WO2016143273A1 - ウェーハの面取り加工装置及びウェーハの面取り加工方法 - Google Patents

ウェーハの面取り加工装置及びウェーハの面取り加工方法 Download PDF

Info

Publication number
WO2016143273A1
WO2016143273A1 PCT/JP2016/000862 JP2016000862W WO2016143273A1 WO 2016143273 A1 WO2016143273 A1 WO 2016143273A1 JP 2016000862 W JP2016000862 W JP 2016000862W WO 2016143273 A1 WO2016143273 A1 WO 2016143273A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
chamfering
cleaning water
peripheral edge
outer peripheral
Prior art date
Application number
PCT/JP2016/000862
Other languages
English (en)
French (fr)
Inventor
邦明 大西
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2016143273A1 publication Critical patent/WO2016143273A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/06Dust extraction equipment on grinding or polishing machines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a wafer chamfering apparatus and a wafer chamfering method for chamfering the outer periphery of a wafer using a rotating grindstone.
  • a wafer sliced thinly from the state of a single crystal ingot usually prevents the outer peripheral edge portion from being cracked or chipped due to handling in each subsequent process. Chamfering is performed.
  • the chamfering of the wafer is performed by grinding the outer peripheral edge portion of the wafer by contacting the grindstone rotating at a high speed while holding the wafer on the processing table while rotating the wafer (see, for example, Patent Document 1).
  • a coolant is normally appropriately supplied to the processing unit that performs grinding in order to cool the wafer and the grindstone and to remove grinding waste generated by the processing.
  • processing equipment that can automatically perform not only processing but also simple quality inspection of the processed wafer (for example, Daitron Technology Co., Ltd.) Manufactured CVP).
  • the automatic inspection of a processed wafer generally performs various inspections based on image determination using a CCD sensor.
  • the conventional wafer chamfering apparatus supplies coolant to the processing part for the purpose of removing grinding debris, and most of them supply a large amount of coolant toward the processing point.
  • the wafer after chamfering is usually washed with water, but before inspection, dirt such as grinding debris that causes deterioration of inspection accuracy as described above is inspected. It was insufficient to remove it sufficiently.
  • the present invention has been made in view of the problems as described above, and in the chamfering of a wafer, it is possible to suppress the adhesion of dirt such as processing waste to the outer peripheral edge portion of the wafer, and the accuracy of quality inspection after chamfering processing.
  • An object of the present invention is to provide a chamfering apparatus and a chamfering method that can suppress the deterioration of the chamfering.
  • a rotatable processing table for holding a wafer, and a rotatable grindstone for grinding an outer peripheral edge portion of the wafer held on the processing table
  • a wafer chamfering apparatus comprising a coolant supply nozzle for supplying coolant to a processing unit
  • a wafer chamfering apparatus characterized by comprising a cleaning water supply nozzle for supplying cleaning water to the surface of the wafer.
  • cleaning water can be supplied to the surface of the wafer during chamfering of the wafer, so it is efficient that dirt such as grinding dust generated during processing adheres to the outer peripheral edge of the wafer. Can be prevented. Thereby, in quality inspection performed after chamfering processing, deterioration of inspection accuracy can be prevented. Moreover, since the cleaning performed on the wafer after the chamfering process can be performed by, for example, conventional water cleaning, it is simpler and does not cost much as compared with the case of cleaning by chemical cleaning or the like.
  • the cleaning water supply nozzle supplies the cleaning water to a position 10 mm away from the position where the outer peripheral edge of the wafer is ground toward the center of the wafer and 10 mm away from the rotation direction of the wafer. It is preferable that it is possible. If this is the case, the cleaning water can be efficiently mixed with the dirty coolant immediately after flowing from the processed part to the wafer surface, and dirt such as grinding debris on the outer peripheral edge of the wafer can be mixed. Adhesion can be prevented more efficiently.
  • the cleaning water supplied to the surface of the wafer can be washed off from the outer peripheral edge portion of the wafer by an inertial force generated by the rotation of the wafer. If this is the case, dirt such as dirty coolant liquid and grinding dust generated during processing can be pushed away from the outer peripheral edge of the wafer at the same time with clean cleaning water. A high prevention effect is obtained against adhesion of dirt such as grinding scraps.
  • the cleaning water can be always supplied to the surface of the wafer during rotation of the grindstone, except when the wafer is attached and detached. If this is the case, it is highly effective to wash away the dirty coolant liquid and grinding debris generated from the processing from the outer peripheral edge of the wafer. During chamfering, the debris such as grinding debris on the outer peripheral edge of the wafer The effect of preventing the adhesion of can be maintained.
  • the wafer is held by the processing table, and while rotating the processing table and the grindstone, the coolant is supplied to the processing portion while bringing the outer peripheral edge portion of the wafer into contact with the grindstone,
  • a wafer chamfering method for grinding an outer peripheral edge portion of a wafer A wafer chamfering method is provided, wherein cleaning water is supplied to the surface of the wafer during grinding of the outer peripheral edge portion of the wafer.
  • the cleaning water is supplied to a position 10 mm away from the position where the outer peripheral edge portion of the wafer is ground in the center direction of the wafer and 10 mm away in the rotation direction of the wafer.
  • the cleaning water can be efficiently mixed with the dirty coolant immediately after flowing out from the processed part onto the wafer surface, and dirt such as grinding debris adheres to the outer peripheral edge of the wafer. This can be prevented more efficiently.
  • the cleaning water supplied to the surface of the wafer is caused to flow from the outer peripheral edge portion of the wafer by an inertial force generated by the rotation of the wafer.
  • dirt such as dirty coolant liquid generated during processing, and dirt such as grinding debris can be swept away from the outer peripheral edge of the wafer at the same time with clean cleaning water.
  • a high prevention effect against the adhesion of dirt such as is obtained.
  • the cleaning water is always supplied to the surface of the wafer during rotation of the grindstone, except when the wafer is attached and detached. In this way, it is highly effective to wash away the dirty coolant liquid and grinding debris generated during processing from the outer peripheral edge of the wafer, and during the chamfering process, dirt adhering to the outer peripheral edge of the wafer is attached. The effect which prevents can be maintained.
  • the wafer chamfering apparatus and the wafer chamfering method of the present invention can supply cleaning water to the surface of the wafer separately from the coolant during the chamfering of the wafer. Can be effectively prevented from adhering to the outer peripheral edge of the wafer. Thereby, in quality inspection performed after chamfering processing, deterioration of inspection accuracy can be prevented.
  • the cleaning performed on the wafer after the chamfering process can be performed by, for example, conventional water cleaning, the cleaning is simpler and the cost can be reduced as compared with the case of cleaning by chemical cleaning or the like.
  • the present invention is not limited to this.
  • inspection of the wafer quality inspection performed after chamfering due to dirt such as grinding debris adhering to the outer peripheral edge of the wafer after chamfering There was a problem that accuracy deteriorated. Therefore, the present inventor has examined such problems in detail, and in addition to supplying coolant, supplying cleaning water to the surface of the wafer that is being processed allows dirt such as grinding debris generated during processing to be removed from the outer periphery of the wafer.
  • the inventors have found that it is possible to prevent the adhesion to the edge portion with high efficiency, and have conceived that deterioration of inspection accuracy can be prevented in quality inspection performed after chamfering, thereby completing the present invention.
  • FIGS. 1 is a schematic sectional view of a wafer chamfering apparatus
  • FIG. 2 is a schematic plan view of the wafer chamfering apparatus of the present invention.
  • the wafer chamfering apparatus 1 of the present invention includes a rotatable processing table 3 for holding the wafer W, and an outer peripheral edge portion 8 of the wafer W held on the processing table 3. It has rotatable grindstones 2a and 2b for grinding the coolant, and coolant supply nozzles 4a and 4b for supplying coolant to the processed portion.
