhesive composition contains a thermosetting resin
  • the adhesive composition is B-staged. Specifically, the adhesive composition is heated (baked).
  • the heating (baking) conditions are appropriately set so that the storage shear modulus G ′ in the dynamic viscoelasticity measurement in the adhesive layer 2 is in a desired range.
  • the heating temperature is appropriately set depending on the composition of the thermosetting resin composition in the adhesive composition, and specifically, for example, 50 ° C. or higher, preferably 70 ° C. or higher, and for example, 120 ° C.
  • the temperature is preferably 100 ° C. or lower.
  • the heating time is, for example, 2.5 minutes or more, preferably 5.5 minutes or more, and for example, 4 hours or less, preferably 1 hour or less. If the heating time is not less than the above lower limit and / or not more than the above upper limit, the minimum value of the above-described storage shear modulus G ′ can be set in a desired range.
  • the adhesive layer 2 is prepared.
  • the thickness of the adhesive layer 2 is, for example, 40 ⁇ m or more, preferably 50 ⁇ m or more, and, for example, 500 ⁇ m or less, preferably 300 ⁇ m or less.
  • the minimum value means the minimum value at which the storage shear modulus G ′ is located at the lowest value.
  • the temperature T at such a minimum value is in the range of 40 ° C. or more and 200 ° C. or less, and the storage shear modulus G ′ at the minimum value is in the range of 1,000 Pa or more and 90,000 Pa or less. .
  • the temperature T at the minimum value is less than 40 ° C., the viscosity increases excessively in a hot press at 40 ° C. or higher in the hot press step described below, so the optical semiconductor element 15 of the adhesive layer 2 (see FIG. 2B). ) There is a problem that the adhesion force to the resin is reduced.
  • the viscosity of the adhesive layer 2 is not sufficiently lowered in the hot press at 200 ° C. or lower in the hot press process described below, and therefore the semiconductor element 15 of the adhesive layer 2. There is a problem that the adhesion force to (see FIG. 2B) decreases.
  • the storage shear elastic modulus G ′ at the minimum value is less than 1,000 Pa, the thickness of the adhesive layer 2 becomes non-uniform in the hot press process described below, and thus the obtained adhesive optical semiconductor element 11 is obtained. There is a problem that the color uniformity of the optical semiconductor device 21 (see FIG. 2E) is lowered (see FIG. 2D).
  • the storage shear modulus G ′ at the minimum value exceeds 90,000 Pa, the viscosity of the adhesive layer 2 is not sufficiently lowered in the hot press process described below, so that the semiconductor element 15 ( (See FIG. 2B) There is a problem in that the adhesion force is reduced.
  • the temperature T at the minimum value is in the range of 40 ° C. or more and 200 ° C. or less, and the storage shear modulus G ′ at the above minimum value is preferably 10,000 Pa or more, more preferably 20,000 Pa or more. More preferably, it is 30,000 Pa or more, and preferably 70,000 Pa or less.
  • the storage shear modulus G ′ at the minimum value is equal to or greater than the lower limit described above, in the hot press step described below, the wrinkle of the adhesive layer 2 is prevented, and the thickness of the adhesive layer 2 becomes uniform.
  • the color uniformity of the sticking optical semiconductor element 11 and the optical semiconductor device 21 is excellent.
  • the storage shear elastic modulus G ′ at the minimum value is equal to or less than the above upper limit, the viscosity of the adhesive layer 2 is sufficiently lowered in the hot press step described below. Therefore, the semiconductor element 15 ( Excellent adhesion and / or embeddability to (see FIG. 2B).
  • LOG 10 (storage shear modulus G ′ at 25 ° C.)
  • ⁇ LOG 10 (minimum value of storage shear modulus G ′) is, for example, 0.20 or more, preferably 0.23 or more. For example, it is 1.50 or less, preferably 1.00 or less, and more preferably 0.50 or less.
  • LOG 10 Storage Shear Modulus G ′ at 25 ° C.
  • LOG 10 Minimum Value of Shear Shear Modulus G ′
  • FIG. 6 is a curve representing the logarithm of the storage shear modulus G ′. Means the length between the storage shear modulus G ′ at 25 ° C. and the minimum value of the storage shear modulus G ′.
  • the compression elastic modulus at 25 ° C. of the adhesive layer 2 is, for example, 1.0 MPa or more, preferably 5.0 MPa or more, more preferably 10.0 MPa or more, and, for example, 50 MPa. Hereinafter, it is preferably 25 MPa or less.
  • the toluene-soluble content of the resin contained in the adhesive layer 2 is, for example, 5% by mass or more, preferably 10% by mass or more, more preferably 25% by mass or more.
  • 80 mass% or less Preferably, it is 60 mass% or less, More preferably, it is 50 mass% or less.
  • the minimum value of the storage shear modulus G ′ can be set in a desired range, whereby the adhesive layer 2 has excellent adhesion. While being able to adhere to the optical semiconductor element 15 with force, the thickness of the adhesive layer 2 attached to the optical semiconductor element 15 can be made uniform.
  • the toluene soluble content of the resin is calculated by the following formula.
  • Resin-soluble toluene content toluene-soluble content mass / resin mass ⁇ 100
  • the toluene soluble content of the resin is measured using the adhesive layer 2. Therefore, when the adhesive composition in the adhesive layer 2 contains a phosphor and / or filler, the mass of the phosphor and filler is subtracted according to the following procedures (1) to (6), and the resin toluene Calculate the soluble fraction.
  • Procedure (1) Cross-sectional SEM observation of the resin composition sheet is performed, and the presence or absence of the phosphor and the filler and the type of the filler (inorganic particles or organic particles) are confirmed.
  • the mass of the organic particles is calculated by multiplying the volume fraction of the cross-sectional SEM of the organic particles by the general density of organic particles 1.25 g / cm 3 .
  • Procedure (2) The adhesive layer 2 is precisely weighed, wrapped in a PTFE sheet, immersed in toluene at 25 ° C. for 24 hours, and shaken.
  • Procedure (3) Toluene insoluble matter is separated, toluene is removed by drying, and the mass of toluene insoluble matter is measured.
  • Procedure (4) The mass of the toluene-soluble component is calculated by subtracting the mass of the toluene-insoluble component from the precisely weighed sample mass.
  • Procedure (5) The mass of the resin is calculated by subtracting the masses of the phosphor and the filler from the mass of the prepared adhesive layer 2.
  • Toluene-soluble content toluene-soluble content / resin mass ⁇ 100
  • the mass of toluene-soluble components in the resin is calculated by subtracting the mass of toluene-insoluble components and the mass of organic particles from the sample mass. .
  • the alkenyl group in the adhesive layer 2 (specifically, vinyl group: CH 2 ⁇ CH— group) ) In the adhesive layer 2 is, for example, 4.3% or more, and for example, 20% or less, preferably 7.5% or less.
  • the content of the hydrosilyl group (H—Si group) in the adhesive layer 2 is, for example, 2% or more, preferably 5% or more, more preferably 10% or more, and for example, 30% or less, Preferably, it is 15% or less.
  • the thickness of the adhesive layer 2 becomes uniform, and the adhesive strength of the adhesive layer 2 to the semiconductor element 15 is improved. Excellent.
  • the release sheet 3 as shown in FIG. 1, is used to protect the adhesive layer 2 until it is attached to the optical semiconductor element 15 by the adhesive layer 2.
  • the lower surface in FIG. 1 is detachably attached.
  • the release sheet 3 is made of a flexible film.
  • the sticking surface of the peeling sheet 3, ie, the contact surface with respect to the sticking layer 2 is subjected to peeling treatment such as fluorine treatment if necessary.
  • the release sheet 3 examples include polymer films such as polyethylene film and polyester film (PET), for example, ceramic sheets, for example, metal foil.
  • PET polyethylene film and polyester film
  • the release sheet 3 has a substantially rectangular shape in plan view (including a strip shape and a long shape).
  • the thickness of the release sheet 3 is, for example, 1 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 2,000 ⁇ m or less, preferably 1,000 ⁇ m or less.
  • Adhesive Sheet In order to obtain the adhesive sheet 1, first, the release sheet 3 and the varnish of the adhesive composition described above are prepared. Subsequently, the varnish of the adhesive composition is applied to the upper surface of the release sheet 3. Then, when a sticking composition contains a thermosetting resin, a sticking composition is B-staged by heating.
  • the adhesive sheet 1 provided with the adhesive layer 2 and the release sheet 3 disposed on the entire lower surface of the adhesive layer 2 is obtained.
  • the thickness of the sticking sheet 1 is, for example, 90 ⁇ m or more, preferably 100 ⁇ m or more, and for example, 550 ⁇ m or less, preferably 350 ⁇ m or less.
  • Adhesive optical semiconductor element and optical semiconductor device manufacturing method First embodiment of the inventive adhesive optical semiconductor element and optical semiconductor device manufacturing method> 1st Embodiment of the manufacturing method of the sticking optical semiconductor element and optical semiconductor device of this invention is described sequentially.
  • the method for producing the adhesive optical semiconductor element 11 includes a sheet preparation step for preparing the adhesive sheet 1 (see FIG. 1), and an optical semiconductor.
  • An element preparation step (see FIG. 2A) for preparing the element 15 and a hot pressing step (see FIG. 2B) for directly hot pressing the adhesive sheet 1 against the optical semiconductor element 15 are provided.
  • attachment optical semiconductor element 11 peels the adhesion
  • the peeling process (refer the arrow of FIG. 2D and an imaginary line) is provided.
  • each process will be described sequentially.
  • a sealed optical semiconductor element 25 that is temporarily fixed to the base material 12 and includes the optical semiconductor element 15 is prepared.
  • the substrate 12 includes a support plate 13 and an adhesive sheet 14 disposed on the upper surface of the support plate 13.
  • the support plate 13 is made of the same material as the release sheet 3 described above.
  • the support plate 13 may be formed of an inorganic material such as glass or a silicon wafer.
  • the thickness of the support plate 13 is, for example, 10 ⁇ m or more, preferably 50 ⁇ m or more, and for example, 1,200 ⁇ m or less, preferably 1,000 ⁇ m or less.
  • the pressure-sensitive adhesive sheet 14 is, for example, a sheet from which a sealed optical semiconductor element 25 described later in detail can be easily peeled off by heating and / or ultraviolet irradiation (that is, a temporary fixing sheet capable of temporarily fixing the sealed optical semiconductor element 25). Is formed.
  • the thickness of the pressure-sensitive adhesive sheet 14 is, for example, 10 ⁇ m or more, preferably 15 ⁇ m or more, and for example, 300 ⁇ m or less, preferably 250 ⁇ m or less.
  • the base material 12 is obtained by disposing the adhesive sheet 14 on the surface of the support plate 13.
  • the thickness of the base material 12 is, for example, 200 ⁇ m or more, preferably 300 ⁇ m or more, and, for example, 5,000 ⁇ m or less, preferably 4,000 ⁇ m or less.
  • the sealed optical semiconductor element 25 includes an optical semiconductor element 15 and a sealing layer 24 as shown in FIG. 3E.
  • the optical semiconductor element 15 is, for example, an LED or LD that converts electrical energy into light energy.
  • the optical semiconductor element 15 is a blue LED (light emitting diode element) that emits blue light.
  • the optical semiconductor element 15 does not include a rectifier such as a transistor having a technical field different from that of the optical semiconductor element.
  • the optical semiconductor element 15 has a substantially flat plate shape along the front-rear direction and the left-right direction.
  • the optical semiconductor element 15 has an electrode side surface 17, an exposed surface 18 as an opposing surface, and a peripheral side surface 19.
  • the electrode side surface 17 is the upper surface of the optical semiconductor element 15 shown in FIG. 3E (the lower surface of the optical semiconductor element 15 shown in FIG. 2A).
  • An electrode 22 is provided on the electrode side surface 17.
  • the electrode 22 has a shape protruding upward from the electrode side surface 17.
  • the exposed surface 18 is the lower surface of the optical semiconductor element 15 shown in FIG. 3E (the upper surface of the optical semiconductor element 15 shown in FIG. 2A), and is opposed to the electrode side surface 17 with a gap therebetween.
  • the peripheral side surface 19 connects the peripheral end edge of the electrode side surface 17 and the peripheral end edge of the exposed surface 18.
  • the dimensions of the optical semiconductor element 15 are appropriately set.
  • the thickness (height) is, for example, 0.1 ⁇ m or more, preferably 0.2 ⁇ m or more, and, for example, 500 ⁇ m or less, Preferably, it is 200 micrometers or less.
  • the projected area when the optical semiconductor element 15 is projected in the thickness direction is, for example, 0.01 mm 2 or more, preferably 0.02 mm 2 or more. It is 4 mm 2 or less, preferably 3 mm 2 or less.
  • the sealing layer 24 covers the electrode side surface 17 and the peripheral side surface 19 of the optical semiconductor element 15 on the substrate 12. Thereby, the sealing layer 24 seals the electrode side surface 17 and the peripheral side surface 19. On the other hand, the sealing layer 24 exposes the exposed surface 18 of the optical semiconductor element 15.
  • the sealing layer 24 covers the peripheral side surface of the electrode 22 in FIG. 2A.
  • the sealing layer 24 illustrated in FIG. 3E exposes the upper surface of the electrode 22.
  • the sealing layer 24 is made of, for example, a sealing resin composition described in JP2012-175068A.
  • the sealed optical semiconductor element 25 is obtained in accordance with the description in JP 2012-175068 A.
  • a plurality of optical semiconductor elements 15 provided with electrodes 22 are prepared.
  • the plurality of optical semiconductor elements 15 are temporarily fixed to the temporary fixing base material 23.
  • the temporary fixing base material 23 is configured in the same manner as the base material 12 shown in FIG. 2A described above, and specifically includes a support plate 13 and an adhesive sheet 14.
  • the exposed surfaces 18 of the plurality of optical semiconductor elements 15 are brought into contact with the upper surface of the adhesive sheet 14.
  • the sealing resin composition is applied onto the base material 12 so as to cover the plurality of optical semiconductor elements 15 including the electrodes 22.
  • the sealing resin composition is cured by heating.
  • the sealing layer 24 is disposed on the base material 12 so as to embed the electrode 22 and the optical semiconductor element 15.
  • the sealing layer 24 which consists of a sealing resin composition on the base material 12 so that the electrode 22 and the optical semiconductor element 15 may be embed
  • the electrode 22 and the optical semiconductor element 15 can be embedded with a sealing sheet made of a sealing resin composition, and the sealing layer 24 can be disposed on the substrate 12.
  • the upper portion of the sealing layer 24 is removed by, for example, grinding so that the upper surface of the electrode 22 is exposed.
  • the sealed optical semiconductor element 25 including the optical semiconductor element 15 provided with the electrode 22 whose upper surface is exposed and the sealing layer 24 covering the electrode side surface 17 and the peripheral side surface 19 of the optical semiconductor element 15 is temporarily mounted. It is obtained in a state of being temporarily fixed by the fixing base material 23.
  • the sealed optical semiconductor element 25 is peeled off from the base material 12.
  • the exposed surface 18 of the optical semiconductor element 15 and the lower surface of the sealing layer 24 are peeled off from the upper surface of the adhesive sheet 14. .
  • the sealed optical semiconductor element 25 in which the exposed surface 18 of the optical semiconductor element 15 and the upper surface of the electrode 22 are exposed from the sealing layer 24 is obtained.
  • the sealed optical semiconductor element 25 shown in FIG. 3E is turned upside down, and the lower surface of the sealed optical semiconductor element 25 is arranged on the substrate 12. Specifically, the lower surface of the electrode 22 and the lower surface of the sealing layer 24 exposed from the electrode 22 are temporarily fixed to the upper surface of the adhesive sheet 14.
  • Hot pressing process The hot pressing process is performed after "(1) sheet preparation process” and "(2) element preparation process".
  • the adhesive sheet 1 shown in FIG. 1 is turned upside down, and then, as shown in FIG. 2B, the adhesive sheet 1 is temporarily fixed to the base material 12. It is arranged directly on the upper surface of the element 25. Specifically, the adhesive layer 2 is directly placed on the exposed surface 18 of the optical semiconductor element 15 and the upper surface of the sealing layer 24 (the upper surface formed flush with the exposed surface 18).
  • the sealed optical semiconductor element 25 and the sticking sheet 1 are set in the press machine 40.
  • the press machine 40 is a heat press machine provided with a heat source, and is arranged on the upper side of the lower plate 41 and the lower plate 41 as a first plate, and is configured to be capable of hot pressing on the lower side of the lower plate 41. And an upper plate 42 as a second plate.
  • the hot press conditions are appropriately set to conditions under which the adhesive composition in the adhesive layer 2 is plasticized and subsequently the adhesive composition is slightly cured.
  • the temperature of the hot press is 40 ° C. or higher, preferably 45 ° C. or higher, and 200 ° C. or lower, preferably 180 ° C. or lower, more preferably 150 ° C. or lower.
