WO2016143035A1 - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
WO2016143035A1
WO2016143035A1 PCT/JP2015/056843 JP2015056843W WO2016143035A1 WO 2016143035 A1 WO2016143035 A1 WO 2016143035A1 JP 2015056843 W JP2015056843 W JP 2015056843W WO 2016143035 A1 WO2016143035 A1 WO 2016143035A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
contact
memory device
pillar
semiconductor memory
Prior art date
Application number
PCT/JP2015/056843
Other languages
English (en)
French (fr)
Inventor
坂本 渉
竜也 加藤
優太 渡辺
関根 克行
岩本 敏幸
史隆 荒井
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2015/056843 priority Critical patent/WO2016143035A1/ja
Priority to CN201580077508.4A priority patent/CN107431074B/zh
Priority to TW104111476A priority patent/TWI617009B/zh
Publication of WO2016143035A1 publication Critical patent/WO2016143035A1/ja
Priority to US15/686,292 priority patent/US10229924B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region

Definitions

  • Embodiments relate to a semiconductor memory device.
  • NAND flash memories have increased the degree of integration by reducing the planar structure and reduced the bit cost, but the miniaturization of the planar structure is approaching the limit. Therefore, in recent years, a technique for stacking memory cells in the vertical direction has been proposed. However, in such a stacked memory device, ease of manufacture and product reliability are problems.
  • An object of the embodiment is to provide a semiconductor memory device that is easy to manufacture and highly reliable.
  • the semiconductor memory device includes first and second semiconductor pillars extending in a first direction and arranged along a second direction intersecting the first direction, and the first semiconductor pillars.
  • First and second wirings provided between the second semiconductor pillars and extending in a third direction intersecting both the first direction and the second direction; and the first semiconductor pillars;
  • a first electrode provided between the first wiring, a second electrode provided between the second semiconductor pillar and the second wiring, and extending in the second direction,
  • Each of the third and fourth wirings passing through both the region directly above the first semiconductor pillar and the region immediately above the second semiconductor pillar, and the first semiconductor pillar is in contact with the third wiring.
  • the first contact made and the second semiconductor pillar, and the fourth contact Comprising a second contact connected to the wiring, a.
  • FIG. 1A is a plan view showing the semiconductor memory device according to the first embodiment
  • FIG. 1B is a cross-sectional view taken along line A-A ′ shown in FIG. 2A is a partially enlarged sectional view corresponding to the region A in FIG. 1A
  • FIG. 2B is a partially enlarged sectional view showing a region B in FIG. 1B
  • FIG. 3 is a perspective view showing the periphery of the contact of the semiconductor memory device according to the first embodiment.
  • 4A is a cross-sectional view showing the method of manufacturing the semiconductor memory device according to the first embodiment
  • FIG. 4B is a cross-sectional view taken along the line AA ′ shown in FIG. is there.
  • FIG. 5A is a cross-sectional view showing the method of manufacturing the semiconductor memory device according to the first embodiment
  • FIG. 5B is a cross-sectional view taken along the line AA ′ shown in FIG. is there.
  • FIG. 6A is a cross-sectional view showing the method of manufacturing the semiconductor memory device according to the first embodiment
  • FIG. 6B is a cross-sectional view taken along line AA ′ shown in FIG. is there.
  • FIG. 7A is a cross-sectional view showing the method of manufacturing the semiconductor memory device according to the first embodiment
  • FIG. 7B is a cross-sectional view taken along the line AA ′ shown in FIG. is there.
  • FIG. 8 is a cross-sectional view illustrating the method of manufacturing the semiconductor memory device according to the first embodiment.
  • FIG. 9 is a cross-sectional view illustrating the method of manufacturing the semiconductor memory device according to the first embodiment.
  • FIG. 10 is a cross-sectional view illustrating the method of manufacturing the semiconductor memory device according to the first embodiment.
  • FIG. 11 is a cross-sectional view illustrating the method of manufacturing the semiconductor memory device according to the first embodiment.
  • FIG. 12 is a cross-sectional view illustrating the method of manufacturing the semiconductor memory device according to the first embodiment.
  • FIG. 13 is a cross-sectional view illustrating the method of manufacturing the semiconductor memory device according to the first embodiment.
  • FIG. 14 is a cross-sectional view illustrating the method of manufacturing the semiconductor memory device according to the first embodiment.
  • FIG. 15A is a plan view showing a semiconductor memory device according to the second embodiment, and FIG.
  • FIG. 15B is a cross-sectional view taken along line A-A ′ shown in FIG.
  • FIG. 16 is a perspective view showing the periphery of a contact of the semiconductor memory device according to the second embodiment.
  • FIG. 17A is a plan view showing a semiconductor memory device according to the third embodiment
  • FIG. 17B is a cross-sectional view taken along line A-A ′ shown in FIG.
  • FIG. 18 is a cross-sectional view showing a semiconductor memory device according to the fourth embodiment.
  • FIG. 19 is a cross-sectional view showing a semiconductor memory device according to the fifth embodiment.
  • FIG. 20 is a cross-sectional view illustrating the method of manufacturing the semiconductor memory device according to the fifth embodiment.
  • FIG. 1A is a plan view showing the semiconductor memory device according to this embodiment
  • FIG. 1B is a cross-sectional view taken along the line AA ′ shown in FIG. 2A is a partially enlarged sectional view corresponding to the region A in FIG. 1A
  • FIG. 2B is a partially enlarged sectional view showing a region B in FIG. 1B
  • FIG. 3 is a perspective view showing the periphery of the contact of the semiconductor memory device according to the present embodiment.
  • the semiconductor memory device 1 includes a silicon substrate 10.
  • a silicon substrate 10 In this specification, for convenience of explanation, an XYZ orthogonal coordinate system is adopted in this specification. Two directions parallel to and orthogonal to the upper surface of the silicon substrate 10 are defined as “X direction” and “Y direction”, and a direction perpendicular to the upper surface is defined as “Z direction”.
  • a plurality of silicon pillars 21 are provided on the silicon substrate 10. The silicon pillars 21 are arranged in a matrix along the X direction and the Y direction. Each silicon pillar 21 has a quadrangular prism shape extending in the Z direction. The lower end of the silicon pillar 21 is connected to the silicon substrate 10. Note that the silicon pillar 21 may be thinner toward the lower side, that is, closer to the silicon substrate 10.
  • a contact 22 is provided on the silicon pillar 21.
  • the contact 22 is made of a metal such as tungsten (W).
  • the shape of the contact 22 is, for example, an inverted long truncated cone. That is, the central axis of the contact 22 extends in the Z direction, and the shape of the contact 22 is an oval shape with the X direction as the major axis direction and the Y direction as the minor axis direction when viewed from the Z direction. Further, the major axis and the minor axis of the contact 22 become smaller toward the lower side.
  • Both the upper surface 22b and the lower surface 22a of the contact 22 are oval, and the area of the lower surface 22a is smaller than the area of the upper surface 22b.
  • the upper surface 22b and the lower surface 22a are similar.
  • a part of the lower surface 22 a of the contact 22 is in contact with a part of the upper surface of the silicon pillar 21, whereby the contact 22 is connected to the silicon pillar 21.
  • the major axis of the lower surface 22 a of the contact 22, that is, the length in the X direction is longer than the length in the X direction on the upper surface of the silicon pillar 21. Therefore, in the X direction, the lower surface of the contact 22 protrudes from the upper surface of the silicon pillar 21 to both sides in the X direction.
  • the short diameter of the lower surface 22 a of the contact 22, that is, the length in the Y direction is shorter than the length in the Y direction on the upper surface of the silicon pillar 21. Therefore, in the Y direction, the lower surface 22 a of the contact 22 is in contact with only a part of the upper surface of the silicon pillar 21.
  • the lower surface 22a of the contact 22 is in contact with a region on one side in the Y direction on the upper surface of the silicon pillar 21, for example, in contact with a region including an edge extending in the X direction. Then, along the X direction, the contacts 22 are alternately arranged on one end and the other end of the silicon pillar 21 in the Y direction.
  • a plurality of bit lines 23 extending in the X direction are provided on the contact 22.
  • the bit line 23 is formed of a metal such as tungsten.
  • the width of the bit line 23, that is, the length in the Y direction is approximately the same as the short diameter of the upper surface 22b of the contact 22, that is, the length in the Y direction.
  • the upper surface 22 b of the contact 22 is in contact with the lower surface of the bit line 23, whereby the contact 22 is connected to the bit line 23.
  • bit lines 23 are provided for each column of the silicon pillars 21 arranged along the X direction. Two adjacent bit lines 23 pass through a region immediately above both ends in the Y direction of the silicon pillars 21 arranged in a line along the X direction. Each silicon pillar 21 is connected to one bit line 23 via one contact 22. Thereby, two silicon pillars 21 adjacent in the X direction are connected to mutually different bit lines 23. In other words, the two contacts 22 connected to the two adjacent bit lines 23 are arranged at different positions in both the X direction and the Y direction. Such an arrangement of the contacts 22 is called “double staggered”.
  • FIGS. 15A and 17A are diagrams showing an outline of the apparatus, mainly some conductive members are schematically drawn, and other portions are drawn in a simplified manner.
  • the bit line 23 is indicated by a two-dot chain line in order to make the drawing easier to see.
  • the silicon pillar 21 is shown in gray. The same applies to FIGS. 15A and 17A described later.
  • a plurality of word lines 25 extending in the Y direction are provided on the silicon substrate 10.
  • the word line 25 is formed of a metal such as tungsten.
  • the word lines 25 are arranged in a line along the Z direction.
  • a plurality of silicon pillars 21 arranged in a line along the Y direction and a plurality of word lines 25 arranged in a line along the Z direction on both sides in the X direction constitute one unit.
  • one silicon pillar 21 and two word lines 25 are alternately arranged along the X direction.
  • One source electrode 26 is provided for each of several unit units.