  • a cleaning water supply nozzle 5 for supplying cleaning water to the surface of the wafer W is provided. If this is the case, not only the coolant supplied to the outer peripheral edge of the wafer during the chamfering process of the wafer, but also cleaning water can be supplied to the surface of the wafer. Can be efficiently prevented from adhering to the outer peripheral edge of the wafer. Thereby, in quality inspection performed after chamfering processing, deterioration of inspection accuracy can be prevented.
  • the upper surface of the processing table 3 is, for example, a suction surface connected to the vacuum source 6 and can be held by vacuum suction of the wafer W to be chamfered. Then, when the processing table 3 rotates while the wafer W is held by the processing table 3, the wafer W also rotates.
  • the machining table 3 includes, for example, a rotation unit such as a ⁇ -axis motor and a ⁇ spindle (not shown) below the machining table 3, and rotates around the center of the machining table 3 in the ⁇ direction in FIGS. 1 and 2. Can do.
  • the machining table 3 includes, for example, an X-axis drive unit composed of a ball screw and a stepping motor (not shown), so that the machining table 3 can move in the X-axis direction.
  • a pair of grindstones 2a and 2b can be used. If it is such, it can chamfer with higher precision. However, it is not limited to this, For example, one grindstone may be sufficient.
  • the grindstones 2a and 2b can be, for example, contouring grindstones.
  • the rotation direction of the processing table 3 and the rotation direction of the grindstones 2a and 2b can be made perpendicular.
  • the process table 3 and the direction of rotation of a grindstone may be horizontal.
  • each of the grindstones 2a and 2b is fixed to a grindstone rotating unit including a grindstone rotating motor and a rotating shaft (not shown), and can be rotated by motor rotation.
  • the grindstones 2a and 2b are provided with a Z-axis driving means such as a ball screw and a stepping motor (not shown), and can move in the Z-axis direction.
  • a resin bond grindstone of diamond abrasive grains can be used as the grindstones 2a and 2b.
  • the diamond abrasive grains preferably have a grain size of about # 3000, for example.
  • the coolant supply nozzles 4a and 4b are attached to a grindstone rotating unit (not shown).
  • the coolant supply nozzles 4a and 4b are positioned above the grindstones 2a and 2b and the processing table 3, for example. It can be supplied to the part.
  • the coolant supply nozzles 4a and 4b can control the amount of coolant supplied to the processing portion. And it is preferable that the quantity of the coolant supplied to a process part shall be 2 L / min or more.
  • the cleaning water supply nozzle 5 is attached above the processing table 3 toward the surface of the wafer W, for example.
  • the cleaning water supply nozzle 5 can always apply cleaning water to a predetermined position on the surface of the wafer W being processed through a water conduit connected to an external water supply source 7.
  • the cleaning water supply nozzle 5 supplies cleaning water to a position 10 mm away from the position where the outer peripheral edge 8 of the wafer W is ground in the center direction of the wafer W and 10 mm away in the rotation direction of the wafer W. It is preferable that it can be supplied. If this is the case, the cleaning water can be efficiently mixed with the dirty coolant immediately after flowing out from the processing portion onto the surface of the wafer W, and grinding debris to the outer peripheral edge portion 8 of the wafer W, etc. It is possible to more efficiently prevent the adhesion of dirt.
  • the cleaning water supply nozzle 5 is preferably capable of controlling the amount of cleaning water supplied to the surface of the wafer W.
  • the amount of cleaning water supplied to the surface of the wafer W is preferably 2 L / min or more. With such a supply amount, it is possible to sufficiently wash away the dirty coolant liquid generated by processing, grinding scraps, and the like from the outer peripheral edge portion of the wafer.
  • the water supply source 7 may be common to the coolant supply nozzles 4a and 4b and the cleaning water supply nozzle 5, but is not limited thereto.
  • the coolant supply nozzles 4a and 4b and the cleaning water supply nozzle 5 Therefore, they may be provided separately.
  • the cleaning water supplied to the surface of the wafer W can be washed off from the outer peripheral edge portion of the wafer W by the inertial force generated by the rotation of the wafer W. If it is such, since the dirty coolant liquid generated by processing and dirt such as grinding scraps can be simultaneously swept away from the outer peripheral edge portion 8 of the wafer W together with clean cleaning water, the outer peripheral edge of the wafer W A high preventive effect is obtained against adhesion of dirt such as grinding scraps to the portion 8.
  • cleaning water can be always supplied to the surface of the wafer W except when the wafer W is attached and detached. If it is such, it is highly effective to push away the dirty coolant liquid and grinding dust generated by the processing from the outer peripheral edge portion 8 of the wafer W, and grinding the outer peripheral edge portion 8 of the wafer W during the chamfering processing. It is possible to maintain the effect of preventing the adhesion of dirt such as debris.
  • the processing table 3 sucks and holds the wafer W to be chamfered. Then, when the processing table 3 holding the wafer W is rotated, the wafer W is rotated, and the processing table 3 is moved in the X-axis direction so as to be close to the rotating grindstones 2a and 2b, and a coolant supply nozzle to the processing unit.
  • the grinding of the outer peripheral edge portion 8 of the wafer W is started by contacting the coolant while supplying the coolant at 4a and 4b. Further, during the grinding of the outer peripheral edge portion 8 of the wafer W, cleaning water is supplied from the cleaning water supply nozzle 5 to the surface of the wafer W.
  • the outer peripheral edge 8 of the wafer W is chamfered into an arbitrary shape by moving the processing table 3 in the X-axis direction at an arbitrary speed while moving the grindstones 2a and 2b at an arbitrary speed in the Z-axis direction. To do.
  • the cleaning water may be supplied at any position as long as it is on the surface side of the wafer W.
  • the cleaning water is 10 mm from the position where the outer peripheral edge portion 8 of the wafer W is ground toward the center of the wafer W, and the wafer. It is preferable to supply at a position 10 mm away in the rotation direction of W. In this way, cleaning water can be efficiently mixed with the contaminated coolant immediately after flowing out from the processing portion onto the surface of the wafer W, and dirt such as grinding debris on the outer peripheral edge portion 8 of the wafer W can be obtained. Can be more efficiently prevented.
  • the cleaning water supplied to the surface of the wafer W is caused to flow from the outer peripheral edge portion 8 of the wafer W by the inertial force generated by the rotation of the wafer W.
  • dirty coolant liquid generated by processing and dirt such as grinding dust can be simultaneously swept away from the outer peripheral edge portion 8 of the wafer W together with clean cleaning water.
  • a high prevention effect can be obtained against adhesion of dirt such as grinding scraps.
  • the wafer W can be cleaned.
  • cleaning the wafer W it is preferable to perform simple cleaning after transfer to a simple water cleaning unit attached to a general chamfering apparatus.
  • spin cleaning and drying while applying water to the wafer W are preferable because of low cost.
  • the wafer W is transferred to an inspection apparatus and a predetermined quality inspection is performed.
  • a predetermined quality inspection For the quality inspection of the wafer W, various inspections based on image determination using a CCD sensor can be performed.
  • the quality inspection of the wafer W may be performed without performing the above-described cleaning.
  • a wafer chamfering apparatus 1 of the present invention as shown in FIG. 1 was used to chamfer a slice wafer having a diameter of 450 mm cut out from a silicon single crystal ingot according to the wafer chamfering method of the present invention.
  • the grindstones 2a and 2b (contouring grindstones), diamond-bonded resin bond grindstones were used.
  • the particle size was set to # 3000.
  • the machining allowance was 80 ⁇ m in order to obtain a precise chamfered shape.
  • the flow rate of coolant liquid (for example, water) supplied from the coolant supply nozzles 4a and 4b was set to 2 L / min or more in general.
  • the cleaning water supplied from the cleaning water supply nozzle 5 to the surface of the wafer W was 2 L / min or more.
  • the wafer W after the chamfering process was subjected to spin cleaning and drying while applying water. Then, the wafer W after spin cleaning / drying was inspected and evaluated. For evaluation, CVP manufactured by Daitron Technology Co., Ltd. was used, and inspection based on image determination using a CCD sensor was performed.
  • Table 1 shows the ratio of the wafers W that were contaminated on the outer peripheral edge 8 of the wafer W at this time and the ratio of the wafers W that were erroneously recognized and caused an error in the inspection determination.
  • FIG. 3 shows an example of dirt adhering to the outer peripheral edge portion of the wafer after chamfering, which is detected by an inspection based on image determination using a CVP CCD sensor manufactured by DITRON TECHNOLOGY after chamfering.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