  • the pressure of the hot press is, for example, 0.01 MPa or more, preferably 0.10 MPa or more, and for example, 10.00 MPa or less, preferably 5.00 MPa or less, more preferably 3.00 MPa or less. . If the pressure of a hot press is below the said upper limit, the thickness of the sticking layer 2 after a hot press process can be made uniform. If the pressure of hot press is more than the said minimum, the favorable adhesiveness with respect to the sealing optical semiconductor element 25 of the sticking layer 2 after a hot press process can be ensured.
  • the temperature T at the minimum value is in the range of 40 ° C. or more and 200 ° C. or less
  • the storage shear modulus G ′ at the minimum value is in the range of 10,000 Pa or more and 50,000 Pa or less.
  • the pressure of the hot press can be set relatively high, specifically, 0.10 MPa or more, especially 0.50 MPa or more, more preferably 1.00 MPa or more, and further 2.00 MPa or more, 10.00 MPa or less can be set.
  • the time of the hot press is, for example, 1 second or more, preferably 3 seconds or more, and for example, 10 minutes or less, preferably 5 minutes or less.
  • the heat press can be performed multiple times.
  • the adhesive layer 2 is first subjected to the upper surface of the sealing optical semiconductor element 25 (the exposed surface 18 of the optical semiconductor element 15 and the upper surface of the sealing layer 24 based on the plasticization of the resin by the above-described hot pressing. ) Directly. Subsequently, the adhesive layer 2 firmly adheres to the upper surface of the sealed optical semiconductor element 25 based on the fact that the resin is slightly cured.
  • the adhesion strength of the adhesive layer 2 to the glass plate after hot pressing is, for example, 0.10 N / 8.5 mm or more, preferably 0.20 N / 8.5 mm or more, more preferably 0.30 N / 8.5 mm. More preferably, it is 0.40 N / 8.5 mm or more, particularly preferably 0.50 N / 8.5 mm or more, and for example, 10.00 N / 8.5 mm or less.
  • adhesion is equal to or greater than the above lower limit, good adhesion between the adhesive layer 2 and the sealed optical semiconductor element 25 can be ensured.
  • the spacer 30 (see the phantom line in FIG. 2B) is not used in the hot press.
  • the release sheet 3 is peeled from the adhesive layer 2.
  • the sealed optical semiconductor element 25, the adhesive layer 2, and the substrate 12 are heated by, for example, an oven.
  • the thermosetting resin is completely cured (C stage).
  • the heating temperature is, for example, 100 ° C. or higher, preferably 120 ° C. or higher, and for example, 200 ° C. or lower, preferably 160 ° C. or lower.
  • the heating time is, for example, 10 minutes or longer, preferably 30 minutes or longer, and for example, 480 minutes or shorter, preferably 300 minutes or shorter.
  • heating can be performed multiple times at different temperatures.
  • thermosetting resin when the resin is a thermosetting resin, the thermosetting resin is cured (C stage). Thereby, the thermosetting resin is completely reacted to produce a product.
  • R 5 e SiO (4-e) / 2 (Wherein R 5 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, including a phenyl group (excluding alkenyl groups and cycloalkenyl groups); 0.0 or more and 3.0 or less.)
  • the unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 5 includes an unsubstituted or substituted monovalent carbon group having 1 to 10 carbon atoms represented by R 2 in the formula (1). Examples thereof are the same as the hydrogen group and the unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 3 in the formula (2).
  • an unsubstituted monovalent hydrocarbon group more preferably an alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms, and more preferably a combined use of a phenyl group and a methyl group is used.
  • an unsubstituted monovalent hydrocarbon group more preferably an alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms, and more preferably a combined use of a phenyl group and a methyl group.
  • the proportion of the phenyl groups in R 5 in the average composition formula of the product (3) is, for example, 30 mol% or more, preferably is 35 mol% or more, and is, for example, 55 mol% or less, preferably 50 mol% or less.
  • the content ratio of the phenyl group in R 5 of the average composition formula (3) of the product is a monovalent hydrocarbon group directly bonded to the silicon atom of the product (indicated by R 5 in the average composition formula (3)). This is the phenyl group concentration.
  • the content ratio of the phenyl group in R 5 of the average composition formula (3) of the product is calculated by 1 H-NMR and 29 Si-NMR.
  • the details of the method for calculating the content ratio of the phenyl group in R 5 are calculated by 1 H-NMR and 29 Si-NMR based on, for example, the description of WO2011 / 125463.
  • the adhesive layer 2 adheres to the upper surface of the sealed optical semiconductor element 25.
  • the sticking optical semiconductor element 11 provided with the sealing optical semiconductor element 25 and the sticking layer 2 sticking on the upper surface of the sealing optical semiconductor element 25 is supported by the base material 12 by the sealing layer 24 and the electrode 22. Obtained in the same manner.
  • the sticking optical semiconductor element 11 can be distributed in a state where the base material 12 is provided.
  • an adhesive optical semiconductor element 11 including one optical semiconductor element 15, a sealing layer 24, and an adhesive layer 2 is obtained in a state where it is supported by the base material 12.
  • Peeling process A peeling process is implemented after "(4) individualization process.”
  • the bonded optical semiconductor element 11 is peeled off from the base material 12 as shown by the arrows and phantom lines in FIG. 2D.
  • the lower surface of the electrode 22 and the lower surface of the sealing layer 24 are peeled off from the upper surface of the adhesive sheet 14.
  • the sticking optical semiconductor element 11 including the optical semiconductor element 15, the sealing layer 24, and the sticking layer 2 is obtained.
  • the pasted optical semiconductor element 11 is not the optical semiconductor device 21 (see FIG. 2E), that is, does not include the substrate 16 provided in the optical semiconductor device 21. That is, the bonded optical semiconductor element 11 is configured such that the electrode 22 is not yet electrically connected to a terminal (not shown) provided on the substrate 16 of the optical semiconductor device 21.
  • the bonded optical semiconductor element 11 is a component for producing the optical semiconductor device 21, that is, a component for manufacturing the optical semiconductor device 21.
  • the pasted optical semiconductor element 11 preferably comprises only the optical semiconductor element 15, the sealing layer 24, and the sealing layer 24.
  • Method for Manufacturing Optical Semiconductor Device As shown in FIG. 2E, in the method for manufacturing an optical semiconductor device, the bonded optical semiconductor element 11 obtained by the “method for manufacturing the bonded optical semiconductor element” is mounted on the substrate 16.
  • the substrate 16 has a substantially flat plate shape, for example, an insulating substrate. Moreover, the board
  • the electrode 22 in the adhered optical semiconductor element 11 is brought into contact with a terminal (not shown) of the substrate 16 to be electrically connected. That is, the optical semiconductor element 15 of the bonded optical semiconductor element 11 is flip-chip mounted on the substrate 16.
  • the optical semiconductor device 21 including the substrate 16 and the bonded optical semiconductor element 11 mounted on the substrate 16 is obtained.
  • the optical semiconductor device 21 includes only the substrate 16 and the bonded optical semiconductor element 11. That is, the optical semiconductor device 21 does not include the release sheet 3 and / or the base material 12, and preferably includes only the substrate 16, the optical semiconductor element 15, and the sealing layer 24.
  • the sticking layer 2 contains a fluorescent substance
  • the light emitted from the optical semiconductor element 15 is wavelength-converted by the sticking layer 2 to emit a desired color.
  • the sticking optical semiconductor element 11 and the optical semiconductor device 21 which can be obtained can be obtained.
  • the sticking layer 2 when the sticking layer 2 contains a thermosetting resin, the sticking layer 2 is made into the optical semiconductor element 15 by thermosetting (completely curing) the sticking sheet 1. And can be adhered to the sealing layer 24.
  • this sticking sheet 1 is further provided with the peeling sheet 3, the lower surface of the sticking layer 2 shown in FIG. 1 can be protected.
  • the sticking sheet 1 in the hot press step shown in FIG. 2B, is sealed with the optical semiconductor element 15 and the sealing layer 24 at a temperature of 40 ° C. or more and 200 ° C. or less. Since it heat-presses with respect to the light-stopping semiconductor element 25, the thickness of the sticking layer 2 can be made uniform, while being able to stick directly to the sealing optical semiconductor element 25 with the outstanding adhesive force. Therefore, the sticking optical semiconductor element 11 excellent in reliability and color uniformity can be manufactured.
  • a small and inexpensive press machine 40 can be used.
  • the electrode side surface 17 and the peripheral side surface 19 are covered with the sealing layer 24, and the exposed surface 18 is covered with the sealing layer 24. Since the optical semiconductor element 15 exposed from is prepared, the optical semiconductor element 15 can be prepared as a wafer level package. Then, as shown in FIG. 2B, in the hot pressing step, the adhesive sheet 1 is directly hot pressed against the exposed surface 18 of the optical semiconductor element 15 and the upper surface of the sealing layer 24 in the wafer level package. Therefore, the adhesive sheet 1 can be simply attached to the optical semiconductor element 15 and the sealing layer 24 of the wafer level package.
  • the bonded optical semiconductor element 11 is obtained by the above-described manufacturing method of the bonded optical semiconductor element 11, and the bonded optical semiconductor element 11 is attached to the substrate 16 as shown in FIG. 2E. Therefore, the optical semiconductor device 21 excellent in reliability and color uniformity can be manufactured.
  • both the electrode side surface 17 and the peripheral side surface 19 of the optical semiconductor element 15 are sealed with the sealing layer 24.
  • at least the peripheral side surface 19 of the optical semiconductor element 15 may be sealed with the sealing layer 24.
  • the electrode side surface 17 of the optical semiconductor element 15 is not covered, and the peripheral side surface 19 of the optical semiconductor element 15 is covered. It is also possible to seal only with the sealing layer 24.
  • the adhesive layer 2 is used so as to adhere directly to the optical semiconductor element 15.
  • the adhesive layer 2 can also be used so as to be indirectly attached to the optical semiconductor element 15.
  • the exposed surface 18 (specifically, the exposed surface 18 and the peripheral side surface 19, or the plurality of optical semiconductor elements 15 temporarily fixed to the substrate 12, or
  • the bonded optical semiconductor element 11 in which the electrode side surface 17, the exposed surface 18 and the peripheral side surface 19) are covered with the sealing layer 24 is prepared.
  • the adhesive layer 2 is directly attached to the upper surface of the sealing layer 24 of the adhesive optical semiconductor element 11. That is, the adhesive layer 2 is indirectly attached to the optical semiconductor element 15. That is, the sticking layer 2 is stuck to the optical semiconductor element 15 via the sealing layer 24 located above the exposed surface 18.
  • the adhesive sheet 1 is hot pressed against the sealing layer 24.
  • the optical semiconductor element 15 in which the exposed surface 18, the electrode side surface 17, and the peripheral side surface 19 are covered with the sealing layer 24 is prepared.
  • the sealed optical semiconductor element 25 can be prepared.
  • the adhesive sheet 1 is hot-pressed against the sealing layer 24 in the sealed optical semiconductor element 25, so that the adhesive layer 2 can be simply applied to the optical semiconductor element 15 in the sealed optical semiconductor element 25. Can be attached to.
  • the singulation process is performed.
  • the adhesive layer 2 without performing the singulation process, that is, the adhesive layer 2.
  • the sticking optical semiconductor element 11 provided with the some optical semiconductor element 15 can also be obtained, without cut
  • the sealing optical semiconductor element 25 As shown to FIG. 3E, it prepares as the sealing optical semiconductor element 25 provided with the some optical semiconductor element 15 without dividing the optical semiconductor element 15 in the sealing optical semiconductor element 25 into pieces. is doing.
  • the sealing optical semiconductor element 25 including one optical semiconductor element 15 can be prepared by cutting the sealing layer 24 so that the optical semiconductor element 15 is separated into pieces.
  • the spacer 30 is not used, but as shown by the phantom line in FIG. 2B, the interval between the upper plate 42 and the lower plate 41 is adjusted during the hot pressing.
  • a spacer 30 can also be used.
  • the spacer 30 is placed on the lower plate 41 and is formed in a substantially frame shape surrounding the sticking sheet 1 and the base material 12 in a plan view.
  • the thickness of the spacer 30 is set so as to be the total thickness of the bonded optical semiconductor element 11 and the base material 12 at the time of hot pressing.
  • the hot pressing process is performed without using the spacer 30.
  • the hot press process can be easily performed by the press machine 40 having a simple configuration.
  • the electrode 22 shown in FIG. 2A is omitted to clearly show the exposed surface 18 and the electrode side surface 17 in the optical semiconductor element 15.
  • the optical semiconductor element 15 is prepared by being temporarily fixed to the base material 12 so as to be sealed by the sealing layer 24 and provided in the sealed optical semiconductor element 25.
  • the optical semiconductor element 15 can be prepared by being temporarily fixed to the base material 12 without being sealed by the sealing layer 24.
  • a plurality of optical semiconductor elements 15 are arranged on the base material 12 at intervals from each other. Specifically, the electrode side surfaces 17 of the plurality of optical semiconductor elements 15 are temporarily fixed to the upper surface of the adhesive sheet 14.
  • the sticking sheet 1 is disposed on the upper surfaces of the plurality of sealed optical semiconductor elements 25.
  • a space is formed between the adhesive layer 2 and the pressure-sensitive adhesive sheet 14 in the vertical direction (thickness direction).
  • a plurality of optical semiconductor elements 15 are aligned and spaced from each other in the left-right direction and the front-rear direction.
  • the optical semiconductor element 15 and the sticking sheet 1 are set in the press machine 40, and then hot pressing is performed.
  • the shape of the adhesive layer 2 is substantially retained. That is, the outer shape of the adhesive layer 2 is substantially maintained. Or it is suppressed that the adhesion layer 2 fills the space between the sealing optical semiconductor elements 25 which adjoin.
  • the adhesive layer 2 is allowed to fall into the upper part of the space as long as the thickness of the portion immediately above the optical semiconductor element 15 is kept uniform.
  • the release sheet 3 is peeled from the adhesive layer 2.
  • the optical semiconductor element 15, the adhesive layer 2, and the base material 12 are heated.
  • the thermosetting resin is completely cured (C stage).
  • the adhesive layer 2 adheres to the upper surface of the optical semiconductor element 15.
  • the sticking optical semiconductor element 11 including the optical semiconductor element 15 and the sticking layer 2 sticking to the upper surface of the optical semiconductor element 15 is obtained in a state supported by the base material 12.
  • the adhesive layer 2 between the adjacent optical semiconductor elements 15 is cut to separate the optical semiconductor elements 15 into individual pieces. Thereby, the sticking optical semiconductor element 11 including one optical semiconductor element 15 and the sticking layer 2 is obtained in a state where it is supported by the base material 12.
  • the bonded optical semiconductor element 11 is peeled off from the base material 12 as shown by the arrows and phantom lines in FIG. 4D.
  • the sticking optical semiconductor element 11 does not include the sealing layer 24. That is, the sticking optical semiconductor element 11 preferably includes only the optical semiconductor element 15 and the sealing layer 24.
  • the above-described bonded optical semiconductor element 11 is mounted on the substrate 16 to obtain the optical semiconductor device 21.
  • the optical semiconductor device 21 does not include the sealing layer 24.
  • FIG. 4D after manufacturing the sticking optical semiconductor element 11 once on the base material 12, as shown to FIG.
  • the substrate 16 is peeled off and mounted on the substrate 16.
  • a plurality of optical semiconductor elements 15 are mounted on the substrate 16 in advance, and then, the adhesive sheet 1 is attached to the plurality of optical semiconductor elements 15 as shown in FIG. 5B.
  • the release sheet 3 can be peeled off from the adhesive layer 2 to obtain the optical semiconductor device 21 including the substrate 16, the optical semiconductor element 15, and the adhesive layer 2.
  • the base material 12 shown in FIG. 4A can be replaced with the substrate 16, and the singulation process and the mounting process can be omitted. That is, as shown in FIG. 5C, the bonded optical semiconductor element 11 can be manufactured on the substrate 16.
  • a plurality of optical semiconductor elements 15 are flip-chip mounted in advance on the substrate 16 so that the electrode side surface 17 of the optical semiconductor element 15 faces the upper surface of the substrate 16. .
  • the sticking sheet 1 is stuck to the plurality of optical semiconductor elements 15. Specifically, first, the adhesive layer 2 of the adhesive sheet 1 is placed on the exposed surfaces 18 of the plurality of optical semiconductor elements 15.
  • the optical semiconductor element 15, the substrate 16 and the sticking sheet 1 are set in the press machine 40, and then hot pressing is performed.
  • the adhesive layer 2 adheres to the exposed surface 18 of the optical semiconductor element 15.
  • the release sheet 3 is peeled from the adhesive layer 2.
  • the optical semiconductor element 15, the substrate 16, and the adhesive layer 2 are heated.
  • the thermosetting resin is completely cured (C stage).
  • the adhesive layer 2 adheres to the exposed surface 18 of the optical semiconductor element 15.
  • the optical semiconductor device 21 including the substrate 16, the optical semiconductor element 15 mounted on the substrate 16, and the adhesive layer 2 attached to the exposed surface 18 of the optical semiconductor element 15 is obtained.
  • the optical semiconductor element 15 and the adhesive layer 2 constitute the adhesive optical semiconductor element 11. Therefore, the optical semiconductor device 21 includes the substrate 16 and the bonded optical semiconductor element 11.