  • the source electrode 26 has a plate shape that extends along the YZ plane, and is disposed between two adjacent unit units. The lower end of the source electrode 26 is connected to the silicon substrate 10.
  • a floating gate electrode 28 is provided between each silicon pillar 21 and each word line 25.
  • the shape of the floating gate electrode 28 is a rod shape extending in the Y direction.
  • the floating gate electrode 28 is a conductive member that is insulated from the surroundings and accumulates electric charges, and is formed of, for example, polysilicon (Si).
  • Si polysilicon
  • a tunnel insulating film 31 is provided around the silicon pillar 21.
  • the tunnel insulating film 31 is a film that allows a tunnel current to flow when a predetermined voltage within the drive voltage range of the semiconductor memory device 1 is applied.
  • a single layer silicon oxide film, a silicon oxide layer, a silicon oxide layer, It is a three-layer film composed of a nitride layer and a silicon oxide layer.
  • the shape of the tunnel insulating film 31 is a pipe shape extending in the Z direction along the side surface of the silicon pillar 21. A part of the tunnel insulating film 31 is disposed between the silicon pillar 21 and the floating gate electrode 28.
  • the word line 25 is provided with a main body portion 25a made of, for example, tungsten and a barrier metal layer 25b made of, for example, titanium nitride (TiN).
  • the main body 25a has a strip shape extending in the Y direction.
  • the barrier metal layer 25b covers the side surface of the main body portion 25a on the floating gate electrode 28 side, the upper surface of the main body portion 25a, and the lower surface of the main body portion 25a.
  • a block insulating film 32 is provided on the side surface of the word line 25 on the floating gate electrode 28 side and on the upper and lower surfaces of the word line 25.
  • the shape of the block insulating film 41 in the XZ section is a C shape that wraps around the word line 25.
  • the block insulating film 32 is a film that does not substantially flow current even when a voltage within the range of the driving voltage of the semiconductor memory device 1 is applied.
  • the entire dielectric constant is higher than the dielectric constant of silicon oxide. It is a high dielectric constant film.
  • the dielectric constant of the block insulating film 32 is higher than the dielectric constant of the tunnel insulating film 31.
  • HfO 2 hafnium oxide
  • SiO 2 silicon oxide
  • HfSiO hafnium silicon oxide
  • a body part 21a including a central axis and a cover layer 21b covering the side surface of the body part 21a are provided.
  • the body part 21a and the cover layer 21b are in contact with each other.
  • the lower end of the body portion 21 a is in contact with the silicon substrate 10, and the lower end of the cover layer 21 b is not in contact with the silicon substrate 10.
  • An impurity diffusion layer 10a is formed in a portion of the silicon substrate 10 in contact with the body portion 21a.
  • an impurity diffusion layer 10b is formed in a portion where the source electrode 26 is in contact with the silicon substrate 10.
  • a band-shaped interlayer insulating film 35 made of, for example, silicon oxide and extending in the Y direction is provided between the block insulating films 32 adjacent in the Z direction.
  • a space between the word lines 25 adjacent in the X direction, between the block insulating films 32 adjacent in the X direction, and between the interlayer insulating films 35 adjacent in the X direction, where the silicon pillar 21 is not provided. Is provided with a plate-like insulating member 36 made of, for example, silicon oxide and extending along the YZ plane. The interval between the insulating members 36 adjacent in the X direction is longer than the length in the X direction of the lower surface 22a of the contact 22 to which the silicon pillar 21 sandwiched between these insulating members 36 is connected.
  • an insulating member 37 made of, for example, silicon oxide is provided between the tunnel insulating films 31 adjacent in the Y direction.
  • a transistor including one floating gate electrode 28 is formed at each intersection of the silicon pillar 21 and the word line 25, and this functions as a memory cell.
  • a NAND string in which a plurality of memory cells are connected in series is connected between the bit line 23 and the silicon substrate 10.
  • FIG. 4A to 7B are cross-sectional views showing a method for manufacturing the semiconductor memory device according to this embodiment.
  • FIG. 4B is a cross-sectional view taken along line AA ′ shown in FIG. The same applies to the other figures.
  • 8 to 14 are cross-sectional views showing the method for manufacturing the semiconductor memory device according to this embodiment.
  • a silicon substrate 10 is prepared.
  • an interlayer insulating film 35 made of, for example, silicon oxide and a sacrificial film 41 made of, for example, silicon nitride are alternately stacked on the silicon substrate 10 to form a stacked body 42.
  • An etching stopper film 43 made of, for example, silicon nitride or polysilicon is formed on the stacked body 42.
  • a plurality of memory trenches 45 extending in the Y direction are formed in the etching stopper film 43 and the stacked body 42.
  • the etching stopper film 43 and the stacked body 42 are passed through the memory trench 45, and the silicon substrate 10 is exposed on the bottom surface of the memory trench 45.
  • an insulating member 37 made of, for example, silicon oxide is embedded in the memory trench 45.
  • a mask 60 in which line and space patterns extending in the X direction are arranged along the Y direction is formed on the etching stopper film 43.
  • the insulating member 37 is selectively removed by performing anisotropic etching such as RIE (Reactive Ion Etching) using the mask 60 and the etching stopper film 43 as a mask.
  • RIE Reactive Ion Etching
  • a memory hole 46 is formed in the memory trench 45.
  • the silicon substrate 10 is exposed on the bottom surface of the memory hole 46.
  • the mask 60 and the etching stopper film 43 are removed.
  • isotropic etching is performed on the sacrificial film 41 through the memory hole 46.
  • wet etching using hot phosphoric acid as an etchant is performed.
  • the portion of the sacrificial film 41 exposed on the side surface of the memory hole 46 is removed.
  • a recess 47 is formed on the side surface of the memory hole 46 facing the X direction. 8 to 14 described later show a region corresponding to the region C in FIG. 7B.
  • a thermal oxidation process is performed to form a stopper layer 49 made of silicon oxide on the exposed surface of the sacrificial film 41 in the recess 47.
  • the stopper layer 49 may be formed by depositing silicon oxide by a CVD (chemical vapor deposition) method or the like.
  • amorphous silicon is deposited by, for example, a CVD method to form a silicon film 51 on the inner surface of the memory hole 46.
  • the silicon film 51 is also embedded in the recess 47.
  • the silicon film 51 is etched back to leave a portion of the silicon film 51 disposed in the recess 47 and a portion disposed outside the recess 47. Remove. Thereby, the silicon film 51 is divided for each sacrificial film 41 in the Z direction.
  • a silicon oxide is deposited, for example, by a CVD method or the like to form a tunnel insulating film 31 on the inner surface of the memory hole 46.
  • amorphous silicon is deposited by a CVD method or the like to form the cover layer 21 b on the tunnel insulating film 31. At this time, the cover layer 21 b does not fill the entire memory hole 46.
  • anisotropic etching such as RIE is performed on the cover layer 21b and the tunnel insulating film 31.
  • the cover layer 21b and the tunnel insulating film 31 are removed from the bottom surface of the memory hole 46, and the silicon substrate 10 is exposed.
  • the portion of the tunnel insulating film 31 that is disposed on the side surface of the memory hole 46 is protected by the cover layer 21b, and thus is not easily damaged by anisotropic etching.
  • impurities such as arsenic (As) and phosphorus (P) are ion-implanted over the entire surface.
  • the impurity diffusion layer 10a is formed in the portion of the silicon substrate 10 that is open to the bottom surface of the memory hole 46.
  • amorphous silicon is deposited by a CVD method or the like, and the body portion 21 a is embedded in the memory hole 46.
  • the lower end of the body portion 21 a is in contact with the impurity diffusion layer 10 a of the silicon substrate 10.
  • the silicon pillar 21 is formed by the cover layer 21b and the body portion 21a.
  • RIE is performed to form slits 53 extending in the Y direction at portions between the memory trenches 46 in the stacked body 42.
  • the laminated body 42 is passed through the slit 53.
  • isotropic etching using the stopper layer 49 as a stopper is performed on the sacrificial film 41 (see FIG. 11) through the slit 53.
  • wet etching using hot phosphoric acid as an etchant is performed.
  • the sacrificial film 41 is removed, and a recess 54 extending in the Y direction is formed on the side surface of the slit 53.
  • a stopper layer 49 is exposed on the inner surface of the recess 54.
  • wet etching using, for example, DHF (diluted hydrofluoric acid) as an etchant is performed through the slit 53 and the concave portion 54 to form silicon oxide from the upper surface of the concave portion 54.
  • the stopper layer 49 (see FIG. 12) is removed.
  • the silicon film 51 is exposed on the inner surface of the recess 54.
  • a part of the interlayer insulating film 35 made of silicon oxide is also removed, and the length of the recess 54 in the Z direction is increased.
  • hafnium silicon oxide (HfSiO) is deposited through slits 53 and recesses 54 to form hafnium silicon oxide layer 32c, and silicon oxide (SiO 2 ) is deposited.
  • a silicon oxide layer 32b is formed, and hafnium oxide (HfO 2 ) is deposited, thereby forming a hafnium oxide layer 32a.
  • the block insulating film 32 is formed on the inner surfaces of the slit 53 and the recess 54. At this time, the block insulating film 32 is made not to fill the entire recess 54.
  • TiN titanium nitride
  • the barrier metal layer 25 b is formed on the side surface of the block insulating film 32.
  • tungsten is deposited in the slit 53 and the recess 54 by, for example, a CVD method.
  • the main body 25a is formed on the side surface of the barrier metal layer 25b.
  • the main body 25 a is embedded in the entire recess 54. In this manner, the word line 25 including the barrier metal layer 25b and the main body 25a is formed in the slit 53 and the recess 54.
  • the word line 25 is etched back through the slit 53.
  • a portion of the word line 25 disposed in the recess 54 remains, and a portion disposed outside the recess 54 is removed.
  • the block insulating film 32 is etched back through the slit 53.
  • the portion of the block insulating film 32 disposed in the recess 54 remains, and the portion disposed outside the recess 54 is removed.
  • the block insulating film 32 is also divided for each recess 54.
  • the insulating member 36 is embedded in the slit 53 by depositing silicon oxide.
  • a slit extending in the Y direction and reaching the silicon substrate 10 is formed in a part of the insulating members 36.