 本発明は、ウェーハを保持するための回転可能な加工テーブルと、該加工テーブルに保持された前記ウェーハの外周エッジ部を研削するための回転可能な砥石と、加工部にクーラントを供給するためのクーラント供給ノズルとを具備するウェーハの面取り加工装置であって、さらに、前記ウェーハの表面に洗浄水を供給するための洗浄水供給ノズルを具備するものであることを特徴とするウェーハの面取り加工装置である。これにより、ウェーハの外周エッジ部に、加工屑等の汚れが付着することを抑制し、面取り加工後の品質検査の精度の悪化を抑制可能な面取り加工装置及び面取り加工方法が提供される。

Description

ウェーハの面取り加工装置及びウェーハの面取り加工方法
 本発明は、回転する砥石を用いてウェーハの外周を面取り加工するウェーハの面取り加工装置及びウェーハの面取り加工方法に関する。
 例えば、シリコンウェーハの製造工程において、単結晶インゴットの状態から薄くスライスされたウェーハは、その後の各工程での取り扱い等による外周エッジ部の割れや欠けを防止するため、通常はウェーハの外周エッジ部の面取り加工を行う。
 このウェーハの面取り加工は、高速回転している砥石に、ウェーハを加工テーブルで保持して回転させながら接触させることで、ウェーハの外周エッジ部を研削して行う(例えば、特許文献1参照)。その際、研削を行う加工部には、ウェーハと砥石の冷却や、加工で生じる研削屑の除去のために、通常、クーラントが適切に供給される。
 また、近年の傾向として加工工程の自動化が進み、ウェーハの面取り加工において、加工のみならず、加工後のウェーハの簡単な品質検査までを自動で行うことができる加工装置(例えば、ダイトロンテクノロジー社製CVP)が用いられるようになっている。このような加工装置において、加工後のウェーハの自動検査はCCDセンサーを利用した画像判定に基づく各種検査を行うのが一般的である。
特開2007-48780号公報
 ところが、面取り加工後のウェーハの外周エッジ部の面取り部に、研削屑等の汚れが付着していると、画像判定の際にその汚れが、傷またはチッピング等と誤認識されてしまうことがあることが分かった。そして、このような誤認識によって、検査の結果で誤りが生じてしまい、検査精度が悪化するという問題があった。
 そのため、ウェーハの面取り部へ付着する汚れの除去または付着の防止は従来以上に重要な技術となっている。
 しかしながら、従来のウェーハの面取り加工装置は、前述したように研削屑の除去を目的として加工部にクーラントを供給しているが、その大多数は加工点に向けて大量のクーラントを供給するものであり、この方法では検査精度の悪化をもたらす、研削屑等の汚れがウェーハの面取り部に付着することを防止する効果は実際には不十分であった。
 また、従来のウェーハの面取り加工において、通常、面取り加工後のウェーハに対して、水洗浄を行っているが、上記したような検査精度の悪化を引き起こすような研削屑等の汚れを検査前に十分に除去するには、不十分であった。
 これに対して、面取り加工後のウェーハの面取り部へ付着した研削屑等の汚れを十分に除去するために、面取り加工後のウェーハに対して、薬液洗浄等を行うことが考えられるが、薬液洗浄等を行った場合、コストが多くかかるという問題があった。
 本発明は前述のような問題に鑑みてなされたもので、ウェーハの面取り加工において、ウェーハの外周エッジ部に、加工屑等の汚れが付着することを抑制し、面取り加工後の品質検査の精度の悪化を抑制可能な面取り加工装置及び面取り加工方法を提供することを目的とする。
 上記目的を達成するために、本発明によれば、ウェーハを保持するための回転可能な加工テーブルと、該加工テーブルに保持された前記ウェーハの外周エッジ部を研削するための回転可能な砥石と、加工部にクーラントを供給するためのクーラント供給ノズルとを具備するウェーハの面取り加工装置であって、
 さらに、前記ウェーハの表面に洗浄水を供給するための洗浄水供給ノズルを具備するものであることを特徴とするウェーハの面取り加工装置が提供される。
 このようなものであれば、ウェーハの面取り加工中にウェーハの表面に洗浄水を供給することができるので、加工中に生じた研削屑等の汚れがウェーハの外周エッジ部に付着することを効率的に防止することができる。これによって、面取り加工後に行う品質検査において、検査精度の悪化を防ぐことができる。しかも、面取り加工後のウェーハに対して行う洗浄は、例えば従来通りの水洗浄で済ませることができるため、薬液洗浄等により洗浄を行う場合に比べて簡便で、コストも多くはかからない。
 このとき、前記洗浄水供給ノズルは、前記ウェーハの外周エッジ部を研削する位置から、前記ウェーハの中心方向へ10mm、かつ前記ウェーハの回転方向へ10mm離れた位置に前記洗浄水を供給することができるものであることが好ましい。
 このようなものであれば、加工部からウェーハの表面に流れ出てきた直後の汚れたクーラント液に、洗浄水を効率よく混ぜ合わせることができ、ウェーハの外周エッジ部への研削屑等の汚れの付着をより効率よく防止することができる。
 またこのとき、前記ウェーハの表面に供給した前記洗浄水を、前記ウェーハの回転により生じる慣性力によって前記ウェーハの外周エッジ部から流し落とすことができるものであることが好ましい。
 このようなものであれば、清浄な洗浄水と共に、加工で生じた汚れたクーラント液や、研削屑等の汚れも同時にウェーハの外周エッジ部から押し流すことができるので、ウェーハの外周エッジ部への研削屑等の汚れの付着に対して高い防止効果が得られる。