  • blending ratio content ratio
  • physical property values and parameters used in the following description are described in the above-mentioned “Mode for Carrying Out the Invention”, and the corresponding blending ratio (content ratio) ), Physical property values, parameters, etc. may be replaced with the upper limit values (numerical values defined as “less than” or “less than”) or lower limit values (numbers defined as “greater than” or “exceeded”). it can.
  • the weight average molecular weight in terms of polystyrene of the alkenyl group-containing polysiloxane A was measured by gel permeation chromatography and found to be 2,300.
  • Synthesis example 2 In a four-necked flask equipped with a stirrer, reflux condenser, charging port and thermometer, 93.2 g of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 140 g of water, trifluoromethanesulfone 0.38 g of acid and 500 g of toluene were added and mixed. While stirring, a mixture of 173.4 g of diphenyldimethoxysilane and 300.6 g of phenyltrimethoxysilane was added dropwise over 1 hour. After completion of the addition, the mixture was heated to reflux for 1 hour.
  • the weight average molecular weight in terms of polystyrene of the alkenyl group-containing polysiloxane B was measured by gel permeation chromatography and found to be 1,000.
  • the average unit formula and average composition formula of the hydrosilyl group-containing polysiloxane C are as follows.
  • polystyrene-reduced weight average molecular weight of the hydrosilyl group-containing polysiloxane C was measured by gel permeation chromatography and found to be 1,000.
  • the adhesive composition was applied to the surface of a release sheet (separator, product name “SE-1”, thickness 50 ⁇ m, manufactured by Fujiko Co., Ltd.) with a comma coater so as to have a film thickness of 225 ⁇ m, followed by 90 ° C. Heated (baked) for 5.7 minutes (5 minutes 42 seconds).
  • a release sheet separatator, product name “SE-1”, thickness 50 ⁇ m, manufactured by Fujiko Co., Ltd.
  • a comma coater so as to have a film thickness of 225 ⁇ m, followed by 90 ° C. Heated (baked) for 5.7 minutes (5 minutes 42 seconds).
  • the adhesive sheet A provided with a peeling sheet and an adhesive layer was obtained (refer FIG. 1).
  • Example B Except having changed the heating (baking) conditions into 90 degreeC and 6.7 minutes (6 minutes 42 seconds), it processed similarly to Example A and obtained the sticking sheet B (refer FIG. 1).
  • Example C Except having changed heating (baking) conditions into 90 degreeC and 8.0 minutes, it processed similarly to Example A and obtained the sticking sheet C (refer FIG. 1).
  • Example D 45.7 g of silicone resin composition, 32.5 g of phosphor, 10 g of light diffusing silica particles, 10 g of glass particles, and 1.8 g of aerosil particles were added, and they were stirred for 3 minutes to prepare an adhesive composition.
  • the adhesive composition was applied to the surface of a release sheet (separator, product name “SE-1”, thickness 50 ⁇ m, manufactured by Fujiko Co., Ltd.) with a comma coater so as to have a film thickness of 225 ⁇ m, followed by 90 ° C. , And heated (baked) for 8.0 minutes.
  • a release sheet separatator, product name “SE-1”, thickness 50 ⁇ m, manufactured by Fujiko Co., Ltd.
  • a comma coater so as to have a film thickness of 225 ⁇ m, followed by 90 ° C. , And heated (baked) for 8.0 minutes.
  • the adhesive sheet D provided with a peeling sheet and an adhesive layer was obtained (refer FIG. 1).
  • Example E 46 g of silicone resin composition, 29 g of phosphor, 20 g of light diffusing acrylic bead particles, and 5 g of glass particles were added, and they were stirred for 3 minutes to prepare a sticking composition.
  • the adhesive composition was applied to the surface of a release sheet (separator, product name “SE-1”, thickness 50 ⁇ m, manufactured by Fujiko Co., Ltd.) with a comma coater so as to have a film thickness of 225 ⁇ m, followed by 90 ° C. , And heated (baked) for 8.0 minutes.
  • a release sheet separatator, product name “SE-1”, thickness 50 ⁇ m, manufactured by Fujiko Co., Ltd.
  • a comma coater so as to have a film thickness of 225 ⁇ m, followed by 90 ° C. , And heated (baked) for 8.0 minutes.
  • the adhesive sheet E provided with a peeling sheet and an adhesive layer was obtained (refer FIG. 1).
  • Example F Except having changed the heating (baking) conditions into 90 degreeC and 11 minutes, it processed similarly to Example A and obtained the sticking sheet F (refer FIG. 1).
  • Example G Except having changed the heating (baking) conditions into 90 degreeC and 13 minutes, it processed similarly to Example A and obtained the sticking sheet G (refer FIG. 1).
  • Comparative Example H A sticking sheet H is obtained in the same manner as in Example A except that the heating (baking) conditions are changed to 90 ° C., 8.0 minutes heating, and then 150 ° C., 8 hours heating. (See FIG. 1).
  • Comparative Example I Except having changed heating (baking) conditions into 90 degreeC and 5.0 minutes, it processed similarly to Example A and obtained the sticking sheet I (refer FIG. 1).
  • Example 1 ⁇ Element preparation process> First, a sealed optical semiconductor element including a sealing layer and an optical semiconductor element was prepared in accordance with the method of Example 3 of JP2012-175068A (see FIG. 3E).
  • a plurality of optical semiconductor elements (1.1 mm square, height (thickness) 180 ⁇ m, manufactured by Epistar) having electrodes provided on the upper surface were prepared (see FIG. 3A).
  • a temporary fixing substrate provided with a support plate (stainless steel carrier) and an adhesive sheet ("Riva Alpha", manufactured by Nitto Denko Corporation) disposed on the upper surface of the support plate, at a pitch of 1.64 mm, in the front-rear direction 20 and 20 in the left-right direction were aligned (see FIG. 3B).
  • the lower surface (opposing surface) of the optical semiconductor element was brought into contact with the upper surface of the adhesive sheet.
  • the sealing layer was prepared from “OE-6630” sold by Toray Dow Corning as a sealing material.
  • the sealing optical semiconductor element in which the peripheral side surface and the upper surface (electrode surface) were covered with the sealing layer and the sealing layer was obtained in a state supported by the temporarily fixed base material.
  • the sealed optical semiconductor element was peeled off from the adhesive sheet (see FIG. 3E).
  • the base material which has the structure similar to said temporarily fixed base material was prepared separately, and the sealing optical semiconductor element (refer FIG. 3E) was arrange
  • the adhesive layer of the pressure-sensitive adhesive sheet A is placed on the upper surface (opposing surface) of the optical semiconductor element and the upper surface of the sealing layer formed flush with the upper surface described above.
  • the plate was hot-pressed at a pressure of 0.48 MPa at 60 ° C. for 5 minutes without using a spacer by a flat plate hot press machine having a lower plate and an upper plate.
  • the optical semiconductor element in the bonded optical semiconductor element was flip-chip mounted on the substrate (see FIG. 2E).
  • Examples 2 to 12 and Comparative Examples 1 and 2 According to Table 1, except having changed the kind of sticking sheet, and the pressure of the hot press, it processed like Example 1 and obtained the sticking optical semiconductor element, and the optical semiconductor device was obtained continuously.
  • Viscoelastic device Rotary rheometer (C-VOR device, manufactured by Malvern)
  • Sample shape Disc shape Sample size: Thickness 225 ⁇ m, Diameter 8 mm Distortion amount: 10% Frequency: 1Hz
  • Plate diameter 8mm Gap between plates: 200 ⁇ m
  • Temperature rising rate 20 ° C / min Temperature range: 20-200 ° C
  • a curve showing the relationship between the storage shear modulus G ′ and the temperature T is shown in FIG.
  • Procedure (1) The adhesive layer was baked and the mass of the residue (the mass of the inorganic particles) was weighed. Separately, the volume fraction of silicone-based resin particles / light-scattering acrylic bead particles (calculated by image analysis) confirmed by cross-sectional SEM observation of the adhesive layer was 1.25 g / cm 3 (general density of organic particles) To calculate the mass of the silicone resin particles. In addition, since the organic particle was confirmed by the optical microscope observation or cross-sectional SEM observation of the toluene insoluble matter mentioned later, it was judged that the organic particle was insoluble in toluene.