  • impurities such as arsenic or phosphorus are ion-implanted over the entire surface, thereby forming an impurity diffusion layer 10b in the exposed portion of the bottom surface of the slit in the silicon substrate 10.
  • a conductive material such as tungsten is embedded in the slit to form the source electrode 26.
  • the source electrode 26 is in contact with the impurity diffusion layer 10 b of the silicon substrate 10.
  • the laminated structure 70 is formed on the silicon substrate 10.
  • a plurality of silicon pillars 21 extending in the Z direction are arranged in a matrix along the X direction and the Y direction, and a plurality of word lines 25 extending in the Y direction are interposed between the silicon pillars 21.
  • the floating gate electrodes 28 are arranged between the silicon pillars 21 and the word lines 25, arranged in a matrix along the X and Z directions.
  • a source electrode 26 that extends along the YZ plane and whose lower end is connected to the silicon substrate 10 is disposed. On the upper surface of the laminated structure 70, the upper surface of the silicon pillar 21 is exposed.
  • an interlayer insulating film 71 is formed on the laminated structure 70, and a contact hole 72 is formed in the interlayer insulating film 71.
  • the contact holes 72 are formed for each silicon pillar 21 and are arranged in a staggered manner as a whole. That is, the plurality of contact holes 72 arranged in a line along the Y direction are formed in a region immediately above one end portion in the Y direction of the plurality of silicon pillars 21 arranged in a line along the Y direction. Further, the contact hole 72 belonging to the adjacent row as viewed from the row of contact holes 72 is formed in the region immediately above the other end portion of each silicon pillar 21 in the Y direction.
  • a barrier metal layer (not shown) made of titanium nitride is formed on the inner surface of the contact hole 72, and a metal material such as tungsten is embedded in the contact hole 72, thereby making contact in the contact hole 72. 22 is formed.
  • the lower surface of each contact 22 is in contact with the upper surface of each silicon pillar 21, and each contact 22 is connected to the silicon pillar 21.
  • bit lines 23 extending in the X direction are formed on the interlayer insulating film 71 and the contacts 22.
  • the two adjacent bit lines 23 pass through the regions immediately above both ends of each silicon pillar 21 in the Y direction.
  • each bit line 23 is connected to the contacts 22 arranged in a line along the X direction.
  • each bit line 23 is connected to the silicon pillars 21 arranged every other line along the X direction via the contacts 22.
  • the semiconductor memory device 1 according to this embodiment is manufactured through a normal process.
  • the arrangement period of the silicon pillars 21 in the Y direction can be made twice the arrangement period of the bit lines 23. For this reason, process conditions can be relaxed in processing with a high aspect ratio for forming the silicon pillar 21.
  • the line-and-space arrangement period of the mask 60 can be doubled the arrangement period of the bit lines 23, and the mask 60 is formed and the mask 60 is used as a mask. Anisotropic etching is facilitated.
  • the distance between the contacts 22 is made longer than in the case where the contacts 22 are arranged in a matrix along the X and Y directions. be able to. Thereby, formation of the contacts 22 is facilitated, and a short circuit between the contacts 22 can be suppressed.
  • the interval between the insulating members 36 adjacent in the X direction is made longer than the length in the X direction of the lower surface 22a of the contact 22 to which the silicon pillar 21 sandwiched between these insulating members 36 is connected. ing. Thereby, it is possible to suppress the contact 22 disposed in the vicinity of the source electrode 26 from coming into contact with the source electrode 26.
  • a plurality of memory cells sharing one word line 25 are set as one page, and a data write operation or a read operation is performed in page units. For this reason, when a predetermined potential is applied to the bit line 23 connected to the selected memory cell, a fixed potential is applied to the adjacent bit lines 23. Accordingly, the bit line 23 to which a predetermined potential is applied can be sandwiched between the bit lines 23 to which a fixed potential is applied and electromagnetically shielded. As a result, it is possible to suppress the generation of noise due to the potential change of the selected bit line 23 and to reduce the influence of the external electric field change on the selected bit line 23. For this reason, the operation of the semiconductor memory device 1 is stabilized.
  • FIG. 15A is a plan view showing the semiconductor memory device according to this embodiment
  • FIG. 15B is a cross-sectional view taken along line AA ′ shown in FIG.
  • FIG. 16 is a perspective view showing the periphery of a contact in the semiconductor memory device according to the present embodiment.
  • the semiconductor memory device 2 according to this embodiment is the same as the semiconductor memory device 1 according to the first embodiment described above (see FIGS. 1A and 1B).
  • an insulating member 81 extending in the Z direction is provided in the space surrounded by the tunnel insulating film 31.
  • the insulating member 81 divides the portion of the silicon pillar 21 excluding the lower end portion into two portions 21d separated in the X direction.
  • the two portions 21 d are connected to the silicon substrate 10 with their lower ends connected to each other, and their upper ends are connected to the same contact 22.
  • the lower end portion of the silicon pillar 21 may also be divided into two parts. However, also in this case, the upper end of each part is connected to the same contact 22.
  • the silicon pillar 21 is divided into two portions 21d for each word line 25, the memory cell formed for each closest portion between the portion 21d and the word line 25 is replaced with the same silicon pillar. 21 can be separated from the memory cell formed on the opposite side of the X direction. Thereby, the stability of operation is further improved.
  • Other configurations, manufacturing methods, operations, and effects in the present embodiment are the same as those in the first embodiment described above.
  • FIG. 17A is a plan view showing the semiconductor memory device according to this embodiment
  • FIG. 17B is a cross-sectional view taken along line AA ′ shown in FIG.
  • the silicon pillars 21 arranged in a line along the X direction are mutually connected in the Y direction.
  • a plurality of contacts 22 having three different positions are provided.
  • three bit lines 23 are provided so as to pass through a region immediately above the silicon pillars 21 arranged in a line along the X direction.
  • the arrangement period of the silicon pillars 21 and the arrangement period of the contacts 22 in the Y direction are three times the arrangement period of the bit lines 23.
  • such an arrangement form of the contacts 22 is referred to as “triple staggered”.
  • a contact 22_1 is provided in a region immediately above one end in the Y direction of the silicon pillar 21_1.
  • a bit line 23_1 extending in the X direction is provided so as to pass the region immediately above.
  • the silicon pillar 21_1 is connected to the bit line 23_1 via the contact 22_1.
  • a contact 22_2 is provided in a region immediately above the center of the silicon pillar 21_2 in the Y direction, and a bit line 23_2 is provided so as to pass through the region directly above. Accordingly, the silicon pillar 21_2 is connected to the bit line 23_2 through the contact 22_2.
  • a contact 22_3 is provided in a region immediately above the other end portion in the Y direction of the silicon pillar 21_3, and a bit line 23_3 is provided so as to pass through the region directly above.
  • the silicon pillar 21_3 is connected to the bit line 23_3 through the contact 22_3.
  • the structure of such a basic unit is repeatedly arranged along the X direction and the Y direction.
  • the arrangement period of the silicon pillars 21 in the Y direction can be three times the arrangement period of the bit lines 23.
  • the process with a high aspect ratio for forming the silicon pillar 21 can be made still easier.
  • the interval between the contacts 22 can be further increased.
  • Other configurations, manufacturing methods, operations, and effects in the present embodiment are the same as those in the first embodiment described above.
  • FIG. 18 is a cross-sectional view showing the semiconductor memory device according to this embodiment.
  • the cell source line 15 is provided between the silicon substrate 10 and the silicon pillar 21.
  • the cell source line 15 for example, a polysilicon layer 15a, a tungsten layer 15b, and a polysilicon layer 15c are stacked in this order.
  • the lower end of the silicon pillar 21 and the lower end of the source electrode 26 are connected not to the silicon substrate 10 but to the cell source line 15.
  • an insulating film 11 made of, for example, silicon oxide is provided.
  • the cell source line 15 is insulated from the silicon substrate 10 by the insulating film 11.
  • Other configurations, manufacturing methods, operations, and effects in the present embodiment are the same as those in the first embodiment described above.
  • FIG. 19 is a cross-sectional view showing the semiconductor memory device according to this embodiment.
  • a silicon epitaxial layer 12 is provided between the silicon substrate 10 and the silicon pillar 21. Further, the floating gate electrode 28 is not provided on both sides of the silicon epitaxial layer 12 in the X direction, and only one word line 25a is provided. The width of the word line 25a in the X direction is the combined width of the word line 25 and the floating gate electrode 28 in the other stages.
  • FIG. 20 is a cross-sectional view showing the method of manufacturing the semiconductor memory device according to this embodiment.
  • the steps shown in FIGS. 4 to 6 are performed.
  • the silicon epitaxial layer 12 is formed using the silicon substrate 10 as a seed.
  • the position of the upper surface of the silicon epitaxial layer 12 is the position between the first stage sacrificial film 41 and the second stage sacrificial film 41 from the bottom.
  • the lowermost recess 47 is not formed below the memory hole 46, and the lowermost floating gate electrode 28 is not formed.
  • the lowermost recess 54 reaches the silicon epitaxial layer 12.
  • the semiconductor memory device 5 according to the present embodiment can be manufactured by the same method as in the first embodiment.
  • Other configurations, manufacturing methods, operations, and effects in the present embodiment are the same as those in the first embodiment described above.
  • n is an integer of 2 or more
  • the configuration of the “n-run staggered” semiconductor memory device can be expressed as follows.
  • n contacts 22 are provided on n silicon pillars 21 arranged in a line along the X direction, and the Y of these n contacts 22 is Y. The positions in the directions are different from each other.
  • n bit lines 23 extending in the X direction all pass directly above the respective silicon pillars 21.
  • Each silicon pillar 21 is connected to each bit line 23 via each contact 22.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