 またこのとき、前記砥石の回転中は、前記ウェーハを着脱する時を除いて、前記ウェーハの表面に常に前記洗浄水を供給することができるものであることが好ましい。
 このようなものであれば、加工で生じた汚れたクーラント液や、研削屑等をウェーハの外周エッジ部から押し流す効果が高く、面取り加工の間、ウェーハの外周エッジ部への研削屑等の汚れの付着を防止する効果を維持することができる。
 また、本発明によれば、加工テーブルでウェーハを保持し、該加工テーブル及び砥石を回転させながら、加工部にクーラントを供給しつつ前記ウェーハの外周エッジ部と前記砥石を接触させることで、前記ウェーハの外周エッジ部を研削するウェーハの面取り加工方法であって、
 前記ウェーハの外周エッジ部の研削中に、前記ウェーハの表面に洗浄水を供給することを特徴とするウェーハの面取り加工方法が提供される。
 このようにすれば、ウェーハの面取り加工中にウェーハの表面に洗浄水を供給することで、加工中に生じた研削屑等の汚れがウェーハの外周エッジ部に付着することを効率的に防止することができる。これによって、面取り加工後に行う品質検査において、検査精度の悪化を防ぐことができる。しかも、面取り加工後のウェーハに対して行う洗浄は、例えば従来通りの水洗浄で済ませることができるため、薬液洗浄等により洗浄を行う場合に比べて簡便で、コストも多くはかからない。
 このとき、前記洗浄水を、前記ウェーハの外周エッジ部を研削する位置から、前記ウェーハの中心方向へ10mm、かつ前記ウェーハの回転方向へ10mm離れた位置に供給することが好ましい。
 このようにすれば、加工部からウェーハの表面に流れ出てきた直後の汚れたクーラント液に、洗浄水を効率よく混ぜ合わせることができ、ウェーハの外周エッジ部への研削屑等の汚れの付着をより効率よく防止することができる。
 また、このとき、前記ウェーハの表面に供給した前記洗浄水を、前記ウェーハの回転により生じる慣性力によって前記ウェーハの外周エッジ部から流し落とすことが好ましい。
 このようにすれば、清浄な洗浄水と共に、加工で生じた汚れたクーラント液や、研削屑等の汚れも同時にウェーハの外周エッジ部から押し流すことができるので、ウェーハの外周エッジ部への研削屑等の汚れの付着に対して高い防止効果が得られる。
 また、このとき、前記砥石の回転中は、前記ウェーハを着脱する時を除いて、前記ウェーハの表面に常に前記洗浄水を供給することが好ましい。
 このようにすれば、加工で生じた汚れたクーラント液や、研削屑等をウェーハの外周エッジ部から押し流す効果が高く、面取り加工の間、ウェーハの外周エッジ部への研削屑等の汚れの付着を防止する効果を維持することができる。
 本発明のウェーハの面取り加工装置及びウェーハの面取り加工方法は、ウェーハの面取り加工中にクーラントとは別にウェーハの表面に洗浄水を供給することができるので、加工中に生じた研削屑等の汚れがウェーハの外周エッジ部に付着することを効率的に防止することができる。これによって、面取り加工後に行う品質検査において、検査精度の悪化を防ぐことができる。しかも、面取り加工後のウェーハに対して行う洗浄は、例えば従来通りの水洗浄で済ませることができるため、薬液洗浄等により洗浄を行う場合に比べて簡便で、コストも低減できる。
本発明のウェーハの面取り加工装置の一例を示す概略図(断面図)である。 本発明のウェーハの面取り加工装置の一例を示す概略図(平面図)である。 面取り加工後のウェーハの面取り加工面に付着している汚れの一例を示した写真である
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
 回転するウェーハの外周を回転する砥石で研削するウェーハの面取り加工装置及び方法において、面取り加工後のウェーハの外周エッジ部に付着した研削屑等の汚れによって、面取り加工後に行うウェーハの品質検査の検査精度が悪化するという問題があった。そこで本発明者はこのような問題について詳細に検討したところ、クーラント供給に加えて、加工中のウェーハ表面に洗浄水を供給することで、加工中に生じた研削屑等の汚れがウェーハの外周エッジ部に付着することを高効率に防止することができることを見出し、これによって、面取り加工後に行う品質検査において、検査精度の悪化を防ぐことができることに想到し、本発明を完成させた。
 まず、本発明のウェーハの面取り加工装置について図1、図2を参照しながら説明する。なお、図1はウェーハの面取り加工装置の概略断面図、図2は本発明のウェーハの面取り加工装置の概略平面図を示している。
 図1、図2に示すように、本発明のウェーハの面取り加工装置1は、ウェーハWを保持するための回転可能な加工テーブル3と、加工テーブル3に保持されたウェーハWの外周エッジ部8を研削するための回転可能な砥石2a、2bと、加工部にクーラントを供給するためのクーラント供給ノズル4a、4bとを有している。
 さらに、ウェーハWの表面に洗浄水を供給するための洗浄水供給ノズル5を有している。
 このようなものであれば、ウェーハの面取り加工中にウェーハの外周エッジ部に供給されるクーラントのみならず、ウェーハの表面に洗浄水を供給することができるので、加工中に生じた研削屑等の汚れがウェーハの外周エッジ部に付着することを効率的に防止することができる。これによって、面取り加工後に行う品質検査において、検査精度の悪化を防ぐことができる。
 加工テーブル3の上面は例えば、真空源6と連結した吸着面であり、面取り加工するウェーハWを真空吸着することによって保持することができる。
 そして、加工テーブル3でウェーハWを保持した状態で、加工テーブル3が回転することによって、ウェーハWも回転する。