  • Procedure (2) 1.1 g (sample mass) of the adhesive layer was precisely weighed, wrapped in a PTFE sheet (pore diameter 0.2 ⁇ m), immersed in 100 g of toluene at 25 ° C., and shaken for 24 hours.
  • H—Si group content The H—Si group content (hydrosilyl group) in the adhesive layers obtained in Example A to Comparative Example I was calculated by solid NMR measurement. Specifically, the content in the varnish state was calculated as 100%. The results are shown in Table 1.
  • Example 1 to Comparative Example 2 Adhesion of the adhesive layer to the glass plate
  • the adhesive sheets used in Example 1 to Comparative Example 2 were cut out with a width of 8.5 mm, and vacuum hot pressed onto a glass plate having a thickness of 1 mm under the respective hot pressing conditions in Example 1 to Comparative Example 2 to obtain a release sheet. After peeling, the film was heated at 100 ° C. for 10 minutes, and then heated at 150 ° C. for 8 hours to completely cure (full cure) the adhesive layer, and the adhesion of the adhesive layer to the glass plate at 25 ° C. was calculated. . The results are shown in Table 1. The results are shown in Table 1.
  • the optical semiconductor element in the optical semiconductor device obtained in Example 1 to Comparative Example 2 was caused to emit light at 50 mA.
  • Table 1 shows the chromaticity CIE (x, y) and the y value of 400 bonded optical semiconductor elements.
  • the A-stage silicone resin composition was reacted (completely cured, C-staged) at 100 ° C. for 1 hour without adding a phosphor and a filler to obtain a product.
  • the phenyl group content in the hydrocarbon group (R 5 ) of the product obtained by the reaction of the silicone resin composition was 48%.
  • the adhesive sheet is used for manufacturing an optical semiconductor device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

 貼着シートは、光半導体素子に直接的または間接的に貼着するように使用される貼着層を備える貼着シートである。貼着層を、周波数1Hzおよび昇温速度20℃/分の条件で動的粘弾性測定することにより得られる貯蔵剪断弾性率G'と温度Tとの関係を示す曲線が、極小値を有し、極小値における温度Tが、40℃以上、200℃以下の範囲にあり、極小値における貯蔵剪断弾性率G'が、1,000Pa以上、90,000Pa以下の範囲にある。

Description

貼着シート、貼着光半導体素子の製造方法および光半導体装置の製造方法
 本発明は、貼着シート、貼着光半導体素子の製造方法および光半導体装置の製造方法、詳しくは、貼着シート、それを用いる貼着光半導体素子の製造方法、および、その製造方法により得られる貼着光半導体素子を用いる光半導体装置の製造方法に関する。
 従来より、貼着シートを、LEDに貼着し、それによって、発光装置を得ることが知られている。
 例えば、所定の架橋温度未満の温度において熱可塑性を有し、前記架橋温度以上の温度で不可逆的に硬化する熱可塑性樹脂を含有する封止用樹脂シートが提案されている(例えば、特許文献1参照。)。
 上記した封止用樹脂シートは、LEDに対して、熱プレスされる。
特開2013-179300号公報
 しかし、特許文献1に記載される封止用樹脂シートは、熱プレス後に、厚みが不均一になり易く、そのため、発光装置の色均一性が低下するという不具合がある。
 一方、封止用樹脂シートには、LEDに対する優れた密着性が求められる。
 本発明の目的は、優れた色均一性を有する貼着光半導体素子および光半導体装置の製造方法と、それらに用いられ、光半導体素子に対する密着性に優れる貼着シートとを提供することにある。
 本発明(1)は、光半導体素子に直接的または間接的に貼着するように使用される貼着層を備える貼着シートであって、前記貼着層を、周波数1Hzおよび昇温速度20℃/分の条件で動的粘弾性測定することにより得られる貯蔵剪断弾性率G’と温度Tとの関係を示す曲線が、極小値を有し、前記極小値における温度Tが、40℃以上、200℃以下の範囲にあり、前記極小値における貯蔵剪断弾性率G’が、1,000Pa以上、90,000Pa以下の範囲にある、貼着シートを含む。
 この貼着シートは、40℃以上、200℃以下の範囲で、光半導体素子に直接的または間接的に貼着するように使用するときに、極小値における温度Tが、40℃以上、200℃以下の範囲にあり、極小値における貯蔵剪断弾性率G’が、1,000Pa以上、90,000Pa以下の範囲にあるので、優れた密着力で光半導体素子に直接的または間接的に貼着できながら、光半導体素子に直接的または間接的に貼着した貼着層の厚みを均一にすることができる。そのため、信頼性および色均一性に優れた貼着光半導体素子および光半導体装置を得ることができる。
 本発明(2)は、前記貼着層が、蛍光体を含有する、(1)に記載の貼着シートを含む。
 この貼着シートでは、貼着層が、蛍光体を含有するので、貼着層によって、光半導体素子から発光される光を波長変換して、所望の色を発光できる貼着光半導体素子および光半導体装置を得ることができる。
 本発明(3)は、前記貼着層が、熱硬化性樹脂を含有する、(1)または(2)に記載の貼着シートを含む。
 この貼着シートでは、貼着層が、熱硬化性樹脂を含有するので、貼着層を熱硬化させることにより、貼着層を光半導体素子に対して接着することができる。
 本発明(4)は、前記貼着層が、前記熱硬化性樹脂の屈折率R1との差の絶対値が0.20以下となる屈折率R2を有するフィラーをさらに含有する、(3)に記載の貼着シートを含む。
 この貼着シートでは、光半導体素子から発光された光を、貼着層において、均一に散乱させることができる。
 本発明(5)は、前記貼着層の厚み方向一方面に配置される剥離シートをさらに備える、(1)~(4)のいずれか一項に記載の貼着シートを含む。
 この貼着シートは、貼着層の厚み方向一方面に配置される剥離シートをさらに備えるので、貼着層の厚み方向一方面を保護することができる。
 本発明(6)は、(1)~(5)のいずれか一項に記載の貼着シートを用意するシート用意工程、基材に配置される光半導体素子を用意する素子用意工程、および、前記貼着シートを、40℃以上、200℃以下の温度で、前記光半導体素子に対して直接的または間接的に熱プレスする熱プレス工程を備える、貼着光半導体素子の製造方法を含む。
 この貼着光半導体素子の製造方法において、熱プレス工程では、貼着シートを、40℃以上、200℃以下の温度で、光半導体素子に対して直接的または間接的に熱プレスするので、優れた密着力で光半導体素子に直接的または間接的に貼着できながら、光半導体素子に直接的または間接的に貼着した貼着層の厚みを均一にすることができる。そのため、信頼性および色均一性に優れた貼着光半導体素子を製造することができる。
 本発明(7)は、前記熱プレス工程における圧力が、3.00MPa以下である、請求項(6)に記載の貼着光半導体素子の製造方法を含む。
 この貼着光半導体素子の製造方法では、熱プレス工程における圧力が、3.00MPa以下であるので、小さく、安価なプレス機を使用できる。
 本発明(8)は、前記熱プレス工程では、第1板と、前記第1板のプレス方向一方側に対向配置され、前記第1板に対して熱プレス可能に構成される第2板とを備えるプレス機により、前記第2板および前記第1板の間に、それらの間隔を調整するためのスペーサを用いずに、前記第2板が前記第1板に対して熱プレスする、(6)または(7)に記載の貼着光半導体素子の製造方法を含む。
 この貼着光半導体素子の製造方法では、スペーサを用いずに、簡便に熱プレス工程を実施することができる。
 本発明(9)は、前記光半導体素子は、電極が配置される電極側面と、前記電極側面と対向する対向面と、前記電極側面と前記対向面とを連結する周側面とを有し、前記素子用意工程では、少なくとも前記周側面が、封止層によって被覆され、前記対向面が、前記封止層から露出する前記光半導体素子を用意し、前記熱プレス工程では、前記貼着シートを、前記対向面および前記封止層に対して熱プレスする、(6)~(8)のいずれか一項に記載の貼着光半導体素子の製造方法を含む。
 この貼着光半導体素子の製造方法では、素子用意工程では、少なくとも周側面が、封止層によって被覆され、対向面が、封止層から露出する光半導体素子を用意するので、そのような光半導体素子を、ウエハレベルパッケージとして用意することができる。そして、熱プレス工程では、貼着シートを、ウエハレベルパッケージにおける光半導体素子の対向面および封止層に対して熱プレスするので、ウエハレベルパッケージの光半導体素子および封止層に貼着シートを簡便に貼着することができる。
 本発明(10)は、前記光半導体素子は、電極が配置される電極側面と、前記電極側面と対向する対向面と、前記電極側面と前記対向面とを連結する周側面とを有し、前記素子用意工程では、少なくとも前記対向面および前記周側面が、封止層によって被覆された前記光半導体素子を用意し、前記熱プレス工程では、前記貼着シートを、前記封止層に対して熱プレスする、(6)~(8)のいずれか一項に記載の貼着光半導体素子の製造方法を含む。
 この貼着光半導体素子の製造方法では、素子用意工程では、少なくとも対向面および周側面が、封止層によって被覆された光半導体素子を用意するので、そのような光半導体素子を、封止光半導体素子として用意することができる。そして、熱プレス工程では、貼着シートを、封止光半導体素子における封止層に対して熱プレスするので、封止光半導体素子における光半導体素子に貼着層を簡便に貼着することができる。
 本発明(11)は、(6)~(8)のいずれか一項に記載の貼着光半導体素子の製造方法により、貼着光半導体素子を得る工程を備え、前記基材が、支持板と、前記支持板の厚み方向一方面に配置される粘着シートとを備え、前記貼着光半導体素子を前記粘着シートから剥離する剥離工程、および、前記貼着光半導体素子を基板に実装する実装工程をさらに備える、光半導体装置の製造方法を含む。
 この光半導体装置の製造方法によれば、上記した貼着光半導体素子の製造方法により、貼着光半導体素子を得、これを基板に実装するので、信頼性および色均一性に優れた光半導体装置を製造することができる。
 本発明(12)は、(6)~(8)のいずれか一項に記載の貼着光半導体素子の製造方法により、貼着光半導体素子を得る工程を備え、前記基材が、基板であり、前記素子用意工程では、前記基板に実装された光半導体素子を用意する、光半導体装置の製造方法を含む。
 この光半導体装置の製造方法によれば、信頼性および色均一性に優れた光半導体装置を製造することができる。
 本発明の貼着シート、貼着光半導体素子の製造方法および光半導体装置の製造方法によれば、信頼性および色均一性に優れた貼着光半導体素子および光半導体装置を得ることができる。
図1は、本発明の貼着シートの一実施形態の断面図を示す。 図2A~図2Eは、本発明の貼着光半導体素子および光半導体装置の製造方法の第1実施形態の工程図を示し、図2Aは、封止光半導体素子を基材に仮固定する工程、図2Bは、貼着シートを封止光半導体素子に貼着する工程、図2Cは、剥離シートを貼着層から引き剥がして、貼着層を完全硬化させる工程、図2Dは、貼着光半導体素子を基材から引き剥がす工程、図2Eは、貼着光半導体素子を基板に実装する工程を示す。 図3A~図3Eは、図2Aに示す封止光半導体素子を用意する工程図を示し、図3Aは、光半導体素子を複数用意する工程、図3Bは、複数の光半導体素子を基材の上に仮固定する工程、図3Cは、封止層を形成する工程、図3Dは、封止層の上側部分を除去する工程、図3Eは、封止光半導体素子を基材から引き剥がす工程を示す。 図4A~図4Eは、本発明の貼着光半導体素子および光半導体装置の製造方法の第2実施形態の工程図を示し、図4Aは、光半導体素子を基材に仮固定する工程、図4Bは、貼着シートを光半導体素子に貼着する工程、図4Cは、剥離シートを貼着層から引き剥がして、貼着層を完全硬化させる工程、図4Dは、貼着光半導体素子を基材から引き剥がす工程、図4Eは、貼着光半導体素子を基板に実装する工程を示す。 図5A~図5Cは、本発明の貼着光半導体素子および光半導体装置の製造方法の第3実施形態の工程図を示し、図5Aは、基板に実装された光半導体素子を用意する工程、図5Bは、貼着シートを光半導体素子に貼着する工程、図5Cは、剥離シートを貼着層から引き剥がして、貼着層を完全硬化させる工程を示す。 図6は、実施例A~比較例Iにおける貼着層の貯蔵剪断弾性率G’と温度Tとの関係を示す。
  <本発明の貼着シートの一実施形態>
 本発明の一実施形態を以下で説明する。
 図1において、紙面上下方向は、上下方向(第1方向、厚み方向、プレス方向の一例)であり、紙面上側が上側(第1方向一方側、厚み方向一方側)、紙面下側が下側(第1方向他方側、厚み方向他方側)である。図1において、紙面左右方向は、左右方向(第1方向に直交する第2方向)であり、紙面左側が左側(第2方向一方側)、紙面右側が右側(第2方向他方側)である。図1において、紙面紙厚方向は、前後方向(第1方向および第2方向に直交する第3方向)であり、紙面手前側が前側(第3方向一方側)、紙面奥側が後側(第3方向他方側)である。具体的には、各図の方向矢印に準拠する。
 1.貼着シート
 貼着シート1は、図1に示すように、略平板形状を有し、具体的には、所定の厚みを有し、左右方向および前後方向に延び、平坦な上面(表面)および平坦な下面(裏面)を有している。また、貼着シート1は、後述する貼着光半導体素子11(図2D参照)ではなく、また、光半導体装置21(図2E参照)でもない。すなわち、貼着シート1は、貼着光半導体素子11および光半導体装置21の一部品であり、すなわち、貼着光半導体素子11および光半導体装置21を作製するための部品である。そのため、貼着シート1は、光半導体素子15および光半導体素子15を実装する基板16(図2E参照)を含まず、貼着シート1そのものが、部品単独で流通し、産業上利用可能なデバイスである。
 そして、図1に示すように、貼着シート1は、貼着層2と、貼着層2の下面に配置される剥離シート3とを備える。好ましくは、貼着シート1は、貼着層2と、剥離シート3とのみからなる。
 1-1.貼着層
 貼着層2は、貼着材料から形成される層(シート)状を有している。また、貼着層2は、後述する図2Cに示すように、光半導体素子15に直接的に貼着するように使用される。
 貼着材料としては、例えば、貼着組成物が挙げられる。貼着組成物は、例えば、粘着性(すなわち、常温(25℃)での表面タック性)の樹脂を含有している。
 樹脂としては、例えば、熱硬化性樹脂、熱可塑性樹脂が挙げられ、好ましくは、熱硬化性樹脂が挙げられる。
 熱硬化性樹脂としては、例えば、2段反応硬化性樹脂、1段反応硬化性樹脂が挙げられる。
 2段反応硬化性樹脂は、2つの反応機構を有しており、第1段の反応で、Aステージ状態からBステージ化(半硬化)し、次いで、第2段の反応で、Bステージ状態からCステージ化(完全硬化)することができる。つまり、2段反応硬化性樹脂は、適度の加熱条件によりBステージ状態となることができる熱硬化性樹脂である。Bステージ状態は、熱硬化性樹脂が、液状であるAステージ状態と、完全硬化したCステージ状態との間の状態であって、硬化およびゲル化がわずかに進行し、圧縮弾性率がCステージ状態の弾性率よりも小さい半固体または固体状態である。
 1段反応硬化性樹脂は、1つの反応機構を有しており、第1段の反応で、Aステージ状態からCステージ化(完全硬化)することができる。このような1段反応硬化性樹脂は、第1段の反応の途中で、その反応が停止して、Aステージ状態からBステージ状態となることができ、その後のさらなる加熱によって、第1段の反応が再開されて、Bステージ状態からCステージ化(完全硬化)することができる熱硬化性樹脂である。つまり、かかる熱硬化性樹脂は、Bステージ状態となることができる熱硬化性樹脂である。そのため、1段反応硬化性樹脂は、1段の反応の途中で停止するように制御できず、つまり、Bステージ状態となることができず、一度に、Aステージ状態からCステージ化(完全硬化)する熱硬化性樹脂を含まない。
 要するに、熱硬化性樹脂は、Bステージ状態となることができる熱硬化性樹脂である。
 熱硬化性樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂などが挙げられる。熱硬化性樹脂としては、好ましくは、シリコーン樹脂、エポキシ樹脂が挙げられ、より好ましくは、シリコーン樹脂が挙げられる。
 上記した熱硬化性樹脂は、同一種類または複数種類のいずれでもよい。
 シリコーン樹脂としては、透明性、耐久性、耐熱性、耐光性の観点から、例えば、付加反応硬化型シリコーン樹脂組成物、縮合・付加反応硬化型シリコーン樹脂組成物などのシリコーン樹脂組成物が挙げられ、好ましくは、付加反応硬化型シリコーン樹脂組成物が挙げられる。シリコーン樹脂は、単独で使用してもよく、あるいは、併用することもできる。
 付加反応硬化型シリコーン樹脂組成物は、1段反応硬化性樹脂組成物であって、例えば、アルケニル基含有ポリシロキサンと、ヒドロシリル基含有ポリシロキサンと、ヒドロシリル化触媒とを含有する。
 アルケニル基含有ポリシロキサンは、分子内に2個以上のアルケニル基および/またはシクロアルケニル基を含有する。アルケニル基含有ポリシロキサンは、具体的には、下記平均組成式(1)で示される。
 平均組成式(1):
 R SiO(4-a-b)/2
(式中、Rは、炭素数2~10のアルケニル基および/または炭素数3~10のシクロアルケニル基を示す。Rは、非置換または置換の炭素数1~10の1価の炭化水素基(ただし、アルケニル基およびシクロアルケニル基を除く。)を示す。aは、0.05以上、0.50以下であり、bは、0.80以上、1.80以下である。)
 式(1)中、Rで示されるアルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基などの炭素数2~10のアルケニル基が挙げられる。Rで示されるシクロアルケニル基としては、例えば、シクロヘキセニル基、ノルボルネニル基などの炭素数3~10のシクロアルケニル基が挙げられる。