 実施形態に係る半導体記憶装置は、第1方向に延び、前記第1方向に対して交差した第2方向に沿って配列された第1及び第2の半導体ピラーと、前記第1の半導体ピラーと前記第2の半導体ピラーとの間に設けられ、前記第1方向及び前記第2方向の双方に対して交差した第3方向に延びる第1及び第2の配線と、前記第1の半導体ピラーと前記第1の配線との間に設けられた第1の電極と、前記第2の半導体ピラーと前記第2の配線との間に設けられた第2の電極と、前記第2方向に延び、それぞれが前記第1の半導体ピラーの直上域及び第2の半導体ピラーの直上域の双方を通過する第3及び第4の配線と、前記第1の半導体ピラーに接し、前記第3の配線に接続された第1コンタクトと、前記第2の半導体ピラーに接し、前記第4の配線に接続された第2コンタクトと、を備える。

Description

半導体記憶装置
 実施形態は、半導体記憶装置に関する。
 従来より、NANDフラッシュメモリは、平面構造の微細化により集積度を増加させ、ビットコストを低減させてきたが、平面構造の微細化は限界に近づきつつある。そこで、近年、メモリセルを上下方向に積層する技術が提案されている。しかしながら、このような積層型の記憶装置は、製造の容易性及び製品の信頼性が課題となる。
特開2013-182949号公報
 実施形態の目的は、製造が容易で信頼性が高い半導体記憶装置を提供することである。
 実施形態に係る半導体記憶装置は、第1方向に延び、前記第1方向に対して交差した第2方向に沿って配列された第1及び第2の半導体ピラーと、前記第1の半導体ピラーと前記第2の半導体ピラーとの間に設けられ、前記第1方向及び前記第2方向の双方に対して交差した第3方向に延びる第1及び第2の配線と、前記第1の半導体ピラーと前記第1の配線との間に設けられた第1の電極と、前記第2の半導体ピラーと前記第2の配線との間に設けられた第2の電極と、前記第2方向に延び、それぞれが前記第1の半導体ピラーの直上域及び第2の半導体ピラーの直上域の双方を通過する第3及び第4の配線と、前記第1の半導体ピラーに接し、前記第3の配線に接続された第1コンタクトと、前記第2の半導体ピラーに接し、前記第4の配線に接続された第2コンタクトと、を備える。
図1(a)は、第1の実施形態に係る半導体記憶装置を示す平面図であり、図1(b)は図1(a)に示すA-A’線による断面図である。 図2(a)は図1(a)の領域Aに相当する一部拡大断面図であり、図2(b)は図1(b)の領域Bを示す一部拡大断面図である。 図3は、第1の実施形態に係る半導体記憶装置のコンタクト周辺を示す斜視図である。 図4(a)は、第1の実施形態に係る半導体記憶装置の製造方法を示す断面図であり、図4(b)は、図4(a)に示すA-A’線による断面図である。 図5(a)は、第1の実施形態に係る半導体記憶装置の製造方法を示す断面図であり、図5(b)は、図5(a)に示すA-A’線による断面図である。 図6(a)は、第1の実施形態に係る半導体記憶装置の製造方法を示す断面図であり、図6(b)は、図6(a)に示すA-A’線による断面図である。 図7(a)は、第1の実施形態に係る半導体記憶装置の製造方法を示す断面図であり、図7(b)は、図7(a)に示すA-A’線による断面図である。 図8は、第1の実施形態に係る半導体記憶装置の製造方法を示す断面図である。 図9は、第1の実施形態に係る半導体記憶装置の製造方法を示す断面図である。 図10は、第1の実施形態に係る半導体記憶装置の製造方法を示す断面図である。 図11は、第1の実施形態に係る半導体記憶装置の製造方法を示す断面図である。 図12は、第1の実施形態に係る半導体記憶装置の製造方法を示す断面図である。 図13は、第1の実施形態に係る半導体記憶装置の製造方法を示す断面図である。 図14は、第1の実施形態に係る半導体記憶装置の製造方法を示す断面図である。 図15(a)は、第2の実施形態に係る半導体記憶装置を示す平面図であり、図15(b)は図15(a)に示すA-A’線による断面図である。 図16は、第2の実施形態に係る半導体記憶装置のコンタクト周辺を示す斜視図である。 図17(a)は、第3の実施形態に係る半導体記憶装置を示す平面図であり、図17(b)は図17(a)に示すA-A’線による断面図である。 図18は、第4の実施形態に係る半導体記憶装置を示す断面図である。 図19は、第5の実施形態に係る半導体記憶装置を示す断面図である。 図20は、第5の実施形態に係る半導体記憶装置の製造方法を示す断面図である。
 (第1の実施形態)
 先ず、第1の実施形態について説明する。
 図1(a)は、本実施形態に係る半導体記憶装置を示す平面図であり、図1(b)は図1(a)に示すA-A’線による断面図である。
 図2(a)は図1(a)の領域Aに相当する一部拡大断面図であり、図2(b)は図1(b)の領域Bを示す一部拡大断面図である。
 図3は、本実施形態に係る半導体記憶装置のコンタクト周辺を示す斜視図である。
 先ず、本実施形態に係る半導体記憶装置1の概略的な構成について説明する。
 図1(a)及び図1(b)並びに図3に示すように、半導体記憶装置1においては、シリコン基板10が設けられている。以下、説明の便宜上、本明細書においては、XYZ直交座標系を採用する。シリコン基板10の上面に対して平行で、且つ、相互に直交する2方向を「X方向」及び「Y方向」とし、上面に対して垂直な方向を「Z方向」とする。シリコン基板10上には、複数本のシリコンピラー21が設けられている。シリコンピラー21は、X方向及びY方向に沿ってマトリクス状に配列されている。各シリコンピラー21の形状は、Z方向に延びる四角柱形である。シリコンピラー21の下端は、シリコン基板10に接続されている。なお、シリコンピラー21は、下方に向かうほど、すなわち、シリコン基板10に近づくほど、細くなっていてもよい。
 シリコンピラー21上にはコンタクト22が設けられている。コンタクト22は、例えばタングステン(W)等の金属からなる。コンタクト22の形状は、例えば、逆長円錐台形である。すなわち、コンタクト22の中心軸はZ方向に延びており、Z方向から見て、コンタクト22の形状は、X方向を長径方向とし、Y方向を短径方向とした長円形である。また、コンタクト22の長径及び短径は下方に向かうほど小さくなる。コンタクト22の上面22b及び下面22aはいずれも長円形であり、下面22aの面積は上面22bの面積よりも小さく、例えば、上面22bと下面22aは相似形である。コンタクト22の下面22aの一部はシリコンピラー21の上面の一部に接しており、これにより、コンタクト22はシリコンピラー21に接続されている。
 コンタクト22の下面22aの長径、すなわち、X方向の長さは、シリコンピラー21の上面におけるX方向の長さよりも長い。従って、X方向において、コンタクト22の下面はシリコンピラー21の上面からX方向両側にはみ出している。一方、コンタクト22の下面22aの短径、すなわち、Y方向の長さは、シリコンピラー21の上面におけるY方向の長さよりも短い。従って、Y方向において、コンタクト22の下面22aはシリコンピラー21の上面の一部のみに接している。コンタクト22の下面22aは、シリコンピラー21の上面におけるY方向の一方側の領域に接しており、例えば、X方向に延びる端縁を含む領域に接している。そして、X方向に沿って、コンタクト22は、シリコンピラー21のY方向における一方側の端部上及び他方側の端部上に交互に配置されている。
 コンタクト22上には、X方向に延びる複数本のビット線23が設けられている。ビット線23は、例えばタングステン等の金属により形成されている。ビット線23の幅、すなわち、Y方向の長さは、コンタクト22の上面22bにおける短径、すなわち、Y方向の長さと同程度である。コンタクト22の上面22bはビット線23の下面に接し、これにより、コンタクト22はビット線23に接続されている。
 また、X方向に沿って配列されたシリコンピラー21の列毎に、2本のビット線23が設けられている。隣り合う2本のビット線23は、X方向に沿って一列に配列されたシリコンピラー21におけるY方向両端部の直上域を通過している。そして、各シリコンピラー21は、1本のコンタクト22を介して、1本のビット線23に接続されている。これにより、X方向において隣り合う2本のシリコンピラー21は、相互に異なるビット線23に接続されている。換言すれば、隣り合う2本のビット線23に接続された2つのコンタクト22は、X方向及びY方向の双方において、相互に異なる位置に配置されている。このようなコンタクト22の配列の形態を、「2連千鳥」という。