 加工テーブル3は例えば、加工テーブル3の下方に図示しないθ軸モータおよびθスピンドル等による回転ユニットを備え、これらによって加工テーブル3の中心を回転軸として図1、図2のθ方向に回転することができる。
 また、加工テーブル3は例えば、図示しないボールスクリューおよびステッピングモーター等から成るX軸駆動手段を備え、これによって加工テーブル3はX軸方向に移動することができる。
 面取り加工装置1において砥石は、例えば、一対からなる砥石2a、2bを用いることができる。このようなものであれば、より高精度な面取り加工をすることができる。ただし、これに限定されず、例えば砥石は1つであってもよい。
 砥石2a、2bは例えば、コンタリング砥石とすることができる。そして、加工テーブル3の回転方向と、砥石2a、2bの回転の方向とが垂直となるようにすることができる。ただし、これに限定されず、例えば加工テーブル3と、砥石の回転の方向とが水平であっても良い。
 例えば、砥石2a、2bはそれぞれ、図示しない砥石回転用モータと回転軸からなる砥石回転ユニットに固定され、モータ回転によって回転することができる。
 また、砥石2a、2bは例えば、図示しないボールスクリューおよびステッピングモーター等によるZ軸駆動手段を備え、これによってZ軸方向に移動することができる。
 砥石2a、2bとして、例えば、ダイアモンド砥粒のレジンボンド砥石を用いることができる。ダイアモンド砥粒の粒度は、例えば、粒度#3000程度のものを用いることが好ましい。
 クーラント供給ノズル4a、4bは、図示しない砥石回転ユニットに取り付けられている。そして、クーラント供給ノズル4a、4bは例えば、砥石2a、2b及び加工テーブル3の上方に位置し、外部の給水源7に連結した導水管を通じて、常にクーラント液が砥石2a、2bとウェーハWの加工部に供給することができるものである。
 クーラント供給ノズル4a、4bは、加工部に供給するクーラントの量を制御することができるものであることが好ましい。そして、加工部に供給するクーラントの量は、2L/min以上とすることが好ましい。
 洗浄水供給ノズル5は例えば、加工テーブル3の上方にウェーハWの表面に向けて取り付けられている。そして、洗浄水供給ノズル5は、外部の給水源7に連結した導水管を通じて、加工中のウェーハWの表面の所定の位置に常に洗浄水をかけることができるものである。
 洗浄水供給ノズル5は、図2に示すように、ウェーハWの外周エッジ部8を研削する位置から、ウェーハWの中心方向へ10mm、かつウェーハWの回転方向へ10mm離れた位置に洗浄水を供給することができるものであることが好ましい。
 このようなものであれば、加工部からウェーハWの表面に流れ出てきた直後の汚れたクーラント液に、洗浄水を効率よく混ぜ合わせることができ、ウェーハWの外周エッジ部8への研削屑等の汚れの付着をより効率よく防止することができる。
 洗浄水供給ノズル5は、ウェーハWの表面に供給する洗浄水の量を制御することができるものであることが好ましい。そして、ウェーハWの表面に供給する洗浄水の量は、2L/min以上とすることが好ましい。
 このような供給量であれば、加工で生じた汚れたクーラント液や、研削屑等をウェーハの外周エッジ部から押し流すことが十分にできる。
 給水源7は、クーラント供給ノズル4a、4bと洗浄水供給ノズル5とで共通のものであっても良いが、これに限定されず、例えば、クーラント供給ノズル4a、4bと洗浄水供給ノズル5とで、それぞれ別に設けても良い。
 ウェーハWの表面に供給した洗浄水を、ウェーハWの回転により生じる慣性力によってウェーハWの外周エッジ部から流し落とすことができるものであることが好ましい。
 このようなものであれば、清浄な洗浄水と共に、加工で生じた汚れたクーラント液や、研削屑等の汚れも同時にウェーハWの外周エッジ部8から押し流すことができるので、ウェーハWの外周エッジ部8への研削屑等の汚れの付着に対して高い防止効果が得られる。
 砥石2a、2bの回転中は、ウェーハWを着脱する時を除いて、ウェーハWの表面に常に洗浄水を供給することができるものであることが好ましい。
 このようなものであれば、加工で生じた汚れたクーラント液や、研削屑等をウェーハWの外周エッジ部8から押し流す効果が高く、面取り加工の間、ウェーハWの外周エッジ部8への研削屑等の汚れの付着を防止する効果を維持することができる。
 次に、本発明のウェーハの面取り加工方法について、上記した図1、2に示す本発明のウェーハの面取り加工装置1を用いた場合を例として説明する。
 まず、加工テーブル3で、面取り加工を行う対象のウェーハWを吸着保持する。
 そして、ウェーハWを保持した加工テーブル3が回転することでウェーハWが回転し、加工テーブル3をX軸方向に移動させて、回転している砥石2a、2bに近づけ、加工部にクーラント供給ノズル4a、4bでクーラントを供給しつつ、接触させることで、ウェーハWの外周エッジ部8の研削が開始される。
 さらに、ウェーハWの外周エッジ部8の研削中には、洗浄水供給ノズル5からウェーハWの表面に洗浄水を供給する。
 そして、砥石2a、2bをZ軸方向に任意の速度で移動させながら、加工テーブル3を任意の速度でX軸方向に移動させることにより、ウェーハWの外周エッジ部8を任意の形状に面取り加工する。
 このとき、洗浄水の供給はウェーハWの表面側であればいずれの位置でもよいが、洗浄水を、ウェーハWの外周エッジ部8を研削する位置から、ウェーハWの中心方向へ10mm、かつウェーハWの回転方向へ10mm離れた位置に供給することが好ましい。