 Rとして、好ましくは、アルケニル基、より好ましくは、炭素数2~4のアルケニル基、さらに好ましくは、ビニル基が挙げられる。
 Rで示されるアルケニル基は、同一種類または複数種類のいずれでもよい。
 Rで示される1価の炭化水素基は、アルケニル基およびシクロアルケニル基以外の非置換または置換の炭素原子数1~10の1価の炭化水素基である。
 非置換の1価の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ペンチル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基などの炭素数1~10のアルキル基、例えば、シクロプロピル、シクロブチル基、シクロペンチル基、シクロヘキシル基などの炭素数3~6のシクロアルキル基、例えば、フェニル基、トリル基、ナフチル基などの炭素数6~10のアリール基、例えば、ベンジル基、ベンジルエチル基などの炭素数7~8のアラルキル基が挙げられる。好ましくは、炭素数1~3のアルキル基、炭素数6~10のアリール基が挙げられ、より好ましくは、メチル基および/またはフェニル基が挙げられる。
 一方、置換の1価の炭化水素基は、上記した非置換の1価の炭化水素基における水素原子を置換基で置換したものが挙げられる。
 置換基としては、例えば、塩素原子などのハロゲン原子、例えば、グリシジルエーテル基などが挙げられる。
 置換の1価の炭化水素基としては、具体的には、3-クロロプロピル基、グリシドキシプロピル基などが挙げられる。
 1価の炭化水素基は、非置換および置換のいずれであってもよく、好ましくは、非置換である。
 Rで示される1価の炭化水素基は、同一種類または複数種類であってもよい。好ましくは、メチル基および/またはフェニル基が挙げられ、より好ましくは、メチル基およびフェニル基の併用が挙げられる。
 aは、好ましくは、0.10以上、0.40以下である。
 bは、好ましくは、1.5以上、1.75以下である。
 アルケニル基含有ポリシロキサンの重量平均分子量は、例えば、100以上、好ましくは、500以上であり、また、例えば、10,000以下、好ましくは、5,000以下である。アルケニル基含有ポリシロキサンの重量平均分子量は、ゲル透過クロマトグラフィーによって測定される標準ポリスチレンによる換算値である。
 アルケニル基含有ポリシロキサンは、適宜の方法によって調製され、また、市販品を用いることもできる。
 また、アルケニル基含有ポリシロキサンは、同一種類または複数種類であってもよい。
 ヒドロシリル基含有ポリシロキサンは、例えば、分子内に2個以上のヒドロシリル基(SiH基)を含有する。ヒドロシリル基含有ポリシロキサンは、具体的には、下記平均組成式(2)で示される。
 平均組成式(2):
 H SiO(4-c-d)/2
(式中、Rは、非置換または置換の炭素数1~10の1価の炭化水素基(ただし、アルケニル基および/またはシクロアルケニル基を除く。)を示す。cは、0.30以上、1.0以下であり、dは、0.90以上、2.0以下である。)
 式(2)中、Rで示される非置換または置換の炭素数1~10の1価の炭化水素基は、式(1)のRで示される非置換または置換の炭素数1~10の1価の炭化水素基と同一のものが例示される。好ましくは、非置換の炭素数1~10の1価の炭化水素基、より好ましくは、炭素数1~10のアルキル基、炭素数6~10のアリール基が挙げられ、さらに好ましくは、メチル基および/またはフェニル基が挙げられる。
 cは、好ましくは、0.5以下である。
 dは、好ましくは、1.3以上、1.7以下である。
 ヒドロシリル基含有ポリシロキサンの重量平均分子量は、例えば、100以上、好ましくは、500以上であり、また、例えば、10,000以下、好ましくは、5,000以下である。ヒドロシリル基含有ポリシロキサンの重量平均分子量は、ゲル透過クロマトグラフィーによって測定される標準ポリスチレンによる換算値である。
 ヒドロシリル基含有ポリシロキサンは、適宜の方法によって調製され、また、市販品を用いることもできる。
 また、ヒドロシリル基含有ポリシロキサンは、同一種類または複数種類であってもよい。
 上記した平均組成式(1)および平均組成式(2)中、RおよびRの少なくともいずれか一方の炭化水素基は、好ましくは、フェニル基を含み、より好ましくは、RおよびRの両方の炭化水素が、フェニル基を含む。なお、RおよびRの少なくともいずれか一方の炭化水素基がフェニル基を含む場合には、付加反応硬化型シリコーン樹脂組成物は、フェニル系シリコーン樹脂組成物とされる。フェニル系シリコーン樹脂組成物の屈折率は、例えば、1.45以上、さらには、1.50以上である。
 ヒドロシリル基含有ポリシロキサンの配合割合は、アルケニル基含有ポリシロキサンのアルケニル基およびシクロアルケニル基のモル数の、ヒドロシリル基含有ポリシロキサンのヒドロシリル基のモル数に対する割合(アルケニル基およびシクロアルケニル基のモル数/ヒドロシリル基のモル数)が、例えば、1/30以上、好ましくは、1/3以上、また、例えば、30/1以下、好ましくは、3/1以下となるように、調整される。
 ヒドロシリル化触媒は、アルケニル基含有ポリシロキサンのアルケニル基および/またはシクロアルケニル基と、ヒドロシリル基含有ポリシロキサンのヒドロシリル基とのヒドロシリル化反応(ヒドロシリル付加)の反応速度を向上させる物質(付加触媒)であれば、特に限定されず、例えば、金属触媒が挙げられる。金属触媒としては、例えば、白金黒、塩化白金、塩化白金酸、白金-オレフィン錯体、白金-カルボニル錯体、白金-アセチルアセテートなどの白金触媒、例えば、パラジウム触媒、例えば、ロジウム触媒などが挙げられる。
 ヒドロシリル化触媒の配合割合は、金属触媒の金属量(具体的には、金属原子)として、アルケニル基含有ポリシロキサンおよびヒドロシリル基含有ポリシロキサンに対して、質量基準で、例えば、1.0ppm以上であり、また、例えば、10,000ppm以下、好ましくは、1,000ppm以下、より好ましくは、500ppm以下である。
 付加反応硬化型シリコーン樹脂組成物は、アルケニル基含有ポリシロキサン、ヒドロシリル基含有ポリシロキサンおよびヒドロシリル化触媒を、上記した割合で配合することにより、調製される。
 上記した付加反応硬化型シリコーン樹脂組成物は、まず、アルケニル基含有ポリシロキサン、ヒドロシリル基含有ポリシロキサンおよびヒドロシリル化触媒を配合することによって、Aステージ(液体)状態として調製されて使用される。
 上記したように、フェニル系シリコーン樹脂組成物は、所望条件の加熱により、アルケニル基含有ポリシロキサンのアルケニル基および/またはシクロアルケニル基と、ヒドロシリル基含有ポリシロキサンのヒドロシリル基とのヒドロシリル化付加反応を生じ、その後、ヒドロシリル化付加反応が、一旦、停止する。これによって、Aステージ状態からBステージ(半硬化)状態となることができる。
 その後、フェニル系シリコーン樹脂組成物は、さらなる所望条件の加熱により、上記したヒドロシリル化付加反応が再開されて、完結する。これによって、Bステージ状態からCステージ(完全硬化)状態となることができる。
 縮合・付加反応硬化型シリコーン樹脂組成物は、2段反応硬化性樹脂であって、具体的には、例えば、特開2010-265436号公報、特開2013-187227号公報などに記載される第1~第8の縮合・付加反応硬化型シリコーン樹脂組成物、例えば、特開2013-091705号公報、特開2013-001815号公報、特開2013-001814号公報、特開2013-001813号公報、特開2012-102167号公報などに記載されるかご型オクタシルセスキオキサン含有シリコーン樹脂組成物などが挙げられる。なお、縮合・付加反応硬化型シリコーン樹脂組成物は、固体状であって、熱可塑性および熱硬化性を併有する。
 そして、上記した樹脂は、少なくともBステージ(半硬化)状態にあるとき、すなわち、貼着層2を形成しているときの樹脂は、固体状である。そして、このような樹脂は、熱可塑性および熱硬化性を併有する。つまり、樹脂は、加熱により、一旦、可塑化した後、完全硬化する。より具体的には、樹脂は、昇温とともに、粘度が次第に下降し、その後、昇温を継続すると、粘度が次第に上昇する。
 樹脂(好ましくは、熱硬化性樹脂)の屈折率R1は、後述するフィラーの屈折率R2との差の絶対値が所望の範囲となるように、適宜設定される。
 貼着組成物は、好ましくは、蛍光体をさらに含有する。
 蛍光体としては、例えば、青色光を黄色光に変換することのできる黄色蛍光体、青色光を赤色光に変換することのできる赤色蛍光体などが挙げられる。
 黄色蛍光体としては、例えば、(Ba,Sr,Ca)SiO;Eu、(Sr,Ba)SiO:Eu(バリウムオルソシリケート(BOS))などのシリケート蛍光体、例えば、YAl12:Ce(YAG(イットリウム・アルミニウム・ガーネット):Ce)、TbAl12:Ce(TAG(テルビウム・アルミニウム・ガーネット):Ce)などのガーネット型結晶構造を有するガーネット型蛍光体、例えば、Ca-α-SiAlONなどの酸窒化物蛍光体などが挙げられる。
 赤色蛍光体としては、例えば、CaAlSiN:Eu、CaSiN:Euなどの窒化物蛍光体などが挙げられる。
 蛍光体として、好ましくは、黄色蛍光体、より好ましくは、ガーネット型蛍光体が挙げられる。
 蛍光体の形状としては、例えば、球状、板状、針状などが挙げられる。
 蛍光体の最大長さの平均値(球状である場合には、平均粒子径)は、例えば、0.1μm以上、好ましくは、1μm以上であり、また、例えば、200μm以下、好ましくは、100μm以下でもある。
 蛍光体は、単独使用または併用することができる。
 蛍光体の配合割合は、貼着組成物に対して、例えば、0.1質量%以上、好ましくは、0.5質量%以上であり、例えば、90質量%以下、好ましくは、80質量%以下である。
 さらに、貼着組成物は、フィラーを含有することもできる。
 フィラーとしては、例えば、光拡散性粒子が挙げられる。光拡散性粒子としては、例えば、無機粒子、有機粒子などが挙げられる。
 無機粒子としては、例えば、シリカ(SiO)、タルク(Mg(Si10)(HO))、アルミナ(Al)、酸化ホウ素(B)、酸化カルシウム(CaO)、酸化亜鉛(ZnO)、酸化ストロンチウム(SrO)、酸化マグネシウム(MgO)、酸化ジルコニウム(ZrO)、酸化バリウム(BaO)、酸化アンチモン(Sb)などの酸化物、例えば、窒化アルミニウム(AlN)、窒化ケイ素(Si)などの窒化物などの無機物粒子(無機物)が挙げられる。また、無機粒子として、例えば、上記例示の無機物から調製される複合無機物粒子が挙げられ、具体的には、酸化物から調製される複合無機酸化物粒子(具体的には、ガラス粒子など)が挙げられる。
 無機粒子として、好ましくは、シリカ粒子、ガラス粒子が挙げられる。
 無機粒子は、通常、後述するトルエンなどの溶剤に不溶である。
 有機粒子の有機材料としては、例えば、アクリル系樹脂、スチレン系樹脂、アクリル-スチレン系樹脂、シリコーン系樹脂、ポリカーボネート系樹脂、ベンゾグアナミン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂などが挙げられる。
 有機粒子として、好ましくは、アクリル系樹脂、シリコーン系樹脂粒子が挙げられる。
 有機粒子は、例えば、後述するトルエンなどの溶剤に不溶である。なお、有機粒子は、例えば、溶剤に溶解するものを含むこともできる。
 フィラーは、単独使用または併用することができる。
 フィラーの屈折率R2は、樹脂の屈折率R1との差の絶対値(|R1-R2|)が、0.03以上となるように設定される。具体的には、フィラーの屈折率R2は、例えば、0.07以上、好ましくは、0.11以上、より好ましくは、0.15以上であり、例えば、0.25以下、好ましくは、0.20以下である。上記した絶対値(|R1-R2|)が、上記した上限以下であれば、光半導体素子15(図2F参照)から発光された光を、貼着層2において散乱させ、光半導体装置21が均一に発光することができる。
 フィラーの平均粒子径は、例えば、1.0μm以上、好ましくは、2.0μm以上、より好ましくは、4.0μm以上であり、また、例えば、30μm以下、好ましくは、25μm以下、より好ましくは、10μm以下である。平均粒子径は、粒度分布測定装置により測定される。
 また、フィラーは、樹脂の使用量を低減させて、低コスト化させる目的や、また、完全硬化(キュア)後の硬度を上げる目的にも用いられる。フィラーがそのような目的に用いられる場合において、フィラーに散乱性を持たせず透明性を保持することが好ましく、その場合には、フィラーの屈折率R2は、樹脂の屈折率R1との差の絶対値(|R1-R2|)が、例えば、0.05以下、好ましくは、0.03未満となるように設定される。
 この場合のフィラーの粒子径は、例えば、1nm以上、好ましくは、5nm以上であり、また、例えば、30μm以下、好ましくは、10μm以下、より好ましくは、5μm以下、さらに好ましくは、0.1μm以下である。
 フィラーの含有割合は、貼着組成物に対して、例えば、1質量%以上、好ましくは、5質量%以上、より好ましくは、10質量%以上であり、また、例えば、80質量%以下、好ましくは、50質量%以下、より好ましくは、30質量%以下である。具体的には、無機粒子の含有割合は、貼着組成物に対して、例えば、1質量%以上、好ましくは、5質量%以上、より好ましくは、10質量%以上であり、また、例えば、80質量%以下、好ましくは、50質量%以下、より好ましくは、30質量%以下である。有機粒子の含有割合は、貼着組成物に対して、例えば、1質量%以上、好ましくは、5質量%以上、より好ましくは、10質量%以上であり、また、例えば、80質量%以下、好ましくは、50質量%以下、より好ましくは、30質量%以下である。
 また、フィラーの樹脂100重量部に対する配合割合は、例えば、2質量部以上、好ましくは、5質量部以上であり、また、例えば、200質量部以下、好ましくは、100質量部以下である。
 貼着層2を調製するには、例えば、上記した樹脂と、必要により配合されるフィラーおよび蛍光体とを配合して、貼着組成物のワニスを調製し、続いて、それを、剥離シート3の上面に塗布する。次いで、貼着組成物が熱硬化性樹脂を含有する場合には、貼着組成物を、Bステージ化する。具体的には、貼着組成物を、加熱(ベイク)する。
 加熱(ベイク)条件は、貼着層2において動的粘弾性測定における貯蔵剪断弾性率G’が所望の範囲となるように、適宜設定される。
 つまり、加熱温度は、貼着組成物における熱硬化性樹脂組成物の組成によって適宜設定され、具体的には、例えば、50℃以上、好ましくは、70℃以上であり、また、例えば、120℃以下、好ましくは、100℃以下である。加熱温度が上記下限以上、および/または、加熱温度が上記上限以下であれば、上記した貯蔵剪断弾性率G’の極小値を所望の範囲に設定することができる。
 加熱時間は、例えば、2.5分以上、好ましくは、5.5分以上であり、また、例えば、4時間以下、好ましくは、1時間以下である。加熱時間が上記下限以上、および/または、上記上限以下であれば、上記した貯蔵剪断弾性率G’の極小値を所望の範囲に設定することができる。
 これにより、貼着層2が調製される。
 貼着層2の厚みは、例えば、40μm以上、好ましくは、50μm以上であり、また、例えば、500μm以下、好ましくは、300μm以下である。
 1-1.貼着層の物性
 (1) 動的粘弾性
 このような貼着層2を、周波数1Hzおよび昇温速度20℃/分の条件で動的粘弾性測定することにより得られる貯蔵剪断弾性率G’と温度Tとの関係を示す曲線は、図6が参照されるように、極小値を有する。
 なお、図6の比較例Iで示される曲線のように、極小値を複数有する場合には、極小値とは、貯蔵剪断弾性率G’が最も低い値に位置する極小値を意味する。
 そして、そのような極小値における温度Tが、40℃以上、200℃以下の範囲にあり、上記した極小値における貯蔵剪断弾性率G’が、1,000Pa以上、90,000Pa以下の範囲にある。
 極小値における温度Tが40℃未満であれば、次に説明する熱プレス工程における40℃以上の熱プレスにおいて、粘度が過度に上昇するため、貼着層2の光半導体素子15(図2B参照)に対する密着力が低下する不具合がある。
 極小値における温度Tが200℃超過であれば、次に説明する熱プレス工程における200℃以下の熱プレスにおいて、貼着層2の粘度が十分に下降しないので、貼着層2の半導体素子15(図2B参照)に対する密着力が低下する不具合がある。
 極小値における貯蔵剪断弾性率G’が、1,000Pa未満であれば、次に説明する熱プレス工程において、貼着層2の厚みが不均一になり、そのため、得られる貼着光半導体素子11(図2D参照)および光半導体装置21(図2E参照)の色均一性が低下する不具合がある。
 極小値における貯蔵剪断弾性率G’が、90,000Pa超過であれば、次に説明する熱プレス工程において、貼着層2の粘度が十分に下降しないので、貼着層2の半導体素子15(図2B参照)に対する密着力が低下する不具合がある。
 また、極小値における温度Tが、40℃以上、200℃以下の範囲にあり、上記した極小値における貯蔵剪断弾性率G’は、好ましくは、10,000Pa以上、より好ましくは、20,000Pa以上、さらに好ましくは、30,000Pa以上であり、また、好ましくは、70,000Pa以下の範囲にある。
 極小値における貯蔵剪断弾性率G’が上記した下限以上であれば、次に説明する熱プレス工程において、貼着層2のしわを防止して、貼着層2の厚みが均一となり、得られる貼着光半導体素子11および光半導体装置21(図2E参照)の色均一性が優れる。
 極小値における貯蔵剪断弾性率G’が上記した上限以下であれば、次に説明する熱プレス工程において、貼着層2の粘度が十分に下降し、そのため、貼着層2の半導体素子15(図2B参照)に対する密着力および/または埋め込み性に優れる。
 また、LOG10(25℃の貯蔵剪断弾性率G’)-LOG10(貯蔵剪断弾性率G’の極小値)は、例えば、0.20以上、好ましくは、0.23以上であり、また、例えば、1.50以下、好ましくは、1.00以下、より好ましくは、0.50以下である。
 「LOG10(25℃の貯蔵剪断弾性率G’)-LOG10(貯蔵剪断弾性率G’の極小値)」は、図6に示され、貯蔵剪断弾性率G’が対数で現される曲線において、25℃における貯蔵剪断弾性率G’と、貯蔵剪断弾性率G’の極小値との間の長さを意味する。
 「LOG10(25℃の貯蔵剪断弾性率G’)-LOG10(貯蔵剪断弾性率G’の極小値)」が上記上限以下、および/または、上記下限以上であれば、貼着層2が優れた密着力で光半導体素子15に貼着できながら、光半導体素子15に貼着した貼着層2の厚みを均一にすることができる。
 (2) 圧縮弾性率
 貼着層2の25℃における圧縮弾性率は、例えば、1.0MPa以上、好ましくは、5.0MPa以上、より好ましくは、10.0MPa以上であり、また、例えば、50MPa以下、好ましくは、25MPa以下である。
 (3) トルエン可溶分
 貼着層2に含有される樹脂のトルエン可溶分は、例えば、5質量%以上、好ましくは、10質量%以上、より好ましくは、25質量%以上であり、また、例えば、80質量%以下、好ましくは、60質量%以下、より好ましくは、50質量%以下である。
 樹脂のトルエン可溶分が上記上限以下、および/または、上記下限以上であれば、貯蔵剪断弾性率G’の極小値を所望の範囲に設定でき、それによって、貼着層2が優れた密着力で光半導体素子15に貼着できながら、光半導体素子15に貼着した貼着層2の厚みを均一にすることができる。
 樹脂のトルエン可溶分は、下記式により算出される。
 樹脂のトルエン可溶分(質量%)=トルエン可溶分の質量/樹脂の質量×100