 なお、図1(a)及び図1(b)は装置の概略を示す図であるため、主としていくつかの導電部材を模式的に描き、それ以外の部分は簡略化して描いている。また、図1(a)においては、図を見やすくするために、ビット線23を二点鎖線で示している。更に、図1(a)においては、シリコンピラー21を灰色で示している。後述する図15(a)及び図17(a)についても同様である。
 また、シリコン基板10上には、Y方向に延びる複数本のワード線25が設けられている。後述するように、ワード線25は、タングステン等の金属により形成されている。Y方向に沿って一列に配列されたシリコンピラー21のX方向の両側において、ワード線25は、Z方向に沿って一列に配列されている。そして、Y方向に沿って一列に配列された複数本のシリコンピラー21と、そのX方向両側においてそれぞれZ方向に沿って一列に配列された複数本のワード線25により、1つの単位ユニットが構成されている。換言すれば、X方向に沿って、1本のシリコンピラー21と、2本のワード線25とが、交互に配列されている。いくつかの単位ユニット毎に、1本のソース電極26が設けられている。ソース電極26の形状は、YZ平面に沿って拡がる板状であり、隣り合う2つの単位ユニット間に配置されている。ソース電極26の下端はシリコン基板10に接続されている。
 各シリコンピラー21と各ワード線25との間には、浮遊ゲート電極28が設けられている。浮遊ゲート電極28の形状はY方向に延びる棒状である。浮遊ゲート電極28は、周囲から絶縁され、電荷を蓄積する導電性の部材であり、例えば、ポリシリコン(Si)により形成されている。
 後述するように、シリコンピラー21、ワード線25、ソース電極26、浮遊ゲート電極28及びビット線23の間は、絶縁材料により埋め込まれている。
 次に、半導体記憶装置1の各シリコンピラー21と各ワード線25との交差部分の周辺の構成について、詳細に説明する。
 図2(a)及び図2(b)に示すように、シリコンピラー21の周囲には、トンネル絶縁膜31が設けられている。トンネル絶縁膜31は、半導体記憶装置1の駆動電圧の範囲内にある所定の電圧が印加されるとトンネル電流を流す膜であり、例えば、単層のシリコン酸化膜、又は、シリコン酸化層、シリコン窒化層及びシリコン酸化層からなる三層膜である。トンネル絶縁膜31の形状は、シリコンピラー21の側面に沿ってZ方向に延びるパイプ状である。トンネル絶縁膜31の一部は、シリコンピラー21と浮遊ゲート電極28との間に配置されている。
 ワード線25においては、例えばタングステンからなる本体部25aと、例えばチタン窒化物(TiN)からなるバリアメタル層25bが設けられている。本体部25aの形状はY方向に延びる帯状である。バリアメタル層25bは、本体部25aにおける浮遊ゲート電極28側の側面、本体部25aの上面、及び、本体部25aの下面を覆っている。
 また、ワード線25における浮遊ゲート電極28側の側面上、ワード線25の上面上及び下面上には、ブロック絶縁膜32が設けられている。XZ断面におけるブロック絶縁膜41の形状は、ワード線25を包むC字状である。ブロック絶縁膜32は、半導体記憶装置1の駆動電圧の範囲内にある電圧が印加されても実質的に電流を流さない膜であり、例えば、全体の誘電率がシリコン酸化物の誘電率よりも高い高誘電率膜である。例えば、ブロック絶縁膜32の誘電率はトンネル絶縁膜31の誘電率よりも高い。ブロック絶縁膜32においては、ワード線25側から順に、ハフニウム酸化物(HfO)からなるハフニウム酸化層32a、シリコン酸化物(SiO)からなるシリコン酸化層32b、ハフニウムシリコン酸化物(HfSiO)からなるハフニウムシリコン酸化層32cが積層されている。
 シリコンピラー21においては、中心軸を含むボディ部21aと、ボディ部21aの側面を覆うカバー層21bが設けられている。ボディ部21a及びカバー層21bは相互に接触している。ボディ部21aの下端はシリコン基板10に接しており、カバー層21bの下端はシリコン基板10に接していない。シリコン基板10におけるボディ部21aが接する部分には、不純物拡散層10aが形成されている。また、シリコン基板10におけるソース電極26が接する部分には、不純物拡散層10bが形成されている。
 Z方向において隣り合うブロック絶縁膜32間には、例えばシリコン酸化物からなり、Y方向に延びる帯状の層間絶縁膜35が設けられている。また、X方向において隣り合うワード線25間、X方向において隣り合うブロック絶縁膜32間、及び、X方向において隣り合う層間絶縁膜35間のスペースであって、シリコンピラー21が設けられていないスペースには、例えばシリコン酸化物からなり、YZ平面に沿って拡がる板状の絶縁部材36が設けられている。X方向において隣り合う絶縁部材36の間隔は、これらの絶縁部材36に挟まれたシリコンピラー21が接続されたコンタクト22の下面22aのX方向における長さよりも長い。更に、Y方向において隣り合うトンネル絶縁膜31間には、例えばシリコン酸化物からなる絶縁部材37が設けられている。
 半導体記憶装置1においては、シリコンピラー21とワード線25との交差部分毎に、1つの浮遊ゲート電極28を含むトランジスタが形成され、これがメモリセルとして機能する。また、ビット線23とシリコン基板10との間には、複数のメモリセルが直列に接続されたNANDストリングが接続される。
 次に、本実施形態に係る半導体記憶装置の製造方法について説明する。
 図4(a)~図7(b)は、本実施形態に係る半導体記憶装置の製造方法を示す断面図である。
 図4(b)は、図4(a)に示すA-A’線による断面図である。他の図も同様である。
 図8~図14は、本実施形態に係る半導体記憶装置の製造方法を示す断面図である。
 先ず、図4(a)及び図4(b)に示すように、シリコン基板10を用意する。
 次に、シリコン基板10上に、例えばシリコン酸化物からなる層間絶縁膜35と、例えばシリコン窒化物からなる犠牲膜41を交互に積層し、積層体42を形成する。積層体42上には、例えばシリコン窒化物又はポリシリコンからなるエッチングストッパ膜43を形成する。
 次に、図5(a)及び図5(b)に示すように、エッチングストッパ膜43及び積層体42にY方向に延びるメモリトレンチ45を複数本形成する。メモリトレンチ45にはエッチングストッパ膜43及び積層体42を貫通させ、メモリトレンチ45の底面にはシリコン基板10を露出させる。次に、メモリトレンチ45内に、例えばシリコン酸化物からなる絶縁部材37を埋め込む。
 次に、図6(a)及び図6(b)に示すように、エッチングストッパ膜43上に、X方向に延びるラインアンドスペース状のパターンがY方向に沿って配列されたマスク60を形成する。次に、マスク60及びエッチングストッパ膜43をマスクとしてRIE(Reactive Ion Etching)等の異方性エッチングを施すことにより、絶縁部材37を選択的に除去する。これにより、メモリトレンチ45内にメモリホール46を形成する。メモリホール46の底面にはシリコン基板10が露出する。次に、マスク60及びエッチングストッパ膜43を除去する。
 次に、図7(a)及び図7(b)に示すように、メモリホール46を介して、犠牲膜41に対して等方性エッチングを施す。例えば、エッチャントとしてホットリン酸を用いたウェットエッチングを施す。これにより、犠牲膜41におけるメモリホール46の側面に露出した部分が除去される。この結果、メモリホール46におけるX方向に向いた側面に凹部47が形成される。なお、以後に説明する図8~図14は、図7(b)の領域Cに相当する領域を示す。
 次に、図8に示すように、例えば熱酸化処理を行って、凹部47内における犠牲膜41の露出面上に、シリコン酸化物からなるストッパ層49を形成する。なお、CVD(化学気相成長)法等により、シリコン酸化物を堆積させて、ストッパ層49を形成してもよい。