 このようにすれば、加工部からウェーハWの表面に流れ出てきた直後の汚れたクーラント液に、洗浄水を効率よく混ぜ合わせることができ、ウェーハWの外周エッジ部8への研削屑等の汚れの付着をより効率よく防止することができる。
 また、このとき、ウェーハWの表面に供給した洗浄水を、ウェーハWの回転により生じる慣性力によってウェーハWの外周エッジ部8から流し落とすことが好ましい。
 このようにすれば、清浄な洗浄水と共に、加工で生じた汚れたクーラント液や、研削屑等の汚れも同時にウェーハWの外周エッジ部8から押し流すことができるので、ウェーハWの外周エッジ部8への研削屑等の汚れの付着に対して高い防止効果が得られる。
 また、このとき、砥石2a、2bの回転中は、ウェーハWを着脱する時を除いて、ウェーハWの表面に常に洗浄水を供給することが好ましい。
 このようにすれば、加工で生じた汚れたクーラント液や、研削屑等をウェーハWの外周エッジ部8から押し流す効果が高く、面取り加工の間、ウェーハWの外周エッジ部8への研削屑等の汚れの付着を防止する効果を維持することができる。
 このような本発明のウェーハの面取り加工方法であれば、ウェーハの面取り加工中にウェーハの表面に洗浄水を供給することで、加工中に生じた研削屑等の汚れがウェーハの外周エッジ部に付着することを効率的に防止することができる。これによって、面取り加工後に行う品質検査において、検査精度の悪化を防ぐことができる。
 そして、上記のようにしてウェーハWの面取り加工を行った後に、ウェーハWの洗浄を行うことができる。
 ウェーハWの洗浄は、一般的な面取り加工装置に付属する簡単な水洗浄ユニットへ移載後に簡単な洗浄を行うことが好ましい。ウェーハWの洗浄は、例えば、コストが低い、ウェーハWへ水をかけながらのスピン洗浄・乾燥が好ましい。
 このように、本発明の面取り加工方法で面取り加工を行った後のウェーハWに対して行う洗浄は、水洗浄で済ませることができるため、薬液洗浄等により洗浄を行う場合に比べて簡便で、コストも多くはかからない。
 その後、ウェーハWを検査装置に移載して所定の品質検査を実施する。ウェーハWの品質検査は、CCDセンサーを利用した画像判定に基づく各種検査を行うことができる。
 なお、ウェーハWの面取り加工終了後に、上記したような洗浄を行わずに、ウェーハWの品質検査を行っても良い。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
 図1に示すような本発明のウェーハの面取り加工装置1を用い、本発明のウェーハの面取り加工方法に従って、シリコン単結晶インゴットから切り出された直径450mmのスライス・ウェーハの面取り加工を行った。
 砥石2a、2b(コンタリング砥石)として、ダイアモンド砥粒のレジンボンド砥石を用いた。そして、精密な面取り形状を得るために粒度#3000とした。
 加工取り代は精密な面取り形状を得る上で、80μmとした。クーラント供給ノズル4a、4bから供給するクーラント液(例えば、水)の流量は一般的な2L/min以上とした。
 洗浄水供給ノズル5からウェーハWの表面へ供給する洗浄水は、2L/min以上とした。
 面取り加工後のウェーハWに、水をかけながらのスピン洗浄・乾燥を行った。
 そして、スピン洗浄・乾燥後のウェーハWの検査及び評価を行った。評価はダイトロンテクノロジー社製CVPを使用し、CCDセンサーを利用した画像判定に基づく検査を行った。
 合計20枚のウェーハに対して、上記と同様にして面取り加工、スピン洗浄・乾燥、そして検査及び評価を行った。そして、このときのウェーハWの外周エッジ部8に汚れが付着していたウェーハWの割合と、それを誤認識して検査の判定に誤りが生じたウェーハWの割合を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 その結果、表1に示したように、実施例では汚れが付着していたウェーハは20枚中4枚(20%)であった。また、汚れを誤認識して、検査で誤判定が生じたウェーハは20枚中2枚(10%)であった。
 一方、後述の比較例ではウェーハ20枚中16枚(80%)に汚れが付着していて、付着した汚れを誤認識して、検査で誤判定が生じたウェーハは20枚中12枚(60%)であった。
 このように、実施例では、比較例に比べて面取り加工後のウェーハに汚れが付着することを抑制することができたので、検査精度を大きく改善させることができた。
(比較例)
 ウェーハの面取り加工中に、ウェーハ表面に洗浄液を供給しなかったこと以外は、実施例と同様にしてウェーハの面取り加工、スピン洗浄・乾燥、そして検査及び評価を合計20枚のウェーハに対して行った。
 そして、面取り加工面に汚れが付着していたウェーハの割合と、それを誤認識して検査の判定に誤りが生じたウェーハの割合を表2に示した。
Figure JPOXMLDOC01-appb-T000002
 その結果、表2に示したように、比較例では加工したウェーハ20枚中16枚(80%)に汚れが付着していた。そして、付着した汚れを誤認識して、検査で誤判定が生じたウェーハは20枚中12枚(60%)であった。
 このように、比較例では、実施例に比べてウェーハの外周エッジ部に付着した汚れが多かったため、検査精度が大きく悪化した。
 図3は面取り加工後のダイトロンテクノロジー社製CVPのCCDセンサーを利用した画像判定に基づく検査で検出された、面取り加工後のウェーハの外周エッジ部に付着した汚れの一例である。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (8)