 樹脂のトルエン可溶分は、貼着層2を用いて測定される。そのため、貼着層2における貼着組成物が蛍光体および/またはフィラーを含有する場合には、下記の手順(1)~(6)に従って、蛍光体およびフィラーの質量を差し引いて、樹脂のトルエン可溶分を算出する。
 手順(1):樹脂組成物シートの断面SEM観察を行い、蛍光体およびフィラーの有無、および、フィラーの種類(無機粒子および有機粒子のいずれか)を確認する。
  (1-1)無機粒子が確認された場合は、貼着層2を焼成して、残渣として無機粒子の質量を測定する。 
  (1-2)有機粒子が確認された場合は、有機粒子の断面SEMの体積分率に有機粒子の一般的な密度1.25g/cmを乗じて有機粒子の質量を算出する。
 手順(2):貼着層2を精秤して、PTFEシートに包み、25℃で、トルエンで24時間浸漬、振とうさせる。
 手順(3):トルエン不溶分を分離し、乾燥によりトルエンを除去した後、トルエン不溶分の質量を測定する。
 手順(4):精秤した試料質量からトルエン不溶分の質量を差し引くことにより、トルエン可溶分の質量を算出する。
 手順(5):仕込みの貼着層2の質量から、蛍光体およびフィラーの質量を差し引いて、樹脂の質量を算出する。
 手順(6):下記式により、トルエン可溶分を算出する。
  トルエン可溶分(質量%)=トルエン可溶分の質量/樹脂の質量×100
 なお、貼着組成物が、トルエンに可溶な有機粒子を含有する場合は、試料質量からトルエン不溶分の質量および有機粒子の質量を差し引くことにより、樹脂におけるトルエン可溶分の質量を算出する。
 (4) アルケニル基およびヒドロシリル基の含量
 樹脂が、付加反応硬化型シリコーン樹脂組成物を含有する場合には、貼着層2におけるアルケニル基(具体的には、ビニル基:CH=CH-基)の貼着層2における含量は、例えば、4.3%以上であり、また、例えば、20%以下、好ましくは、7.5%以下である。また、ヒドロシリル基(H-Si基)の貼着層2における含量は、例えば、2%以上、好ましくは、5%以上、より好ましくは、10%以上であり、また、例えば、30%以下、好ましくは、15%以下である。
 アルケニル基および/またはヒドロシリル基の含量が、上記下限以上、および/または、上記上限以下であれば、貼着層2の厚みが均一となり、また、貼着層2の半導体素子15に対する密着力に優れる。
 上記したビニル基およびヒドロシリル基の算出方法は、後述する実施例において、詳述される。
 1-2.剥離シート
 剥離シート3は、図1に示すように、貼着層2によって光半導体素子15に対して貼着するまでの間、貼着層2を保護するために、貼着層2の裏面(図1における下面)に剥離可能に貼着されている。剥離シート3は、可撓性フィルムからなる。また、剥離シート3の貼着面、つまり、貼着層2に対する接触面は、必要によりフッ素処理などの剥離処理されている。
 剥離シート3としては、例えば、ポリエチレンフィルム、ポリエステルフィルム(PETなど)などのポリマーフィルム、例えば、セラミクスシート、例えば、金属箔などが挙げられる。剥離シート3は、平面視略矩形状(短冊状、長尺状を含む)などを有している。剥離シート3の厚みは、例えば、1μm以上、好ましくは、10μm以上であり、また、例えば、2,000μm以下、好ましくは、1,000μm以下である。
 1-3.貼着シートの製造
 貼着シート1を得るには、まず、剥離シート3および上記した貼着組成物のワニスをそれぞれ用意する。続いて、剥離シート3の上面に、貼着組成物のワニスを塗布する。その後、貼着組成物が、熱硬化性樹脂を含有する場合には、貼着組成物を加熱によりBステージ化する。
 これによって、貼着層2と、貼着層2の下面全面に配置される剥離シート3とを備える貼着シート1を得る。
 貼着シート1の厚みは、例えば、90μm以上、好ましくは、100μm以上であり、また、例えば、550μm以下、好ましくは、350μm以下である。
 2.貼着光半導体素子および光半導体装置の製造方法
  <本発明の貼着光半導体素子および光半導体装置の製造方法の第1実施形態>
 本発明の貼着光半導体素子および光半導体装置の製造方法の第1実施形態を順次説明する。
 すなわち、第1実施形態として、上記した貼着シート1を用いて、貼着光半導体素子11および光半導体装置21を製造する方法を説明する。
 2-1.貼着光半導体素子の製造方法
 図1および図2A~図2Dに示すように、貼着光半導体素子11の製造方法は、貼着シート1を用意するシート用意工程(図1参照)、光半導体素子15を用意する素子用意工程(図2A参照)、および、貼着シート1を光半導体素子15に対して直接的に熱プレスする熱プレス工程(図2B参照)を備える。さらに、貼着光半導体素子11の製造方法は、光半導体素子15を個片化する個片化工程(図2Dの1点破線参照)、および、貼着光半導体素子11を基材12から剥離する剥離工程(図2Dの矢印および仮想線参照)を備える。以下、各工程について順次説明する。
 (1)シート用意工程
 シート用意工程では、図1に示すように、上記の「1.貼着シート」欄で記載したように、貼着シート1を用意する。
 (2)素子用意工程
 素子用意工程では、図2Aに示すように、基材12に配置される光半導体素子15を用意する。
 具体的には、まず、基材12に仮固定され、光半導体素子15を備える封止光半導体素子25を用意する。
 基材12は、支持板13と、支持板13の上面に配置される粘着シート14とを備えている。
 支持板13は、上記した剥離シート3と同様の材料から形成されている。また、支持板13は、ガラス、シリコンウエハなどの無機材料から形成されていてもよい。支持板13の厚みは、例えば、10μm以上、好ましくは、50μm以上であり、また、例えば、1,200μm以下、好ましくは、1,000μm以下である。
 粘着シート14は、例えば、加熱および/または紫外線照射により、後で詳述する封止光半導体素子25が容易に剥離できるシート(すなわち、封止光半導体素子25を仮固定できる仮固定シート)から形成されている。粘着シート14の厚みは、例えば、10μm以上、好ましくは、15μm以上であり、また、例えば、300μm以下、好ましくは、250μm以下である。
 基材12は、支持板13の表面に、粘着シート14を配置することにより得られる。基材12の厚みは、例えば、200μm以上、好ましくは、300μm以上であり、また、例えば、5,000μm以下、好ましくは、4,000μm以下である。
 封止光半導体素子25は、図3Eに示すように、光半導体素子15と、封止層24とを備える。
 光半導体素子15は、例えば、電気エネルギーを光エネルギーに変換するLEDやLDである。好ましくは、光半導体素子15は、青色光を発光する青色LED(発光ダイオード素子)である。一方、光半導体素子15は、光半導体素子とは技術分野が異なるトランジスタなどの整流器を含まない。
 光半導体素子15は、前後方向および左右方向に沿う略平板形状を有している。光半導体素子15は、電極側面17と、対向面としての露出面18と、周側面19とを有している。
 電極側面17は、図3Eに示す光半導体素子15における上面(図2Aに示す光半導体素子15における下面)である。電極側面17には、電極22が設けられている。電極22は、電極側面17から上側に突出する形状を有している。
 露出面18は、図3Eに示す光半導体素子15における下面(図2Aに示す光半導体素子15における上面)であって、電極側面17に対して下側に間隔を隔てて対向配置されている。
 周側面19は、電極側面17の周端縁と、露出面18の周端縁とを連結している。
 光半導体素子15の寸法は、適宜設定されており、具体的には、厚み(高さ)が、例えば、0.1μm以上、好ましくは、0.2μm以上であり、また、例えば、500μm以下、好ましくは、200μm以下である。また、光半導体素子15を厚み方向に投影したときの投影面積(すなわち、露出面18の面積)は、例えば、0.01mm以上、好ましくは、0.02mm以上であり、また、例えば、4mm以下、好ましくは、3mm以下である。
 封止層24は、図2Aに示すように、基材12の上において、光半導体素子15の電極側面17および周側面19を被覆している。これによって、封止層24は、電極側面17および周側面19を封止している。一方、封止層24は、光半導体素子15の露出面18を露出している。
 また、封止層24は、図2Aにおける電極22の周側面を被覆している。図3Eに示す封止層24は、電極22の上面を露出している。
 封止層24は、例えば、特開2012-175068号公報などに記載される封止樹脂組成物から形成されている。
 封止光半導体素子25は、特開2012-175068号公報の記載に準拠して得られる。
 具体的には、まず、図3Aに示すように、電極22が設けられた光半導体素子15を複数用意する。
 次いで、図3Bに示すように、複数の光半導体素子15を、仮固定基材23に仮固定する。
 仮固定基材23は、上記した図2Aに示す基材12と同様に構成されており、具体的には、支持板13および粘着シート14を備える。
 具体的には、複数の光半導体素子15の露出面18を、粘着シート14の上面に接触させる。
 次いで、図3Cに示すように、封止樹脂組成物を、電極22を含む複数の光半導体素子15を被覆するように、基材12の上に塗布して、その後、封止樹脂組成物が熱硬化性樹脂を含有する場合には、封止樹脂組成物を、加熱により硬化させる。
 これによって、封止層24を、電極22および光半導体素子15を埋設するように、基材12の上に配置する。
 なお、上記した塗布に代えて、圧縮成形によって、封止樹脂組成物からなる封止層24を、電極22および光半導体素子15を埋設するように、基材12の上に配置することができる。あるいは、封止樹脂組成物からなる封止シートによって、電極22および光半導体素子15を埋設して、封止層24を基材12の上に配置することもできる。
 次いで、図3Dに示すように、封止層24の上側部分を、電極22の上面が露出するように、例えば、グラインド加工などによって、除去する。
 これによって、上面が露出する電極22が設けられた光半導体素子15と、光半導体素子15の電極側面17および周側面19を被覆する封止層24とを備える封止光半導体素子25を、仮固定基材23によって仮固定された状態で、得る。
 その後、図3Eに示すように、封止光半導体素子25を、基材12から引き剥がす。
 具体的には、光半導体素子15の露出面18と、封止層24の下面(露出面18と面一に形成される封止層24の下面)とを、粘着シート14の上面から引き剥がす。
 これによって、光半導体素子15の露出面18、および、電極22の上面が封止層24から露出する封止光半導体素子25を得る。
 続いて、図2Aに示すように、図3Eに示す封止光半導体素子25を上下反転させて、封止光半導体素子25の下面を、基材12に配置する。具体的には、電極22の下面、および、電極22から露出する封止層24の下面を、粘着シート14の上面に仮固定する。
 (3)熱プレス工程
 熱プレス工程は、「(1)シート用意工程」および「(2)素子用意工程」の後に、実施される。
 熱プレス工程では、まず、図1に示す貼着シート1を上下反転させて、続いて、図2Bに示すように、その貼着シート1を、基材12に仮固定された封止光半導体素子25の上面に直接的に配置する。具体的には、貼着層2を、光半導体素子15の露出面18、および、封止層24の上面(露出面18と面一に形成されている上面)に直接的に載置する。
 続いて、封止光半導体素子25および貼着シート1をプレス機40にセットする。
 プレス機40は、熱源を備える熱プレス機であって、第1板としての下板41と、下板41の上側に配置され、下板41に対して下側に熱プレス可能に構成される第2板としての上板42とを備える。
 熱プレス条件は、貼着層2における貼着組成物が可塑化し、続いて、貼着組成物の硬化がわずかに進行する条件に適宜設定される。
 具体的には、熱プレスの温度は、40℃以上、好ましくは、45℃以上であり、また、200℃以下、好ましくは、180℃以下、より好ましくは、150℃以下である。
 熱プレスの圧力は、例えば、0.01MPa以上、好ましくは、0.10MPa以上であり、また、例えば、10.00MPa以下、好ましくは、5.00MPa以下、より好ましくは、3.00MPa以下である。熱プレスの圧力が上記上限以下であれば、熱プレス工程後における貼着層2の厚みを均一にすることができる。熱プレスの圧力が上記下限以上であれば、熱プレス工程後における貼着層2の封止光半導体素子25に対する良好な密着性を確保することができる。
 とりわけ、上記した極小値における温度Tが、40℃以上、200℃以下の範囲にあり、上記した極小値における貯蔵剪断弾性率G’は、10,000Pa以上、50,000Pa以下の範囲にある場合において、熱プレスの圧力を比較的高く設定することができ、具体的には、0.10MPa以上、とりわけ、0.50MPa以上、さらに、1.00MPa以上、さらには、2.00MPa以上で、例えば、10.00MPa以下に設定することができる。
 熱プレスの時間は、例えば、1秒以上、好ましくは、3秒以上であり、また、例えば、10分以下、好ましくは、5分以下である。
 また、熱プレスは、複数回実施することができる。
 上記した熱プレスによって、貼着層2は、まず、樹脂が可塑化することに基づいて、封止光半導体素子25の上面(光半導体素子15の露出面18、および、封止層24の上面)に直接的に貼着する。続いて、貼着層2は、樹脂がわずかに硬化することに基づいて、封止光半導体素子25の上面に対して、強固に密着する。
 熱プレス後の貼着層2のガラス板に対する密着力は、例えば、0.10N/8.5mm以上、好ましくは、0.20N/8.5mm以上、より好ましくは、0.30N/8.5mm以上、さらに好ましくは、0.40N/8.5mm以上、とりわけ好ましくは、0.50N/8.5mm以上であり、また、例えば、10.00N/8.5mm以下である。
 密着力が上記下限以上であれば、貼着層2および封止光半導体素子25の良好な密着力を確保することができる。
 熱プレス後の貼着層2のガラス板に対する密着力の測定方法は、後述する実施例において、詳述される。
 また、熱プレスでは、スペーサ30(図2Bの仮想線参照)を使用しない。
 続いて、図2Cに示すように、剥離シート3を貼着層2から剥離する。
 その後、封止光半導体素子25、貼着層2および基材12を、例えば、オーブンなどによって、加熱する。貼着組成物が熱硬化性樹脂を含有する場合には、熱硬化性樹脂が完全硬化(Cステージ化)する。
 加熱温度は、例えば、100℃以上、好ましくは、120℃以上であり、また、例えば、200℃以下、好ましくは、160℃以下である。また、加熱時間が、例えば、10分以上、好ましくは、30分以上であり、また、例えば、480分以下、好ましくは、300分以下である。
 なお、加熱を、異なる温度で複数回実施することもできる。
 これによって、樹脂が熱硬化性樹脂である場合には、熱硬化性樹脂を硬化(Cステージ化)させる。これによって、熱硬化性樹脂を完全に反応させて生成物を生成する。
 (生成物)
 シリコーン樹脂組成物の反応(Cステージ化反応)では、アルケニル基含有ポリシロキサンのアルケニル基および/またはシクロアルケニル基と、ヒドロシリル基含有ポリシロキサンのヒドロシリル基とのヒドロシリル付加反応がさらに促進される。その後、アルケニル基および/またはシクロアルケニル基、あるいは、ヒドロシリル基含有ポリシロキサンのヒドロシリル基が消失して、ヒドロシリル付加反応が完結することによって、Cステージのシリコーン樹脂組成物、つまり、生成物(あるいは硬化物)が得られる。つまり、ヒドロシリル付加反応の完結により、シリコーン樹脂組成物において、硬化性(具体的には、熱硬化性)が発現する。
 上記した生成物は、下記平均組成式(3)で示される。
 平均組成式(3):
 R SiO(4-e)/2
(式中、Rは、フェニル基を含む、非置換または置換の炭素数1~10の1価の炭化水素基(ただし、アルケニル基およびシクロアルケニル基を除く。)を示す。eは、1.0以上、3.0以下である。)
 Rで示される非置換または置換の炭素数1~10の1価の炭化水素基としては、式(1)のRで示される非置換または置換の炭素数1~10の1価の炭化水素基、および、式(2)のRで示される非置換または置換の炭素数1~10の1価の炭化水素基と同一のものが例示される。好ましくは、非置換の1価の炭化水素基、より好ましくは、炭素数1~10のアルキル基、炭素数6~10のアリール基が挙げられ、さらに好ましくは、フェニル基およびメチル基の併用が挙げられる。
 そして、生成物の平均組成式(3)のRにおけるフェニル基の含有割合は、例えば、30モル%以上、好ましくは、35モル%以上であり、また、例えば、55モル%以下、好ましくは、50モル%以下である。
 生成物の平均組成式(3)のRにおけるフェニル基の含有割合は、生成物のケイ素原子に直接結合する1価の炭化水素基(平均組成式(3)においてRで示される)におけるフェニル基濃度である。
 生成物の平均組成式(3)のRにおけるフェニル基の含有割合は、H-NMRおよび29Si-NMRにより算出される。Rにおけるフェニル基の含有割合の算出方法の詳細は、例えば、WO2011/125463などの記載に基づいて、H-NMRおよび29Si-NMRにより算出される。
 これによって、貼着層2が封止光半導体素子25の上面に対して接着する。
 そして、封止光半導体素子25と、封止光半導体素子25の上面に貼着する貼着層2とを備える貼着光半導体素子11が、封止層24および電極22が基材12によって支持された状態で、得られる。
 この貼着光半導体素子11は、基材12が設けられた状態で、流通することができる。
 (4)個片化工程
 個片化工程は、「(3)熱プレス工程」の後に、実施される。個片化工程では、図2Dの1点破線で示すように、隣接する光半導体素子15間における封止層24および貼着層2を、ダイシングなどによって切断する。これによって、光半導体素子15を個片化する。
 これによって、1つの光半導体素子15と、封止層24と、貼着層2とを備える貼着光半導体素子11が、基材12に支持された状態で、得られる。
 (5)剥離工程
 剥離工程は、「(4)個片化工程」の後に、実施される。剥離工程では、図2Dの矢印および仮想線で示すように、貼着光半導体素子11を基材12から引き剥がす。具体的には、電極22の下面および封止層24の下面を、粘着シート14の上面から引き剥がす。
 これによって、光半導体素子15と、封止層24と、貼着層2とを備える貼着光半導体素子11が得られる。
 貼着光半導体素子11は、光半導体装置21(図2E参照)ではなく、つまり、光半導体装置21に備えられる基板16を含まない。つまり、貼着光半導体素子11は、電極22が、光半導体装置21の基板16に設けられる端子(図示せず)とまだ電気的に接続されないように、構成されている。また、貼着光半導体素子11は、光半導体装置21の一部品、すなわち、光半導体装置21を作製するための部品であり、部品単独で流通し、産業上利用可能なデバイスである。
 貼着光半導体素子11は、好ましくは、光半導体素子15と、封止層24と、封止層24とのみからなる。
 3.光半導体装置の製造方法
 図2Eに示すように、光半導体装置の製造方法では、「貼着光半導体素子の製造方法」により得られる貼着光半導体素子11を、基板16に実装する。
 基板16は、略平板形状を有し、例えば、絶縁基板である。また、基板16は、上面に配置される端子(図示せず)を備えている。
 貼着光半導体素子11を基板16に実装するには、貼着光半導体素子11における電極22を、基板16の端子(図示せず)と接触させて、電気的に接続させる。つまり、貼着光半導体素子11の光半導体素子15を基板16に対してフリップチップ実装する。
 これとともに、封止層24の下面を、基板16の上面に接触させる。
 これにより、基板16と、基板16に実装される貼着光半導体素子11とを備える光半導体装置21を得る。好ましくは、光半導体装置21は、基板16と、貼着光半導体素子11とのみからなる。つまり、光半導体装置21は、剥離シート3および/または基材12を含まず、好ましくは、基板16と、光半導体素子15と、封止層24とのみからなる。