 次に、図9に示すように、例えばCVD法等によりアモルファスシリコンを堆積させて、メモリホール46の内面上にシリコン膜51を形成する。シリコン膜51は凹部47内にも埋め込まれる。
 次に、図10に示すように、シリコン膜51に対してエッチバックを施し、シリコン膜51のうち、凹部47内に配置された部分を残留させると共に、凹部47の外部に配置された部分を除去する。これにより、シリコン膜51が、Z方向において犠牲膜41毎に分断される。
 次に、図11に示すように、例えばCVD法等によりシリコン酸化物を堆積させて、メモリホール46の内面上にトンネル絶縁膜31を形成する。次に、CVD法等によりアモルファスシリコンを堆積させて、トンネル絶縁膜31上にカバー層21bを形成する。このとき、カバー層21bはメモリホール46全体を埋め込まないようにする。
 次に、カバー層21b及びトンネル絶縁膜31に対してRIE等の異方性エッチングを施す。これにより、メモリホール46の底面上からカバー層21b及びトンネル絶縁膜31が除去され、シリコン基板10が露出する。なお、このとき、トンネル絶縁膜31のうち、メモリホール46の側面上に配置された部分はカバー層21bによって保護されるため、異方性エッチングによって損傷を受けにくい。次に、全面に、ヒ素(As)、リン(P)等の不純物をイオン注入する。これにより、シリコン基板10におけるメモリホール46の底面に開口した部分に、不純物拡散層10aが形成される。
 次に、CVD法等によりアモルファスシリコンを堆積させて、メモリホール46内にボディ部21aを埋め込む。ボディ部21aの下端はシリコン基板10の不純物拡散層10aに接触する。カバー層21b及びボディ部21aにより、シリコンピラー21が形成される。
 次に、図12に示すように、例えばRIEを施し、積層体42におけるメモリトレンチ46間の部分に、Y方向に延びるスリット53を形成する。スリット53には積層体42を貫通させる。次に、スリット53を介して、犠牲膜41(図11参照)に対して、ストッパ層49をストッパとした等方性エッチングを施す。例えば、エッチャントとしてホットリン酸を用いたウェットエッチングを施す。これにより、犠牲膜41が除去され、スリット53の側面にY方向に延びる凹部54が形成される。凹部54の奥面には、ストッパ層49が露出する。
 次に、図13に示すように、スリット53及び凹部54を介して、例えばエッチャントとしてDHF(diluted hydrofluoric acid)を用いたウェットエッチングを施すことにより、凹部54の奥面上からシリコン酸化物からなるストッパ層49(図12参照)を除去する。これにより、凹部54の奥面にはシリコン膜51が露出する。このとき、シリコン酸化物からなる層間絶縁膜35の一部も除去され、凹部54のZ方向の長さが拡大する。
 次に、図14に示すように、スリット53及び凹部54を介して、ハフニウムシリコン酸化物(HfSiO)を堆積させることにより、ハフニウムシリコン酸化層32cを形成し、シリコン酸化物(SiO)を堆積させることにより、シリコン酸化層32bを形成し、ハフニウム酸化物(HfO)を堆積させることにより、ハフニウム酸化層32aを形成する。これにより、スリット53及び凹部54の内面上に、ブロック絶縁膜32が形成される。このとき、ブロック絶縁膜32は凹部54内の全体を埋め込まないようにする。
 次に、スリット53及び凹部54を介して、例えばCVD法によりチタン窒化物(TiN)を堆積させる。これにより、ブロック絶縁膜32の側面上にバリアメタル層25bが形成される。次に、スリット53及び凹部54内に、例えばCVD法によりタングステンを堆積させる。これにより、バリアメタル層25bの側面上に、本体部25aが形成される。本体部25aは凹部54内の全体に埋め込む。このようにして、スリット53内及び凹部54内に、バリアメタル層25b及び本体部25aからなるワード線25が形成される。
 次に、図2(a)及び図2(b)に示すように、スリット53を介して、ワード線25をエッチバックする。これにより、ワード線25における凹部54内に配置された部分を残留させ、凹部54の外部に配置された部分を除去する。次に、スリット53を介してブロック絶縁膜32をエッチバックする。これにより、ブロック絶縁膜32における凹部54内に配置された部分を残留させ、凹部54の外部に配置された部分を除去する。これにより、ブロック絶縁膜32も凹部54毎に分断される。次に、シリコン酸化物を堆積させることにより、スリット53内に絶縁部材36を埋め込む。
 次に、図1(a)及び図1(b)に示すように、一部の絶縁部材36内に、Y方向に延び、シリコン基板10に到達するスリットを形成する。次に、全面にヒ素又はリン等の不純物をイオン注入することにより、シリコン基板10におけるスリットの底面において露出した部分に、不純物拡散層10bを形成する。次に、このスリット内に例えばタングステン等の導電性材料を埋め込んで、ソース電極26を形成する。ソース電極26はシリコン基板10の不純物拡散層10bに接触する。
 このようにして、シリコン基板10上に、積層構造体70が形成される。積層構造体70内には、Z方向に延びる複数本のシリコンピラー21がX方向及びY方向に沿ってマトリクス状に配列され、シリコンピラー21間に、Y方向に延びる複数本のワード線25がX方向及びZ方向に沿ってマトリクス状に配列され、シリコンピラー21とワード線25との間に浮遊ゲート電極28が配置されている。また、積層構造体70内には、YZ平面に沿って拡がり、下端がシリコン基板10に接続されたソース電極26が配置されている。積層構造体70の上面には、シリコンピラー21の上面が露出している。
 次に、積層構造体70上に、層間絶縁膜71を形成し、層間絶縁膜71にコンタクトホール72を形成する。コンタクトホール72は、シリコンピラー21毎に形成し、全体として千鳥状に配置する。すなわち、Y方向に沿って一列に配列された複数のコンタクトホール72は、Y方向に沿って一列に配列された複数本のシリコンピラー21のY方向の一端部の直上域に形成する。また、このコンタクトホール72の列から見て隣の列に属するコンタクトホール72は、各シリコンピラー21のY方向の他端部の直上域に形成する。次に、例えば、コンタクトホール72の内面上にチタン窒化物からなるバリアメタル層(図示せず)を形成し、コンタクトホール72内にタングステン等の金属材料を埋め込むことにより、コンタクトホール72内にコンタクト22を形成する。各コンタクト22の下面は各シリコンピラー21の上面に接し、各コンタクト22はシリコンピラー21に接続される。
 次に、層間絶縁膜71及びコンタクト22上に、X方向に延びる複数本のビット線23を形成する。このとき、隣り合う2本のビット線23が、各シリコンピラー21のY方向両端部の直上域を通過するようにる。これにより、各ビット線23は、X方向に沿って一列に配列されたコンタクト22に接続される。この結果、各ビット線23は、X方向に沿って1つおきに配置されたシリコンピラー21にコンタクト22を介して接続される。以後、通常の工程を経て、本実施形態に係る半導体記憶装置1が製造される。
 次に、本実施形態の効果について説明する。
 本実施形態によれば、Y方向におけるシリコンピラー21の配列周期を、ビット線23の配列周期の2倍とすることができる。このため、シリコンピラー21を形成するためのアスペクト比が高い加工において、プロセス条件を緩めることができる。具体的には、図6に示す工程において、マスク60のラインアンドスペースの配列周期をビット線23の配列周期の2倍とすることができ、マスク60の形成、及び、マスク60をマスクとした異方性エッチングが容易になる。
 また、本実施形態においては、コンタクト22を千鳥状に配列させているため、コンタクト22をX方向及びY方向に沿ってマトリクス状に配列させる場合と比較して、コンタクト22間の距離を長くすることができる。これにより、コンタクト22の形成が容易になると共に、コンタクト22同士の短絡を抑制することができる。
 更に、本実施形態においては、X方向において隣り合う絶縁部材36の間隔を、これらの絶縁部材36に挟まれたシリコンピラー21が接続されたコンタクト22の下面22aのX方向における長さよりも長くしている。これにより、ソース電極26の近傍に配置されたコンタクト22が、ソース電極26に接触することを抑制できる。