  1.  ウェーハを保持するための回転可能な加工テーブルと、該加工テーブルに保持された前記ウェーハの外周エッジ部を研削するための回転可能な砥石と、加工部にクーラントを供給するためのクーラント供給ノズルとを具備するウェーハの面取り加工装置であって、
     さらに、前記ウェーハの表面に洗浄水を供給するための洗浄水供給ノズルを具備するものであることを特徴とするウェーハの面取り加工装置。
  2.  前記洗浄水供給ノズルは、前記ウェーハの外周エッジ部を研削する位置から、前記ウェーハの中心方向へ10mm、かつ前記ウェーハの回転方向へ10mm離れた位置に前記洗浄水を供給することができるものであることを特徴とする請求項1に記載のウェーハの面取り加工装置。
  3.  前記ウェーハの表面に供給した前記洗浄水を、前記ウェーハの回転により生じる慣性力によって前記ウェーハの外周エッジ部から流し落とすことができるものであることを特徴とする請求項1又は請求項2に記載のウェーハの面取り加工装置。
  4.  前記砥石の回転中は、前記ウェーハを着脱する時を除いて、前記ウェーハの表面に常に前記洗浄水を供給することができるものであることを特徴とする請求項1から請求項3のいずれか1項に記載のウェーハの面取り加工装置。
  5.  加工テーブルでウェーハを保持し、該加工テーブル及び砥石を回転させながら、加工部にクーラントを供給しつつ前記ウェーハの外周エッジ部と前記砥石を接触させることで、前記ウェーハの外周エッジ部を研削するウェーハの面取り加工方法であって、
     前記ウェーハの外周エッジ部の研削中に、前記ウェーハの表面に洗浄水を供給することを特徴とするウェーハの面取り加工方法。
  6.  前記洗浄水を、前記ウェーハの外周エッジ部を研削する位置から、前記ウェーハの中心方向へ10mm、かつ前記ウェーハの回転方向へ10mm離れた位置に供給することを特徴とする請求項5に記載のウェーハの面取り加工方法。
  7.  前記ウェーハの表面に供給した前記洗浄水を、前記ウェーハの回転により生じる慣性力によって前記ウェーハの外周エッジ部から流し落とすことを特徴とする請求項5又は請求項6に記載のウェーハの面取り加工方法。
  8.  前記砥石の回転中は、前記ウェーハを着脱する時を除いて、前記ウェーハの表面に常に前記洗浄水を供給することを特徴とする請求項5から請求項7のいずれか1項に記載のウェーハの面取り加工方法。
PCT/JP2016/000862 2015-03-09 2016-02-18 ウェーハの面取り加工装置及びウェーハの面取り加工方法 WO2016143273A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015046316A JP2016165768A (ja) 2015-03-09 2015-03-09 ウェーハの面取り加工装置及びウェーハの面取り加工方法
JP2015-046316 2015-03-09