 4.作用効果
 この貼着シート1は、図2Bに示す熱プレス工程において、40℃以上、200℃以下の範囲で、光半導体素子15に直接的に貼着するように使用するときに、貼着層2を、動的粘弾性測定することにより得られる貯蔵剪断弾性率G’と温度Tとの関係を示す曲線における極小値における温度Tが、図6が参照されるように、40℃以上、200℃以下の範囲にあり、上記した極小値における貯蔵剪断弾性率G’が、1,000Pa以上、90,000Pa以下の範囲にあるので、貼着層2が、優れた密着力で光半導体素子15に直接的に貼着できながら、光半導体素子15に直接的に貼着した貼着層2の厚みを均一にすることができる。そのため、信頼性および色均一性に優れた貼着光半導体素子11および光半導体装置21を得ることができる。
 また、この貼着シート1では、貼着層2が、蛍光体を含有する場合には、貼着層2によって、光半導体素子15から発光される光を波長変換して、所望の色を発光できる貼着光半導体素子11および光半導体装置21を得ることができる。
 また、この貼着シート1では、貼着層2が、熱硬化性樹脂を含有する場合には、貼着シート1を熱硬化(完全硬化)させることにより、貼着層2を光半導体素子15および封止層24に対して接着することができる。
 また、この貼着シート1は、剥離シート3をさらに備えるので、図1に示す貼着層2の下面を保護することができる。
 この貼着光半導体素子11の製造方法において、図2Bに示す熱プレス工程では、貼着シート1を、40℃以上、200℃以下の温度で、光半導体素子15および封止層24を備える封止光半導体素子25に対して熱プレスするので、優れた密着力で封止光半導体素子25に直接的に貼着できながら、貼着層2の厚みを均一にすることができる。そのため、信頼性および色均一性に優れた貼着光半導体素子11を製造することができる。
 また、この貼着光半導体素子11の製造方法では、熱プレス工程における圧力が、3.00MPa以下であれば、小さく、安価なプレス機40を使用できる。
 この貼着光半導体素子11の製造方法では、図2に示すように、素子用意工程では、電極側面17および周側面19が、封止層24によって被覆され、露出面18が、封止層24から露出する光半導体素子15を用意するので、光半導体素子15を、ウエハレベルパッケージとして用意することができる。そして、図2Bに示すように、熱プレス工程では、貼着シート1を、ウエハレベルパッケージにおける光半導体素子15の露出面18と、封止層24の上面とに対して直接的に熱プレスするので、ウエハレベルパッケージの光半導体素子15および封止層24に貼着シート1を簡便に貼着することができる。
 この光半導体装置21の製造方法によれば、上記した貼着光半導体素子11の製造方法により、貼着光半導体素子11を得、図2Eに示すように、貼着光半導体素子11を基板16に実装するので、信頼性および色均一性に優れた光半導体装置21を製造することができる。
 5.変形例
 第1実施形態では、図2Aに示すように、光半導体素子15の電極側面17および周側面19の両面を、封止層24によって封止している。しかし、光半導体素子15の少なくとも周側面19を封止層24によって封止すればよく、例えば、図示しないが、光半導体素子15の電極側面17を被覆せず、光半導体素子15の周側面19のみを封止層24によって封止することもできる。
 第1実施形態では、貼着層2を、光半導体素子15に直接的に貼着するように使用している。しかし、図示しないが、貼着層2を、光半導体素子15に間接的に貼着するように使用することもできる。
 つまり、図示しないが、図2Aが参照されるように、基材12に仮固定された複数の光半導体素子15における少なくとも露出面18(具体的には、露出面18および周側面19、または、電極側面17、露出面18および周側面19、)が封止層24によって被覆された貼着光半導体素子11を用意する。
 熱プレス工程では、貼着層2を、貼着光半導体素子11の封止層24の上面に直接的に貼着する。つまり、貼着層2を、光半導体素子15に対して間接的に貼着する。すなわち、貼着層2を、光半導体素子15に対して、露出面18の上側に位置する封止層24を介して、貼着する。
 その後、貼着シート1を、封止層24に対して熱プレスする。
 この変形例によれば、素子用意工程では、露出面18、電極側面17および周側面19が、封止層24によって被覆された光半導体素子15を用意するので、そのような光半導体素子15を、封止光半導体素子25として用意することができる。そして、熱プレス工程では、貼着シート1を、封止光半導体素子25における封止層24に対して熱プレスするので、封止光半導体素子25における光半導体素子15に貼着層2を簡便に貼着することができる。
 第1実施形態では、図2Dの1点破線で示すように、個片化工程を実施しているが、図示しないが、例えば、個片化工程を実施することなく、つまり、貼着層2および封止層24を切断せずに、複数の光半導体素子15を備える貼着光半導体素子11を得ることもできる。
 また、第1実施形態では、図3Eに示すように、封止光半導体素子25における光半導体素子15を個片化せずに、複数の光半導体素子15を備える封止光半導体素子25として用意している。しかし、図示しないが、例えば、光半導体素子15を個片化するように、封止層24を切断して、1つの光半導体素子15を備える封止光半導体素子25を用意することもできる。
 第1実施形態の熱プレス工程では、スペーサ30を使用していないが、図2Bの仮想線で示すように、上板42と下板41との間に、熱プレス時におけるそれらの間隔を調整するためのスペーサ30を用いることもできる。
 スペーサ30は、下板41の上に載置されており、平面視において、貼着シート1および基材12を囲む略枠形状に形成されている。スペーサ30の厚みは、熱プレス時における貼着光半導体素子11と基材12との合計厚みとなるように設定されている。
 好ましくは、スペーサ30を使用せずに、熱プレス工程を実施する。
 スペーサ30を使用しない場合には、簡易な構成のプレス機40によって、簡便に熱プレス工程を実施することができる。
  <本発明の貼着光半導体素子および光半導体装置の製造方法の第2実施形態>
 第2実施形態において、上記した第1実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。
 なお、図4A以降の図面において、図2Aに示した電極22を、光半導体素子15における露出面18および電極側面17を明確に示すため、省略している。
 第1実施形態では、図2Aに示すように、光半導体素子15を、封止層24によって封止され、封止光半導体素子25に備えられるように、基材12に仮固定して用意している。しかし、第2実施形態では、図4Aに示すように、光半導体素子15を、封止層24によって封止されずに、基材12に仮固定して用意することもできる。
 すなわち、第2実施形態における素子用意工程では、図4Aに示すように、複数の光半導体素子15を、基材12の上に、互いに間隔を隔てて整列配置する。具体的には、複数の光半導体素子15の電極側面17を、粘着シート14の上面に仮固定する。
 次いで、図4Bに示すように、貼着シート1を、複数の封止光半導体素子25の上面に配置する。
 このとき、貼着層2と、粘着シート14との間には、それらを上下方向(厚み方向)に隔てる空間が形成されている。上記した空間において、複数の光半導体素子15が、左右方向および前後方向に互いに間隔を隔てて整列配置されている。
 続いて、光半導体素子15および貼着シート1をプレス機40にセットし、続いて、熱プレスを実施する。
 熱プレスにおいても、貼着層2は、その形状が、実質的に保形される。すなわち、貼着層2の外形形状が実質的に維持されている。あるいは、貼着層2が、隣接する封止光半導体素子25間の空間を充填することが抑制されている。なお、貼着層2は、光半導体素子15の直上における部分の厚みが均一に維持されれば、上記した空間の上部に落ち込むことが許容される。
 続いて、図4Cに示すように、剥離シート3を貼着層2から剥離する。
 その後、光半導体素子15、貼着層2および基材12を、加熱する。貼着組成物が熱硬化性樹脂を含有する場合には、熱硬化性樹脂が完全硬化(Cステージ化)する。これによって、貼着層2が光半導体素子15の上面に対して接着する。
 これによって、光半導体素子15と、光半導体素子15の上面に貼着する貼着層2とを備える貼着光半導体素子11が、基材12によって支持された状態で、得られる。
 その後、個片化工程では、図4Dの1点破線で示すように、隣接する光半導体素子15間における貼着層2を切断して、光半導体素子15を個片化する。これによって、1つの光半導体素子15と、貼着層2とを備える貼着光半導体素子11が、基材12に支持された状態で得られる。
 その後、剥離工程では、図4Dの矢印および仮想線で示すように、貼着光半導体素子11を基材12から引き剥がす。
 これによって、光半導体素子15と、貼着層2とを備える貼着光半導体素子11が得られる。貼着光半導体素子11は、封止層24を備えていない。つまり、貼着光半導体素子11は、好ましくは、光半導体素子15と、封止層24とのみからなる。
 その後、図4Eに示すように、上記した貼着光半導体素子11を基板16に実装して、光半導体装置21を得る。光半導体装置21は、封止層24を備えていない。
 第2実施形態によっても、第1実施形態と同様の作用効果を奏することができる。
  <本発明の貼着光半導体素子および光半導体装置の製造方法の第3実施形態>
 第3実施形態において、上記した第1実施形態および第2実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。
 第2実施形態では、図4Dに示すように、基材12の上で、貼着光半導体素子11を一旦製造した後、図4Eに示すように、貼着光半導体素子11を基材12から引き剥がして、基板16に実装している。しかし、図5Aに示すように、予め、複数の光半導体素子15を基板16に実装し、その後、図5Bに示すように、貼着シート1を複数の光半導体素子15に対して貼着して、その後、剥離シート3を貼着層2から引き剥がして、基板16と、光半導体素子15と、貼着層2とを備える光半導体装置21を得ることもできる。
 すなわち、図4Aに示す基材12を、基板16に置き換え、個片化工程および実装工程を省略することができる。つまり、図5Cに示すように、基板16の上において、貼着光半導体素子11を製造することができる。
 具体的には、まず、図5Aに示すように、光半導体素子15の電極側面17が基板16の上面と対向するように、複数の光半導体素子15を基板16に対して予めフリップチップ実装する。
 次いで、図5Bに示すように、貼着シート1を複数の光半導体素子15に対して貼着する。具体的には、まず、貼着シート1の貼着層2を、複数の光半導体素子15の露出面18に載置する。
 続いて、光半導体素子15、基板16および貼着シート1をプレス機40にセットし、続いて、熱プレスを実施する。これによって、貼着層2が光半導体素子15の露出面18に貼着する。
 続いて、図5Cに示すように、剥離シート3を貼着層2から剥離する。
 その後、光半導体素子15、基板16および貼着層2を、加熱する。貼着組成物が熱硬化性樹脂を含有する場合には、熱硬化性樹脂が完全硬化(Cステージ化)する。これによって、貼着層2が光半導体素子15の露出面18に対して接着する。
 これによって、基板16と、基板16に実装される光半導体素子15と、光半導体素子15の露出面18に貼着された貼着層2とを備える光半導体装置21が得られる。なお、光半導体素子15および貼着層2は、貼着光半導体素子11を構成する。そのため、光半導体装置21は、基板16と、貼着光半導体素子11とを備えている。
 第3実施形態によっても、第1実施形態および第2実施形態と同様の作用効果を奏することができる。
 以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。
  <アルケニル基含有ポリシロキサンおよびヒドロシリル基含有ポリシロキサンの合成>
  合成例1
 撹拌機、還流冷却管、投入口および温度計が装備された四ツ口フラスコに、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン93.2g、水140g、トリフルオロメタンスルホン酸0.38gおよびトルエン500gを投入して混合し、撹拌しつつメチルフェニルジメトキシシラン729.2gとフェニルトリメトキシシラン330.5gの混合物1時間かけて滴下し、その後、1時間加熱還流した。その後、冷却し、下層(水層)を分離して除去し、上層(トルエン溶液)を3回水洗した。水洗したトルエン溶液に水酸化カリウム0.40gを加え、水分離管から水を除去しながら還流した。水の除去完了後、さらに5時間還流し、冷却した。その後、酢酸0.6gを投入して中和した後、ろ過して得られたトルエン溶液を3回水洗した。その後、減圧濃縮することにより、液体状のアルケニル基含有ポリシロキサンAを得た。アルケニル基含有ポリシロキサンAの平均単位式および平均組成式は、以下の通りである。
 平均単位式:
((CH=CH)(CHSiO1/20.15(CHSiO2/20.60(CSiO3/20.25
 平均組成式:
(CH=CH)0.15(CH0.90(C0.85SiO1.05
 つまり、アルケニル基含有ポリシロキサンAは、Rがビニル基、Rがメチル基およびフェニル基であり、a=0.15、b=1.75である上記平均組成式(1)で示される。
 また、ゲル透過クロマトグラフィーによって、アルケニル基含有ポリシロキサンAのポリスチレン換算の重量平均分子量を測定したところ、2,300であった。
  合成例2
 撹拌機、還流冷却管、投入口および温度計が装備された四ツ口フラスコに、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン93.2g、水140g、トリフルオロメタンスルホン酸0.38gおよびトルエン500gを投入して混合し、撹拌しつつジフェニルジメトキシシラン173.4gとフェニルトリメトキシシラン300.6gの混合物1時間かけて滴下し、滴下終了後、1時間加熱還流した。その後、冷却し、下層(水層)を分離して除去し、上層(トルエン溶液)を3回水洗した。水洗したトルエン溶液に水酸化カリウム0.40gを加え、水分離管から水を除去しながら還流した。水の除去完了後、さらに5時間還流し、冷却した。酢酸0.6gを投入して中和した後、ろ過して得られたトルエン溶液を3回水洗した。その後、減圧濃縮することにより、液体状のアルケニル基含有ポリシロキサンBを得た。アルケニル基含有ポリシロキサンBの平均単位式および平均組成式は、以下の通りである。
 平均単位式:
(CH=CH(CHSiO1/20.31((CSiO2/20.22(CSiO3/20.47
 平均組成式:
(CH=CH)0.31(CH0.62(C0.91SiO1.08
 つまり、アルケニル基含有ポリシロキサンBは、Rがビニル基、Rがメチル基およびフェニル基であり、a=0.31、b=1.53である上記平均組成式(1)で示される。
 また、ゲル透過クロマトグラフィーによって、アルケニル基含有ポリシロキサンBのポリスチレン換算の重量平均分子量を測定したところ、1,000であった。
  合成例3
 撹拌機、還流冷却管、投入口および温度計が装備された四ツ口フラスコに、ジフェニルジメトキシシラン325.9g、フェニルトリメトキシシラン564.9g、およびトリフルオロメタンスルホン酸2.36gを投入して混合し、1,1,3,3-テトラメチルジシロキサン134.3gを加え、撹拌しつつ酢酸432gを30分かけて滴下した。滴下終了後、混合物を撹拌しつつ50℃に昇温して3時間反応させた。室温まで冷却した後、トルエンと水を加え、良く混合して静置し、下層(水層)を分離して除去した。その後、上層(トルエン溶液)を3回水洗した後、減圧濃縮することにより、ヒドロシリル基含有ポリシロキサンC(架橋剤C)を得た。
 ヒドロシリル基含有ポリシロキサンCの平均単位式および平均組成式は、以下の通りである。
 平均単位式:
(H(CHSiO1/20.33((CSiO2/20.22(CPhSiO3/20.45
 平均組成式:
 H0.33(CH0.66(C0.89SiO1.06
 つまり、ヒドロシリル基含有ポリシロキサンCは、Rがメチル基およびフェニル基であり、c=0.33、d=1.55である上記平均組成式(2)で示される。
 また、ゲル透過クロマトグラフィーによって、ヒドロシリル基含有ポリシロキサンCのポリスチレン換算の重量平均分子量を測定したところ、1,000であった。
  <その他の原料>
 アルケニル基含有ポリシロキサンおよびヒドロシリル基含有ポリシロキサン以外の原料について、以下に詳述する。
[その他、使用した材料]
 白金カルボニル錯体:
  商品名「SIP6829.2」、Gelest社製、白金濃度2.0質量%
 蛍光体:
  商品名「Y468」、YAG:Ce、平均粒子径17μm、ネモト・ルミマテリアル社製
 ガラス粒子:
  屈折率1.55、組成および組成比率(重量%):SiO/Al/CaO/MgO=60/20/15/5の無機粒子、屈折率1.55、平均粒子径:20μm
 アエロジル粒子:
 商品名「R976S」、屈折率1.46、平均粒子径7nm、エボニック社製
 シリコーン系樹脂粒子:
  商品名「トスパール145」、屈折率1.41、平均粒子径4.5μm、モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製
 光拡散性シリカ粒子:
  商品名「FB-3sdc」、屈折率1.45、平均粒子径3.4μm、デンカ社製
 光拡散性アクリルビーズ粒子:
  商品名「SSX-105」、屈折率1.49、平均粒子径5μm、積水化成製
  <シリコーン樹脂組成物の調製>
  調製例1
 アルケニル基含有ポリシロキサンA 20g、アルケニル基含有ポリシロキサンB 25g、ヒドロシリル基含有ポリシロキサンC 25g、白金カルボニル錯体5mgを混合させて、シリコーン樹脂組成物を調製した。シリコーン樹脂組成物の屈折率は、1.56であった。
 <貼着シートの作製>
  <シート用意工程>
  実施例A
 シリコーン樹脂組成物49.1g、蛍光体34g、シリコーン系樹脂粒子5g、ガラス粒子10g、アエロジル粒子1.9gを加えて、それらを3分間撹拌し、貼着組成物を調製した。
 次に、貼着組成物を、剥離シート(セパレータ、品名「SE-1」、厚み50μm、フジコー社製)の表面に、膜厚225μmとなるようにコンマコーターで塗布し、続いて、90℃、5.7分(5分42秒)加熱(ベイク)した。これにより、剥離シートと、貼着層とを備える貼着シートAを得た(図1参照)。
  実施例B
 加熱(ベイク)条件を、90℃、6.7分(6分42秒)に変更した以外は、実施例Aと同様に処理して、貼着シートBを得た(図1参照)。
  実施例C
 加熱(ベイク)条件を、90℃、8.0分に変更した以外は、実施例Aと同様に処理して、貼着シートCを得た(図1参照)。
  実施例D
 シリコーン樹脂組成物45.7g、蛍光体32.5g、光拡散性シリカ粒子10g、ガラス粒子10g、アエロジル粒子1.8gを加えて、それらを3分間撹拌し、貼着組成物を調製した。
 次に、貼着組成物を、剥離シート(セパレータ、品名「SE-1」、厚み50μm、フジコー社製)の表面に、膜厚225μmとなるようにコンマコーターで塗布し、続いて、90℃、8.0分加熱(ベイク)した。これにより、剥離シートと、貼着層とを備える貼着シートDを得た(図1参照)。
  実施例E
 シリコーン樹脂組成物46g、蛍光体29g、光拡散性アクリルビーズ粒子20g、ガラス粒子5gを加えて、それらを3分間撹拌し、貼着組成物を調製した。
 次に、貼着組成物を、剥離シート(セパレータ、品名「SE-1」、厚み50μm、フジコー社製)の表面に、膜厚225μmとなるようにコンマコーターで塗布し、続いて、90℃、8.0分加熱(ベイク)した。これにより、剥離シートと、貼着層とを備える貼着シートEを得た(図1参照)。