 更にまた、本実施形態に係る半導体記憶装置1においては、1本のワード線25を共有する複数のメモリセルを1ページとし、ページ単位でデータの書込動作又は読出動作を行う。このため、選択されたメモリセルに接続されたビット線23に所定の電位を印加するときには、その両隣のビット線23には固定電位を印加することになる。これにより、所定の電位を印加するビット線23を固定電位を印加したビット線23によって挟み、電磁的にシールドすることができる。この結果、選択されたビット線23の電位変化に伴うノイズの発生を抑制することができると共に、外部の電界変化が選択されたビット線23に及ぼす影響を低減できる。このため、半導体記憶装置1の動作が安定する。
 (第2の実施形態)
 次に、第2の実施形態について説明する。
 図15(a)は、本実施形態に係る半導体記憶装置を示す平面図であり、図15(b)は図15(a)に示すA-A’線による断面図である。
 図16は、本実施形態に係る半導体記憶装置のコンタクト周辺を示す斜視図である。
 図15(a)及び図15(b)に示すように、本実施形態に係る半導体記憶装置2は、前述の第1の実施形態に係る半導体記憶装置1(図1(a)及び図1(b)参照)と比較して、トンネル絶縁膜31によって囲まれた空間内にZ方向に延びる絶縁部材81が設けられている。絶縁部材81によって、シリコンピラー21における下端部を除く部分は、X方向に離隔した2つの部分21dに分割されている。2つの部分21dは、下端部同士が接続されてシリコン基板10に接続されると共に、上端部は同じコンタクト22に接続されている。なお、シリコンピラー21の下端部も、2つの部分に分割されていてもよい。但し、この場合も、各部分の上端部は同じコンタクト22に接続される。
 本実施形態によれば、シリコンピラー21がワード線25毎に2つの部分21dに分割されているため、部分21dとワード線25との最近接部分毎に形成されたメモリセルを、同じシリコンピラー21のX方向反対側に形成されたメモリセルから分離することができる。これにより、動作の安定性がより一層向上する。
 本実施形態における上記以外の構成、製造方法、動作及び効果は、前述の第1の実施形態と同様である。
 (第3の実施形態)
 次に、第3の実施形態について説明する。
 図17(a)は、本実施形態に係る半導体記憶装置を示す平面図であり、図17(b)は図17(a)に示すA-A’線による断面図である。
 図17(a)及び図17(b)に示すように、本実施形態に係る半導体記憶装置3においては、X方向に沿って一列に配列されたシリコンピラー21に対して、Y方向において相互に異なる3つの位置をとる複数のコンタクト22が設けられている。また、X方向に沿って一列に配列されたシリコンピラー21の直上域を通過するように、3本のビット線23が設けられている。このため、Y方向におけるシリコンピラー21の配列周期及びコンタクト22の配列周期は、ビット線23の配列周期の3倍である。以後、このようなコンタクト22の配列の形態を「3連千鳥」という。
 より具体的には、X方向に沿って3本のシリコンピラー21_1~21_3が連続して配列されているとき、シリコンピラー21_1のY方向における一端部の直上域にはコンタクト22_1が設けられており、その直上域を通過するように、X方向に延びるビット線23_1が設けられている。これにより、シリコンピラー21_1はコンタクト22_1を介してビット線23_1に接続されている。
 また、シリコンピラー21_2のY方向中央部の直上域にはコンタクト22_2が設けられており、その直上域を通過するように、ビット線23_2が設けられている。これにより、シリコンピラー21_2はコンタクト22_2を介してビット線23_2に接続されている。
 更に、シリコンピラー21_3のY方向における他端部の直上域にはコンタクト22_3が設けられており、その直上域を通過するように、ビット線23_3が設けられている。これにより、シリコンピラー21_3はコンタクト22_3を介してビット線23_3に接続されている。そして、このような基本単位の構成が、X方向及びY方向に沿って繰り返し配列されている。
 次に、本実施形態の効果について説明する。
 本実施形態によれば、Y方向におけるシリコンピラー21の配列周期を、ビット線23の配列周期の3倍とすることができる。これにより、前述の第1の実施形態と比較して、シリコンピラー21を形成するためのアスペクト比が高い加工を、更に容易にすることができる。また、コンタクト22間の間隔も、更に大きくすることができる。
 本実施形態における上記以外の構成、製造方法、動作及び効果は、前述の第1の実施形態と同様である。
 (第4の実施形態)
 次に、第4の実施形態について説明する。
 図18は、本実施形態に係る半導体記憶装置を示す断面図である。
 図18に示すように、本実施形態に係る半導体記憶装置4においては、シリコン基板10とシリコンピラー21との間に、セルソース線15が設けられている。セルソース線15においては、例えば、ポリシリコン層15a、タングステン層15b、ポリシリコン層15cがこの順に積層されている。そして、シリコンピラー21の下端及びソース電極26の下端は、シリコン基板10ではなく、セルソース線15に接続されている。シリコン基板10とセルソース線15との間には、例えばシリコン酸化物からなる絶縁膜11が設けられている。絶縁膜11により、セルソース線15はシリコン基板10から絶縁されている。
 本実施形態における上記以外の構成、製造方法、動作及び効果は、前述の第1の実施形態と同様である。
 (第5の実施形態)
 次に、第5の実施形態について説明する。
 図19は、本実施形態に係る半導体記憶装置を示す断面図である。
 図19に示すように、本実施形態に係る半導体記憶装置5においては、シリコン基板10とシリコンピラー21との間に、シリコンエピタキシャル層12が設けられている。また、シリコンエピタキシャル層12のX方向両側には、浮遊ゲート電極28は設けられておらず、1段のワード線25aのみが設けられている。X方向におけるワード線25aの幅は、他段のワード線25と浮遊ゲート電極28を合わせた幅となる。
 次に、本実施形態に係る半導体記憶装置の製造方法について説明する。
 図20は、本実施形態に係る半導体記憶装置の製造方法を示す断面図である。
 先ず、図4~図6に示す工程を実施する。
 次に、図20に示すように、シリコン基板10を種としてシリコンエピタキシャル層12を形成する。このとき、シリコンエピタキシャル層12の上面の位置は、下から1段目の犠牲膜41と2段目の犠牲膜41の間の位置とする。これにより、メモリホール46の下部において、最下段の凹部47が形成されなくなり、最下段の浮遊ゲート電極28が形成されなくなる。一方、最下段の凹部54はシリコンエピタキシャル層12まで到達する。
 以後は、前述の第1の実施形態と同様な方法により、本実施形態に係る半導体記憶装置5を製造することができる。
 本実施形態における上記以外の構成、製造方法、動作及び効果は、前述の第1の実施形態と同様である。
 なお、前述の第1~第5の実施形態においては、2連千鳥及び3連千鳥の例を示したが、本発明はこれには限定されず、4連千鳥以上でもよい。nを2以上の整数とするとき、「n連千鳥」の半導体記憶装置の構成は、以下のように表現できる。
 すなわち、n連千鳥の半導体記憶装置においては、X方向に沿って一列に配列されたn本のシリコンピラー21上にn個のコンタクト22が設けられており、これらのn個のコンタクト22のY方向における位置は相互に異なっている。また、各シリコンピラー21の直上域を全てX方向に延びるn本のビット線23が通過している。そして、各シリコンピラー21は各ビット線23に各コンタクト22を介して接続されている。
 以上説明した実施形態によれば、製造が容易で信頼性が高い半導体記憶装置を実現することができる。
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明及びその等価物の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。