Publications (1)

Publication Number Publication Date
WO2016143273A1 true WO2016143273A1 (ja) 2016-09-15

Family

ID=56880196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000862 WO2016143273A1 (ja) 2015-03-09 2016-02-18 ウェーハの面取り加工装置及びウェーハの面取り加工方法

Country Status (3)

Country Link
JP (1) JP2016165768A (ja)
TW (1) TW201639021A (ja)
WO (1) WO2016143273A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107263327A (zh) * 2017-07-12 2017-10-20 苏州希瑞特环保科技有限公司 新型抛光机粉尘净化装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6750592B2 (ja) * 2017-08-15 2020-09-02 信越半導体株式会社 シリコンウエーハのエッジ形状の評価方法および評価装置、シリコンウエーハ、ならびにその選別方法および製造方法
JP6841202B2 (ja) * 2017-10-11 2021-03-10 株式会社Sumco 半導体ウェーハの評価方法および半導体ウェーハの製造方法
CN112497046A (zh) * 2020-11-26 2021-03-16 上海新昇半导体科技有限公司 晶圆边缘抛光设备及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347902A (ja) * 1998-06-08 1999-12-21 Shin Etsu Handotai Co Ltd 薄板の加工方法および加工装置
JP2008537317A (ja) * 2005-04-19 2008-09-11 株式会社荏原製作所 基板処理装置
JP2011040674A (ja) * 2009-08-18 2011-02-24 Mitsubishi Electric Corp ウエハ研磨装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347902A (ja) * 1998-06-08 1999-12-21 Shin Etsu Handotai Co Ltd 薄板の加工方法および加工装置
JP2008537317A (ja) * 2005-04-19 2008-09-11 株式会社荏原製作所 基板処理装置
JP2011040674A (ja) * 2009-08-18 2011-02-24 Mitsubishi Electric Corp ウエハ研磨装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107263327A (zh) * 2017-07-12 2017-10-20 苏州希瑞特环保科技有限公司 新型抛光机粉尘净化装置

Also Published As

Publication number Publication date
JP2016165768A (ja) 2016-09-15
TW201639021A (zh) 2016-11-01

Similar Documents

Publication Publication Date Title
CN105390410B (zh) 晶片检查方法以及磨削研磨装置
JP4996888B2 (ja) 半導体ウェーハを作製する方法
KR102142893B1 (ko) 기판 이면의 연마 방법 및 기판 처리 장치
WO2016143273A1 (ja) ウェーハの面取り加工装置及びウェーハの面取り加工方法
JP2008155292A (ja) 基板の加工方法および加工装置
JP6129022B2 (ja) 研削装置の加工室洗浄方法
JP2017092135A (ja) デバイスの製造方法
JP5996382B2 (ja) 切削装置のチャックテーブル
US10937697B2 (en) Method of processing a semiconductor wafer that involves cutting to form grooves along the dicing lines and grinding reverse side of the wafer
TWI727089B (zh) 晶圓的加工方法及研磨裝置
JP4808278B2 (ja) 平面加工装置及び方法
CN105364699B (zh) 一种化学机械研磨方法和化学机械研磨设备
JP6893824B2 (ja) 加工装置
WO1982003038A1 (en) One-pass type automatic plane multi-head grinding polishing and cleaning machine
JP6439608B2 (ja) 面取り加工方法及び面取り加工装置
JP4963411B2 (ja) 半導体装置または半導体ウェハの製造方法
JP2018192412A (ja) 加工装置
JP5385519B2 (ja) 面取り機能つき洗浄装置
JP4553868B2 (ja) 平面加工装置
JP2008183659A (ja) 研削装置
JP2021122073A (ja) ウェーハ及びウェーハの薄化方法並びにウェーハの薄化装置
JP4850666B2 (ja) ウエーハの加工装置
JP2010105067A (ja) 吸着パッド洗浄方法および吸着パッド洗浄装置
JP2008012622A (ja) ウェーハ面取り装置及びウェーハ面取り方法
JP2015076555A (ja) 加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761252

Country of ref document: EP

Kind code of ref document: A1