  実施例F
 加熱(ベイク)条件を、90℃、11分に変更した以外は、実施例Aと同様に処理して、貼着シートFを得た(図1参照)。
  実施例G
 加熱(ベイク)条件を、90℃、13分に変更した以外は、実施例Aと同様に処理して、貼着シートGを得た(図1参照)。
  比較例H
 加熱(ベイク)条件を、90℃、8.0分の加熱、および、その後、150℃、8時間の加熱に変更した以外は、実施例Aと同様に処理して、貼着シートHを得た(図1参照)。
  比較例I
 加熱(ベイク)条件を、90℃、5.0分に変更した以外は、実施例Aと同様に処理して、貼着シートIを得た(図1参照)。
  <貼着光半導体素子の製造>
  実施例1
  <素子用意工程>
 まず、特開2012-175068号公報の実施例3の方法に準拠して、封止層と、光半導体素子とを備える封止光半導体素子を用意した(図3E参照)。
 具体的には、まず、電極が上面に設けられた光半導体素子(1.1mm角、高さ(厚み)180μm、エピスター社製)を複数用意した(図3A参照)。次いで、支持板(ステンレスキャリア)と、支持板の上面に配置される粘着シート(「リバアルファ」、日東電工社製)とを備える仮固定基材の上に、1.64mmピッチで、前後方向に20個、左右方向に20個、整列配置した(図3B参照)。このとき、光半導体素子の下面(対向面)を粘着シートの上面に接触させた。
 次いで、封止層を、電極および光半導体素子を被覆するように、粘着層の上に形成した(図3C参照)。なお、封止層を、封止材として東レダウコーニング社製から販売される「OE-6630」から、調製した。
 続いて、封止層の上側部分を、電極の上面(露出面)が露出するように、グラインド加工した(図3D参照)。これによって、封止層と、封止層によって、周側面および上面(電極面)が被覆された封止光半導体素子を、仮固定基材に支持された状態で、得た。
 その後、封止光半導体素子を、粘着シートから引き剥がした(図3E参照)。
 そして、上記の仮固定基材と同様の構成を有する基材を別途用意し、次いで、封止光半導体素子(図3E参照)を基材に配置した(図2A参照)。具体的には、上記した封止光半導体素子における電極の露出面と、上記した露出面と面一に形成された封止層の下面を、粘着シートの上面に仮固定した。
  <熱プレス工程>
 次いで、粘着シートAを封止光半導体素子に貼着した(図2B参照)。
 具体的には、まず、粘着シートAの貼着層を、光半導体素子の上面(対向面)と、上記した上面と面一に形成されている封止層の上面とに載置し、続いて、下板と、上板とを備える平板熱プレス機によって、スペーサを使用することなく、60℃、5分間、0.48MPaの圧力で熱プレスした。
  <完全硬化工程>
 その後、剥離シートを貼着層から引き剥がし、次いで、基材、光半導体素子および貼着層を、100℃のオーブンに10分間放置し、その後、オーブンの温度を150℃に設定し、その後、8時間、放置することにより、貼着層を完全硬化させた(図2C参照)。
 その後、光半導体素子の直上に貼着された貼着シートAの厚みおよび厚みのばらつきを測定した。その結果を表1に示す。
  <個片化工程>
 次いで、隣接する光半導体素子間における封止層および貼着層を、切断して、光半導体素子を個片化した。これにより、1つの光半導体素子および1つの貼着層を備える貼着光半導体素子を、基材に支持された状態で、得た(図2Dの1点破線参照)。
  <剥離工程>
 続いて、貼着光半導体素子を基材から引き剥がした(図2Dの矢印および仮想線参照)。
  <実装工程>
 その後、貼着光半導体素子を、基板に実装した。
 具体的には、貼着光半導体素子における光半導体素子を、基板に対して、フリップチップ実装した(図2E参照)。
 これによって、基板と、貼着光半導体素子とを備える光半導体装置を得た。
  実施例2~12および比較例1および2
 表1に従って、貼着シートの種類および熱プレスの圧力を変更した以外は、実施例1と同様に処理して、貼着光半導体素子を得、続いて、光半導体装置を得た。
  <評価>
  (貯蔵剪断弾性率G’)
 実施例A~比較例Iで得られた貼着シートにおける貼着層を、下記の条件で、動的粘弾性測定した。
  [条件]
  粘弾性装置:回転式レオメータ(C-VOR装置、マルバーン社製)
  サンプル形状:円板形状
  サンプル寸法:厚み225μm、直径8mm
  歪量:10%
  周波数:1Hz
  プレート径:8mm
  プレート間ギャップ:200μm
  昇温速度20℃/分
  温度範囲:20~200℃
 貯蔵剪断弾性率G’と温度Tとの関係を示す曲線を図6に示す。
 また、貯蔵剪断弾性率G’の極小値、および、25℃における貯蔵剪断弾性率G’を表1に示す。
  (圧縮弾性率)
 実施例A~比較例Iで得られた貼着シートにおける貼着層の25℃における圧縮弾性率を、精密荷重測定機(アイコーエンジニアリング社製)により、測定した。
  (トルエン可溶分)
 実施例A~比較例Iで得られた貼着層における樹脂のトルエン可溶分を、下記の手順に従って、算出した。
 手順(1):貼着層を焼成して、残渣の質量(無機粒子の質量)を計量した。別途、貼着層の断面SEM観察において確認されたシリコーン系樹脂粒子/光散乱性アクリルビーズ粒子の体積分率(画像解析により算出)に1.25g/cm(有機粒子の一般的な密度)を乗じてシリコーン系樹脂粒子の質量を算出した。なお、後述するトルエン不溶分を光学顕微鏡観察または断面SEM観察により、有機粒子が確認されたので、有機粒子がトルエンに不溶であったと判断した。
  手順(2):貼着層1.1g(試料質量)を精秤し、これをPTFEシート(孔径0.2μm)で包み、25℃で、トルエン100gで24時間浸漬、振とうさせた。
  手順(3):トルエン不溶分を分離して採取し、これを乾燥させた後、トルエン不溶分の質量を測定した。 
  手順(4):試料質量からトルエン不溶分の質量を差し引くことにより、トルエン可溶分の質量を算出した。
  手順(5):仕込みの試料質量から、蛍光体およびフィラーの質量を差し引いて、樹脂の質量を算出した。
  手順(6):下記式により、トルエン可溶分を算出した。
  トルエン可溶分(重量%)=トルエン可溶分の重量/樹脂の重量×100
 つまり、トルエン可溶分の質量を貼着層における熱硬化性樹脂の質量(試料質量から無機粒子および有機粒子の質量を差し引いた質量)で除して得られた百分率をトルエン可溶分(質量%)として算出した。その結果を表1に示す。
 (NMR測定)
 1.CH=CH-基の含量
 実施例A~比較例Iで得られた貼着層におけるCH=CH-基(ビニル基)の含有量を個体NMR測定により算出した。具体的には、ワニスの状態での含有量を100%として計算した。その結果を表1に示す。
 2.H-Si基の含量
 実施例A~比較例Iで得られた貼着層におけるH-Si基の含有量(ヒドロシリル基)を個体NMR測定により算出した。具体的には、ワニスの状態での含有量を100%として計算した。その結果を表1に示す。
  (貼着層のガラス板に対する密着力)
 実施例1~比較例2で用いた貼着シートを、幅8.5mmで切り出し、実施例1~比較例2におけるそれぞれの熱プレス条件で厚み1mmのガラス板に真空熱プレスし、剥離シートを剥離してから100℃で10分加熱し、その後、150℃で8時間加熱して、貼着層を完全硬化(フルキュア)させて、25℃における貼着層のガラス板に対する密着力を算出した。その結果を表1に示す。その結果を表1に示す。
  (貼着光半導体素子の色度の検査)
 実施例1~比較例2で得られた光半導体装置における光半導体素子を50mAで発光させた。
 色度CIE(x,y)、および、400個の貼着光半導体素子におけるy値を表1に示す。
 (シリコーン樹脂組成物の反応により得られる生成物の炭化水素基(R)におけるフェニル基の含有割合の測定)
 シリコーン樹脂組成物(つまり、蛍光体およびフィラーが含まれていないシリコーン樹脂組成物)の反応により得られる生成物中、ケイ素原子に直接結合する炭化水素基(平均組成式(3)のR)におけるフェニル基の含有割合(モル%)を、H-NMRおよび29Si-NMRにより算出した。
 具体的には、Aステージのシリコーン樹脂組成物を、蛍光体およびフィラーを添加せずに、100℃1時間で、反応(完全硬化、Cステージ化)させて、生成物を得た。
 次いで、得られた生成物のH-NMRおよび29Si-NMRを測定することで、ケイ素原子に直接結合している炭化水素基(R)におけるフェニル基が占める割合(モル%)を算出した。
 その結果、シリコーン樹脂組成物の反応により得られる生成物の炭化水素基(R)におけるフェニル基の含有割合は、48%であった。
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
 貼着シートは、光半導体装置の製造に用いられる。
Figure JPOXMLDOC01-appb-T000001
1     貼着シート
2     貼着層
3     剥離シート
11   貼着光半導体素子
13   支持板
14   粘着シート
15   光半導体素子
16   基板
17   電極側面
18   露出面
19   周側面
21   光半導体装置
24   封止層
30   スペーサ
40   プレス機
41   下板
42   上板

Claims (12)

  1.  光半導体素子に直接的または間接的に貼着するように使用される貼着層を備える貼着シートであって、
     前記貼着層を、周波数1Hzおよび昇温速度20℃/分の条件で動的粘弾性測定することにより得られる貯蔵剪断弾性率G’と温度Tとの関係を示す曲線が、極小値を有し、
     前記極小値における温度Tが、40℃以上、200℃以下の範囲にあり、
     前記極小値における貯蔵剪断弾性率G’が、1,000Pa以上、90,000Pa以下の範囲にあることを特徴とする、貼着シート。
  2.  前記貼着層が、蛍光体を含有することを特徴とする、請求項1に記載の貼着シート。
  3.  前記貼着層が、熱硬化性樹脂を含有することを特徴とする、請求項1に記載の貼着シート。
  4.  前記貼着層が、前記熱硬化性樹脂の屈折率R1との差の絶対値が0.20以下となる屈折率R2を有するフィラーをさらに含有することを特徴とする、請求項3に記載の貼着シート。
  5.  前記貼着層の厚み方向一方面に配置される剥離シート
    をさらに備えることを特徴とする、請求項1に記載の貼着シート。
  6.  請求項1に記載の貼着シートを用意するシート用意工程、
     基材に配置される光半導体素子を用意する素子用意工程、および、
     前記貼着シートを、40℃以上、200℃以下の温度で、前記光半導体素子に対して直接的または間接的に熱プレスする熱プレス工程
    を備えることを特徴とする、貼着光半導体素子の製造方法。
  7.  前記熱プレス工程における圧力が、3.00MPa以下であることを特徴とする、請求項6に記載の貼着光半導体素子の製造方法。
  8.  前記熱プレス工程では、第1板と、前記第1板のプレス方向一方側に対向配置され、前記第1板に対して熱プレス可能に構成される第2板とを備えるプレス機により、前記第2板および前記第1板の間に、それらの間隔を調整するためのスペーサを用いずに、前記第2板が前記第1板に対して熱プレスすることを特徴とする、請求項6に記載の貼着光半導体素子の製造方法。
  9.  前記光半導体素子は、
      電極が配置される電極側面と、
      前記電極側面と対向する対向面と、
      前記電極側面と前記対向面とを連結する周側面と
    を有し、
     前記素子用意工程では、少なくとも前記周側面が、封止層によって被覆され、前記対向面が、前記封止層から露出する前記光半導体素子を用意し、
     前記熱プレス工程では、前記貼着シートを、前記対向面および前記封止層に対して熱プレスする
    ことを特徴とする、請求項6に記載の貼着光半導体素子の製造方法。
  10.  前記光半導体素子は、
      電極が配置される電極側面と、
      前記電極側面と対向する対向面と、
      前記電極側面と前記対向面とを連結する周側面と
    を有し、
     前記素子用意工程では、少なくとも前記対向面および前記周側面が、封止層によって被覆された前記光半導体素子を用意し、
     前記熱プレス工程では、前記貼着シートを、前記封止層に対して熱プレスする
    ことを特徴とする、請求項6に記載の貼着光半導体素子の製造方法。
  11.  請求項6に記載の貼着光半導体素子の製造方法により、貼着光半導体素子を得る工程を備え、
     前記基材が、支持板と、前記支持板の厚み方向一方面に配置される粘着シートとを備え、
     前記貼着光半導体素子を前記粘着シートから剥離する剥離工程、および、
     前記貼着光半導体素子を基板に実装する実装工程
    をさらに備えることを特徴とする、光半導体装置の製造方法。
  12.  請求項6に記載の貼着光半導体素子の製造方法により、貼着光半導体素子を得る工程を備え、
     前記基材が、基板であり、
     前記素子用意工程では、前記基板に実装された光半導体素子を用意することを特徴とする、光半導体装置の製造方法。
PCT/JP2016/056397 2015-03-09 2016-03-02 貼着シート、貼着光半導体素子の製造方法および光半導体装置の製造方法 WO2016143623A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015046261 2015-03-09
JP2015-046261 2015-03-09
JP2016-036321 2016-02-26
JP2016036321A JP2016171315A (ja) 2015-03-09 2016-02-26 貼着シート、貼着光半導体素子の製造方法および光半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2016143623A1 true WO2016143623A1 (ja) 2016-09-15

Family

ID=56880430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056397 WO2016143623A1 (ja) 2015-03-09 2016-03-02 貼着シート、貼着光半導体素子の製造方法および光半導体装置の製造方法

Country Status (1)

Country Link
WO (1) WO2016143623A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018101702A (ja) * 2016-12-20 2018-06-28 日亜化学工業株式会社 発光装置の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169519A (ja) * 2005-12-22 2007-07-05 Mitsubishi Plastics Ind Ltd 粘着シート
JP2011144360A (ja) * 2009-12-15 2011-07-28 Shin-Etsu Chemical Co Ltd 光半導体素子封止用樹脂組成物及び当該組成物で封止した光半導体装置
WO2013121848A1 (ja) * 2012-02-15 2013-08-22 日東電工株式会社 表面保護シート
JP2013214716A (ja) * 2012-03-06 2013-10-17 Nitto Denko Corp 蛍光封止シート、発光ダイオード装置およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169519A (ja) * 2005-12-22 2007-07-05 Mitsubishi Plastics Ind Ltd 粘着シート
JP2011144360A (ja) * 2009-12-15 2011-07-28 Shin-Etsu Chemical Co Ltd 光半導体素子封止用樹脂組成物及び当該組成物で封止した光半導体装置
WO2013121848A1 (ja) * 2012-02-15 2013-08-22 日東電工株式会社 表面保護シート
JP2013214716A (ja) * 2012-03-06 2013-10-17 Nitto Denko Corp 蛍光封止シート、発光ダイオード装置およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018101702A (ja) * 2016-12-20 2018-06-28 日亜化学工業株式会社 発光装置の製造方法

Similar Documents

Publication Publication Date Title
JP5864367B2 (ja) 蛍光接着シート、蛍光体層付発光ダイオード素子、発光ダイオード装置およびそれらの製造方法
JP5287935B2 (ja) 蛍光体含有シート、それを用いたled発光装置およびその製造方法
WO2015033824A1 (ja) 波長変換シート、封止光半導体素子および光半導体素子装置
JP2013214716A (ja) 蛍光封止シート、発光ダイオード装置およびその製造方法
JP2017163105A (ja) 光半導体素子被覆シート、密着層−被覆層付光半導体素子およびその製造方法、密着層付光半導体素子の製造方法
JP2014116587A (ja) 蛍光体含有樹脂シート、これを用いたled素子およびその製造方法
WO2015033890A1 (ja) 光半導体素子封止組成物、光半導体素子封止成形体、光半導体素子封止シート、光半導体装置および封止光半導体素子
JP2016171315A (ja) 貼着シート、貼着光半導体素子の製造方法および光半導体装置の製造方法
JP2016213451A (ja) 蛍光体層−封止層付光半導体素子の製造方法
TW202027302A (zh) 被覆有螢光體層之光半導體元件及其製造方法
JP2018041860A (ja) 波長変換シート、シート被覆素子および光半導体装置
WO2017094618A1 (ja) 樹脂組成物、そのシート状成型物、ならびにそれを用いた発光装置およびその製造方法
TW201318227A (zh) 矽氧樹脂片材、硬化片材、發光二極體裝置及其製造方法
JP2016171314A (ja) 封止シート、封止光半導体素子の製造方法および光半導体装置の製造方法
JP6018608B2 (ja) 封止シート、その製造方法、光半導体装置および封止光半導体素子
WO2016143623A1 (ja) 貼着シート、貼着光半導体素子の製造方法および光半導体装置の製造方法
WO2016143627A1 (ja) 封止シート、封止光半導体素子の製造方法および光半導体装置の製造方法
WO2016178397A1 (ja) 蛍光体層-封止層付光半導体素子の製造方法
WO2016194948A1 (ja) 蛍光体樹脂シートの製造方法
JP2017163104A (ja) 被覆層付光半導体素子およびその製造方法
JP2013136671A (ja) シリコーン樹脂シート、硬化シート、発光ダイオード装置およびその製造方法
WO2016194947A1 (ja) 蛍光体樹脂シート、貼着光半導体素子およびその製造方法
WO2016039443A1 (ja) 封止層被覆光半導体素子の製造方法および光半導体装置の製造方法
JP2017213641A (ja) 蛍光体樹脂シートの製造方法
JP2017215459A (ja) 蛍光体樹脂シート、貼着光半導体素子およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761593

Country of ref document: EP

Kind code of ref document: A1