Claims (17)

  1.  第1方向に延び、前記第1方向に対して交差した第2方向に沿って配列された第1及び第2の半導体ピラーと、
     前記第1の半導体ピラーと前記第2の半導体ピラーとの間に設けられ、前記第1方向及び前記第2方向の双方に対して交差した第3方向に延びる第1及び第2の配線と、
     前記第1の半導体ピラーと前記第1の配線との間に設けられた第1の電極と、
     前記第2の半導体ピラーと前記第2の配線との間に設けられた第2の電極と、
     前記第2方向に延び、それぞれが前記第1の半導体ピラーの直上域及び第2の半導体ピラーの直上域の双方を通過する第3及び第4の配線と、
     前記第1の半導体ピラーに接し、前記第3の配線に接続された第1コンタクトと、
     前記第2の半導体ピラーに接し、前記第4の配線に接続された第2コンタクトと、
     を備えた半導体記憶装置。
  2.  前記第2方向及び前記第3方向において、前記第1コンタクトの位置と前記第2コンタクトの位置とが相互に異なる請求項1記載の半導体記憶装置。
  3.  前記第1のコンタクトにおける前記第2方向の長さは前記第3方向の長さよりも長い請求項1記載の半導体記憶装置。
  4.  前記第2方向における前記第1コンタクトの長さは、前記第2方向における前記第1の半導体ピラーの長さよりも長い請求項1記載の半導体記憶装置。
  5.  前記第3方向における前記第1コンタクトの長さは、前記第3方向における前記第1の半導体ピラーの長さよりも短い請求項1記載の半導体記憶装置。
  6.  前記第1方向に延び、前記第1の半導体ピラーから見て前記第3方向に配置された第3の半導体ピラーと、
     前記第1方向に延び、前記第2の半導体ピラーから見て前記第3方向に配置された第4の半導体ピラーと、
     前記第3の半導体ピラーと前記第1の配線との間に設けられた第3の電極と、
     前記第4の半導体ピラーと前記第2の配線との間に設けられた第4の電極と、
     前記第2方向に延び、それぞれが前記第3の半導体ピラーの直上域及び第4の半導体ピラーの直上域の双方を通過する第5及び第6の配線と、
     前記第3の半導体ピラーに接し、前記第5の配線に接続された第3コンタクトと、
     前記第4の半導体ピラーに接し、前記第6の配線に接続された第4コンタクトと、
     を備えた請求項1記載の半導体記憶装置。
  7.  前記第1の半導体ピラーは、前記第2方向に離隔し、上端部が前記第1コンタクトに接続された2つの部分を有し、
     前記第2の半導体ピラーは、前記第2方向に離隔し、上端部が前記第2コンタクトに接続された2つの部分を有する請求項1記載の半導体記憶装置。
  8.  前記第1及び第2の半導体ピラーから見て前記第2方向に配置され、前記第1方向に延びる第3の半導体ピラーと、
     前記第2方向に延び、前記第1の半導体ピラーの直上域、第2の半導体ピラーの直上域及び前記第3の半導体ピラーの直上域を通過する第5の配線と、
     前記第3の半導体ピラーに接し、前記第5の配線に接続された第3コンタクトと、
     をさらに備え、
     前記第3及び第4の配線は、前記第3の半導体ピラーの直上域も通過する請求項1記載の半導体記憶装置。
  9.  第1方向に延び、前記第1方向に対して交差した第2方向に沿って一列に配列されたn本(nは2以上の整数)の半導体ピラーと、
     前記n本の半導体ピラー上に設けられ、前記第1方向及び前記第2方向の双方に対して交差した第3方向における位置が相互に異なるn個のコンタクトと、
     前記第2方向に延び、前記n本の半導体ピラーの直上域を全て通過するように配置されたn本の第1配線と、
     を備え、
     各前記半導体ピラーは各前記第1配線に各前記コンタクトを介して接続された半導体記憶装置。
  10.  前記第3方向に延び、前記半導体ピラー間に前記第1方向に沿って2列に配列された複数の第2配線と、
     各前記半導体ピラーと各前記第2配線との間に設けられた第1電極と、
     各前記半導体ピラーと前記第1電極との間に設けられた第1絶縁膜と、
     前記第1電極と前記第2配線との間に設けられた第2絶縁膜と、
     をさらに備えた請求項9記載の半導体記憶装置。
  11.  前記第2絶縁膜の誘電率は、前記第1絶縁膜の誘電率よりも高い請求項10記載の半導体記憶装置。
  12.  上面が前記第2方向及び前記第3方向に対して平行な半導体基板をさらに備え、
     前記n本の半導体ピラーの一端部は、前記半導体基板に接続されている請求項9記載の半導体記憶装置。
  13.  前記半導体ピラー間に設けられ、前記第3方向に延び、前記半導体基板に接続された第2電極をさらに備えた請求項12記載の半導体記憶装置。
  14.  上面が前記第2方向及び前記第3方向に対して平行な基板と、
     前記基板と前記n本の半導体ピラーとの間に配置された第2電極と、
    をさらに備え、
     前記n本の半導体ピラーの一端部は、前記第2電極に接続されている請求項9記載の半導体記憶装置。
  15.  前記半導体ピラー間に設けられ、前記第3方向に延び、前記第2電極に接続された第3電極をさらに備えた請求項14記載の半導体記憶装置。
  16.  前記nは、2である請求項9記載の半導体記憶装置。
  17.  前記nは、3である請求項9記載の半導体記憶装置。
PCT/JP2015/056843 2015-03-09 2015-03-09 半導体記憶装置 WO2016143035A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/056843 WO2016143035A1 (ja) 2015-03-09 2015-03-09 半導体記憶装置
CN201580077508.4A CN107431074B (zh) 2015-03-09 2015-03-09 半导体存储器
TW104111476A TWI617009B (zh) 2015-03-09 2015-04-09 半導體記憶裝置
US15/686,292 US10229924B2 (en) 2015-03-09 2017-08-25 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/056843 WO2016143035A1 (ja) 2015-03-09 2015-03-09 半導体記憶装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/686,292 Continuation US10229924B2 (en) 2015-03-09 2017-08-25 Semiconductor memory device

Publications (1)

Publication Number Publication Date
WO2016143035A1 true WO2016143035A1 (ja) 2016-09-15

Family

ID=56878855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056843 WO2016143035A1 (ja) 2015-03-09 2015-03-09 半導体記憶装置

Country Status (4)

Country Link
US (1) US10229924B2 (ja)
CN (1) CN107431074B (ja)
TW (1) TWI617009B (ja)
WO (1) WO2016143035A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110315861B (zh) * 2018-03-28 2022-05-13 精工爱普生株式会社 扫描装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010187000A (ja) * 2009-02-10 2010-08-26 Samsung Electronics Co Ltd 垂直nandチャンネルとこれを含む不揮発性メモリー装置、及び垂直nandメモリー装置
JP2010192517A (ja) * 2009-02-16 2010-09-02 Toshiba Corp 不揮発性半導体記憶装置
JP2011192879A (ja) * 2010-03-16 2011-09-29 Toshiba Corp 不揮発性記憶装置および不揮発性記憶装置の製造方法
JP2013004778A (ja) * 2011-06-17 2013-01-07 Toshiba Corp 半導体記憶装置
JP2013012553A (ja) * 2011-06-28 2013-01-17 Toshiba Corp 半導体記憶装置
JP2013182949A (ja) * 2012-02-29 2013-09-12 Toshiba Corp 不揮発性半導体記憶装置およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9111799B2 (en) * 2010-05-25 2015-08-18 Samsung Electronics Co., Ltd. Semiconductor device with a pick-up region
JP2017010951A (ja) 2014-01-10 2017-01-12 株式会社東芝 半導体記憶装置及びその製造方法
US9478556B2 (en) * 2014-09-11 2016-10-25 Kabushiki Kaisha Toshiba Semiconductor memory device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010187000A (ja) * 2009-02-10 2010-08-26 Samsung Electronics Co Ltd 垂直nandチャンネルとこれを含む不揮発性メモリー装置、及び垂直nandメモリー装置
JP2010192517A (ja) * 2009-02-16 2010-09-02 Toshiba Corp 不揮発性半導体記憶装置
JP2011192879A (ja) * 2010-03-16 2011-09-29 Toshiba Corp 不揮発性記憶装置および不揮発性記憶装置の製造方法
JP2013004778A (ja) * 2011-06-17 2013-01-07 Toshiba Corp 半導体記憶装置
JP2013012553A (ja) * 2011-06-28 2013-01-17 Toshiba Corp 半導体記憶装置
JP2013182949A (ja) * 2012-02-29 2013-09-12 Toshiba Corp 不揮発性半導体記憶装置およびその製造方法

Also Published As

Publication number Publication date
CN107431074B (zh) 2020-11-10
US10229924B2 (en) 2019-03-12
CN107431074A (zh) 2017-12-01
US20170352672A1 (en) 2017-12-07
TWI617009B (zh) 2018-03-01
TW201633465A (zh) 2016-09-16

Similar Documents

Publication Publication Date Title
US10147736B2 (en) Semiconductor memory device and method for manufacturing same
US8405141B2 (en) Nonvolatile semiconductor memory device and method for manufacturing same
WO2016135849A1 (ja) 半導体記憶装置及びその製造方法
US8507976B2 (en) Nonvolatile memory device and method for fabricating the same
US9935108B2 (en) Semiconductor memory device
TWI647792B (zh) Semiconductor memory device
JP2017010951A (ja) 半導体記憶装置及びその製造方法
CN107690703B (zh) 半导体存储装置
US10910392B2 (en) Semiconductor memory device
US20130234338A1 (en) Semiconductor device and method for manufacturing the same
US9324729B2 (en) Non-volatile memory device having a multilayer block insulating film to suppress gate leakage current
JP2018160634A (ja) 半導体記憶装置
JP2019050243A (ja) 半導体記憶装置及びその製造方法
JP2014011173A (ja) 半導体装置及びその製造方法
US9735167B2 (en) Semiconductor memory device and method for manufacturing the same
US10784283B2 (en) Semiconductor memory device
WO2016143035A1 (ja) 半導体記憶装置
JP2018163965A (ja) 半導体記憶装置及びその製造方法
TW202011484A (zh) 半導體記憶裝置
JP2019096729A (ja) 半導体記憶装置
US10109578B2 (en) Semiconductor memory device
JP2023167866A (ja) 半導体記憶装置及びその製造方法
TW202145510A (zh) 半導體記憶裝置及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15884531

Country of ref document: EP

Kind code of ref document: A1